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ABSTRACT 

Interspecific gene flow potentiates adaptive evolution in a hybrid zone formed between 
Pinus strobiformis and Pinus flexilis 

 
By Mitra Menon 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. Virginia Commonwealth University, 2020. 

Major Director: Dr. Andrew J. Eckert, Department of Biology 

 

Species range margins are often characterised by high degrees of habitat fragmentation 

resulting in low genetic diversity and higher gene flow from populations at the core of the 

species range. Interspecific gene flow from a closely related species with abutting range margins 

can increase standing genetic diversity and generate novel allelic combinations thereby 

alleviating limits to adaptive evolution in range margin populations. Hybridization driven 

interspecific gene flow has played a key role in the demographic history of several conifer due to 

their life history characteristics such as weak crossability barriers and long generation times. 

Nevertheless, demonstrating whether introgression is adaptive and whether it helps overcome 

perils associated with high degrees of landscape fragmentation remains challenging in conifers 

due to limited among species differentiation and the lack of well developed genomic resources.  

My dissertation addresses this challenge by first investigating the divergence history and 

the maintenance of species boundaries between two North American species of white pines: 

Pinus strobiformis and P. flexilis. By combining demographic modeling with ecological niche 

modeling and genomic cline analyses, I illustrate a divergence history of ecological speciation 

with gene flow and the absence of strong genomic incompatabilities. By combining genotyping-



 ix 

by-sequencing datasets along with a transcriptomic dataset through a series of novel as well as 

established multifaceted approaches, I unravel the genetic architecture of adaptive evolution in 

fragmented range margin populations encompassing the P. strobiformis-P. flexilis hybrid zones.  

Here, both introgressed and background genetic variants are shown to facilitate adaptive 

evolution along freeze and water-availability related environmental gradients, respectively. I also 

highlight the adaptive potential of novel allelic combinations formed by the interaction between 

introgressed and background genetic variants, that is unique to hybrid zone populations and will 

likely be crucial in responding to novel selective regimes imposed by climate change. Finally, by 

assaying transcriptional changes between hybrid zone populations through a common garden 

design, I reveal strong signatures of adaptive trait differentiation and of genotype-by-

environment effects that is driven by variation in hybrid ancestry among populations.  

This dissertation adds to the growing body of literature demonstrating the importance of 

introgression in assisting species response to changing climatic conditions via range shifts and 

through adaptive evolution. Contrary to the notion that extant conifers will be susceptible to 

rapid environmental change owing to their long generation times, I posit that the mosaics of 

allelic variants available within conifer hybrid zones will confer upon them greater resilience to 

ongoing and future environmental change and can be a key resource for conservation efforts. 
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INTRODUCTION 
 

A key question in evolutionary biology is how neutral and selective processes shape the 

diversity of life forms. Early studies examined evolution from a dichotomous lens. One group led 

by Ronald Fisher, John Burdon Sanderson Haldane & Sewall Wright considered Darwinian 

selection as a primary driver of phenotypic change, while the other led by Motoo Kimura & 

Tomoko Ohta emphasised the random fixation of selectively neutral or nearly neutral mutations. 

The advent of molecular biology techniques in the 1960s and specifically of nucleotide sequence 

level data across several non-model organisms in the past decades have made the amalgamation 

of these two key concepts mainstream in evolutionary biology. This has shifted the focus 

towards assessing the relative importance of selective and neutral processes in shaping the 

observed patterns of genetic diversity.  

 

Evolutionary dynamics of range margin populations 

Species with broad geographic distributions provide an ideal system to understand the 

interplay between neutral and selective processes. Owing to their wide distribution, populations 

within such species are often separated by geographical and ecological barriers. Geographical 

barriers cause populations to undergo non-random mating, often independent of fitness 

differences, and become genetically structured (Wright, 1949). In species without obvious 

geographical barriers, the increased likelihood of mating among physically proximate individuals 

generates a clinal pattern of genome-wide population differentiation. Ecological barriers cause 

the type and intensity of selection to be spatially variable, generating an array of genomic 

architectures (McKay, 2001; Hansen, 2006).The genotype-phenoype-environment map is widely 

used to characterise the genetic architecture underlying adaptive traits (Sork et al. 2013). 



 2 

Characterisation of the genomic architecture is ideally done through a multi-tier process 

involving the number and identity of causative variants, their location in the genome, their 

mutation rates, effect sizes, patterns of gene expression, pleiotropic effects, environmental 

influences, epistasis and additivity (McKay, 2001; Lind et al. 2018).  While the utilization of this 

multifaceted approach is needed to accurately characterise the architecture underlying most 

quantitative traits, it remains a challenge for non-model organisms due to the paucity of genomic 

resources, limited sample sizes and the interest underlying the identification large effect 

causative variants. Small sample sizes further restrict these studies to identify only the low 

hanging fruits that represent loci of large effect sizes covering only a small fraction of the 

underlying polygenic architecture that is common to most quantitative traits (Rockman, 2012). 

Quantitative traits with polygenic architectures are characterised by a large number of alleles 

with very small effect sizes and a few with large effects (Gagnaire & Gaggiotti, 2006; reviewed 

in Lind et al. 2018).  

The study of adaptive evolution has been centered primarily around detecting locally 

elevated signals of population differentiation beyond the background genomic level. This 

approach can be specifically problematic under complex demographic histories that are common 

to range margin populations. Populations occurring at the periphery of species’ geographical 

ranges are considered range margin populations (Antonovics, 1976; Bridle and Vines, 2007). 

These populations are often at demographic non-equilibrium because they are at the epicentre of 

processes such as range expansions, bottlenecks and hybridization with a closely related sister 

taxon that has abutting range margins. Thus, for range margin populations, the interaction 

between gene flow and selection often extends beyond the intraspecific level, such that 

signatures of elevated differentiation could encompass regions associated with the maintenance 
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of species cohesion, which may or may not be associated with ecological barriers driving 

adaptive differences (Noor & Bennett, 2009; Feder & Nosil, 2010; Bierne et al. 2011; Han et al. 

2017; Christe et al. 2017). It is now well characterised that speciation occurs along a spatial and 

genomic continuum of divergence. Range margin populations encompassing hybrid zones are at 

the midpoint of this spatial and genomic continuum. Hybrid zones are geographic areas where 

divergent lineages interbreed to produce individuals of mixed ancestry and often facilitate 

exchange of genetic variants through backcrossing into the gene pool of the divergent lineages 

(Barton & Hewitt, 1985). As such, they have been used as windows into the process of 

speciation and understanding whether barriers to gene flow are strong enough to maintain 

species integrity (Harrison,1990).  

The ability of lineages to hybridize is often held at the core of species definitions 

(Dobzhansky, 1937; Mayr, 1963; Harrison & Larson, 2014). While useful from a taxonomic 

standpoint to classify lineages exhibiting few morphological differences, reproductive isolation 

encompasses only one of the several facets of speciation. For instance, isolating mechanisms 

may be mediated by differences in environmental selective regimes between lineages, even 

though genetic incompatibilities are absent or are in their infancy (Agrawal et al. 2011). Buildup 

of genetic incompatabilities among loci can be environmentally dependent (extrinsic barriers) or 

independent (intrinsic barriers). The former is a result of ecological speciation (Schluter & 

Conte, 2009) where disruptive selection generates locally adapted lineages, while the latter is 

usually a result of negative epistasis occuring among lineage specific allelic variants (Orr, 1996). 

Regardless of the initial process of divergence, in most cases intrinsic and extrinsic barriers will 

eventually be coupled, such that genomic regions involved in intrinsic barriers to gene flow 

coincide with loci exhibiting ecological gradients in allele frequency (Bierne et al. 2011; 
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Cushman & Landguth 2016), ensuring the maintenance of species barriers despite the 

homogenizing effect of gene flow (Kulmuni & Westram 2017). Thus, even under ecological 

speciation, the interaction between intrinsic and extrinsic barriers can cause reduced hybrid 

fitness, unless the hybrids occur in an environment where the novel allelic combinations or 

breakdown of co-adapted gene complexes are favourable (Moore, 1977; Gompert et al. 2012; 

Schneemann et al. 2020). The surge in genomic datasets for non-model organisms provides us a 

unique opportunity to characterise the past and ongoing process of speciation, which is needed to 

accurately identify signatures of selection in range margin populations. Documenting the 

presence and the strength of isolating barriers as well as ongoing rates of interspecific gene flow 

(if any) is necessary to elucidate the evolutionary trajectory of hybridizing species. 

Range margin populations often also occur in areas where suitable habitats are 

fragmented and small (Bridle & Vines, 2007). Small populations are prone to genetic drift which 

not only makes them depauperate in genetic diversity, but also reduces the efficacy of selection 

to remove deleterious variants, thereby increasing genetic load (Willi et al. 2018). Further, 

asymmetric gene flow into range margin populations from the core of the species range has been 

suggested to limit adaptive potential (Kirkpatrick & Barton, 1997). In contrast, several theoretical 

and empirical studies (Wright,1982; Eckert et al. 2008; Bontrager & Angert, 2019) demonstrate 

that adaptive evolution proceeds faster with population structure and variable rates of gene flow. 

This interaction between gene flow and selection can be extended to include interspecific gene 

flow and intrinsic selection pressures arising due to the breakdown of co-adapted gene 

complexes in hybrid zones. On one hand, these incompatible gene complexes can reduce hybrid 

fitness thereby stagnating parental population growth which can often lead to the extinction of 

rare taxa (Wolf et al. 2001). On the other hand, when hybrids don’t exhibit lower fitness relative 
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to their parents, a breakdown of co-adapted gene complexes can increase the standing levels of 

genetic diversity in fragmented range margin populations (Mesgaran et al. 2016; Taylor & 

Larson, 2019). Thus, the long-term consequences of hybridization have remained contentious 

and are often dependent on the demographic history of the two interacting species as well as the 

environmental conditions experienced by hybrid populations (Currat et al. 2008; Schneemann et 

al. 2019). Nevertheless, the availability of population-level, genome-wide datasets and 

methodological advances has enabled us to characterise the demographic history of several 

species which has revealed a genomic mosaic of differentiation between pairs of sister taxa 

(Payseur & Rieseberg, 2016). Such studies shed light on the potential of interspecific variants to 

introgress into novel genomic backgrounds by overcoming intrinsic selection pressures. Once 

introgressed, these variants have the potential to facilitate adaptive evolution and inhabit new 

niche spaces (i.e Hutchinson’s niche: Hutchinson 1957), beyond that of the parental species 

alone (Pfennig et al. 2016; Pierce et al. 2017; Cronk & Suarez-Gonzalez, 2018; Taylor & Larson, 

2019). By providing a segue for the transfer of adaptive variants, hybridization is an important 

player in the projected shifts of both the fundamental and realised niches of several species 

beyond their current range (Parmesan, 2006, Aitken et al. 2008). Predictive niche modeling for 

future or past environmental conditions assumes niche conservatism and lacks the ability to 

incorporate hybridization making such modeling efforts overly simplistic and even pessimistic. 

The latter is specifically true for plants, with nearly 25% of them experiencing natural 

hybridization (Mallet, 2005).  

Hybridization can act as a conduit for species to track or expand their fundamental niche 

breadth (Pfennig et al. 2016; Bolte & Eckert, 2020). This expansion of niche breadth is 

influenced by the generation of novel allelic complexes and the input of adaptive variants via 
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hybridization (Pardo-diaz et al. 2012; Ma et al. 2019). The strongest evidence for the importance 

of hybridization in the evolutionary history of plants comes from studies in sunflowers, poplars 

and oaks (Gross & Rieseberg, 2005; Suarez-Gonzalez et al. 2016, 2018; Leroy et al. 2019). For 

instance, the combination of mesic-clay like soil adapted alleles from Helianthus annus with 

drier-sandier soil adapted alleles from H. petiolaris enabled H. anomalus to inhabit sand dunes 

and eventually undergo homoploid hybrid speciation (Gross & Rieseberg, 2005). Studies in the 

Populus trichocarpa x P. balsamifera hybrid zone in western North America suggest that 

directional introgression of cold adapted alleles from P. balsamifera into the P. trichocarpa 

genomic background has enabled the latter to occupy colder habitats than is otherwise not typical 

of the species range (Suarez-Gonzalez et al. 2016, 2018). Further, they also demonstrate 

introgression of disease resistance alleles from P. tricocarpa into the hybrid genomic 

background, thereby making hybrid populations resilient to novel challenges such as changes in 

pathogen pressures imposed by changing climatic conditions. Well-developed hybrid zones 

dominated by backcrosses and advanced generation hybrids are becoming the focus of studies 

addressing positive evolutionary consequences of hybridization. For example, Mesarange et al. 

(2016) showed that when compared to symmetrical gene flow, hybrid zones experiencing 

asymmetrical gene flow, often typical of natural advanced generation hybrid zones, have the 

potential to overcome perils associated with small population sizes. Individuals within advanced 

generation hybrid zones have likely overcome incompatibilities associated with the generation of 

F1 hybrids and can contain novel variants or allelic combinations at a higher frequencies as 

compared to populations where de novo mutations are the dominant source of novel variation. 

Given that the rate of adaptation depends to a large degree on the initial frequencies of the 
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fitness-related genetic variants, hybrid zone populations are better equipped to respond to 

changing environmental conditions. 

 

Evolutionary importance of hybridization in conifers 

Artificial crossing in the hopes of generating progenies displaying hybrid vigour has a 

long history in the agricultural, animal husbandry, and forestry industries (Robison et al. 1981; 

Pearson, 1983; Knezick et al. 1984). Forests cover 30% of the earth's terrestrial surface (FAO 

2015) and provide enormous ecosystem services such as food and shelter for wildlife, soil 

replenishment, sequestration of greenhouse gases as well as a key source of renewable natural 

resources (Whitaker, 1975). Many forest tree species have wide geographical distributions across 

heterogeneous landscapes. They harbour high levels of genetic diversity and display phenotypic 

plasticity that may have equipped them with the ability to withstand several decades of 

environmental fluctuations (Isabell et al. 2019). Environmental fluctuations, specifically the 

expansion and retreat of glaciers in the Northern Hemisphere, also caused dynamic changes in 

species’ ranges, bringing about periods of contact and hybridization between closely related 

sister taxa which has often fueled post-glacial recolonisation ( Klein et al. 2017). Thus, many 

long lived forest tree species have likely experienced episodes of interspecific gene flow thereby 

making them strong candidates to understand the potential of introgression in facilitating species 

persistence through neutral and adaptive evolutionary mechanisms. In addition to episodes of 

contact, the long lifespan of trees could delay the buildup of intrinsic barriers (Petit and Hampe, 

2006; Stacy et al. 2014) thereby making hybridization a natural part of their evolutionary 

trajectory. Widespread evidence of hybridization within taxonomic families such as 

Cupressaceae and Pinaceae indicate the presence of weak intrinsic isolating barriers (Critchfield, 
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1986; Neale & Wheeler, 2019). Yet, several studies have demonstrated strong extrinsic barriers 

restricting, but not obliterating, interspecific gene flow among species within these families 

(Rehfeldt, 1999; Hamilton et al. 2013; De La Torre et al. 2014; De La Torre et al. 2015). For 

instance, Pinus contorta and P. banksiana hybridize in north-central Alberta, but the parental 

species remain differentiated along an edaphic gradient (Cullingham et al. 2012). Similarly, the 

homoploid hybrid species Pinus densata exhibits weak intrinsic barriers with its parental species 

(Zhao et al. 2014), yet demonstrates strong niche partitioning by occuring in high elevation 

environments where neither parent species are found. Spruce (genus Picea) provides one of the 

best examples of a complex and widespread hybrid zone involving nearly 6 different species, yet 

not leading to the collapse or loss of either parental species (Haselhorst et al. 2019). While not 

directly assessed in these studies, the maintenance of species barriers even under widespread 

hybridization could be attributed to high fecundity and strong selection against certain hybrid 

classes containing non-compatible allelic combinations during early life stages (Lindtke et al. 

2014; Zhao et al. 2014).  

 

Signatures of adaptive evolution across conifers 

Conifers are one of the most widely distributed types of trees, with biodiversity hotspots 

centered in North America and Eurasia (Neale & Wheeler, 2019). Across western North 

America, they inhabit highly heterogeneous landscapes characterised by extremes of temperature 

and precipitation. Decades of provenance trials and recent molecular assays have demonstrated 

complex genetic, physiological and developmental processes aiding adaptation to inter- as well 

as intra-annual fluctuations in climatic conditions (Hermann & Lavender, 1968; Howe et al. 

2003; Holliday, et al. 2008; Eckert et al. 2012; Eckert et al. 2015). Despite high levels of gene 
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flow, most conifers display strong signals of local adaptation that is guided by subtle and 

coordinated shifts in allele frequencies across populations rather than through localised fixation 

of alleles (Le Corre & Kremer, 2012; Hornoy et al. 2015; Lind et al. 2018; De La Torre et al. 

2019). Conifers, like other organisms, are faced with the threat of global climate change, but are 

thought to be more susceptible given their sessile nature and long generation time. On the 

contrary, high levels of genetic diversity and co-ordinated shifts in allele frequencies of several 

small effect variants exhibiting redundant phenotypic effects typical of the polygenic architecture 

underlying quantitative traits in conifers could aid rapid adaptation to shifted fitness optima 

(Pritchard & Di Rienzo, 2010; De La Torre et al. 2019; Bitter et al. 2019). Additionally, genomic 

scans and theoretical models demonstrate that hybridisation could provide novel variants and 

increase standing levels of genetic diversity, making conifers more resilient to rapid 

environmental change than previously thought (Hamilton & Miller, 2016).  

While long-term provenance trials in trees have provided evidence for local adaptation 

(Savolainen et al. 2007; Eckert et al. 2009), very few have accounted for the influence of 

introgression on adaptive evolution (De La Torre et al. 2014; Ma et al. 2019). Further, most of 

these studies do not evaluate components of fitness beyond current ranges for focal species, 

which is needed to predict responses to changing climatic conditions. Short-term seedling 

common gardens and genome-scale approaches encompassing a hybridizing species complex can 

provide space-for-time substitution (sensu Pickett, 1989). Broadly, space-for-time substitutions 

encompass analyses and experiments in which contemporary patterns of spatial environmental 

differences are used to predict and understand future or past unobservable events. Given the 

projected upslope and northward shift in the distribution of various cold adapted species such as 

conifers (Rehfeldt, 2004; Ledig et al. 2010), planting individuals further north of the focal 
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species’ range or assaying individuals with some genomic ancestry from a northern sister species 

will be useful to forecast adaptive traits and their underlying architectures. The large intergenic 

spaces in conifers, signatures of selection residing on regulatory regions in species with larger 

genomes (Mei et al. 2019) and accumulating evidence for genotype-by-environment (G x E) 

effects even at the level of gene expression (Roberge et al. 2007; Leder et al. 2015) highlight the 

need for gathering transcriptome datasets from space-for-time substitution experiments. One of 

the biggest advantages of these datasets is the absence of ascertainment bias, since one does not 

have to a-priori pick traits that could facilitate adaptation to novel selective pressures imposed by 

anthropogenic climate change. When combined with genome-wide datasets and linkage maps, 

several of the subtle aspects of the genetic architecture underlying adaptive evolution in trees can 

be disentangled.  

 

Hybridization & adaptive evolution in Pinus strobiformis 

Forest tree species inhabiting high altitude landscapes in the southwestern North America 

are likely to experience increased drought intensity and seasonal fluctuations in climatic events 

such as early warming in the spring causing several trees to initiate active growth before the last 

date of frost has passed. Understanding the adaptive potential of tree species inhabiting semi-arid 

ecosystems, such as the ones in the southwest of the United States (US), to future climate 

scenarios will be critical for refining conservation frameworks (Schoettle & Sniezko, 2007; 

Aitken et al. 2008). For hybridizing species, introgression of variants from a species adapted to 

cooler climatic conditions could enable populations of a southern species to utilize the longer 

growing season while being resilient to sporadic frost events in early spring (cf. Suárez-González 

et al. 2016).  
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In this dissertation, I examine the interaction between hybridization and various 

environmental factors in shaping the evolutionary trajectory of the range margin populations of 

southwestern whte pine (Pinus strobiformis). P. strobiformis is an important component of the 

mixed-conifer forests in southwestern North America, yet remains one of the most understudied 

species of soft pines (Pinus subgenus Strobus; Looney & Waring, 2013). It has a wide 

geographic distribution ranging from southern Colorado in the north to Jalisco, Mexico in the 

south. The range margin populations in the southwestern portions of  the US occur on 

fragmented sky-islands, while in Mexico it has a more continuous distribution along the ridges of 

the Sierra Madre Occidental (Little,1971). Despite the small sizes and isolated nature of the 

range margin populations, recent studies assaying physiological traits associated with drought 

and heat stress provide evidence for adaptive evolution within and across these populations 

(Goodrich et al. 2017; DaBell, 2018). These range margin populations of P. strobiformis also 

exhibit morphological characteristics that are intermediate between those noted in Mexico and 

the closely related northern sister species, Pinus flexilis (Frankis, 2009; Bisbee, 2014). P. flexilis 

inhabits montane ecosystems and ranges from northern Arizona to Alberta, Canada. Within the 

P. strobiformis-P. flexilis species complex, niche modeling efforts (Moreno-Letelier et al. 2013; 

Aguirre-Gutiérrez et al. 2015), phylogenies built using limited chloroplast and nuclear regions 

(Syring et al. 2007), as well as pattern of among species divergence at candidate loci associated 

with drought stress (Moreno-Letelier & Barraclough, 2015), all highlight the importance of 

divergent environmental selection in building and maintaining species boundaries. Overall, these 

corroborate the pattern of species differences noted across the genus Pinus. Despite strong niche 

differentiation between P. flexilis and P. strobiformis, the presence of extensive shared 

polymorphisms and their ability to undergo natural hybridization indicates porous species 
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boundaries and the potential for interspecific gene flow to facilitate adaptive evolution in range 

margin populations of the southwestern US. This overarching hypothesis is addressed through 

three chapters in my dissertation. 

In chapter 1, I characterise the divergence history of P. strobiformis and P. flexilis and 

quantify the relative influence of extrinsic and intrinsic barriers to the maintenance of species 

boundaries. The primary finding from this chapter demonstrates a history of ecological 

speciation with gene flow mediated by divergence along drought and freezing temperatures. The 

second major finding of ongoing assymetrical gene flow from P. flexilis into the range margin 

populations encompassing the hybrid zone lays the foundation for the second chapter. In chapter 

2, I quantify the relative importance of introgressed variants from P. flexilis and locally available 

background genetic variants in facilitating adaptation to marginal habitats typical of range 

margin populations, which also encompasses the P. strobiformis-P. flexilis hybrid zone. This 

chapter reveals a complex architecture of adaptive evolution in the hybrid zone, with both 

introgressed and background genetic variants facilitating adaptive evolution, albeit along 

different environmental axes. Given the interaction between genomic ancestry and 

environmental conditions in shaping patterns of local adaptation within the hybrid zone, in 

chapter 3 I assess patterns of adaptive trait differentiation and of plasticity (G x E effects) using 

transcriptome datasets generated from hybrid zone populations in response to environmental 

conditions predicted under climate change scenarios in the desert southwest of US. The primary 

finding from this chapter is of strong adaptive differentiation at several transcripts and 

conditional adaptation of transcripts in an environment dependent manner. I also demonstrate 

that hybridization contributes significantly towards both among population transcript 

differentiation as well as towards plasticity.  



 13 

Overall, this dissertation highlights signals of adaptive evolution and of G x E effects in a 

hybrid zone that occurs as small isolated populations on a fragmented landscape. I show that 

hybridization has played a critical role in driving these signatures of adaptation and of G x E 

effects. I conclude by stating that hybrid zones within the genus Pinus are more likely to respond 

to the rapidly changing environmental conditions due to hybridization facilitated increase in 

standing levels of genetic diversity and the availability of novel allelic variants.  
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CHAPTER 1 

The role of hybridization during ecological divergence of southwestern white 

pine (Pinus strobiformis) and limber pine (P. flexilis)  

 

Introduction 
 

Speciation often occurs along a continuum of divergence such that evolutionary 

processes leading to species formation initially involve unrestricted gene flow followed by the 

evolution of reproductive isolation between lineages (Kane et al. 2009; Nosil & Feder 2012; 

Roesti et al. 2012). Hence, understanding how and when barriers to gene flow arise and are 

maintained along this continuum is a fundamental goal of evolutionary biology (Losos et al. 

2013). Under a model of ecological speciation (Schluter & Conte 2009), initiation of divergence 

among populations occurs through disruptive selection leading to the formation of ecotypes. This 

process results in shifts of allele frequencies correlated with environmental differences between 

habitats specific to each ecotype. The subsequent transition from ecotypes to reproductively 

isolated species occurs through the build-up of associations among multiple loci independently 

experiencing disruptive selection, and the action of selection to maintain these co-adapted gene 

complexes (Flaxman et al. 2014). 

Several studies of speciation have used hybrid zones as windows into the process of 

divergence between species (reviewed by Petit & Excoffier 2009). Studies conducted across the 

entire geographical range of hybridizing species have helped reveal not only the demographic 

context of speciation, but also the relative importance of intrinsic and extrinsic processes 
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(Schield et al. 2017; Ryan et al. 2017). Specifically, the maintenance of species boundaries has 

been shown to occur through tension zones (intrinsic incompatibilities sensu Barton & Hewitt 

1985; Via et al. 2000; Barton 2001; Rundle 2002) and bounded hybrid superiority (extrinsic 

incompatibilities sensu Moore 1977; Milne et al. 2003; Hamilton et al. 2013). The former 

facilitates divergence through a buildup of genetic incompatibilities among loci causing 

environmentally independent reduction in hybrid fitness, whereas the latter involves increased 

hybrid fitness only in an intermediate environment to which the divergent parental allelic 

combinations confer a putative advantage. These two processes can be coupled, such that 

genomic regions involved in intrinsic incompatibility coincide with loci exhibiting ecological 

gradients in allele frequency (Bierne et al. 2011; Cushman & Landguth 2016), ensuring the 

maintenance of species barriers despite the homogenizing effect of gene flow (Kulmuni & 

Westram 2017). Thus, the interaction between intrinsic and extrinsic barriers to gene flow 

generates a genomic mosaic of introgression and differentiation that depends in part upon the 

demographic context and life history traits of the diverging lineages.  

The recent influx of genomic data from non-model species has facilitated studies of 

ecological speciation across varying spatial and temporal scales (Lexer et al. 2010; Andrew & 

Rieseberg 2013; de Lafontaine et al. 2015; Lackey & Boughman 2016; Marques et al. 2017). 

The genomic mosaic of introgression noted in these studies has lent support to the genic view of 

speciation (Wu 2001). These genomic mosaics can be the result of secondary contact, areas of 

suppressed recombination, recent divergences without gene flow, allele surfing, sieving of 

ancestral balanced polymorphisms, and selective sweeps specific to each lineage unrelated to the 

development of reproductive isolation (Noor & Bennett 2009; Cruickshank & Hahn 2014; 

Guerrero & Hahn 2017). Disentangling these explanations is often complicated because 
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reproductive isolation can progress and be associated with several of these processes, such as 

with ecological niche partitioning (Agrawal et al. 2011).  

Species of conifers are known to have ecologically differentiated niches despite the 

absence of strong morphological differences (e.g. Rehfeldt 1999). Strong pre- and post-zygotic 

isolating barriers contributing towards morphological disjunctions are often absent in conifers 

(Critchfield 1986; Buschiazzo et al. 2012; Pavy et al. 2012) due to common life history 

characteristics such as longevity, high dispersal abilities, and long generation times (Petit & 

Hampe 2006). These contribute towards large effective population sizes and moderate to high 

levels of genetic diversity, facilitating establishment across an array of ecological conditions. 

Ecological niche partitioning is thus likely to play a dominant role in facilitating speciation 

across conifers (e.g. Hamilton et al. 2013).  

In this study, we use an integrative approach to investigate processes leading to the 

divergence of two North American pine species—Pinus strobiformis Engelm. (southwestern 

white pine), and P. flexilis E. James. (limber pine). Our focal species inhabit a wide latitudinal 

range in the western part of North America, but display limited differences in morphological and 

reproductive traits (Benkman et al. 1984; Tomback et al. 2011; Bisbee 2014). Within a putative 

area of sympatry, located in the southern Rocky Mountains and Colorado Plateau, morphological 

evidence points towards the occurrence of hybridization (Steinhoff & Andresen 1971; Tomback 

& Achuff 2010). To examine the processes influencing species boundaries between these two 

conifers, we asked three questions: (1) Does the hybrid zone between P. strobiformis and P. 

flexilis occupy a niche ecologically divergent from either parent species? (2) Did the divergence 

of P. strobiformis and P. flexilis occur with continual gene flow? (3) Does a genome-wide 

mosaic of differentiation characterize divergence between P. strobiformis and P. flexilis, and is 
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this pattern attributed to extrinsic, intrinsic, or an interaction of both factors? Our results are 

consistent with ecological divergence occurring with continual gene flow between the focal 

species, with several lines of evidence supporting a strong influence of extrinsic factors in 

reinforcing species boundaries. 

Materials and Methods 

Focal taxa and field sampling 

Pinus strobiformis and P. flexilis are closely related species of white pines that occur in 

the mountainous areas of western North America. The native range of P. strobiformis includes 

Mexico and the southwestern United States, and its distribution exhibits disjunctions across dry 

and wet boreal mixed forest ecosystems (Looney & Waring 2013; Fig. 1.1). Pinus flexilis 

inhabits areas across northern Arizona and northern New Mexico to Alberta, Canada, with a 

region of putative sympatry with P. strobiformis in the southern Rocky Mountains and Colorado 

Plateau (Fig. 1.1). Across this zone of putative sympatry, cone morphology and dispersal 

syndromes fall along a continuum of divergence, blending into the characteristics of populations 

in the allopatric zones of either species (Bisbee 2014). 
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We sampled 42 P. strobiformis populations encompassing a total of 376 trees (5-13 

trees/population) from its entire geographical range. We avoided sampling the southeastern 

populations of P. strobiformis, as this region has been identified as putative hybrid zone with P. 

ayacahuite and trees here have been classified as P. strobiformis subspecies veitchii (Frankis 

2009). Populations within P. strobiformis were classified into ‘Core’ (latitudinal range: 19–30.5 

°N) and ‘Periphery’ (latitudinal range: 31–33°N), such that Periphery represents the putative 

hybrid zone between P. strobiformis and P. flexilis. For P. flexilis, a total of 13 populations were 

sampled, with eight populations sampled from the southern range margin and five sampled closer 

to the range center (Fig. 1.1). Across these thirteen populations, we sampled a total of 69 trees 

Fig 1.1: Map of sampling localities 

(black dots) overlaid on polygons 

showing geographical ranges for Pinus 

strobiformis (green) and P. flexilis (blue). 

Peripheral populations (squares) 

represent the putative hybrid zone.  
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(4–10 trees/population). To help minimize relatedness, trees within the same site were sampled 

with a minimum spacing of 50 m (P. strobiformis) and 200 m (P. flexilis) from each other. 

Data generation 

Occurrence data 

We assembled a comprehensive dataset of occurrences for ecological niche modeling 

(ENM) by supplementing our field site data with occurrence records downloaded from the 

Global Biodiversity Information Facility (GBIF), using functions from the DISMO package 

(Hijmans et al. 2017) available in the R environment (R Core Team 2017). GBIF records were 

filtered to be constrained within the known geographical distribution of both species as provided 

by Little (1971). These data were processed to remove duplicates, sub-species and records with 

geo-referencing errors, yielded 600 occurrence records for P. strobiformis and 420 for P. flexilis.	

Datasets available through GBIF are prone to several sampling biases, such as easily accessible 

locations are probably more intensely sampled regardless of the actual population density, 

thereby biasing the environmental space sampled (Boria et al. 2014). We observed this bias in 

our occurrence records for P. strobiformis where peripheral populations in the US were sampled 

more densely than the populations at the core of the species range in central Mexico. Another 

common bias is that occurrence records and predictor variables are not at identical spatial 

resolution; thus generating biased suitability scores for cells with higher numbers of individuals 

thereby increasing the rate of false positives. We addressed the biases discussed above by a) 

spatially projecting occurrence points and raster layers to the azimuthal equal area projection 

system under the WGS84 datum, and b) conducting spatial thinning to retain only one 

occurrence record within a 5 km radius of each point. These procedures yielded a final dataset 

containing 254 P. strobiformis occurrences and 336 P. flexilis occurrences.  
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Incorporating intraspecific genetic variation into ENMs can improve model fit and 

provide more accurate predictions when projecting across time and space (Knowles et al. 2007; 

Ikeda et al. 2017). Thus, we divided presence locations within P. strobiformis into the same Core 

and Periphery groups mentioned above in the ‘Focal taxa and field sampling’ section. These 

groups likely represent different genetic clusters given the geographically restricted phenotypic 

evidence of hybridization between P. flexilis and P. strobiformis (Steinhoff & Andresen 1971; 

Tomback & Achuff 2010; Bisbee 2014). We defined three groups that were the focus of our 

enquiries – (1) populations of P. flexilis, (2) populations of P. strobiformis from the northern 

range periphery (Periphery hereafter), and (3) populations of P. strobiformis from the range core 

(Core hereafter). Nineteen bioclimatic variables and altitude were used as predictors in the 

ENMs for all three groups. Present day geospatial data layers at 30 arc-second resolutions and at 

2.5 arc-minute resolutions for the Last Glacial Maximum (LGM) were downloaded from 

WorldClim v.1.4 (Hijmans et al. 2005). For each of the twenty layers, data were extracted using 

the RASTER package (Hijmans et al. 2016) available in R. 

DNA sequence data 

We extracted total genomic DNA from 445 individuals sampled across 55 populations of 

both species using DNeasy Plant Kits (Qiagen). Five ddRADseq libraries (Peterson et al. 2012), 

each containing up to 96 multiplexed samples each, were prepared using the procedure detailed 

in Parchman et al. (2012). All libraries were digested using the EcoR1 and Mse1 restriction 

enzymes followed by ligation of adaptors, barcodes, and primers. Post PCR, we selected DNA 

fragments in the 300–400 bp size range using agarose gel electrophoresis and isolated the pooled 

DNA using QIAquick Gel Extraction Kit (Qiagen). Single-end sequencing, with one multiplexed 

library per lane, was used to obtain 105 bp reads, with all sequencing conducted with Illumina 
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HiSeq 2500 at the Nucleic Acids Research Facility located at Virginia Commonwealth 

University. The resulting FASTQ files were processed using the DDOCENT bioinformatics pipeline 

(Puritz et al. 2014) and a series of downstream custom scripts to filter single nucleotide 

polymorphisms (SNPs) based on minor allele frequency cutoff, amount of missing data, PHRED 

quality score, read depth and FIS values. The entire process yielded a total of 51 633 single 

nucleotide polymorphisms (SNPs), which were used as the starting dataset for all subsequent 

analyses.  

Data analysis  

Ecological niche modeling and niche divergence 

We developed ENMs for each of the following groups: Core, Periphery, and P. flexilis, 

using algorithms available in the maximum entropy software program, MAXENT (Phillips et al. 

2006). Since MAXENT was specifically developed for presence-only data, we drew a one-degree 

rectangular buffer around the known distribution of both species and obtained 100 000 

background points at random without duplicates. Data processing, model fitting, and model 

evaluation using 5,000 iterations within MAXENT were conducted using the DISMO, RASTER, 

RGDAL (Bivand et al. 2017), and SPTHIN (Aiello-Lammens et al. 2015) packages available in R. 

ENMs were constructed from climate variables with an absolute correlation coefficient (r) less 

than 0.85 (Table 1.S1) to minimize collinearity that can inflate the effect of predictor variables 

(Braunisch et al. 2013). Two indices were used to assess model performance for each group: 

overall regularized training gain (RTG) and area under the curve (AUC). Since LGM data were 

not available at 30 arc-seconds resolution, we built two ENMs for each group (2.5 arc-minutes 

and 30 arc-seconds), but only used the 2.5 arc-minutes models for hindcasting to infer historical 

patterns of sympatry between species that could facilitate gene flow. We followed an average 
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projection ensemble approach across three LGM scenarios (CCSM4, MIROC, & MPI) to obtain 

a hindcasted suitability map. Changes in habitat suitability (stability) were assessed by adding 

MAXENT-predicted suitability maps across the LGM and present (as in Ortego et al. 2015). For 

these maps, values closer to 2 in a gridded cell are associated with the stability of highly suitable 

habitat for a given group across time points. In contrast, values closer to 0 are associated with the 

stability of highly unsuitable habitat for a given group across time points. Suitability scores 

across the full geographical extent for present conditions at 30 arc-seconds were obtained for all 

three groups delineated in our study. To investigate patterns of niche evolution, we conducted 

pairwise comparisons of these suitability scores. We accounted for potential biases towards niche 

divergence introduced by latitudinally-associated environmental variation in the present range of 

each pair, by performing asymmetric background randomization test, based on Schoener’s D, in 

the R package ENMTOOLS (Warren et al. 2008). The two resulting null distributions obtained 

through this test correspond to the background level of niche divergence for each pair. An 

observed value of Schoener’s D much smaller than expected after accounting for background 

differences could indicate niche divergence, whereas a value much larger than expected indicates 

niche conservatism (Warren et al. 2008). 

Population structure and demographic modeling 

We assessed the pattern and extent of genetic divergence between P. strobiformis and P. 

flexilis using multiple methods. First, we grouped the 42 P. strobiformis populations into the 

same Core and Periphery groups decribed above (see Data Generation & Fig. 1.1). We 

conducted a principal components analysis (PCA) to visualize grouping of sampled trees into the 

three groups delineated in our methods (Patterson et al. 2006; McVean 2009). To complement 

the PCA, we also conducted an individual-based assignment test using FASTSTRUCTURE (Raj 
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et al. 2014). We set the number of clusters (K) to 2, representing the two parental species 

investigated here, as we were interested in admixture between two defined species and not the 

potential number of genetic groups. Lastly, we utilized hierarchical fixation indices (F-statistics) 

to assess the extent of differentiation between species by nesting trees into populations and 

populations into species. There are two levels within the hierarchy, with FCT describing 

differentiation among groups at the highest level of the hierarchy and FST describing 

differentiation among groups across all levels of the hierarchy (Yang 1998). A similar nested 

model with the highest level of hierarchy being groups within P. strobiformis (Core and 

Periphery) was used to assess intraspecific differentiation. For the former, F-statistics are 

denoted using the term ‘species’ in the subscripts, whereas the latter uses the term ‘groups’ in the 

subscripts. We used a similar hierarchical model with variance partitioning to estimate group 

specific and pairwise F-statistics for the three groups delineated in this study. We denote 

pairwise values of FST using one-letter abbreviations for the groups being compared (e.g. FST-CP 

indicates FST between Core and Periphery), and group specific values of FST with the name of the 

group in subscripts. We constructed 95% confidence intervals of multilocus F-statistics using 

bootstrap resampling (n = 100 replicates) in the HIERFSTAT package (Goudet 2005) available in 

R. Along with estimation of F-statistics, we also assessed overall levels of genetic diversity using 

multilocus estimates (i.e. means across SNPs) of observed and expected heterozygosities (Ho and 

He, respectively) per population.  

Presence of individuals with mixed ancestry, as identified using FASTSTRUCTURE, can 

be a result of secondary contact, incomplete lineage sorting, or the presence of gene flow 

throughout the divergence history. Disentangling these explanations is important, because it 

directly influences our understanding of the relative importance of intrinsic and extrinsic factors 
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in facilitating speciation. For instance, when speciation is recent or has occurred with gene flow, 

we expect to see islands of divergence around regions experiencing strong intrinsic or extrinsic 

selection (Wu 2001; Feder et al. 2012). However, if hybrids are formed in areas with novel 

habitats, introgression might be selectively advantageous causing the absence of such islands. To 

infer the timing and influence of various demographic processes shaping the divergence history 

of our focal groups, we conducted demographic modeling using Diffusion Approximation for 

Demographic Inference (∂A∂I v.1.7; Gutenkunst et al. 2009). We down-sampled the total SNP 

dataset for computational simplicity by creating bivariate 0.05-interval bins based on FST and 

heterozygosity, and then subsampling each bin such that the proportion of SNPs retained per bin 

represented each bin’s contribution to the full dataset. We performed graphical checks using 

PCA to ensure that overall patterns of diversity and population genetic structure were preserved 

in the down-sampled data.	To avoid demographic inference from being biased due to patterns of 

linkage disequilibrium we randomly sampled one SNP per assembled contig to obtain a final 

dataset of 6330 SNPs. To obtain the input for ∂A∂I  runs we converted our vcf file containing the 

sub-sampled set of SNPs into a folded site frequency spectrum using mostly the default settings, 

but specifying appropriate projection values that maximised the number of segregating sites per 

group (Core, Periphery, and P. flexilis) using the ‘--project’ flag in  EASYSFS (Overcast 

2017).  

We compared a model of pure divergence with no gene flow (M1) against a set of 10 

alternative demographic models (M2–M7) representing different speciation scenarios including 

varying timing and directionality of ancient or contemporary gene flow (Fig. 1.S1). Complexity 

was added to the models with gene flow by incorporating heterogeneity in the gene flow 

parameter across loci (Tine et al. 2014, models M8–M11, Fig. 1.S1), which served as a test for 
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islands of divergence. We ran 10 replicate runs of each model in ∂A∂I, using a 200 × 220 × 240 

grid space and the nonlinear Broyden-Fletcher-Goldfarb-Shannon (BFGS) optimization routine. 

Following Carstens et al. (2013), we conducted model selection in an information-theoretic 

framework using Akaike information criterion (AIC; Akaike 1974) and ΔAIC (AICmodel i − 

AICbest model) scores (Burnham & Anderson 2002), calculated using results from the best replicate 

run (highest composite likelihood) for each model. We performed Fisher Information Matrix 

(FIM)-based uncertainty analysis on the best-supported model by setting the eps parameter to 

10% in order to obtain upper and lower 95% confidence intervals (CIs) for all parameters. The 

eps parameter represents the step size for numerical derivatives within ∂A∂I  that is used to 

calculate the curvature of the likelihood surface near the maximum likelihood estimates (MLEs) 

of our parameters. Unscaled parameter estimates, and their 95% CIs, were obtained using a per-

lineage substitution rate of 7.28 × 10−10 substitutions/site/year rate estimated for Pinaceae by De 

La Torre et al. (2017) and a generation time of 50 years. 

Genomics of interspecific introgression 

Analyses of clines across hybrid zones are widely used to identify loci exhibiting 

exceptional patterns of introgression relative to the average genomic background (Fitzpatrick 

2013; Gompert et al. 2012a; Gompert & Buerkle 2011; Stankowski et al. 2015). We classified 

our sampled trees into categories corresponding to admixed (nA = 111) and parental species (P. 

strobiformis = 277, P. flexilis = 54) based on the Q-values from FASTSTRUCTURE. Trees with 

Q-values of 0.9 or higher were classified as pure P. strobiformis, those with Q of 0.10 or lower 

were classified as pure P. flexilis, and those with intermediate Q-values were classified as 

admixed (e.g. Ortego et al. 2014). As most loci exhibited little to no differentiation between 

parental species, we retained only loci with a minor allele frequency (MAF) difference of at least 
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10% between parental species (n = 4,857 SNPs). This allowed us to avoid false correlations 

between cline parameters and fixation indices (Parchman et al. 2013). We used this subset of 

4,857 SNPs to perform a Bayesian genomic cline analysis in BGC v1.0 (Gompert & Buerkle 

2012; Gompert & Buerkle 2011). Using Markov chain Monte Carlo (MCMC) sampling, BGC 

estimates the posterior distribution of ancestry for each locus as a function of the genome-wide 

admixture coefficient. The BGC model includes two genomic cline parameters, α (genomic cline 

center) and β (genomic cline rate, i.e. slope), determining the probability of P. flexilis ancestry, 

and the rate of transition from P. flexilis to P. strobiformis given a level of genomic admixture 

described by the hybrid index, h, respectively (Gompert & Buerkle 2012; Gompert et al. 2012a). 

A tree with h = 0 was classified as having solely P. strobiformis ancestry, whereas a tree with h = 

1 was classified as having solely P. flexilis ancestry. We ran BGC for five replicate runs, each 45 

000 steps in length, and, after discarding the first 25 000 steps as burn-in, we thinned the 

posterior distribution every 20 steps, thus yielding 1,000 samples which were used for inference 

of model parameters. We used TRACER v1.6 (Rambaut et al. 2013) to test for convergence 

among replicated runs, as well as appropriate mixing along MCMC chains. We identified excess 

ancestry loci (relative to the genome-wide average) as those with posterior α or β credible 

intervals (CrI; 95% equal-tail intervals) not containing zero. We identified outlier loci as those 

with posterior mean point estimates of α (𝛼) or β (𝛽) significantly different from the rest of the 

genome, as judged by comparison to posterior quantiles of random-effect priors for α and β 

(Gompert et al. 2012a). Besides categorizing loci as excess ancestry or outlier, we also tested for 

correlations among locus-specific FCT-species, α, and β, with and without absolute values for α and 

β. The sign of the cline parameters (specifically β) have direct implications for inferring the 

processes maintaining species boundaries and hence were incorporated in correlation tests. 
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Specifically, extremely positive values of β reflect strong selection against hybrids or population 

structure in the hybrid zone (Gompert et al. 2012b), while extremely negative values of β 

indicate a wide cline representing easy dispersal across species boundaries (Janoušek et al. 

2012). 

Although the hybrid index (h) obtained from BGC provides information about the age and 

stability of a hybrid zone, such inferences are limited to only one generation of admixture 

(Fitzpatrick 2012). We estimated h and interspecific heterozygosity using INTROGRESS 

(Gompert & Buerkle 2010), in order to extend our interpretations to a historical hybrid zone and 

categorize individuals into recent (F1s), advanced generation (FNs), and backcrossed hybrids 

(BCs). This was done using a modified classification from Hamilton et al. (2013). Both BGC and 

INTROGRESS yielded very similar estimates of h (Pearson’s r = 0.70, p < 0.001), thus we used 

estimates from INTROGRESS due to the availability of inter-specific heterozygosity estimates 

from this software. To test for the influence of extrinsic factors in the maintenance of species 

boundaries, we performed linear regression analyses with backward variable selection using h 

against climate and geography as predictor variables. This was done using the reduced set of 

climate variables from the final ENMs (see Table 1.S1). 

Results 

Ecological niche modeling and niche divergence 

ENMs for each of the three groups used in this study (Fig. 1.1) had high predictive 

ability, as indicated by AUC and RTG values (Table 1.1). For Core and Periphery, several 

covariates were important, with precipitation seasonality (Bio15) shared between Core and 

Periphery. For P. flexilis, altitude was consistently the most important variable across different 

measures of variable importance (Table 1.1).  
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Table 1.1 Ecological niche model performance and variable importance at 30 arc-second 
resolution 

Groups AUC RTG RTG 
importance # 

Permutation 
importance¢ 

Percent 
contribution¢ 

Regression 
coefficient 
importance * 

Core 0.97 2.51 Bio151, Bio42 Bio4 Altitude Bio4 
Periphery 0.99 3.92 Bio93 Bio104, Bio9, Bio65 Altitude Bio15 
P. flexilis 0.94 1.72 Altitude Altitude Altitude Altitude 
AUC: Area under the curve; RTG: Regularized training gain 

#: Variables that caused maximum reduction in the total RTG when omitted from the model and the variable with 

the most contribution to RTG 

*: Sum of absolute values of regression coefficient (λ) across various predictor transformations or feature classes 

used in MAXENT 
¢: Variables with the highest permutation or percentage importance  
1Precipitation seasonality, 2Temperature seasonality, 3Mean temperature of the driest quarter, 4Mean temperature of 

the warmest quarter, 5Minimum temperature of the coldest month 

Hindcasting the 2.5 arc-minute model onto LGM data layers supported a recent, post-

LGM niche fragmentation and northward expansion in Periphery (Fig. 1.S2). A similar post-

LGM northward expansion of suitable niche space was observed for P. flexilis. Furthermore, 

there was extensive range overlap between the two species during the LGM, which was greater 

than what is currently observed (Fig. 1.S2). Values of niche similarity based on Schoener’s D 

ranged from 0.05 (P. flexilis – Core) to 0.17 (Periphery – Core). Background randomization tests 

revealed statistically significant niche divergence for two of the three comparisons (Fig. 1.2). For 

the third comparison, however, niche divergence was asymmetrical between Core and Periphery, 

with the niche of Periphery being conserved relative to the background of Core (Fig. 1.2A). A 

similar pattern was noted using only the presence points, where each group formed a distinct 

cluster within the multivariate climate space defined by the top two principal components (PCs) 

derived from PCA on the climate variables used for construction of the ENMs (Fig. 1.S3A).  
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Fig. 1.2. Results of niche divergence tests (Schoener’s D) for A) Core versus Periphery B) Core 

versus P. flexilis and C) P. flexilis versus Periphery. Histograms indicate the background levels 

of niche divergence and arrows indicate the observed value of Schoener’s D for each pair 

compared. 

 

Population structure and divergence history 

The PCA using 51 633 SNPs was consistent with trees sampled from Core being 

differentiated from those of P. flexilis, which was most marked along PC1 (Fig. 1.3A). This PC 

explained 0.90% of the total genetic variance, which was in line with the overall level of 

differentiation estimated using hierarchical F-statistics (FST-species = 0.021, 95% CI: 0.008–0.031). 

Trees sampled from Periphery were located between those sampled from Core and P. flexilis 

(Fig. 1.3A), in line with Periphery containing hybrids. There was also a latitudinal gradient in the 

mean population Q-values, as estimated using FASTSTRUCTURE, with Core populations 
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exhibiting little to no ancestry from P. flexilis and Periphery being a mixture of P. flexilis and 

Core (Fig. 1.3B).  

 

 

Fig. 1.3.A) Results of population genetic structure analysis using PCA on 51 633 SNPs. B) 

Results of assignment analyses for each tree in FASTSTRUCTURE for K = 2 clusters (right 

panel) plotted onto a topographic map of the study area (left panel). Each pie chart represents the 

average ancestry of a population from P. strobiformis and P. flexilis. 

 

At the individual tree level, we observed a strong negative correlation (Pearson’s r = 

−0.69, p < 0.001) between Q-values of putative hybrids and latitude, which is consistent with a 

geographical gradient of genomic introgression, such that trees geographically proximal to either 

parental species contain more ancestry from that parental species. Multilocus estimation of 
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differentiation between species (FCT-species) was 0.01 (95% CI: 0.005–0.018, Fig. 1.4A), while 

that between groups within P. strobiformis (FCT-groups) was 0.003 (95% CI: 0.0007–0.006). Group 

specific multilocus FST, pairwise FST, and heterozygosities differed little among the three groups, 

with the Core–P. flexilis comparison having the highest pairwise FST-CF = 0.019 (Table 1.2). 

Although populations of Periphery exhibited slightly higher heterozygosities and FST values (FST-

periphery), this pattern was mainly driven by few populations, as indicated by the wider confidence 

interval around these estimates (Table 1.2).  

 

Fig. 1.4.A) Genomic distribution of FCT, B) frequency distribution of hybrid index, C) variation 

in genomic ancestry as a function of hybrid index, D) correlation between genomic cline 

parameters, and E) 3D correlation plot of genomic cline parameters and FCT 
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Table 1.2. Estimates of genetic diversity and divergence within and across the three groups, 

compared to a genome-wide FST-species of 0.02 (95% CI: 0.008–0.03) and FST-strobiformis of 0.009 

(95% CI: 0.007–0.014). 

Group Multilocus FST 

(95% CI) 

Pairwise FST 

(95% CI) 

Mean He ± s.d. Mean Ho ± s.d. 

Core 0.003 (0.0025–
0.0034) 

Periphery: 0.009 (0.001–
0.023) 
P. flexilis: 0.019 (0.006–
0.032) 
 

0.135 ± 0.01 0.111 ± 0.01 

Periphery 0.007 (0.0071–
0.0073) 

P. flexilis: 0.015 (0.005–
0.024) 
Core: 0.009 (0.001–0.023) 
 
 

0.133 ± 0.02 0.105 ± 0.03 

P. flexilis 0.003 (0.0025 – 
0.0041) 

Core: 0.019 (0.006–0.032) 
Periphery: 0.015 (0.005–
0.024) 

0.130 ± 0.01 0.111 ± 0.01 

 

The best-supported demographic model was M4, which is a model of symmetric ancient 

gene flow between the ancestral P. strobiformis and P. flexilis lineages, followed by 

contemporary gene flow between Periphery and P. flexilis (Table 1.3; Fig 1.4). This model was 

supported by a large AIC margin of 44.8 information units (ΔAICi ≥ 44.8). Converted parameter 

estimates indicated that the species diverged 18.04 million years ago (Ma) in the Miocene (95% 

CI: 26.29–9.79 Ma), but that the two groups within P. strobiformis diverged 3.63 Ma during the 

Pliocene (95% CI: 4.44–2.83 Ma) (Fig. 1.5; Table 1.S3). Overall rates of gene flow between 

species were substantial for both historical and contemporary periods; however, contemporary 

gene flow between species was geographically restricted to Periphery and P. flexilis (Table 

1.S3). In addition, P. flexilis and Periphery experienced asymmetrical gene flow for which point 

estimates were larger in the direction of Periphery to P. flexilis (MFP  = 11.53 migrants/generation 

with a 95% CI: 0–57.94 versus MPF = 8.80 with a 95% CI: 0–12.84). Periphery had the largest 
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population size estimate, while P. flexilis was inferred to have experienced an approximately 

60% reduction in population size through time.  

 

Table 1.3. Model composite likelihoods and AIC model selection results for 11 alternative 

demographic models of P. strobiformis (Core and Periphery)–P. flexilis divergence. Results for 

the best-supported model are underlined, and the two best models are shown in boldface. 

 
Model Model description ln 

Composite 
likelihood 

k AIC ΔAICi 

M1 Strict isolation, no gene flow −883.143 6 1778.29 65.44 
hM2 Secondary contact (Periphery–P. flexilis) −886.227 7 1786.45 73.60 
M3 Ancient gene flow (speciation with gene flow) −888.003 7 1790.01 77.16 
M4 Ancient gene flow, plus Periphery–P. flexilis gene 

flow 
−847.424 9 1712.85 0.00 

 
M5 Ancient gene flow, plus Core–periphery gene flow −885.428 9 1788.86 76.01 
M6 Secondary contact (Periphery–P. flexilis) and Core–

Periphery gene flow 
−883.949 10 1787.90 75.05 

M7 Ancient gene flow, followed by Periphery–P. flexilis 
gene flow, and Core–Periphery gene flow 

−892.210 9 1806.42 93.57 

M8 Heterogeneous ancient gene flow −869.824 14 1757.65 44.80 
M9 Heterogeneous ancient gene flow, plus Core–

Periphery gene flow 
−884.511 11 1791.02 78.17 

M10 Heterogeneous gene flow during secondary contact 
(Periphery–P. flexilis), and Core-Periphery gene flow 

−902.279 9 1828.56 115.71 

M11 Heterogeneous ancient gene flow, followed by 
heterogeneous gene flow between Periphery–P. 
flexilis, and between Core–Periphery  

−922.814 11 1873.63 160.78 

AIC, Akaike information criterion; k, the number of parameters in the model; ln, natural logarithm. 
 
 
Genomics of interspecific introgression 

Hybrid index (h) values ranged from near zero to 0.80, with values around 0.20 being the 

most common thus suggesting overrepresentation of P. strobiformis ancestry (Fig. 1.4B). 

Estimates of interspecific heterozygosity had a narrow range from 0.45 to 0.64, indicating weak 

reproductive barriers (Hamilton et al. 2013) and a long history of recombination within the 
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hybrid zone (Gompert et al. 2014). Classification of trees into genotypic classes based on h and 

interspecific heterozygosity revealed a dominance of advanced-generation hybrids (54%), with 

some trees being backcrossed into P. strobiformis (22%). No recent hybrids (F1s) were apparent. 

Stepwise linear regression analysis revealed a significant effect of geography and climate on h 

across the putative hybrid zone. Latitude (Pearson’s r = 0.41, p < 0.001), precipitation 

seasonality (Pearson’s r = −0.32, p < 0.01), and mean temperature of the warmest quarter 

(Pearson’s r = −0.18, p < 0.01) had a strong influence on h, in line with the latter two being 

important predictor variables for Periphery in our ENM.  

 

 

Fig. 1.5. The best-supported model from ∂A∂I analysis. This figure shows the parameter 

estimates for divergence times (Ti) in units of millions of years ago (Ma), reference effective 

population size (θ; or after conversion, Neref), lineage population sizes (Ni), and rates of gene 

flow (Mij) for the optimal model determined by AIC model selection (see Table 1.3). 

 

Substantial variation was found in estimates of genomic cline parameters (Fig. 1.4C,D), 

especially for α, with its range (−0.99 to 1.72) being 18.5-fold as wide as that of β (−0.068 to 
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0.078). Similar to the patterns observed in the distribution of h, an asymmetry towards P. 

strobiformis ancestry was noted in the genomic cline estimates. From the posterior distribution of 

α, we found 3,193 outlier loci, of which 570 (17.9%) had elevated probabilities of P. flexilis 

ancestry (positive 𝛼) and 2,623 (82.1%) had elevated probabilities of P. strobiformis ancestry 

(negative 𝛼 ). We identified fewer loci with excess ancestry, but in contrast to the pattern for 

outlier loci those with excess ancestry favored P. flexilis over P. strobiformis ancestry. Among 

the 287 loci with excess ancestry, 204 (71.1%) had excess P. flexilis ancestry (i.e. lower 95% CrI 

of α > 0) and 83 (28.9%) had excess P. strobiformis ancestry (i.e. upper 95% CrI of α < 0). The 

multilocus FCT-species estimate for loci with excess ancestry was 0.12 (95% CrI: 0.09–0.13) while 

for outlier loci it was 0.058 (95% CrI: 0.05–0.09). We did not identify any loci that were β 

outliers or had excess ancestry indicated by β. Hierarchical FCT-species was negatively correlated 

with raw values of α (Pearson’s r = −0.036, p = 0.01), positively with raw values of β (Pearson’s 

r = 0.048, p < 0.001) and positively with absolute values of both α (Pearson’s r = 0.14, p < 

0.001) and β (Pearson’s r = 0.26, p < 0.001) (Fig. 1.4E). 

 

Discussion 

We identified strong evidence supporting ecological divergence with gene flow between 

P. strobiformis and P. flexilis. Our findings are generally consistent with previous reports on the 

species examined here; however, in contrast to the recent divergence time estimated by Moreno-

Letelier et al. (2013), our demographic modeling is consistent with deeper divergence, as well as 

ongoing speciation with gene flow, that is driven and maintained primarily by extrinsic factors. 
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The latter was made possible by explicitly accounting for hybridization as a confounding and 

contributing factor to local adaptation and speciation. 

Niche evolution and ecological divergence  

Our results indicate that climatic factors have played a major role in driving niche 

divergence between P. strobiformis and P. flexilis. Populations within Periphery coincide with 

the known phenotypic hybrid zone between P. strobiformis and P. flexilis (Steinhoff & Andresen 

1971; Tomback & Achuff 2010; Bisbee 2014) and formed a distinct group characterized by 

niche divergence from P. flexilis and asymmetrical niche divergence from Core. The 

asymmetrical pattern of niche divergence between Core and Periphery is likely the result of 

recent divergence. Under this scenario, we expect niche differentiation to occur primarily along a 

few environmental variables that strongly influence fitness in the transitional environmental 

conditions, with little to no differentiation among groups along other environmental axes (Fig. 

1.S3C). In support of this expectation, precipitation seasonality was an important niche predictor 

for both Core and Periphery, but they were differentiated along this environmental axis (Fig. 

1.S3B). While several other bioclimatic variables exhibited as large a difference as precipitation 

seasonality, they did not significantly contribute towards the niche of both Core and Periphery 

(Table 1.1; Fig. 1.S3C). These patterns reiterate the presence of hybrid populations in transitional 

environmental conditions, experiencing early stages of niche divergence. 

In line with these results, precipitation seasonality and mean temperature of the warmest 

quarter had a strong negative association with genomic ancestry and contributed to the niche 

divergence of Periphery. These two climatic variables influence plant evapotranspiration and 

affect drought responses (Mishra & Singh 2010). Drought stress during the active growing 

season is widely recognized as a limiting factor to plant growth in the western parts of North 
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America (Williams et al. 2010; Restaino et al. 2016), and our results are indicative of adaptive 

divergence along a drought gradient between the three groups (Gitlin et al 2006; Allen & 

Breshears 1998). Further, our study broadly agrees with other reports in P. strobiformis that 

indicate precipitation and altitude as important niche predictors (Aguirre-Gutiérrez et al. 2015; 

Shirk et al. 2017). Soil and vegetation variables used in previous ENMs, however, were not 

included in our analyses due to a lack of comparable data for P. flexilis and its unclear 

relationship to divergence history.  

Despite fluctuations in suitable range size (Fig. 1.S2) and previous studies indicating 

reduction in genetic diversity at range margins using chloroplast markers (Moreno-Letelier & 

Piñero 2009), we find no evidence for this in our study. This could be explained by the 

asymmetry in gene flow between Periphery and P. flexilis, as inferred from the demographic 

modeling results (Bridle & Vines 2007; Ortego et al. 2014). Evidence of directional 

introgression from P. flexilis (positive α outliers), moreover, might also have facilitated 

adaptation to transitional environmental conditions. Such novel allelic combinations have often 

contributed to the ability of populations to colonize new niches that are intermediate but beyond 

the climatic conditions experienced by the parental species (De Carvalho et al. 2010; Hamilton et 

al. 2013; De La Torre et al. 2014b; Geraldes et al. 2014). Presence of a locally adapted and 

historical hybrid zone is supported by the absence of β outliers in our genomic cline results 

(Kamdem et al. 2016), as well as by a recent study identifying high QST  values associated with 

physiological traits primarily linked to drought tolerance within Periphery (Goodrich et al. 

2016). The geographic cline in h, asymmetry in excess ancestry loci towards P. flexilis, and 

elevated estimates of FST–periphery, however, indicate the potential for geographically driven 

neutral introgression to generate biased signals of local adaptation within the peripheral 
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populations (Geraldes et al. 2014). Ongoing investigations using replicate populations in the 

hybrid zone across gradients of geographic proximity and climate similarity will be able to 

address this issue in further detail (Lotterhos & Whitlock 2015; Riquet et al. 2017). 

Speciation with gene flow without islands of divergence 

Demographic modeling indicated that divergence of P. strobiformis and P. flexilis is not 

recent (~18 Ma) on an absolute time scale and has occurred with continuous gene flow. The 

presence of continual gene flow and absence of a period of allopatry, moreover, is also supported 

by the L-shaped distribution of FCT-species values (Fig. 1.4A. Nosil & Feder 2012). Reduction in 

overlapping niche suitability from LGM to present, between P. strobiformis and P. flexilis, 

agrees with the best-supported demographic model indicating continuous but geographically 

restricted contemporary gene flow. Contemporary reduction in Ne for P. flexilis from our 

demographic modeling is contrary to the predicted post-LGM expansion of suitable habitat. This 

is likely due to the limited geographical sampling within P. flexilis for our genomic analyses or a 

nonlinear relationship between habitat suitability and realized population sizes. Specifically, due 

to the geographical bias in the sampling scheme, we were unable to account for further 

population structure within P. flexilis. This may also have biased our inference of gene flow, 

such that contemporary gene flow between the two species is restricted to geographically 

proximal genetic groups. However, the primary focus of our study was estimating whether or not 

divergence occurred with gene flow, which is unlikely to be influenced by sampling biases of 

this form. Further, based on results from the hindcasted niche models, the extensively sampled 

southeastern region of P. flexilis forms a putative refugium likely representing much of the 

diversity in southern P. flexilis that then expanded northward after the LGM. Thus, regardless of 
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the geographical bias in our sampling scheme, we are likely to have captured a sizeable fraction 

of the segregating variation within P. flexilis.  

Despite the potential for islands of divergence under a model of speciation with gene 

flow (Nosil 2008; Feder et al. 2012; Tine et al. 2014), as well as niche divergence results 

consistent with ecological speciation with gene flow between P. strobiformis and P. flexilis, the 

best-supported demographic model did not provide evidence for islands of divergence. The 

absence of elevated islands of divergence in this study, however, does not necessarily indicate an 

absence of adaptive divergence during speciation with gene flow. Islands of divergence are often 

expected only under certain genetic architectures and selection scenarios which have been shown 

to be less prevalent in conifers (Pritchard & Di Rienzo 2010; Alberto et al. 2013; Rajora et al. 

2016; Lind et al. 2017). Alternatively, given the large and complex genomes of conifers 

(reviewed by De La Torre et al. 2014a) our ddRADseq markers likely underrepresented genic 

regions, which are often identified as islands of divergence (Nosil & Feder 2012; Zhou et al. 

2014; Moreno-Letelier & Barraclough 2015; Marques et al. 2017). For example, Moreno-

Letelier & Barraclough (2015) demonstrated the potential for islands of divergence at drought-

associated genes, which had a high average FST of 0.33 (0.09–0.40) as compared to the genome-

wide estimate from this study (FST-species = 0.02). Future investigations using exome capture 

might thus be able to identify islands of divergence, although evidence of adaptation in complex 

genomes often also appears within intergenic regions (Li et al. 2012), and islands of divergence 

are not always reflective of speciation genes sensu stricto (see Guerrero & Hahn 2017). 

Genomic mosaic of introgression 

 The spatial context of loci within genomes, as well as the temporal scale of divergence 

between lineages, can influence patterns of introgression and are often depicted by a mosaic 
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landscape of genomic differentiation and ancestry. For instance, Coyne & Orr (1989), Noor & 

Bennett (2009), and Christe et al. (2017) have all argued that islands of divergence tend to 

accumulate around regions of reduced recombination such as centromeres and inversions. 

Extrinsic factors, such as disruptive selection can also restrict gene flow, but under the observed 

demographic scenario these alone are unlikely to generate islands of divergence (Yeaman & Otto 

2011; Yeaman et al. 2016). Extrinsic barriers, however, can often result in the evolution of 

intrinsic barriers and subsequently become coupled with them, as well as with other loci 

experiencing similar selection pressures (Agrawal et al. 2011; Flaxman et al. 2014). Thus, given 

sufficient time, even under a model of speciation with gene flow, such coupling effects will 

ensure the maintenance of species boundaries relative to the action of either factor alone (Barton 

& De Cara 2009). Specifically, in our focal species, previous work using candidate genes for 

drought stress provides evidence for divergent selection driving speciation, despite low genome-

wide levels of differentiation (Moreno-Letelier & Barraclough 2015). Although a thorough 

examination of exome-wide variation remains to be done, the correlation of h with drought 

related variables when coupled with the work of Moreno-Letelier & Barraclough (2015) implies 

that adaptive responses to drought stress likely contributed to the origin and maintenance of 

species boundaries in this system. 

A positive correlation between the steepness of genomic clines (β) and FCT points 

towards coincidence of loci involved in disruptive selection and those involved in reproductive 

isolation. Such a positive association has been demonstrated across several taxa (cf. Janoušek et 

al. 2012; Parchman et al. 2013; Gompert et al. 2014; Ryan et al. 2017) and we suggest it to be 

indicative of disruptive selection driving the evolution of intrinsic barriers and its coupling with 

extrinsic processes. Several empirical and simulation based studies have demonstrated that both 
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α and β can reflect patterns of selection in the hybrid zone (Gompert et al. 2012b; Janoušek et al. 

2012), but the interpretation of these values is influenced by the underlying demographic 

scenario (Gompert & Buerkle 2012; Gompert et al. 2012a, 2012b). Under the observed 

demographic scenario of ongoing gene flow, signatures of selection against hybrids (i.e., 

underdominance) would be reflected by steep genomic clines (positive β), while selection for 

hybrids (i.e., overdominance) would be reflected by wide genomic clines (negative β; Gompert 

& Buerkle 2011; Janoušek et al. 2012). The observed absence of positive β outliers and of 

islands of divergence in our demographic analysis indicates that despite some evidence of 

coupling between intrinsic and extrinsic barriers, widespread intrinsic incompatibilities are 

absent in this system, at least for the loci examined in this study. This is consistent with studies 

demonstrating weak reproductive isolation examined through forced crosses among these and 

other white pine species (Critchfield 1986). Shared life history strategies among conifers, such as 

long generation time and high dispersal capacity, are likely to restrict the evolution of post- and 

pre-zygotic isolating mechanism (Stacy et al. 2017). The limited evidence of intrinsic 

incompatibilities noted in our study supports the above claim, and we suggest that this pattern 

could be generalized across conifers with similar divergence history. Absence of negative β 

outliers and of recent hybrids indicates widespread recombination within the hybrid zone and an 

intermediate stage of divergence between our focal species (Nosil et al. 2009). The intermediate 

stage of divergence between our focal species, despite a long period of divergence in absolute 

time (i.e. years), is not surprising given the long generation times and large Ne estimates for 

conifers, which would have reduced the realized period of divergence when measured in 

coalescent units. Overall, the total absence of β outliers indicates a viable hybrid zone maintained 

largely through extrinsic factors (Kamdem et al. 2016), which may be the first stage of coupling 
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between intrinsic and extrinsic barriers. Similar patterns of climatic clines in admixture and 

environmentally-dependent maintenance of hybrid zones have been noted in other species of 

woody perennials in the genera Quercus (Dodd & Afzal-Rafii 2004), Picea (Hamilton et al. 

2013; De La Torre et al. 2014b), Rhododendron (Milne et al. 2003), and Pinus (Cullingham et 

al. 2014).  

Contrary to the absence of β outliers, we identified many α outliers which is reflective of 

a hybrid zone experiencing moderate selection pressure and high levels of gene flow from both 

of the parental species (Gompert & Buerkle 2011). Our demographic modeling, however, 

rejected the latter, thus indicating a moderate influence of natural selection on interspecific gene 

flow, as has been demonstrated across other conifers (Rehfeldt 1999). Limited variation in β is 

associated with a diffuse genomic architecture of isolation (Gompert et al. 2012b), whereas the 

high genomic heterogeneity in α, under the estimated demographic scenario, could imply 

divergent natural selection operating within the hybrid zone (Gompert & Buerkle 2011). This 

agrees with the higher values of multilocus FST within the putative hybrid zone (FST-periphery) and 

previous evidence of local adaptation in this region (Goodrich et al. 2016). A similar genomic 

mosaic of introgression has been noted across several studies (Lexer et al. 2010; Parchman et al. 

2013; Gompert et al. 2014; Lindtke et al. 2014; de Lafontaine et al. 2015) and is likely a result of 

complex interactions between divergence history, selection, and genomic features. 

Evidence of higher number of outliers with P. strobiformis ancestry and a negative 

association between our cline parameters (α and β) could be explained by three processes: (i) 

intrinsic incompatibilities resulting from Dobzhansky–Muller effects or complex epistatic effects 

disproportionally favoring allelic combinations from P. strobiformis in the hybrids relative to P. 

flexilis parental background, (ii) widespread directional selection on alleles from P. strobiformis 
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in the hybrid zone leading to the formation of co-adapted gene complexes, and (iii) incomplete 

lineage sorting resulting from recent divergence between Core and Periphery. In contrast to 

inferences from the Engelmann–white spruce hybrid zone (De La Torre et al. 2014b), the 

asymmetry of outlier loci is not due to high rates of gene flow from Core into Periphery, as the 

best demographic model excluded gene flow between these groups (see Figure 1.5B). A higher 

number of outlier loci with introgression favoring P. strobiformis is consistent with the strong 

influence of selection favoring alleles with P. strobiformis ancestry in the hybrid zone. Even 

without a linkage map, the cline results, along with asymmetrical niche divergence between Core 

and Periphery, points towards widespread directional introgression from P. strobiformis into the 

hybrid zone, which is consistent with local adaptation driving the evolution of co-adapted gene 

complexes from P. strobiformis and of emerging intrinsic incompatibilities (Gompert et al. 

2012b). The geographic clines of h, despite the absence of current gene flow between the Core 

and Periphery, also points towards an effect of incomplete lineage sorting. However, higher 

directional introgression from P. strobiformis even after accounting for the skewed pattern of 

genomic ancestry in the hybrid individuals emphasizes the role of selection over incomplete 

lineage sorting.  

Our results are in accordance with studies in other coniferous species demonstrating that 

speciation is likely initiated through ecological barriers, and several generations of hybridization 

might occur before the evolution of intrinsic barriers to gene flow (Hamilton et al. 2013; Zhou et 

al. 2014; Stacy et al. 2017). Integrating the existing genomic dataset with ongoing planting 

experiments involving climate treatments and measurements of fitness related traits should also 

help resolve the joint influence of extrinsic and intrinsic isolating mechanisms. Specifically, co-

incidence between the steepness of genomic, geographic, and trait specific clines would indicate 
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a dominant role of extrinsic factors in facilitating divergence and speciation (Holliday et al. 

2010; De La Torre et al. 2015; Stankowski et al. 2015; Ryan et al. 2017). Alternatively, the 

presence of several loci showing steep clines, but lacking climatic or functional associations 

would indicate a dominance of intrinsic barriers (Ryan et al. 2017). Although the genomic cline 

analysis used in this study provided key insights into the complexity of species isolation, it lacks 

sufficient power to account for complex epistatic effects (Gompert & Buerkle 2011). These have 

likely played a key role in ecological speciation and in initiating the evolution of reproductive 

isolation (Lindtke et al. 2012; Flaxman et al. 2014). Ultimately, additional genomic resources 

will help test whether absolute measures of divergence are correlated with recombination rate. 

This study, however, provides concrete evidence of ecological speciation with gene flow, the 

presence of a historical hybrid zone maintained by extrinsic factors, and early stages of coupling 

between extrinsic and intrinsic barriers contributing towards diversification. Whether these 

patterns hold generally for speciation within conifers, given their life history characteristics as 

well as their complex and large genomes, is thus a worthwhile area of future research. 
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Appendix 

Table 1.S1. List of variables retained in the final ENMs and their correlation coefficients 

  Alt Bio10 Bio13 Bio14 Bio15 Bio18 Bio19 Bio2 Bio3 Bio4 Bio6 Bio8 Bio9 

Alt  -0.48 -0.25 0.38 -0.18 -0.16 0.06 0.44 0.68 -0.34 -0.01 -0.41 0.12 

Bio10  
 

0.11 -0.34 0.39 0.07 -0.26 0.32 0.41 -0.33 0.71 0.72 0.51 

Bio13  
  

0.21 0.46 0.73 0.42 -0.25 0.34 -0.42 0.37 0.18 0.2 

Bio14  
   

-0.61 0.21 0.47 -0.49 -0.32 0.09 -0.19 -0.35 -0.15 

Bio15  
    

0.39 -0.18 0.21 0.51 -0.37 0.42 0.53 0.21 

Bio18  
     

-0.06 -0.28 0.09 -0.09 0.08 0.38 -0.16 

Bio19  
      

-0.31 0 -0.21 0.09 -0.48 0.25 

Bio2  
       

0.59 -0.38 0.36 0.18 0.42 

Bio3  
        

-0.85 0.83 0.23 0.77 

Bio4  
         

-0.84 -0.08 -0.82 

Bio6  
          

0.36 0.8 

Bio8  
           

0.04 

Bio9                           
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Table 1.S2. Sampling information and mean admixture proportion per population. Column 

headers “Cluster1” and “Cluster2” refer to ancestry from P. strobiformis and P. flexilis, 

respectively.  

Species Longitude Latitude cluster 1 cluster 2 N 

P. flexilis -107.655 38.005 0.047 0.953 5 

P. flexilis -106.155 39.106 0.000 1.000 5 

P. flexilis -105.526 40.969 0.000 1.000 5 

P. flexilis -105.658 40.652 0.000 1.000 5 

P. flexilis -104.030 40.813 0.007 0.993 4 

P. flexilis -106.876 37.380 0.347 0.653 5 

P. flexilis -105.588 38.071 0.006 0.994 5 

P. flexilis -105.660 39.933 0.000 1.000 5 

P. flexilis -106.088 41.032 0.251 0.749 5 

P. flexilis -110.817 38.068 0.000 1.000 5 

P. flexilis -105.449 37.736 0.037 0.963 5 

P. flexilis -105.604 38.074 0.262 0.738 5 

P. flexilis -105.434 41.267 0.164 0.836 10 

P. strobiformis -111.674 35.371 0.826 0.174 10 
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P. strobiformis -109.964 30.951 0.999 0.001 9 

P. strobiformis -105.944 25.029 0.999 0.001 10 

P. strobiformis -108.901 33.717 0.964 0.036 9 

P. strobiformis -111.674 35.384 0.827 0.173 10 

P. strobiformis -106.815 26.846 1.000 0.000 9 

P. strobiformis -108.213 28.181 1.000 0.000 10 

P. strobiformis -104.717 23.565 1.000 0.000 10 

P. strobiformis -108.643 33.454 0.954 0.046 7 

P. strobiformis -107.510 33.899 0.758 0.242 6 

P. strobiformis -105.711 32.978 0.901 0.099 8 

P. strobiformis -109.772 34.132 0.883 0.117 5 

P. strobiformis -106.401 34.699 0.911 0.089 8 

P. strobiformis -104.954 23.928 0.999 0.001 10 

P. strobiformis -105.635 33.059 0.888 0.112 10 

P. strobiformis -104.830 31.980 0.936 0.064 10 

P. strobiformis -105.733 33.392 0.847 0.153 10 

P. strobiformis -105.103 24.517 1.000 0.000 9 

P. strobiformis -105.727 23.686 1.000 0.000 10 
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P. strobiformis -105.641 33.232 0.948 0.052 7 

P. strobiformis -105.792 34.243 0.865 0.135 6 

P. strobiformis -104.706 23.335 1.000 0.000 10 

P. strobiformis -105.598 24.415 1.000 0.000 10 

P. strobiformis -111.856 35.397 0.870 0.130 7 

P. strobiformis -108.896 33.765 0.973 0.027 7 

P. strobiformis -105.638 32.682 0.870 0.130 9 

P. strobiformis -110.386 31.053 0.996 0.004 10 

P. strobiformis -111.243 34.450 0.871 0.129 9 

P. strobiformis -107.181 33.990 0.866 0.134 10 

P. strobiformis -108.143 32.922 0.971 0.029 9 

P. strobiformis -109.275 31.935 0.906 0.094 8 

P. strobiformis -111.624 35.348 0.740 0.260 10 

P. strobiformis -107.505 27.326 1.000 0.000 13 

P. strobiformis -110.783 32.451 1.000 0.000 7 

P. strobiformis -108.096 35.164 0.837 0.163 10 

P. strobiformis -108.196 28.277 0.997 0.003 5 

P. strobiformis -105.813 32.780 0.766 0.234 10 
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P. strobiformis -108.026 28.327 0.994 0.006 10 

P. strobiformis -106.356 26.469 0.999 0.001 10 

P. strobiformis -107.486 33.880 0.896 0.104 9 

P. strobiformis -105.811 25.056 0.999 0.001 10 

P. strobiformis -109.018 28.335 1.000 0.000 10 

	

Table 1.S3. Raw and converted parameter estimates, and their 95% confidence intervals (CIs),  

for the ∂a∂i model that was best supported by AIC model selection. Results are shown for model  

M4, and parameter estimates are given to three significant digits. Gene flow parameters are given  

of the form Mij,denoting the per generation number of individuals in population i that originated  

in population j.    

 

  Raw   Converted     

Parameter  
Mean 

  
Mean 

Lower 95% CI bound  Upper 95% CI 

bound 

Neref 76.00285   
4,123,203.89 3,456,361.429 4,790,046.36 

NAF 0.728   
3,002,868.87 2,145,236.016 3,860,501.72 

NF 0.295   
1,214,643.67 733,450.171 1,695,837.16 
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NC 0.968   
3,991,536.02 2,066,050.429 5,917,021.60 

NP 5.302   
21,860,864.99 16,661,087.379 27,060,642.59 

MA 6.908   
2.52 0.697 5.214 

MFP 4.351   
11.53 0.000 57.9479 

MPF 8.809   
4.26 0.000 12.843 

T1 0.0437   
18,037,965.62 9,789,789.953 26,286,141.28 

T2 0.00882   
3,634,954.70 2,834,326.862 4,435,582.55 
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Fig. 1.S1.  Schematics and parameter details for each of the 11 demographic models for the 

divergence of Core and Periphery groups within P. strobiformis and P. flexilis run in our ∂A∂I 

analysis. Parameters include divergence times (Ti), population sizes (Ni), homogeneous rates of 

gene flow (Mij, gene flow from lineage j to i) and genomically heterogeneous rates of gene flow 

(Mijh). 
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Fig. 1.S2. Ecological niche model projections for Core, Periphery, and P. flexilis, under present 

and past climate 
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Fig. 1.S3.A) Climate PCA with variables used in the ENMs, B) Distribution of precipitation 

seasonality (Bio15) at presence locations of Core & Periphery, and C) Difference between Core 

and Periphery for scaled and centered bioclimatic variables used in the final ENM 
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CHAPTER 2 

Adaptive evolution in a conifer hybrid zone is driven by a mosaic of 

introgressed and standing genetic variants  

 
 

INTRODUCTION  

Despite growing evidence for hybridization across The Tree of Life, the evolutionary 

outcome of hybridization and introgression remains contentious due to the complex interplay 

between intrinsic and extrinsic selection pressures (Abbott, 2013; de Lafontaine & Bousquet, 

2017; Todesco et al. 2016; Anderson & Stebbins, 1954). Given that conifers exhibit high levels 

of evolutionary conservation (de La Torre et al. 2017),  weak reproductive isolating barriers 

(Critchfield 1986), large effective population sizes (Ne) (Charlesworth B, 2009; Bouille & 

Bousquet, 2005) and high fecundities; hybridization among conifers may less likely be 

maladaptive and could offer a mosaic of genomic variants to aid rapid evolution (Hamilton et al. 

2013; Bresadola et al. 2019; Suarez-Gonzalez et al. 2016). Although investigations into adaptive 

introgression have been conducted in non-conifer tree taxa such as Populus and Quercus 

(Suarez-Gonzalez et al. 2016, 2018; Leroy et al. 2019), information on species with much larger 

genomes, such as conifers, is rare (Hufford et al. 2013; Takuno et al. 2015; Ma et al. 2019). 

Larger genome size is hypothesized to influence the genetic architecture of adaptive traits by 

minimizing hard sweeps and limiting genic enrichment of adaptive loci (Pyhäjärvi et al. 2013; 

Mei et al. 2018). These architectures thus typically evolve via subtle and coordinated allele 

frequency shifts of a large number of loci rather than drastic allele frequency changes at a 

handful of loci. Introgression can mediate the evolution of these architectures by providing a 
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mosaic of allelic variants to generate novel allelic combinations, typically not available within 

the range of either parental species. Therefore, conifers present ideal systems to investigate how 

large genome sizes and their aforementioned life-history characteristics interact to influence the 

genetic architecture of adaptive introgression within natural hybrid zones. 

 Our study focuses on two recently diverged conifer species (Chapter 1 & Menon et al. 

2018). Pinus strobiformis is a key component of the montane mixed conifer ecosystems ranging 

from Jalisco in southern Mexico to southern Colorado in the US (Looney & Waring, 2013). 

Populations at the northern range primarily inhabit fragmented sky-islands and contain Pinus 

flexilis–P. strobiformis hybrids (Frankis 2009; Tomback et al. 2011; Bisbee 2014). Despite its 

fragmented and disjunct distribution, P. strobiformis exhibits overall weak population structure 

(Chapter 1 & Menon et al. 2018), corroborating findings across several gymnosperms with broad 

geographical distributions (Neal & Kremer, 2011). Pinus flexilis also inhabits montane 

ecosystems but is often seen dominating subalpine and tree line habitats (Schoettle & Rochelle, 

2000). P. flexilis therefore has a broader ecological amplitude and is differentiated from P. 

strobiformis by occurring in cooler environments (Moreno-Letelier et al. 2013). 

 For long-lived sessile species such as trees, documenting the architecture of introgressed 

variants is crucial to assess the rate and mode of response to climate change (Hamilton & Miller, 

2016). We intensively sampled the P. strobiformis–P. flexilis hybrid zone (Fig. 2.1) to address 

two hypotheses. First, projected increases in seasonality of temperature and precipitation in sky-

island ecosystems harboring the hybrid zone populations (Hayhoe et al. 2004; Bell et al. 2004) 

and ongoing asymmetric gene flow from P. flexilis will favour the retention of cold tolerance-

related variants from P. flexilis. Second, the relative contribution of standing genetic variants 

towards adaptive evolution will be greater along environmental gradients that are least divergent 
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between the two parental species and exert stronger selective pressures within the hybrid zone 

relative to that in the range of pure P. flexilis. We addressed these hypotheses using a 

multifaceted approach hinging on differences in expected genetic architectures of adaptive 

evolution from standing genetic variants and introgressed variants along several environmental 

gradients (Table 2.S1), while accounting for genetic drift and neutral introgression. We found 

strong signals of adaptive introgression along freeze-related environmental gradients, while 

water availability-related gradients are associated with adaptive evolution from standing genetic 

variants. Our work adds to a growing literature demonstrating the importance of introgression in 

assisting species responses to changing climatic conditions via range shifts and adaptive 

evolution.  

 

METHODS  

 

Sampling and generation of genetic data 

 

 We sampled 22 populations (3–8 trees per population) from the Mexican range and parts 

of New Mexico containing pure Pinus strobiformis, 12 populations (4–10 trees per population)  

from pure P. flexilis distributed from northern New Mexico to southern Wyoming and 98 

populations (6-10 trees per population) from the P. strobiformis–P. flexilis hybrid zone (Fig. 

2.1). Classification of populations into pure parentals and hybrids was based on findings from 

chapter 1 (Menon et al. 2018) and further refined here using NGSAdmix (Skotte et al. 2013) (Fig 

2.S1). To assess patterns of fine-scale local adaptation within the hybrid zone, the 98 populations 

were sampled across a gridded design of latitude and longitude with paired high-low elevation 

sites (cf. Lotterhos & Whitlock, 2015).  
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Figure 2.1: (a) Geographical distribution of Pinus flexilis and P. strobiformis with sampled 

populations indicated in yellow. The background colour palette represents a raster map of 

growing degree days (DD5), highlighting one of the environmental gradients of adaptive 

introgression. (b)Finer scale representation of the 98 hybrid populations used in this study. (c) 

Location of P. strobiformis and P. flexilis on the map of North-America, with the study region 

highlighted by a rectangular box.  

 

 We extracted genomic DNA from 1122 trees sampled across 132 populations using the 

DNeasy Plant Kit (Qiagen). Multiplexed ddRADseq libraries were prepared by pooling 96 trees 

per library, following the procedure detailed in Parchman et al (2012). Following size selection 

and isolation of pooled DNA from each library, we performed single-end sequencing of one 

library per lane (150 bp reads). All sequencing was conducted at Novogene using the Illumina 

HiSeq 4000 platform. The resulting FASTQ files, one per lane, were processed using dDocent 

(Puritz et al. 2014) and a series of custom post-filtering steps as conducted in Chapter 1 (Menon 
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et al. 2018). This process yielded a total of 73,243 SNPs, which were used as the starting dataset 

for all subsequent analyses. 

Given the gridded design used for sampling the hybrid populations, we utilised latitude, 

longitude and elevation to obtain annual and seasonal climatic variables at 1 -km resolution from 

ClimateWNA v5.6 (Wang et al. 2016) for the 1981–2010 normal. We also added ten 1-km 

resolution soil variables from SoilGrids v.0.5.3 (Hengl et al. 2014). Whereas the analyses listed 

below used all 88 environmental gradients (Table 2.S1), the results presented herein focus only 

on 12 gradients that were amongst the most and least divergent between the two parental species. 

The most divergent environmental gradients included beginning of frost free period (bFFP), 

autumn degree days below zero °C (DD_0_at), spring degree days below 18 °C (DD_18_sp), 

spring degree days below 5 °C (DD5_sp), frost free period (FFP) and winter precipitation as 

snow (PAS_wt). The least divergent environmental gradients included annual heat moisture 

index (AHM), soil cation exchange capacity (CECSOL_s1), autumn degree days above 18 °C 

(DD18_at), extreme maximum temperature (EXT), spring relative humidity (RH_sp) and autumn 

maximum temperature (Tmax_at).  

 

Identifying focal loci 

 To identify focal sets of loci displaying environmental associations within the hybrid 

zone, we utilised the Bayesian genotype-environment association (GEA) approach implemented 

in Bayenv2 (Coop et al. 2010; Gunther & Coop, 2013). We pruned our dataset to 72,889 biallelic 

SNPs from across the hybrid zone. Prior to conducting associations, we accounted for population 

history by estimating the variance-covariance matrix using 500,000 iterations across three 

independent Markov chains. Mixing and convergence across Markov chains were visually 

inspected using trace plots of the determinant of the variance-covariance matrix at every 500 
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steps (Brooks & Gelman, 1998). After verifying convergence (Fig. 2.S2), we randomly picked a 

covariance matrix at 250,000th iteration near the plateau to conduct single SNP based association 

analyses on the scaled and centered 88 environmental gradients. To ensure convergence during 

the association phase of the analyses, we ran three independent Markov chains each with 

100,000 iterations. We utilised two levels of intersection to identify the most stringent set of 

outlier SNPs per environmental gradient. First, for each Markov chain, SNPs were classified as 

outliers if they fell outside the 99th percentile of both Bayes factor (BF) and Spearman’s 

correlation coefficient (ρ). Next, outlier SNPs identified across all three chains per gradient were 

intersected to obtain the final set of strongly associated SNPs. For these SNPs, we estimated the 

median BF (𝐵𝐹) across all three chains. To further understand genetic architectures of these 

outlier SNPs, we estimated multilocus FST, multilocus FCT  and median LD. We determined 

whether the focal sets fell outside the 95th percentile of the bootstrapped distribution generated 

using equal numbers of putatively neutral SNPs per environmental gradient. Bootstrapped sets 

were matched in two-dimensional bins based on the observed values of minor allele frequencies 

and proportions of missing data for each observed focal set. Differentiation measures were 

obtained through the hierarchical model implemented in the HIERFSTAT package v.0.04-22 

(Goudet J, 2005) and LD was measured as the squared pairwise correlation coefficient (r2) 

obtained through the genetics package v.1.3.8.1 (Warnes et al. 2013) in R v.3.3.2 (R core team, 

2017). 

 

Potential confounding influences of introgression 

 Given ongoing gene flow between P. flexilis and hybrid zone populations as identified in 

Chapter 1 (Menon et al. 2018), it is likely that the focal SNP sets detected above were products 

of both neutral and adaptive introgression from P. flexilis. To test this expectation, we used 
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Redundancy analysis (RDA) as implemented in the vegan package v.2.5.2 (Oksanen et al. 2013) 

in R. When compared with Bayenv2, RDA is able to control for multiple confounding factors. 

Hellinger-transformed allele frequency estimates for each of the 98 populations were used as the 

response matrix, while the predictor matrices included an environmental matrix, ancestry matrix, 

population structure matrix and a geographical matrix. For the environmental matrix, we 

conducted a principal components analysis on the scaled and centered environmental gradients 

and retained the top seven gradients as they explained >90% of variance in the dataset (Table 

2.S2). The mean Q-score per population as estimated through NGSAdmix was used in the 

ancestry matrix. The first eigenvector of the covariance matrix obtained in Bayenv2 (see above) 

was used to account for population structure. For the geographical matrix, we used scaled and 

centered spatial transformations of latitude, longitude and elevation (Liu Q, 1997). Overall, 

transformed SNP allele frequencies were modelled as a linear function of the predictor matrices 

and the significance of each fitted model was assessed using 9999 permutations. The varpart 

function in vegan was used to estimate proportions of variance in the genetic dataset explained 

by various combinations of the predictor matrices (Fig. 2.S3). We utilised the approach listed in 

Liu (1997) to estimate pure and confounded effects of the predictors on the response matrix. 

Since the primary objective of our study was to disentangle signatures of adaptive evolution from 

introgressed vs. standing genetic variants, we compared two models within RDA to assess the 

extent to which genetic variation was confounded between ancestry and environment. Model 1 

contained the joint effect and the interaction effect of environment and ancestry, while model 2 

only contained joint effects. Both models were conditioned on population structure and 

geography. If model 1 provided a significantly better fit to the data, it would indicate a 

confounding influence of environment and ancestry on outliers identified through Bayenv. 
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Identifying environmental gradients of adaptive introgression and local adaptation 

Given the prevalence of polygenic architectures underlying local adaptation across non-

domesticated species, selection should facilitate a buildup of covariance in allele frequencies 

across loci, manifested as linkage disequilibrium (LD), contributing to fitness differences 

(Kremer & Le Corre, 2012; Lind et al. 2017). Besides selection on standing genetic variants, 

elevated LD within hybrid zones could result from recent introgression and selection on 

introgressing variants. In the present study, P. flexilis inhabits areas experiencing cooler 

temperatures relative to P. strobiformis (Table 2.S1); thus, we expect the freeze-related Bayenv 

SNPs to exhibit elevated LD if they were adaptively introgressed from P. flexilis. This should 

hold true even after accounting for the expected on-average larger background LD among 

putatively neutral loci experiencing ongoing introgression. We utilised two LD-based approaches 

to test this hypothesis. 

 First, we conducted linkage disequilibrium based network analysis (LDna sensu 

Kemppainen et al. 2015) to identify distinct clusters of SNPs exhibiting strong associations 

amongst themselves. Within the P. strobiformis–P. flexilis hybrid zone, LD clusters could arise 

due to positive selection on standing variants or due to positive selection on introgressed 

variants. To enhance our ability to detect these clusters, and to account for false positives due to 

co-variation in genomic ancestry with environmental gradients, we generated 100 matrices of 

pairwise LD values. For each matrix, we used all outliers from Bayenv and randomly generated 

an equal number of putatively neutral SNPs that were matched in minor allele frequency bins. 

Within LDna, the stringency of outlier cluster (OC) cutoff depends on Φ and Emin (Kemppainen 

et al. 2015). Using a hierarchical tree constructed with Φ and Emin , the change in median LD 

among SNPs within a cluster before and after merger is given by λ and OCs are identified by 
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large λ values above the stringency cutoff. To determine the appropriate value of Emin  and Φ we 

used a subset of the 100 matrices to generate a series of trees with values of Emin ranging from 4 

to 10 but holding Φ constant at 2. We were consistently able to recover similar OCs across 

varying values of Emin , hence we decided to utilize an Emin of 9. Our choice of parameters is 

justified given the large genome sizes of conifer species, low coverage obtained through ddRAD-

seq and on average rapid decay of LD. Across all matrices, we determined the proportion of 

times that Bayenv outliers were present in an OC and the environmental gradient that they were 

associated with, as detected in Bayenv. Specifically, we assessed how often sets of three to six 

Bayenv outliers were shared in an OC across replicate runs, the environmental gradient these sets 

were associated with, and the median LD across OCs. 

 While the LDna approach could detect evolutionary processes driving sets of SNPs to 

covary in their allele frequencies, it does not explicitly account for spatial heterogeneity in 

selection pressures. Variance partitioning of LD implemented using Ohta's D fills this gap by 

dissecting the geographical and environmental bases associated with LD among loci. Partitioning 

LD into within- and among-population components (DIS & DST; sensu Ohta 1982) can help 

understand the relative importance of selection and drift (Lind et al. 2017; Csillery et al. 2014). 

We extended this approach by utilising components of LD in a multiple matrix regression 

approach to distinguish selection on standing variants from selection on introgressed variants. 

First, we utilised the 88 outlier sets identified from Bayenv to partition LD among pairs of 98 

populations using OhtaDstat v.2.0 (Beissinger et al. 2015) package in R. For each environmental 

gradient and each pairwise comparison, we estimated median DIS & DST, which were then treated 

as the response matrices. Next, we obtained two predictor matrices: (a) pairwise geographical 

distances using the Vincenty ellipsoid formula implemented in geosphere v.1.5.7 (Hijmans, 
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2017) package in R and (b) pairwise absolute differences in the respective environmental 

gradients. Overall, for each set of outliers (88 sets, one per gradient) and both estimates of LD 

components (DST & DIS), we conducted three matrix regressions using the lgrMMRR function 

within PopGenReport v.3.0.4 (Adamack & Gruber, 2014) package in R. These regressions 

included the total effect of environment and geography, the pure effect of environment and the 

pure effect of geography. The pure and confounded effects were calculated as in RDA. Using 

this approach, we were able to assess the contribution of environment, geography and the 

confounded effects towards the spatial partitioning of LD. Since the direction of introgression 

correlates with freezing temperatures, we expect the pure effect of environment on freeze-related 

Bayenv outliers to have a high predictive ability for DIS. For environmental gradients that did not 

differentiate P. strobiformis and P. flexilis (Table 2.S1), but still likely impart strong selection 

within the hybrid zone, we expected the environment to have a high predictive ability for DST. 

 

Genomic cline analyses and candidates for adaptive introgression 

 We used the genomic cline approach implemented in INTROGRESS v.1.2.3 (Gompert & 

Buerkle, 2009) to predict the parental genotypic probability of a marker in a hybrid individual as 

a function of genome-wide ancestry. As parental populations did not exhibit fixed differences at 

assayed SNPs, we utilised the parametric approach to identify SNPs exhibiting exceptional 

patterns of introgression (Gompert & Buerkle, 2009). To account for high false positives 

associated with the parametric approach, we only used SNPs that passed the Bonferroni 

corrected p-value threshold for displaying exceptional patterns of introgression (Janousek et al. 

2012). These were subjected to two further filtering steps to declare a SNP as being significantly 

introgressed from P. flexilis: (a) the fitted estimate for the P. flexilis-like genotype for a tree 

should lie outside the upper 95% confidence interval obtained from neutral simulations and (b) 
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the SNP should be significantly introgressed across at least 20% of the trees. The choice of 20% 

was based on prior analyses showing that patterns of introgression were not sensitive to 

individual based cutoffs, that were evaluated using cutoffs in the range of 10% to 50%. 

To identify candidates for adaptive introgression, we conducted an enrichment analysis 

for each of the 88 outlier sets. Specifically, we asked whether the Bayenv outlier SNPs for each 

environmental gradient (i) were overrepresented in the set of SNPs exhibiting significant 

introgression from P. flexilis using the following equation (following Hancock et al. 2011): 

FEenv(i) = 
!!"
!

!!"
!

 

where Bpf indicates the number of outliers identified through Bayenv that are also significantly 

introgressed from P. flexilis, B indicates the total number of Bayenv outliers, Spf is the number 

of SNPs that are significantly introgressed from P. flexilis and S is the total number of SNPs used 

in INTROGRESS. Statistical significance of the observed enrichment for each of the 88 outlier 

sets was determined by running 10,000 null permutations of association between a representative 

number of randomly sampled SNPs classified as Bayenv outliers and exceptionally introgressed. 

This approach helped avoid false signals of adaptive introgression due to the latitudinal gradient 

of ancestry (Fig. 2.S1) covarying with several environmental gradients. 

 

RESULTS  

 

Environmental differences between parental species structure adaptive genetic variation 

within the hybrid zone 

 We identified strong association of environmental gradients with allele frequencies across 

the hybrid zone, with freeze and water availability driving most of the noted adaptive genetic 
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differentiation. Using Bayenv, 500 unique SNPs were associated with 88 environmental 

gradients (Table 2.S3). Strongly correlated gradients exhibited considerable, but incomplete 

overlap (max = 49%) in sets of associated SNPs. The number of outlier SNPs and the strength of 

association varied across environmental gradients, with a general trend of freeze-related and 

water availability-related gradients dominating sets of outliers. Using the intersection of SNPs 

outside the 99th percentile of both BF and |ρ| across three independent runs of Bayenv, we 

identified a maximum of 45 (PAS_wt) and a minimum of 5 (PAS_sm) outlier SNPs. The 𝐵𝐹 

values for the outliers ranged from 1.48e+08 (CMD_sm) to 0.84 (RAD_sm) (Fig. 2.2a & b and 

Table 2.S3). Overall, 11 SNPs had 𝐵𝐹 values at or below 1 but none of them were associated 

with freeze-related gradients. Estimates of multilocus FST and FCT were significantly greater than 

sets of random SNPs (p < 0.05) for 72 and 60 environmental gradients (Table 2.S3) with the 

average being 3 and 4 times larger than the global estimates. Median LD (measured as r2) was 

significantly greater (p < 0.05) for 83 environmental gradients (Table 2.S3). Freeze and water 

availability-related environmental gradients had the highest point estimates for median LD, 

whereas only freeze-related gradients were ranked the highest for mutlilocus FST and FCT values 

(Table 2.S3). In general, estimates of FST, FCT  and r2 were larger for loci associated with 

environmental gradients most divergent between P. flexilis and P. strobiformis relative to those 

that were least divergent (Fig. 2.2c & d).  
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Figure 2.2: Distribution of median Bayes factor () values for (a) environmental gradients that 

strongly differentiate P. flexilis and P. strobiformis and (b) environmental gradients that least 

differentiate the two species. Distribution of multilocus F-statistics (FSTand FCT) for 

(c)environmental gradients that strongly distinguish P. flexilisand P. strobiformis and (d) 

environmental gradients that are least different between the two species. Red dots in the violin 

plots of  indicates outlier SNPs.  Red dots in the F-statistics boxplots indicate the observed 

multilocus estimates for Bayenv outlier SNPs. Details of the environmental gradients are 

represented in Table 2.S1. 

 

Confounding influence of ancestry on signals of adaptive evolution 
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 Estimates of ancestry were confounded with environment, as well as indirectly with other 

predictors through their relationship with environment, in explaining the observed genotypic 

variance. The full model within RDA which included environment, ancestry, population 

structure and geography explained a small (R2
adj

 = 0.027, F19,78 = 1.14) yet significant (p < 0.001) 

amount of overall genotypic variance. Low R2
adj

 could have resulted from weak population 

structure and the use of several putatively neutral genome wide SNPs (Harrison et al. 2017). Of 

the series of partial models fitted within RDA, most were significant and the variance explained 

by the model conditioned on population structure (2.5%) closely followed the variance explained 

by the full model (Table 2.1), reiterating the prevalence of weak population structure in conifers. 

By implementing a sequential variance partitioning approach (Fig. 2.S3), we quantified the 

independent and joint ability of various predictors to explain the genotypic variance. The pure 

effects together accounted for 56% of the total explained variance from the full model, while 

43% was confounded in some way among them. Of the pure effects, geography had the largest 

contribution (33%) to the total variance while ancestry had the smallest (1%). Total confounded 

variance due to the interaction with all other predictors was highest for environment (37%) and 

lowest for population structure (1%). The amount of variance confounded between two 

predictors was highest for environment and geography (17%) and lowest for any combination 

including population structure. A formal model comparison through RDA reiterated that 

environment interacts with ancestry to best explain overall genotypic variance (Model 1: 

Environment + Ancestry + Environment * Ancestry, Model 2: Environment + Ancestry, F71,78 = 

1.04, p = 0.05). The interaction effect model had an R2
adj

 1.6 fold larger than the model without it 

(Model 1: R2
adj

 = 0.014, Model 2: R2
adj= 0.009), indicating that outlier SNPs identified through 
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Bayenv were likely confounded with spatial variation in ancestry due to hybridization and 

ecological differentiation between the two species.  

 

Table 2.1: Variance partitioning, model R2 and significance of multivariate models fitted using 

redundancy analyses. 

 

Predictors R2 R2
adj p-value 

All 0.217 0.027 0.0001 

Env 0.086 0.014 0.0001 

Geo 0.12 0.020 0.0001 

Ancestry 0.018 0.007 0.0001 

PopStr 0.012 0.002 0.0001 

Env |X 0.07 0.004 0.01 

Geo |X 0.108 0.009 0.0002 

Ancestry |X 0.01 0.0004 0.366 

PopStr |X 0.011 0.002 0.01 

Env+Geo |X 0.116 0.018 0.0001 

Env+Ancestry |X 0.089 0.005 0.001 

Env+PopStr |X 0.085 0.006 0.0007 

Env+Geo+Ancestry |PopStr 0.133 0.025 0.0001 

Env+Geo+PopStr |Ancestry 0.126 0.019 0.0001 

Env+Ancestry+PopStr |Geo 0.104 0.007 0.0004 

*X indicates all other matrices are partitioned out. Env stands for Environment, PopStr stands 

for population structure and Geo stands for geography.  

 

 

Adaptive variants are due to selection on introgressed and standing variants 
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 LDna and LD variance partitioning revealed that Bayenv outliers were a product of 

selection on introgressed and standing genetic variants. SNPs associated with environmental 

gradients differentiating P. flexilis and P. strobiformis were overrepresented in the OCs 

identified through LDna (Table 2.S4). These OCs also tended to have a larger median LD 

relative to OCs containing SNPs associated with environmental gradients least divergent 

between the two species. Across replicate sets of LD matrices that were used to account for 

random SNP associations due to neutral introgression, the percentage of time sets of 3 to 6 

Bayenv SNPs were present in an OC ranged from 74% to 65. While SNPs associated with 

freezing temperatures or with environmental gradients most divergent between the two species 

were dominant in these sets (Fig. 2.3a), very rarely were SNPs associated with any of the least 

divergent environmental gradients present together in an OC (Fig. 2.3b). Since our approach 

utilised neutral sets of SNPs in combination with outlier SNPs for each replicate, the OCs 

containing high median LD are less likely to be false positives due to spatially varying patterns 

of neutral introgression. We noted a few OCs containing a combination of freeze and water 

availability-related Bayenv SNPs; however, OCs containing a majority of SNPs associated with 

freeze-related gradients had the highest median LD across all replicate runs (Fig. 2.3c).   

 Partitioning of LD into among- and within-population components (DST & DIS) and their 

association with climatic and geographical distance revealed the granularity of selection pressure 

across the hybrid zone and demonstrated a strong confounding between geography and freeze-

related environmental gradients. Adaptive evolution should increase DST for loci associated with 

the environmental gradients differentiating hybrid zone populations due to locally divergent 

selection pressures.  
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Figure 2.3: Proportion of SNPs across 100 replicates of LDna that were shared within an outlier 

cluster (OC) for the (a) strongly divergent and (b)l east divergent environmental gradients 

between P. strobiformis and P. flexilis (c) Representation of one of the replicated sets from 

LDna, with red points indicating SNPs in the OC. The proportion of environmentally associated 

SNPs per OC, median LD for the cluster and the environmental gradients with which the SNPs 

in each OC are associated are indicated above each network. Regression coefficients for within 

population component of LD (DIS) for environmental gradients that were (d) most divergent and 

(e) least divergent between the parental species. Regression coefficients for among population 

component of LD and (DST) for environmental gradients that were (f) most divergent and (g) 

least divergent between the parental species.  Details of the environmental gradients represented 

on x-axis of panel a,b & d:g are represented in Table 2.S1.  

 

In contrast, adaptive evolution within the hybrid zone should increase DIS for environmentally 

associated loci that covary with the latitudinal axis of introgression and differentiate the two 

parental species. Using the full multivariate regression model containing the total effect of 

environment and geography, we identified solar radiation and water availability-related gradients 

to be the strongest predictors of DST, while freeze-related gradients had the highest R2 for DIS 

(Table 2.2).  However, elevated LD (specifically DIS) could arise in the absence of selection when 

populations experience recent and ongoing introgression (Schumer & Brandvain, 2016; Menon 

et al. 2019). To account for this, we implemented partial regression models to identify the 

primary components driving the elevated R2 values for DST & DIS along each environmental 

gradient. Environmental gradients listed below are described in Table 2.S1. First, for the pure 

effect of environment on DST, the highest R2 was noted for SNPs associated with summer 

radiation (RAD_sm), whereas for DIS, DD_0_wt associated SNPs had the highest value. Second, 

for the pure effect of geography on DST, SNPs associated with CMD_at and CECSOL_s1 had the 

highest R2, while PAS_wt associated SNPs had the highest R2 when DIS was the response 
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variable (Table 2.2, Fig 2.3 d:g). Overall, the total R2 for DST was inversely related to the 

magnitude of difference in a given environmental gradients between the two parental species, 

while total R2 for DIS was directly related (Table 2.S5). We also note that, for most divergent 

environmental gradients, the confounding effect had a larger contribution to the total R2 for DIS 

relative to the least divergent gradients (Fig. 2.3 d & e). Specifically, even though SNPs 

associated with freeze-related gradients had the highest total R2 for DIS, this was rarely driven by 

the predictive ability of environment alone. In most cases, the total R2 was partitioned equally 

between the pure effect of environment and the confounded effect (Fig. 2.3d, Table 2.S5). This is 

expected given (a) adaptive introgression is likely occurring along environmental gradients that 

also drive ecological speciation between P. strobiformis and P. flexilis, (b) latitudinal variation in 

ancestry and (c) environmental gradients related to freezing events covary with latitude.  

 

Table 2.2: Top five environmental gradients (R2 in parentheses) for three multivariate regression 

models partitioning the effect of geography and environment on median among and within 

population component of LD (DST  & DIS), along with superscripts indicating sign of the 

regression coefficient. Environmental gradients are defined in Table 2.S1. 

 

 Response Full model pureEnv pureGeo Confounded 

DIS DD_0_wt (0.13) DD_0_wt (0.079) PAS_wt (0.023) EMT (0.059) 

EMT (0.113) DD_0 (0.054) PAS (0.020) eFFP (0.050) 

DD_0 (0.10) EMT (0.053) Tave_sp (0.019) DD_0_wt (0.049) 

eFFP (0.099) Tmin_wt (0.047) DD5_at (0.018) Tmin_wt (0.048) 

Tmin_wt (0.096) bFFP (0.044) PAS_at (0.018) bFFP (0.045) 
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DST RAD_sm (0.012) RAD_sm (0.009) CMD_at (0.004) RH_sm (0.002) 

CMD_at (0.007) AHM (0.006) CECSOL_s1 (0.004) RH_sp (0.002) 

BLD_s6 (0.007) ORC_s1 (0.005) BLD_s6 (0.004) CMD_sm (0.001) 

AHM (0.006) CMD (0.004) MAP (0.003) BLD (0.001) 

RH_sp (0.006) RAD_at (0.03) RH_sp (0.003) RH (0.001) 

 

Environmental gradients in bold were significant at p < 0.01  

Abbreviations: DD_0_wt: winter degree days below zero , PAS_wt: winter precipitation as snow, EMT: 

extreme minimum temperature, DD_0: degree days below zero, PAS: precipitation as snow, eFFP: end of 

frost free period, Tave_sp: spring average temperature, Tmin_wt: winter minimum temperature, bFFP: 

beginning of frost free period, PAS_at: autumn precipitation as snow, RAD_sm: summer radiation, 

CMD_at: autumn Hargreaves climate moisture deficit, RH_sm: summer relative humidity, AHM: annual 

heat moisture index, CMD: Hargreaves climate moisture deficit, MAP: mean annual precipitation, 

BLD_s6: bulk density at 1m depth, RH_sp: spring relative humidity, RH: relative humidity, CECSOL_s1: 

cation exchange capacity at 0m depth, RAD_at: autumn radiation, ORC_s1: organic matter content at 0m 

depth. 

 

Genomic cline analyses and drivers of adaptive introgression 

 Introgressed variants from P. flexilis facilitated adaptive evolution along freeze-related 

environmental gradients, while standing genetic variants drove adaptive evolution along water 

availability-related gradients. Of the 62,992 SNPs that were biallelic across the hybrid zone and 

biallelic across parental populations, 28,763 were significantly introgressed from P. flexilis in at-

least 20% of the individuals. Since our assessment of adaptive introgression was not sensitive to 

the individual based cutoff, we present results only for SNPs that were significantly introgressed 

across at-least 20% of the individuals. We note a higher than expected fold enrichment (FE) of P. 

flexilis ancestry for SNPs associated with freeze-related gradients and others that were strongly 
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divergent between the two parental species (Fig 2.4a, Table 2.S6, median FE: 1.5). Out of the 31 

freeze-related environmental gradients (Table 2.S1), 27 were above the 95th percentile of null 

distribution of FE and 19 were above the 99th percentile. Conversely, none of the SNPs 

associated with water availability-related gradients or those least divergent between the two 

parental species, exhibited an enrichment of P. flexilis ancestry (Fig. 2.4b, median FE: 1.1). 

These findings were robust to potential confounding effects of geography and ancestry co-

varying with several environmental gradients.  

 
Figure 2.4: Bootstrap distribution of P. flexilis ancestry fold enrichment (FE) with red points 

indicating the FE for outlier sets of SNPs associated with environmental gradients that were (a) 

strongly divergent between the two species and (b)least divergent between the two 

species.Details of the environmental gradients are represented in Table 2.S1. 

 

 

DISCUSSION 
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 In line with several recent genome wide studies (Leroy et al. 2019; Whitney et al. 2013; 

Chhatre et al. 2018), the present work illustrates the importance of introgression from P. flexilis 

in facilitating adaptive evolution as well as characterizes the genetic architecture of putatively 

adaptive loci within the P. flexilis-P. strobiformis hybrid zone. The observed enrichment of P. 

flexilis ancestry among SNPs associated with freeze-related gradients supported our first 

hypothesis of the retention of freeze tolerance associated variants in a hybrid genomic 

background.  Standing variants, moreover, were associated with adaptive evolution along water 

availability-related gradients. This supported our second hypothesis that the relative contribution 

of standing genetic variants is inversely related to the extent of divergence between the two 

parental species along an environmental gradient, as well as on selection pressures unique to the 

hybrid zone.  

Adapting to rapidly changing climatic conditions is a major challenge for populations of 

long-lived species such as trees (Aitken et al. 2008; Alberto et al. 2013). As hybridization often 

occurs at species range margins that are characterised by low population density, a shift in fitness 

optima due to novel selective pressures imposed by climate change will purge non-adaptive 

alleles and increase genetic load (Hamilton & Miller, 2016; Kirkpatrick & Barton, 1997). The 

importance of introgression in alleviating genetic load and facilitating adaptive evolution 

(Stebbins, 1959) is likely to be amplified in fragmented range margin populations, where the 

geographical ranges of hybridizing species overlap (Petit & Excoffier, 2009). Conifer hybrid 

zones may be poised to overcome the challenges imposed by rapidly changing climatic 

conditions. This may be facilitated by their large effective population size, higher mutational 

input owing to reactivation of transposable elements (TEs) as noted in maize and sunflower 

hybrids (McClintock, 1984; Kawakami et al. 2011) and immediate adaptive evolution or 
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increases in standing genetic diversity from introgressed variants. By identifying the source of 

allelic variants and genetic architectures associated with adaptive evolution along several 

environmental gradients, we emphasise on the need for holistic conservation approaches that 

considers hybridization driven introgression, when possible.  

Genetic architecture plays a key role in determining the fate of introgressed variants 

(Barton & Hewitt, 1985). Within advanced generation hybrid zones, the retention of introgressed 

variants depends on environmental conditions and the genomic background. This study, like 

several others (Mimura et al. 2014; De La Torre et al. 2014; Hamilton et l. 2015; Fraisse et al. 

2016; Wu et al. 2018), demonstrated that for recently diverged species, or those with weak 

intrinsic isolating barriers, the retention of introgressed variants in hybrid zones can be favoured 

when fitness optima of hybrid populations align with those of the contributing sister species. In 

our study, this was evident when the environmental conditions of a population within the hybrid 

zone overlapped with those present in the range of P. flexilis, causing introgressing loci to likely 

experience positive selection. However, for populations that were environmentally distinct from 

P. flexilis and primarily dominated by P. strobiformis genomic background, the introgressing 

loci likely experience purifying selection. Specifically, when the environmental conditions of a 

hybrid population were similar to that in the range of P. flexilis, we noted greater proportion of 

loci with P. flexilis ancestry as well as less divergence in allele frequency (results not presented). 

This interaction between genomic ancestry and degree of environmental similarity with either 

parental species was also supported by variance partitioning approaches implemented in RDA 

and matrix regression of Ohta’s D-statistics. Both approaches indicated a strong contribution of 

the confounding effect between environment and ancestry towards the granular spatial variation 

in genetic diversity across the hybrid zone (Table 2.1 & Fig 2.3. d:g).  
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Ongoing introgression causes localised increases in LD mimicking patterns expected 

under strong selection. Thus, in addition to the already expected polygenic architecture of local 

adaptation in species experiencing high gene flow (Kremer & Le Corre, 2012), outlier scans 

dependent on elevated patterns of differentiation alone will be underpowered and prone to high 

false positive rates in populations experiencing introgression. By intensively sampling the hybrid 

zone through a gridded sampling design (see methods) and assessing spatial patterns of LD, we 

have unravelled aspects of these subtle architectures and demonstrated that different 

environmental gradients are associated with adaptive evolution from introgressed and standing 

genetic variants. Specifically, introgressed variants drove adaptive evolution along freeze-related 

gradients that were most divergent between the two species, while standing genetic variants were 

predominantly associated with water availability-related gradients or those that were least 

divergent between the species. Among our results, greater magnitudes of LD for several outlier 

sets, dominance of freeze associated SNPs in the OCs and a significant association of LD 

variance components (DST & DIS) with environmental gradients all highlight the importance of 

covariance in allele frequencies facilitating adaptive evolution in species with large genome sizes 

and large Ne (Eckert et al. 2015; Hornoy et al. 2015; Lind et al. 2017). The co-occurrence of 

freeze and water availability-related SNPs in some of the OCs identified through LDna echoes 

the role of hybridization in generating novel, putatively adaptive gene complexes unique to 

hybrid zones (Rieseberg et al. 2007; Lewontin & Birch, 1966). These novel gene complexes 

likely resulted from ongoing asymmetric introgression from P. flexilis providing new allelic 

variants into a genomic background dominated by P. strobiformis and may confer a competitive 

advantage to hybrid populations under new selective regimes generated by rapidly changing 

climatic conditions (Hamilton & Miller, 2016). Together, by utilising random sets of SNPs 
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within LDna and the permutation approach in enrichment analysis grants us confidence that 

despite the possibility of false positives due to strong confounding between ancestry and 

environmental selection gradients, several of the SNPs in the OCs are either physically linked to 

the true candidates or themselves the target of adaptive introgression. Further, none of the SNPs 

shared in an OC were from the same contig, indicating that they are less likely to be outliers due 

to physical linkage.  

Since our study was conducted in a hybrid zone, signatures of local adaptation and clinal 

change in allele frequencies detected here could be confounded with spatial variation in the 

strength of purifying selection (Kim et al. 2018) or with the coupling of intrinsic and extrinsic 

barrier loci (Bierne et al. 2011). Purifying selection can generate weakly deleterious mutations, 

known to contribute significantly towards standing genetic diversity (Eyre-Walker et al. 2006; 

Christe et al. 2017). Relative to studies conducted in non-hybrid populations, those in hybrid 

zones are more likely to experience heterogeneity in the strength of purifying selection due to the 

interaction of introgressed alleles with different genomic backgrounds. Identifying the proportion 

of loci under spatially varying purifying selection (dependent or independent of environment) 

will have to await further development of population genomic resources in conifers (but see Lu 

et al. 2019). Coupling between intrinsic and extrinsic barriers is more likely to generate 

signatures that parallel local adaptation in tension zones formed by secondary contact (Bierne et 

al. 2011). In the absence of secondary contact in our study system, such coupling might occur in 

patchy hybrid zones where certain populations are predominantly differentiated along 

environmental gradients facilitating ecological speciation between P. strobiformis and P. flexilis. 

This could be driving elevated FST values of some SNPs associated with freezing temperatures 

and water availability (Table 2.S3), or influencing the noted spatial variation in DIS as a function 
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of freeze-related environmental gradients (Fig. 2.3d). Approaches that scan the genome for 

signals of environmental associations and elevated differentiation are likely to pick up longer 

term processes (Whitlock MC, 1992) which could have identified some of the coupled loci 

mentioned above, if they exist. However, by combining genomic cline analyses with 

environmental associations we were able to capture the contribution of shorter term processes 

such as ongoing introgression (Lexer et al. 2010) towards adaptive evolution within the hybrid 

zone.  

Utilisation of ddRADseq datasets for detecting signals of local adaptation has been 

criticised due to low genomic coverage, specifically of genic regions, and high error rates 

(Lowry et al. 2017). However, the uniform genome sampling provided through RADseq like 

approaches reduces ascertainment bias and false positives (Parchman et al. 2018). Adding to the 

influence of genome size on the architecture of adaptive evolution (Mei et al. 2019) and 

regulatory regions being enriched for candidate loci (Pyhäjärvi et al. 2013), the inverse 

relationship between Ne and the frequency of neutral mutations (Gossmann et al. 2012) indicates 

that selection could be more prevalent in conifers due to their large Ne. Thus, compared to 

ddRADseq based association studies conducted in organisms with smaller genomes and lower 

Ne, those in conifers may more likely pick up true signals of adaptive evolution, even if they are 

only partially characterized due to low genomic coverage. Given the reactivation of TEs in 

hybrids with complex genomes (Kawakami et al. 2011; Liu & Wendel, 200), and the dominance 

of TEs in conifer genomes (Nystedt et al. 2013; Stevens et al. 2016), we propose that some of the 

candidate loci in this study likely mapped to TEs, which would be harder to detect in association 

studies utilising non-hybrid populations.  

 

CONCLUSION 



 96 

 Hybridization and introgression are pervasive across the Tree of Life. Several studies 

utilising genomic data have revealed a key role of introgressed variants in facilitating adaptation 

either through immediate advantage in the hybrid genomic background or by increasing standing 

genetic diversity (Colosimo et al. 2005; Jagoda et al. 2018). Lack of an assembled genome 

prohibited us from disentangling the aforementioned two paths to adaptive evolution. 

Nevertheless, our work identifies the environmental gradients associated with adaptive evolution 

from standing genetic and introgressed variants, and quantifies their relative importance. The 

combination of freeze and water availability-related SNPs in P. strobiformis–P. flexilis hybrid 

populations potentially make them an ideal seed source for conservation efforts focused on 

climate change mitigation. Preliminary results from ongoing common garden assays of P. 

strobiformis (pers. comm. E. Bucholz) dovetail with our inference of higher drought and freeze 

tolerance in the hybrid zone populations likely generated through the presence of P. flexilis 

alleles in a genomic background dominated by P. strobiformis. Beyond the hybrid zone 

literature, we corroborate theoretical and empirical studies demonstrating that gene flow between 

ecologically differentiated populations or species can buffer population decline by increasing 

genetic diversity and providing novel allelic combinations.    
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Appendix 

 

Table 2.S1: Explanation of all environmental gradients used in the present study and their mean 

value across the sampled range of pure Pinus strobiformis and P. flexilis. Seasons including 

winter, spring, summer and autumn encompass the following months: Winter = Jan, Feb & Dec; 

Spring = March to  May; Summer = June to  August; Autumn = September to  November. 

 

 

Abbreviation Variable 
Parent	
Diff 

P.	
strobiformis P.	flexilis 

Freeze	
related 

Water	
availability	
related 

AHM 
Annual	heat-
moisture	index 7.95 30.35 22.4 	 Y 

bFFP 
Begining	of	frost	free	
period 79.5 99.5 179 Y 	 

BLD_s1 
Bulk	density	at	0m	
depth 218.783 1310.090 

1091.30
7 	 	 

BLD_s6 
Bulk	density	at	1m	
depth 62.080 1521.227 

1583.30
7 	 	 

CECSOL_s1 
Cation	exchange	
capacity	at	0m	depth 1.734 25.727 27.461 	 Y 

CECSOL_s6 
Cation	exchange	
capacity	at	1m	depth 5.8 22.954 17.153 	 Y 

CMD 
Hargreaves	climatic	
moisture	deficit 310 626 316 	 Y 

CMD_at 

Hargreaves	climatic	
moisture	deficit	
autumn 75.5 118.5 43 	 Y 

CMD_sm 

Hargreaves	climatic	
moisture	deficit	
summer 112 115 227 	 Y 
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CMD_sp 

Hargreaves	climatic	
moisture	deficit	
spring 291.5 344.5 53 	 Y 

CMD_wt 

Hargreaves	climatic	
moisture	deficit	
autumn 88 88 0 	 Y 

DD_0 
Degree	days	below	
0C 839.5 39.5 879 Y 	 

DD_0_at 
Degree	days	below	
0C	autumn 105.5 2.5 108 Y 	 

DD_0_sp 
Degree	days	below	
0C	spring 173 4 177 Y 	 

DD_0_wt 
Degree	days	below	
0C	winter 549 32 581 Y 	 

DD_18 
Degree	days	below	
18C 3351.5 2026.5 5378 Y 	 

DD_18_at 
Degree	days	below	
18C	autumn 834.5 435.5 1270 Y 	 

DD_18_sm 
Degree	days	below	
18C	summer 393 98 491 Y 	 

DD_18_sp 
Degree	days	below	
18C	spring 1066.5 459.5 1526 Y 	 

DD_18_wt 
Degree	days	below	
18C	winter 1159 979 2138 Y 	 

DD18 
Degree	days	above	
18C 236 252 16 	 	 

DD18_at 
Degree	days	above	
18C	autumn 50 53 3 	 	 

DD18_sm 
Degree	days	above	
18C	summer 142 154 12 	 	 

DD18_sp 
Degree	days	above	
18C	spring 44 45 1 	 	 
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DD18_wt 
Degree	days	above	
18C	winter 1.5 1.5 0 	 	 

DD5 
Degree	days	above	
5C 2185 3207 1022 	 	 

DD5_at 
Degree	days	below	
5C	autumn 626.5 819.5 193 Y 	 

DD5_sm 
Degree	days	below	
5C	summer 535.5 1249.5 714 Y 	 

DD5_sp 
Degree	days	below	
5C	spring 704.5 799.5 95 Y 	 

DD5_wt 
Degree	days	below	
5C	winter 232.5 238.5 6 Y 	 

eFFP 
End	of	frost	free	
period 67 312 245 Y 	 

EMT 
Extreme	minimum	
temperature	in	C 21.95 -18.45 -40.4 Y 	 

Eref 
Reference	
evapotranspiration 647.5 1355.5 708 	 Y 

Eref_at 

Reference	
evapotranspiration	
autumn 156.5 293.5 137 	 Y 

Eref_sm 

Reference	
evapotranspiration	
summer 58 463 405 	 Y 

Eref_sp 

Reference	
evapotranspiration	
spring 239 408 169 	 Y 

Eref_wt 

Reference	
evapotranspiration	
winter 213 213 0 	 Y 

EXT 
Extreme	maximum	
temperature	in	C 4.5 36.7 32.2 	 Y 
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FFP Frost	free	period 145.5 212.5 67 Y 	 

MAP 
Mean	annual	
precipitation	(mm) 136 783 647 	 Y 

MAR 
Mean	annual	solar	
radiation 3.55 20.75 17.2 	 	 

MAT 
Mean	annual	temp	
(C) 10.3 13.5 3.2 	 	 

MCMT 
Mean	coldest	month	
temperature	(C) 12.55 6.55 -6 Y 	 

MSP 

Mean	annual	
summer	precipitation	
(mm) 259.5 539.5 280 	 Y 

MWMT 

Mean	warmest	
month	temperature	
(C) 4.15 18.55 14.4 	 	 

NFFD 
Number	of	frost	free	
days 176.5 296.5 120 Y 	 

NFFD_at 
Number	of	frost	free	
days	autumn 54.5 80.5 26 Y 	 

NFFD_sm 
Number	of	frost	free	
days	summer 11 92 81 Y 	 

NFFD_sp 
Number	of	frost	free	
days	spring 64 77 13 Y 	 

NFFD_wt 
Number	of	frost	free	
days	winter 41 42 1 Y 	 

ORC_s1 
Organic	matter	
content	at	0m	depth 16.769 89 105.769 	 	 

ORC_s6 
Organic	matter	
content	at	1m	depth 1.479 5.136 6.6155 	 	 

PAS 
Precipitation	as	snow	
(mm) 232.5 3.5 236 Y 	 

PAS_at Precipitation	as	snow	26 1 27 Y 	 
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autumn	(mm) 

PAS_sm 
Precipitation	as	snow	
summer	(mm) 1 1 2 Y 	 

PAS_sp 
Precipitation	as	snow	
spring	(mm) 101 0 101 Y 	 

PAS_wt 
Precipitation	as	snow	
winter	(mm) 119.5 1.5 121 Y 	 

PHIHOX_s1 
pH	in	H20	at	0m	
depth 1.832 61.909 60.076 	 	 

PHIHOX_s6 
pH	in	H20	at	1m	
depth 1.206 63.409 64.615 	 	 

PHIKCL_s1 
pH	in	KCl	at	0m	
depth 3.227 54.227 51 	 	 

PHIKCL_s6 
pH	in	KCl	at	1m	
depth 0.304 54.227 53.923 	 	 

PPT_at 
Precipitation	autumn	
(mm) 23 178 155 	 Y 

PPT_sm 
Summer	
precipitation	(mm) 222 403 181 	 Y 

PPT_sp 
Precipitation	spring	
(mm) 113.5 69.5 183 	 Y 

PPT_wt 
Precipitation	winter	
(mm 32 112 144 	 Y 

Rad_at Radiation	autumn 4.65 18.65 14 	 	 

Rad_sm Radiation	summer 1.6 25.7 24.1 	 	 

Rad_sp Radiation	spring 3.4 24.1 20.7 	 	 

Rad_wt Radiation	winter 4.25 14.45 10.2 	 	 

RH Relative	humidity 3.5 54.5 51 	 Y 

RH_at 
Relative	humidity	
autumn 4.5 56.5 52 	 Y 
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RH_sm 
Relative	humidity	
summer 7.5 58.5 51 	 Y 

RH_sp 
Relative	humidity	
spring 0.5 50.5 50 	 Y 

RH_wt 
Relative	humidity	
winter 2.5 53.5 51 	 Y 

SHM 
Summer	heat-
moisture	index 16.5 35.7 52.2 	 Y 

Tave_at 
Average	temp	
autumn	(C) 9.85 13.95 4.1 	 	 

Tave_sm 
Average	temp	
summer	(C) 5.9 18.6 12.7 	 	 

Tave_sp 
Average	temp	spring	
(C) 12.2 13.6 1.4 	 	 

Tave_wt 
Average	temp	winter	
(C) 12.9 7.1 -5.8 	 	 

TD Continentality	(C) 8.65 12.15 20.8 	 	 

Tmax_at 
Max	temp	autumn	
(C) 9.3 20.4 11.1 	 	 

Tmax_sm 
Max.	temp	summer	
(C) 4.2 25.6 21.4 	 	 

Tmax_sp 

Maximum	
temperature	spring	
(C) 12.4 21.5 9.1 	 	 

Tmax_wt 

Maximum	
temperature	winter	
(C) 14.3 15.4 1.1 	 	 

Tmin_at 
Minimum	temp	
autumn	(C) 10.5 6.8 -3.7 Y 	 

Tmin_sm 
Min	temp	summer	
(C) 6.95 11.45 4.5 Y 	 

Tmin_sp Minimum	temp	 10.6 4.7 -5.9 Y 	 
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spring	(C) 

Tmin_wt 
Minimum	temp	
winter	(C) 13.1 0.1 -13 Y 	 

 

 

Table 2.S2:Loadings of all 88 environmental gradients on the top seven PC axes that was used 

as the environmental matrix in RDA. 

 

Variable	 PC1	 PC2	 PC3	 PC4	 PC5	 PC6	 PC7	

Tmax_wt	 -0.124	 -0.08	 -0.034	 0.154	 0.1	 -0.038	 -0.025	

Tmax_sp	 -0.123	 -0.123	 -0.01	 0.087	 0.096	 -0.023	 -0.037	

Tmax_sm	 -0.076	 -0.204	 -0.116	 -0.039	 0.032	 -0.022	 -0.014	

Tmax_at	 -0.115	 -0.143	 -0.081	 0.074	 0.073	 -0.013	 0.01	

Tmin_wt	 -0.139	 0.087	 -0.005	 -0.004	 -0.033	 0.051	 0.022	

Tmin_sp	 -0.139	 0.072	 0.024	 -0.084	 0.001	 0.053	 -0.034	

Tmin_sm	 -0.138	 0.034	 -0.038	 -0.124	 -0.045	 0.022	 -0.002	

Tmin_at	 -0.138	 0.08	 -0.026	 -0.071	 -0.03	 0.045	 -0.007	

Tave_wt	 -0.145	 0.015	 -0.02	 0.073	 0.029	 0.013	 0.002	

Tave_sp	 -0.147	 -0.021	 0.01	 -0.006	 0.05	 0.02	 -0.04	

Tave_sm	 -0.13	 -0.087	 -0.086	 -0.101	 -0.013	 0.004	 -0.008	

Tave_at	 -0.146	 -0.017	 -0.056	 -0.011	 0.017	 0.023	 0.001	

PPT_wt	 -0.004	 0.048	 -0.327	 -0.027	 0.045	 -0.063	 0.213	

PPT_sp	 0.06	 0.045	 -0.278	 -0.125	 0.077	 -0.063	 0.107	

PPT_sm	 -0.067	 0.159	 0.05	 0.201	 0.172	 -0.039	 0.015	

PPT_at	 -0.013	 0.166	 -0.2	 -0.058	 0.187	 -0.144	 0.037	

Rad_wt	 -0.055	 0.078	 -0.112	 0.201	 -0.247	 -0.225	 -0.077	

Rad_sp	 -0.088	 0.078	 -0.099	 0.193	 -0.216	 -0.13	 -0.056	

Rad_sm	 -0.033	 0.122	 -0.089	 0.081	 -0.303	 -0.234	 -0.087	

Rad_at	 -0.06	 0.075	 -0.141	 0.182	 -0.264	 -0.191	 -0.084	
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DD_0_wt	 0.142	 -0.022	 -0.007	 -0.083	 0.012	 -0.053	 -0.093	

DD_0_sp	 0.143	 0.013	 -0.029	 -0.026	 0.021	 -0.078	 -0.121	

DD_0_at	 0.141	 -0.009	 -0.008	 -0.055	 0.02	 -0.068	 -0.144	

DD5_wt	 -0.13	 -0.006	 -0.058	 0.046	 0.087	 -0.059	 -0.15	

DD5_sp	 -0.144	 -0.023	 0.004	 -0.017	 0.073	 -0.003	 -0.099	

DD5_sm	 -0.13	 -0.087	 -0.087	 -0.102	 -0.013	 0.004	 -0.009	

DD5_at	 -0.143	 -0.027	 -0.071	 -0.03	 0.021	 0.014	 -0.033	

DD_18_wt	 0.145	 -0.016	 0.02	 -0.073	 -0.028	 -0.013	 -0.002	

DD_18_sp	 0.147	 0.02	 -0.01	 0.004	 -0.047	 -0.021	 0.034	

DD_18_sm	 0.13	 0.086	 0.064	 0.103	 0.036	 -0.014	 -0.005	

DD_18_at	 0.146	 0.015	 0.051	 0.009	 -0.016	 -0.027	 -0.006	

DD18_wt	 -0.057	 0.065	 0.144	 -0.168	 0.189	 -0.118	 -0.229	

DD18_sp	 -0.107	 0.025	 0.124	 -0.047	 0.229	 -0.086	 -0.166	

DD18_sm	 -0.124	 -0.084	 -0.116	 -0.098	 0.025	 -0.015	 -0.029	

DD18_at	 -0.133	 -0.043	 -0.099	 -0.045	 0.047	 -0.015	 -0.065	

NFFD_wt	 -0.128	 0.092	 -0.015	 -0.066	 0.05	 -0.041	 -0.117	

NFFD_sp	 -0.14	 0.069	 0.01	 -0.074	 -0.007	 0.061	 -0.024	

NFFD_sm	 -0.114	 0.056	 0.018	 -0.03	 -0.182	 0.093	 0.12	

NFFD_at	 -0.137	 0.085	 -0.026	 -0.057	 -0.039	 0.053	 0.005	

PAS_wt	 0.12	 0.014	 -0.168	 -0.097	 0.071	 -0.097	 -0.079	

PAS_sp	 0.122	 0.021	 -0.121	 -0.066	 0.077	 -0.107	 -0.236	

PAS_sm	 0.068	 0.132	 0.114	 0.208	 0.012	 0.013	 0.036	

PAS_at	 0.125	 0.029	 -0.109	 -0.069	 0.078	 -0.12	 -0.203	

Eref_wt	 -0.127	 0.019	 -0.074	 0.124	 0.116	 -0.011	 -0.047	

Eref_sp	 -0.106	 -0.137	 0.003	 0.165	 0.047	 0.003	 0.079	

Eref_sm	 -0.024	 -0.24	 -0.105	 0.066	 0.043	 -0.023	 0.014	

Eref_at	 -0.093	 -0.16	 -0.052	 0.17	 0.064	 -0.013	 0.076	

CMD_wt	 -0.067	 -0.046	 0.191	 -0.019	 0.065	 0.016	 -0.322	
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CMD_sp	 -0.102	 -0.113	 0.14	 0.153	 -0.006	 0.037	 -0.079	

CMD_sm	 0.048	 -0.207	 -0.098	 -0.099	 -0.151	 0.003	 0.012	

CMD_at	 -0.031	 -0.225	 0.062	 0.078	 -0.107	 0.09	 -0.041	

RH_wt	 -0.082	 0.181	 0.023	 -0.137	 -0.118	 0.095	 0.046	

RH_sp	 -0.062	 0.198	 0.04	 -0.173	 -0.087	 0.088	 -0.008	

RH_sm	 -0.087	 0.193	 0.054	 -0.104	 -0.066	 0.038	 0.004	

RH_at	 -0.076	 0.199	 0.031	 -0.137	 -0.088	 0.06	 -0.02	

MAT	 -0.147	 -0.026	 -0.037	 -0.007	 0.023	 0.016	 -0.012	

MWMT	 -0.114	 -0.111	 -0.126	 -0.131	 -0.027	 -0.002	 0.023	

MCMT	 -0.143	 0.021	 -0.022	 0.081	 0.02	 0.007	 0.004	

TD	 0.074	 -0.137	 -0.098	 -0.236	 -0.052	 -0.01	 0.019	

MAP	 -0.02	 0.146	 -0.254	 0.037	 0.164	 -0.096	 0.147	

MSP	 -0.06	 0.176	 0.062	 0.158	 0.199	 -0.052	 0.004	

AHM	 -0.04	 -0.144	 0.22	 -0.051	 -0.209	 0.13	 -0.142	

SHM	 0.023	 -0.188	 -0.071	 -0.173	 -0.2	 0.054	 0.021	

DD_0	 0.142	 -0.015	 -0.011	 -0.071	 0.014	 -0.059	 -0.104	

DD5	 -0.142	 -0.048	 -0.057	 -0.05	 0.028	 0.002	 -0.051	

DD_18	 0.148	 0.018	 0.026	 -0.005	 -0.022	 -0.02	 0.008	

DD18	 -0.13	 -0.072	 -0.097	 -0.09	 0.047	 -0.022	 -0.048	

NFFD	 -0.139	 0.081	 -0.007	 -0.066	 -0.014	 0.04	 -0.027	

bFFP	 0.132	 -0.088	 -0.034	 0.103	 0.013	 -0.046	 0.038	

eFFP	 -0.137	 0.079	 -0.021	 -0.074	 -0.036	 0.048	 -0.016	

FFP	 -0.136	 0.085	 0.011	 -0.092	 -0.024	 0.048	 -0.026	

PAS	 0.123	 0.019	 -0.148	 -0.084	 0.075	 -0.104	 -0.142	

EMT	 -0.138	 0.09	 -0.016	 -0.011	 -0.034	 0.034	 -0.002	

EXT	 -0.078	 -0.192	 -0.093	 -0.057	 0.084	 -0.074	 -0.04	

Eref	 -0.11	 -0.127	 -0.071	 0.151	 0.088	 -0.013	 0.02	

CMD	 -0.026	 -0.244	 0.031	 0.02	 -0.122	 0.044	 -0.067	
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MAR	 -0.065	 0.086	 -0.12	 0.186	 -0.261	 -0.201	 -0.08	

RH	 -0.079	 0.195	 0.038	 -0.138	 -0.089	 0.071	 0.007	

BLD_s1	 -0.075	 -0.101	 0.2	 -0.041	 -0.058	 -0.123	 0.033	

BLD_s6	 0.032	 -0.038	 -0.168	 -0.201	 -0.13	 0.032	 -0.167	

CECSOL_s1	 0.051	 0.067	 -0.031	 0.066	 0.141	 0.103	 -0.325	

CECSOL_s6	 -0.067	 -0.058	 -0.01	 -0.122	 0.157	 -0.039	 0.065	

ORC_s1	 0.071	 0.067	 -0.105	 0.067	 0.137	 0.275	 -0.01	

ORC_s6	 0.042	 -0.006	 0.062	 -0.052	 0.112	 0.123	 0.375	

PHIHOX_s1	 -0.074	 -0.042	 0.215	 -0.08	 0.055	 -0.309	 0.047	

PHIHOX_s6	 -0.046	 -0.049	 0.241	 -0.112	 0.022	 -0.327	 -0.025	

PHIKCL_s1	 -0.076	 -0.02	 0.137	 -0.111	 0.027	 -0.312	 0.26	

PHIKCL_s6	 -0.032	 -0.027	 0.153	 -0.166	 0.019	 -0.39	 0.216	

 

Table 2.S3:Summary statistics for Bayenv outlier SNPs associated with each of the 88 

environmental gradients. Values in bold indicate significance at p < 0.05.  

 

Variable minBF maxBF medianBF multi.Fct multi.Fst LDmedian Noultiers 

AHM 1.265 14.066 1.265 0.002 0.020 0.0007 9 

bFFP 1.313 3892.487 1.313 0.033 0.087 0.0006 39 

BLD_s1 1.026 77.088 1.0261 0.014 0.051 0.0004 17 

BLD_s6 1.765 63.378 1.765 0.029 0.062 0.0003 9 

CECSOL_s1 1.317 345.225 1.317 0.012 0.063 0.0006 18 

CECSOL_s6 0.996 21017.445 0.996 0.014 0.047 0.0005 11 

CMD 1.092 80.953 1.092 0.003 0.052 0.0006 10 

CMD_at 1.0457 61.564 1.045 0.008 0.032 0.0005 8 

CMD_sm 1.340 148260043 1.3405 0.036 0.089 0.0004 31 

CMD_sp 1.286 38.068 1.28 0.035 0.083 0.0004 21 
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CMD_wt 1.232 43.329 1.232 0.001 0.049 0.0006 9 

DD_0 1.256 514.810 1.256 0.042 0.092 0.0005 43 

DD_0_at 1.446 403.949 1.446 0.043 0.093 0.0005 43 

DD_0_sp 1.934 322.791 1.934 0.042 0.096 0.0005 39 

DD_0_wt 1.487 511.698 1.487 0.042 0.092 0.0006 44 

DD_18 1.51 185.070 1.513 0.0413 0.090 0.0004 35 

DD_18_at 1.31 128.456 1.311 0.042 0.092 0.0004 32 

DD_18_sm 1.234 15.272 1.234 0.024 0.050 0.0006 18 

DD_18_sp 2.117 1046.740 2.117 0.042 0.096 0.0005 33 

DD_18_wt 1.443 301.280 1.443 0.051 0.103 0.0005 37 

DD18 1.054 28.622 1.054 0.026 0.061 0.0004 17 

DD18_at 1.124 19.673 1.124 0.034 0.076 0.0005 14 

DD18_sm 1.060 24.525 1.060 0.031 0.063 0.0003 14 

DD18_sp 1.605 175256.911 1.605 0.0196 0.0716 0.0005 24 

DD18_wt 1.574 2845.489 1.573 0.0143 0.073 0.001 26 

DD5 1.275 29.782 1.2752 0.028 0.058 0.0004 24 

DD5_at 1.556 50.003 1.556 0.039 0.075 0.0004 28 

DD5_sm 1.060 14.843 1.060 0.023 0.055 0.0004 18 

DD5_sp 1.547 119.051 1.547 0.047 0.096 0.0004 26 

DD5_wt 1.742 85.734 1.74 0.025 0.068 0.0005 18 

eFFP 1.551 573.833 1.55 0.036 0.090 0.0005 44 

EMT 1.880 458.259 1.880 0.041 0.091 0.0005 36 

Eref 1.108 14.057 1.108 0.018 0.043 0.00054 10 

Eref_at 0.898 14.036 0.898 0.020 0.040 0.0003 10 



 108 

Eref_sm 0.912 57.167 0.912 0.009 0.053 0.0003 14 

Eref_sp 1.284 16.778 1.284 0.017 0.035 0.0005 11 

Eref_wt 1.259 76.576 1.259 0.032 0.081 0.0004 27 

EXT 1.09 10.046 1.099 0.013 0.029 0.0001 8 

FFP 1.580 1235.937 1.580 0.035 0.095 0.0006 40 

MAP 0.953 17.616 0.953 0.004 0.039 0.0003 15 

MAR 2.061 291.054 2.061 0.012 0.053 0.0002 11 

MAT 1.193 151.464 1.193 0.041 0.089 0.0005 33 

MCMT 1.361 290.476 1.361 0.057 0.107 0.0006 33 

MSP 1.356 65.128 1.356 0.042 0.091 0.0004 33 

MWMT 1.165 29.331 1.165 0.013 0.038 0.0003 15 

NFFD 1.457 270.417 1.457 0.036 0.092 0.0007 41 

NFFD_at 1.414 331.937 1.414 0.036 0.091 0.0006 44 

NFFD_sm 2.071 2852.013 2.071 0.038 0.1004 0.001 33 

NFFD_sp 1.734 1752.234 1.734 0.037 0.094 0.0006 42 

NFFD_wt 1.202 178.775 1.202 0.022 0.063 0.0006 27 

ORC_s1 1.636 4.743 1.636 0.003 0.029 0.0004 6 

ORC_s6 0.931 16.072 0.931 0.011 0.039 0.0003 7 

PAS 1.349 377.340 1.349 0.049 0.101 0.0005 41 

PAS_at 1.249 187.726 1.249 0.053 0.105 0.0007 35 

PAS_sm 1.186 3.813 1.186 0.0003 0.003 0.0003 5 

PAS_sp 1.725 217.210 1.725 0.0526 0.108 0.0006 37 

PAS_wt 1.611 352.031 1.611 0.043 0.092 0.0006 45 

PHIHOX_s1 1.826 3110.343 1.826 0.002 0.0288 0.0006 14 
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PHIHOX_s6 1.082 1433.299 1.082 0.002 0.018 0.0005 17 

PHIKCL_s1 1.934 18.863 1.934 0.003 0.016 0.0004 9 

PHIKCL_s6 1.38 123.311 1.38 0.003 0.014 0.0003 9 

PPT_at 0.927 14.634 0.927 0.011 0.029 0.0002 16 

PPT_sm 1.362 42.295 1.362 0.044 0.094 0.0005 36 

PPT_sp 1.358 63.551 1.358 0.037 0.093 0.0004 14 

PPT_wt 1.217 163.590 1.217 0.008 0.046 0.0004 17 

Rad_at 2.134 43.503 2.134 0.008 0.048 0.0002 12 

Rad_sm 0.849 4.710 0.849 0.004 0.033 0.0003 9 

Rad_sp 1.831 532.119 1.831 0.043 0.087 0.0004 20 

Rad_wt 3.957 12.145 3.957 0.006 0.026 0.0005 5 

RH 1.251 174.281 1.251 0.029 0.086 0.0004 23 

RH_at 1.434 92.504 1.434 0.027 0.082 0.0004 23 

RH_sm 1.945 158.298 1.945 0.032 0.083 0.0004 23 

RH_sp 1.158 171.993 1.158 0.005 0.060 0.0003 23 

RH_wt 1.179 124.388 1.179 0.034 0.092 0.0004 24 

SHM 1.231 4086680.91 1.231 0.010 0.055 0.0005 26 

Tave_at 1.381 114.238 1.381 0.044 0.092 0.0005 30 

Tave_sm 1.075 15.197 1.075 0.024 0.056 0.0005 18 

Tave_sp 1.866 1021.718 1.866 0.041 0.095 0.0004 35 

Tave_wt 1.450 296.517 1.450 0.052 0.103 0.0005 38 

TD 1.234 548.570 1.234 0.058 0.103 0.0005 28 

Tmax_at 1.363 17.012 1.363 0.029 0.061 0.0003 13 

Tmax_sm 0.905 4.970 0.905 0.002 0.015 0.0003 13 
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Tmax_sp 1.413 24.555 1.413 0.031 0.068 0.0003 15 

Tmax_wt 1.589 32.724 1.589 0.049 0.101 0.0004 15 

Tmin_at 1.479 496.463 1.479 0.038 0.091 0.0006 40 

Tmin_sm 1.780 230.117 1.780 0.031 0.078 0.0005 34 

Tmin_sp 1.587 596.087 1.587 0.040 0.097 0.0006 36 

Tmin_wt 1.316 559.018 1.316 0.039 0.090 0.0005 41 

 

Table 2.S4: Proportion of times sets of three, four, five and six Bayenv outliers were represented 

in the same OCs. 

Variable set3 set4 set5 set6 

bFFP 0.482 0.423 0.244 0.005 

FFP 0.459 0.257 0.005 0 

NFFD_sm 0.445 0.441 0.276 0.244 

eFFP 0.299 0.257 0 0 

NFFD_at 0.299 0.285 0.01 0 

NFFD_sp 0.294 0.285 0.005 0 

NFFD 0.294 0.253 0 0 

DD_0_sp 0.289 0.005 0.005 0 

Tmin_sm 0.289 0.01 0 0 

DD_18_at 0.285 0.01 0 0 

DD_18_sp 0.285 0.005 0 0 

Tave_sp 0.285 0.01 0 0 

CECSOL_s1 0.189 0.005 0 0 

DD18_wt 0.083 0.037 0.019 0.005 

DD_0_wt 0.051 0.037 0.037 0.005 
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Tmin_at 0.051 0.014 0 0 

DD_0_at 0.046 0.037 0.037 0.005 

DD_0 0.046 0.037 0.037 0.005 

DD_18_wt 0.042 0.037 0.005 0 

DD_18 0.042 0.005 0 0 

EMT 0.042 0.005 0 0 

PAS_at 0.042 0.005 0.005 0 

PAS_sp 0.042 0.005 0.005 0 

Tave_at 0.042 0.005 0 0 

Tave_wt 0.042 0.037 0.005 0 

Tmin_sp 0.042 0.005 0 0 

Tmin_wt 0.042 0.037 0.005 0 

DD5_sp 0.037 0.005 0 0 

MAT 0.037 0.005 0 0 

MCMT 0.037 0.037 0.005 0 

PPT_sm 0.037 0.005 0 0 

Rad_sp 0.037 0 0 0 

TD 0.037 0.005 0 0 

Eref_wt 0.023 0 0 0 

PAS_wt 0.023 0.01 0 0 

PAS 0.01 0.005 0 0 

BLD_s1 0.01 0.005 0 0 

CMD_sm 0.005 0 0 0 

DD18 0.005 0 0 0 
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DD5_at 0.005 0 0 0 

DD5 0.005 0 0 0 

MSP 0.005 0 0 0 

NFFD_wt 0.005 0 0 0 

RH_wt 0.005 0 0 0 

SHM 0.005 0 0 0 

PHIHOX_s6 0.005 0 0 0 

AHM 0 0 0 0 

CMD_at 0 0 0 0 

CMD_sp 0 0 0 0 

CMD_wt 0 0 0 0 

CMD 0 0 0 0 

DD_18_sm 0 0 0 0 

DD18_at 0 0 0 0 

DD18_sm 0 0 0 0 

DD18_sp 0 0 0 0 

DD5_sm 0 0 0 0 

DD5_wt 0 0 0 0 

Eref_at 0 0 0 0 

Eref_sm 0 0 0 0 

Eref_sp 0 0 0 0 

Eref 0 0 0 0 

EXT 0 0 0 0 

MAP 0 0 0 0 
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MAR 0 0 0 0 

MWMT 0 0 0 0 

PAS_sm 0 0 0 0 

PPT_at 0 0 0 0 

PPT_sp 0 0 0 0 

PPT_wt 0 0 0 0 

Rad_at 0 0 0 0 

Rad_sm 0 0 0 0 

Rad_wt 0 0 0 0 

RH_at 0 0 0 0 

RH_sm 0 0 0 0 

RH_sp 0 0 0 0 

RH 0 0 0 0 

Tave_sm 0 0 0 0 

Tmax_at 0 0 0 0 

Tmax_sm 0 0 0 0 

Tmax_sp 0 0 0 0 

Tmax_wt 0 0 0 0 

BLD_s6 0 0 0 0 

CECSOL_s6 0 0 0 0 

ORCDRC_s1 0 0 0 0 

ORCDRC_s6 0 0 0 0 

PHIHOX_s1 0 0 0 0 

PHIKCL_s1 0 0 0 0 
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PHIKCL_s6 0 0 0 0 

 

Table 2.S5: R2 estimates and the corresponding p-values from the multiple matrix regression for 

DISand DSTacross the 88 environmental gradients. For gradients with 10 or fewer unique 

response values, only the R2 is reported.  

 

Variable 
LD	
estimate R2Full p-Tot R2pureEnv pEnv R2pureGeo pGeo Confound 

AHM Dis 0.00327 0.037 0.00062 0.356 0.00257 0.035 0.0001 

bFFP Dis 0.09302 0.001 0.04386 0.001 0.00352 0.039 0.04565 

BLD_s1 Dis 0.00732 0.001 0.00703 0.002 0.00027 0.452 0.00002 

BLD_s6 Dis 0.00805 0.029 0.00771 0.033 0.00012 0.682 0.00022 

CECSOL_s1 Dis 0.00471 0.027 0.00379 0.078 0.00055 0.36 0.00038 

CECSOL_s6 Dis 0.00005 0.505 0.00004 0.846 0.00001 0.907 -0.00001 

CMD Dis 0.00053 0.201 0.00049 0.314 0.00004 0.819 0.00001 

CMD_at Dis 0.01065 0.02 0.01039 0.022 0.00031 0.544 -0.00004 

CMD_sm Dis 0.0077 0.002 0.00002 0.875 0.00569 0.006 0.002 

CMD_sp Dis 0.00288 0.068 0.00189 0.087 0.00146 0.061 -0.00048 

CMD_wt Dis 0.00913 0.007 0.0041 0.079 0.00553 0.008 -0.0005 

DD_0 Dis 0.10068 0.001 0.05412 0.001 0.00355 0.031 0.04302 

DD_0_at Dis 0.0691 0.001 0.03219 0.001 0.00648 0.005 0.03045 

DD_0_sp Dis 0.05959 0.001 0.03208 0.001 0.00367 0.022 0.02385 

DD_0_wt Dis 0.13034 0.001 0.07974 0.001 0.00082 0.294 0.04979 

DD_18 Dis 0.0405 0.001 0.00983 0.004 0.01211 0.001 0.01857 

DD_18_at Dis 0.02428 0.001 0.00393 0.056 0.00946 0.003 0.0109 
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DD_18_sm Dis 0.00852 0.001 0.00798 0.001 0.00003 0.808 0.00051 

DD_18_sp Dis 0.04105 0.001 0.00766 0.009 0.01512 0.001 0.01828 

DD_18_wt Dis 0.03531 0.001 0.01301 0.001 0.0039 0.014 0.01841 

DD18 Dis 0.00777 0.002 0.00701 0.006 0.00143 0.106 -0.00066 

DD18_at Dis 0.00505 0.011 0.00452 0.011 0.00002 0.881 0.00052 

DD18_sm Dis 0.0039 0.026 0.00352 0.024 0.00069 0.264 -0.00031 

DD18_sp Dis 0.00691 0.013 0.00443 0.018 0.00027 0.426 0.00222 

DD18_wt Dis 0.02087 0.007 0.01648 0.006 0.00132 0.159 0.00308 

DD5 Dis 0.00179 0.172 0.00006 0.82 0.0013 0.197 0.00044 

DD5_at Dis 0.03783 0.001 0.00543 0.031 0.01815 0.001 0.01426 

DD5_sm Dis 0.00174 0.099 0.00008 0.709 0.00139 0.105 0.00027 

DD5_sp Dis 0.02406 0.002 0.00346 0.096 0.01124 0.001 0.00937 

DD5_wt Dis 0.00496 0.1 0.0045 0.108 0.00059 0.382 -0.00013 

eFFP Dis 0.09977 0.001 0.04304 0.001 0.00597 0.01 0.05077 

EMT Dis 0.11365 0.001 0.05319 0.001 0.00144 0.177 0.05903 

Eref Dis 0.00768 0.005 0.00737 0.009 0.00062 0.295 -0.0003 

Eref_at Dis 0.02097 0.001 0.02051 0.001 0.00067 0.34 -0.0002 

Eref_sm Dis 0.00652 0.003 0.00597 0.006 0.00024 0.501 0.00032 

Eref_sp Dis 0.00476 0.011 0.00461 0.014 0.00002 0.833 0.00014 

Eref_wt Dis 0.00561 0.001 0.00482 0.001 0.00136 0.099 -0.00057 

EXT Dis 0.0009 0.218 0.00079 0.356 0.0001 0.717 0.00001 

FFP Dis 0.06409 0.001 0.03287 0.001 0.00084 0.289 0.03039 

MAP Dis 0.00405 0.032 0.00324 0.025 0.0011 0.171 -0.00029 

MAR Dis 0.01101 0.009 0.00794 0.02 0.00464 0.006 -0.00157 
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MAT Dis 0.04286 0.001 0.01074 0.002 0.01361 0.001 0.01852 

MCMT Dis 0.0124 0.001 0.00689 0.002 0.00012 0.607 0.0054 

MSP Dis 0.02137 0.001 0.00142 0.156 0.01299 0.001 0.00697 

MWMT Dis 0.00057 0.292 0.0005 0.332 0.00013 0.557 -0.00005 

NFFD Dis 0.07565 0.001 0.03604 0.001 0.00129 0.167 0.03833 

NFFD_at Dis 0.07372 0.001 0.03294 0.001 0.00239 0.063 0.03839 

NFFD_sm Dis 0.00501 0.021 0.0037 0.034 0.00001 0.979 0.00132 

NFFD_sp Dis 0.07049 0.001 0.0306 0.001 0.00298 0.05 0.03693 

NFFD_wt Dis 0.01514 0.007 0.00854 0.006 0.00028 0.512 0.00632 

ORC_s1 Dis 0.00636 0.067 0.00416 0.065 0.00277 0.054 -0.00057 

ORC_s6 Dis 0.00168 0.3 0.00111 0.315 0.00068 0.322 -0.0001 

PAS Dis 0.03211 0.001 0.00029 0.708 0.02091 0.001 0.01092 

PAS_at Dis 0.02792 0.001 0.00127 0.396 0.01777 0.001 0.00889 

PAS_sm Dis 0.00653 0.018 0.00553 0.063 0.00082 0.31 0.00019 

PAS_sp Dis 0.01658 0.001 0.0005 0.541 0.01408 0.001 0.00201 

PAS_wt Dis 0.05133 0.001 0.00402 0.122 0.02331 0.001 0.02402 

PHIHOX_s1 Dis 0.01489 0.003 0.01388 0.002 0.00172 0.126 -0.0007 

PHIHOX_s6 Dis 0.0139 0.005 0.01058 0.01 0.00534 0.006 -0.00202 

PHIKCL_s1 Dis 0.01329 0.003 0.01235 0.001 0.00169 0.068 -0.00075 

PHIKCL_s6 Dis 0.02918 0.001 0.02854 0.001 0.00107 0.186 -0.00043 

PPT_at Dis 0.00224 0.08 0.00119 0.254 0.00098 0.256 0.00008 

PPT_sm Dis 0.02157 0.001 0.00168 0.112 0.01193 0.001 0.00796 

PPT_sp Dis 0.01983 0.001 0.01653 0.001 0.00015 0.649 0.00316 

PPT_wt Dis 0.00569 0.018 0.00405 0.021 0.00259 0.044 -0.00094 
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Rad_at Dis 0.01868 0.002 0.01797 0.001 0.00119 0.146 -0.00048 

Rad_sm Dis 0.01512 0.005 0.01489 0.009 0.00047 0.465 -0.00024 

Rad_sp Dis 0.00679 0.001 0.00014 0.641 0.00607 0.001 0.00059 

Rad_wt Dis 0.00316 0.151 0.00106 0.359 0.00145 0.162 0.00066 

RH Dis 0.01761 0.001 0.00106 0.372 0.01108 0.001 0.00548 

RH_at Dis 0.01823 0.001 0.00094 0.4 0.01215 0.001 0.00515 

RH_sm Dis 0.02158 0.005 0.0099 0.009 0.00291 0.044 0.00877 

RH_sp Dis 0.00517 0.032 0.00389 0.033 0.0021 0.056 -0.00082 

RH_wt Dis 0.02883 0.001 0.00281 0.114 0.01647 0.001 0.00956 

SHM Dis 0.01508 0.001 0.00136 0.211 0.01022 0.001 0.00351 

Tave_at Dis 0.02581 0.001 0.00452 0.062 0.00987 0.003 0.01144 

Tave_sm Dis 0.00047 0.518 0.00015 0.614 0.00022 0.539 0.00011 

Tave_sp Dis 0.04631 0.001 0.00764 0.007 0.01861 0.001 0.02007 

Tave_wt Dis 0.04314 0.001 0.01833 0.001 0.0033 0.036 0.02152 

TD Dis 0.01626 0.001 0.00014 0.664 0.01183 0.001 0.0043 

Tmax_at Dis 0.00325 0.116 0.00316 0.124 0.00017 0.665 -0.00009 

Tmax_sm Dis 0.00023 0.592 0.00011 0.688 0.00014 0.658 -0.00001 

Tmax_sp Dis 0.00322 0.17 0.00204 0.226 0.00158 0.175 -0.0004 

Tmax_wt Dis 0.0029 0.034 0.00274 0.029 0.00007 0.692 0.0001 

Tmin_at Dis 0.07033 0.001 0.0331 0.001 0.00167 0.112 0.03557 

Tmin_sm Dis 0.04259 0.001 0.01685 0.001 0.00448 0.009 0.02128 

Tmin_sp Dis 0.0864 0.001 0.04283 0.001 0.00179 0.152 0.0418 

Tmin_wt Dis 0.0966 0.001 0.04704 0.001 0.00066 0.334 0.04891 

AHM Dst 0.00615 0.001 0.00575 0.001 0.00053 0.149 -0.00012 
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bFFP Dst 0.00229 0.001 0.00004 0.756 0.00117 0.027 0.00109 

BLD_s1 Dst 0.00062 0.04 0.00013 0.444 0.00036 0.22 0.00014 

BLD_s6 Dst 0.00693 0.001 0.00111 0.047 0.00448 0.001 0.00135 

CECSOL_s1 Dst 0.00553 0.001 0.00057 0.161 0.00454 0.001 0.00043 

CECSOL_s6 Dst 0.00002 0.533 0.00001 0.867 0.00001 0.891 -0.00001 

CMD Dst 0.0052 0.001 0.00369 0.002 0.00148 0.014 0.00004 

CMD_at Dst 0.00747 0.001 0.00301 0.001 0.00457 0.001 -0.0001 

CMD_sm Dst 0.00375 0.001 0.00033 0.237 0.00201 0.004 0.00142 

CMD_sp Dst 0.00008 0.417 0.00008 0.578 0.00001 0.938 0.00001 

CMD_wt Dst 0.0008 0.064 0.00063 0.117 0.00014 0.448 0.00004 

DD_0 Dst 0.00089 NA 0.00005 NA 0.0007 NA 0.00015 

DD_0_at Dst 0.00025 NA 0.00007 NA 0.00006 NA 0.00013 

DD_0_sp Dst 0.00077 NA 0.00001 NA 0.00052 NA 0.00025 

DD_0_wt Dst 0.00051 NA 0.00001 NA 0.00033 NA 0.00018 

DD_18 Dst 0.00164 0.004 0.00008 0.599 0.00092 0.038 0.00066 

DD_18_at Dst 0.0015 NA 0.00001 NA 0.00104 NA 0.00046 

DD_18_sm Dst 0.00297 0.001 0.00134 0.014 0.00094 0.04 0.0007 

DD_18_sp Dst 0.00088 0.026 0.00022 0.326 0.00026 0.306 0.00042 

DD_18_wt Dst 0.00207 0.002 0.00035 0.249 0.00059 0.098 0.00114 

DD18 Dst 0.00309 0.002 0.00134 0.024 0.00108 0.036 0.00068 

DD18_at Dst 0.00374 0.001 0.00086 0.068 0.00179 0.01 0.0011 

DD18_sm Dst 0.00399 0.001 0.00161 0.009 0.00162 0.008 0.00077 

DD18_sp Dst 0.00106 0.035 0.00052 0.094 0.00014 0.455 0.00041 

DD18_wt Dst 0.00163 0.016 0.00041 0.182 0.00089 0.03 0.00034 
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DD5 Dst 0.00221 0.001 0.00049 0.128 0.00098 0.027 0.00076 

DD5_at Dst 0.00135 0.021 0.00107 0.041 0.00001 0.966 0.00028 

DD5_sm Dst 0.00315 0.001 0.00302 0.002 0.0001 0.552 0.00004 

DD5_sp Dst 0.0014 0.045 0.00108 0.064 0.00001 0.986 0.00032 

DD5_wt Dst 0.00143 0.02 0.0011 0.036 0.00002 0.805 0.00032 

eFFP Dst 0.0007 NA 0.00039 NA 0.00001 NA 0.00031 

EMT Dst 0.0008 0.088 0.00046 0.128 0.00001 0.936 0.00035 

Eref Dst 0.00362 0.001 0.00165 0.014 0.00148 0.015 0.00051 

Eref_at Dst 0.00323 0.001 0.00225 0.003 0.00054 0.115 0.00045 

Eref_sm Dst 0.00202 0.007 0.00163 0.013 0.00025 0.305 0.00015 

Eref_sp Dst 0.0013 0.008 0.00005 0.646 0.00113 0.032 0.00013 

Eref_wt Dst 0.00188 0.002 0.00047 0.155 0.00073 0.057 0.00069 

EXT Dst 0.00348 0.001 0.00211 0.008 0.00133 0.018 0.00005 

FFP Dst 0.00012 NA 0.00005 NA 0.00008 NA -0.00002 

MAP Dst 0.00453 0.001 0.00087 0.076 0.00329 0.002 0.00039 

MAR Dst 0.00185 0.038 0.00139 0.049 0.00071 0.12 -0.00025 

MAT Dst 0.00077 0.072 0.00067 0.059 0.00007 0.637 0.00005 

MCMT Dst 0.0017 0.002 0.00008 0.608 0.00078 0.056 0.00085 

MSP Dst 0.00237 NA 0.00033 NA 0.00116 NA 0.00088 

MWMT Dst 0.00085 0.027 0.00025 0.299 0.00046 0.158 0.00015 

NFFD Dst 0.001 NA 0.00069 NA 0.00039 NA -0.00009 

NFFD_at Dst 0.0015 NA 0.00072 NA 0.00096 NA -0.00018 

NFFD_sm Dst 0.00023 0.265 0.00018 0.271 0.00008 0.61 -0.00003 

NFFD_sp Dst 0.00076 0.07 0.00057 0.107 0.00008 0.602 0.00012 
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NFFD_wt Dst 0.00107 0.044 0.00087 0.067 0.00022 0.351 -0.00002 

ORC_s1 Dst 0.00483 0.001 0.00478 0.004 0.00007 0.67 -0.00002 

ORC_s6 Dst 0.00105 0.031 0.00004 0.768 0.00098 0.079 0.00004 

PAS Dst 0.00033 NA 0.00003 NA 0.00017 NA 0.00015 

PAS_at Dst 0.00057 NA 0.00004 NA 0.0005 NA 0.00004 

PAS_sm Dst 0.00028 0.324 0.00028 0.32 0.00001 0.951 -0.00001 

PAS_sp Dst 0.00136 NA 0.00062 NA 0.00097 NA -0.00023 

PAS_wt Dst 0.00032 NA 0.00018 NA 0.00001 NA 0.00013 

PHIHOX_s1 Dst 0.00137 0.026 0.00126 0.024 0.0002 0.334 -0.00009 

PHIHOX_s6 Dst 0.00177 0.003 0.00078 0.072 0.00056 0.125 0.00043 

PHIKCL_s1 Dst 0.00203 0.014 0.00199 0.02 0.00002 0.832 0.00003 

PHIKCL_s6 Dst 0.00105 0.015 0.00049 0.157 0.00051 0.132 0.00005 

PPT_at Dst 0.00024 0.199 0.00021 0.352 0.00003 0.736 0.00001 

PPT_sm Dst 0.0016 NA 0.00137 NA 0.00034 NA -0.00011 

PPT_sp Dst 0.00237 0.004 0.00179 0.005 0.00001 0.851 0.00058 

PPT_wt Dst 0.00047 0.157 0.00034 0.213 0.00001 0.998 0.00013 

Rad_at Dst 0.00539 0.001 0.00351 0.014 0.00092 0.087 0.00098 

Rad_sm Dst 0.01178 0.001 0.00991 0.001 0.00107 0.061 0.00081 

Rad_sp Dst 0.00002 0.495 0.00001 0.9 0.00001 0.911 0.00001 

Rad_wt Dst 0.00255 0.002 0.00136 0.041 0.00068 0.108 0.00052 

RH Dst 0.00345 0.002 0.00073 0.087 0.00142 0.02 0.00131 

RH_at Dst 0.00352 0.001 0.00104 0.053 0.00121 0.033 0.00129 

RH_sm Dst 0.00533 0.001 0.00081 0.091 0.0023 0.004 0.00223 

RH_sp Dst 0.00574 0.001 0.00101 0.052 0.0031 0.001 0.00164 
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RH_wt Dst 0.00308 0.001 0.00075 0.066 0.00116 0.028 0.00118 

SHM Dst 0.00137 0.007 0.00033 0.229 0.00066 0.09 0.00039 

Tave_at Dst 0.00128 0.009 0.00009 0.548 0.00067 0.069 0.00052 

Tave_sm Dst 0.00304 0.002 0.00291 0.003 0.00017 0.44 -0.00004 

Tave_sp Dst 0.00075 0.054 0.00034 0.226 0.00009 0.536 0.00033 

Tave_wt Dst 0.00225 0.001 0.00034 0.224 0.00069 0.072 0.00122 

TD Dst 0.00007 0.515 0.00006 0.634 0.00002 0.845 -0.00001 

Tmax_at Dst 0.00366 0.001 0.00091 0.044 0.00227 0.002 0.0005 

Tmax_sm Dst 0.00166 0.006 0.00158 0.004 0.00005 0.653 0.00003 

Tmax_sp Dst 0.00297 0.001 0.0016 0.012 0.0009 0.043 0.00048 

Tmax_wt Dst 0.00088 0.014 0.00013 0.46 0.00055 0.128 0.00021 

Tmin_at Dst 0.0007 NA 0.00013 NA 0.00015 NA 0.00043 

Tmin_sm Dst 0.0009 NA 0.00009 NA 0.00036 NA 0.00046 

Tmin_sp Dst 0.0005 0.183 0.00028 0.286 0.00001 0.949 0.00023 

Tmin_wt Dst 0.00106 0.011 0.00006 0.622 0.00037 0.21 0.00065 

 

Table 2.S6: Fold enrichment (FE) estimates as obtained from genomic cline analyses for all 88 

environmental gradients.  

 

Variable FE Permutation	test	significance 

AHM 1.096 NS 

bFFP 1.278 0.05 

BLD_s1 1.461 0.05 

BLD_s6 1.369 NS 

CECSOL_s1 1.252 NS 
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CECSOL_s6 1.315 NS 

CMD 0.822 NS 

CMD_at 0.939 NS 

CMD_sm 1.252 NS 

CMD_sp 1.534 0.05 

CMD_wt 0.626 NS 

DD_0 1.71 0.001 

DD_0_at 1.71 0.001 

DD_0_sp 1.717 0.001 

DD_0_wt 1.773 0.001 

DD_18 1.527 0.05 

DD_18_at 1.511 0.05 

DD_18_sm 1.643 0.05 

DD_18_sp 1.555 0.05 

DD_18_wt 1.565 0.001 

DD18 1.16 NS 

DD18_at 1.252 NS 

DD18_sm 1.096 NS 

DD18_sp 0.986 NS 

DD18_wt 0.674 NS 

DD5 1.461 0.05 

DD5_at 1.402 0.05 

DD5_sm 1.339 NS 

DD5_sp 1.402 0.05 
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DD5_wt 0.974 NS 

eFFP 1.588 0.001 

EMT 1.546 0.001 

Eref 1.315 NS 

Eref_at 0.877 NS 

Eref_sm 0.996 NS 

Eref_sp 0.598 NS 

Eref_wt 1.753 0.001 

EXT 1.252 NS 

FFP 1.599 0.001 

MAP 1.011 NS 

MAR 1.315 NS 

MAT 1.575 0.001 

MCMT 1.575 0.001 

MSP 1.242 NS 

MWMT 1.252 NS 

NFFD 1.729 0.001 

NFFD_at 1.534 0.001 

NFFD_sm 1.136 NS 

NFFD_sp 1.573 0.001 

NFFD_wt 1.055 NS 

ORC_s1 1.315 NS 

ORC_s6 0.939 NS 

PAS 1.499 0.05 
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PAS_at 1.482 0.05 

PAS_sm 0.439 NS 

PAS_sp 1.611 0.001 

PAS_wt 1.461 0.05 

PHIHOX_s1 1.096 NS 

PHIHOX_s6 1.096 NS 

PHIKCL_s1 1.565 0.05 

PHIKCL_s6 0.313 NS 

PPT_at 1.096 NS 

PPT_sm 1.611 0.05 

PPT_sp 1.408 0.05 

PPT_wt 0.685 NS 

Rad_at 1.315 NS 

Rad_sm 0.939 NS 

Rad_sp 1.729 0.001 

Rad_wt 1.315 NS 

RH 1.153 NS 

RH_at 1.038 NS 

RH_sm 1.384 0.05 

RH_sp 0.974 NS 

RH_wt 1.148 NS 

SHM 1.429 0.05 

Tave_at 1.487 0.05 

Tave_sm 1.339 NS 



 125 

Tave_sp 1.575 0.05 

Tave_wt 1.582 0.001 

TD 1.623 0.001 

Tmax_at 1.348 NS 

Tmax_sm 0.996 NS 

Tmax_sp 1.252 NS 

Tmax_wt 1.461 0.05 

Tmin_at 1.539 0.001 

Tmin_sm 1.388 0.05 

Tmin_sp 1.675 0.001 

Tmin_wt 1.629 0.001 

 

 

 

 

 

Figure 2.S1: Ancestry proportions (Q-score) for each individual tree as obtained from 

NGSAdmix. 
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Figure 2.S2: (A) Trace plots of the 

determinant of the variance-

covariance matrix for all 500,000 

iterations across three independent 

Markov chains. (B) Trace plots 

after the burn-in, starting at 

iteration 20,000. 
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Figure 2. S3: Schematic representation of the sequential variance partitioning approach used in 
RDA to estimate pure, joint and confounded effects. 
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CHAPTER 3 

Intrinsic and extrinsic drivers of among population gene expression 

differentiation across the  P. strobiformis-P. flexilis hybrid zone 

 

Introduction  

The ability of species to survive under rapidly changing climatic conditions will depend 

on the alignment of their multivariate trait values with the local fitness optima and on the 

availability of genetic variation to drive evolution towards the shifted fitness optima (Price et al. 

2003; Jump et al. 2009). The former can be facilitated by environment dependent expression of 

trait values (i.e., phenotypic plasticity). Phenotypic plasticity is ubiquitous across organisms and 

is hypothesised as a major mechanism facilitating survival under changing climatic conditions 

(Bradshaw, 2006; Nicotra et al. 2015; Benito Garzon et al. 2019). The potential for phenotypic 

plasticity to facilitate long-term persistence of populations, however, relies on the level of 

genetic variation underlying reaction norms (West-Eberhard, 1989). Decades of common garden 

experiments in plants provide remarkable evidence for genetic variation in plasticity indicated by 

the differential performance of genotypes across gardens which generates genotype-by-

environment effects (GxE, reviewed in Savolanein et al. 2013). While GxE effects provide raw 

material for populations to respond to selective pressures, it does not by itself provide evidence 

for adaptive evolution unless the environmentally induced phenotype is demonstrated to improve 

fitness either in one (i.e. conditionally adaptive) or across all measured environments (i.e. 

adaptive plasticity, Pigliucci & Schlichting, 1996; Baythavong & Stanton, 2010). Demonstrating 

a relationship between plasticity and fitness can be challenging in long-lived organisms such as 
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trees. By conceptualising plasticity as a quantitative trait some of these challenges can be 

alleviated as it facilitates the application of approaches uniting the influence of both selection 

and neutral processes on the evolution of phenotypic plasticity (Falconer & McKay, 1996; 

McKay & Latta, 2002). When the extent of among population variation in reaction norms is 

higher than that expected from neutral processes alone, it can be taken as evidence for adaptive 

plasticity (reviewed in Josephs, 2018). 

While examples of variation in phenotypic plasticity among populations are plenty, only 

a few empirical studies have shed light on the evolutionary processes driving plasticity (Williams 

et al. 1996; Schmid et al. 2019). As populations move away from their optimal environmental 

conditions, especifically at range margins, an increase in slope of the reaction norm is expected 

(Wright, 1982; Kirkpatrick & Barton, 1997). In empirical studies, this is often demonstrated as 

pronounced environmental (E) or GxE for populations originating from heterogeneous 

environments (Akman et al. 2018), which is typical for range margin populations. If these 

populations continue to experience predictable environmental heterogeneity, selection can 

facilitate the evolution of adaptive phenotypic plasticity (Via & Lande, 1985; Ghalambor et al. 

2007). In addition to the influence of environmental conditions at the source population’s 

location, neutral processes such as range expansions and patterns of gene flow could also drive 

plasticity (Schmid et al. 2019). For instance, in range margin populations higher landscape 

fragmentation is often accompanied with lower genetic diversity which can restrict the evolution 

of phenotypic plasticity as well as its potential to be adaptive (Eckert et al. 2008). Thus, 

disentangling how demographic and climatic processes vary among populations is important to 

determine the environmnetal context of adaptive trait differentiation.  
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A frequently unaccounted factor in the evolution of phenotypic plasticity is the influence 

of interspecific gene flow across hybrid zones defined by abutting ranges of sister taxa. 

Interspecific gene flow can facilitate range expansion and aid adaptation to novel selective 

regimes by increasing standing genetic variation through the generation of novel allelic 

combinations (Barton, 2001; Taylor & Larson, 2019). Within a hybrid zone, GxE effects can 

manifest as an interaction of the individual’s genotype with the environment, the interaction of a 

specific allele in an individual with its genomic background or both (Dlugosch et al. 2015; Gould 

et al. 2018). A handful of studies utilizing natural hybrid zones have demonstrated hybrid class 

dependent expression of trait values, such that F1s are usually intermediate or exhibit 

transgressive phenotypes, but backcrossed individuals are more reflective of the parent with 

which they share a greater genomic composition (Silim et al. 2001; Schweitzer et al. 2002; 

Hegarthy et al. 2008; Favre & Karrenberg, 2011). Thus, despite the prevalence of hybridization 

and phenotypic plasticity across the Tree of Life, we lack clear empricial support for whether and 

how hybrid ancestry influences the evolution of phenotypic plasticity. 

Common garden experiments for plants usually focus on fitness-related traits such as 

height, mortality and phenology to infer signatures of adaptive trait differentiation and of 

phenotypic plasticity. These traits are influenced by a cascade of molecular phenotypes that can 

be measured through gene expression profiling (Aubin-Horth & Renn, 2009; Richards et al. 

2012). Gene expression variation in natural populations is known to be highly heritable, 

describes the joint influence of genetic and environmental divergence and reflects signatures of 

various selective pressures (Whitehead & Crawford, 2006). While earlier studies mostly focused 

on assessing the role of selection in driving gene expression divergence at candidate genes 

(Roberge et al. 2007; Reddy Palle et al. 2010; Keller et al. 2012; Menon et al. 2015), recent work 
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has utilised genome-wide transcriptome profiling (Lewis & Reed, 2018; Gould et al. 2018; 

Hamala et al. 2020). Transcriptome-wide studies help reduce ascertainment bias associated with 

targeted trait assays, uncover trait associations through co-expression networks and facilitate 

simultaneous estimation of polymorphism levels associated with traits. When combined with 

demographic inferences obtained from non-genic regions, gene expression profiling can also be 

very powerful to identify spatial variation in selection pressures. For instance, Akman et al. 

(2018) used source population environmental conditions to demonstrate that gene expression 

plasticity was adaptive only for certain populations of Protea repens. Using Theobroma cocao, 

Hamala et al. (2020) combined among population differentiation in co-expression networks with 

demographic modeling to demonstrate spatial variation in purifying selection and in adaptive 

trait differentiation. While within population, among populations and across environmental 

assessment of transcriptional changes are ample, studies combining multiple genotypes with 

environments to demonstrate GxE are only beginning to accumulate (see Huang et al. 2015; 

Akman et al. 2018). Although these studies have enhanced our understanding of differential 

transcriptional responses across populations and environments, the influence of interspecific 

gene flow on generating GxE effects due to differential interactions with the extrinsic and 

genomic environments are still in their infancy. As highlighted by Dlugosch et al. (2015), 

admixture can unmask cryptic genetic variation by converting epistatic variation into additive 

genetic variation, which is directly related to the ability of a trait to respond to selection 

(Falconer & McKay, 1996). 

Our study focuses on the hybrid zone formed between two ecologically divergent species 

of pines, Pinus strobiformis and P. flexilis. Both species have a wide geographic distribution 

across the western part of North America and are known to hybridize in the sky-islands of New 
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Mexico, Arizona and southern Colorado (Bisbee, 2014; Menon et al. 2018). These populations 

likely continue to experience strong genetic drift due to the high degree of landscape 

fragmentation and ongoing asymmetric gene flow from P. flexilis which is also promoting 

northward range expansion (Menon et al. 2019). Being present on the western sky-islands, the 

hybrid zone is subjected to severe drought and seasonal frost, as well as diurnal fluctuations in 

temperature and solar radiation (Adams & Kolb, 2004). Current predictions by the 

Intergovernmental Panel on Climate change (IPCC) indicate an increase in the seasonality of 

drought and frost events in these sky-island landscapes (Seager and Vecchi, 2010). Theortical 

predictions state that phenotypic plasticity could be a dominant mechanism facilitating response 

to future climatic conditions in organisms where the rate of environmental change is lower than 

the generation time of organisms (Levins, 1968). This will likely be the case for most conifers 

such as P. strobiformis given their long generation time and sessile nature, causing them to 

experience several episodes of environmental change within a lifetime. Further, if genetic 

variation exists for phenotypic plasticity (GxE), it can be acted upon by selection to drive the 

evolution of locally adapted populations. The genome-wide pattern of ancestry variation across 

the P. flexilis-P. strobiformis hybrid zone and locus specific enrichment of P. flexilis ancestry 

along freeze-related environmental gradients as demonstrated in Chapter 1 & 2 (Menon et al. 

2018; 2020 in review) makes this study system ideal to address the complex interaction between 

climate and demographic processes in determining the evolution of phenotypic plasticity and 

ascertaining whether trait differentiation as well as GxE effects are driven by divergent selection.  

The overarching goal of this work is to leverage hybrid ancestry information and source 

climatic conditions within a common garden framework to evaluate patterns of gene expression 

GxE. Preliminary physiological and phenotyping assays in this system have demonstrate strong 
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GxE component and hybrid individuals exhibiting higher survival across an array of 

environmental conditions (DaBell, 2017; Buchlotz, 2020). Gene expression profiling provides a 

way to complement standard trait measurements and helps assess a multitude of physiological 

responses simultaneously. Specifically, we aim to answer the following questions: 1) What are 

the environmental drivers of common garden-specific expression divergence among 

populations? 2) What proportion of transcripts exhibit signatures of adaptive plasticity and of 

conditional neutrality? 3) What is the contribution of hybrid ancestry towards population level 

transcriptome divergence? 

 

Methods 

Field sampling and climate dataset 

Seeds from open-pollinated cones were collected across the full range of P. strobiformis, 

including the hybrid zone. Being open pollinated, we assume that the resulting progeny were a 

50:50 mixture of half-sibs and full-sibs and henceforth refer to our design as mixed-sib 

(Squillace, 1974). Assuming a mixed-sib design would be conservative since it underestimates 

the additive genetic variance relative to that from a half-sib design. The mixed-sib progenies 

were planted across two common gardens established in the North Kaibab National Forest, AZ 

(Fig 3.1) that were a part of the Southwest Experimental Garden Array (SEGA). Bear Springs 

(BS) is a high elevation garden that experiences cool temperatures and precipitation in the form 

of snow. White Pockets (WP) is a low elevation garden that experiences warm and dry 

conditions. Within each garden, individual trees were planted in a randomized block design 

between the years of 2015 and 2017. In fall 2019, we sampled 180 trees representing 90 mixed-

sibs (3 sibs/maternal tree) planted across the two common gardens that represented 30 maternal 
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trees originating from10 populations (3 maternal trees/population) (Fig. 3.1). The sampling was 

done across two clear weather condition days in August between the hours of 12:00 and 17:00. 

For each tree, upto three current year’s fascicles were sampled and quickly flash frozen in liquid 

nitrogen. We utilised latitude and longitude to obtain annual and seasonal climate variables at a 

resolution of 1 km from ClimateWNA v6.1 (Wang et al. 2016) for the normal 1981-2010 for 

each of the 30 maternal trees. Population level estimates were obtained by averaging the values 

across the three maternal trees representing a population. 

 

 

 

Figure 3.1: Geographic location of sampled populations (red dots) and the two common gardens, 
Bear Springs (BS) & White Pockets (WP). Bear Springs is the high elevation common garden 
indicated in turquoise and White Pockets is the low elevation garden indicated in orange.  
 
RNA isolation and transcriptome assembly 
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A maximum of 100 mg of needle was ground into a fine powder using liquid nitrogen in 

a mortar and pestle with the addition of 40 mg of Polyvinylpyrrolidone (PVP-40). Total RNA 

was extracted using Spectrum Plant total RNA kit with modifications to the manufacturer's 

protocol. Genomic DNA contamination was removed using the On-column DNase1 kit from 

Sigma. RNA concentration and purity were assessed using NanoDrop 2000, gel electrophoresis 

and finally through RNA integrity number from Bioanalyser run on an Agilent 2100. Post polyA 

tail selection to enrich for mRNA, paired-end (2 ×150bp) RNA libraries were prepared 

following standard protocols for NEBNext Ultra II RNA Library Prep by Illumina and 

sequenced on Novaseq6000. All steps starting from polyA tail selection to sequencing were 

conducted at Novogene (Sacramento, CA).  

Raw fastq files were assessed for quality using fastqc and subsequently trimmed for 

quality and to remove adapters using TrimGalore v.0.6.4 (Krueger, 2015). For species 

harbouring high levels of genetic diversity and large intergenic spaces, transcriptomes built by 

concatenating several individual reads can generate a fragmented assembly and underestimate 

heterozygosity since multiple reads across individuals will often be mapped to different 

transcripts (pers. comm. J. Wegrzyn). To avoid this issue, we built 20 individual transcriptome 

assemblies using one representative from each of our 10 populations across the two common 

gardens. These 20 de novo transcriptome assemblies were built using Trinity v.2.8.5 (Grabherr et 

al. 2011; Haas et al. 2013) with a k-mer length of 24 and a minimum contig size of 300bp. 

Redundancy reduction of this hyper-assembly was conducted through the tr2aacds pipeline in 

EvidentialGene v.2018.06.18 (Gilbert, 2013). The pipeline implemented within EvidentialGene 

first predicts coding regions and then removes transcripts that (a) are completely redundant, (b) 

exhibit high clustering similarity and (c) are perfect fragments of larger transcripts. Transcripts 
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that passed these steps were queried against the UniprotKB/Swissprot (release 2019_11) 

Diamond database implemented within the EnTap pipeline v.0.9.1 (Hart et al. 2019) to filter out 

fungal and bacterial contamination from our reference transcriptome. This process retained a 

total of 192,987 transcripts and 186,117 genes that were the starting point of further analyses.  

We utilised a series of steps to assess the quality and the completeness of our 

transcriptome. First, we estimated the median length of contigs in our assembly (N50) using only 

the longest isoform per gene as well as the expression level sensitive matric that is considered 

suitable for RNAseq datasets called ExN50 (Haas et al. 2013). This process was done to evaluate 

the quality of our assembly and to explore the saturation of full length constructed transcripts as 

a function of the read depth. The N50 for our dataset was 654bp and Ex peak noted at E90 was 

2kb corresponding to 13,872 genes out of the total 186,117 genes. Second, the completeness of 

our assembly was assessed by using Arabidopsis thaliana as the reference database in the 

orthology-based algorithm implemented in BUSCO v.2.0 (Seppey et al. 2019). This approach 

identified 83.8% of the transcripts as matching and complete and 13% as missing. To evaluate 

the extent of conifer specific transcriptome space covered in our assembly we queried our 

transcripts against the publicly available P. lambertiana v.1.0 and P. flexilis (Liu et al. 2016) 

transcriptomes using blastp with an e-score threshold of 10-50 and 10-100, respectively. This 

process yielded 26,296 matches against the P. lambertiana transcriptome, covering 45% of the 

transcriptome space in P. lambertiana. For P. flexilis we identified 34,438 matches that covered 

20% of the transcriptome space in P. flexilis. Third, we assessed mapping rates for individual 

fastq files to determine whether a sufficient amount of the transcriptome space was covered in 

the de novo assembled transcriptome. This process indicated an average mapping rate of 73% 

across 180 samples. Further, the mapping rate did not exhibit an upward bias towards the 20 
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samples that were used in the de novo assembly. The assembled transcriptome was annotated 

through the implementation of uniprotKB and PlantRef database (release 98) within the EnTAP 

pipeline that was specifically designed for non-model organisms. Read counts for each 

individual tree were extracted using RSEM with bowtie v.2.0 (Langmead & Salzberg, 2012) and 

ranged from 13 to 28 million reads per sample. Lowly expressed transcripts were filtered using 

the lowest level of hierarchy in our dataset, i.e. we removed any transcript that was not expressed 

across all three sibs of a maternal tree in either garden. This process resulted in a dataset of 

70,250 transcripts.  

Estimation of maternal trait value 

Prior to conducting further analyses using the 70,250 transcripts, we normalised the read 

count data for varying library sizes using the Trimmed mean of M values (TMM) approach 

implemented within the calcNormFactors function from edgeR v.3.14.0 (Robinson et al. 2010) in 

R v.3.6.3 (R core team, 2020). We utilized the mixed-sib design to determine each maternal 

tree’s normalised expression value for each of the 70,250 transcripts using the following 

equation: 

𝑌!"#$% =  𝜇 + 𝐵𝑎𝑡𝑐ℎ! +  𝑆𝑌! + 𝐺𝑎𝑟𝑑𝑒𝑛! 𝑃𝑜𝑝! 𝐹𝑎𝑚! +  𝜖   (1) 

Here, Y represents the normalised expression of the transcript, 𝜇 represents the global mean for 

the transcript, Batch represents the date of sequencing, SY is the year that the seedlings were 

planted, maternal family (Fam) is nested within the population (Pop) and its effect on Y is 

considered to vary by Garden. This mixed effect model was fitted using the variancePartition 

v.1.16.1 (Hoffman & Schadt,  2016) package in R, which utilises log-transformed normalised 

counts and precision weights to incorporate the mean-variance trend typical of gene expression 
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datasets. Using the fitted model in (1), we then obtained garden-specific maternal values and 

garden-specific population values with the following: 

                   𝑀𝑎𝑡𝑉𝑎𝑙!"# =  𝜇 +  𝐹𝑎𝑚! +  𝑃𝑜𝑝! +  𝐺𝑎𝑟𝑑𝑒𝑛!                          (2)   

                   𝑃𝑜𝑝𝑉𝑎𝑙!" =  𝜇 +  𝑃𝑜𝑝! +  𝐺𝑎𝑟𝑑𝑒𝑛!                                    (3) 

Here, 𝜇 represents the global intercept, 𝐹𝑎𝑚! represents the effect of maternal family i, 𝑃𝑜𝑝! 

represents the population from which maternal tree i originates and 𝐺𝑎𝑟𝑑𝑒𝑛! represents the 

effect of the Garden k.  

Estimating the effect of environment on among population differentiation  

To determine how gene expression varies among populations and gardens, we utilised the 

variance components for family and population from equation (1) and estimated garden specific 

measures of gene expression differentiation. Treating expression as a quantitative trait enabled us 

to estimate the degree of among population divergence (QST ) attributed to heritable variance 

components (Spitze 1993). Given overall low levels of genome wide differentiation in our study 

system (multilocus FST  = 0.007, Menon et al. 2018)  we declared all transcripts with a QST ≥ 0.5 

to be strongly differentiated. To identify climatic drivers of the among population differentiation 

in gene expression for the strongly differentiated transcripts, we utilised redundancy analysis 

(RDA) implemented in the vegan package v.2.5.6 (Oksanen et al. 2019) in R. Here, we used 

population-level estimates of gene expression from equation (3) as the response matrix along 

with drought-related variables, freeze-related variables and geography as the predictor matrices. 

Classification of climatic variables into freeze or drought related is the same as used in Chapter 2 

and is presented in Table 2.S1. To reduce the dimensionality of each of these matrices, we 

performed principal component analyses (PCAs) and only retained PC axes that jointly explained 

up to 90% of the variance in each predictor dataset. For geography, we utilised the scaled and 
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centred estimates of latitude and longitude. We built three models in RDA for each of the two 

gardens. Our first model used drought-related, freeze-related and geography-related variables as 

the predictors. The second model used only drought-related and geography-related variables, 

while the third model used only freeze-related and geography-related variables as the predictors. 

Finally, we generated an empirical null distribution of 10,000 adjusted R2 values from non-highly 

differentiated transcripts (QST < 0.5) to test the statistical significance of models 2 and 3.  For 

each garden, we compared our observed R2 for the highly differentiated transcripts against these 

empirical null distributions. Observed R2 values located in the upper tail of the empirical 

distribution for model 2 would indicate an important role of drought-related variables, while 

higher than expected observed R2 for model 3 would indicate an important role of freeze-related 

variables in driving population differences in expression values for the highly differentiated 

transcripts (QST ≥ 0.5).   

Assessing signatures of adaptive differentiation 

Similar to QST , FST  describes the degree of divergence in allele frequency among 

populations. While QST-FST comparisons are widely used to assess divergent selection on 

phenotypic and physiological traits, only a handful of studies have implemented them for gene 

expression data (Gibson & Weir, 2005; Roberge et al. 2007). To identify signatures of adaptive 

evolution and of adaptive plasticity across the gardens for each transcript, we made use of a 

formal comparison between FST and QST implemented in the QSTFSTComp package (Gilbert & 

Whitlock, 2015) in R. Given our assumption of a mixed-sib design, the family variance used here 

is 1/3rd of the additive genetic variance. To incorporate the garden design in our estimation of 

QST,  we first regressed out the effect of SY and Batch and used the residual normalised log count 

expression values for each individual tree to assess signatures of selection. Estimates for FST  
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were obtained from putatively neutral single nucleotide polymorphisms (SNPs) generated 

through ddRADseq genotyping (see next section) for the same set of maternal trees as used in 

our RNAseq. Since FST  describes a null expectation for the degree of divergence due to neutral 

processes such as drift and gene flow, transcripts with QST estimates significantly higher than the 

multilocus FST  (upper tail p-value < 0.05) were declared as being adaptive. Our goal here was 

not only to identify transcripts exhibiting signatures of adaptive evolution, but to categorise 

transcripts into those exhibiting (a) adaptive differentiation but no plasticity across gardens, 

where QST > FST for both gardens but the QST reaction norm has a slope of zero, (b) adaptive 

plasticity, where QST > FST across both gardens and QST reaction norm has a slope greater than 0 

and (c) conditionally adaptive, where QST > FST only in one of the gardens. This then defines four 

categories of transcripts, namely: adaptive differentiation only, adaptive plasticity, conditionally 

adaptive in BS and conditionally adaptive in WP.  

Hybrid index and differential expression analyses 

Since we were interested in assessing whether hybridization influences changes in 

expression patterns across gardens, we obtained hybrid index (HI) estimates for each of our 

maternal trees from a larger dataset that sampled several populations across the range of P. 

strobiformis, P. flexilis and the hybrid zone. Specifically, we genotyped 282 individuals from 80 

populations (including the 10 used for RNAseq) using ddRADseq and called SNPs using the 

dDocent pipeline (Puritz et al. 2014), as implemented in Chapters 1 and 2 (Menon et al. 2018; 

2020 in review). The raw set of SNPs were further subjected to a series of filters based on 

biallelic SNPs, indels, missing data, minor allele frequency cutoff of 0.01, FIS, depth and quality. 

For these we followed a similar procedure as listed in Chapters 1 and 2 (Menon et al. 2018; 2020 

in review). We obtained estimates of hybrid index using the genotype likelihood based clustering 
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algorithm implemented in NGSAdmix (Skotte et al. 2013) with K=2 to represent the two focal 

species (as done in Menon et al. 2018).  

To determine whether hybrid ancestry contributed towards strong population 

differentiation and towards adaptive evolution, we correlated mean population level estimate of 

P. flexilis ancestry with population level expression values for the highly differentiated 

transcripts at each garden. Similarly, we correlated ancestry estimates with the absolute 

difference in population level expression values between the two gardens to assess whether 

hybridization facilitates the evolution of phenotypic plasticity. Each set of observed correlation 

coefficients was compared against an empirical null distributions of correlation coefficients 

using the Kolmogorov-Smirnov test implemented in R.  The empirical null was generated using 

all transcripts that did not fall into the category that it was being compared against. 

 

RESULTS 

Expression variation among populations and across gardens 

Estimates of QST for both gardens followed a U-shaped distribution and ranged from 0 to 

1 (Fig. 3.2) with a mean of 0.29±0.38 (sd) for BS and 0.35±0.38 for WP, respectively. As 

expected, most transcripts exhibited little among population differentiation. However, several 

transcripts exhibited high among population differentiation (QST >= 0.5), with 17,440 (24.8%) in 

BS, 21,628 (30.7%) in WP and 10,724 (15%) transcripts being shared across both gardens. We 

used the absolute difference in QST between gardens to identify transcripts exhibiting steep QST 

reaction norms, which could be reflective of population-level phenotypic plasticity. The mean 

QST difference across all 70,250 transcripts was 0.24 ±0.29. We identified 13,725 transcripts 
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(19.5%) exhibiting steep QST reaction norms. Of these, 5,244 had higher QST in BS relative to 

WP, while 8,481 had higher QST in WP relative to that in BS (Fig. 3.3a).  

 

Figure 3.2: Distribution of transcript QST for Bear Spring (BS) and White Pocket (WP).  

 

Drivers of garden-specific population differentiation in expression 

  The full RDA model (model 1) using population-level expression values for the highly 

differentiated transcripts as the response matrix yielded an adjusted R2 = 0.27 (p = 0.03) for BS 

and R2 = 0.034 (p = 0.4) for WP, respectively. The RDA model used to assess the impact of 

drought-related variables on among population differences in transcript levels (model 2) yielded 
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an adjusted R2 = 0.28 (p = 0.003) for BS and R2 = 0.13 (p = 0.19) for WP, respectively. The 

observed R2 for the model 2 was significantly higher than the empirical null distribution of R2 

values only in BS (p < 0.001) (Fig. 3.4), demonstrating that drought-related variables were more 

important in explaining the noted among population differentiation for the high QST transcripts. 

Finally, the RDA model to assess the impact of freezing-related variables on among population 

differences in transcript levels (model 3) yielded an adjusted R2 = 0.026 (p = 0.37) for BS and R2 

= 0.083 (p = 0.14) for WP, respectively. This observed R2 was significantly lower than the 

empirical null distribution of R2 values only in WP (p < 0.001), indicating that freeze-related 

variables were less important in explaining the noted among population differentiation for the 

high QST transcripts (Fig. 3.4). 

  

 

Figure 3.3:  (A) Boxplots for transcripts exhibiting steep QST reaction norms. There were 5,244 

transcripts which had high QST only in BS (teal), while 8,481 had high QST only in WP (salmon).  

(B) Conceptual representation of transcript classification using the QST -FST  comparison 
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approach with the number of transcripts classified under each category shown on the right. 

Reaction norms are only provided for transcripts, multilocus FST  is indicated in black without a 

reaction norm. Pink represents transcripts exhibiting adaptive differentiation in both gardens but 

no plasticity, yellow represents transcripts exhibiting adaptive plasticity, blue represents 

transcripts that are conditionally adaptive in WP and green represents transcripts that are 

conditionally adaptive in BS. 

 

Transcript level signatures of selection 

We filtered our ddRADseq SNP dataset down to the 30 maternal trees for which 

transcriptome data was available. This dataset was further filtered to retain only SNPs with a 

minor allele frequency of 0.01 and maximum missing data of 50%. Overall, this yielded a total 

of 11,431 SNPs that were used for estimating FST and to perform QST-FST comparisons for 

assessing signatures of selection. The multilocus estimate of FST was 0.015 (95% confidence 

interval, CI= 0.01-0.02) and ranged from 0 to 1 across SNPs. By comparing the CI of FST with 

QST for each transcript, we classified transcripts into several categories that are conceptualised in 

Fig. 3.3B. We identified 5% of the transcripts as exhibiting signatures of adaptive trait 

differentiation (QST > FST) at BS and 6% at WP (Table 3.1). Of these, only 0.094% of the 

transcripts exhibited zero reaction norms slopes (adaptive differentiation in both gardens but no 

plasticity). We identified 6% of the transcripts as being significantly differentiated from FST only 

in WP (conditionally adaptive in WP), while 5% were significantly differentiated from FST only 

in BS (conditionally adaptive in BS).  These transcripts also exhibited non-zero reaction norm 

slopes. We only noted 0.28% of the transcripts to exhibit adaptive plasticity, such that QST > FST 

at both gardens and they also had non-zero reaction norm slopes. 
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Figure 3.4: Distribution of adjusted R2 for transcripts that are not highly differentiated between 
population against the adjusted R2 (vertical line) for transcripts that were highly differentiated for 
(a) BS using the drought model, (b) BS using the freeze model, (c) WP using the drought model 
and (d) WP using the freeze model. 
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Table 3.1: Summary statistics for transcripts classified into various categories of adaptive 

differentiation based on QST-FST comparisons. The multilocus estimate of FST across the 30 

maternal trees was 0.0147 (95% CI = 0.01-0.02).  

   

Category  Mean QST (± sd)  Percent of 
transcripts 

Number of 
transcripts 

Adaptive 
differentiation but no 
plasticity  

BS = 1 ± 0 

0.094 66 
WP = 1 ± 0 

Conditionally 
adaptive in BS 

BS = 0.84 ± 0.19 

5 3,512 
WP = 0.05 ± 0.09 

Conditionally 
adaptive in WP 

BS = 0.04 ± 0.08 
 
6 4,215 

WP = 0.83 ± 0.19 

Adaptive plasticity BS = 0.77 ± 0.19 
 

0.28 190 
WP = 0.82 ± 0.2 

 

 

Influence of hybrid ancestry 

Our estimates of hybrid ancestry for the 30 maternal trees ranged from 0.18 to 1, with 1 

indicating 100% genomic ancestry from Pinus flexilis. The distribution of correlation coefficients 

demonstrating the relationship between mean population ancestry and population level transcript 

expression value ranged from -1 to 1 for most categories. A formal distribution comparison using 

the Kolmogorov-Smirnov test demonstrated significant differences between distributions. 
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Specifically, the distribution of correlation coefficients for highly differentiated transcripts in 

both gardens was shifted towards the left relative to the empirical null (pBS < 0.01 and pWP < 

0.01). On the contrary, the distribution for transcripts with an absolute among population QST 

difference above 0.5 was shifted to the right relative to the empirical null (p < 0.01). However, 

three out of the four categories of adaptive differentiation defined using the QST- FST 

comparisions exhibited no deviation from the empirical null distribution of correlation 

coefficients (p > 0.05). The distribution of correlation coefficients for transcripts exhibiting 

adaptive differentiation across both gardens but no plasiticity was slightly, yet significantly, 

shifted left relative to the emprical null distribution (p = 0.04).  

 

DISCUSSION  

Range margin populations are often considered depauperate in genetic diversity, which 

should restrict the ability of plasticity to aid long-term persistence and to facilitate adaptation to 

putatively novel habitats encountered at species’ range boundaries. On the contrary, if range 

margin populations encompass hybrid zones, then an increase in genetic diversity is expected, 

which could facilitate the evolution of phenotypic plasticity. By utilising a transcriptome-wide 

dataset from a controlled common garden design containing the range margin populations 

encompassing the P. strobiformis-P. flexilis hybrid zone, we provide strong evidence for 

adaptive trait differentiation and for adaptive plasticity. We also demonstrate that hybridization 

likely facilitates the evolution of phenotypic plasticity through increases to standing genetic 

variation and the presence of novel allelic combinations.  

The recent surge in the availability of various genome-wide datasets for model and non-

model systems has revealed a strong role of regulatory and non-genic elements in driving 
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adaptive evolution (Gould et al. 2019; Bachtiar et al. 2019; Mei et al. 2019). Adaptive evolution 

is often studied through the assessment of population differentiation at fitness-related traits. Gene 

expression patterns, while relient on environmental stimuli, are known to have strong heritable 

components and hence can be treated as fitness-related traits contributing towards adaptive 

evolution (Pyhäjärvi et al. 2013; Huang et al. 2019). By conceptualising gene expression as a 

quantitative trait, which is not novel to our approach, we revealed strong patterns of among 

population differentiation (QST) that varied across two common garden sites representative of 

climatic variability within the natural range of P. strobiformis. The large values of QST are 

unusual when compared to previous assessments in conifers or even in P. strobiformis that used 

an array of phenotypic and physiological traits (Goodrich et al. 2016;  reviewed in Lind et al. 

2018). A direct comparision to these studies can only be possible with matching sample sizes as 

our study was limited by the number of populations and families assayed. Neverthless, 

Ogasawara & Okubo (2009) demonstrated that gene expression differences tend to be strongest 

during initial stages of species divergence and proceed towards an asymptote as species diverge 

further. Further, presence of strong selective pressures in the form of post-zygotic isolating 

barriers in early life stages across trees (Lindtke et al. 2014; Zhao et al. 2014) could also have 

contributed towards the noted strong population differentiation. We thus suggest that the large 

proportion of transcripts with QST ≥ 0.5 could be a result of sampling younger cohorts from a 

hybrid zone formed between two recently diverged species and hence would be a product of 

interaction between intrinsic and extrinsic selection pressures. With respect to gene expression 

differentiation specifically, our results are in-line with studies across other systems 

demonstrating strong heritable components to gene expression values, as well as strong GxE 

effects (Roberge et al. 2007; Leder et al. 2015).  
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While a vast number of transcripts (15%) were strongly differentiated in both BS and in 

WP, the RDA models examining the effect of drought-related variables and freezing-related 

variables on among population expression differences was only significant in BS for drought-

related variables.  These results are contrary to previous work in these common gardens 

demonstrating strong population differentiation and strong associations between source climatic 

conditions and fitness-related physiological traits (Goodrich et al. 2016;  DaBell, 2017). 

Comparing the observed R2 for each garden against the empirical null distribution revealed that 

drought-related variables were more important in explaining the noted among population 

differences at BS, while at WP both freeze-related and drought-related variables were deemed 

less important (Fig. 3.4). The noted differences across the two gardens could be a result of (a) 

among population variation driven by differences in hybrid ancestry or (b) differences in 

selective pressures between the two gardens. Specifically, trees in BS experience severe winters 

and aseasonal frost events which could cause freeze tolerance related transcripts to exhibit a 

baseline level of expression across all trees regardless of the source they originated from and 

thus cause among population difference in expression to be driven by other climatic gradients 

such as drought. On the contrary, WP is a dry and hot site which could remove any source 

climate related differences in transcript levels of drought associated genes and cause among 

population differences to be driven by climatic gradients such as freezing temperatures. 

Argument (b), however, only partially supports our results because freeze-related variables did 

not exhibit stronger association with highly differentiated transcripts at WP (Fig. 4). The stronger 

than expected associations between genomic ancestry and among population variation in gene 

expression levels noted here provides support for argument (a). We suggest that while hybrid 

ancestry was associated with strong differentiation of transcripts at both gardens, this effect 
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maybe exaggerated in BS which is a high elevation environment with conditions similar to that 

in the range of P. flexilis.  

The availability of transcriptome-wide datasets from common garden studies has resulted 

in the identification of sets of genes that exhibit differences in expression patterns among 

populations and across environments. These approaches by themselves, however, do not clearly 

allow for further assesments involving the estimation of heritable components of gene expression 

variation that are needed to evaluate the role of selection. Similarly, for studies utilising multiple 

common gardens, inference of phenotypic plasticity is possible, but ascertaining the proportion 

of traits that are adaptively plastic is not possible without further assessing fitness components. 

Since an assessment of fitness is challenging in long-lived organisms such as trees, we utilised a 

formal test that compares levels of genetically-based among population expression differences 

(QST ) with genome-wide patterns of differentiation at putatively neutral loci (FST ) to ascertain 

the relative contribution of selection in driving expression differences within and across multiple 

environments (reviewed in Leinonen et al. 2008; Josephs, 2018). Overall, 5% of the transcripts 

examined exhibited signatures consistent with divergent selection, with the number of adaptively 

differentiated transcripts being lower in BS relative to WP (Table 3.1).  

We utilised QST  reaction norms to demonstrate population-level GxE effects, which are a 

form of plasticity, and to assess whether these were adaptive or conditionally neutral. Plasticity is 

often thought of at the level of individual genotypes (Schlichting, 1986), however, inference of 

adaptive plasticity can only be made at the population level and hence our approach made use of 

among population variation in reaction norms. To demonstrate that our assesment of plasticity 

based on population reaction norms is representative of maternal reaction norms to a large 

extent, we plotted the reaction norms for maternal tree values obtained in equation 2. Maternal 
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tree values should be reflective of the same genotype being planted in different environments and 

hence should comply with the traditional definition of plasticity. We noticed a wide array of 

maternal value reaction norms, with some transcripts exhibiting minimal among population or 

among family variation in a garden while some others demonstrating strong among population 

differences across both gardens (Fig. 3.5). All maternal trees demonstrated non-zero expression 

variation across gardens for the transcripts classified as exhibiting steep QST reaction norms. 

Further, 72% of these transcripts had atleast half the maternal trees exhibiting an absolute 

expression difference of 0.5 or higher across gardens. Our results also demonstrate strong signals 

of GxE effects, with approximately 5% of the transcripts examined being conditionally adaptive 

in one of the gardens and 0.28% exhibiting adaptive plasticity. The latter were primarily 

associated with response to heat stress and pollen development.  

The distribution of correlation coefficients for transcripts exhibiting plasticity was shifted 

higher relative to those that did not exhibit plasticity, likely indicating that ancestry from P. 

flexilis contributed towards steeper reaction norms. Since we only used genome-wide estimates 

of ancestry and not transcript-specific estimates, we lack confidence in pinpointing specific 

transcripts that exhibit strong among population differentiation due to hybrid ancestry. 

Nevertheless, the higher than expected association noted between P. flexilis ancestry and the 

slope of reaction norms would be in-line with previous expectations (Ackerly et al. 2000; 

Schmid et al. 2019). To elaborate, we suggest that the presence of heterogeneous and harsh 

climatic conditions in the range margin populations and the likely increase in additive genetic 

variance resulting from admixture (Goodnight, 1995; Whitlock et al. 1993) could have 

contributed towards the noted strong relationship between plasticity and P. flexilis ancestry for 

the strongly differentiated transcripts. Future studies performing differential gene expression 
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analyses using hybrid ancestry information from maternal sibs rather than only the maternal trees 

and mapping the gene sequences identified here to the transcriptomes of parental P. flexilis and 

P. strobiformis would discover links between the ancestry of specific genomic regions and their 

contributions toward adaptive trait differentiation as well as towards the maintaince of species 

boundaries that are often expressed in early life stages in trees.  
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Figure 3.5: Maternal reaction norms for log normalised expression values (log-norm-Expr) of 

transcripts that are (A) conditionally adaptive only in BS, (B) Conditionally adaptive only in WP 

(C) Adaptive in neither gardens but displaying strong family variance in WP and (D) Adaptive in 

both gardens. 

 

Conclusion 

Adaptive evolution often involves changes in gene expression, with nearly 12-78% of 

transcriptional changes likely to influence the organismal phenotype (Greenbaum et al. 2003). 

While several studies consider expression changes to be transient and drastically influenced by 

environmental changes, others have shown these to also be heritable and exhibit strong GxE 

effects. Our study is one of the few to extend the well-developed field of quantitative genetics to 

gene expression and evaluate the proportion of transcripts exhibiting adaptive divergence. By 

utilising hybrid trees planted across two common gardens, we have identified transcripts 

exhibiting adaptive plasticity and have quantified the contribution of hybridization towards gene 

expression divergence. While this study is limited due to the moderate number of populations 

sampled (n = 10), it significantly advances the field of transcriptomic studies by co-opting an 

array of well-developed approaches to understand the evolution of genomic reaction norms. 

Through these we provide strong evidence of environment dependent adaptive differentiation 

and adaptive plasticity, reiterating the view that gene expression patterns experience similar 

evolutionary pressures as any quantitative trait and thus can be adaptive, maladaptive or neutral.  
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