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ABSTRACT

Aerospace structures are increasingly utilizing advanced composites because of their

high specific modulus and specific strength. While the introduction of these material sys-

tems can dramatically decrease weight, they pose unique certification challenges, often

requiring extensive experimental testing in each stage of the design cycle. The expensive

and time-consuming nature of experimental testing necessitates the advancement of simu-

lation methodologies to both aid in the certification process and assist in the exploration of

the microstructure design space.

Peridynamic (PD) theory, originating from Sandia National Labs in the early 2000s, is a

nonlocal continuum-based method that reformulates the equation of motion into an integral

equivalent form. The integral form, on which the theory is based, is well suited to explore

discontinuity rich phenomena such as damage and material failure.

This dissertation develops PD-based simulation approaches to investigate two polymer

based composite material systems of different maturity: carbon fiber and carbon nanotube

(CNT) yarn. For carbon fiber reinforced composites, simulation approaches were devel-

oped to predict damage resulting from low-velocity impact, an important part of the certifi-

v



cation process because often damage associated with this loading goes undetected leading

to premature structural failure. In contrast to the more established carbon fiber, CNT yarn

is a promising constituent material still very much in the developmental process. With this

in mind, PD simulation approaches were developed with a different objective, which was

to systematically explore microstructure property relationships, providing early feedback

in the material design process.
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Chapter 1

Introduction

1.1 Motivation

Polymer matrix composites (PMCs) have several significant advantages compared to other

material systems. One important benefit is their high stiffness and strength to weight ratios

[1–3]. For aerospace and other applications in which weight is of supreme importance [2],

PMC utilization has dramatically increased over the years. However, the weight advantage

of PMCs comes at a cost with the primary disadvantages being low fracture toughness,

expensive fabrication, and difficult repair [1].

The low fracture toughness of PMCs is particularly challenging in industries, such

as aerospace, where brittle abrupt fracture can have devastating and life-altering conse-

quences. As a result, large safety factors and design cautions are required. While advanced

and automated manufacturing is consistently lowering the fabrication cost [3], creating

parts of complex geometry is still time intensive and extremely costly [1]. Finally, because

the initial detection of failure in composite materials is difficult [4], flaws in composite

structures may go unnoticed, making repair of the part challenging [1]. Despite these

challenges, the weight advantage has made it an increasingly popular design choice, with

several recently built aircraft having greater than 50% weight composite material [3]. There

is great potential for PMCs, especially if some of these challenges can be addressed and

mitigated.

While there are many different types of reinforcing materials used in PMCs, this dis-

sertation will focus on two: carbon fiber and carbon nanotube (CNT) yarn. Carbon fiber

reinforced polymer matrix (CFRP) composites have been around for decades and were
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first used in aerospace structures in the early 1960s [3]. Over this time, the manufacturing

process has greatly improved, the cost of production has dropped, and the properties of

the carbon fibers themselves have gotten better [3]. Despite their long existence, CFRPs

continue to pose unique challenges from a computational perspective. They are highly

anisotropic, heterogeneous, and as a result, have complex failure mechanisms. These dif-

ficulties exist in all length scales of the material, from interactions at the atomic scale, all

the way to the stacking sequence at the macroscale.

Compared to carbon fiber, CNT yarn is still in the early stages of the material life cycle.

Carbon nanotubes offer an even higher tensile modulus and strength [5] than traditional

fiber. This significantly magnifies the weight advantage. While CNTs have the potential to

become a part of the next generation of composite material, there are difficulties translating

the material properties from the nanoscale to the macroscale. Recently developed CNT

yarn, a macro-assemblage of CNTs, is commonly viewed as a path for transitioning to

these larger scales [6]. Similar to carbon fiber, the CNT yarn has a complex hierarchical

structure with a wide range of failure mechanisms. To fully realize its potential, a better

understanding of these mechanisms is needed.

This dissertation is focused on developing computational-based simulation approaches

that are complementary to experimental methods. When computational methods are used

in tandem with experiments, a more fundamental understanding of the material systems can

be obtained. Computational methods provide the means to investigate various loading con-

ditions and part designs in short succession. They can inspire experimental work and help

guide an experiment towards a new understanding. Well-verified and validated simulation

approaches ultimately lower costs and improve resource allocation. A major focus of this

work is on predicting failure mechanisms of both carbon fiber and CNT yarn reinforced

PMCs. New computational methodologies allow for the exploration of material interaction

across length scales, will aid in the future designs of experimental testing, and allow for a

more fundamental understanding of damage development.
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1.2 Failure Mechanisms of Polymer Matrix Composites

The failure mechanisms of PMCs can often be difficult to parse and identify because they

have abrupt and catastrophic failure [7], which makes a post-mortem identification of root

causes difficult. However, in recent years, new techniques have been developed for in-

situ monitoring of the composite under a variety of loading conditions [4], elucidating the

damage mechanisms involved. Failure mechanisms of PMCs can be broadly classified by

their loading type, material origins, and location within the composite.

In CFRP composites, fiber failure can occur via two different mechanisms: fiber break-

age and fiber crushing/kinking. Because fibers are the primary load-carrying constituent

material, this type of failure is extremely detrimental to the composite’s performance [4].

Fiber breakage occurs in tension and results in the fiber being split into two separate pieces.

Because there is a distribution of fiber diameters and ultimate strengths, not all fibers break

at the same load level [4]. The second fiber-related mechanism, fiber crushing, arises from

a compressive loading component in the direction of the fiber. This mechanism is generally

considered to be a multi-step process in which defects in the microstructure, such as fiber

waviness [7, 8] and misorientations of the fiber with respect to the compressive load, result

in fiber kinking and ultimately fiber crushing [4, 7].

A second failure morphology, matrix cracking, occurs in the polymer and reduces the

ability of the composite to transfer load, a major role of the matrix material. The polymer

matrix exists to transfer load to the fiber, protect the fiber from damage, and stabilize the

fiber alignment [4, 9]. Matrix cracking, which can be induced by tensile, compressive,

and shear loading, can significantly reduce the ultimate strength of the composite. Another

important type of matrix failure, interlaminar delamination, occurs in resin-rich regions be-

tween plies of different fiber orientations [9, 10] and is often induced by interlaminar shear

stresses [11, 12]. These failure mechanisms are summarized schematically and through

SEM images (Figure 1·1).

Damage arising from impact related events is a common concern for aerospace struc-

tures [3, 4]. In low-velocity impact conditions, matrix cracking, fiber failure, and delam-
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Figure 1·1: Summary of primary failure mechanisms: (a) fiber crushing,
(b) fiber breakage, (c) delamination, (d) fiber bridging, (e) matrix cracking
[4, 13, 14].

ination all interact with each other [9]. Bending stresses associated with LVI can initiate

matrix cracking, which migrates and influences delamination at the ply interfaces [4, 13].

An example of this interaction and occurrence throughout the composite (Figure 1·2) is

given in [12], where compressive failure occurs directly underneath the impactor, tensile

failure of the fiber occurs due to the bending of the back face, and interlaminar shear driven

delamination occurs throughout the composite.
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Figure 1·2: Failure mechanisms associated with low-velocity impact of
CFRP composites [12].

Carbon fiber and CNT yarn reinforced composites have similar failure behavior in the

polymer, but distinctly different mechanisms in the reinforcement. Zhang et al. [15] ex-

amined the failure of CNT yarn at different strain rates. At low rates they observed a more

ductile failure mode and attributed this type of failure to the redistribution and sliding of

the CNTs. At higher strain rates, when the CNTs are not given sufficient time to redis-

tribute loading, they observed a more brittle failure similar to carbon fiber. The interaction

between CNTs, the redistribution of loading, and differing degrees of CNT alignment all

lead to very unique and complex failure traits. The complexity and wide range of dam-

age mechanisms motivates the use of Peridynamic (PD) theory, which is introduced in the

following section.

1.3 Introduction to Peridynamics

Finite element method (FEM) has been the main modeling approach for analysis of CFRP

composites. Since its development in the mid-20th century, FEM has served the aerospace
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industry extremely well, aiding in the design and manufacture of stronger and lighter

structures. Because FEM is based on continuum mechanics formulations involving spa-

tial derivatives, the computations suffer from reduced accuracy when discontinuities are

present in the solution domain. Sharp corners, material interfaces, and crack faces/tips

are examples of such discontinuities where a spatial derivative is not well defined. As a

result, in the FEM, treatment of failure and fracture is not as robust and accurate as the

other simulation output such as displacements. Additionally, because FEM relies on the

concept of meshing with connectivity that works on the basis of nodes defining elements,

and because fracture and failure would require these fundamental definitions to be modified

as the simulation progresses, its use for dynamic fracture problems has major drawbacks.

Improvements have been introduced starting in the 1990s to address these issues with two

particular methods gaining wide recognition: (1) cohesive zone models [16], and (2) ex-

tended FEM (X-FEM) [17, 18].

Cohesive zone models (CZMs) place additional surface elements (cohesive elements)

between the conventional finite elements that allow a discontinuity to develop and progress

based on a material-specific traction-separation law. CZMs can be calibrated for systems

with specific geometries and materials so that the predictions are consistent with the ex-

perimental findings. This method works best when the fracture initiation sites are known a

priori (e.g. pre-existing notches); if cohesive elements are utilized across the entire solution

domain, the structure can potentially become unrealistically stiff. Also, using cohesive el-

ements excessively leads to non-trivial increases in the computational load. Thus, there are

two main difficulties analysts must overcome in using CZMs: (i) finding a set of traction-

separation law material parameters based on continuum mechanics, and (ii) identifying the

potential failure/fracture sites prior to the analysis.

The extended FEM provides a convenient methodology such that the initial connectiv-

ity of the mesh is no longer a major roadblock in problems involving dynamic propagation

of failure [17, 18]. An element may be divided into two or three smaller elements with

clear definition of fracture surfaces defined by the newly generated surfaces of those ele-
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ments. The method has been used by a large number of researchers studying failure and

fracture of materials including composites. The main disadvantage is the requirement of

using external criteria to grow fractures. As a result, X-FEM prediction of crack branch-

ing leading to complex fracture patterns remains a challenge. Both the CZMs and X-FEM

can be extremely useful in analyzing certain problems. For example, quasi-static growth

of delaminations in laminated composites can be simulated using CZMs with great suc-

cess [19, 20]. Similarly, self-similar crack propagation under quasi-static conditions can

be satisfactorily predicted using X-FEM [18]. However, there is need for a computational

simulation method that naturally captures initiation and propagation of distinctly different

failure modes under dynamic loading conditions in fiber reinforced laminated composites.

To more accurately represent the different damage mechanisms and the interactions

between these mechanisms, this dissertation is focused on the use of Peridynamic (PD)

theory. PD theory, introduced by Silling [21], is a reformulation of classical continuum

theory that avoids using spatial derivatives. Instead, dynamic equilibrium is expressed in

terms of integration. By doing so, failure initiation and propagation is inherently included

in the theory.

Over the years, much PD work has been performed relating to laminated composite

structures [22–30]. Early investigations of low-velocity impact damage on composites

[23, 31] accounted for directional dependent material properties of lamina by adjusting

the material point force interactions according to their relative direction with respect to

the fiber orientation. Theoretical derivations of nonlocal potentials governing internal in-

teractions were presented by matching the PD and classical continuum mechanics (CCM)

strain energy density expressions [24]; application of this development was demonstrated

by considering a thin plate with a central slit undergoing quasi-static in-plane tensile load-

ing. Failure propagation of CFRP laminate under a combined thermal and mechanical load

was investigated in [25]. A combined PD and FE approach was demonstrated by simulating

mode I and II crack propagations in a stiffened curved composite laminate [26]. Represen-

tation of a CFRP composite in a PD setting by modeling the fiber and matrix materials
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explicitly was presented [27] by considering a panel under quasi-static tensile loading. The

non-isotropic behavior of CFRP composites were modeled by defining several distinct ma-

terial behaviors and damage parameters [30]. Hu et al. developed a model specifying

different damage parameters to correspond to different failure modes (e.g., delamination,

fiber breakage) [28].

In all of this previous work concerning CFRP composite modeling using PD theory,

only [27] considered fiber and matrix materials as separate constituents in the model. It is

believed that this approach should be explored further because it allows for an unambiguous

definition and separation of different damage mechanisms. Additionally, such an approach

permits the representation of arbitrary ply orientations with no requirement of having plies

oriented in multiples of 45 degrees (i.e., 0◦,-45◦, 90◦).

As mentioned previously, peridynamics recasts the partial differential equations of

CCM into an equivalent integro-differential equation. The integration in this equation in-

troduces the concept of nonlocality into the governing equation. In this context, nonlocality

implies that a material point interacts not only with its nearest neighbors, but also with ma-

terial points inside a sphere of radius, δ , termed the horizon. The interactions that develop

between two material points are referred to as bonds. This unique mathematical formula-

tion of PD makes it well suited for exploring discontinuity-rich phenomena such as failure

initiation and propagation in a solid body.

While only bond-based PD is used in this dissertation, it is important to introduce the

variants or “flavors” of PD that have been developed in recent years [32]. They can be

distinguished from each other by the manner in which they conserve angular momentum.

In particular, restrictions are placed on the internal force states that enable conservation of

angular momentum. Table 1.1 lists these variants and the associated restrictions placed on

the force state vectors. For bond-based PD, the force state vectors are equal in magnitude

and oriented parallel to the deformed bond vector. In ordinary state-based PD, the force

state vectors are unequal in magnitude, but still oriented along the deformed bond vector.

Finally, in non-ordinary state-based PD, the force state vectors are unequal in magnitude
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and not parallel to the deformed bond vector. In other words, descending the table removes

restrictions on the force state vectors. Both bond- and state-based PD theory are described

in the literature with more details [22, 33, 34].

Table 1.1: Categorization of peridynamic types based upon force state vec-
tors.

Force State Vectors

Peridynamic Types:
Magnitude

Orientation w/
Deformed Bond

Vector
Bond-Based Equal Parallel

Ordinary State-Based Unequal Parallel
Nonordinary State-Based Unequal Nonparallel

As derived by [21], the PD bond-based equation of motion can be written as

ρ
∂ 2u
∂ t2 =

∫
Hx

f(u′−u,x′−x, t)dHx +b(x, t) (1.1)

for a material point x at time t. The left hand side of Equation (1.1) contains the mass

density, ρ , and the acceleration term, ∂ 2u
∂ t2 . The interaction between two material points can

be expressed by the pairwise response function, f(u′−u,x′− x, t). In the simplest form,

the response function takes a linear expression given by

fi j = csi j (1.2)

where fi j is the bond force density associated with the interaction between material point

i and j. The stiffness of the interaction is determined by the material constant c, often

referred to in the literature as the bond constant. The bond stretch, si j, between material

points i and j is defined through the kinematics of Figure 1·3.

Figure 1·3, originally from Gerstle [34], shows the kinematics of two particles within a

body. This figure has been reproduced with slight modifications in notation. In this figure,

two particles are shown, particle P and P′. The initial spatial locations of these particles are
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X and X′ with respect to a reference coordinate system. The undeformed reference vector

between these two material points is given by r, and can be related to the initial particle

locations as shown in Equation (1.3).

r = X′−X (1.3)

Upon displacement of particles P and P′, their new locations (in light blue) are given

by x and x′ respectively. The displacement vector of each individual particle is written as

u and u′. The deformed bond vector, p, is expressed by Equation (1.4).

p = (X′−X)+(u′−u) (1.4)

Using these definitions, one can define a scalar quantity, termed stretch, between two

interacting material points.

s =
|p|− |r|
|r|

(1.5)

This stretch quantity is akin to extensional strain in classical continuum theory.

Figure 1·3: Pairwise response function reproduced from [34].
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Constitutive relationships between the bond force density and the stretch of material

points have been derived for various material models (see [22], [32] among others). As

the solution domain is subjected to external stimuli, forces and stretches between material

points develop. In the literature, this relationship often takes a linear form. However, it

should be mentioned that the constitutive relationship is not limited to this form. A linear-

flat relationship between the bond force and bond stretch is also possible and illustrated

in Figure 1·4. This figure shows several different examples of constitutive relationships.

Additionally, three distinct paths are shown. The blue path represents the loading curve,

the green arrows represent the unload path, and the red arrow represents the failure path.

Figure 1·4: Potential constitutive relationships.

Figure 1·4 (a) shows a microelastic linear constitutive relationship with a linear-flat

relationship in compression. In this material model, the bond force is related linearly to the

stretch through the material constant, c, coined the bond constant. In compression, bond

force and stretch are linearly related to each other up to a certain force value, after which the

bond cannot carry additional load but is still able to further deform. The second material

model, Figure 1·4 (b), demonstrates a linear-flat constitutive relationship in both tension

and compression. Additionally, it shows the unloading path is elastic and thus follows

the loading curve. Finally, Figure 1·4 (c) shows an example of a microplastic material

model. This model, like the one in Figure 1·4 (b), is linear-flat in tension and compression.

However, unlike the previous models, the bond experiences permanent deformation upon

reaching the flat portion. If a bond reaches the flat portion but not the critical stretch,
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the unloading takes place from its current stretch value following a path parallel to the

original loading curve. The deformation of the bond may continue to a value that leads to

its breakage. The stretch value at this state is called the critical stretch, scr. Silling and

Askari [35] formulated a relationship between the fracture energy Go and bulk modulus κ

of the material, and its PD critical stretch as:

scr =

√
5Go

9κδ
(1.6)

It should be noted that the critical stretch expression given in Equation (1.6) assumes

only a linear relationship between the bond force and bond stretch, without the flat portions

shown in Figure 1·4 (a). Failure in PD theory is accounted for in the constitutive law. As

a PD bond fails, its load is redistributed to other bonds within the horizon. This increases

the strain on the neighboring bonds, potentially leading to further failure. During the PD

simulation, the number of bonds connected to each material point is monitored at every time

step. A scalar parameter, damage, is defined at every material point. Its value is defined

as the ratio of number of the broken bonds to the initial number of bonds at the material

point. All material points have a damage value of zero at the beginning of a simulation,

while a value of unity indicates a material point that is disconnected from all of its original

family members. Equation (1.7) shows the equation defining the scalar damage parameter

φ [22, 35]. In this equation, µ is a history dependent scalar quantity of value 0 or 1 used to

tabulate the failure of a bond.

φ(X, t) = 1−
∫

H µ(X′−X, t)dV ′∫
H dV ′

(1.7)

Typically, when the local damage of a material point reaches a value of 0.5, a crack is

considered to have formed [22]. Consider the example presented in Figure 1·5. In the initial

state, the material point (red) and its bonds (blue) are fully connected. As the simulation

progresses to the deformed state, t2, the applied load has caused half of the material point’s

bonds to exceed their critical stretch. This leads to a local damage of 0.5 and no longer any
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bonds connecting with the upper surface (green semi-circle).

Figure 1·5: Schematic example showing the relation between damage and
crack formation [22].

As discussed prominently in the literature [21, 22, 34], a microelastic pairwise response

function f can be related to an elastic potential w(η ,r). In the literature, this is termed as

the micropotential [21, 22] of a bond or the pairwise potential function. Equation (1.8)

shows this relationship.

f (η ,r) =
∂w
∂η

(η ,r) (1.8)

1.4 Research Objectives

This dissertation contains computational simulation approaches for carbon fiber and carbon

nanotube yarn reinforced polymer matrix composites. The objective of this work is to aid

in the developmental process of these materials through the accurate prediction of damage

morphology and evolution. As a consequence of material maturity, these two simulations

are performed at different length scales. The more mature and commonly utilized CFRP

composites are analyzed at the macroscale and subjected to more advanced loading con-

ditions, such as low-velocity impact and off-axis dynamic testing. Simulation approaches
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developed for carbon fiber are geared towards aiding the certification process and learning

more about the interaction of failure mechanisms.

On the other hand, CNT yarn is still in the initial stages of material development. Per-

haps even more so than CFRP, CNT yarn is a truly complex and hierarchical structure

that necessitates a multiscale modeling approach. For this reason, simulations are geared

towards tailoring and learning about the microstructure material property relationships.

Methods were created to analyze and systematically explore the microstructure itself under

pure tensile loading.

These two differing material systems and length scales demonstrate the versatility of

peridynamics.

1.5 Outline

This dissertation is broken up into four chapters. The first chapter is intended to provide an

introduction to PMCs, common failure mechanisms, PD theory, and the objectives of this

research. In the second chapter, the PD simulation approach for CFRP matrix composite

is developed and explored. This chapter contains a brief background on the low-velocity

impact problem and its importance from a certification and analysis perspective. The PD

laminate approach is provided with focus on the objective determination of material pa-

rameters. Verification and validation of the approach is given through the simulation of

off-axis static and dynamic tension tests. Finally, simulation results for low-velocity im-

pact at four different energies is given and compared against experiments. Additionally, an

approach for simulating a hat stiffened panel and a method for including through-thickness

reinforcements are provided.

The third chapter introduces CNT yarn reinforced composites. A framework using PD

theory is developed and demonstrated for deformation and failure analysis of carbon nan-

otube (CNT) yarn-based structural composites. Experimental work involving tension test-

ing of a CNT yarn/polymer composite resulting in stress-strain response up to and including

failure and was provided by researchers at NASA Langley. The as-prepared specimen was
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characterized using x-ray micro computed tomography (CT), which was then converted

into voxel-based data with CNT yarn, polymer, and void phases as well as surface undula-

tion. A Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm

was applied to detect and quantify the clusters of voids, of CNT-rich, and of resin-rich re-

gions. The voxel data, with all microstructural details, were used in PD simulations. These

demonstrate the critical roles of resin and void clusters and surface undulation in fracture

initiation and propagation. Additional analysis was performed to construct probability den-

sity functions (PDFs) of different phases (yarn, resin, void) with the goal of constructing

synthetic virtual composite specimens. The synthetically reconstructed models correctly

captured the experimental stress vs. strain response. The similarities and differences be-

tween the failure (initiation and propagation) behaviors predicted by x-ray CT-based and

PDF-based simulations are presented in detail and discussed.

The final chapter provides concluding remarks and a discussion on future work that can

be undertaken.

1.6 Unique Contributions

As mentioned in the objective section, the focus of this dissertation is on developing PD

simulation approaches that can help other computational and experimental researchers

learn more about the material systems. A list of contributions to the community contained

within this dissertation is provided as follows:

1. Introduced an approach to calculate PD elastic and strength material constants within

an explicit fiber and matrix laminate representation. (Section 2.2)

2. Incorporated intralaminar shear nonlinearity into the PD laminate model using a nu-

merical approach. A Ramberg-Osgood and hyperbolic constitutive relationship were

explored through off-axis tension testing. (Section 2.2.3)

3. Intralaminar strain rate dependence was introduced using a new method of calculat-

ing a local PD strain rate and a rate dependent Ramberg-Osgood constitutive rela-
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tionship was demonstrated through off-axis dynamic tensile testing. (Section 2.4)

4. A systematic exploration of the numerical approach, intralaminar shear nonlinearity,

and strain rate dependence was performed. The influence of each of these additional

modeling features was explored through low-velocity impact testing. (Section 2.5)

5. Created a method for converting x-ray CT microstructural data into an explicit sim-

ulation domain. The methodology developed is not limited to PD or CNT yarn.

(Section 3.3)

6. Developed characterization routines for classifying void and resin clusters. Unsu-

pervised clustering algorithms were used to quantify void and resin clusters of the

microstructure. This information was used directly in the developed PD simulations.

(Section 3.3.4)

7. Developed a unique PD approach to simulate CNT yarn reinforced composites was

used to explore the microstructure process-property relationships of the composite

under tensile loading. (Section 3.4)

8. Created a method for synthetic manipulation of microstructures within PD by using

probability density functions (PDFs). This provides a convenient way of exploring

and testing different structural influences on the mechanical behavior. (Section 3.5)
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Chapter 2

Carbon Fiber Reinforced Composites

The aerospace industry is continually increasing the use of Carbon Fiber Reinforced Poly-

mer (CFRP) matrix composites to manufacture light-weight structural parts. These material

systems provide strengths comparable to advanced metal alloys at a fraction of the weight

due to their lower density. However, the inherent inhomogeneity of CFRPs bring a great

deal of complexity in their deformation behavior and failure patterns. For example, CFRPs

experience distinctly different failure modes including matrix cracking, fiber breakage, and

delamination. These structures undergo various loading scenarios during their service life.

One class of loading conditions involve low-velocity/low-energy impact on laminates (e.g.

tool drop). This type of impact event may cause damages that are not visible and hard to

detect. Such internal damages may lead to unexpected larger-scale component failures.

A common failure mode observed in CFRPs under low-velocity impact conditions is

delamination. Individual plies that make up a laminate may separate from each other due

to dynamic transverse loading. When the transient load is no longer acting, the structure

may go back to its near-original shape with internal delaminations present. This category

of damage is coined “Barely Visible Impact Damage” (BVID) [36]. Because delaminations

do not change the overall appearance of the laminate, they may not be easily detected but

may serve as initiation sites for additional failure that significantly degrades the strength

and stiffness of the component. Therefore, the presence of delaminations in a laminate

poses considerable safety risk for the structural integrity of aerospace components.

The incorporation of advanced composite material systems into aerospace structures is

a time-consuming and expensive process [37]. Structures built with carbon fiber material
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are certified by extensive physical testing at every stage in the design cycle [38]. Recent

years have seen the development of progressive damage and failure analysis (PDFA) meth-

ods, which aim to expedite the certification process by reducing the amount of physical

testing needed to be performed. Currently however, the maturity level of PDFA methods

need to be established to ensure confidence in the analyses being performed [39]. Re-

cent work [37–39] has focused on creating a framework of best practices for verifying and

validating (V & V) PDFA methods.

The verification and validation of a material constitutive response is a fundamental

aspect of every PDFA method. The material response of advanced PDFA methods typically

contains four key characteristics: the elastic response, the pre-peak response, the failure

criteria, and the post-peak behavior [39]. For matrix material, the elastic response governs

undamaged behavior, the pre-peak response softens the stress vs. strain curve to account for

microdamage and degradation, a failure criteria is used to determine the transition into post-

peak behavior, and the post-peak response determines the method in which energy is then

dissipated [39]. As suggested by [37], each individual characteristic needs to be captured

appropriately to prevent the compounding and propagation of errors in the simulation.

Most computational work in composites have been performed using the finite element

method (FEM) because of its ability to capture mechanical behavior of a wide variety of

systems. In recent years, various FEM based models have utilized the V & V framework.

A relatively new method, PD theory, has also been used to simulate composite problems.

In part because of its novelty, PD theory has yet to be assessed under the V & V framework

developed by [39].

Peridynamics is a nonlocal continuum theory that reformulates the traditional partial

differential equation of motion into an integral equivalent form. The integral form intro-

duces nonlocality in the system, which has several advantages. In an integral based equa-

tion, the underlying mathematics are not disturbed by the traditional differential equation

singularities such as cracks and material interfaces. The main objective of this work is to

put forth a PD model within the context of the PDFA V & V framework.
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For nonlocal methods, such as PDs, the V & V of the material response centers around

the proper determination of nonlocal material constants. Correctly determining nonlocal

material parameters is a challenging endeavor in a composite system because the assump-

tions on which analytical expressions have previously been built [35], specifically that

isotropy and homogeneity, are no longer valid. It should be mentioned that most PD work

in composites retain the homogenized assumption and incorporate anisotropy by varying

PD material parameters with bond orientation. Early work with such a representation has

been shown by Askari et al. in [23], in which low-velocity impact on a 32-ply laminate

was simulated at 90 and 45 joules of impacting energy. Utilizing such a representation, the

researchers were able to capture ply level delaminations and interaction with intralaminar

matrix cracking. Nonlocal material parameters were calibrated to match ply level prop-

erties at a particular discretization. In another homogenized composite model, Hu et al.

[24] developed an analytical expression for the nonlocal material parameters and simulated

pre-existing central crack in a thin rectangular plate of M55J/M18 carbon/epoxy compos-

ite. Similarly, the work by Oterkus et al. [25], used a homogenized model to simulate both

mechanical and thermal loading of composite laminates. In this work and later in [22],

nonlocal material parameters were found analytically.

While most PD work, including all the work described above, has been conducted us-

ing a homogenized approach, Kilic et al. [27], developed an explicit representation of a

composite and simulated pre-existing center crack tension tests. This type of representa-

tion poses an additional challenge in the calculation of nonlocal parameters because of the

violation of both isotropy and homogeneity. In the work by Kilic et al. [27], and in pre-

vious work by Baber et al. [40], this unique challenge has been overcome by utilizing the

inverse method put forth by [40, 41], in which the nonlocal material parameters are found

by iteratively calibrating using full-scale simulations under various loading conditions. In

this method, nonlocal material parameters are determined through comparison with local

analytical expressions or continuum-based elastic modeling efforts. While simple and ef-

fective, the disadvantage to this sort of approach is that re-calibration is necessary with any
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changes to the discretization or material system. Furthermore, while the inverse method is

simple for linear constitutive relationships with a single material constant, the method be-

comes increasingly challenging and unreliable as additional material constants are added

to the constitutive relation. In the current work, an objective approach for determining PD

material constants is developed. This approach allows for immediate, on-the-fly calcula-

tion of nonlocal parameters regardless of discretization or material system. The approach is

used to calculate the nonlocal material constants for both linear and nonlinear relationships.

The method is validated by performing PD tensile simulations and the resulting numerical

stress vs. strain curves are compared with the experimental work of [37].

The current PD development work includes: (i) development of an objective approach

for determining PD material parameters (Section 2.2), (ii) implementation of nonlinear

intralaminar material response (Section 2.2.3), (iii) implementation of nonlinear interlam-

inar material response (Section 2.2.4), and (iv) implementation of strain rate dependence

of material response (Section 2.4). These developments allow for immediate, on-the-fly

calculation of nonlocal parameters regardless of discretization or material system. This

development work is verified and validated using off-axis quasi-static (Section 2.3) and

dynamic tension tests (Section 2.4). Low-velocity impact simulations were performed at

four energy levels and compared against experimental results (Section 2.5). Finally, the

developed methods were extended to incorporate a through-thickness reinforcement and

hat stiffener (Section 2.6-2.7.1).

2.1 Peridynamic Approach for Laminated Composites

The current PD work treats the anisotropy and heterogeneity of a laminated composite

through an explicit representation of fiber and matrix material regions. A lamina is con-

sidered to consist of a single layer of PD material points that have alternating sequences of

fiber and matrix material association (Figure 2·1). This type of explicit representation is

readily able to incorporate different fiber orientations (Figure 2·1, column 1 for 0◦, column

2 for 45◦, column 3 for 90◦, and column 4 for -45◦), which leads to the discretization pro-
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cess in which the representative fiber and matrix bands are discretized as PD material points

of finite volumes (Figure 2·1, rows 2 and 3). Importantly, throughout the discretization pro-

cess, the material points retain their material association. Anisotropic behavior associated

with a lamina is captured by carefully curating the interactions between the material re-

gions. These interactions can be categorized as intralaminar (in-plane) and interlaminar

(out-of-plane).

Figure 2·1: Explicit representation of fiber (dark) and matrix (light) regions
for various fiber orientations.

Intralaminar Interactions

Two distinct material points interact with each other through a force density, Equation

(1.1). In the case of a domain with a single homogeneous isotropic material, this inter-

action is uniform across the domain. Because fiber reinforced polymer composites are
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heterogeneous and anisotropic, five distinct intralaminar material point interaction types

(bond types) are needed, (Table 2.1). In a PD representation of a lamina, there are five

distinct bond types (Table 2.1, rows 1-5) depending on the material associations of points

x and x′ (Table 2.1, columns 2 and 3). When the material association of the material points

are dissimilar, bond types 3 and 4 (Table 2.1, rows 3-4), the interaction behavior is consid-

ered to be that of the interface. If both material points are that of matrix association, bond

type 5 (Table 1, row 5), the interaction behavior is considered to be that of matrix material.

Finally, if both material points are of fiber association, bond types 1 and 2, (Table 2.1, rows

1-2), the alignment of the bond with respect to the lamina fiber orientation must be con-

sidered. Fiber to fiber bonds aligned parallel to the lamina fiber orientation are considered

to have fiber behavior, while all other fiber-fiber bond orientations are considered to have

matrix behavior.

Each interaction behavior is given a unique constitutive relationship as follows:

f f = c f s (2.1)

fm = cms (2.2)

fi = cis (2.3)

where c f is the fiber micromodulus, cm is the matrix micromodulus, and ci is the interface

micromodulus. For simplicity, the interface micromodulus is assumed to be equal that of

the matrix.

Bond types associated with a fiber material point in a lamina can be visualized in Figure

2·2. Employing the color notation used earlier in Figure 2·1, dark blue circles are represen-

tative of fiber material points, while light gray circles are representative of matrix material

points. In this example, the red material point in the center of the image has fiber material

association. Because the lamina fiber orientation is -45◦ in this example, the interactions

shown in dark blue between the red fiber point and the dark blue fiber points have fiber be-

havior (bond type 1). All other fiber-fiber interactions, shown in light blue, are not parallel

to the lamina fiber orientation and as a result have the matrix material behavior (bond type
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Table 2.1: Intralaminar material interactions considered in the PD lami-
nated composite model.

Bond Type Point X Point X′ Alignment Behavior

1 Fiber Fiber Parallel Fiber

2 Fiber Fiber Nonparallel Matrix

3 Fiber Matrix NA Interface

4 Matrix Fiber NA Interface

5 Matrix Matrix NA Matrix

2). Interactions between the red fiber point and light gray matrix points are considered to

have interface behavior (bond type 3), and are shown in gray.

An alternate scenario in which the center point is a matrix material point may also be

considered is provided in Figure 2·3. In this case, only two bond types are possible. The

first, a matrix-fiber interaction is shown by the gray connections between the red matrix

point and the dark blue fiber points. This interaction type has interface behavior (bond type

4). Finally, the light gray interactions, shown between the matrix material point in red and

matrix material points in light gray, have matrix behavior (bond type 5).

Figure 2·2: Bond types associated with a fiber material point.
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Figure 2·3: Bond types associated with a matrix material point.

Interlaminar Interactions

In the interlaminar direction (between ply), two different interaction types are consid-

ered: interlaminar normal and interlaminar shear. As the name suggests, interlaminar nor-

mal bonds exist between two material points of different plies with the interaction normal

to the ply. The force density for a normal bond is defined

fn = cns (2.4)

where cn is the normal bond constant.

The standard bond-based PD implementation was modified to improve the simulation’s

ability to capture the deformation behavior in the thickness direction. Following the work of

Oterkus and Madenci in [25], the deformation of the interlaminar shear bonds are governed

by a different constitutive law which is given in Equation (2.5)

fs = csφs∆x2 (2.5)

where cs is the interlaminar shear bond constant, φs is the shear angle, and ∆x is the in-

tralaminar grid spacing. Figure 2·4 depicts the shear bond kinematics used in the current

approach. There are three material points shown in Figure 2·4 and their initial positions are

given by points a, b, c, and d. The bonds between material points a and d as well as b and c
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are separated by a ply thickness of t and are considered to be normal bonds. Alternatively,

shear bonds are shown between material points ab and dc. These bonds have the initial

lengths of rab and rdc, respectively. The red circles are representative of their new positions

after subjected to pure shear deformation.

Figure 2·4: Schematic demonstrating the shear bond kinematics with an
undeformed (left) and deformed (right) configurations.

The shear angle associated with the applied shear deformation can be found by evalu-

ating the geometric relationship between material points a, b, c and d. An isolated view of

the associated geometry is shown in Figure 2·5.

First, the displacement uda and ubc are needed and can be found from Equation (2.6)

and Equation (2.7), respectively.

uda = |(rdc +ηdc)|− |rdc| (2.6)

ubc = |(rba +ηba)|− |rba| (2.7)

The shear angle can then be found by utilizing a small angle approximation as shown

in the equations below.
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Figure 2·5: Isolated view of shear bond kinematics and associated shear
angles.

tanϕda ≈ ϕda ≈
uda

t
(2.8)

tanϕbc ≈ ϕbc ≈
ubc

t
(2.9)

Finally, the shear angle is found by averaging the individual angles. The negative sign

arises because the shear bond dc is in compression.

ϕshear =
(ϕbc−ϕda)

2
(2.10)

Surface Correction Factors

Surface correction factors, discussed extensively in the literature [22, 25, 35], are used

to account for missing family members at the free surfaces of material regions. This correc-
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tion operation is necessary as material points located near the boundaries have fewer bonds

(Figure 2·6). Truncated material point families without surface correction introduces errors

into the simulations because they unnaturally reduce the material stiffness in such regions.

Figure 2·6: Schematic illustration of surface correction factors reproduced
from [22].

A simple remedy for this low material stiffness is to increase the bond constants,

through the application of surface correction factors, for points containing missing fam-

ily members. Discussed extensively in [22], surface correction factors can be obtained by

calculating the strain energy density (SED) of a material point under simple loading condi-

tions and ensuring equality with classical continuum mechanics (CCM) solutions. In this

approach, the SED of a material point located near the boundary Wb is multiplied with a sur-

face correction factor s f to equate to the CCM SED associated with the loading condition,

WCCM, as follows

WCCM = s fWb. (2.11)
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In PD numerical implementation, the bond constant is increased through the application

of the surface correction factor as reflected in the constitutive equations

f = (s f )cs (2.12)

where f is the bond force density, s f is the surface correction factor associated with the

material point x, c is the bond constant, and s is the bond stretch.

This simple procedure increases in complexity when anisotropy and heterogeneity are

required, as in the current PD lamina model. In contrast to the previously described method,

the lamina model contains an explicit representation of material regions, two distinct bond

constants, and directionally dependent behavior. As a result, the SED of a material point i

is decomposed into separate strain energy densities based upon bond types

Wi =Wf +Wm (2.13)

where Wf is the SED contribution from the fiber constitutive relationship and Wm is the

SED contribution from matrix bonds. The PD SED, Wf−(i), for a fiber material point can

be written as

Wf−(i) =
1
2

N f

∑
j=1

1
2

c f s2
i jri jVi js fi j +

1
2

Nm

∑
j=1

1
2

cms2
i jri jVi js fi j (2.14)

in which N f and Nm are the number of fiber and matrix bonds. The fiber and matrix bond

constants are c f and cm, respectively, with units of lbf/in6. The bond stretch is given by si j,

ri j is the undeformed bond length, Vi j is the average volumes of material points i and j, and

s fi j is the volume correction factor for the fiber material point i.

Using the same notation, the PD SED for a matrix material point, Wm−(i), can be written

as

Wm−(i) =
1
2

Nm

∑
j=1

1
2

cms2
i jri jVi js fi j (2.15)

A local coordinate system is used to calculate correction factors in the longitudinal and

transverse directions (Figure 2·7). The 1 direction of the local coordinate system coincides
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with the lamina fiber direction while the 2 direction designates the intralaminar transverse

direction (Figure 2·7). The global coordinate system uses x, y, and z. A correction factor

Figure 2·7: Local and global coordinate systems for surface correction fac-
tors.

is then determined via a direct comparison with the SED developed within the bulk of the

composite. First, a fiber and a matrix point are chosen far from the boundaries. Each point

is subjected to loading in the 1 direction and 2 direction of the local coordinate system,

and their corresponding SED values are recorded. The same procedure is applied to points

located near the boundaries. Both the boundary and bulk value SED values in each direction

are forced to equal through the application of a correction factor as a multiplier to the

boundary SED values. For a lamina, this process culminates in four separate correction

factors as follows:

W(θ)(mm)bulk = s f(θ)(mm)W(θ)(mm)bdry (2.16)

where the first index describes the local coordinate system direction, the second index the

material association, and the third indicates whether the material point is in the bulk or

near a boundary. These directional correction factors can be used as principal values in an
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ellipse as shown by in [22]. The developed term is then applied to the bond constant.

Alternative Surface Correction Factor Calculations

The formulation presented above works well for unidirectional laminates. However,

because the number of fiber bonds for a fiber material point differs depending on ply orien-

tation (Table 2.2), an alternative surface correction factor calculation was created for fiber

and matrix material points. The surface correction factor s f for a material point i are cal-

culated on a per ply orientation basis θ by counting the number of each bond type (fiber,

matrix, shear, and normal) n in a family and normalizing by a full family of that same bond

type (F):

s f (n)
(i) =

F(mp)(n)
(θ)

A(mp)(n)
(i)(θ)

(2.17)

In this equation, the superscript mp denotes material point type. Because each material

point has its own interaction domain, they need to be distinguished from each other.

Table 2.2: Example of the number of bond types for fiber and matrix mate-
rial points.

Fiber Matrix Interlaminar

Ply
Fiber

Bonds

Matrix

Bonds

Fiber

Bonds

Matrix

Bonds

Normal

Bonds

Shear

Bonds

45 4 24 0 28 6 168

-45 4 24 0 28 6 168

0 6 22 0 28 6 168

90 6 22 0 28 6 168

Based on bond type, the surface correction factors can then be applied to the bond force

density calculation.

2.2 Objective Approach for Determining PD Material Parameters

The determination of nonlocal material parameters is an important task in the PD modeling

process. In most work to date, nonlocal PD material parameters are found by establishing
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a link between local classical theory with the nonlocal counterpart. For bond-based PDs,

a link between local and nonlocal theory is SED. An expression for the SED of a material

point subjected to a certain loading condition is equated with the local classical theory SED.

Implicit in both local and nonlocal SED expressions are the material constants of interest.

An example of this methodology is given in the early PD work [35] in which, the bond

constant is found analytically by subjecting a homogeneous body to isotropic expansion.

This methodology of equating SED results in an analytical form of the bond constant as a

function of engineering constants and discretization parameters. In two-dimensional (2D)

problems of elasticity, this is derived as [22]

c =
12κ

πhδ 3 (2.18)

where κ is the bulk modulus, h is the thickness, and δ is the nonlocal horizon. Relationships

such as Equation (2.18), are significant because they enable the user to modify the material

system and discretization with ease and objectivity.

In the current work, the integration performed in [22] for a 2D isotropic body is carried

out numerically. The intent of such reproduction is to introduce the process on a simple

system, after which, the additional complexities of the explicit lamina representation and

anisotropy are demonstrated.

Steps of analysis for obtaining nonlocal PD material parameters are tabulated as fol-

lows:

• Set up material point family
• Calculate volume of each material point
• Apply strain to PD material points
• Calculate PD strain energy density w/o bond constant
• Calculate CCM strain energy density
• Equate strain energy densities and solve for PD bond constant

At the beginning of the process, in the current PD approach for laminated composites,

families of material points are set up with the intralaminar and interlaminar grid spacings,

which are different from each other due to the thin nature of laminated composites. In
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the second step, the volume is calculated for each of the bond interactions. Based on the

literature [22], the volume of the interaction is calculated as the average of the volume of

the two interaction material points. An accurate accounting of each material point volume

is needed for accurate calculation SED. As a result, volume correction factors are generally

applied to material points on the edge of a family. These correction factors are used to

more accurately capture the interaction volume. For reference, volume correction factors

are discussed in detail in [22]. In the third step, an extensional strain is applied to each of the

PD interactions. Care must be taken to ensure that the strain applied to the PD interactions

accurately reflects the strain from classical theory. With an equivalent deformation field

between the two theories, the PD constant is chosen to ensure the SED of both theories are

also equivalent.

2.2.1 2D Isotropic Scenario

Following the steps outlined above, a material point far from the boundaries is chosen and

the reference locations of its family members are tabulated. The family members associated

with the material point are dependent upon the discretization, specifically grid spacing and

horizon, chosen (Figure 2·8).

Figure 2·8: Typical example of a 2D isotropic family of material point i.
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Let the center point of the family be i, with the familial endpoints, j. Typically, the in-

tralaminar horizon δx in PD analyses is chosen slightly larger than 3 times the intralaminar

grid spacing ∆x. With the family of interactions established, the undeformed bond length

between the center point i and the endpoints j can be calculated as

ri j = |x j− xi| (2.19)

where ri j is the undeformed bond length, x j is reference position of point j, and xi is the

reference position of point i.

The deformed bond length can be calculated assuming a uniform isotropic expansion

pi j = |y j− yi|= (1+ ε)ri j (2.20)

where y j and yi are the deformed positions of point j and i respectively, ε is a chosen strain,

and ri j is the previously calculated undeformed bond length. The relative displacement of

each bond ui j can be written as the difference between the deformed and undeformed bond

lengths, and is then given by

ui j = pi j− ri j. (2.21)

The strain energy density of material point i can be calculated by summing the SED con-

tributions from each bond in discretized from as:

W(i) =
1
2

N

∑
j=1

1
2

kiu2
i jVi j

δ

ri j
(2.22)

where ki is the spring constant of material point i and has the units (lbf/in7). The term Vi j

is the mean of the volumes of material points i and j in the reference configuration. The

one half term in front of the summation arises because half of the energy of the bond is

allocated to material point i [22, 34, 35] with the remaining half allocated to point j. The

only unknown in this equation is the spring constant ki. Finally, the SED from classical
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continuum mechanics given this deformation can be calculated as

WCCM = 2κε
2 (2.23)

in which κ is the bulk modulus and ε is the applied strain. Equating the strain energy

densities from Equations (2.22) and (2.23) and solving for the spring constant ki leads to

ki =
2κε2

1
2 ∑

N
j=1

1
2u2

i jVi j
δ

ri j

. (2.24)

The bond constant can then be calculated by multiplying the intralamainar horizon δ with

the spring constant:

ci = kiδ . (2.25)

This result is compared with the analytical expression given by Equation (2.18) by con-

sidering an example (Table 2.3). For a specified set of elastic material properties of elastic

modulus E = 23.83e6 psi and shear modulus κ = 35.74e6 psi, and PD grid properties of

horizon δx = 0.2374 in, grid spacing ∆x = 0.0787 in, and thickness ∆z = 0.0787 in, the re-

sulting numerical bond constant is approximately 2 % lower than the analytical calculation

(Table 2.3), which is deemed satisfactory.

Table 2.3: Comparison of analytical and numerical bond constants given
the engineering constants.

E κ δx (in) ∆x = ∆z c2d ci Diff

(psi) (psi) (in) (in) (lbf/in6) (lbf/in6) (%)
23.83e6 35.74e6 0.2374 0.0787 1.298e11 1.274e11 -1.77

2.2.2 Intralaminar Fiber and Matrix Bonds

The numerical procedure described above can be extended for a lamina with a few simple

modifications. Recall that anisotropic behavior is incorporated through an explicit repre-

sentation of fiber and matrix material regions. The implication of such a representation is
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that the material points have unique families depending on their material type. This effec-

tively changes the family of interactions (interaction domain) developed for each material

point. Furthermore, to account for the anisotropic behavior, two constitutive material rela-

tionships are considered: fiber and matrix. These differences lead to two unknown nonlocal

material constants and therefore two distinct loading conditions are needed.

The first loading scenario involves the interaction family of a matrix material point

(Figure 2·9 (a)) while the second loading scenario places a fiber material point at the focal

point (Figure 2·9 (b)) and works with its interaction domain. For the sake of completeness,

these two families show five different bond types: fiber-fiber, nonparallel fiber-fiber, fiber-

matrix, matrix-fiber, and matrix-matrix.

These unique interaction types are simplified in the current work and are described by

either a fiber or a matrix constitutive relationship. For matrix behavior, the constitutive

relationship is given by

fi j = kmui j (2.26)

where fi j is the bond force density with units lbf/in6, km is the matrix related material

constant with units lbf/in7, and ui j is the relative displacement between point i and point j.

Similarly, the fiber constitutive relationship is written as

fi j = k f ui j (2.27)

with k f representing the fiber related material constant. The material constants can be

found by subjecting the family to simple loading conditions. With this representation,

two distinct loading conditions are needed to solve for the two unknowns k f and km. To

isolate the matrix response, the first loading condition considered is transverse loading

(i.e. normal to fiber direction). In this scenario, as a result of the orientation, the bonds

supporting the transverse load are: nonparallel fiber-fiber, fiber-matrix, matrix-fiber, and

matrix-matrix interactions. Each of these bonds is considered to have matrix behavior and

uses the constitutive relationship dictated by Equation (2.26).

To calculate the constant km, first consider the relationship between the transverse mod-
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(a)

(b)

Figure 2·9: (a) Matrix material point and family under transverse loading.
(b) Fiber material point and family under transverse loading.

ulus and the local SED with this loading scenario. From classical laminate theory (CLT)

[1], the transverse modulus E22, the major Poisson’s ratio ν12, and the minor Poisson’s ratio

nu21 can be related to the reduced stiffness term Q22 via

Q22 =
E22

(1−ν21ν12)
. (2.28)
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The transverse stress σ22 can be found using Hooke’s law with the longitudinal strain ε11

and the shear strain γ12 set to 0, as follows


σ11

σ22

τ12

=

Q11 Q12 0
Q12 Q22 0

0 0 Q66




0
ε22

0

 . (2.29)

The relationship between transverse stress and strain under these conditions is then

σ22 = Q22ε22. (2.30)

The local SED can be written as

W =
1
2
(σ11ε11 +σ22ε22 + τ12γ12) (2.31)

with σ11 and ε11 being the longitudinal stress and strain, respectively, and τ12 and γ12

representing the shear stress and strain, respectively. From Equations (2.30) and (2.31), the

local SED resulting from only transverse loading is written as

W22 =
1
2

Q22ε
2
22. (2.32)

Following the isotropic and homogeneous scenario described earlier, the nonlocal PD ma-

terial constant can be found by developing an expression for the PD SED of a material

point and equating with the local SED, Equation (2.32). It is important to ensure that the

deformation field applied in PD matches with that assumed in CLT. Meaning that a relation-

ship between the CLT strain field and the stretch of bonds must be developed. The stretch,

si j of a bond can be thought of an extensional strain of a line segment. In the literature

[42], extensional strain has been related to traditional strain components via the following

equation

si j = ε11 cos2
θi j + γ12 cosθi j sinθi j + ε22 sin2

θi j (2.33)

where θi j is the orientation of points i and j with respect to the horizontal axis. Recall that

in the development of Equation (2.32), the longitudinal strain ε11 and the shear strain γ12



38

were assumed to be 0. To ensure equality and to develop the same deformation field, these

terms must also drop out of the stretch-extensional strain relationship of Equation (2.33).

This simplification results in

si j = ε22 sin2
θi j (2.34)

where si j is the stretch between points i and j, ε22 is the applied transverse strain, and θi j

is the angle the bond makes with the horizontal axis. The relative displacement ui j can be

related to stretch via

ui j = si jri j (2.35)

where ri j is the undeformed bond length. Substituting Equation (2.34) into Equation (2.35)

leads to

ui j = ε22 sin2
θi jri j (2.36)

The SED of a PD material point i can be written as

Wi =Wm +Wf (2.37)

where Wm is SED contribution from matrix constitutive behavior and Wf is SED contribu-

tion from fiber constitutive behavior. All fiber-fiber bonds are oriented along the horizontal

and have a bond angle θi j of 0 degrees (Figure 2·9b). Equation (2.34) shows that bonds

oriented at 0 degrees will not have any extensional strain. Therefore, fiber bonds do not

contribute to the local PD SED with transverse loading. With this in mind, the local SED

of a PD material point can be written as

W22−(i) =Wm =
1
2

Nm

∑
j=1

1
2

kmu2
i jVi j

δ

ri j
(2.38)

where Nm is the number of matrix bonds in the family of material point i, Vi j is the average

volume of material points i and j, δ the horizon, and ri j the undeformed bond length.

Equating Equations (2.31) and (2.38) and rearranging leads to an expression for the desired
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unknown km

km =
1
2Q22ε2

22
1
2 ∑

Nm
j=1

1
2u2

i jVi j
δ

ri j

. (2.39)

With this final development, some key characteristics are observed. Several discretiza-

tion parameters appear in Equation (2.39). Most notably Nm which is the number of matrix

bonds in the family of point i. This parameter corresponds with the selection of the horizon

δ . Another discretization-based parameter is the volume Vi j, which is related to both the

intralaminar and interlaminar grid spacings. The spring constant km is dependent on the

lamina property Q22 and as the transverse stiffness increases, so does the nonlocal parame-

ter. Finally, it should be noted that while the transverse strain ε22 appears in the numerator,

it drops out of the equation because of the term ui j, which includes ε22 in its definition.

With the matrix constant calculated, a similar methodology can be employed to calcu-

late the fiber constant k f in which the loading is applied along the fiber direction (Figure

2·10). While this scenario is similar to the transverse case, it poses some unique differences

which must be considered.

Consider once again CLT and the SED that develops as a result of longitudinal loading.

In this scenario, if the transverse strain and shear strain are set to 0, the local SED can be

written as

W11 =
1
2

Q11ε
2
11 (2.40)

where Q11 is the CLT longitudinal reduced stiffness term and ε11 is the longitudinal strain.

The stretch in a bond developed between two material points i and j can be related to the

longitudinal strain as follows

si j = ε11 cos2
θi j. (2.41)

At this juncture, consider the differences in interactions between a matrix family (Figure

2·10a) and a fiber family (Figure 2·10b). For the family of a matrix material point, matrix-

fiber and matrix-matrix bonds sustain load. Alternatively, for the family of a fiber material

point, fiber-fiber, fiber-fiber (nonparallel), and fiber-matrix interactions carry load. The dif-

ference in behavior between the material points means that the local SED will be different
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Figure 2·10: (a) Matrix material point and family loaded in fiber direction.
(b) Fiber material point and family loaded in fiber direction.

depending upon whether the point has fiber or matrix association. Seeing as half of the ma-

terial points on a lamina are fiber and the other half are matrix, if the CLT SED is matched

to that of a fiber point, the SED for the lamina would not be captured. To account for this

variation in SED among material points, the SED of a fiber material point is amplified so

that the SED matches that of CLT, as follows

W11 =
1
2
(WPD− f +WPD−m). (2.42)

In Equation (2.42), WPD− f is the SED of a fiber material point loaded in the fiber di-

rection and WPD−m is the SED of a matrix material point loaded in the fiber direction. As

indicated, the average of these SEDs is forced to equal that of CLT. The SED of a matrix

material point loaded in the fiber direction is simply equal to that of W22. Equation (2.42)
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can be rearranged as

WPD− f = 2W11−WPD−m = Q11ε
2− 1

2
Q22ε

2. (2.43)

The strain energy density of a fiber point loaded in the fiber direction can be written as

WPD− f =Wm +Wf (2.44)

where Wm and Wf are the SED contributions from matrix and fiber bonds, respectively.

Equation (2.44) can be written in terms of the matrix and fiber constants as

WPD− f =
1
2

Nm

∑
j=1

1
2

kmu2
i jVi j

δ

ri j
+

1
2

N f

∑
j=1

1
2

k f u2
i jVi j

δ

ri j
(2.45)

in which Nm and N f are, respectively, the number of matrix and fiber bonds in the family

of the fiber point. Rearranging and equating with Equation (2.43) leads to the following

expression for the fiber constant

k f =
Q11ε2− 1

2Q22ε2− 1
2 ∑

Nm
j=1

1
2kmu2

i jVi j
δ

ri j

1
2 ∑

N f
j=1

1
2u2

i jVi j
δ

ri j

. (2.46)

It should be noted that the fiber constant k f is dependent upon both the longitudinal

modulus and the transverse modulus, as well as the matrix PD constant km. With this in

mind, the matrix constant km must be found first. In summary, the following steps are used

in the numerical approach for the calculation of k f and km.
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Figure 2·11: PD lamina material constant calculation summary.

2.2.3 Intralaminar Shear Nonlinearity

The numerical approach described above is extended to incorporate nonlinear constitutive

responses. The generalized PD approach is first developed considering a Ramberg-Osgood

(RO) relationship given by [43]. In order to demonstrate the general-purpose applicability

of the current approach, a hyperbolic relationship is also considered. The RO stress vs.

strain relationship under consideration is given by

σ =
Eo(

1+
(

Eoε

σo

)η) 1
η

ε (2.47)

where σ is the axial stress, Eo is the initial Young’s modulus, σo is the asymptotic stress,

and η is a shape parameter. This relationship is first converted into a PD relationship in

terms of bond force density fi j and relative displacement ui j as shown in

fi j =
ko(

1+
(

ko|ui j|
fo

)η) 1
η

ui j (2.48)
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in which where ko is the PD initial stiffness, fo is the asymptotic bond force density, and η

the shape parameter. A correspondence between the conventional stress vs. strain Equation

(2.47) and the PD RO Equation (2.48) leads to analogous CCM-PD pairs (Table 2.4).

It is important to note that this is a three-parameter constitutive relationship as compared

to a linear relationship which only contains a single material constant. A three-parameter

constitutive relationship highlights the importance of a numerical approach because the

determination would be exceedingly difficult using an inverse/calibrated approach.

While there is not a unique solution for these parameters, an optimization approach can

be used to accurately find the desired parameters, which requires several modifications to

the previously described approach while the core of the approach remains the same.

Table 2.4: Correspondence between CCM and PD RO parameters.

CCM PD PD Description

σ fi j PD bond force density

ε ui j PD relative displacement

Eo ko PD initial stiffness

σo fo PD asymptotic bond force density

η η PD shape factor

The initial step in this approach integrates a desired nonlinear stress vs. strain curve

into a cumulative SED vs. strain curve (Figure 2·12 - inset). This conversion allows for the

more natural comparison between PD local SED and CLT SED.

The three material constants for PD Ramberg-Osgood model (ko, fo, and η) are deter-

mined so that at each strain % level, the PD cumulative SED matches the experimental SED

within a set convergence criteria. In order to ensure a proper comparison when equating

the experimental and PD SED, an accurate PD deformation field must be imposed on the

family of interest. Axial stress σx and axial strain εx are known from the inputted stress vs.

strain curve. The global y-component of strain εy and the global shear strain component γxy
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Figure 2·12: Steps of the numerical approach for nonlinear constitutive
relationships using an optimization-based approach.

can be approximated using the CLT relationship as


εx

εy

γxy

=

S̄11 S̄12 S̄13

S̄21 S̄22 S̄33

S̄31 S̄32 S̄33




σx

σy

τxy

 . (2.49)

With the assumption that σy and τxy are 0 for loading in longitudinal direction, the

global y and shear strain components can be written as

εy = S̄12σx (2.50)
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and

τxy = S̄16σx, (2.51)

respectively. Given the strain field, the extensional strain/stretch si j can be written using

Equation (2.33) and the relative displacement ui j can be written using Equation (2.36). The

strain energy density for a fiber material point Wf−(i) can be written as

Wf−(i) =
1
2

Nm

∑
j=1

[ ui j∫
0

ko

(1+(
ko|ui j|

fo
)η)

1
η

ui jdui j

]
Vi j

δ

ri j
+

1
2

N f

∑
j=1

1
2

k f u2
i jVi j

δ

ri j
(2.52)

and the strain energy density for a matrix material point Wm−(i) can be written as

Wm−(i) =
1
2

Nm

∑
j=1

[ ui j∫
0

ko

(1+(
ko|ui j|

fo
)η)

1
η

ui jdui j

]
Vi j

δ

ri j
, (2.53)

respectively. The strain energy density of the lamina is assumed to be the average of the

strain energy density of the fiber and matrix material point:

WPD−(i) =
1
2
(Wf−(i)+Wm−(i)). (2.54)

The strain energy density from classical laminate theory is simply the integral of the exper-

imental stress vs. strain curve:

WCLT =

ε f∫
0

σdε. (2.55)

Finally, the PD nonlinear material parameters are found using nonlinear least squares

optimization with the objective function Ψ as

Ψ(ε) = min(WPD−(i)−WCLT ). (2.56)

2.2.4 Interlaminar Constitutive Response

The interlaminar shear response was developed following the approach of [25] through the

introduction of an interlaminar shear constitutive response. In contrast to a standard bond
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kinematics, shear bonds interact through shear angle φ which can be found by monitoring

the deformation of the bonds between material points (k and l) and ( j and i) (Figure 2·13).

Figure 2·13: Example of an interlaminar shear bond (Red) and material
points involved in determining the shear angle.

Using a similar numerical methodology as presented in the preceding sections, the in-

terlaminar shear constant can be calculated by considering a single family of shear bonds

and virtually applying a simple shear loading condition. A displacement field was applied

to the family, which can be envisioned as fixing the bottom most material points of the

family and applying a displacement to the top most material points of the family


ux

uy

uz

=


rz tanγxz

0
0

 . (2.57)

The reference bond lengths between material points (i and j) and (k and l) can be

calculated using

|xi j|= |~x j−~xi| (2.58)

|xkl|= |~xk−~xl|. (2.59)
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Similarly, the two deformed bond lengths can be expressed as

|yi j|= |(~x j +~u j)− (~xi +~ui)| (2.60)

|ykl|= |(~xk +~uk)− (~xl +~ul)|. (2.61)

The relative displacement of the two bonds is given by

|ui j|= |yi j|− |xi j| (2.62)

|ukl|= |ykl|− |xkl| (2.63)

and the shear angle of bond between material points i and j can be calculated with Equa-

tions (2.64 - 2.66)

du =
1
2
(|ui j|− |ukl|) (2.64)

dz =
1
2
(|x3k− x3i|− |x3 j− x3l|) (2.65)

tanφ u φ =
du
dz

. (2.66)

The local CCM-based SED can be written as

WCCM =
1
2

Gγ
2
xz (2.67)

where G is the interlaminar shear modulus. The previous PD equations were written in

terms of individual material points (i, j, k, and l). To simplify slightly the notation, the PD

SED of material point i, can be calculated by summing each individual bond contributions

as follows

WPD−(i) =
1
2

Ns

∑
k=1

1
2

ksφ
2
k Vk

δ

rk
(2.68)

where the subscript k represents each interlaminar shear bond in the family of the mate-

rial point of interest, Ns the total number of shear bonds in the family, φk the shear angle

associated with the bond, and ks is the PD shear material constant. Equating the SED’s
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and rearranging leads to an expression of the PD shear material constant as a function of

interlaminar shear modulus as follows

ks =
1
2Gγ2

xz
1
2 ∑

Ns
k=1

1
2φ 2

k Vk
δ

rk

. (2.69)

The interlaminar normal bond material constant was calculated by applying a normal strain

in the interlaminar direction: 
ux

uy

uz

=


0
0

εzrz

 . (2.70)

The local CCM-based SED can be calculated as

WCCM =
1
2

E22ε
2
z (2.71)

where εz is the applied strain and it is assumed that the transverse modulus E22 is equal to

the interlaminar modulus E33. The PD equivalent SED for material point i can be calculated

as

WPD−(i) =
1
2

Nn

∑
k=1

1
2

kns2
kVk

δ

rk
(2.72)

where kn is the interlaminar normal bond type material constant, Nn is the number of normal

bonds in the family and k the number of bonds. Equating the local CCM SED and PD SED

and rearranging leads to an expression for the interlaminar normal bond spring constant as

a function of transverse modulus:

kn =
1
2E22ε2

z
1
2 ∑

Nn
k=1

1
2s2Vk

δ

rk

. (2.73)

2.2.5 PD Strength Parameters

In the literature, there exist multiple formulations for PD strength parameters [22, 28, 35].

Most of these relationships are developed by relating strain energy release rate to PD crit-

ical stretch. These formulations are typically created using simplifying assumptions of

homogeneity and uniform discretization. A new approach is needed as a result of the ex-
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plicit representation of the laminate model. Unlike most work, which is based on critical

stretch, the current work utilized a critical energy failure criterion.

An energy-based failure criterion was developed specifically for intralaminar bond

types (fiber and matrix). The classical continuum mechanics-based transverse strain en-

ergy at failure Φ
f
22 is approximated using the transverse strength σ

f
22 and the transverse

failure strain ε
f

22 as

Φ
f
22 =

1
2

σ
f

22ε
f

22V. (2.74)

In PD, the total strain energy of a matrix material point Φm is approximated by summing

the strain energy contributions of each bond l at the stretch slm as follows:

Φm = Φ22 =
1
2

Nm

∑
l=1

1
2

km(slm)
2
δ rlV 2

l . (2.75)

For simplification, the total failure strain energy Φ
f
22 is evenly distributed across all

bonds in the family:

ecm =
Φ

f
22

Nm
. (2.76)

The term ecm represents the critical energy of a single matrix bond and when exceeded, the

bond is considered to have failed. The strain energy of a single matrix bond elm can be

written as

elm =
1
4

km(slm)
2
δ rlV 2

l (2.77)

where the subscript l represents the current bond and the subscript m represents the matrix

bond type. An energy based failure criterion can be implemented to many PD codes with

only minor modifications by setting the critical energy of a single matrix bond Equation

(2.76) equal to the strain energy of a single bond Equation (2.77)

ecm =
1
4

km(s
f
lm)

2
δ rlV 2

l (2.78)

where a super script f has been added to the matrix stretch to indicate the stretch at failure.

An important observation is that because bond length rl varies within a family, so will
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the matrix failure critical stretch s f
lm in order to keep the critical energy ecm constant. In

particular, as a matrix bond length increases the critical stretch will decrease (Figure 2·14).

Figure 2·14: Visualization of energy-based failure criterion for a matrix
material point. An intralaminar matrix family is shown with colors rep-
resenting different calculated matrix critical stretch. Importantly, each PD
bond despite having different critical stretch values, has the same critical
bond energy.

Rearranging Equation (2.78) leads to an expression for the critical stretch of a matrix

bond s f
lm as a function of the discretization related parameters and transverse strength/failure

strain:

s f
lm =

√
4ecm

kmδ rlV 2
l
. (2.79)

When shear nonlinearity is included, through a RO or any other nonlinear response, the

critical stretch associated with the nonlinear response is calculated by including a failure

strain nonlinearity ratio q∗. This is simply the ratio of the nonlinear failure strain ε
f

n to the

transverse failure strain:
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q∗ =
ε

f
n

ε
f

22

. (2.80)

The failure strain nonlinearity ratio can then be multiplied with the critical stretch of a

matrix bond to obtain a nonlinear critical stretch term s f
ln:

s f
ln = q∗s f

lm. (2.81)

Using a similar methodology, the longitudinal failure strain energy Φ
f
11 can be ex-

pressed in terms of the longitudinal strength σ
f

11 and the longitudinal failure strain ε
f

11:

Φ
f
11 =

1
2

σ
f

11ε
f

11V. (2.82)

However, unlike in the transverse direction, the alternating sequences of fiber and ma-

trix strands in the PD laminate model need to be accounted for. The strain energy in the

longitudinal direction is considered to be an average of the strain energies of a fiber and

matrix material points:

Φ11 =
1
2
(Φ f +Φm). (2.83)

The failure strain energy of a fiber material point Φ
f
f can be written in terms of the

longitudinal failure strain energy Φ
f
11 and the failure strain energy of a matrix material

point Φ
f
m:

Φ
f
f = 2Φ

f
11 +Φ

f
m. (2.84)

The total strain energy of the fiber material point is comprised of a contribution from

both fiber and matrix bonds as

Φ f =
1
2

N f

∑
l=1

1
2

k f (sl f )
2
δ rlV 2

l +
1
2

Nm

∑
l=1

1
2

km(slm)
2
δ rlV 2

l (2.85)

Similar to the matrix representation, the fiber related failure strain energy of a point is
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divided evenly across the bonds as

Φ
f
f = N f

(
1
4

k f (sl f )
2
δ rlV 2

l

)
+Nm

(
1
4

km(slm)
2
δ rlV 2

l

)
(2.86)

This expression can be rearranged to introduce the concept of a critical fiber bond en-

ergy:

ec f =
Φ

f
f −Nm

(
1
4km(slm)

2δ rlV 2
l

)
N f

. (2.87)

Again, for implementation purposes, this equation is rearranged to show the fiber bond

critical stretch that is dependent on bond length and its matrix bond counterparts:

s f
l f =

√√√√√2Φ
f
11 +Φ

f
m−Nm

(
1
4km(s

f
lm)

2δ rlV 2
l

)
N f

(
1
4k f δ rlV 2

l

) . (2.88)

Unlike the intralaminar bonds, the interlaminar bond failure criteria is based on a constant

critical stretch and formulated using the more traditional strain energy release rate. This

permits the use of the commonly available mode-I and mode-II energy release rates. Peri-

dynamic interlaminar critical stretch formulations have been created in the past [25] and

are used as the foundation for the current work.

Following the work of [25], the normal bond critical stretch is calculated and extended

to include an arbitrary interlaminar horizon size using a geometric progression where ∆z is

the interlaminar grid spacing, and m is defined as its multiple:

GIc =

∫
Fu
A

=
(1

2
cns2

nV ∆z
) [∆z− (m+1)∆zm+1 +m∆zm+2]

(1−∆z)2 (2.89)

m =
δ

∆z
. (2.90)

Rearranging leads to a direct expression for the interlaminar normal critical stretch as a
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function of mode-I strain energy release rate as:

sn =

√
2GIc(1−∆z)2

cnV ∆z[∆z− (m+1)∆zm+1 +m∆zm+2]
. (2.91)

Similarly, following the work of [22, 28], and extending to an arbitrary interlaminar horizon

size, an expression was developed for the interlaminar shear bond critical stretch:

GIIc =

∫
Fu
A

=
∑

Ns
l=1

[
1
2ks∆x2φcl

δ

rl
Vl cosαl

]
φclrl

∆x2 . (2.92)

When including shear nonlinearity, a shear nonlinearity energy density factor p∗ is

calculated as the ratio between the nonlinear SED and a linearized SED (Figure 2·15) as

follows:

p∗ =
∫

ε
f

n
0 σdε

1
2Eo(ε

f
n )2

. (2.93)

Figure 2·15: Schematic showing shear nonlinearity energy density factor
calculation.

The linear-flat shear constitutive response-based energy calculation is given as

Φyld =
Ns

∑
l=1

1
2

[
ks∆x2

φyld
δ

rl
Vl cosαl

]
φyldrl +

Ns

∑
l=1

1
2

[
ks∆x2

φyld
δ

rl
Vl cosαl

](
φc−φyld

)
rl

(2.94)
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and compared with its linearized counterpart:

Φc =
Ns

∑
l=1

1
2

[
ks∆x2

φc
δ

rl
Vl cosαl

]
φcrl. (2.95)

Because there are two unknowns, the shear yield φyld and the shear critical angle φc the

shear nonlinearity energy density factor Equation (2.93) is used as a constraint equation as:

Ψ1 =
Φyld

Φc
− p∗. (2.96)

The second equation can be constructed as the difference between the mode-II strain

energy release rate GIIc and the PD equivalent mode-II energy release rate as

Ψs =
Φyld

∆x2 −GIIc (2.97)

Nonlinear optimization routines are then used to solve for the two unknowns by mini-

mizing the square difference of the two equations:

min(Ψ) = (Ψ1−Ψ2)
2. (2.98)

2.3 Quasi-Static Off-Axis Tension Simulation Results

The verification of the numerical approach was accomplished by simulating tension tests

with 0◦ and 90◦ fiber orientations. The composite system IM7/8552 and associated engi-

neering constants were used to obtain the PD nonlocal material parameters. The resulting

simulated stress vs. strain curves were compared against the experimental results found

from [37]. Three constitutive relationships (linear, RO, and hyperbolic) were considered

along with multiple discretizations.

Peridynamic simulations were performed on a square specimen with dimensions of 1

in. x 1 in. (Figure 2·16). Additional material points were added at the vertical boundary

strips along which the horizontal tensile loading was applied (Figure 2·16 - red material

points).
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Figure 2·16: Lamina geometry and boundary regions used in verification.

Quasi-static simulations were performed by dividing the stress vs. strain response into

discrete load steps and utilizing the adaptive dynamic relaxation procedure presented in

[44]. In solving a quasi-static problem using PD approach in discrete load steps, displace-

ments are applied at each end of the domain for each load step, and the cumulative force

along a central plane normal to the applied load is monitored as the adaptive relaxation

leads to a static equilibrium solution for that load step (Figure 2·17). Having the applied

displacements and internal forces, strain and stress components can be calculated for the

specimen, not unlike the experimental measurements. This approach allows for simulation

of nonlinear stress vs. strain response.

To verify the objective determination of PD fiber and matrix material constants, the

stress vs. strain response of 0◦ and 90◦ oriented lamina were simulated at various intralam-

inar grid spacings. The intralaminar grid spacing values used were 0.0787 in., 0.0394 in.,

and 0.0197 in. The interlaminar grid spacing was kept constant at 0.0075 in. and the in-

tralaminar horizon was set to 3.015 times the intralaminar grid spacing. Using the objective

approach developed in Section 2.2.2, fiber and matrix spring constants were calculated for
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each intralaminar grid spacing (Table 2.5).

Figure 2·17: An example of utilizing PD load steps (orange) to simulate a
stress vs. strain curve.

Table 2.5: Spring constants as functions of intralaminar grid spacing.

∆x = ∆y

(in)

∆z

(in)

δx

(in)

k f

(lbf/in7)

km

(lbf/in7)

0.0787 0.0052 0.2374 2.28e13 2.87e11

0.0394 0.0052 0.1187 3.66e14 4.58e12

0.0197 0.0052 0.0594 5.86e15 7.33e13

It is worth noting that with different levels of refinement (i.e., intralaminar grid spacing)

the number of continuous fiber and matrix sequences in the fiber direction for a given

intralaminar unit area changes (Figure 2·18). Coarser grids lead to fewer alternating fiber

and matrix sequences, and vice versa. As the refinement is increased, the calculated spring

constants increase in magnitude (Table 2.5).

At each intralaminar grid spacing, two simulations were performed leading to a total of
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6 simulations. The first of two simulations was performed along the fiber direction and the

second was performed in the transverse direction.

The results show close agreement between the PD simulations and experimental mea-

surements (Figure 2·19).

Figure 2·18: Comparison of intralaminar refinement with colors represent-
ing fiber and matrix material regions.

All six of the simulations compare well with the experimental results, and the large

variation in refinement demonstrates the advantage of the developed numerical approach.

At every discretization, the corresponding nonlocal material parameters can be found with

ease. As further verification, the intralaminar horizon was significantly varied. Changing

the horizon radius of a family of a matrix (Figure 2·20, top row, left) or a fiber (Figure 2·20,

top row, right) material point from 3.015 times the intralaminar grid spacing to 1.90 times

the intralaminar grid spacing drastically changes the number and type of bonds associated

with a material point (Figure 2·20, bottom row). The difference in both shape and quantity

of bonds between the families of radius 3.015×∆x and radius 1.90×∆x is striking (Figure

2·20). Additionally, for a fiber material point, the ratio of fiber bonds to matrix bonds is

different between the two scenarios. The calculated values of fiber and matrix spring con-
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Figure 2·19: Comparison of PD and experimental stress vs. strain curve for
(a) 0◦ oriented fiber and (b) 90◦ oriented fiber.

stants corresponding to 3.015×∆x and 1.90×∆x horizon values (Table 2.6) exhibit roughly

one order of magnitude difference with the smaller horizon leading to larger spring stiffness

values.

Four simulations were performed for verification of the calculated material constants

and the results show very good agreement between PD simulations and the experimental

measurements (Figure 2·21).
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Figure 2·20: Matrix and fiber material points families with a horizon of (a)
3.015×∆x (top row), and (b) 1.90×∆x (bottom row).

Table 2.6: Example of the calculated fiber bond and matrix bond con-
stants when the intralaminar grid spacing is held constant, but the horizon
is changed.

Scenario
∆x = ∆y

(in)

∆z

(in)

δx

(in)

k f

(lbf/in7)

km

(lbf/in7)

A 0.0394 0.0052 0.2374 3.66e14 4.58e12

B 0.0394 0.0052 0.1187 1.81e15 3.17e13
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Figure 2·21: Comparison of PD and experimental stress vs. strain curve for
two horizon values for (a) 0◦ oriented fiber and (b) 90◦ oriented fiber.
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The validation of the improvements made to current PD approach in the area of shear

nonlinearity was performed by considering lamina with ply orientations 15◦, 30◦, 45◦,

60◦ and 75◦. In order to further demonstrate the versatility of the current methodology,

three different constitutive relationships were considered: linear, Ramberg-Osgood, and

hyperbolic, as follows:

Linear: fi j = koui j (2.99)

Ramberg-Osgood: fi j =
ko(

1+
(

ko|ui j|
fo

)η) 1
η

ui j (2.100)

Hyperbolic: fi j =
kh(

1+
(
|ui j|
uh

))ui j (2.101)

Following the approach detailed in Section 2.2.3, parameters for each of the constitutive

relationships were found (Table 2.7) for intralaminar grid spacing ∆x = ∆y =0.0197 in.,

interlaminar grid spacing ∆z = 0.0052 in., and intralaminar horizon δx = δy = 0.0594 in. The

linear constitutive relationship demonstrates that the initial stiffness of the system matches

well with the determined constant. The spring constant decreases with an increase in angle,

except for 60◦, which is slightly lower than the 75◦ orientation.

Table 2.7: PD material parameters for shear nonlinearity.

Linear Ramberg-Osgood Hyperbolic

Angle ko ko fo η kh uh

(◦) (lbf/in7) (lbf/in7) (lbf/in6) (lbf/in7) (in)

15 1.31e14 1.31e14 3.08e10 5.00 2.58e14 1.52e-4

30 1.06e14 1.06e14 4.22e10 3.24 1.36e14 5.71e-4

45 9.69e13 9.69e13 4.61e10 2.55 1.07e14 1.15e-3

60 8.43e13 8.43e13 3.79e10 3.78 8.86e13 2.39e-3

75 9.57e13 9.57e13 2.22e15 0.25 8.30e13 2.60e-3
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Stress vs. strain curves for each of the different fiber orientations in the off-axis simula-

tions using linear (Figure 2·22, dashed lines), Ramberg-Osgood (Figure 2·22, square sym-

bols), and hyperbolic (Figure 2·22, circle symbols) constitutive relationships were com-

pared against the experimental [37] measurements (Figure 2·22, solid lines). The linear

constitutive relationship, as expected, does not capture the nonlinear stress vs. strain be-

havior exhibited in experiments for samples of 15◦, 30◦, and 45◦ fiber orientations while the

nearly linear experimental responses of 60◦ and 75◦ agree quite well without any nonlinear

constitutive relationship.

The Ramberg-Osgood relationship has three constants: ko, fo, and η , which were cal-

culated using the numerical approach described in Section 2.2.3. The constitutive relation

and parameters found capture well the nonlinearity of the 15◦, 30◦, and 45◦ cases. The

greatest error lies in the 30◦ case, which matches well up to 0.75 %, at which point it

begins to slightly overpredict the stress.

Unlike the three parameter RO relationship, the hyperbolic relationship has two param-

eters: kh and uh. The parameter kh serves a similar purpose as the initial stiffness parameter

ko in the RO relationship. Much like the Ramberg-Osgood relationship, as the misalign-

ment increases, the stiffness parameter decreases. The displacement-related constant uh

tends to increase with misalignment. The biggest difference between the Ramberg-Osgood

and Hyperbolic constitutive relations is the shape difference in the 15◦ scenario. Similar to

the RO scenario, the hyperbolic function overshoots the 30◦ case.
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Figure 2·22: Linear (dashed line), Ramberg-Osgood (square symbols), and
hyperbolic (circle symbols) constitutive relationships PD results compared
against experimental (solid line) stress vs. strain curve for 5 fiber orienta-
tions.
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8-ply Unidirectional Laminates:

Unidirectional 0◦ (Figure 2·23 (a)), 90◦ (Figure 2·23 (b)), and 45◦ (Figure 2·24) 8-ply

laminates were simulated utilizing a similar approach to the one described in the preceding

sections. The 8-ply laminates differ from the single ply through the introduction of inter-

laminar shear and normal bonds. While the stress vs. strain response is slightly altered

through the introduction of these bonds, the overall trends remain the same and the PD

simulations and experiments remain in good agreement (Figure 2·23 and 2·24).

(a)

(b)

Figure 2·23: Comparison of PD and experimental 8-ply laminate stress vs.
strain curves for (a) 0◦ oriented fiber and (b) 90◦ oriented fiber.
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Figure 2·24: Linear (dashed line), Ramberg-Osgood (square symbols), and
hyperbolic (circle symbols) constitutive relationships PD results compared
against experimental (solid line) stress vs. strain curve for 45◦ fiber orienta-
tion and 8-ply laminate.

2.4 Strain Rate Dependence

A strain rate dependent constitutive response was introduced for intralaminar bonds by

establishing a relationship between individual PD bond stretch rate and strain rate. A local-

ized strain rate is obtained by dividing the model into subdomains (Figure 2·25). Although

these subdomains can take any size and shape, to ease implementation, the subdomains are

rectangular and follow ply boundaries. For example, in a 3-ply laminate with three sub-

domains in the x-direction and two in the y-direction, there are eighteen total subdomains

(Figure 2·25).

The stretch rate ṡ(i)
(l)(θ) of bond l with intralaminar bond orientation θ was calculated at

each iteration i using a backward difference approximation, as follows:

ṡ(i)
(l)(θ) =

s(i)
(l)(θ)− s(i−1)

(l)(θ)

∆t
. (2.102)

The timestep size ∆t was calculated using the stability criterion provided in [22]. The

current and previous bond stretch rates are s(i)
(l)(θ) and s(i−1)

(l)(θ), respectively. The intralaminar
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Figure 2·25: An example of subdomains on a 3-ply laminate.

bond orientation θ between material points i and j is defined using the arctangent function

as

θ = tan−1

(
|x2i− x2 j|
|x1i− x1 j|

)
(2.103)

After calculating the nonlocal bond stretch rates, the local strain rate ε̇
(i)
(d)(θ) on each sub-

domain d at iteration i and orientation θ is approximated as the average of all bond stretch

rates on the domain with the given orientation as follows:

ε̇
(i)
(d)(θ) =

∑
N
l=1 ṡ(i)

(l)(θ)

N
. (2.104)

The approximation of the local strain rate at each iteration provides the means for introduc-

ing a strain rate dependent constitutive response. Utilizing the aforementioned numerical
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approach, PD Ramberg-Osgood parameters (ko, fo, η) were calculated as a function of

strain rate (ε(i)
(d)(θ)). In this work, the PD parameters as functions of strain rate were found

using experimental stress vs. strain curves at various strain rates. However, the PD param-

eters can also be found if traditional engineering Ramberg-Osgood parameters as functions

of strain rate are known. Once the local strain rate and the PD Ramberg-Osgood parameters

are found, piecewise linear interpolation is used to obtain the bond force density. A flow

chart of the strain rate procedure is provided (Figure 2·26).

Several computational considerations are necessary for implementation. In particular,

because backward difference approximation requires the stretch at the previous iteration,

this information needs to be stored. For this purpose, the previous iteration displacement

components are stored if a strain rate dependent constitutive model is used. This allows

for the calculation of bond stretch at the previous iteration, but requires less memory than

storing stretch of each bond. Additionally, to accommodate an easier implementation when

parallel processing is used, the subdomains were chosen to coincide with processor bound-

aries. This reduces dramatically the amount of data that needs to be shared across proces-

sors in order to calculate the strain rate.

2.4.1 Dynamic Off-Axis Tension Simulation Results

The verification and validation of strain rate dependent constitutive behavior was consid-

ered in two parts: the verification of the relationship between stretch rate and strain rate

and the verification of the off-axis response. First, the stretch rate formulation introduced

in the preceding sections was verified by considering a 45◦ oriented lamina subjected to a

constant strain rate. The intent of this first set of simulations was to verify the developed

relationship between bond stretch rate and applied strain rate.

The applied strain rate was introduced into the system via a ramped displacement

boundary condition with a final strain of 1.75%. This strain level was chosen because

it allowed for clear visualization of the influence of strain rate without requiring excessive

computational resources. The total simulation time t was calculated by dividing the axial
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Figure 2·26: Flow chart for introducing strain rate dependence into the PD
model.

strain εx by the strain rate ε̇ as

t =
εx

ε̇
. (2.105)

A stable time step size ∆t was found following the stability criterion presented in [22].

A ramped displacement boundary condition was applied to both edges of the lamina that

was equivalent to the desired strain. Because the time step is held constant to ensure nu-

merical stability, the total number of iterations Ni are adjusted for each strain rate:

Ni =
t

∆t
. (2.106)
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The application of the strain rate was verified by tracking the displacement field (Figure

2·27) over time (Figure 2·28). In this example, a 370 /s strain rate was applied utilizing the

ramped boundary condition. Every 100 time steps, the derivative of the x-displacement

was taken to approximate the axial strain. Backwards difference was then used to calculate

and verify the applied strain rate. While this simple methodology cannot be used for on-

the-fly strain rate approximation, it provides confidence in the approach taken to introduce

a constant strain rate to the material. The oscillatory response of the applied strain rate is

to be expected because of the dynamics of the problem and the method of approximation.

Figure 2·27: Displacement field associated with a 370 /s strain rate case.
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Figure 2·28: Verification of the applied strain rate methodology with the
strain rate calculated from displacement field over each iteration.

The stretch rates of individual bonds can vary drastically within a family. Consider Fig-

ure 2·29 which demonstrates this variability. Figure 2·29 (a) shows the rectangular simula-

tion domain (blue) and the chosen material point within the domain (red), which is located

near the middle of the specimen. Using the methodology previously presented, stretch rate

was introduced into the specimen using a ramped displacement boundary condition. Figure

2·29 (b) shows the interaction domain of the chosen material point colored by bond stretch

rate. Because of the dynamics of the problem, and wave reflections on the domain, the in-

dividual bond stretch rate can vary significantly. This demonstrates some of the difficulties

in calculating an engineering strain rate using a nonlocal method and illustrates the reason

why subdomains are needed to approximate the strain rate.



71

Figure 2·29: (a) Example rectangular simulation domain and a chosen ma-
terial point (red). (b) Individual bonds of the chosen material point colored
by strain rate magnitude.
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Following the same methodology and for easy comparison, several strain rates and

associated parameters used throughout this section are provided (Table 2.8).

Table 2.8: Comparison of strain rate and PD simulation parameters.

ε̇ ∆t εx t Ni

(1/s) (s) (in/in) (s)

1 1.33e-8 0.0175 1.75e-2 1315789

25 1.33e-8 0.0175 7.00e-4 52632

100 1.33e-8 0.0175 1.75e-4 13158

370 1.33e-8 0.0175 4.73e-5 3556

The PD strain rate formulation developed in Section 2.4 was tested by applying a 370

/s strain rate over 3556 iterations and recording the current stretch rate at each iteration

(Figure 2·30). While the PD calculated strain rate oscillates (Figure 2·30 - blue curve) as

the simulation progress with each iteration, the average PD calculated rate is similar to

that of the applied strain rate (Figure 2·30 - black curve). This demonstrates the newly

developed capability of effectively calculating a nonlocal PD strain rate.
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Figure 2·30: Example of strain rate variation vs. iteration for a 370/s input
strain rate.

It is important to note that Figure 2·30 only visualizes bonds oriented parallel to the

loading direction. The bond orientation θ of Equation (2.103) plays a key role in accurately

capturing the local strain rate. For this purpose, the strain rate is decomposed based on bond

orientation Equation (2.102). For a uniform intralaminar discretization and a horizon of

3.015∆x, there are five different bond orientations (Figure 2·31): 0◦ (blue), 26.57◦ (yellow),

45◦ (gray), 63.43◦ (orange), and 90◦ (green).

As the bond orientation becomes less aligned with the loading direction, the strain rate

decreases and becomes negative (Figure 2·32). If the average strain rate is used instead

of the bond orientation decomposition (Figure 2·33 shown in red), the local strain rate

will be significantly under predicted. For this reason, the stretch rate is calculated for

each individual bond orientation and the piecewise linear interpolation is completed on an

individual bond orientation basis.
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Figure 2·31: Schematic demonstrating the bond angles present with a uni-
form intralaminar grid spacing.

Figure 2·32: Strain rate as a function of bond orientation.
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Figure 2·33: Comparison of individal bond orientation strain rate and the
average strain rate of all bonds.
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This simulation process was repeated (Figure 2·34) at a strain rate of 100 /s with two

different intralaminar grid spacings: 0.0197 in. (Figure 2·34 - blue curve) and 0.0394 in.

(Figure 2·34 - red curve). This is an important verification step as it demonstrates that the

strain rate approach developed is both discretization and applied strain rate independent.

Figure 2·34: Comparison of strain rate vs. iteration for two different in-
tralaminar discretizations.

The second part of the verification and validation consisted of performing off-axis dy-

namic tension simulations at three different strain rates and comparing the stress vs. strain

response to experimental results. The experimental stress vs. strain response of a 45◦ ori-

ented AS4/3501-6 material system published in [45] was used for comparison. For clarity,

the response has been reproduced (Figure 2·35) and converted into imperial units.

Three different experimental strain rate responses are provided (0.0001 /s Quasi-Static,

0.8 /s, and 370 /s). While the stress vs. strain curves for AS4/3501-6 are significantly

different than IM7/977-3, they show many of the common mechanical behaviors associated

with increasing strain rate. In particular, as the strain rate is increased, the initial modulus

also increases and the strain to failure decreases. Additionally, simulating with a different
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material system is intended to demonstrate the objectivity of the developed approach. PD

material parameters are calculated a priori as opposed to calibrated: a major milestone in

the PD development process.

Figure 2·35: Strain rate dependent constitutive response for a composite
laminate.

The first step in the PD simulation procedure was to obtain a PD functionalized repre-

sentation of the three representative stress vs. strain curves. The shear nonlinearity numer-

ical approach developed in Section 2.2.3 was used to the calculate RO parameters at each

rate (Table 2.9) using the discretization parameters of (Table 2.10).

A few observations can be made solely based on the calculated RO material parameters.

First, following the experimental trend, as the strain-rate increases, the initial stiffness ko

increases. Similar to experiments, the difference in initial stiffness between the 0.8 /s strain

rate and 370 /s strain rate is much smaller than the difference in initial stiffness between

the quasi-static and 0.8 /s strain rates. The asymptotic bond force density fo increases with

increasing strain rate and hints at a change in shape of the stress vs. strain response. The

shape parameter η does not appear to have a trend. Its influence on the stress vs. strain
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Table 2.9: Ramberg-Osgood parameters for the material system as a func-
tion of strain rate calculated using the numerical approach.

ε̇ ko fo η

(1/s) (lbf/in7) (lbf/in6)

Quasi-Static 9.54e13 4.20e10 2.71

0.8 1.15e14 5.98e10 2.61

370 1.27e14 6.82e10 2.84

Table 2.10: Discretization related parameters for off-axis dynamic valida-
tion.

∆x = ∆y ∆z δx

(in) (in) (in)

0.019685 0.0075 0.05935

response should be explored in future work.

For each PD simulation, a force plane was placed in the middle of the specimen and

was used to monitor force and in turn engineering stress for dynamic equilibrium. PD sim-

ulations were performed at 370 /s, 1 /s, and quasi-static strain rate conditions as opposed

to the 370 /s, 0.8 /s, and 0.0001 /s experimental counterparts. The PD strain rate of 1 /s

was chosen intentionally because it required considerably fewer iterations as compared to

a 0.8 /s strain rate. As the strain rate is decreased, the simulations become increasingly

more computationally expensive (Table 2.8). For this reason, the 370 /s and quasi-static

simulations were run to 1.75% strain while the 0.8 /s strain rate simulation was run to ap-

proximately 1.25% strain. Additionally, as the strain rate decreases, the numerical stability

of the simulation decreased. To help stabilize the system, a small viscous damping coeffi-

cient was applied to the 1 /s strain rate PD simulation. The application of a small viscous

damping coefficient helped with numerical convergence (without inadvertently influencing

the response) and is the reason for the much smoother stress vs. strain simulation response

(Figure 2·36b). The PD quasi-static simulation (Figure 2·36c) was performed using an ex-
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plicit solver with strain rate independent material properties. This enabled the simulation to

be performed efficiently without any viscous damping. Overall, the PD and experimental

stress vs. strain responses show great agreement (Figure 2·36).

Figure 2·36: Comparison of PD stress vs. strain predictions and experi-
mental stress vs. strain response for a) 370 /s b) 0.8 /s and c) 0.0001 /s
strain rates.

For PD strain rates in-between the known RO parameters of (Table 2.9), piecewise

linear interpolation is used. This was verified by running PD simulations at strain rates

of 10 /s (Figure 2·37 - gray curve), 25 /s (Figure 27 - green curve), 37 /s (Figure 2·37 -

gold curve), 100 /s (Figure 2·37 - purple curve), and 185 /s (Figure 2·37 - brown curve).

As desired, each stress vs. strain response lies in-between the experimental 370 /s (Figure

2·37 - red curve) and 0.8 /s (Figure 2·37 - blue curve) strain rates.

The results presented thus far were completed using a single processor and stretch rate

subdomain. Because low-velocity impact is a computationally expensive problem and has

more localized strain-rates as compared to an off-axis tension test, it was important to in-

troduce and verify the localized strain rate calculations presented in (Section 2.4) with mul-

tiple processors. To this end, the lamina was divided into 5 subdomains along the loading

direction (x) (Figure 2·38). In the same manner as the previous off-axis dynamic simula-

tions, a 370 /s strain rate was applied using a ramped displacement boundary condition to

both ends of the lamina. The local strain rate was calculated on each subdomain for each

iteration (Figure 2·39).
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Figure 2·37: PD simulations with strain rates in-between the known exper-
imental Ramberg-Osgood parameters.

As expected, each subdomain has a differing stretch rate oscillation. While there are

extremes in the oscillation, such as the first subdomain, labeled D1 (Figure 29 - gray curve).

Most subdomains have similar oscillation amplitudes and frequencies. Importantly, all of

the subdomains oscillate about the applied 370 /s strain rate.

The stress vs. strain response between a PD simulation with 1 stretch rate domain

(Figure 2·40 - blue curve) was compared to a PD simulation with 5 stretch rate subdomains

(Figure 2·40 - red curve) with an applied strain rate of 370 /s. While there are slight

differences in the oscillation of the response, the overall trend in the response is the same.

Future work should consider the influence of the size and shape of the subdomains

on the calculated local strain rate. Additionally, nonuniform subdomains should be consid-

ered, which would allow for varying degrees of accuracy in the local strain rate calculations



81

Figure 2·38: Schematic with stretch rate subdomains.

and would be beneficial when a region of strain rate sensitivity is known in advance.
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Figure 2·39: Comparison of the local strain rate on each subdomain “D”
vs. iteration.

Figure 2·40: Comparison of stress vs. strain response for 1 stretch rate
domain (blue) vs. 5 stretch rate subdomains (red).
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2.5 Low-Velocity Impact Simulation Results

The developments made to the PD approach described in Section 2.2.3 and 2.4 have been

applied to a multitude of problems with increasing complexity for validation purposes.

First, a set of quasi-static off-axis tension tests were simulated using the improved formu-

lation. Next, the off-axis tension simulations were repeated under dynamic loading condi-

tions for a 45-degree lamina. In the subsequent sections, low-velocity impact simulations

were performed to predict a laminate response under a range of energy levels. Simula-

tion predictions were made at different stages of approach development (i.e., legacy, shear

nonlinearity added, strain rate dependence added) and compared against the experimental

measurements.

2.5.1 Problem Description

The PD approach with the improvements previously described were validated against ex-

perimental measurements on quasi-isotropic laminates subjected to low-velocity impact.

A total of four impact energies were performed: 150 in-lbf, 187.5 in-lbf, 225 in-lbf, and

262.5 in-lbf. A 25 ply IM7/977-3 laminate with a quasi-isotropic stacking sequence, [(45/-

45/0/90)3/0/(90/0/-45/45)3], was simulated using an intralaminar grid spacing of 7.87e-2

in. and interlaminar grid spacing of 5.20e-3 in. (Table 2.11). The interlaminar grid spac-

ing was chosen to be equal to the ply thickness ensuring that there is only one layer of

material points per ply. The intralaminar grid spacing was chosen to balance the need of

accuracy and computational efficiency. The intralaminar and interlaminar horizons were

set to 3.015∆x and 3.015∆z, respectively. The intralaminar and interlaminar horizon were

chosen based on previous experience in the literature [25].

The fiber, matrix, normal, and shear material parameters were calculated using the nu-

merical approach described in (Section 2.2) and tabulated in (Table 2.9). Following the

strain rate methodology outlined in (Section 2.4), the Ramberg-Osgood material parame-

ters were calculated and input at two different strain rates: quasi-static and 0.53 /s (Table

2.13). The intralaminar and interlaminar input failure parameters, as described in (Sec-
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tion 2.2.5), are provided in (Table 2.14). The simulation domain contained approximately

207,000 material points. Simulations were run on 56 processors and took approximately

(50-60 hours) to reach a total simulation time of 7 ms. A total of 1,400 strain rate sub-

domains were used. There were 8 subdomains in the x-direction and 7 subdomains in the

y-direction for each individual ply. Simulations were compared against experimental re-

sults provided by North Carolina State University collaborators under the IDAT (Impact

Damage and Analysis Tools) project.

Table 2.11: PD discretization parameters used for low-velocity impact sim-
ulations.

∆x = ∆y ∆z V δx δz

(in) (in) (in3) (in) (in)

7.87e-2 5.20e-3 3.22e-5 2.37e-1 1.57e-2

Table 2.12: Calculated PD material parameters utilizing the numerical ap-
proach.

k f km kn ks φyld

(lbf/in7) (lbf/in7) (lbf/in7) (lbf/in5) (rads)

2.37e13 2.84e11 5.26e12 3.29e8 2.88e-3

Table 2.13: Calculated PD RO material parameters at various strain rates.

ε̇ ko fo η

(1/s) (lbf/in7) (lbf/in6)

Quasi-Static 5.00e11 1.45e9 0.871

0.53 4.51e11 1.05e9 1.635
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Table 2.14: Failure parameters input in the PD model.

σ
f

11 ε
f

11 σ
f

22 ε
f

22 GIc GIIc

(ksi) (%) (ksi) (%) (in-lbs/in2) (in-lbs/in2)

421 1.84 13 1.09 1.47 2.94

2.5.2 Simulation Approach Improvement Summary

To highlight the differences made by each improvement, presented in the preceding sec-

tions, the energy level 225 in-lbf was selected and compared across four different develop-

mental stages (PD01-PD04):

• PD01: Legacy approach: PD material parameters using the legacy approach are cal-

ibrated for the current discretization by simulating simple quasi-static tension tests

and optimizing against benchmark solutions.

• PD02: Objective baseline: The PD elastic and strength parameters were objectively

evaluated with no need for iteratively solving the problem in search of optimized

values. Linear bond behavior for all bond types was used.

• PD03: Shear nonlinearity: In this solution, shear nonlinearity was added to the ob-

jective baseline.

• PD04: Strain rate dependence: This solution includes all improvements.

Prior to the implementation of the numerical approach (Section 2.2.2), PD material

parameters for the laminate model were calibrated using an inverse approach first described

in [41]. PD material parameters are calibrated in this approach by performing quasi-static

simulations and comparing against FE or analytical solutions. This method, while well

established, is cumbersome to perform and requires extensive user input and experience.

Often, the calibration procedure can take the user several days to set up and perform the

simulations. Errors at any stage in the process can be detrimental and ultimately give
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incorrect PD material parameters. Furthermore, as the discretization of the system changes,

re-calibration of the PD material parameters is necessary. These small details limit the users

ability to explore the affect of nonlocality and discretization on the solution.

Figure 2·41: Quasi-static tests used for PD material parameter calibration.
1.) longitudinal tension (fiber bond material parameter), 2) transverse ten-
sion (matrix bond material parameter), 3.) interlaminar shear (interlaminar
shear bond material parameter), 4.) interlaminar normal (interlaminar nor-
mal bond material parameter)

Figure 2·41 shows the quasi-static tests (longitudinal tension, transverse tension, inter-

laminar simple shear, and interlaminar normal) used to perform the PD material constant

calibration. An 8-ply unidirectional laminate with approximate dimensions 2 in. × 2 in. ×

0.0416 in. was used in each of the tests. The strain energy and internal force were compared

against analytical solutions using the same boundary conditions. Because of the calibration

involved, the legacy approach is a more time intensive and potentially less accurate than

the numerical approach. It is included in this dissertation solely to provide a baseline on

which to compare the progress and improvement of the current approach.

The legacy approach, PD01 (blue), overpredicted both maximum force and the time at

which the maximum force is reached (Figure 2·42) while underpredicting the maximum

impactor displacement (Figure 2·43) for impact energy 225 in-lbf. The slope of the force-

time response is less than that of the experiments and ultimately leads to a an overprediction
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of the impact duration. The simulation was stopped at approximately 6.5 ms as no further

delamination or damage occurred.

Figure 2·42: Force vs. time response predicted by legacy PD approach
(PD01) compared against experimental measurements for 225 in-lbf impact
energy.

Figure 2·43: Force vs. displacement response predicted by legacy PD ap-
proach (PD01) compared against experimental measurements for 225 in-lbf
impact energy.
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The objective baseline approach, PD02, underpredicted the maximum force and the

time at which the maximum force is reached (Figure 2·44) for impact energy 225 in-lbf;

it also underpredicted the maximum impactor displacement (Figure 2·45) for the same

case. It is worth noting that the force vs. time behavior exhibits a prolonged plateau near

maximum force value before the unloading commences. This is also observed in the force

vs. displacement behavior with a longer contact duration; local deformation and fiber bond

failure near the impactor is thought to be responsible for this behavior. In comparison to

the legacy approach, the simulation overpredicted the initial slope of the force vs. time

response.

Figure 2·44: Force vs. time response predicted by objective baseline PD
approach (PD02) compared against experimental measurements for 225 in-
lbf impact energy.
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Figure 2·45: Force vs. displacement response predicted by objective base-
line PD approach (PD02) compared against experimental measurements for
225 in-lbf impact energy.

The addition of shear nonlinearity proved to be most significant in improving the sim-

ulated impact response. Adding shear nonlinearity to the objective baseline captured well

the experimentally measured force (Figure 2·46), displacement (Figure 2·47), and impact

duration values with great accuracy. Nonlinearity of matrix and shear bond constitutive

response provides a softening effect which manifests in a reduction of the initial slope of

the force vs. time curve and allows for an increased peak displacement.
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Figure 2·46: Force vs. time response predicted by objective baseline PD
with shear nonlinearity approach (PD03) compared against experimental
measurements for 225 in-lbf impact energy.

Figure 2·47: Force vs. displacement response predicted by objective base-
line PD with shear nonlinearity approach (PD03) compared against experi-
mental measurements for 225 in-lbf impact energy.

2.5.3 Simulation Results

The final improvement to the simulation approach consisted of incorporating intralaminar

strain rate dependent material properties. This approach (PD04) was applied to all four en-
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ergy levels. The force vs. time predictions for impact energies 150 in-lbf (Figure 2·48) and

187.5 in-lbf (Figure 2·49) exhibit remarkable agreement against the experimental measure-

ments. However, the simulation approach slightly underpredicts the unloading portion of

the response for impact energy 225 in-lbf (Figure 2·50). At the highest energy level, 262.5

in-lbf, the force drop, typically associated with back face fiber splitting, is not captured

(Figure 2·51). Experimentally, this drop occurs close to the peak force at approximately 3

ms. The reasons for which the PD simulations do not capture this drop are explored in sub-

sequent sections. Finally, the addition of strain rate dependence appears to have only minor

influence on the overall response. This lack of influence could be related to the positioning

or locality of the strain rate subdomains, or simply that the strain rate and therefore impact

energy needs to be higher for a noticeable difference. Further exploration is needed in the

future to fully analyze the influence of strain rate on LVI.

Figure 2·48: Force vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 150 in-lbf
impact energy.
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Figure 2·49: Force vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 187.5 in-
lbf impact energy.

Figure 2·50: Force vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 225 in-lbf
impact energy.
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Figure 2·51: Force vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 262.5 in-
lbf impact energy.
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Force vs. displacement responses for four energy levels were compared against the

experiments. The comparisons concerning energy levels 150 in-lbf (Figure 2·52), 187.5

in-lbf (Figure 2·53), and 225 in-lbf (Figure 2·54) are considered to have high accuracy.

The force vs. displacement response for the highest energy level, 262.5 in-lbf (Figure 2·55)

predicted the loading portion as well as the maximum impactor displacement with great

accuracy, but as with the force vs. time response, the sharp drop in force was not captured,

which led to a departure between the two responses in the unloading portion.

Figure 2·52: Force vs. displacement response predicted by objective base-
line PD with shear nonlinearity and strain rate dependent material properties
approach (PD04) compared against experimental measurements for 150 in-
lbf impact energy.
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Figure 2·53: Force vs. displacement response predicted by objective base-
line PD with shear nonlinearity and strain rate dependent material properties
approach (PD04) compared against experimental measurements for 187.5
in-lbf impact energy.

Figure 2·54: Force vs. displacement response predicted by objective base-
line PD with shear nonlinearity and strain rate dependent material properties
approach (PD04) compared against experimental measurements for 225 in-
lbf impact energy.
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Figure 2·55: Force vs. displacement response predicted by objective base-
line PD with shear nonlinearity and strain rate dependent material properties
approach (PD04) compared against experimental measurements for 262.5
in-lbf impact energy.
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Energy vs. time responses for each energy level were compared against the experi-

ments: 150 in-lbf (Figure 2·56), 187.5 in-lbf (Figure 2·57), 225 in-lbf (Figure 2·58), and

262.5 in-lbf (Figure 2·59). The first energy level (Figure 2·56) slightly underpredicted the

absorbed energy; alternatively, the second (Figure 2·57) and third (Figure 2·58) energy lev-

els slightly overpredicted the absorbed energy. As expected, based on the force vs. time

and force vs. displacement responses, the largest difference between the simulated and ex-

perimental results occurred at the highest energy level (Figure 2·59). While the simulated

response continues the trend established by the previous energy levels, the experimental

results showed a much larger absorbed energy. Similar to the force vs. time response,

this departure is caused by the simulation not capturing complete fiber failure on the back

surface.

Figure 2·56: Energy vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 150 in-lbf
impact energy.
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Figure 2·57: Energy vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 187.5 in-
lbf impact energy.

Figure 2·58: Energy vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 225 in-lbf
impact energy.
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Figure 2·59: Energy vs. time response predicted by objective baseline PD
with shear nonlinearity and strain rate dependent material properties ap-
proach (PD04) compared against experimental measurements for 262.5 in-
lbf impact energy.
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Experimental Damage Results

Experimental c-scans of the laminates after impact (Figure 2·60) were provided by

North Carolina State University. The c-scan imaging provides an approximation of the de-

laminated area associated with each impact energy level (shown in red text). At the highest

energy level (Figure 2·60 (d)) and in agreement with the previously presented experimen-

tal force vs. time, force vs. displacement, and energy vs. time curves; a completely

different failure morphology can be observed. More specifically, a threshold energy has

been reached which resulted in a transition from Barely Visible Impact Damage (BVID)

to Visible Impact Damage (VID). This damage is oriented at a 45-degree angle from the

horizontal and can be associated with back face fiber splitting. It is believed that this failure

event causes the force drop shown in Figure 2·51.

Figure 2·60: Experimental c-scan results for each energy level: (a) 150
in-lbf, (b) 187.5 in-lbf, (c) 225 in-lbf, and (d) 262.5 in-lbf.
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The back face splitting extends nearly the entire diagonal of the panel (Figure 2·61 (b))

and stands in stark contrast to the other energy levels. The BVID impact of 225 in-lbf

energy (Figure 2·61 (a)), does not show any visible signs of damage.

Figure 2·61: Laminate back face for (a) 225 in-lbf energy and (b) 262.5
in-lbf energy.

This threshold between BVID and VID impact behavior is an important aspect of LVI

problems and is difficult to predict because of the interaction of different damage mecha-

nisms. Peridynamic predictions of damage and this BVID/VID threshold is explored in the

subsequent sections.

Peridynamic Damage Predictions

One particular advantage of the current PD approach is that it allows for examination

of different failure modes on a ply-by-ply basis. The user has the ability to visualize total

damage, intralaminar fiber damage, intralaminar matrix damage, and interlaminar damage.

These damage metrics are defined as the ratio of the number of broken bonds, for a spe-

cific bond type, to the number of total possible interactions. These metrics provide insight

into the type of damage that is occurring and when tracked over time help illuminate the

interaction of these damage modes. As discussed in the introduction, most PD models con-

sider material failure to occur when the damage of a material point reaches a value of 0.5,
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indicating that 50% of the material points bonds have failed. The 0.5 threshold was used

in this study for each bond type except for the fiber bonds. Because there are so few fiber

bonds in the model, all fiber bond failure is considered to indicate significant damage in the

laminate.

Interlaminar bond damage in the current PD approach is considered as analogous to

experimentally evaluated delamination. Figures 2·62 - 2·65 compare the experimentally

determined extent of delamination (black) with the PD predicted delamination (shown in

color). These images are intended to be a natural comparison with the experimental c-scan

images (Figure 2·60). The color in the center of the image shows the predicted delami-

nation at different depths, with warmer colors being closer to the initial impact site. The

black outlines show the experimentally determined delamination extent as measured from

Figure 2·60. The yellow frame shows the boundary of the laminate and contextualizes the

delamination extent with respect to the laminate dimensions.

Peridynamic predictions of delamination extent increased significantly from energy

level 150 in-lbf (Figure 2·62) to 187.5 in-lbf (Figure 2·63), and increased slightly in the

225 in-lbf (Figure 2·64) scenario. A second significant increase in delamination was pre-

dicted from energy level 225 in-lbf to 262.5 in-lbf (Figure 2·65). When compared to the

experimental measurements, the PD simulations underpredict the delamination for the 150

in-lbf (Figure 2·62) and 262.5 in-lbf (Figure 2·65) energy levels and more accurately predict

the delamination for energy levels 187.5 in-lbf (Figure 2·63) and 225 in-lbf (Figure 2·64).

The highest energy level (Figure 2·65) comparison shows a difference in failure morphol-

ogy between the PD predictions and the experiments, which will be discussed further in the

next sections.
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Figure 2·62: Delamination (color variation indicates ply depth from impact
side) predicted by PD04 approach compared against experimental measure-
ments (outline overlaid) for 150 in-lbf impact energy.
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Figure 2·63: Delamination (color variation indicates ply depth from impact
side) predicted by PD04 approach compared against experimental measure-
ments (outline overlaid) for 187.5 in-lbf impact energy.
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Figure 2·64: Delamination (color variation indicates ply depth from impact
side) predicted by PD04 approach compared against experimental measure-
ments (outline overlaid) for 225 in-lbf impact energy.
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Figure 2·65: Delamination (color variation indicates ply depth from impact
side) predicted by PD04 approach compared against experimental measure-
ments (outline overlaid) for 262.5 in-lbf impact energy.
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In addition to the stacked delamination visualization, PD predicted ply-by-ply damage

can be obtained. This orientation is helpful in comparing damage with fiber orientation

and depth. The plies are numbered “01-25” with 25 being closest to the initial impact site

(impacting face). The fiber orientation is labeled in the bottom right corner of each ply

for easy reference. While there appears to be some underlying directionality to the total

damage, the failure is mainly circular throughout.

The increases in total damage (all damage modes contributing to a single scalar damage

parameter for each material point) from energy level 150 in-lbf (Figure 2·66) to energy

levels 187.5 in-lbf (Figure 2·67), 225 in-lbf (Figure 2·68), and 262.5 in-lbf (Figure 2·69)

are clearly observed.

Fiber damage (Figure 2·70 to Figure 2·73) and interlaminar damage (Figure 2·74 to

Figure 2·77) exhibit similar progression. Very few fiber material points are damaged in the

low energy levels. This fiber damage occurs close to the impactor. At the highest energy

level. Fiber damage occurs at the top most plies and begins to occur significantly in the

back plies. One way to visualize the extent of damage in the LVI simulations is through an

exploded isometric view (Figure 2·74 - 2·77). This orientation allows for easy visualization

of the variation of delamination with depth.
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Figure 2·66: Ply-by-ply total damage predicted by PD04 approach for 150
in-lbf impact energy.
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Figure 2·67: Ply-by-ply total damage predicted by PD04 approach for
187.5 in-lbf impact energy.
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Figure 2·68: Ply-by-ply total damage predicted by PD04 approach for 225
in-lbf impact energy.
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Figure 2·69: Ply-by-ply total damage predicted by PD04 approach for
262.5 in-lbf impact energy.
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Figure 2·70: Ply-by-ply fiber damage predicted by PD04 approach for 150
in-lbf impact energy.
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Figure 2·71: Ply-by-ply fiber damage predicted by PD04 approach for
187.5 in-lbf impact energy.
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Figure 2·72: Ply-by-ply fiber damage predicted by PD04 approach for 225
in-lbf impact energy.
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Figure 2·73: Ply-by-ply fiber damage predicted by PD04 approach for
262.5 in-lbf impact energy.
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Figure 2·74: Ply-by-ply interlaminar damage predicted by PD04 approach
for 150 in-lbf impact energy.
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Figure 2·75: Ply-by-ply interlaminar damage predicted by PD04 approach
for 187.5 in-lbf impact energy.
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Figure 2·76: Ply-by-ply interlaminar damage predicted by PD04 approach
for 225 in-lbf impact energy.
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Figure 2·77: Ply-by-ply interlaminar damage predicted by PD04 approach
for 262.5 in-lbf impact energy.
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The PD simulations at the highest energy level were used to investigate the interac-

tion of different damage mechanisms. A correlation between the force vs. time response,

initiation of fiber damage, and the growth of interlaminar damage was observed. Prior to

approximately 2.5 ms, the interlaminar damage is observed to grow almost linearly un-

til a sudden, drastic increase, after which the damage plateaus (Figure 2·78(a) and Figure

2·78(c)). This sudden and dramatic damage growth occurs during the period containing a

sharp drop in force, approximately 25 % over 70 µs (Figure 2·78(a) - blue curve between

locations 2 and 3). Similar to the interlaminar damage growth, an increase in fiber damage

occurred during both of these events (Figure 2·78(b)).

While the overall fiber damage footprint does not drastically increase, the fiber damage

initiates and propagates in several plies within this same short period of time (Figure 2·79(a,

b)). Further demonstrating the interaction of mechanisms, plies containing more severe

fiber damage appear to also have a larger interlaminar damage footprint (Figure 2·79(c, d)).

Figure 2·78: (a) Comparison of force response and delaminated area over
time for 262.5 in-lbf impact energy (b) fiber damage footprint at selected
times (c) interlaminar damage footprint at selected times.
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Figure 2·79: Ply-by-ply views of (a) fiber damage before event (b) fiber
damage after event (c) interlaminar damage before event (d) interlaminar
damage after event.
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Quantitative Comparisons

A quantitative comparison of the maximum force, maximum displacement, delami-

nated area, and energy absorbed (Ea) is provided in Table 2.15 and is summarized visually

in Figures 2·80 to 2·83.

Table 2.15: Quantitative comparison of experiments and PD simulations at
all energy levels.

150 in-lbf 187.5 in-lbf 225 in-lbf 262.5 in-lbf
PD EXP PD EXP PD EXP PD EXP

Max Force
(lbf)

1516.80 1469.58 1657.06 1620.42 1846.28 1849.95 2023.51 1977.20

Max Disp
(in)

0.24 0.24 0.26 0.27 0.28 0.29 0.30 0.31

Delam. Area
(in2)

0.71 1.23 1.42 1.35 1.53 1.62 2.13 3.06

Ea

(in-lbf)
28.80 41.42 51.09 43.67 73.15 51.61 81.69 188.40

In general, the PD simulations (Figure 2·80 - blue) slightly overpredict the experimental

peak force(Figure 2·80 - black). The largest percent difference occurs for the first energy

level (150 in-lbf), in which the PD simulation overpredicts the peak force by approximately

3%. The most accurate simulation was the third energy level; in this simulation, the experi-

mental peak force is underpredicted by less than 1%. Alternatively, PD simulations slightly

underpredict the peak displacement at each energy levels (Figure 2·81). The percent dif-

ference for each case ranges between -3% and -4%. It is believed that these simulation

predictions show great accuracy in both the peak force and peak displacement.

Another interesting relationship that can be quantitatively analyzed is the relationship

between the delaminated area (Figure 2·82) and the absorbed energy (Figure 2·83). The

delamination area provides an indication of the areal extent of the damage in the compos-

ite and the absorbed energy gives insight into the intensity of the damage. Meaning, for

example, a small concentrated damage site, could potentially have a higher amount of en-

ergy absorbed and a lower amount of delaminated area than a diffuse but large damaged
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Figure 2·80: Quantitative comparison between PD (blue) and experimental
(black) peak force (lbf) for each energy level.

Figure 2·81: Quantitative comparison between PD (blue) and experimental
(black) peak displacement (in) for each energy level.

region. From an experimental perspective, the intricacy of this relationship arises because

of the interaction between intralaminar and interlaminar failure, such as delamination mi-

gration and matrix cracking [4]. The PD simulations tend to underpredict the delaminated

area (Figure 2·82). However, because area is a squared quantity, the actual delaminated

footprint is quite similar (Figure 2·62 - 2·65). Interestingly, while the delaminated area is
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underpredicted, the absorbed energy is overpredicted for the 187.5 in-lbf and 225 in-lbf

simulations. These scenarios where the absorbed energy is overpredicted are also the clos-

est prediction in the delaminated area and implies that the damage for these simulations is

highly concentrated. It is believed that the global bending response contributes to damage

extending as opposed to simply increasing in intensity under the impactor. This intricate

relationship can explored through nonlocality in future work. While there are differences

between the experimental results and PD simulation predictions, overall, the predictions

are in remarkable agreement.

Figure 2·82: Quantitative comparison between PD (blue) and experimental
(black) delaminated area (in2) for each energy level.
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Figure 2·83: Quantitative comparison between PD (blue) and experimental
(black) absorbed energy (in-lbf) for each energy level.

As mentioned in the earlier sections, the difference between the experimental and pre-

dicted response for the highest energy level (262.5 in-lbf) is related to the transition from

BVID (barely visible impact damage) to VID (visible impact damage). At this transition,

the failure morphology changes and the experiments show fiber splitting of the back face

of the laminate. Fiber splitting causes the laminate to absorb approximately 70% of the im-

pacting energy as the impactor slowly rebounds from the surface. The experimental force

vs. time curve exhibits a sharp drop in force approximately 3 ms into the impact event

(Figure 2·51); unfortunately, the PD04 approach does not capture this sharp drop. Because

this is a threshold energy level, the simulation not capturing the change in behavior is un-

surprising. Small modifications to the PD simulations could push the model into the VID

regime and conversely, small changes to the experiments could push the results in the other

direction back to BVID.

The threshold between BVID and VID was explored in two ways: increasing impact

energy and decreasing longitudinal strength. By increasing the simulation impact energy,

the sensitivity of the PD threshold was explored. Additionally, it provided insight into

the interaction of PD damage mechanisms. Decreasing longitudinal strength helps to illu-
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minate the sensitivity of fiber failure on the threshold, verifying that if more fiber failure

occurs, the threshold will be reached at the experimental impact energy.

2.5.4 Increasing Impact Energy

Several additional impact energies greater than 262.5 (in-lbf) were explored by keeping the

impactor mass constant and increasing the impactor velocity. All other simulation param-

eters were held constant. Increasing the impact energy to 282.42 in-lbf, an approximate

7.5% increase in impacting energy, produced a much different force vs. time response

(Figure 2·84). This force vs. time response (red) is compared against the experimental

262.5 in-lbf (black) and the PD prediction at 262.5 in-lbf (blue). With a small increase in

impacting energy, the peak force appears very similar, however, there is a sharp drop in

force which is associated with fiber failure. The slope of the force drop and the subsequent

unloading is very similar to the experimental curve at the 262.5 in-lbf energy level. This

suggests that the PD model is very much within the same energy (BVID/VID) threshold as

the experiments.

Figure 2·84: Force vs. time response prediction for 282.42 (red) in-lbf
impact energy compared against experimental 262.5 (black) in-lbf and the
PD prediction for 262.5 (blue) in-lbf.

The force vs. displacement prediction (Figure 2·85) at the higher energy level (red) also
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follows very closely with the experimental 262.5 (black) in-lbf curve. The peak displace-

ment at the higher energy level is very similar to the PD prediction and experimental results

at the slightly lower energy level. This is another indication that the failure morphology is

changing appropriately with increasing energy.

Figure 2·85: Force vs. displacement response prediction for 282.42 (red)
in-lbf impact energy compared against experimental 262.5 (black) in-lbf and
the PD prediction for 262.5 (blue) in-lbf.

Of all the metrics analyzed, the absorbed energy vs. time response (Figure 2·86) differs

the most with the experimental results. As necessitated by the input energy, the peaks of

the energy vs. time responses are different. However, as shown, while still underpredicting

the absorbed energy response, it is in much better agreement with the experimental results.

The differences in delamination between the PD prediction at 262.5 in-lbf and 282.42

in-lbf (Figure 2·87) shows a slight increase in delamination (colored) and a significant

increase in fiber damage (black). However, unlike the experimental results, while there is

more significant fiber damage in the PD prediction at this energy level, the extent of the

fiber damage is not as great.
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Figure 2·86: Energy vs. time response prediction for 282.42 (red) in-lbf
impact energy compared against experimental 262.5 (black) in-lbf and the
PD prediction for 262.5 (blue) in-lbf.

Figure 2·87: Delamination (color variation indicates ply depth from impact
side and black indicates fiber failure) prediction at 262.5 in-lbf compared
against prediction for 282.42 in-lbf impact energy.

2.5.5 Decreasing Longitudinal Strength

The PD simulation for the 262.5 in-lbf was repeated with the longitudinal strength, σ
f

11,

reduced by 10% and 15% (Table 2.16). Both the 10% and 15% reduction in longitudinal

strength captures the correct behavior of a sharp drop in force near 3 ms (Figure 2·88),
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however, only the 10% reduction captures the maximum force value. Reducing the lon-

gitudinal strength demonstrates that there is sensitivity in fiber bond failure at the highest

energy level and that the PD model, much like the experimental tests, is very close to a

change in failure morphology at that energy level.

Table 2.16: Summary of decrease in longitudinal strength.

σ
f

11

(ksi)
0.9σ

f
11

(ksi)
0.85σ

f
11

(ksi)
421 379 358

With relatively small decreases in the longitudinal strength, 379 ksi and 358 ksi, re-

spectively, a significant change in the force-time response can be observed (Figure 2·88).

The predicted failure with a 10 % decrease in longitudinal strength is very similar to that of

the 7.5 % higher impacting energy scenario presented in the previous section. Fiber failure

is a significant contributor to the change in the force response at this energy level. At the

threshold energy level, small variations in the longitudinal strengths (still within bounds of

experimental error) are enough to alter the force vs. time response. This indicates that a

sensitivity study is needed when predictions are desired near this threshold.

As the longitudinal strength is decreased, the fiber bonds on the back surface begin

to fail, leading to a drop in force. Similar to the experiments and the increased energy

scenario, a recovery period occurs between 3 and 4 ms (Figure 2·89) the impactor finally

rebounds from the surface. During this recovery period, the displacement increases with

decreasing force (Figure 2·89).

The absorbed energy of the 10% decrease in longitudinal strength matches well with

the experimental results (Figure 2·90), however, still slightly undershoots the final absorbed

energy.

The failure predictions for 262.5 in-lbf (Figure 2·91 (a)) and 262.5 in-lbf with a 10 %

decrease in fiber longitudinal strength (Figure 2·91 (b)) display some unique differences.

First, as expected, decreasing the longitudinal strength increases the fiber failure extent

and concentration (black squares). Additionally, an interaction between the fiber failure
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Figure 2·88: Force vs. time response predicted with 15% (green) less,
10 % (red) less, and original longitudinal strength (blue) compared against
experimental measurements for 262.5 in-lbf impact energy.

and other failure mechanisms can be observed; specifically, the overall extent of damage

(colored squares) is greater in the scenario with lower fiber strength, despite the same other

failure parameters (matrix, shear, normal).

As a final verification of the BVID/VID threshold , the 10 % decrease was run at the

third energy level. While the force vs. time response (Figure 2·88), force vs. displacement

(Figure 2·93), and energy vs. time (Figure 2·94) differ slightly from the previous prediction,

they are overall still in good agreement.
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Figure 2·89: Displacement vs. time response predicted with 15% (green)
less, 10 % (red) less, and original longitudinal strength (blue) compared
against experimental measurements for 262.5 in-lbf impact energy.

Figure 2·90: Energy vs. time response predicted with 15% (green) less,
10 % (red) less, and original longitudinal strength (blue) compared against
experimental measurements for 262.5 in-lbf impact energy.
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Figure 2·91: Delamination predicted with the original longitudinal strength
(a) and with the 10% less longitudinal strength (b).

Figure 2·92: Force vs. time comparison of decreasing longitudinal strength
at 225 in-lbf.
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Figure 2·93: Force vs. displacement comparison of decreasing longitudinal
strength at 225 in-lbf.

Figure 2·94: Energy vs. time comparison of decreasing longitudinal
strength at 225 in-lbf.
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2.5.6 Comparing Increased Energy with Decreasing Longitudinal Strength

Shown in the previous sections, increasing impact energy and decreasing longitudinal

strength both produce similar force vs. time and force vs. displacement responses. While

there is significantly more absorbed energy (Figure 2·95) in both scenarios (green and red)

than the original scenario (blue), it still underpredicts the experimental result (black). This

is a very interesting response, in particular because damage footprint of the higher energy

case (Figure 2·96 (c)) is slightly larger than that of the lowered fiber strength (Figure 2·96

(b)) scenario. Because the absorbed energy is very simlar, this implies that the fiber dam-

age and perhaps the intensity of other damage mechanisms is contributing significantly

to the absorbed energy. Importantly, correctly capturing the damage footprint and energy

absorbed requires the correct capturing of the interaction of these different damage mech-

anisms.

Figure 2·95: Energy vs. time response predicted with energy 282.4 in-
lbf (green), 10 % (red) less longitudinal strength, and original longitudinal
strength (blue) compared against experimental measurements for 262.5 in-
lbf impact energy.
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Figure 2·96: Delamination predicted with the original longitudinal strength
(a) and with the 10% less longitudinal strength (b).

The fiber damage ply-by-ply prediction is compared (Figure 2·97 and 2·98) and shows

that overall the fiber damage between the two scenarios is very similar. Fiber damage

occurs on each ply and is oriented along the fiber direction. Both increasing the energy

and decreasing longitudinal strength can push the simulation into the VID region, however,

the simulations are still not able to capture the long extension of the fiber damage on the

back face of the laminate. It is believed that the intralaminar discretization and the nonlocal

horizons play a role in this fiber damage extension. These aspects of the simulations should

be explored in future work.
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Figure 2·97: Fiber damage associated with a 10% decrease in longitudinal
strength.
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Figure 2·98: Fiber damage associated with an impact energy of 282.42 in-
lbf.
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2.6 Hat-Stiffened Panel Impact Simulation Results

A modeling approach was developed to simulate a hat-stiffened panel subjected to low

velocity impact. The panel, with dimensions of 12 in. x 12 in., consisted of 25 plies with

a [(45/-45/0/90)3/0/(90/0/-45/45)3] stacking sequence. A 1/2 in. rigid body hemispherical

penetrator with a mass of 21.884 lbm and velocity of 72.83 in/s was used to impact the

panel with 150 in-lbf of energy. The panel was impacted on the skin side 6 in. from the

edge on the outer mold line and constrained using simply supported boundary conditions

on the parallel edges. A three-dimensional isometric view of the hat-stiffener is reproduced

in Figure 2·99 and hat-stiffener dimensions are provided in Figure 2·100.

Figure 2·99: Hat-stiffened panel geometry.

Figure 2·100: Hat-stiffened cross-section geometry.

The cross-section of the hat-stiffener was discretized (Figure 2·102) and extruded in

the longitudinal direction (Figure 2·101). The discretization parameters of Table 2.11 were
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used. Because the laminate dimensions increased from 7 in. × 7 in. to 12 in. × 12

in., the number of material points in the PD model increased to approximately 600,000.

Additionally, the stiffener itself contained approximately 400,000 material points.

Figure 2·101: Discretized hat-stiffened panel with the hat-stiffener (red)
and laminate (blue).

Figure 2·102: PD hat-stiffener cross-section discretization.

The increased geometry and lower impact velocity, as compared to the unreinforced

simulations, lead to a much longer impact duration and a significantly more computation-

ally demanding simulation. For simplicity, despite the stiffener being comprised of both a

fabric and a noodle, only the fabric material properties are considered in the model.

The force vs. time curve (Figure 2·103), the force vs. displacement curve (Figure

2·104), and the energy vs. time curve (Figure 2·105)) are provided for comparison pur-

poses. Preliminary simulations have a peak force of approximately 1100 lbf at 6 ms. The
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Figure 2·103: Force (lbf) vs. time (s) prediction for the hat-stiffened panel.

impact duration is approximately 12 ms with a peak force of approximately 1100 lbf at

6 ms. The predicted peak displacement is approximately 0.28 in. The energy vs. time

curve (Figure 2·105) indicates the expected peak energy at 150 in-lbf, which is equal to

the input energy, however, it is too early in the simulation to measure the absorbed energy

in the panel. The z-displacement (Figure 2·106) of the hat-stiffened panel at the peak dis-

placement exhibits the expected contour, but with a larger than expected local deformation

under the impactor. A small circular damage directly under the impactor was predicted

(Figure 2·107) in addition to some directionally dependent damage, possibly indicating

fiber damage.
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Figure 2·104: Force (lbf) vs. displacement (in) prediction for the hat-
stiffened panel.

Figure 2·105: Energy (in-lbf) vs. time (s) prediction for the hat-stiffened
panel.
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Figure 2·106: Z-displacement contours of the hat-stiffened panel.

Figure 2·107: PD damage prediction in the hat-stiffened panel.
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While the preliminary results are promising, more work is needed to accurately model

the hat-stiffened panel. Most importantly, the PD model currently needs a uniform in-

tralaminar discretization to incorporate shear bonds into the model. The curves of the

hat-stiffener meant that the shear bonds could not be readily incorporated. This limitation

can be overcome in the future by changing the shear bond reference system from z-based

coordinate system to a ply number coordinate system. Introducing these shear bonds, with

the same formulation as in the laminate itself, would allow the decoupling of the intralam-

inar and interlaminar response and the capturing of delamination between the hat-stiffener

and laminate.

2.7 Through-Thickness Reinforcement Simulation Results

2.7.1 Considerations for Through-Thickness Reinforcement

An approach was developed for incorporating through-thickness reinforcements by repre-

senting stitches as embedded bonds. These bonds can be thought of as a duplication of

existing interlaminar bonds (Figure 2·108)) with their own respective stitched based mate-

rial parameters.

Figure 2·108: Schematic demonstrating the stitched bond approach.

To implement this approach, first the stitched material points are identified based on an
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input pattern (Figure 2·109). The identified PD material points are written to file and are

provided as input to the simulation.

Figure 2·109: Example of a stitched pattern and the identified stitched PD
material points (red) shown from a top view.

The stitched bonds influence the model by increasing the bond force density contribu-

tion. Mathematically, the bond force density fi j relationship can be thought of as containing

a laminate bond force density contribution f l
i j and a stitched bond force density contribution

f s
i j.

fi j = f l
i j + f s

i j (2.107)

While the stitched bond force density contribution can take many different forms, in

this work, as initial demonstration of concept, it is assumed to take a linear form. For

interlaminar shear bonds, the constitutive relationship can be written as
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fi j = (kl
s + ks

s)φ∆x2 δ

r
y j− yi

|y j− yi|
(2.108)

where kl
s is the interlaminar shear constant of the laminate and ks

s is the stitched interlaminar

shear constant. Similarly, for interlaminar normal bonds, the constitutive relationship can

be written as

fi j = (kl
n + ks

n)un
δ

r
y j− yi

|y j− yi|
(2.109)

where kl
n is the interlaminar normal constant of the laminate and ks

n is the stitched inter-

laminar normal spring constant. A flow chart is provided (Figure 2·110) to summarize the

steps taken to introduce a through-thickness response.

Figure 2·110: Flow chart for introducing through-thickness reinforcements.

2.7.2 Through-Thickness Reinforcement Simulation Results

As discussed in the previous section, the through-thickness reinforcement is included by

considering embedded bonds at stitched locations. The stitches were introduced in a frame

pattern (Figure 2·111) with the outer and inner frame dimensions of 2.5 in. × 2.5 in. and

1 in. × 1 in., respectively. This distance between each stitch is 0.25 in. The frames are

centered on the laminate.

The PD representation of (Figure 2·111) contains 11 stitched material points in the
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Figure 2·111: Stitch schematic showing the dimensions of the stitched
frame with respect to the laminate.

x-direction and y-direction with no stitched material points in the interior 1 in. × 1 in.

inner frame (Figure 2·109). Both the material points and stitched pattern are uniform in the

thickness direction.

Other aspects of the model such as the discretization (Table 2.11), PD material pa-

rameters (Table 2.12), and Ramberg-Osgood strain rate dependent parameters (Table 2.9)

remain the same as in the previous sections. A piecewise linear stitched material response

was provided in terms of force (lbf) and displacement (in) (Figure 2·112). Based on ap-

proximate values for the diameter D, cross-sectional area Ca, and the stitch length Lo (Table

2.17) the force displacement response (Figure 2·112) was converted into an axial stress vs.

strain response (Figure 2·113).

As preliminary work, only the initial modulus of the stitched material was considered.
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Figure 2·112: Force (lbf) vs. displacement (in) response for the stitch ma-
terial.

Table 2.17: Approximate stitched geometric parameters.

D Ca Lo

(in) (in2) (in)
6.25e-2 3.07e-3 1.30e-1

Two scenarios were explored: scenario B has a stiffness approximately equal to the initial

slope of (Figure 2·113) and is approximately 1.5 times stiffer than scenario A (Table 2.18).

Table 2.18: Normal and shear bond stitched material parameters.

Scenario ks
n ks

s

(lbf/in7) (lbf/in5)
A 1.18e13 7.41e8
B 1.76e13 1.10e9

The stitched laminate was impacted with 225 in-lbf of energy using a 0.5” diameter

tup. The force vs. time (Figure 2·114), force vs. displacement (Figure 2·115), and energy

vs. time (Figure 2·116) simulation results were compared with the unreinforced laminate

impacted under the same conditions. The introduction of a through-thickness reinforce-

ment into the laminate slightly increased the peak force without changing the initial slope
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Figure 2·113: Converted stress (ksi) vs. strain (%) response of the stitched
material.

of the force time curve (Figure 2·114), while the duration of the impact event remained

approximately the same. Despite scenario B (green) having stitched material constants 1.5

times stiffer than scenario A (red), the force vs. time response and force vs. displacement

response is very similar.

Figure 2·114: Comparison of stitch reinforced and unreinforced simula-
tions at 225 in-lbf.

The most observable difference occurs in the energy vs. time plots (Figure 2·116).

Scenario A has a significantly higher absorbed energy∼65.8 in-lbf compared to scenario B



149

Figure 2·115: Force (lbf) vs. displacement (in) curve comparing a stitched
laminate simulation with an unreinforced laminate simulation.

which has only∼54.7 in-lbf. Alternatively, when the stitch stiffness is decreased (Scenario

B), the absorbed energy (Figure 2·116) response is very similar to that of the unreinforced

case.

The differences in the absorbed energy response are naturally reflected in the delami-

nation and damage contours (Figure 2·117). Stitch A has a much higher amount of damage

and damage surrounding the location of the stitches. Alternatively, Stitch B and the unrein-

forced simulations have very similar delamination extents. While the delamination enters

the stitch frame region denoted by the dashed black lines, it does not appear arrested.

Although the root cause of the increase in delamination with increasing stitched stiff-

ness still needs further exploration, it is believed that there is an unnatural wave reflection

that occurs when the stiffness of the stitched bonds is high. This can be thought of as sim-

ilar to an additional boundary condition. It is thought that adding a mechanism for energy

dissipation would more accurately capture the stitched response when embedded into the

laminate.
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Figure 2·116: Energy (in-lbf) vs. time (s) curve comparing stitched and
unreinforced PD simulations.

Figure 2·117: Comparison of stacked delamination between the two
stitched scenarios.
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Chapter 3

CNT Yarn Reinforced Polymer Composites

3.1 Background

Carbon nanotubes (CNTs) have been studied extensively for decades [46]. Although the

measured nanoscale stiffness of CNTs has been reported on the order of 1 TPa [47–49] and

the strength in the range of 50 - 100 GPa [49, 50], their envisioned use in the creation of a

bulk scale composite with such properties has not been fully realized. One of the current

challenges facing the aerospace structures community is to carry these nanoscale properties

to the macroscale. A potential solution to this challenge is the development of CNT macro

assemblages, in particular, CNT yarn. Recently developed manufacturing techniques have

made CNT macro assemblages more readily available for aerospace applications [51].

In comparison to carbon fiber composites, CNT yarn-based composites have not been

fully characterized. This lack of characterization can be traced back to advances in process-

ing control. The large variety of processing parameters and post-processing procedures lead

to a great diversity of microstructures. Experimental testing of each unique microstructural

realization is simply not feasible. The expensive and time-consuming nature of experimen-

tal testing necessitates the advancement of simulation methodologies that can incorporate

microstructural details. It is believed that such simulations could provide feedback to both

synthesis and processing researchers, allowing a more targeted search for desirable struc-

tures.

Predicting and understanding the failure of materials has long been a challenging en-

deavor. Peridynamic theory has proven to be successful in capturing the failure and frac-

ture behavior of a wide variety of material systems. Over the years, the failure prediction
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capabilities of PD theory have been demonstrated on glass [27, 52, 53], metal [54], and

carbon-fiber composite [22, 25] material systems. The theory is particularly adept at simu-

lating failure in these material systems because of its integral formulation which, unlike its

differential counterpart, does not give rise to the mathematical singularities associated with

fracture [21].

In recent years, various PD approaches have been developed for carbon-fiber reinforced

polymer (CFRP) composites [23, 25, 41]. Only a few researchers have explored the appli-

cation of PD to CNT composites. In the early work [55], Bobaru et al. developed a 3D PD

framework for carbon nanofiber networks and CNT composites. The authors demonstrated

the ability of PD to capture complex failure behavior associated with the stretching of a

fiber network and CNT pullout. Rahman et al. used a hierarchical multiscale modeling

approach to link atomistic simulations with a coarsened state-based PD model [56]. In that

work, the researchers explored deformation mechanisms associated with carbon nanofibers.

More recent work [57] combined bond-based PD and Monte Carlo simulations to predict

the mechanical properties for CNT-based nanocomposites.

A major distinction between previous PD CNT frameworks and the one proposed in

this work is the length scale at which simulations are performed. In all of the above work,

simulations were performed at the CNT/nanofiber length scale (nanometers). In the current

work, the simulation domain is increased and simulations are performed at the CNT yarn

length scale (micrometers).

This research aims to provide a systematic approach to incorporate microstructural in-

formation into the simulation process. In the current work, x-ray computed tomography

(CT) is used to develop a simulation grid containing constituent level information. The

composite microstructure is characterized using statistical and data clustering algorithms.

A novel peridynamic approach for simulating CNT yarn composites has been developed to

accurately capture the failure morphology and to investigate its origins. Finally, a frame-

work was developed for creating synthetic microstructures through the use of probability

density functions.
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3.2 Experimental Work

In the previous work by Kim et al. [6], unidirectional CNT yarn polymer composites were

fabricated from highly-densified CNT yarns (provided by Nanocomp Technologies, Inc.).

Each yarn was composed of 4 plies of CNT roving. The 4-ply yarn has an irregular shape

measuring an average of approximately 250 µm in diameter. Cyanate ester (RS-16) resin

from Tencate Advanced Composites was diluted with methyl ethyl ketone (MEK) to a 65

wt. % MEK solution. A 100 to 9 mix ratio between resin solution and curing agent was

used. The resin solution was applied to the CNT yarns by a wet winding method using a

custom-built filament winder, with an applied winding tension of 13.34 N [51]. The CNT

yarn was passed through a resin bath followed by direct winding onto a custom-made solid

aluminum plate (width of 15.24 cm and height of 10.16 cm) as shown in Figure 3·1. The

as-wound materials were sandwiched between two steel plates and then cured with a 4 hr

hold at 113◦ C followed by a 1.5 hr hold at 135◦ C under a cure pressure of 10.34 MPa.

The final composite panel dimensions were 10.16 cm (height) × 2.54 cm (width) × 383

µm (thickness). The resin and void contents of the composite were 19 wt. % and 2 %,

respectively.

Tensile properties of tabbed unidirectional composite specimens (10 cm (height) × 0.5

cm (width)) were measured using an MTS-858 test stand equipped with a laser exten-

someter and pneumatic grips. P180 sandpapers were glued to the ends of the composite

specimens using cyanoacrylate. A crosshead speed of 0.5 mm/min was used during the

test. Table 3.1 lists the material properties associated with the yarn, resin and compos-

ite. The diameter variations found in the CNT yarn prevent accurate measurement of yarn

properties in volume-based units. Instead, linear density-based tex units are used (1 tex =

1 g/km) for the reported specific strengths and moduli, 1 N/tex = 1 GPa/(g/cm3).

High resolution nondestructive evaluation of as-prepared unidirectional CNT yarn/polymer

composites was conducted using a micro focus x-ray computed tomography (CT) system

(Nikon Metrology) with a maximum resolution of 5 µm and magnification of up to 160 ×.

A Perkin-Elmer 16-bit amorphous silicon digital detector with a 2000 × 2000 pixel array
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Figure 3·1: (a) Custom-made aluminum fixture and (b) unidirectional CNT
yarn/cyanate ester composite.

was used to collect radiographs at each rotation angle as the x-ray path intersected the sam-

ple (360 degrees in 0.11 degree increments). The three-dimensional reconstruction of the

collected radiographs produced tomographic data that could be viewed along any plane in

the sample volume.

Table 3.1: Material properties of CNT yarn polymer composite. aAs re-
ported by the manufacturer.

Material

Yarn Units

Density

(g/cm3)

tex

Specific Strength

MPa/(g/cm3)

N/tex

Specific Modulus

GPa/(g/cm3)

N/tex

Resin: Cyanate Estera 1.19 67 2.5

Yarn: 4 plya 26.89 1.63 96.3

Composite 1.14 1130 72.3

An experimentally obtained, representative stress vs. strain curve is presented in Figure

3·2. The initially observed stress stiffening is attributed to the elimination of slack and

an increase in alignment of the CNT yarns as the load is applied. The softening behavior

observed prior to failure is attributed to partial damage to the yarns before the complete

failure of the specimen or originated from the typical mechanical response of CNT assem-

blies such as yarns and sheets. Figure 3·3 shows the fully failed specimen. The fully failed
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specimen shows failure in multiple locations of the specimen and a yarn pullout failure

morphology.

Figure 3·2: Experimentally obtained representative stress vs. strain curve.

Figure 3·3: Fully failed CNT yarn composite specimen.
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3.3 Microstructure Characterization

A procedure was developed to convert x-ray CT bitmap (BMP) images into a PD simulation

grid to incorporate structural features in the model. Features associated with the grids were

then characterized using simple statistical methods and data clustering algorithms.

3.3.1 X-ray CT Imaging

The reconstruction of the CNT yarn composite sample characterized using micro x-ray

CT produced a data set with dimensions of 2000 (width) × 722 (height) × 1999 (length)

pixels and a reconstructed pixel resolution of approximately 3.6 µm in each direction.

This data set served as the foundation for the PD simulation grid. Figure 3·4 presents a

grayscale cross-sectional view of the composite obtained after the scanning process and

demonstrates several directly observable features such as surface undulation, resin rich

regions, and porosity.

Figure 3·4: Cross-sectional x-ray CT BMP image of a unidirectional CNT
yarn polymer composite.

3.3.2 Thresholding Process

Data obtained from the x-ray CT was post-processed using ImageJ [58] and converted from

its native file type into a series of BMP images. Python scripts were used to segment these

BMP images based upon pixel grayscale value. Following the work of Kim et al. [6], the

threshold set point was obtained in ImageJ through manual adjustment and visualization

of the porosity. During thresholding, grayscale values below the set point were discarded

while higher values were kept. This initial thresholding effectively separated the fore-

ground and background of each BMP slice, whereas internally discarded pixels indicated

the presence of voids.
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The retained pixels became the PD simulation grid. Figure 3·5 compares a single BMP

slice against its segmented counterpart. For visualization purposes, lighter shades of gray

coming from the BMP image are shown in the PD grid as orange/red colors, while darker

shades of gray are green/blue in color

Figure 3·5: Comparison of BMP image and PD simulation grid after the
thresholding process.

The final step in the grid generation process was to assign pixels as either CNT yarn

or resin material. This was accomplished using a second threshold. The value of the

secondary threshold was allowed to vary for each individual BMP slice. This variability

arises as a result of contrast differences within the data set and is an artifact of the x-ray

CT. To account for the variation in contrast, a series of thresholds were iterated through for

each slice. The threshold set point was optimized by minimizing the difference between

the calculated and experimentally measured resin volume fraction. Figure 3·6 shows a

cross-sectional view after the thresholding procedures. In this figure, blue and red squares

represent yarn and resin material points, respectively.
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Figure 3·6: Example of determining constituent materials by means of a
secondary threshold.

3.3.3 Manipulation of the Grid Spacing

A consequence of the thresholding approach is that the image resolution, the pixel to pixel

distance, becomes the effective PD grid spacing. The grid spacing ∆x can be controlled by

manipulating the pixel dimension Pd . Equation (3.1) expresses the relationship between the

physical size of the image Ps the pixel dimension Pd and the resolution Pr. With a desired

grid spacing in mind, an updated pixel dimension Ud can be found as shown in Equation

(3.2). This simple image manipulation allows for the creation of grid spacings larger than

the native resolution.

Ps = Pd ·Pr (3.1)

Ud =
Pd ·Pr

∆x
(3.2)

Changing the resolution of the BMP image has significant influence over a pixels grayscale

value. As a result, standard image processing resampling techniques were used to interpo-

late for a new grayscale value when manipulating the resolution. Specifically, a Lanczos

resampling filter [59] was used to adjust grayscale value with changing resolution. This

resampling filter was implemented through the use of the Python Image Library (PIL) [60]

and the default kernel size was used.
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Figure 3·7 shows several PD refinements of a BMP slice that can be obtained through

manipulation of Equations (3.1) and (3.2) and demonstrates the effectiveness of the Lanc-

zos resampling filter. Table 3.2 corresponds with Figure 3·7 and lists the approximate total

number of material points in the corresponding three-dimensional PD model with each of

the different grid spacings.

Figure 3·7: Comparison of differing levels of refinement. Notation on the
left side of the image indicates grid spacing.

Table 3.2: Number of material points extracted from BMP images with
changing grid spacing.

Multiple of

Resolution

Grid Spacing

(µm)

Number of points

(106)

4 14.5 4.2

5 18.2 2.2

6 21.8 1.2

7 25.4 0.8

8 29.1 0.5

The BMP image is converted into a 2D PD grid Figure 3·8 (b) which contains yarn

(blue) and resin (red) material points in addition to voids (white). Voids are represented
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in the model by not including a material point at that specific location. This process of

generating 2D slices is repeated for each BMP image and then stacked in the x-direction

Figure 3·8 (c) to obtain the full simulation domain shown in Figure 3·8 (d). In all images,

the yarn is oriented along the x-direction. Additionally, from this reconstruction it is clear

that resin is continuous in the x-direction and most prevalent on the top and bottom surfaces.

Another observation is that the resin material tends to cluster at regular intervals throughout

the specimen.

Figure 3·8: (a) BMP image containing yarn, resin, and void pixels. (b)
A 2D PD slice of the composite specimen with yarn (blue) and resin (red)
material points. (c) Stack of 11 different 2D PD slices with an exaggerated
spacing in the x-direction. (d) A fully reconstructed section of the composite
specimen.

After the conversion of the BMP images into a PD simulation grid, the domain was

characterized using simple post-processing routines. These routines characterized aspects

of the microstructure such as resin fraction, void fraction, number of resin/void clusters

per unit area, and the average resin/void cluster sizes. This characterization is important

because it will provide future insight into the failure mechanisms and stress vs. strain

behavior of the composite. In the remainder of the text, these 6 different aspects are referred

to as descriptors as they statistically describe the microstructure.
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3.3.4 Characterization of Segmented X-ray CT Data

The x-ray CT data set was partitioned into four quadrants and four separate cells were cre-

ated at 7.27 micrometer grid spacing. This permitted a high level of microstructural detail

without exceeding available computational resources. Figure 3·9 (a) shows the locations

of the cells on the x-ray CT domain. Cells were selected to exclude any boundary effects

and were positioned to obtain a representative sampling of the entire specimen. Each cell

has dimensions of approximately 1 mm × 1 mm × 0.4 mm and contains approximately

900 thousand material points with a grid spacing of 7.27 µm. An isometric view of Cell

1 is provided in Figure 3·9 (b), where red and blue voxels represent resin and yarn ma-

terial, respectively. Figure 3·9 (c) shows the same isometric view of the cell, but colored

by z-coordinate location. The alternating sequence of coloring on the top surface demon-

strates the surface undulation present in the composite. Finally, Figure 3·9 (d) shows a

cross-sectional view of the composite. From this orientation, one can clearly see clustering

of the resin material.

After separation into distinct cells, the structural features of each cell were character-

ized. The features under consideration include: the number of material points, the average

thickness, the resin volume fraction, and the void fraction.
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Figure 3·9: Partitioning of x-ray CT into four distinct cells of high resolu-
tion.

Number of Material Points

In each cell, the material point identities were tabulated. A bar chart of this quantification

is given in Figure 3·10 with the horizontal axis representing each cell and the vertical axis

displaying the number of material points. As shown, each cell contains approximately 900

thousand material points, the majority of which are of CNT yarn type. Cell 2 and cell 3,

both located on the upper half of the x-ray CT specimen, have more yarn points than cells

1 and 4.
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Figure 3·10: A comparison of the number of material points in each cell.

Average Thickness

Figure 3·11 compares the average thickness of each cell. The surface undulation associated

with the structure naturally led to two different methods of approximation as shown in

Figure 3·12. The blue bar, method 1, computes the thickness as simply the difference

between the maximum and minimum z-positions of the surface. The red bar, method 2,

calculates the thickness of a BMP slice as the difference between the average top and

bottom surfaces. In both methods, the representative thickness for the cell was calculated by

averaging the individual thicknesses of each BMP slice. Each cell has a similar thickness.

Additionally, the difference in thickness between method 1 and method 2 is quite high due

to the large amplitude in the surface undulation.
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Figure 3·11: A comparison of the average thickness of each cell.

Figure 3·12: Visualization of the two different methods used for approxi-
mating the thickness of each BMP slice.
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Resin Volume Fraction

The resin volume fraction for each slice was calculated by counting the number of resin

points and dividing by the total number of material points. The volume fraction for the cell

was then calculated by averaging together the volume fraction of each slice. With a similar

notation to the previous charts, results from the process are given in Figure 3·13. The resin

volume fraction for each slice was very consistent and has an approximate value of 0.16.

Figure 3·13: A comparison of the volume fraction of each cell.

Surface Undulation

One important feature observed throughout the BMP slices is the undulation of the surface.

Figure 3·14 illustrates this undulation by coloring the material points by z-coordinate po-

sition. The alternating color on the top surface, progressing from yellow/orange to red, is

sinusoidal in nature. This sinusoidal behavior can be visualized clearly on the YZ plane as

shown in the rightmost image in Figure 3·14.
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To approximate the surface undulation, a nonlinear least squares optimization routine

was used to fit a sinusoidal function to the top and bottom surfaces of each BMP slice.

Equations (3.3) and (3.4) show the top and bottom fitted expressions respectively, where

Ai is the amplitude, fi the frequency, φi the phase, and Di the offset for a given slice, i.

Figure 3·15 shows an example of this optimization procedure performed on a slice. The

black dashed lines show the extremes of the surface, the red dashed lines show the average

top and bottom surfaces, and the purple scatter shows the converged sinusoidal fit for the

top and bottom surfaces.

zt
i(x) = |At

i|sin( f t
i x+φ

t
i )+Dt

i (3.3)

zb
i (x) = |Ab

i |sin( f b
i x+φ

b
i )+Db

i (3.4)

Figure 3·14: Visualization of the surface undulation colored by z-
coordinate position.
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Figure 3·15: Approximating the undulation of the surface.

Void Fraction

The void fraction, Vf is approximated using Equation (3.5), where Nm is the actual number

of material points for a cell and Nt is the number of points assuming a completely full

domain.

Vf = 1− Nm

Nt
(3.5)

A full domain is detected by overlaying a uniform grid on the top of the PD slice. The

yellow cells of Figure 3·16 show a visualization of the voids detected using this method.

Figure 3·17 shows a comparison of the calculated void fraction for each cell. Cells 2

and 3 have lower void fractions than cells 1 and 4. It should also be noted that cells 2 and

3 contain the highest number of yarn material points (Figure 3·10).
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Figure 3·16: Visualization of void fraction on a slice.

Figure 3·17: A comparison of the void fraction of each cell.
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Quantification of Resin and Void Clusters

Two distinct algorithms were used to identify and characterize the groupings (clusters) of

resin/void material on each individual slice. After assignment of resin/void material points,

a K-nearest neighbors algorithm [61] was applied to detect the resin/void material points.

The K-nearest neighbors routine identifies the resin/void material points to be placed into

separate clusters, and performs an initial removal of noise from the data set. It is worth

noting that it does not separate the points into clusters. Subsequently, a data clustering

algorithm called Density Based Spatial Clustering of Applications with Noise (DBSCAN)

was applied to detect and quantify individual void/resin clusters. This algorithm, first pre-

sented by Ester et al. in [62], is well suited for this task because of its ability to discover

clusters of arbitrary shape and its ability to distinguish noise within the data set.

The clustering process is demonstrated by considering an example slice shown in Figure

3·18 with the yarn, resin, and void material points. In this instance, first the K-nearest

then the DBSCAN algorithm were applied to identify the resin clusters of the slice (red

points in Figure 3·18). Figure 3·19 shows the result of the process itself. In this instance,

the algorithm detected 26 different resin clusters of various sizes. For visualization, each

uniquely classified resin cluster is assigned a different color and the center of the cluster

is shown using a red triangle. Also shown by the black crosses are resin material points

considered by the algorithm to be noise and therefore not associated with any of the clusters.

This procedure is performed on every BMP slice of the data and the resulting information

about resin and void clusters is stored.
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Figure 3·18: Visualization of yarn, resin, and void material on a slice.

Figure 3·19: The resulting clusters identified by application of first the K-
nearest then the DBSCAN algorithm to detect shape, size, and quantity of
resin clusters of the microstructure.
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3.4 Peridynamic Modeling Approach

Several modifications to the traditional bond-based PD method were needed to properly

simulate the explicit yarn and resin material regions extracted from the x-ray CT data.

These modifications are necessary to introduce the anisotropic material behavior of unidi-

rectional composites. Similar to the CFRP methodology presented in Section 2.1, to de-

velop anisotropy in the PD model, bonds were categorized based on material associations.

Based on bond type categorization, bonds were given different constitutive properties.

3.4.1 Bond Types

Based on material association (yarn/resin) and alignment, several bond types were consid-

ered. (Table 3.3) shows the relationship between material association, alignment and be-

havior for these various bond types. The start and end point material association of a bond

are given in the second and third column, respectively. The first set of bond type variations,

labeled (1a-1c), are considered yarn-yarn bonds. For these three variations, alignment is

an important consideration and is given in the fourth column. The first variation, 1a, is a

yarn-yarn bond that is perfectly aligned with the yarn direction. In this scenario, the bonds

behavior is governed by the yarn bond constant. The second variation, 1b, is a yarn-yarn

bond that is oriented perpendicular to the yarn direction. In this instance, the bond behavior

is governed by the resin bond constant as the yarns are only connected to each other through

resin in that direction. Finally, the third variation is a bond that is oriented in between the

parallel and perpendicular directions. For this scenario, the bonds have a material constant

in between the yarn and resin bond constant and are governed by the off-axis modulus

function.

The next variations considered were bonds consisting of one resin and one yarn material

point. These bonds are treated as interface bonds and do not have any direction dependent

properties. While classified as interface bonds for completeness, in the current work they

use the same bond constant as the resin bond. Finally, the third variation is resin-resin

bonds. Like the interface bonds, they do not have any directional dependency and are
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governed by the resin material properties.

Table 3.3: Relationship between material association, alignment, and be-
havior for various bonds.

Bond Type Material Point 1 Material Point 2 Alignment Behavior

1a. Yarn Yarn Parallel Yarn

1b. Yarn Yarn Perpendicular Resin

1c. Yarn Yarn Off-axis Off-axis

2a. Yarn Resin NA Interface

2b. Resin Yarn NA Interface

3. Resin Resin NA Resin

Figure 3·20 pictorially illustrates the bond types that are possible within the model and

their associated behavior. In this figure, blue squares represent yarn material points and

the red squares represent the resin material points. Two separate scenarios are drawn. The

first scenario is a yarn point located at the center, while the second is that of a resin point

located at the center. The possible interaction behaviors are shown using different colors,

interface in green, resin in red, yarn in blue, and off-axis in purple.
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Figure 3·20: Schematic showing the possible bond types.

3.4.2 Off-Axis Modulus Function

Figure 3·21 shows the constitutive relationships associated with each bond type. For sim-

plicity, each constitutive relationship is of a linear form and can be fully described by two

material parameters: a bond constant and a critical stretch. The bond constant is the slope

of the force-stretch curve while the critical stretch is a strength related parameter. The

deformation of the bond may continue to a value that leads to its breakage. The stretch

value at this state is called the critical stretch. The yarn constitutive relationship is given

in blue and has a higher bond constant and lower critical stretch as compared to the other

bond types. At the other extreme, the resin constitutive relationship, shown in red, has the

lowest bond constant and the highest critical stretch. The interface constitutive relationship

in green follows the resin behavior in this study. Finally, the off-axis yarn constitutive rela-

tionship in purple falls between the yarn and resin relationships. Equations (3.6 - 3.8) show

the bond force vs stretch relationship for each bond type.
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Figure 3·21: Schematic representation of the constitutive relationships.

fy = cys (3.6)

fr = crs (3.7)

fo = φccys (3.8)

The cy and cr constants can be determined by applying load along the yarn direction

and then subsequently along the transverse direction. The composite specimen was only

experimentally tested in the yarn direction so its behavior in the transverse direction is not

currently known. Because transverse properties in uniaxial composites are generally matrix

dominated, the transverse modulus was assumed to be that of the resin material.

The anisotropic material behavior was included in the model through the application

of an off-axis function. The form of the off-axis function is given by Equation (3.9). This

Gaussian function is used to ensure that yarn bonds oriented along the loading axis are

attributed yarn material properties and bonds oriented off-axis are assigned a reduced bond

constant. A bond perpendicular to the yarn direction is attributed the ratio of resin to yarn

bond constant cr/cy. This ensures that, upon multiplication with the yarn bond constant,
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the material property degrades back to the resin bond constant. Also in this equation, the

variable w represents the width of the gaussian function and θ is the bond angle with respect

to the yarn axis.

φc =
(

1− cr

cy

)
exp

(cosθ−1)2

2w2 +
cr

cy
(3.9)

A sampling methodology was developed to find an expression for the PD elastic con-

stants in a heterogeneous domain. In this method, a statistical representation of material

point families was obtained by repeatedly sampling the interior points. Statistical sampling

is necessary because the composition of a material points family is unique and based on the

x-ray CT grid generation process.

3.4.3 PD Material Constants

A relationship between engineering constants and the peridynamic material parameters

for each of the constituent materials is needed to describe the behavior of the different

bond/interaction types. Traditionally, the classical continuum mechanics (CCM) engineer-

ing constants are related to nonlocal peridynamic material parameters through the strain

energy density of a material point [22, 34, 35]. An expression for the peridynamic strain

energy density of a material point is developed and simple loading conditions are applied to

a family of material points positioned away from the domain boundaries. The strain energy

density for the CCM representation is calculated and the PD nonlocal material parameters

are chosen so that the PD strain energy density is equal to the CCM counter-part.

For each sampled point i, a displacement field was imposed on the sample. This is done

first along the yarn direction x and then in the transverse direction y. The displacement field

is imposed via an applied strain εx as shown in Equation (3.10). The superscript indicates
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that the displacement of each bond in the family varies with the original bond length.
ub

x

ub
y

ub
z

=


εxrb

x

0

0

 (3.10)

After imposing the displacement field on the family of point i, an initial guess is made

for both the yarn spring constant ky and the resin spring constant kr. The spring constants

ky and kr with units of N/m7 can be related to the bond constants cy and cr with units of

N/m6 through Equations (3.11) and (3.12)

ky =
cy

δ
(3.11)

kr =
cr

δ
(3.12)

where δ is the horizon. The material point i is first associated with yarn material and the

local strain energy density of the point is found through Equation (3.13). In this equation

the summation index b represents an individual bond in the family of the sampled point i.

Depending on material association and orientation, these bonds can take on resin or yarn

constitutive behavior as shown from the decomposition. Accordingly, the strain energy

density of each bond is summed to obtain the strain energy density of the material point i.

WY
(i) =

1
2

Nr

∑
b=1

1
2

kr(ub
x)

2Vb
δ

rb
+

1
2

Ny

∑
b=1

1
2

kyφc(b)(u
b
x)

2Vb
δ

rb
(3.13)

Alternatively, material point i can be envisioned as having resin material association, as

denoted by the superscript R in Equation (3.14). Under this circumstance, each bond b in

the family of i will have resin material properties. The strain energy density of point i can

be then calculated with just the resin associated terms.

W R
(i) =

1
2

Nr

∑
b=1

1
2

kr(ub
x)

2Vb
δ

ri j
(3.14)

The rule of mixtures is then applied to obtain an approximation of the composite strain
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energy density in the longitudinal direction as shown in Equation (3.15), where mr is the

resin mass fraction.

WPD−X = (1−mr)WY
(i)+mrW R

(i) (3.15)

The entire process is then repeated with loading in the transverse direction to obtain an

approximation of the composite strain energy density in the transverse direction. In this

scenario, a transverse displacement field is applied as shown in Equation (3.16).


ub

x

ub
y

ub
z

=


0

εyrb
y

0

 (3.16)

The strain energy density of yarn and resin points with this new displacement field is then

calculated. As written below, the only change in Equations (3.13) and (3.14) is the ex-

changed relative displacement term ub
y .

WY
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1
2
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1
2

kr(ub
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W R
(i) =

1
2

Nr

∑
b=1

1
2

kr(ub
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δ

rb
(3.18)

The strain energy density of the composite associated with the transverse load is then cal-

culated using Equation (3.19) where WY
(i) and W R

(i) are the stain energy densities of yarn and

resin points, respectively, due to a transverse strain εy.

WPD−Y =
((1−mr)

WY
(i)

+
mr

W R
(i)

)−1
(3.19)

The PD strain energy density terms are then compared with their classical continuum

mechanics counterparts, Equations (3.20) and (3.21).
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WCCM−X =
1
2

Exε
2
x (3.20)

WCCM−Y =
1
2

Eyε
2
y (3.21)

A nonlinear least squares optimization routine was then used to optimize the yarn and resin

spring constants with the following objective function.

min(Ψ) = (WPD−X −WCCM−X)− (WPD−Y −WCCM−Y ) (3.22)

This optimization procedure finds the optimal ky and kr for a particular material point i.

The heterogeneity of the microstructure means that this solution will be different for each

sampled point i. For this reason, 10,000 different material points were sampled and the

constants were found for each sampled point.

Figure 3·22 provides a flow chart for obtaining the yarn and resin constants and Figures

3·23 and 3·24 show a histogram of the variation in fiber and matrix constant obtained from

the optimization process. The vertical axis shows the frequency while the horizontal axis

shows the bond constant value in units of mN/mm7. The average bond constant values

from these histograms were used in the subsequent simulations.
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Figure 3·22: Flow chart for obtaining elastic constants.
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Figure 3·23: Variation in yarn material constant.

Figure 3·24: Variation in matrix material constant.
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3.4.4 Simulation Procedure

The experimentally generated stress vs. strain curve was simulated by dividing the loading

curve into multiple load steps. The blue curve of (Figure 3·25) shows the experimental

stress vs. strain curve, while the red points show the chosen load steps for the simulation.

The strain associated with each load step was converted into a displacement and applied as

the boundary condition.

Within each load step, a dynamic relaxation procedure was followed [22]. A quasi-

static solution was obtained for each load step by applying a small constant viscous damp-

ing coefficient to the velocity of each material point in the system. After equilibration,

bonds were allowed to fail progressively until no further damage accumulated, after which,

the next load step was entered. A complete description of the dynamic relaxation procedure

can be found in [44].

Within each load step, the displacement boundary condition was ramped over 10,000

timesteps. The internal force of the specimen was monitored for the duration of the simula-

tion by placing an imaginary force plane in the middle of the tensile specimen and summing

each of the bond forces crossing the plane. Engineering stress was determined during post-

processing by dividing the equilibrated internal force of each load step by the specimen

cross-sectional area.

3.4.5 PD Simulation Results

Figure 3·26 shows the stress-strain responses for each individual cell and their comparisons

to the experimental work of Kim et al. [6]. As expected, the heterogeneity and uniqueness

of each cell gives rise to some minor fluctuations in the response. Figure 3·26 shows

that the largest difference in the response can be observed in the failure strain. Failure of

the cells is determined to occur when the internal force measured through the force plane

drops to 0. Although further refinement in the load step increment is needed to determine

the exact strain at failure, the first and the fourth cells fail between the 2.0 % and 2.2 %

strain load steps while, the second and the third cells fail between the 2.2 % and 2.4% strain
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Figure 3·25: Demonstration of load steps.

load steps. Another observation is that unlike the experimental stress-strain curve, which

exhibits a softening behavior in the stress vs. strain response after approximately 1.5 %

strain, the simulated stress-strain curves are all linear. This response can be explained by

the linear-elastic constitutive relationship employed in the PD simulation approach. While

the PD simulations slightly overpredict the tensile strength, an overall good agreement is

observed between the experimental and numerical results.

A comparison of the stress vs. strain simulation results with the microstructural char-

acterization, contained in Section 3.3, lead to a few readily apparent trends. First, the total

numbers of material points in the cells are very similar. This could be one possible explana-

tion for the similarity in the stress-strain curves themselves. Additionally, a minor variation

exists between cells 2 and 3, and cells 1 and 4 in both the total number of material points

and the stiffness in the stress vs. strain response. Second, the two cells that fail at a higher

strain %, cells 2 and 3, also have the lowest void fraction. The low void content of these

cells could explain the higher failure strain and indicate that voids in the PD model influ-
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ence the failure behavior. For these particular models, a 0.8 % decrease in void fraction

increases the failure strain by 0.2 %.

Figure 3·26: Peridynamic stress-strain % curves.

Peridynamic theory is well suited for investigating complex failure morphology. Figure

3·27 shows a set of damage contours in each of the four cells from three distinct perspec-

tives with the yarn oriented along the x-direction. In this image, damage of a material point

is colored on a scale ranging from 0 (blue) to 1 (red). Colors close to blue indicate less

damage while colors close to red indicate a heavily damaged material point. The columns

in this image show the damage in each cell. The first row shows an isometric view of the

damage contours in each cell. From this orientation, only damage on the external surfaces

is visible. For this reason, an internal slice of the specimen is provided in the second row.

From this slice, an internal section along the yarn direction is visible. Finally, the middle

view in the third row shows the specimen after being sectioned at the midplane. These

contours demonstrate that failures, while not the same in each cell, share some common

characteristics. First, in all cases, the specimens are highly damaged on the surfaces and
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damage is oriented along the longitudinal (yarn) direction. Additionally, damage is present

in the entirety of the specimen and is not limited to the surfaces. Overall, the damage

observed in the PD simulations matches well with the experimentally observed failure as

shown in Figure 3·3.

Figure 3·27: Damage contours at the failure strain of each cell at various
orientations.

To better understand the relationship between the microstructure and the developed

damage, an overlay was created for various YZ planes of the specimen with X-axis being

the yarn direction. Each row of (Figure 3·28) shows a different YZ plane, highlighted in

red, of the specimen: left, middle, and right. In this orientation, yarn is perpendicular to

the plane. The middle column of the figure shows the microstructure of the slice. In this

image, blue voxels represent yarn, gray voxels represent resin, and white voxels represent

voids. The right most column shows accumulated damage on the slice. Undamaged ma-

terial points of the slice have been removed and the remainder is plotted with the color

representing the intensity of damage with red indicating the most damaged areas. The

left column shows an overlay of the material association and the damage. For visualiza-

tion purposes, transparency was added to the image. From the overlay, it is observed that
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streaks of damage connect both resin and voids. Damage is observed to accumulate most

around the void clusters and at the surfaces of sharp undulation. Additionally, damage is

spatially located in similar locations on each slice indicating a continuity of the damage in

the out-of-plane direction.

Figure 3·28: Damage overlay in different YZ planes for cell 1.

A similar set of overlays are shown in Figure 3·29. These figures show snapshots of the

damage progression in the YZ-planes. From top to bottom (1-7) the snapshots show the

damage process during the final load step. The progressive nature of the failure (snapshots

1-7) occurs as a result of the load redistribution during the failure process. In the fourth

row of the left column, damage is first observed in the voids closest to the surface. In the

next image, damage has extended towards the surface while following the closest voids.

In the middle plane, damage is observed not only at the voids closest to the surface, but

also at the top right surface where there is a sharp gradient in the surface waviness. As

observed in the left plane, damage extends from the voids closest to the surface to the

internal voids. Finally, in the rightmost plane, there are two sharp gradients in the surface
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waviness. Damage initially accumulates in both of these sites (sequences 3 and 4).

Figure 3·29: Damage initiation for cell 1 at different YZ planes.

Damage and material association overlay snapshots as the damage progresses for cells

2, 3 and 4 are presented in Figures 3·30, 3·31, and 3·32, respectively. Many of the ob-

servations detailed for cell 1 are also valid in cells 2-4. The most notable similarity being

that damage initiates at the sharp undulations in the surfaces. A key difference between

the microstructures can be observed in cells 2-3 (Figures 3·30-3·31) which have noticeably

lower void fractions. Without voids to guide the fracture path, damage appears to follow the

resin clusters. This is most apparent when comparing Figure 3·30 with Figure 3·32. Figure

3·30, a microstructure with few voids, fails at a higher strain percent and has damage that
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follows the resin clusters. In contrast, Figure 3·32, a microstructure with more significant

void fraction, fails at lower strain percent and has damage that follows the void clusters.

Figure 3·30: Damage initiation for cell 2 at different YZ planes.
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Figure 3·31: Damage initiation for cell 3 at different YZ planes.
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Figure 3·32: Damage initiation for cell 4 at different YZ planes.
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3.5 Synthetic Microstructure Reconstruction

For the final aspect of this work, a methodology is presented for creating synthetic mi-

crostructures that are structurally similar to the experimental sample. Such reconstruction

can provide insight into the structural features that heavily influence the mechanical re-

sponse. Recall the characterization work presented in Section 3.3. The microstructure de-

scriptors presented in this portion of the dissertation will be used heavily in the remaining

sections.

Probability Density Functions

Synthetic reconstruction is accomplished through the representation of the microstructure

as a series of probability density functions (PDFs). Using the statistical information from

the characterized x-ray CT images, a PDF was created using Equation (3.23)

p(x) =
1√

2πσ2
exp−

(x−µ)2

2σ2 (3.23)

where x is the statistic of interest, σ the standard deviation of the statistical set, and µ

the mean. This PDF was then randomly sampled to generate a synthetic structure. Figure

3·33 shows an example of the types of PDFs generated. This example utilizes the cluster

statistics gathered in Section 3.3.4.



191

Figure 3·33: Example of PDF generation and comparison with sampled
statistics for synthetic reconstruction.

In Figure 3·33, the orange histogram shows the distribution obtained directly from the

x-ray CT data, the red curve shows the calculated PDF of this data, and the blue histogram

shows a randomly generated distribution obtained by sampling the red PDF. It should,

of course, be noted that probability is at play in the sampling of the red curve; the blue

distribution will change with each realization of the microstructure. Meanwhile, the red

and orange distributions come directly from the x-ray CT data and therefore are fixed.

A PDF can be generated for each microstructure descriptor and is summarized in func-

tional form through Figure 3·34. The left column shows the statistics associated with the

resin material such as the (a) resin fraction, (c) number of resin clusters per unit area, and

(e) the average size of the resin clusters with the unit being the number of material points.

The right column shows the same types of statistics though associated with void regions.

The PDFs of (Figure 3·34) can be used to create each of the 2D slices of the structure as

shown in Figure 3·35. As shown, the PDFs can be used to replace the x-ray CT information

from Figure 3·8.



192

Figure 3·34: Probability density functions for each microstructural descrip-
tor.

Figure 3·35: PD grid development using PDFs.

Synthetic Generation Procedure

Figure 3·36 shows a procedure for constructing a synthetic microstructure from the PDFs.

A uniform rectangular cross-section for the slice is first created, Figure 3·36 (a). In Figure
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Figure 3·36: Synthetic reconstruction process.

3·36 (b), the surface undulation obtained from the microstructure characterization is applied

to the top and bottom of the slice.

Next, utilizing the previously generated PDFs, isolated voids and void clusters are in-

troduced into the domain, Figs. 3·36 (c) and 3·36 (d), respectively. The increase in the

void fraction that occurs after introducing the void clusters is accounted for by converting

a portion of the seeded voids back into material, Figure 3·36 (e). The void/void cluster

configuration is finalized as shown in Figure 3·36 (f). In a similar manner, isolated resin

material points (Figure 3·36 (g)) and resin clusters are introduced (Figure 3·36 (h)) into the

slice. The fully reconstructed slice is then obtained by matching the resin volume fraction

as shown in Figure 3·36 (i).

The methodology of introducing resin/void clusters into a reconstructed cell is outlined
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in Table 3.4. The initial step is to seed the fraction onto the slice. If the void clusters are

under consideration, then material points are removed in order to match the void fraction.

Alternatively, if resin clusters are under consideration, then the material association is mod-

ified to match the resin volume fraction. Based on the statistics found from the DBSCAN

algorithm, such as the number of clusters and the size of the clusters, a point is chosen as

a nucleation site. The cluster is then grown from this nucleation site and allowed to grow

with an arbitrary shape until the desired cluster size is reached. Finally, material points are

added back to the model to match the void fraction and assigned yarn/resin material asso-

ciation to match the mass fraction. Figure 3·37 demonstrates the resin clustering procedure

on a particular slice. The leftmost image, Figure 3·37 (a), shows the initially seeded resin

volume fraction. This image shows a resin mass fraction with little resin clustering. In the

middle image, Figure 3·37 (b), clusters are introduced and are shown by the yellow voxels.

Finally, Figure 3·37 (c) shows the final step of ensuring mass fraction with resin clusters

themselves. In this step, points are converted from resin association to yarn association to

ensure that the resin clusters do not artificially increase the mass fraction on the slice. A

very similar methodology was used to introduce void clusters into the cell.

Table 3.4: Incorporation of clusters into the model

Cluster Implementation Procedure

1 Randomly seed to match resin/void fraction

2 Choose material point locations to nucleate clusters

3 Adjust association of points to match resin/void fraction

4 Repeat for each slice

To nucleate the clusters into the model, first an approximate area of the cluster CA was

calculated as shown in Equation (3.24), where NA is the number of points in the cluster,

and ∆x is the size of the void in the x and y directions.

CA = NA∆x2 (3.24)
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Figure 3·37: Demonstration of cluster implementation.

An approximate radius of the cluster was calculated following Equation (3.25).

rA =

√
CA

π
(3.25)

To account for the truncated size of the cluster arising from the thresholding process,

the approximate radius of the cluster was increased by 2 times the grid spacing as seen in

Equation (3.26).

rB = rA +2∆x (3.26)

Finally, the number of points to add for the cluster is increased proportionally as shown

in Equation (3.27).

NB =
NA

rA
rB (3.27)

Additionally, the x-ray CT displayed continuity of the voids through the length of the speci-

men, which is the yarn direction. In order to mimic this characteristic of the microstructure,

the location of the point chosen to nucleate is kept constant for each slice along the length

of the composite. However, the shape and size of the void are allowed to vary.

The advantage of representing the microstructure as a series of PDFs is that each PDF

can be systematically explored and evaluated. Each microstructure descriptor can be in-

dependently modified through its PDF. Figure 3·38 shows an example of such artificial

modification of the PDFs. In this example, the original PDFs are shown in black and a new

statistical scenario is shown using red circular scatter points. The only difference between
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the two scenarios is the size of the average resin clusters (Figure 3·38 (e)). For this partic-

ular PDF, the average of the size of the resin clusters µ is doubled between scenarios while

the standard deviation σ is kept constant. This parameter change in the PDF ultimately

manifests as a curve shift to the right that maintains the same shape.

Figure 3·38: Comparison of the original PDFs (A) and modified PDFs (B).

The reconstruction of the microstructure with the new PDF will produce an entirely

unique structure that reflects the shift in the PDF. Figure 3·39 compares the first slice of

each of the different scenarios. In Figure 3·39 (b), the average size of the resin clusters has

doubled. Because the resin fraction has not changed, there are fewer isolated number of

resin material points. These points have become a part of the clusters themselves. Addi-

tionally, because the PDF associated with the number of resin clusters per unit area has not

changed, the number of resin clusters are similar between the two structures (i.e. only their

size has changed).
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Figure 3·39: Visualization of PDF modification and the resulting mi-
crostructure on a 2D slice.

In this work, eight different simulations were considered to explore the influence of

each microstructure descriptor. A description of each simulation is provided in Table 3.5.

In each scenario, the mean of the PDF µ was modified. Figure 3·40 provides a visualization

of these parameter modifications.

Table 3.5: Summary of simulations performed to explore the structure.

Scenario Description of Microstructure Modification

x-ray Simulation grid obtained directly from x-ray CT

A Original synthetic realization

B Double the mean resin cluster size per unit area

C Double the mean void cluster size per unit area

D Double the mean number of resin clusters per slice

E Double the mean number of void clusters per slice

F Double the mean resin fraction per slice

G Double the mean void fraction per slice

Figure 3·40 (a) shows the variation in the number of material points for each of the

microstructures. The size of the simulation domain remains constant between each scenario
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and as a result, the total number of material points is very similar. Scenarios A-E do not

change the resin fractions and have very similar number of yarn and resin material points.

Scenario F doubles the resin fraction average in the PDF and as a result, the number of yarn

material points decrease and the number of resin material points increase. One of the major

modifications to the microstructure is the average size of the resin and void clusters. These

statistics are compared in Figure 3·40 (b). The size of the resin clusters are dramatically

increased in scenario B and the size of the void clusters are increased in scenario C. Figure

3·40 (c) compares the average resin and void fraction for the microstructures. As expected,

these remain constant until scenarios F and G. The final comparison is the number of resin

and void clusters Figure 3·40 (d). In scenario D, the number of resin clusters is doubled

and in scenario E, the number of void clusters are doubled.

Figure 3·40: Visualization of microstructure descriptors for each simulation
scenario.

Figure 3·41 is provided to help visualize each of these modifications and their influence

on the actual microstructure. The top left image labeled x-ray CT shows the microstructure
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obtained directly from the x-ray CT data. The top-right image, A, displays the PDF gener-

ated structure using the statistics obtained from the x-ray CT data. These two structures are

statistically equivalent according to the current microstructure descriptors and only differ

in the manner in which they were created. The leftmost column (B, D, and F) shows the

modifications to the PDFs associated with resin material and the rightmost column (C, E,

and G) shows the modifications to the PDFs associated with voids. It is important to note

that this is only a single slice of the structure and is intended only to help visualize the

changes in the structures. A 3D simulation domain is obtained following the grid develop-

ment procedure explained through Figure 3·35 and Figure 3·36. Additionally, only a single

realization of the structure was created for each scenario. Multiple realizations can be made

that still match the overall statistics of the PDFs. In future work, additional realizations will

be considered to learn more about the significance and establish bounds.

A total of eight simulations were completed each with a distinct microstructure (Figure

3·41). Peridynamic load steps were performed at 0.7, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9%

strain intervals. After applying the displacement to the boundary regions, equilibrium was

found using a dynamic relaxation routine. The solution was then allowed to fail progres-

sively until no further damage accumulated. Engineering stress was found by monitoring

the internal force in the middle of the specimen. The specimen was considered to fail if the

measured internal force dropped to 0.

Figure 3·42 provides an overview of damage in each of the different microstructure

scenarios. Each material point in the model is colored on a scale between 0 (blue) and 1

(red). A damage value of 1 indicates that all of the interactions for that material point have

failed. An isometric orientation of the specimen Figure 3·42 (a) and a sectioned view Figure

3·42 (b) are provided to visualize both the external and internal damage of the specimens.

Each panel shows the damage at the final failure strain. For reference, the failure strain for

each scenario is provided at the bottom of each panel.

As shown, the x-ray CT scenario has more damage on the surface than the other mi-

crostructures. One possible explanation for this difference is that the x-ray CT generated
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Figure 3·41: Visualization of microstructure modifications on 2D PD slices.

microstructure has more resin material points on the surface. There are two different dam-

age features for the x-ray CT scenario. The first is damage that occurs transverse to the

loading direction near the right boundary region. The second damage pattern is in the

longitudinal yarn direction and spans the entire length of the specimen. Both damage pat-
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terns exist through the thickness of the specimen and indicate complete separation of the

material.

Unlike the x-ray CT scenario, most of the realizations exhibit damage that extends

along the transverse direction of the composite but does not have much extension in the

longitudinal direction. Scenarios D and E are an exception to this, as they have damage that

extends longitudinally originating from the left side of the specimen. These two scenarios

have an increase in the number of resin/void clusters and have a higher failure strain as

compared to the other scenarios.

Figure 3·42: Overview of the final damage contours for each microstructure
scenario.

Figure 3·43 shows the stress vs. strain curves for each of the artificially modified PDF

scenarios compared against scenario A. The synthetically generated structures match well

with the experimental stress/strain curves except that they underpredict the strain to failure.

The lowest failure strain in the models was 1.70% while the experimental sample failed

at just over 2% strain. The stress vs. strain curves for scenarios A-E Figure 3·43 (a-
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Figure 3·43: Stress vs. strain curves for each simulation scenario compared
against the original PDFs (scenario A).

d) are nearly identical except for their failure strains. The similarity in stiffness is most

likely a result of the total number of material points and the distribution of yarn/resin being

nearly equal for these cases Figure 3·40 (a). Alternatively, in scenario F the average resin

fraction was doubled and the number of resin material points was increased. This produced

a composite with a lower stiffness and a composite that did not fail at the final simulation

load step as observed in Figure 3·43 (e). Similarly, the stiffness of scenario G (Figure 3·43

(f)) drops as the total number of material points decreases with an increase in the void

fraction. However, in this scenario, the specimen failed at a failure strain of 1.70%.
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Conclusions and Future Work

This dissertation is intended to provide the community with a systematic approach for us-

ing PD theory to predict the material response in polymer matrix composite systems. Two

completely different types of composites were explored: carbon fiber and carbon nanotube

yarn. For CFRP composite systems, a laminate based approach was systematically verified

and validated. The developed approach was used to explore the damage mechanisms in-

duced by low-velocity impact. While the core of the PD approach remained the same for

the CNT yarn reinforced composites, actual x-ray CT data was used to develop the sim-

ulation domain. This process of using x-ray CT data and synthetic reconstruction is not

limited to PD theory and can be used in a multitude of modeling approaches. The remain-

der of this dissertation reiterates the work that was performed for each composite system

and provides some guidance into the direction of future work.

CFRP Conclusions

In this work, a direct numerical approach was developed for the calculation of nonlocal

PD material constants with an explicit representation of fiber and matrix material regions.

The approach was demonstrated by simulating uniaxial tension tests on a IM7/8552 com-

posite system and compared against the experimental results of [37]. The versatility and

advantage of the developed approach was demonstrated by modifying the discretization

of the system. The approach was extended to include nonlinear constitutive relationships

by reformulating as an optimization problem. Both a Ramberg-Osgood and a hyperbolic

nonlinear constitutive relationship were demonstrated at various off-axis orientations and

found to be in good agreement with experimental and analytical results. A method for re-

203
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lating nonlocal stretch rate to strain rate was developed which enabled strain rate dependent

constitutive responses to be simulated. A 45◦ off-axis dynamic tension test was simulated

to validate the PD strain rate formulation developed.

Four different low-velocity impact energy levels were simulated and compared against

the provided experimental results at 150, 187.5, 225, and 262.5 in-lbf. All of the PD

simulations compared well with the experimentally observed force vs. time, force vs. dis-

placement, and energy vs. time behaviors. Simulations predicted circular damage regions

with delamination extents within the experimental bounds. The model was found to be

particularly sensitive to fiber bond failure and a 10 % decrease in the longitudinal failure

strength showed a significant load drop in the force vs. time curve similar to the experi-

ments. The legacy PD approach, with calibrated PD elastic and strength constants, tended

to overpredict both impact peak force and impact duration while underpredicting the peak

displacement. Using the numerical approach led to a more accurate peak force and im-

pact duration, however, still overpredicted the initial slope of the force vs. time curve.

Adding shear nonlinearity decreased the initial slope of the force vs. time and force vs.

displacement curves and overall made the most significant contribution in improving the

experimental vs. simulation comparison.

A preliminary hat-stiffened panel model was developed and used to simulate a 150 in-

lbf impact on the outer mold line. While computationally expensive, the initial response

appears promising. Additionally, a through-thickness reinforcement approach was devel-

oped to simulate stitched composites. While the initial results did not show an improve-

ment in the resistance to delamination, the model development provided further avenues of

exploration.

CFRP Future Work

Future work should consider exploring the relationship between the intra- and interlam-

inar nonlocal horizon values. Because of the intricate experimental relationship between

intra- and interlaminar failure mechanisms, the extent of these PD horizons may affect the

predicted interaction. Additionally, an investigation of fiber bond failure sensitivity should
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be conducted. The PD work in this project revealed that the interlaminar shear behavior

has a profound influence on the bending near the impactor, which in turn affects the impact

force and impact duration. The current approach uses the intralaminar Ramberg-Osgood

as a starting point and extracts PD material parameters of a linear-flat response for the

interlaminar shear bonds. A material model for interlaminar shear bonds that is based on

experiments directly focusing on the interlaminar shear deformation would further improve

the current approach. Additionally, experimental observation of the influence of interlami-

nar shear on the bending response (e.g., 3D DIC) would add to the knowledge base.

CNT Conclusions

This work describes the development of a method for accurately predicting the defor-

mation and failure of CNT yarn polymer composites using PD theory. The heterogeneity

of the microstructure and the resulting anisotropic behavior were accommodated within

the PD framework by using explicitly defined bond types for CNT yarn and polymer resin.

Additionally, an off-axis modulus function following a Gaussian variation has been utilized

to account for CNT bundles that are not aligned with the major yarn direction. A number of

PD models were generated using new techniques for processing x-ray CT reconstructions.

Characterization of the x-ray CT data was extended by constructing probability density

functions for yarn, resin, and void materials within each slice. Further, the DBSCAN

algorithm was employed to detect shape, size, and quantity of resin and void clusters.

This additional characterization effort provided information needed to generate synthetic

PD models that share the characteristics of the x-ray CT-based models, qualitatively and

quantitatively. Tension test simulations of CNT yarn polymer composites were performed

using the generated PD models.

The following conclusions are drawn:

• X-ray CT-based heterogeneous peridynamic model simulations capture the experi-

mentally observed stress vs. strain response as well as the failure strain with good

agreement
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• Results reveal that the damage is most prevalent on the exposed surfaces and primar-

ily aligned with the yarn direction, which is consistent with the experiment

• Sharp gradients on the surface provide preferential sites for failure initiation

• Clusters of resin and voids facilitate failure propagation

• Synthetically-generated heterogeneous peridynamic model simulations also capture

the stress vs. strain response. The failure morphology shows damage aligned with

the yarn direction

• The surface damage in synthetic models is not as pronounced as that seen in the x-ray

CT-based models

CNT Future Work

There are two main differences between the x-ray CT-based and synthetically gener-

ated PD models: (1) the x-ray CT-based model, and thus the actual specimen, has a higher

concentration of resin at the exposed surfaces and (2) the x-ray CT data indicates conti-

nuity of void and resin clusters along the yarn direction, which was not captured in the

synthetic models. These differences lead to the discrepancy between the failure morpholo-

gies predicted. Although the specimen level stress vs. strain response and failure strain

are both predicted with good agreement, in order to effectively utilize the synthetic mod-

els for exploration of the design space to maximize stiffness and strength, the synthetic

models need to more closely represent the actual microstructural characteristics. The con-

tinuity of clustering could be influential in fully capturing the material response. With

this in mind, future work should consider incorporating the continuity of clusters into the

synthetic microstructure realizations. Additionally, because the generation process is in-

herently stochastic, multiple realizations at each structural modification should be created.

Finally, only a normally distributed PDF was used in this work. To fully capture the in-

herent stochasticity of the structure, future work should consider alternative PDFs to fully

explore both microstructure and model sensitivities.
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[61] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn:
machine learning in python. Journal of Machine Learning Research, 12:2825–2830,
2011.



212

[62] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In KDD-96,
pages 226–231, 1996.


	Peridynamic Approaches for Damage Prediction in Carbon Fiber and Carbon Nanotube Yarn Reinforced Polymer Composites
	Downloaded from

	Introduction
	Motivation
	Failure Mechanisms of Polymer Matrix Composites
	Introduction to Peridynamics
	Research Objectives
	Outline
	Unique Contributions

	Carbon Fiber Reinforced Composites
	Peridynamic Approach for Laminated Composites
	Objective Approach for Determining PD Material Parameters
	2D Isotropic Scenario
	Intralaminar Fiber and Matrix Bonds
	Intralaminar Shear Nonlinearity
	Interlaminar Constitutive Response
	PD Strength Parameters

	Quasi-Static Off-Axis Tension Simulation Results
	Strain Rate Dependence
	Dynamic Off-Axis Tension Simulation Results

	Low-Velocity Impact Simulation Results
	Problem Description
	Simulation Approach Improvement Summary
	Simulation Results
	Increasing Impact Energy
	Decreasing Longitudinal Strength
	Comparing Increased Energy with Decreasing Longitudinal Strength

	Hat-Stiffened Panel Impact Simulation Results
	Through-Thickness Reinforcement Simulation Results
	Considerations for Through-Thickness Reinforcement
	Through-Thickness Reinforcement Simulation Results


	CNT Yarn Reinforced Polymer Composites
	Background
	Experimental Work
	Microstructure Characterization
	X-ray CT Imaging
	Thresholding Process
	Manipulation of the Grid Spacing
	Characterization of Segmented X-ray CT Data

	Peridynamic Modeling Approach
	Bond Types
	Off-Axis Modulus Function
	PD Material Constants
	Simulation Procedure
	PD Simulation Results

	Synthetic Microstructure Reconstruction

	Conclusions and Future Work

