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Abstract 

IN VIVO EFFECTS OF THE CB1 ALLOSTERIC MODULATOR LDK1258, A 

STRUTURAL ANALONG OF ORG-27569 

Mohammed A. Mustafa, Bachelor of Science 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Master of Science at Virginia Commonwealth University 

Virginia Commonwealth University, 2020 

Advisor: Aron H. Lichtman, PhD, Professor of Pharmacology and Toxicology 

 

Cannabinoid type-1 (CB1) receptor allosteric modulators are an area of growing interest 

in the cannabinoid research field as novel experimental tools and a potential therapeutic 

strategy. While the quantity of publications examining CB1 allosteric modulators has 

substantially increased in recent years, most reports describe the cellular mechanisms 

of these compounds and relatively few published studies have examined the in vivo 

pharmacology of these compounds. ORG-27569 is a first-generation CB1 allosteric 

modulator and the most widely studied to date. This compound enhances [3H]CP55,940 

binding at the CB1 receptor in vitro (Price et al., 2005), but it’s in vivo  effects are CB1 

receptor independent (Gamage et al., 2014). Subsequent series of CB1 allosteric 

modulators have been developed, many of which are structural analogs of the ORG-

27569 pharmacophore such as the novel compound LDK1258. The purpose of this 
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thesis dissertation is to examine LDK1258 in in vivo models of neuropathic pain, 

cannabimimetic side-effects, and feeding behavior. 

Cellular studies of LDK1258 report that it shows a concentration dependent 

inhibition of CP55,940-induced G-protein coupling activity with a KB value of 89.1 nM in 

a [35S]GTPγS binding assay (Khurana et al., 2014). This compound was selected as the 

candidate test compound because of its high binding affinity compared to other 

structurally similar compounds. In a series of behavioral experiments in mice, we tested 

LDK1258 in mouse assays sensitive to CB1 receptor stimulation, which include the 

tetrad assay (comprised of measures assessing locomotor activity, catalepsy, 

antinociception, and hypothermia), the drug discrimination paradigm, food consumption, 

and the chronic constrictive sciatic nerve injury (CCI) model of neuropathic pain. In 

addition, we tested whether this compound was CNS penetrant and if any active 

metabolites were detectable following systematic administration in mice. When tested 

alone in the tetrad assay, LDK1258 produced a significant decrease in locomotor 

activity and body temperature, but not antinociception, as measured in the tail 

withdrawal assay, or catalepsy, as assessed in the bar test.  LDK1258 decreased 

locomotor behavior and body temperature to a similar magnitude in CB1 (-/-) and (+/+) 

mice, indicating CB1 receptor independent effects. Moreover, LDK1258 failed to shift the 

dose-response curves of two orthosteric CB1 receptor agonists, CP55,490 in C57BL/6J 

mice and AEA in FAAH (-/-) mice in the tetrad assay. In the mouse drug discrimination 

assay, LDK1258 failed to substitute or shift the dose-response curve for either of these 

agonists but dose-dependently suppressed response rates indicating a 

pharmacologically relevant effect in this assay. Because mice administered the parent 
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compound ORG-27569 show reduced food intake, we investigated whether LDK1258 

affected food consumption and tested CB1 receptor dependency using CB1 (-/-) and 

(+/+) mice. LDK1258 reduced food consumption regardless of genotype, again 

indicating a CB1 receptor dispensable effect. In comparison, the CB1 receptor 

antagonist rimonabant dose-dependently reduced food intake in CB1 (+/+) mice, but not 

in CB1 (-/-) mice. In the final study, we examined LDK1258 in the CCI model of 

neuropathic pain. Unexpectedly, it elicited a delayed antinociceptive effect (i.e., 

beginning at 4 h) that was CB1 receptor independent. The results of the studies 

conducted throughout this thesis project demonstrate that LDK1258 decreases 

locomotor activity, body temperature, and food consumption, as well as elicits a delayed 

antinociceptive effect in the CCI model of neuropathic pain. However, the CB1 receptor 

is not required for these pharmacological effects.  

These findings underscore challenges in translating in vitro effects of newly 

developed CB1 receptor allosteric modulators to the whole animal, as well as 

emphasize the importance for medicinal chemists, structural biologists, cellular 

pharmacologists, and behavioral pharmacologists to advance the development of CB1 

receptor allosteric modulators. Additionally, we demonstrated the importance of using a 

methodology that incorporates series of behavioral tests modeling neuropathic pain, 

feeding behavior, and THC-like side effects as a model to assess the in vivo effects of 

novel CB1 allosteric modulators.  
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Chapter I 

General Introduction 

 

A major step in understanding of the endocannabinoid system began when the primary 

psychoactive constituent of the Cannabis sativa plant, Δ9-tetrahydrocannabinol (THC) 

(Gaoni & Mechoulam, 1964) was identified and isolated. Subsequently, medicinal 

chemists developed synthetic analogs of THC and conducted structure-activity-

relationship studies of these novel compounds (Razdan, 1986). One analog, CP55,940 

was tritium-labeled to a high specific gravity and used as a tool to facilitate the discovery 

of the CB1 receptors (Devane et al., 1988) which were identified and cloned in human 

brain (Matsuda et al., 1990). In later years, CB2 receptors were identified in peripheral 

tissue (Munro et al.,1993). Both receptor types are described as being the primary 

targets of THC.  

CB1 receptor signal transduction. The CB1 receptor is predominantly 

expressed on pre-synaptic axon terminals of neurons and is the most abundant GCPR 

expressed in the central nervous system (CNS) (Alger & Kim, 2011). These receptors 

are part of the rhodopsin-like family of 7-transmembrane spanning receptors and CB1 

ligands bind within the central core formed by the interaction of the seven 

transmembrane helices. They are Gi/o-coupled proteins that elicit downstream signaling 

cascades when activated which allows for release of a G-protein subunit to regulate 

effector proteins, ultimately dampening pre-synaptic neurotransmitter release (Mackie, 

2006). Specifically, release of the G-protein subunit inhibits adenylyl cyclase activity 
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resulting in an inhibition of cAMP accumulation. Intracellular cAMP and cAMP-

dependent protein kinase A (PKA) phosphorylate ion channels in neurons (Howlett & 

Shim, 2013). When the CB1 receptor is activated intracellular cAMP concentrations 

decrease resulting in inhibition of ion channel phosphorylation. This net reduction of ion 

channel phosphorylation results in a hyperpolarization of axon terminals and a blunted 

response to depolarizing stimuli (Howlett & Shim, 2013). Studies examining the effects 

of CB1 agonists in transgenic animals indicate that CB1 receptor is responsible for the 

behavioral effects of THC and other exogenous cannabinoids because these effects are 

inhibited in CB1 (-/-) animals but not in (+/+) controls (Grim et al., 2016; Wiley et al., 

2005).  

General introduction to the endocannabinoid system. Several endogenous 

ligands that activate the CB1 receptor have been identified, with the two most 

predominantly studied being N-arachidonoyl ethanolamine (anandamide; AEA) (Devane 

et al., 1992) and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995; Sugiura et al., 

1995). These endogenous cannabinoids (endocannabinoids) function as retrograde 

messengers that are released on demand from post-synaptic cells to modulate pre-

synaptic neurotransmitter release (Mackie, 2006). AEA, 2-AG, and other 

endocannabinoids are regulated by a distinct set of enzymes that modulate the 

biosynthesis and degradation of these ligands. It is known that 2-AG is synthesized by 

diacylglycerol lipases (DAGL-α and DAGL-β) (Bisogno et al, 2003). Alternatively, 

evidence suggests NAPE-PLD activity regulates AEA biosynthesis but the mechanisms 

mediating the production of AEA are incompletely understood (Blankman & Cravatt, 

2013). Because of the rapid degradation of AEA and 2-AG by their respective metabolic 
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enzymes, fatty acid amide hydrolase (FAAH) (Cravatt et al, 1996, 2001) and 

monoacylglycerol lipase (MAGL) (Blankman et al, 2007; Dinh et al, 2002), these 

endogenous ligands produce a short-lived duration of action.  

In the simplest terms, the endocannabinoids in addition to the CB1 and CB2 

receptors comprise the endogenous cannabinoid system (endocannabinoid system) 

and are neuromodulatory regulators that affect various physiological processes 

depending on cell type and location. Processes regulated by the endocannabinoid 

system include, but are not limited to feeding behavior and energy storage (Wiley et al., 

2005), reward (Chen et al.,1991; Gardner et al.,1988; Lepore et al., 1996), stress 

responses (Patel et al., 2017) and pain and inflammation (Guindon & Hohmann, 2012). 

Exogenously administered cannabinoids, such as THC, affect these physiological 

processes as well and can be used for therapeutic application.  

Clinical use and side-effects of cannabinoids. Evidence of the therapeutic 

effects of cannabinoids has been recorded as early as ~2700 BCE in ancient China with 

the use of herbal cannabis for various ailments (Booth, 2003). In modern medicine, 

dronabinol (THC) and nabilone (sold under the brand name Cesamet) are FDA-

approved as antiemetics to reduce cancer chemotherapy associated nausea and 

vomiting (Sallan et al., 1975; Poster et al., 1981). Dronabinol is also approved as an 

appetite stimulator in patients afflicted with AIDS-related cachexia (Gorter et al., 1992).  

It is important to note that despite the promise to treat various conditions, the 

clinical utility of cannabis and other exogenous cannabinoid agonists are limited due to 

their intoxicating effects, ability to impair cognitive function, and associations with 

psychiatric conditions such as schizophrenia, acute anxiety, and cannabis use disorder 
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(Bhattacharyya et al., 2017; Foster et al., 2018; Ramaekers et al., 2009; Renard et al., 

2018). CB1 receptor antagonists, such as rimonabant, have also been developed as 

therapeutics for weight loss; however, the availability of rimonabant for clinical use in 

Europe was withdrawn and further evaluation was ceased due to severe side-effects 

such as depression, anxiety disorder, and suicide ideation (Christensen et al., 2007; 

Moreira & Crippa, 2009). These side effects of agonists and antagonists that bind the 

orthosteric (i.e., active) binding site on the CB1 receptor limit the therapeutic utility of 

these compounds.   

CB1 allosteric modulators are hypothesized to offer clinical promise with minimal 

side effects because they modulate and fine-tune the effects of endogenous ligands 

already on board at the CB1 receptor site, rather than flooding the system with 

exogenous ligands (Pertwee, 2005; Ross, 2007). In summary, modulation of the 

endocannabinoid system which is comprised of CB1 and CB2 receptors and biosynthetic 

and degradative enzymes which metabolize endogenous ligands holds promise as a 

viable target for therapeutic development with a limited side-effect profile. 

Introduction to CB1 allosteric modulators. Traditionally, the effects of CB1 

receptors are regulated by agonists and antagonists of the primary binding site 

(orthosteric site) which both endogenous and exogenous cannabinoids bind. The 

ligands which occupy this site are referred to as orthosteric ligands. Because of adverse 

side-effects listed above that are associated with orthosteric binding, alternative 

approaches to targeting the CB1 receptor are currently being explored. One approach is 

to utilize CB1 receptor allosteric modulators, which bind to topographically distinct sites 

from the orthosteric site on the receptor (Kenakin, 2004; Kenakin & Strachan, 2018; 
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Khurana et al., 2014; Price et al., 2005; Ross, 2007). These compounds do not directly 

activate the CB1 receptor, unlike orthosteric agonists, but rather bind to a secondary 

(allosteric) site on the receptor, which results in a conformational change of the 

receptor. Ligands making these conformational changes are conceptualized to enhance 

(positive allosteric modulator, PAM) or decrease (negative allosteric modulator, NAM) 

the efficacy and potency of orthosteric ligands that bind to the CB1 receptor which 

include endogenous ligands (Kenakin, 2004). It is hypothesized CB1 allosteric 

modulators offer therapeutic potential with reduced adverse side-effects compared with 

orthosteric ligands (Kenakin, 2004) because these molecules may circumvent issues 

with persistent orthosteric activation and may be more selective based upon the 

orthosteric endogenous ligand present (Kenakin & Strachan, 2018). 

Currently, benzodiazepines, which allosterically modulate GABAa receptors are 

FDA-approved for the treatment of anxiety. These compounds potentiate the effect of 

GABA and lack the potentially lethal adverse effects of GABAa agonists, such as 

respiratory depression. The discovery and clinical success of benzodiazepines 

demonstrates that allosteric modulation is a viable therapeutic strategy (Wenthur et al., 

2014). In comparison, no clinically approved allosteric modulators of CB1 receptors 

currently exist. However, efforts have increased to synthesize and evaluate novel CB1 

receptor allosteric modulators.  

First generation CB1 allosteric modulators are defined as compounds with 

chemical structures (pharmacophores) unlike that of previously reported compounds in 

this class of drugs. First-generation compounds are either found endogenously such as 

lipoxin A4 (Pamplona et al., 2012), or are synthesized by medicinal chemists such as 
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ORG27569 (Price et al., 2005). Other first-generation allosteric modulators of the CB1 

receptor include PSNCBAM-1 and ZCZ011 (B. M. Ignatowska-Jankowska et al., 2015). 

Second-generation CB1 allosteric modulators are defined as compounds which are 

structurally similar to a first-generation compound but have an alteration of one or more 

functional groups which affects the pharmacodynamic and pharmacokinetic properties 

of the molecule. Both first- and second-generation CB1 allosteric modulators either 

enhance or decrease the binding of orthosteric ligands. In addition, they alter 

downstream signal transduction to either enhance or decrease orthosteric ligand 

efficacy. Interestingly, effects on downstream signaling can be independent of 

enhancement or decrease in binding. Although a growing body of research has 

characterized the cellular pharmacology of CB1 receptor allosteric modulators, the 

relatively few studies investigating the in vivo pharmacology of these ligands yielded 

mixed results. 

In vitro characterization of first-generation CB1 allosteric modulators. ORG-

27569 is a first-generation CB1 allosteric modulator developed by the pharmaceutical 

company Organon (acquired by Schering-Plough Corporation in 2007) and is the most 

extensively characterized compound in this class thus far. In initial in vitro studies 

characterizing this compound (Price et al., 2005), ORG-27569 produced a significant, 

but saturable, increase of orthosteric agonist binding in an equilibrium binding assay 

using the radioligand probe [3H]CP 55,940. A binding cooperativity factor (α) denotes 

the allosteric interaction between the orthosteric and allosteric ligands when they both 

occupy the receptor, i.e., it quantifies the direction of and magnitude by which the affinity 

of one ligand is changed by the other ligand when both are bound to the receptor to 
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form the ternary complex (Christopoulos, A. et al., 2004). When α is 1.0, the test 

modulator does not alter orthosteric ligand binding. If α is less than 1.0, the test 

modulator reduces orthosteric ligand binding indicating negative allosteric modulation 

(NAM). A compound with a binding cooperativity factor greater than 1.0, indicates 

positive allosteric modulation (PAM) (Price et al., 2005). ORG-27569 had a binding 

cooperativity factor greater than 1.0 when co-administered with [3H]CP 55,940 in mouse 

brain membranes indicating PAM activity. In contrast, when the CB1 inverse agonist [3H] 

SR141716A was co-administered with ORG-27569, the result produced a decrease in 

the [3H]SR141716A equilibrium binding and binding cooperative value less than 1.0 

indicating NAM activity when this probe was used (Price et al., 2005). Additionally, 

dissociation kinetic experiments showed that ORG-27569 reduced CP55,940 

dissociation from the receptor in mouse brain in vitro (Price et al., 2005). Whereas CB1 

orthosteric agonists inhibit electrically evoked contractions of isolated mouse vas 

deferens, ORG-27569 given alone lacked efficacy. However, ORG-27569 ameliorated 

the actions of the CB1 receptor agonist WIN 55,212 in this functional CB1 receptor-

mediated assay (Price et al., 2005). Additionally, ORG-27569 produced a rightward shift 

of the dose response curves of CP55,940 and AEA in stimulation of [35S]GTPγS activity. 

The effects of ORG-27569 in the isolated mouse vas deferens assay and [35S]GTPγS 

activity assay are consistent with negative allosteric modulation (Price et al., 2005). 

Lastly, studies examining the effects of ORG-27569 on luciferase expression by 

CP55,940 in cloned human CB1 receptors expressed in Chinese hamster ovary cells 

showed similar results to studies conducted using mouse CB1 receptors indicating that 
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these effects were observable in cells expressing either human- or mouse- CB1 (Price et 

al., 2005). 

 Because ORG-27569 did not produce agonist or inverse agonist properties 

when tested alone in vitro, and modulation of receptor function was observed when the 

receptor was dually occupied by both the orthosteric and allosteric compounds, these 

results support the conclusion that ORG-27569 functions as an allosteric modulator of 

the CB1 receptor in vitro (Price et al., 2005). It is important to note that, despite the 

enhancement of orthosteric binding, which is consistent with PAM activity, this 

compound produced a decrease of orthosteric agonist inhibition of electrically evoked 

contractions in the mouse vas deferens model of measuring effects of CB1 activation 

and agonist induced G-protein activity in the [35S]GTPγS binding assay (Price et al., 

2005). These findings suggest the functional effect of ORG-27569 in whole animal is 

consistent with a NAM of the CB1 receptor, which results in a decrease of efficacy of 

orthosteric agonists.  

Another first-generation compound is the novel CB1 positive allosteric modulator 

ZCZ011, which was synthesized at the University of Aberdeen (B. M. Ignatowska-

Jankowska et al., 2015). When tested in vitro, ZCZ011 produced significant and 

concentration-dependent increases in the specific equilibrium binding of CB1 receptor 

agonists [3H]CP55,940 and [3H]WIN 55,212 with an Emax of 207% and 225%, 

respectively, as demonstrated by an equilibrium binding experiment in mouse brain 

membranes (B. M. Ignatowska-Jankowska et al., 2015). Additionally, a saturation 

binding experiment using mouse brain membranes and [3H]CP55,940 as the probe 

demonstrated that ZCZ011 significantly increases the number of available CB1 binding 



18 
 

sites for the orthosteric agonist (B. M. Ignatowska-Jankowska et al., 2015). ZCZ011 

also enhanced AEA stimulated [35S]GTPγS binding in mouse brain membranes 

demonstrating an increase of G-protein activity compared to AEA administration alone. 

Importantly, ZCZ011 did not stimulate [35S]GTPγS binding when administered alone, 

suggesting that this compound is not acting as an orthosteric agonist at the CB1 

receptor (B. M. Ignatowska-Jankowska et al., 2015). In the PathHunter hCB1 β-arrestin 

Recruitment Assay ZCZ011 enhanced β -arrestin recruitment stimulated by AEA. 

However, when tested alone ZCZ011 also produced an increase in β-arrestin 

recruitment which was 35.9% that of maximal stimulation (B. M. Ignatowska-Jankowska 

et al., 2015). Finally, an AlphaScreen Surefire ERK 1/2 phosphorylation assay was 

utilized and ZCZ011 increased the potency of AEA in activating ERK1/2 

phosphorylation in hCB1 receptor cells (B. M. Ignatowska-Jankowska et al., 2015). All 

these effects observed in vitro, in addition to the in vivo effects of ZCZ011 which will be 

subsequently described in the next chapter section of this thesis, demonstrate that 

ZCZ011 acts as a positive allosteric modulator of the CB1 receptor.  

A growing body of research has characterized the cellular pharmacology of CB1 

receptor allosteric modulators (Table 1). Comparatively, there are relatively few studies 

investigating the in vivo pharmacology of these ligands yielded mixed results, which will 

be described in Table 2 and the section below. 

In vivo characterization of CB1 allosteric modulators. Models used to assess 

the effects of CB1 orthosteric ligands in vivo are also used to evaluate CB1 allosteric 

modulation in vivo. The tetrad is an assay specifically used to measure cannabimimetic, 

or THC-like, effects in rodents. It consists of four measures mediated by the CB1 
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receptor including locomotor activity, catalepsy, antinociception, and hypothermia (Little 

et al.,1988). Co-administration of a CB1 allosteric modulator with an orthosteric agonist 

is expected to produce an augmentation of the orthosteric dose-response curve in the 

measures of this assay. However, no effect is expected in the tetrad assay when a CB1 

allosteric modulator is administered alone, indicating CB1 receptor modulation. 

Additionally, the mouse drug discrimination paradigm is a measure of discriminative 

stimuli and is used to assess the subjective effects of CB1 orthosteric agonists. 

Similarly, it is expected that co-administration of a CB1 allosteric modulator in this 

paradigm results in an augmentation of the subjective effects of the orthosteric agonist 

while producing no substitution for the CB1 mediated discriminative stimuli on its own. It 

also has been demonstrated that CB1 PAMs produce antinociception in mouse models 

of neuropathic pain (B. M. Ignatowska-Jankowska et al., 2015; Slivicki et al., 2018) 

indicating that these models can be used to assess the therapeutic potential of CB1 

allosteric modulators to treat pain and neuropathy. Additionally, antagonism of the CB1 

receptor results in decreases of food intake (Christensen et al., 2007; Wiley et al., 

2005), therefore measures of food intake have been used to assess the effects of CB1 

NAMs (Gamage et al., 2014; Horswill et al., 2007). 

Behavioral studies demonstrate that ORG-27569 reduces food intake in mice. 

Because these effects are observed in both wild-type mice and transgenic CB1 (-/-) mice 

the reduction in feeding behavior caused by ORG-27569 is CB1 receptor independent 

(Gamage et al., 2014). Additionally, the negative allosteric modulator PSNCBAM-1 

reduced food intake in rats, indicating actions consistent with CB1 receptor antagonism 

(Horswill et al., 2007). However, this study did not assess whether CB1 receptors 
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mediated these anorectic effects. ORG-27569 also attenuates both cue- and drug-

induced reinstatement of methamphetamine and cocaine seeking behavior (Jing et al., 

2014). Again, CB1 receptor mediation was not assessed in this study by either using 

transgenic animals that lack the CB1 receptor or with a pharmacological approach to 

inhibit the behavioral effect observed, therefore it is unclear if this effect is CB1-

dependant. In addition, ORG-27569 does not augment the cataleptic, antinociceptive, or 

hypothermic effects of AEA, CP55,940, or THC in the tetrad assay (Gamage et al., 

2014). These findings highlight the translational gap between the effects of CB1 

allosteric modulators in cellular assays versus effects in the whole organism.  

The endogenous anti-inflammatory mediator Lipoxin A4 represents the first 

evidence of a CB1 allosteric modulator producing in vivo effects consistent with CB1 

allosteric modulation in whole organisms (Pamplona et al., 2012). Specifically, lipoxin 

A4 enhanced the pharmacological effects of AEA in both cellular and behavioral assays. 

It also protected against β-amyloid induced performance deficits in the Morris water 

maze, an assay indicative of memory and learning. It is known that AEA is 

endogenously released for one week following β-amyloid treatment. The performance 

deficit was prevented by co-treatment with lipoxin A4, and this effect was reversed with 

the CB1 receptor antagonist rimonabant (Pamplona et al., 2012). This evidence 

suggests that lipoxin A4 enhances the effect of endogenous AEA and the protection 

against β-amyloid induced deficits are CB1 receptor dependent. These results are 

consistent with the conclusion that lipoxin A4 acts as a CB1 receptor PAM in vivo.  

The CB1 positive allosteric modulator, ZCZ011 was tested for antinociception and 

cannabimimetic activity in vivo (B. M. Ignatowska-Jankowska et al., 2015). ZCZ011 
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administered alone did not elicit any activity in the tetrad or drug discrimination assays, 

but when co-administered with AEA or CP55,940 it produced left-wards shifts of the 

dose-response relationship of the CB1 agonists, indicating activity consistent with 

positive allosteric modulation. Additionally, ZCZ011 did not produce conditioned place 

preference or aversion in mice, suggesting that it lacks rewarding or aversive effects on 

its own. ZCZ011 crosses the blood-brain-barrier to enter the CNS which was confirmed 

by HPLC-MS analysis of blood and brain tissue from mice pretreated with ZCZ011 

(Poklis et al., 2015). Lastly, ZCZ011 produced antinociception in the chronic-constrictive 

nerve injury (CCI) model of neuropathic pain and partially reversed carrageenan-

induced mechanical allodynia through a CB1 mechanism of action (B. M. Ignatowska-

Jankowska et al., 2015). The observations that ZCZ011 does not produce 

cannabimimetic side-effects when administered alone, but does produce antinociception 

suggests it has therapeutic potential to be used as an analgesic in the clinic. Another 

study of ZCZ011 found that it attenuated somatic signs of THC withdrawal and blocked 

NSAID-induced gastric hemorrhages in rodents (Trexler et al., 2019) suggesting its 

therapeutic potential to treat cannabis use disorder and gastric inflammation. These 

actions of ZCZ011 are consistent with the concept that CB1 allosteric modulators can 

produce therapeutic effects without the cannabimimetic side-effects commonly 

associated with CB1 receptor agonism. 

A  compound which is a structurally similar analog of ZCZ011, the CB1 positive 

allosteric modulator GAT211 produces in vivo effects similar to its parent compound 

(Slivicki et al., 2018). In the described study, GAT211 produced CB1 receptor mediated 

antinociceptive effects in the mouse neuropathic pain model of chemotherapy induced 
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peripheral neuropathy (CIPN), which did not undergo tolerance or withdrawal following 

repeated administration, and did not elicit psychotomimetic effects associated with CB1 

receptor allosteric agonists, suggesting in vivo actions consistent with CB1 receptor 

allosteric modulation (Slivicki et al., 2018). The results of this study provides rational 

that second-generation compounds derived from first-generation compounds are viable 

therapeutic candidates that warrant further evaluation.  

LDK1258: a second-generation allosteric modulator. We selected the ORG-

27569 pharmacophore as the focus of this thesis dissertation since it is the most widely 

characterized compound in the class of CB1 allosteric modulators. Several analogs of 

ORG-27569 have been assessed for binding affinity and allosteric activity (Khurana et 

al., 2014) but have not been tested for in vivo activity. One compound in particular (12f), 

also known with compound code LDK1258 (M.W. = 401.97 g/mol) has a strong 

equilibrium disassociation constant value of 89 nM for the allosteric binding site and 

binding cooperativity factor of 5, defining it as a CB1 PAM which enhances orthosteric 

agonist binding affinity (Khurana et al., 2014). In contrast ORG-27569 behaved like a 

efficacy NAM by decreasing CP55,940-stimulated [35S]GTPγS activity in vitro (Khurana 

et al., 2014). These findings demonstrate that the in vitro actions of this novel compound 

are similar to ORG-27569, however evaluation of this second-generation allosteric 

modulator has not been conducted in vivo.  
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Table 1. 

 

Compound Molecular structure In vitro effects Refer
ences 

 

 

ORG-27569 

 

 

 

- enhances equilibrium binding of CP55,940 
- decreases equilibrium binding of SR 
141716A 
- reduces CP55,940 dissociation from 
receptor 
- reversed inhibition of electrically evoked  
contractions of mouse vas deferens by 
WIN55,212 
- inhibits CP55,940 and AEA stimulated 
[35S]GTPγS activity 

Price 
et al., 
2005 

 

PSNCBAM-1 

 

 

- inhibits stimulation of CB1 by CP55,940, 
WIN 55,212, AEA, and 2-AG in yeast 
reporter assay 
- reversed binding stimulated by CP55,940 
and AEA 
- reversed AEA-induced inhibition of 
forskolin-stimulated cyclic AMP 
accumulation 

Horsw
ill et 
al., 
2007 

 

 

ZCZ011 

 

 

- enhances equilibrium binding of CP55,940 
and WIN 55,212 
- increases number of available CB1 binding 
sites 
- enhances AEA stimulated [35S]GTPγS 
activity 
- increases β -arrestin recruitment 
- increases potency of AEA to stimulate 
ERK1/2phosphorylation 

Ignato
wska-
Janko
wska 
et al., 
2015 

 

Lipoxin A4 

 

 

- enhances equilibrium binding of CP55,940 
and WIN 55,212 
- increased the potency of AEA in 
decreasing forskolin (FSK)-induced cAMP 
levels 

Pampl
ona et 
al., 
2012 
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Table 2. 

 

Compound In vivo effects MOA References 

 

ORG-27569 

- reduces food intake  
- attenuates cue- and drug-
induced reinstatement of 
methamphetamine and 
cocaine seeking behavior 

- Reduction in food intake is CB1 
independent  
- Not assessed in study of cue- and 
drug- reinstatement of 
methamphetamine and cocaine 
seeking behavior 

(Ding et al., 
2014; Gamage 
et al., 2014; 
Jing et al., 
2014) 

 

PSNCBAM-1 

 
 
 
- reduces food intake  
 

 
 
 
- Not assessed 

Horswill et al., 
2007 

 

 

ZCZ011 

- leftward shift of AEA and 
CP55,940 DR in tetrad and 
drug discrimination 
- Antinociception in CCI 
mouse model 
- Attenuates THC 
withdrawal 
- Attenuates NSAID-
induced gastric 
inflammation 
 

- 
 
 
 
 
- CB1 Dependent 

Ignatowska-
Jankowska et 
al., 2015 

 

Lipoxin A4 

- produces tetrad effects 
alone 
- enhances the effects of 
AEA in tetrad 
- protective against β-
amyloid induced spatial 
memory impairment in 
mice 
 

 
 
 
 
- Not assessed 

Pamplona et 
al., 2012 
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Chapter II 

In vivo evaluation of the CB1 allosteric modulator LDK1258 reveals CB1 receptor 

independent behavioral effects 

 

Hypothesis. CB1 allosteric modulators are viable therapeutic tools to treat 

neuropathic pain or be used as appetite suppressants and produce their effects via a 

CB1-mediated mechanism of action without adverse side-effects commonly associated 

with orthosteric activation or blockade of the CB1 receptor. The therapeutic potential and 

side-effect profile of these compounds are reliably evaluated in a series of assays which 

have been previously used to evaluate CB1 orthosteric ligands in vivo. 

 Rationale. The purpose of this thesis project is to evaluate a novel CB1 allosteric 

modulator in vivo in a series of assays to determine whether the selected compound 

produces pharmacological effects in whole organisms, and whether these effects are 

CB1 receptor mediated and consistent with the action of CB1 allosteric modulators. 

Novel CB1 allosteric modulators serve as valuable tools to determine a methodology 

that evaluates whether cellular effects of CB1 allosteric modulation translates to whole 

organisms. In this chapter, the methodology of the assays employed and results from 

the conducted experiments are reported. 

Here, we investigated whether LDK1258 produces in vivo effects consistent with 

those of a CB1 receptor allosteric modulator. Since previous studies demonstrated that 

CB1 allosteric modulators produce antinociceptive effects in CCI or chemotherapy-

induced allodynia models of neuropathic pain (B. M. Ignatowska-Jankowska et al., 
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2015; Slivicki et al., 2018) as well as reduce food intake (Ding et al., 2014; Gamage et 

al., 2014; Horswill et al., 2007) in rodents, we tested whether LDK1258 alters either 

mechanical allodynia in the CCI model of neuropathic pain or food consumption in food-

deprived mice. In a subsequent study, we quantified brain and blood levels of LDK1258 

following intraperitoneal administration to examine whether it was brain penetrant. In 

addition, we tested whether LDK1258 substitutes for CP55,940 in C57BL/6J mice or 

AEA in transgenic mice lacking the primary anandamide degradative enzyme fatty acid 

amide hydrolase (FAAH; Cravatt et al., 1996; Cravatt et al., 2001) in the drug 

discrimination assay. Similar to previous studies examining CB1 receptor allosteric 

modulators (Gamage et al., 2014; B. M. Ignatowska-Jankowska et al., 2015), we 

examined whether LDK1258 elicits cannabimimetic effects in the tetrad assay (Little et 

al., 1988), consisting of measurements of locomotor behavior, thermal nociception, 

catalepsy, and body temperature. In order to infer whether CB1 receptors mediate 

pharmacological effects observed in the assays described above, we employed a 

genetic approach using CB1 (-/-) mice or a pharmacological approach using the CB1 

receptor antagonist rimonabant. Finally, because it was reported that ZCZ011 produces 

leftward shifts of the generalization dose-response curves of AEA and CP55,940 in the 

drug discriminative assay as well as leftward shifts for thermal antinociception, 

catalepsy, and hypothermia (B. M. Ignatowska-Jankowska et al., 2015), it can be 

concluded that these measures are viable for detecting CB1 allosteric modulation in 

animal models. Therefore, we tested whether co-administration of LDK1258 alters the 

pharmacological effects of AEA or CP55,940 in these assays. 
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Methodology 

Animals 

Male C57BL/6J mice (Jackson Laboratory, Bar Harbor, Maine, USA) were used in 

tetrad, and drug discrimination studies. Male FAAH (-/-) mice on a C57BL/6J background 

(VCU transgenic core, Richmond, Virginia, USA) were used in the tetrad and drug 

discrimination studies (see below). Male and female CB1 (-/-) and (+/+) mice backcrossed 

on a C57BL/6J background (VCU transgenic core, Richmond, Virginia, USA) were used 

in subsequent feeding, tetrad, and neuropathic pain studies. 

 

Drugs 

LDK1258 (compound 12f) and LDK1256 (compound 12d; used as internal 

standard for UPLC-MS/MS analysis) were synthesized at the Rangel College of 

Pharmacy Health Science Center at Texas A&M University (Kingsville, Texas, USA) as 

previously described (Khurana et al., 2014). Anandamide, CP55,940, and rimonabant 

(SR141716A) were supplied by the National Institute on drug abuse (NIDA) (Rockville, 

Maryland, USA). All drugs were dissolved in ethanol (Pharmco Products Inc., Brookfield, 

Connecticut, USA), Alkamuls-620 (Rhodia, Cranbury, New Jersey, USA), and saline 

(0.73%), in a ratio of 1:1:18. Injections were given via the intraperitoneal (i.p.) route of 

administration in a volume of 1 ml per 100 g of body mass. 
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Chronic constrictive injury of the sciatic nerve (CCI) model of neuropathic pain  

The surgical procedure for chronic constriction of the sciatic nerve was conducted 

as described by Bennett & Xie (1988) with modifications (B. M. Ignatowska-Jankowska 

et al., 2015). Mice were anesthetized with isoflurane and using aseptic procedures the 

sciatic nerve was isolated and then loosely ligated. Sham surgery was identical, except 

for ligating the nerve. Mechanical touch was used to assess baseline responses and the 

development of allodynia after surgery using von Frey monofilaments (North Coast 

Medical, Morgan Hills, CA), as previously described (Murphy et al., 1999). Mice were 

unrestrained and placed in a Plexiglas cylinder (8 cm diameter, 15 cm height) on top of a 

wire mesh screen. Von Frey calibrated microfilaments were applied to each hind paw and 

the stimulus threshold that induced a response (defined as lifting, licking, or shaking of 

the paw) was recorded. Following allodynia testing, thermal hypersensitivity was 

assessed by placing mice on a hot plate analgesia meter (Columbus Instruments, 

Columbus, OH) and latency to jump, shake, or lick the hind paw was recorded. LDK1258 

(30 mg/kg) was injected via the i.p. route of administration and mice were tested for 

mechanical and thermal allodynia at 0.5, 1, 2, 4, 6, 8, and 24 h in a time-course design. 

This dose was selected based upon initial pilot studies. Treatments were administered 

i.p. in a counterbalanced, between-subject design.  

 

Food intake assay 

Mice were housed in clear plastic cages with elevated wire mesh floors to allow for 

food and feces to be out of reach of the mouse. Following a minimum of 72 h acclimation 
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period, the mice were food deprived for approximately 24 h before receiving LDK1258, 

rimonabant (control), or vehicle treatments. Following the deprivation period mice were 

injected 15 min before receiving access to 15 (± 0.1) g of standard rodent chow (Teklad, 

Madison, Wisconsin, USA). Food consumption was recorded in grams eaten 2 h after 

food administration during the light-phase of a 12/12 h light/dark cycle. This procedure is 

like those previously used in examining the consequences of cannabinoid receptor 

agonists and antagonists on food consumption (Wiley et al., 2005). LDK1258 doses were 

selected based upon initial pilot studies. 

 

Ultra-performance liquid chromatography tandem mass spectrometer analysis of 

LDK1258 

Mice were given an intraperitoneal (i.p.) injection of vehicle or LDK1258 (30 mg/kg) 

and were euthanized via cervical dislocation either 30 min or 4 h later. This dose was 

selected because it produced robust behavioral effects when administered alone in the 

tetrad, drug discrimination, food intake, and allodynia tests. Blood was collected by 

breaking the skin with a needle prick from cheek tissue before euthanasia and whole 

brains were collected immediately after sacrificing the animals. All samples were kept at 

-80 C until analyzed. On the day of analysis, the brain tissue samples were weighed, 

diluted 1:5 with water and homogenized. With each analytical analysis seven-point 

calibration curves at concentrations of 50 - 5000 ng/mL LDK1258 for blood and 50 - 5000 

ng/kg LDK1258 for brain tissue homogenate along with a drug free control and a control 

without internal standard (ISTD) in drug-free mouse blood and brain tissue were 

prepared. LDK1258 was extracted from blood and brain tissue homogenate using a 
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liquid/liquid extraction (Poklis et al., 2010). In brief, 200 ng/mL or ng/g of LDK1256, the 

ISTD, was added to 20 µL aliquots of blood or 100 µL aliquots of brain tissue homogenate 

of each calibrator, control, or specimen except the negative control. 200 µL of acetonitrile 

was then added to each of these sample and mixed for 2 min. The samples were then 

centrifuged at 2054g for 5 min. After centrifuging the top layer containing the acetonitrile 

was removed via a disposable glass pipette and placed in autosampler vial for analysis. 

The ultra-performance liquid chromatography tandem mass spectrometer (UPLC-

MS/MS) analysis of was performed on a Sciex 6500+ QTRAP system with an IonDrive 

Turbo V source for TurbolonSpray® (Sciex, Ontario, Canada) attached to a Shimadzu 

UPLC system (Kyoto, Japan) controlled by Analyst software (Sciex, Ontario, Canada). 

Chromatographic separation of LDK1258 and the internal standard, was performed using 

a Thermo Hypersil Gold column, 50 x 2.1 mm, 3 micron (Waltham, MA). The mobile phase 

contained water/methanol (10:90, v/v) with 0.1 mM ammonium formate and was delivered 

at a flow rate of 1 mL/min. The source temperature was set at 650° C, and curtain gas 

had a flow rate of 30 mL/min. The ionspray voltage was 5500 V, with the ion source gases 

1 and 2 having flow rates of 60 mL/min. The declustering potential was 75 eV. The 

quantification and qualifying transition ions with their collection energies in parenthesis 

were monitored in positive multiple reaction monitoring (MRM) mode: 426> 192 (35) & 

426 > 148 (25) for LDK1258 and 384> 220 (27) & 384> 148 (46) for the ISTD. The total 

run time for the analytical method was 3 minutes. A linear regression of the peak area of 

ratios of the quantification transition ions of LDK1258 and the ISTD were used to construct 

the calibration curves. 
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Drug discrimination 

Separate groups of mice were trained to discriminate either anandamide (6 mg/kg) 

or CP55,940 (0.1 mg/kg) from vehicle (30 min pretreatment time). One group consisted 

of C57BL/6J mice trained to discriminate CP55,940, and the second group consisted of 

FAAH (-/-) mice trained to discriminate anandamide. Training and testing were conducted 

as previously reported (Ignatowska-Jankowska et al., 2015; Long et al., 2009; Owens et 

al., 2016; Solinas et al., 2006; Walentiny et al., 2013). Sound-attenuating operant 

conditioning boxes (MED Associates, St. Albans, VT) were used. Each apparatus 

contained two nose-poke apertures (left and right) with a receptacle chamber located in 

the middle of the apertures. A pellet dispenser delivered 14 mg sweetened pellets 

following every 10th correct response. Nose pokes and food deliveries were recorded 

using MED-PC IV software (MED Associates). Mice performed on a FR10 schedule of 

reinforcement during each 15-minute training session. Training sessions were conducted 

in a double-alternation sequence of drug and vehicle (e.g., vehicle, vehicle, drug, drug). 

Test sessions were conducted twice per week with mice required to reach criteria to be 

eligible for testing. Passing criteria were defined as follows: 1) the first 10 consecutive 

responses on the correct apparatus side, 2) ≥ 80% of responses on the correctly paired 

aperture, and 3) a response rate ≥ to 10 nose-pokes per min. During test sessions, 

responses in either aperture resulted in delivery of the sweetened pellet according to the 

schedule of reinforcement. Substitution tests were conducted by administering LDK1258 

(3, 5.6, 10, 30 mg/kg) or vehicle i.p. 30 min prior to the test session when administered 

alone. In the combination studies, LDK1258 (5.6 mg/kg) or vehicle i.p. was injected 15 



32 
 

min before anandamide or CP55,940. This dose was selected because it was the highest 

dose tested that did not produce rate-suppressive effects when administered alone. All 

training drugs were administered subcutaneously. Mice were returned to their home cage 

after each injection and were placed in the operant chamber immediately before the 

beginning of the test session. 

 

Tetrad assay 

The tetrad assay consists of sequential testing for locomotor activity, catalepsy, 

thermal antinociception, and body temperature (Little et al., 1988), as described below.  

 

Locomotor activity assessment 

The locomotor effects of LDK1258 were assessed by placing the mice in dimly lit 

Plexiglas chambers (approx. 43 x 21 x 20 cm) for 300 s. The chambers were sound-

attenuated and equipped with a LED light source and a fan that provided air circulation 

and white noise. Locomotor activity was monitored using Anymaze (Stoelting, Wood Dale, 

IL) software, as described previously (Ignatowska-Jankowska et al., 2015). Distance 

traveled, time immobile, and mean speed were recorded approximately 0.5 or 4.0 h after 

LDK1258 or vehicle administration. Recordings were collected using Fire-i™ digital 

cameras purchased from Unibrain (San Ramon, CA, USA).  
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Bar test 

Catalepsy was measured using the bar test, in which the mouse’s front paws were 

placed on a metal bar 4.5 cm above the platform, and immobility time was measured for 

a 60 s period. If the mouse removed its forepaws before 60 s elapsed, they were placed 

back on the bar for a maximum of four tries. The test ended on the fifth attempt or once 

60 s elapsed.  

 

Warm-water tail-flick 

Thermal nociceptive behavior was measured using the warm-water tail withdrawal 

assay. The mouse was restrained and approximately 1 cm of the distal portion of the tail 

was submerged in a 52° C water bath and the tail withdrawal latency was recorded. A 10 

s cut-off was employed to prevent tissue damage if the mouse did not remove the tail 

from the water in this period. In all experiments, tail withdrawal latencies are evaluated 

prior to injection. Data were expressed as a maximum percent effect (%MPE) using the 

following formula: %MPE = [(test latency – preinjection latency) / (10 – preinjection 

latency)] ×100.  

 

Body temperature 

Hypothermic effects were assessed by inserting a thermometer probe (Physitemp 

Instruments, Clifton, NJ) 2 cm into the rectum. For the LDK1258 and CP55,940 
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cumulative-dose assessment in the triad assay, rectal temperature was measured using 

an instrument from Traceable Products (Webster, TX). In all experiments, rectal 

temperature was evaluated prior to injection. Body temperature data was expressed as a 

change in temperature (° C) from pre-injection values.  

 

Experimental procedure of tetrad assay 

Four separate experiments were conducted to evaluate LDK1258 in the tetrad 

assay. In the first two experiments, C57BL/6J mice were administered LDK1258 (30 

mg/kg) or vehicle. In the first experiment, the mice tested for locomotor activity at 20 min 

and in the second experiment, the mice were assessed for locomotor activity at 4 h. 

Subjects were tested for locomotor behavior only once in order to avoid acclimation to the 

chamber. Mice in the first experiment were tested for catalepsy, antinociception, and 

hypothermia at 0.5, 1, and 2 h. Subjects in the second experiment were tested in these 

respective measures at 4 and 6 h. The second experiment was conducted because of 

unexpected delayed antinociceptive effects of LDK1258 in the CCI model. In the third 

tetrad experiment, we evaluated lower doses of LDK1258 (3 or 10 mg/kg) in a new cohort 

of mice. Drug- and vehicle-treated mice were evaluated for locomotor activity at 0.5 h. 

Mice were assessed for each of the other measures at 0.5, 1, and 2 h. The fourth tetrad 

experiment was conducted to determine whether CB1 receptors mediate the 

pharmacological effects of LDK1258 in the tetrad assay. Accordingly, we evaluated 

vehicle versus LDK1258 (30 mg/kg) in CB1 (+/+) mice versus CB1 (-/-) mice. Tetrad testing 

proceeded identically as described for Experiment 1 above. 
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Evaluation of LDK1258 on the dose-response relationships of CB1 receptor 

orthosteric agonists in the triad assay 

The in vivo cannabimimetic effects of LDK1258 were assessed in combination with 

the CB1 orthosteric agonists anandamide in FAAH (-/-) mice or CP55,940 in C57BL/6J 

mice. Measures of catalepsy, antinociception, and hypothermia were used for the triad 

assay as previously described (Falenski et al., 2010; Grim et al., 2016). When tested in 

combination with the cumulative-dose response of orthosteric agonists, LDK1258 (50 

mg/kg) was administered 15 min prior to the first administration of anandamide or 

CP55,940 followed by each subsequent dose every 40 min. Triad was assessed 30 min 

following each anandamide or CP55,940 injection. Locomotor activity was not measured 

in the cumulative-dose response assessments due to repeated testing causing 

habituation effects. Because this assay is less sensitive than others, the highest dose of 

LDK1258 that can be suspended in solution before reaching max saturation was selected.  

 

Mouse hepatic microsome reaction 

In order to investigate and identify metabolite(s), mouse hepatic microsomes were 

isolated and prepared as previously described (Kessler & Ritter, 1997). Phase I 

metabolism of LDK1258 and identification of potential p450 metabolites based on a 

previously employed method (Poklis, Dempsey, et al., 2015).  Briefly, 1 mL of medium 

consisting of consisted of 167 mg total protein of pooled mouse hepatic microsomal 

preparation, 50 mM Tris–HCl buffer, pH 7.4, 150 mM potassium chloride, 10 mM 
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magnesium chloride with the addition of 0.4 mM freshly prepared NADPH and with or 

without 100 µg LDK1258 were prepared. The mixtures were incubated in a 37° C water 

bath for 60 min. The resultant p450 metabolites were isolated in ultrafiltrates using 30 

kDa centrifugal filters (EMD Millipore, Billerica, MA, USA). An ultra-high-performance 

liquid chromatography tandem mass spectrometer (UHPLC-MS/MS) was used to identify 

potential metabolites from the exacted brain and blood samples. 

 

Data analysis 

All data are represented as mean ± S.E.M or 95% confidence limits (CLs). Data were 

analyzed using GraphPad Prism 6.0, using either one-way or two-way analysis of 

variance (ANOVA). Dunnett’s test was used for the post-hoc analysis. ED50 values, 

potency ratios, and 95% CLs were calculated for the dose-response triad using linear 

regression analysis (Colquhoun, 1971). Differences were considered significant if p < 

0.05, or if the upper and lower confidence intervals of the potency ratios did not 

encompass “1.”  
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Experimental results 

 

LDK1258 produces delayed antinociceptive effects in the chronic constriction 

injury (CCI) model of neuropathic  

As shown in Figure 1a, LDK1258 (30 mg/kg) reversed CCI-induced mechanical 

allodynia in ipsilateral paw (F (8, 64) = 12.92, P < 0.0001) and contralateral paws (F (8, 

64) = 17.65, P < 0.0001; data not shown) from 4 to 8 h. Likewise, LDK1258 (30 mg/kg) 

reversed thermal hyperalgesia in the hot plate test from 2 to 8 h (F (8, 64) = 18.91, P < 

0.0001; Figure 1b). The CB1 receptor antagonist rimonabant (3 mg/kg) did not block 

LDK1258-induced antinociception in either assay (F (5, 18) = 83.43, P < 0.0001; Figure 

1a and 1b). 
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LDK1258 reduces food consumption in mice independently of the CB1 receptor  

Subsequent experiments investigated the consequences of LDK1258 on food 

intake in CB1 (-/-) and (+/+) mice following a 24 h fast. As CB1 (-/-) mice consumed less 

food than CB1 (+/+) mice (t = 3.809, df = 56, P < 0.001; Figure 2a), drug effects on food 

intake in each genotype were normalized as % intake of the vehicle-treated mice for each 

genotype. Two-way ANOVA revealed that LDK1258 significantly reduced food intake to 

a similar magnitude in both genotypes (LDK1258 main effect: F (3, 54) = 3.284, P < 0.05; 

no genotype main effect: p = 0.54; no LDK1258 by genotype interaction: p = 0.30; Figure 

2b). In comparison, rimonabant significantly reduced food intake in CB1 (+/+) mice, but 

not in CB1 (-/-) mice (genotype main effect: F (1, 26) = 26.42 P < 0.0001; no rimonabant 

main effect: p = 0.19; no rimonabant by genotype interaction: p = 0.58; Figure 2c). 
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Evaluation of LDK1258 in the mouse drug discrimination paradigm 

LDK1258 (3-30 mg/kg) did not substitute for the discriminative stimulus of 

anandamide (6 mg/kg) in FAAH (-/-) mice or CP55,940 (0.1 mg/kg) in C57BL/6J mice at 

30 min post-injection (Figure 3a), but reduced response rates at the highest dose tested 

in FAAH (-/-) mice (F (5, 46) = 24.36, P < 0.0001; Figure 3b) and in C57BL/6J mice (F (5, 

52) = 28.07, P < 0.0001; Figure 3b). At 4 h post-administration of LDK1258 (30 mg/kg) 

no significant effects on the discriminative stimulus or response rates occurred (data not 

shown). We next evaluated whether LDK1258 would affect the generalization dose-

response relationships of anandamide in FAAH (-/-) mice and CP55,940 in C57BL/6J 

mice. Accordingly, we selected the highest LDK1258 dose (i.e., 5.6 mg/kg) that did not 

reduce response rates when administered alone. LDK1258 did not alter the generalization 

dose response curve of either anandamide (1 – 6 mg/kg) or CP55,940 (0.01 – 0.1 mg/kg; 

Figure 3c) or response rates (Figure 3d).  
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Evaluation of LDK1258 in the tetrad assay  

The tetrad assay was conducted in a series of four experiments (see Section 2.7.5 

above). Experiments 1 and 2 are shown on the same graphs Figure 4). In the first 

experiment LDK1258 (30 mg/kg) significantly reduced distance traveled (t = 4.96, df = 14, 

P < 0.001; Figure 4a) and time immobile (t = 3.92, df = 14, P < 0.01; Figure 4b) at 20 min. 

In this same experiment, the drug significantly increased catalepsy (LDK1258 main effect: 

F (1, 42) = 5.518; P < 0.05) and tail-withdrawal latencies (LDK1258 main effect: F (1, 42) 

= 16.40; P < 0.001), though the magnitude of these effects was small (see Figure 4c-d). 
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LDK1258 also reduced rectal temperature up to 2 h (LDK1258 main effect: F (1, 42) = 

38.35; P < 0.0001; Figure 4e).  

The second experiment was conducted in a separate group of mice that were 

tested 4-6 h after drug administration. LDK1258 (30 mg/kg) did not affect distance 

traveled, time immobile, catalepsy, or tail-withdrawal latencies at these time points, but 

did produce hypothermia from 4-6 h (LDK1258 main effect: F (1, 20) = 9.396; P < 0.01, 

Time main effect: F (1, 20) = 5.125; P < 0.05; Figure 4e). 

In the third experiment, we examined the effects of 3 and 10 mg/kg LDK1258 in a 

separate group of mice in the tetrad assay. At these doses, LDK1258 did not affect 

distance traveled or time immobile (Supplemental Figure 1a-b). In addition, LDK1258 did 

not affect catalepsy or antinociception at these doses (data not shown), but it significantly 

decreased body temperature up to 2h (LDK1258 main effect: F (2, 54) = 10.72; P < 0.001, 

Supplemental Figure 1c).  

We next employed CB1 (-/-) and (+/+) mice to examine whether CB1 receptors 

mediate the locomotor and hypothermic effects of LDK1258. LDK1258 (30 mg/kg) 

reduced distance traveled (LDK1258 main effect: F (1, 26) = 28.18, P < 0.0001) as well 

as time spent immobile (LDK1258 main effect: F (1, 26) = 16.58, P < 0.001), irrespective 

of genotype, indicating CB1 receptor independent effects. The CB1 (-/-) mice showed a 

phenotypic decrease in locomotor behavior (main effect of genotype for distance: F (1, 

26) = 5.54, P < 0.05; Figure 5a); main effect of genotype for immobility time: F (1, 26) = 

4.46; P < 0.05; Figure 5b). Significant main effects LDK1258 (F (1, 26) = 6.870; P < 0.05) 

and genotype (F (1, 26) = 4.759; P < 0.05; Figure 5c) were also found for tail withdrawal 

latencies, though the magnitude of these was very small. Lastly, significant effects of 
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LDK1258 (F (1, 26) = 55.61; P < 0.0001) and genotype (F (1, 26) = 7.73; P < 0.05; Figure 

5d) were found for the hypothermia measure. Again, this drug effect was CB1 receptor 

independent. Figure 5 c and 5d depicts the 1 h tail-withdrawal latency and hypothermia 

data. No significant effects were found in the catalepsy test (data not shown). 
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Evaluation of whether LDK1258 alters the dose-response relationships of 

orthosteric agonists in the triad assay  

In the final series of experiments, we investigated whether LDK1258 (50 mg/kg) 

would alter the cumulative dose-response relationship of anandamide (2.5 – 50 mg/kg) in 

FAAH (-/-) mice or CP55,940 (0.1 – 1 mg/kg) in C57BL/6J mice in measures of catalepsy, 

antinociception, and rectal temperature. As shown in Figure 6, LDK1258 failed to affect 

the dose-response relationships of each orthosteric CB1 receptor agonist. The respective 
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ED50 values of anandamide or CP55,940 did not differ between groups pretreated with 

LDK1258 or vehicle, and potency ratio calculations verified the lack of an LDK1258 effect 

on the potency of each orthosteric agonist (Table 3).  
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Table 3. 

 

 

 

 

Detection of LDK1258 in mouse blood and brain tissue 

To determine whether LDK1258 brain and blood levels, we quantified drug levels in 

mouse blood and brain tissue at 0.5 and 4 h after administration. LDK1258 (30 mg/kg; 

i.p.) resulted in brain and blood levels detectable at both time points (Table 4). No drug 

was detected in the brains or blood of vehicle-treated mice. Statistical analysis releveled 

no significant changes in LDK1258 levels between these time points in each respective 

tissue (n = 5-6 mice per group).  
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Table 4. 

Time (h) Whole Brain (ng/g) 
mean +/- SEM 

Blood (ng/mL) 
mean +/- SEM 

0.5 35.5 (± 7.2) 352.5 (± 104.3) 

4 43.2 (± 1.8) 174.4 (± 63.3) 

 

 

Evaluation of LDK1258 metabolites in a mouse hepatic microsomal reaction 

As the delayed effects of the LDK1258 may have resulted from the formation of an active 

metabolite or metabolites, we used UHPLC-MS/MS on blood and brain tissue described 

above to screen and identify potential metabolites. No P450 metabolites were detected 

in the samples from either the 0.5 h or 4 h collection time-point (data not shown). 

 

 

 

 

 

 

 

 

 

 

 



47 
 

Chapter III 

Conclusions and Discussion 

 

The results presented in this thesis dissertation represent the first study to 

investigate LDK1258, a novel analog of the well-characterized CB1 allosteric modulator 

ORG27569, in established in vivo assays highly sensitive to CB1 receptor activity. 

Although several other structurally similar analogs of ORG-27569 have been developed 

in recent years (Khurana et al., 2014), few studies have evaluated whether the effects of 

these analogs translate from in vitro assays to the whole animal. CB1 allosteric modulators 

developed in recent years utilize the pharmacophores of first-generation compounds and 

have similar cellular and behavioral effects to their parent compounds (Gamage et al., 

2017; Slivicki et al., 2018). For the purpose of this thesis study we elected to focus on 

one candidate compound and evaluate LDK1258 because of its high binding cooperativity 

factor and strong equilibrium disassociation constant compared with other structurally 

similar compounds (Khurana et al., 2014).  

Summary of results. We report that HP-LCMS analysis of blood and brain tissue 

of mice pretreated with LDK1258 reveals that this compound crosses the blood-brain 

barrier to enter the CNS. A battery of in vivo experiments used in our methodology reveal 

that LDK1258 produces behavioral effects, including hypolocomotion, hypothermia, 

decreases in food intake, and delayed anti-allodynia in mice. These pharmacological 

effects persisted in wild type mice administered the CB1 receptor antagonist rimonabant 

or CB1 (-/-) mice, indicating actions inconsistent with that of CB1 receptor allosteric 

modulation. Surprisingly, LDK1258 produced a delayed antinociceptive effect in the CCI 
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model beginning at 4 h post-administration. This delayed response is different from the 

onset of action of other CB1 positive allosteric modulators. For example, the 

antinociceptive effects of the CB1 PAM ZCZ011 emerged within 30 min (B. M. 

Ignatowska-Jankowska et al., 2015). Although the reason for the delayed onset of action 

found here remains unknown, it is noteworthy that LDK1258 was detected in whole brain 

at similar concentrations at 0.5 and 4 h. While a delayed onset of behavioral effects has 

not been reported in studies examining other CB1 allosteric modulators, inhibitors of 

biosynthetic and degradative endocannabinoid enzymes similarly display peak 

antinociceptive effects at 1-3 hrs post-administration (Ignatowska-Jankowska et al., 2015; 

Wilkerson et al., 2016). It is possible that LDK1258 has off-target effects, such as acting 

on an enzyme or being metabolized into an active metabolite which are mediating the 

delayed onset of antinociceptive effects. To determine whether metabolites were present 

following LDK1258 administration we used a mouse hepatic microsomal assay which 

modeled the P450 pathway. Although no metabolites were detected in mouse brain and 

blood samples treated with LDK1258, this lack of finding does not rule out the possibility 

that the delayed activity resulted from unidentified metabolites from a non-P450 metabolic 

pathway. Lastly, the observation that the CB1 receptor antagonist rimonabant did not 

block the delayed antinociceptive response suggests a CB1 receptor independent 

mechanism.  

Previous studies demonstrated that ORG27569 and PSNCBAM-1 decreased food 

intake in rodents; however, the effects were either CB1-receptor independent or receptor 

mechanism of action was not examined (Ding et al., 2014; Gamage et al., 2014; Horswill 

et al., 2007). Similar to these first-generation CB1 allosteric modulators, LDK1258 
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reduced food consumption in food-deprived mice. In order to provide a positive control 

for the reduction in feeding behavior it was necessary to test a compound that is known 

to suppress food intake via CB1. Therefore, we also replicated the finding that rimonabant 

reduces food intake in CB1 (+/+) mice, but not in CB1 (-/-) mice (Gamage et al., 2014; 

Wiley et al., 2005). However, LDK1258 produced anorectic effects regardless of genotype 

indicating a CB1 receptor dispensable effect. Similarly, ORG-27569 reduced food intake 

in CB1 (+/+) and (-/-) mice (Gamage et al., 2014). Thus, the anorectic effects of these 

structurally related ligands occur through a CB1 receptor independent mechanism. On the 

other hand, human subjects smoking cannabis in a laboratory setting increased snack 

food consumption (Foltin et al., 1988). Moreover, as gavage administration of THC in rats 

led to increased consumption of palatable food (Williams et al., 1998), it would be 

worthwhile to assess effects of LDK1258 or CB1 allosteric modulators on consumption of 

palatable food. However, this model of assessing food intake of standard chow in rodents 

has been established to be sensitive to CB1 orthosteric ligands 

In the tetrad assay, LDK1258 reduced locomotor activity and body temperature, 

and produced small, but significant effects on catalepsy and thermal antinociception 

measures. CB1 (-/-) mice showed a similar pattern of pharmacological effects indicating 

a CB1 receptor independent mechanism of action. Similar to ORG-27569 (Gamage et al., 

2014), LDK1258 failed to alter the dose response curves of the high-efficacy CB1 receptor 

agonist CP55,940 and the low-efficacy CB1 receptor agonist AEA in producing thermal 

antinociception, catalepsy, and hypothermia. Prior studies have demonstrated the utility 

of the mouse drug discrimination paradigm in detecting in vivo pharmacological effects of 

the CB1 PAM ZCZ011 (B. M. Ignatowska-Jankowska et al., 2015). Here, LDK1258 did 
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not alter the generalization dose-response relationships of AEA or CP55,940 in the drug 

discrimination paradigm, though it reduced response rates (i.e. number of nose pokes per 

min). Similarly, ORG-27569 did not alter the dose-response relationships of CB1 receptor 

orthosteric agonists in the drug discrimination paradigm (Gamage et al., 2014). Thus, 

assays previously shown to detect in vivo pharmacological effects of ZCZ011 (B. M. 

Ignatowska-Jankowska et al., 2015) were negative for ORG-27568 (Gamage et al., 2014) 

and LDK1258 (present results). 

Limitations. A limitation of the current study is that we did not evaluate the 

mechanism of action of effects that were shown to be CB1 receptor independent. For 

example, it was not tested whether non-CB1 targets, such as CB2 or mu-opioid receptors, 

mediate the delayed antinociceptive effect of LDK1258. Additionally, we did not evaluate 

whether non-CB1 mechanisms of action were responsible for the reductions in food 

intake, locomotor activity, and body temperature; effects that are consistent with the 

actions of serotonergic drugs. Therefore, this study was limited in determining the 

mechanism of action of these effects by not testing drugs that target CB2, mu-opioid, 5-

HT receptors, or other possible off-target sites. Effects on endocannabinoid tone was not 

evaluated in this study, presenting another limitation and leaving undetermined the 

possibility that LDK1258 is either decreasing or enhancing endocannabinoid tone via 

inhibition of biosynthetic or degradative enzymes.  

It is worthwhile to note that although previous studies have examined the dose-

response relationship of CB1 agonists when co-administered with a CB1 allosteric 

modulator in the tetrad and drug discrimination assays (Gamage et al., 2014; B. M. 

Ignatowska-Jankowska et al., 2015; Pamplona et al., 2012), an effect in these models 
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has only been demonstrated for positive allosteric modulation of the CB1 receptor (B. M. 

Ignatowska-Jankowska et al., 2015; Pamplona et al., 2012). Comparatively, no significant 

effect was detected in studies evaluating ORG-27569 (Gamage et al., 2014) or its analog 

LDK1258 in the tetrad or drug discrimination assays, which were expected to cause 

rightward shifts of the dose-response relationship of CB1 agonists due to their inhibition 

of G-protein signal transduction pathways that mediate cAMP accumulation and ion 

channel phosphorylation. This inability to alter the effects of orthosteric ligands in these 

models for compounds expected to have CB1 NAM activity raises the possibility that the 

tetrad assay and drug discrimination paradigm may be limited to detecting the effects of 

CB1 positive allosteric modulation but not CB1 negative allosteric modulation. 

Studies within this thesis examining food consumption may be limited in their 

interpretation due to the fact that mice were food-deprived for 24 h prior to testing. 

Determining the baseline food consumption of free-fed mice following drug administration 

would have greater therapeutic and translational relevance since human subjects are not 

normally food-deprived for long periods of time. It has been reported that cannabinoid 

receptors modulate the consumption of palatable food in rodents (Amancio-Belmont et 

al., 2017), therefore the use of standard rodent chow rather than palatable food is another 

limitation of the present study.  

Additionally, sham animals were not used for the CCI studies which presents a 

limitation in the proper controls. It is possible that LDK1258 acts differently in animals who 

receive CCI surgery versus sham animals that are not in an injured state. Using a 

pharmacological approach to determine CB1 receptor mediation of the delayed 

antinociceptive effects in the CCI model presents another limitation of the present study. 
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It is important to note that previous observations that ZCZ011 significantly increases 

specific binding of CP55,940 and WIN55,212-2, but reduces rimonabant CB1 receptor 

binding (B. M. Ignatowska-Jankowska et al., 2015) questions the utility of employing CB1 

orthosteric antagonists to infer receptor mediation of CB1 allosteric modulators. To 

address this limitation, transgenic animals lacking the CB1 receptor should be used to 

assess CB1 receptor mediation. Nonetheless, rimonabant blocked the antinociceptive 

effects of ZCZ011 in the CCI model of neuropathic pain (B. M. Ignatowska-Jankowska et 

al., 2015). Moreover, the CB1 receptor antagonist AM251 blocked the antinociceptive 

effects of GAT211 in the paclitaxel model of neuropathic pain (Slivicki et al., 2018). 

Another limitation is that we used a mouse hepatic model of the P450 pathway only. It is 

possible that LDK1258 is metabolized by a different pathway which may produce active 

metabolites. Lastly, it is unclear the extent to which LDK1258 may act as an ago-allosteric 

modulator or a probe-dependent allosteric modulator that requires the orthosteric site to 

be occupied (Ahn et al., 2012). 

Future directions. The results indicating LDK1258 has antinociceptive and 

anorectic properties provides rational for further investigation of LDK1258 to determine 

whether this compound holds therapeutic promise to treat neuropathic pain or as an 

appetite suppressant in models not utilized in the present study such as the 

chemotherapy-induced peripheral neuropathy (CIPN) mouse model and operant 

behavior assays which utilize palatable food. The observation that this compound 

decreases locomotion, hypothermia, and food intake via a non-CB1 receptor mechanism 

of action raises the need for future studies to examine the receptors and/or 

neurotransmitter systems involved in mediating these effects. One approach to answer 
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this question would be to utilize a pharmacological approach by testing various 

antagonists of receptor systems that also mediate locomotion, body temperature, and 

feeding behavior. For example, these physiological processes are also affected by 

serotonergic compounds. Therefore, examination of a non-selective 5-HT receptor 

antagonist may result in an inhibition of these LDK1258 effects. An alternative method 

to identify the mechanism of action of the off-target effects of LDK1258 is to utilize a 

Basic Alignment Search Tool (BLAST) protocol which is an algorithmic program that can 

screen for binding selectivity of novel compounds against various GCPRs. In addition, 

effects on biosynthetic or degradative enzymes should be assessed. Future studies that 

examine brain levels of AEA, 2-AG, and other endogenous ligands are necessary to 

determine if LDK1258 treatment has any effect on endocannabinoid levels in the CNS.  

Future studies should also consider the limitation presented in this thesis by 

using a pharmacological approach, rather than a genetic approach, to test CB1 receptor 

mediation of the delayed antinociceptive effects in the CCI mouse model. This limitation 

is presented by the observation that ORG-27569 and ZCZ011 decreases the binding of 

the CB1 receptor inverse agonist rimonabant in vitro (B. M. Ignatowska-Jankowska et 

al., 2015; Price et al., 2005), therefore it is possible that co-administration results in a 

decrease of rimonabant binding in vivo. Subsequent studies of the antinociceptive 

effects of LDK1258 should utilize transgenic CB1 (-/-) mice to confirm that the delayed 

antinociceptive effect are indeed CB1 receptor independent. In addition, a full dose-

response of LDK1258 in addition to including a sham surgery control group should be 

considered in any future assessments of this compound in the CCI model. 



54 
 

Lastly, other non-P450 hepatic metabolic pathways may be contributing to the 

metabolism of LDK1258 and should be investigated. Further collaboration with 

medicinal chemists may result in the isolation and resynthesis of active metabolites 

which may hold therapeutic potential. 

Final conclusions. The ORG-27569 pharmacophore represents one of the most 

widely used by medicinal chemists in the development of novel CB1 allosteric modulators. 

Interestingly, ORG-27569 increases CB1 receptor binding of CP55,940, while dampening 

functional receptor responses (Price et al., 2005). Increased rates of CB1 desensitization 

that concomitantly cause cAMP levels and hyperpolarization states to return to baseline 

more rapidly than in the absence of the modulator may contribute to this paradoxical 

response (Cawston et al., 2013). In comparison, LDK1258 displays actions similar to 

ORG-27569 by enhancing agonist binging in radioligand binding assays and decreasing 

functional responses in vitro (Khurana et al., 2014). Although the in vitro effects of ORG-

27569 and LDK1258 are consistent with CB1 allosteric modulation, these actions do not 

translate to their in vivo actions, which are CB1 receptor independent.  

Collectively, the studies conducted within this dissertation demonstrate a 

translational gap from the cellular level to the whole organism in the development of CB1 

receptor allosteric modulators. In comparison, studies examining the structurally related 

CB1 PAMs, ZCZ011 and GAT211, in in vivo assays show CB1 receptor dependent 

pharmacological effects (B. M. Ignatowska-Jankowska et al., 2015; Slivicki et al., 2018). 

ZCZ011 produces leftward shifts of the dose-response relationships of AEA and 

CP55,940 in the triad and drug discrimination assays consistent with the action of a CB1 
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PAM; thus, demonstrating the utility of these assays in evaluating CB1 allosteric 

modulators.  

The results of the present dissertation demonstrate that the novel CB1 allosteric 

modulator, LDK1258, produces effects inconsistent with CB1 receptor allosteric 

modulation and produces CB1 independent effects in vivo. A major contribution of this 

study is that the methodology employed provides an efficient screen to evaluate the 

behavioral effects of novel purported CB1 allosteric modulators. These results along with 

studies evaluating the in vivo effects of ORG-27569 (Gamage et al., 2014), ZCZ011 (B. 

M. Ignatowska-Jankowska et al., 2015), and their analogs (Slivicki et al., 2018; present 

study) underscore the importance of screening purported CB1 allosteric modulators in 

rodent models. Future development of the next generation of CB1 allosteric modulators 

will require the combination of medicinal chemistry, cellular pharmacology, and behavioral 

pharmacology and close collaboration between these fields.  
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