
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2020

Implementation of a Hierarchical Embedded Cyber-Attack Implementation of a Hierarchical Embedded Cyber-Attack

Detection System in Unmanned Aerial Systems Detection System in Unmanned Aerial Systems

Kevin Yang
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6309

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6309?utm_source=scholarscompass.vcu.edu%2Fetd%2F6309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Implementation of a Hierarchical Embedded
Cyber-Attack Detection System in Unmanned Aerial

Systems

by

Kevin Yang

Submitted to the Department of Electrical and Computer Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical and Computer Engineering

at the

VIRGINIA COMMONWEALTH UNIVERSITY

May 2020

c○ Virginia Commonwealth University 2020. All rights reserved.

Author .
Department of Electrical and Computer Engineering

May 18, 2020

Certified by. .
Robert H. Klenke, Ph.D

Professor, Department of Electrical and Computer Engineering
Thesis Supervisor

Implementation of a Hierarchical Embedded Cyber-Attack

Detection System in Unmanned Aerial Systems

by

Kevin Yang

Submitted to the Department of Electrical and Computer Engineering
on May 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical and Computer Engineering

Abstract

With the development of technology revolving around Unmanned Aerial Systems
(UAS), UAS are becoming more widely used across a variety of applications. In every
scenario, the system in question needs to have very distinct requirements and specifi-
cations, many of which revolve around safety and reliability. As such, these systems
need to provide mechanisms in order to handle different attacks by adversaries on
the outside. Since these systems have the ability to operate in many different flight
modes according to their mission, detection and mitigation of the attacks become
increasingly difficult over time. Cyber-attacks and their focuses are often evolving,
and as a result, existing mitigation solutions slowly become obsolete. Many solu-
tions that exist involve an intrusive solution or embedded software, which provide
another attack surface for adversaries to and gain entry. Here, a hierarchical embed-
ded cyber-attack detection system is explored and implemented, providing different
methodologies and strategies for handling both cyber-attacks and hardware faults
and failures on a hardware and information level.

Thesis Supervisor: Robert H. Klenke, Ph.D
Title: Professor, Department of Electrical and Computer Engineering

2

Acknowledgments

I would to express my gratitude Dr. Robert H. Klenke, for his time and guidance

throughout this project. Over the development and implementation of this paper, Dr.

Klenke provided much insight and explanation with the decisions made with designing

critical sections of this project. With the help of Dr. Klenke, the development and

implementation of this project was extremely rewarding, and much was learned and

accomplished.

Secondly, I would like to thank Dr. Matthew L. Leccaditto, Peter Truslow, and

Andy Fabian, as without their guidance, many of the barriers that popped up during

the research and development process would not have been broken. Over the course

of the project, a lot of information regarding the programming and setup of the

existing flight control system were advised, and without knowledge of these changes,

the development process would be slowed tenfold.

Third, I would like to thank Dr. Carl R Elks, Dr. Sherif Abdelwahed and Dr.

Ruixin Niu, for their guidance on the higher level approaches to identifying attacks

and testing of the HECAD on UAS systems. Many of the design decisions made in

the project revolved around the high level overview at the higher levels of abstraction.

Finally, I would like to express my gratitude to my fellow researchers, friends, and

family for providing much support in my decision to pursue this degree. Without

their insight, a large part of education and experiences would not be possible. Thank

you for providing much support and guidance through this experience.

3

Contents

1 Introduction 10

2 Background and Related Works 16

2.1 Unmanned Aerial System - General Architecture 16

2.2 Vulnerabilities of UAS . 17

2.2.1 Naturally Occurring Faults vs. Cyber-Attacks 19

2.2.2 System Security and Attack Surfaces 20

2.2.3 Types of Attacks on Unmanned Aerial Systems 22

2.3 Hierarchical Embedded Cyber-Attack Defense System (HECAD) . . . 25

2.3.1 Hardware Resource Integrity Monitor 26

2.3.2 Information Integrity Monitor 27

2.3.3 Functional Integrity Monitor 27

2.3.4 Execution Integrity Monitor 28

2.3.5 Information Flow . 29

2.4 Related Works . 30

3 Subsystems 34

3.1 Implementation Platform: Avnet Ultrazed-EV 34

3.2 Monitored System: Aries Flight Controller 35

3.3 Sensors . 35

3.3.1 NEO-M8 GPS Module . 35

3.3.2 VACS Packet Transmitter . 36

3.3.3 MS5611 Barometric Pressure Sensor 36

4

3.4 Communication Buses . 38

3.4.1 UART & Vulnerabilities . 38

3.4.2 I2C & Vulnerabilities . 38

4 Implementation of HECAD Hardware and Information Monitors 40

4.1 Hardware Resource Integrity Monitor 41

4.2 Information Integrity Monitor . 43

4.3 Functional Integrity Monitor . 44

4.4 Hardware Validation Checks . 45

4.4.1 UART . 45

4.4.2 I2C . 50

4.5 Information Validation Checks . 54

4.5.1 Range . 54

4.5.2 Flatlining . 55

4.5.3 Discrepancy and Large Delta Changes 56

4.6 Information Flow . 57

4.7 Data Management . 58

4.8 Error Management . 59

4.9 Mitigation Techniques . 60

5 Injection and Verification 64

5.1 Injection Process . 64

5.2 Hardware Level Injection . 65

5.3 Information Level Injection . 66

6 Preliminary Results and Verification 69

6.1 HRIM . 69

6.1.1 UART HRIM . 69

6.1.2 I2C HRIM . 74

6.2 I2M . 78

6.2.1 UART I2M . 78

5

6.2.2 I2C I2M . 79

7 Conclusions and Future Works 85

7.1 Conclusion . 85

7.2 Future work . 86

7.2.1 Power Cycling . 87

7.2.2 Hot Swapping . 87

7.2.3 Intelligent Detection . 87

7.2.4 HECAD as Flight Controller System 88

REFERENCES 92

6

List of Figures

1-1 General Architecture of a Unmanned Aerial System 11

1-2 Devices and Their Communication Buses 13

2-1 List of CPS Exploits, Adapted from [8] 25

2-2 General HECAD Architecture in Zynq MPSoC 26

4-1 Implemented HECAD Architecture in Zynq MPSoC for I2C and UART

Devices . 41

4-2 Communication Link between the UAS and the GCS 44

4-3 UART HRIM State Machine . 46

4-4 Sampled UART Transmission at 115200, 2 stop bits 48

4-5 Sampled UART Transmission at 57600 49

4-6 I2C HRIM State Machine . 51

4-7 Command Checking State Machine 54

4-8 Information and Error flow within HECAD 58

5-1 Injection Testbed for the GPS module 65

6-1 UART Injection at 9600 baud . 70

6-2 UART Injection at 19200 baud . 70

6-3 UART Injection at 57600 baud . 71

6-4 UART Injection at 230400 baud . 71

6-5 UART Injection at 500000 baud . 72

6-6 UART GPS with Even Parity Bit . 72

6-7 UART GPS with Odd Parity Bit . 73

7

6-8 UART GPS with Space Parity Bit . 73

6-9 UART GPS with Two Stop Bits . 74

6-10 I2C SCL Held Low after Start condition 75

6-11 I2C SCL Held Low during transmission 75

6-12 I2C SCL Held High after Start condition 75

6-13 I2C SCL Held High during transmission 76

6-14 I2C Incorrect Frequency - 347222 Hz, +3.3 % 76

6-15 I2C Incorrect Frequency - 250 kHz, -25.6 % 77

6-16 I2C Incorrect Frequency - 2 MHz, +495 % 77

6-17 I2C Incorrect Duty Cycle . 77

6-18 VACS Packet - Checksum A changed 78

6-19 VACS Packet - Checksum B changed 78

6-20 VACS Packet - Data Payload changed 79

6-21 I2C C1 Calibration Injection . 79

6-22 I2C C2 Calibration Injection . 80

6-23 I2C C3 Calibration Injection . 80

6-24 I2C C1 Calibration Change . 80

6-25 I2C C2 Calibration Change . 81

6-26 I2C C3 Calibration Change . 81

6-27 I2C Invalid Command Injection 1 . 81

6-28 I2C Invalid Command Injection 2 . 82

6-29 I2C Invalid Command Injection 3 . 82

6-30 I2C Pressure Injection 1 . 82

6-31 I2C Pressure Injection 2 . 83

6-32 I2C Pressure Injection . 83

6-33 I2C Temperature Injection . 83

6-34 I2C Pressure and Temperature Injection 84

8

List of Tables

4.1 List of data fields - FIM . 59

5.1 HRIM Injections for UART Bus . 66

5.2 HRIM Injections for I2C Bus . 66

5.3 I2M Injections for VACS Device . 67

5.4 I2M Injections for MS5611 . 68

9

Chapter 1

Introduction

With the evolving technology surrounding unmanned aerial systems over the years,

these systems have become increasing versatile. As such, the applications of these

systems have expanded over several fields in industry, including civilian, medical and

military. In these respective fields, the concept of safety and reliability are heavily

emphasized and extremely important. Over time, the research of UAS has shifted fo-

cus to improving safety and preserving mission-critical functionality. In safety-critical

systems and applications, a failure of any kind will often result in catastrophic con-

sequences. The same applies for mission-critical systems. In order to prevent these

situations, these systems need to provide different mechanisms and solutions to detect

hardware faults and cyber-attacks and minimize the catastrophic failures. As the ca-

pabilities of UAS and cyber-attacks targeting unmanned systems evolve, the existing

solutions safeguarding legacy unmanned systems become obsolete. As a result, more

intensive solutions requiring quicker interventions are needed, especially for systems

that can potentially cause harm to humans and the environment. Methodologies for

monitoring a system in real-time is explored and implemented.

An unmanned aerial system is often best described as a cyber-physical system.

This idea involves the integration of physical components of a system (sensors and ac-

tuators) and the cyber components of a system (algorithms and computation flows).

On any cyber-physical system, the “correct and functional” operation of the system de-

pends greatly on its interface and interconnections with the many on-board modules.

10

For unmanned aerial systems, sensors and actuators provide data to the main flight

controller as well as their respective communication buses. A general architecture for

a UAS is shown in figure 1-1. In systems that perform missions autonomously, orien-

tation and geolocation data is critical. Sensors that provide orientation data, such as

a gyroscope or an accelerometer, or sometimes any combination of the two to form

an inertial measurement unit (IMU) or a motion processing unit (MPU), will need to

function correctly to ensure false data is not sent to the controller. Without them,

the flight controller will have no reference to determine its direction or orientation for

its mission. The UAS will also need to continuously know its location precisely, so

the presence of a functional GPS module will be needed. Without these components,

the UAS will be rendered useless due to its inability to determine its orientation and

location to carry out its mission. Each individual sensor will communicate with the

flight control system through different protocols to perform its function.

Figure 1-1: General Architecture of a Unmanned Aerial System

A UAS can be represented as a cyber-physical system. The functional require-

ments can be broken down into required subcomponents, each of which need to func-

tion correctly and independently. When modeling and designing an unmanned sys-

tem, each individual underlying subcomponent that the main flight controller depends

11

on is identified. This allows for proper design and implementation in the main flight

control system to ensure that the most accurate and up-to-date data is always ob-

tained. Every dependent subcomponent must be highlighted. A similar method can

be used to identify the vulnerabilities associated with the system.

In general, an unmanned system comprises of a series of subcomponents: commu-

nication networks, sensors, and actuators. These subcomponents work together to be

able to obtain data from each other and play a critical role in correct functionality.

However, the inclusion of each subcomponent introduces an additional vulnerability.

With communication networks, adversaries have the ability to perform data injection

via packet sniffing and false data injection. For example, in systems that communicate

live flight data with the ground control station, adversaries can perform a man-in-

the-middle attack, packet sniffing the data going back and forth and manipulating

the data before sending it back out.

The sensor itself can also act as a gateway for other cyber-attacks. With a given

sensor, there can be multiple points in the supply chain process that allows for in-

jection of malicious software. Although these sensors can be simplistic, the firmware

or circuitry can be modified (with or without malicious intent) to output data that

is not true to its expected behavior. As a result, supply chain attacks can be harder

to detect without further knowledge aside from how the sensor is behaving over the

communication bus and the information that is being returned. This would require

a higher level of processing to be able to detect valid anomalies.

In Figure 1-2, there are two main general vulnerabilities that can be identified

from each main subcomponent. The functionality of an unmanned system depends

on its ability to obtain reliable data on its vehicle such as airspeed, geolocation,

altitude or orientation, so it is critical that the flight controller is able to (1) obtain

valid data from each individual subcomponent and (2) obtain reasonable data from

from the subcomponent. There is a difference between valid data and reasonable

data. With valid data, the goal is to verify whether or not the data being returned is

actually what is being reported and follows the constraints set by the manufacturer,

while reasonable data is data that makes sense when it taken into context. If data

12

being returned indicates activity on the sensor, but in reality no action is being taken,

then the data received is perceived as valid but unreasonable, so long as the data is

within range and specification. However, if the data received is is out of range, then

this shows invalid data. This is important, especially when dealing with sensors that

require further processing upon receiving data. For conversion operations requiring

calculations based on values returned, valid data is especially important to account

for specific data types and ranges. If invalid data is reported, results from calculations

depending on this data will be incorrect.

Figure 1-2: Devices and Their Communication Buses

The requirement that the main flight controller needs to be able to obtain correct

data from its subcomponents identifies two big potential vulnerabilities: the failure

of a communication bus and the failure of the sensor itself. The failure of a bus can

be as simple as an issue with the physical connection: a wire could be incorrectly

connected or perhaps the master device can request data from an unknown address,

13

forcing the slave to hang the bus. Timing issues can arise, and cause problems getting

correct data across. In any case, the failure of the bus is detrimental, as it can also

hang the flight controller itself.

Previously, a hierarchical embedded cyber-attack detection (HECAD) system was

outlined that can detect attacks and faults at multiple levels of abstraction [1].

HECAD contains four levels of detection: the hardware resource integrity level, the

information integrity level, the functional integrity level, and the execution integrity

level.

The first level involves detection at the physical hardware level. This allows for

validation that the bus protocol is working as intended, and any malfunctions such

as timing issues or glitches and unexpected behavior are detected and alerted. At

this level of abstraction, the hardware validation knows nothing about the device on

either end of the bus. It knows only about the configuration and operation of the bus

(baud rate, transmission speeds, addresses, etc).

At the information level, another detection module takes into account the func-

tions of the devices on the ends of the communication bus. Here, information received

to and from either device are validated against what is expected. As a result, this

abstraction layer is very tightly coupled with its respective device. Addresses, data

ranges, and commands are checked, making sure that they fall within the range of

what is expected. If there are custom packet protocols developed to communicate

with the ground control system, all data coming across the communication and data

link is verified to match the information packet described.

Since the hardware and information level checking levels are designed as data and

configuration verification for each sensor or other devices, a higher level detection

module is required to detect the less obvious and more complex system-level attacks

and faults. At the functional integrity level, more complex processing is required

within the HECAD processing system on the validated data to ensure proper system-

level functionality. More computationally intensive and in-depth algorithms that

are less feasible to implement in hardware or easily implemented in software are

implemented here, as well as any other possible implementations such as artificial

14

intelligence solutions.

The combination of these multiple levels of detection in hardware and software

provides a global, minimally intrusive and tightly-coupled fault and cyber-attack

detection system that detects anomalies on a hardware, information, and functional

level of operation. By isolating HECAD from the main system, the chances that an

adversary is able to attack the HECAD system itself is minimized. The goal is for

the HECAD system to detect attacks from a bottom-up approach as well as from

a higher level point of view. HECAD is designed so that integration into the flight

controller is minimal, and would prevent additional attack surfaces. HECAD operates

independently to do cross-checking, verification and validation of functionality across

subsystems in real-time.

Contributions of this thesis

The work completed in this thesis contributes to implementing a portion of a

hierarchical embedded attack detection system for Flight Control Systems (FCS) of

small Unmanned Aerial Systems (sUAS). While some techniques exist for detect-

ing cyber-attacks from a high-level perspective (such as neural network detection as

explored in [2] and [3], malware detection using embedded decoy processes [4], mon-

itoring of power and heat characteristics [5] or control-flow analysis [6]), additional

techniques are needed for detecting different types of cyber-attacks at different levels

in an sUAS. While well-coordinated attacks often occur at a higher level by target-

ing multiple parts of a system, this work describes methods for detecting attacks at

the hardware and information level using a bottom-up approach. These methods

lay the groundwork for breaking cyber-attacks down into smaller steps at different

levels in the system for detection and mitigation. These lower-level hardware and

information-level detection techniques were implemented using a field-programmable-

gate-array (FPGA) along with an FCS and its respective on-board sensor components

that communicate using the universal asynchronous receiver transmitter (UART) and

inter-integrated circuit (I2C) communication buses.

15

Chapter 2

Background and Related Works

2.1 Unmanned Aerial System - General Architecture

An unmanned aerial system (UAS) or an unmanned aerial vehicle (UAV) is an

example of a cyber-physical system whose operation highly depends on the correct

operation of the on-board components such as sensors and actuators. When UAS

were introduced to the industry, a commercial-off-the-shelf (COTS) UAS used for ev-

eryday recreational purposes generally did not have many self-piloting features that

allowed them to fly without user intervention. Over the years, as size, weight and

performance capabilities evolved, more and more features involving automated flight

modes became available. Hovering, flips, and object-following are a few examples.

Systems such as the DJI Mavic or the Skydio 2 are able to perform tasks such as

following a subject in video through mountains and forests or taking pictures upon

a voice command. In order to be able to successfully perform these tasks without

entering a failed state of the aircraft, the on-board components need to be dependable

in the presence of failures and cyber-attacks by providing correct data and feedback

on the status of the vehicle at all times. These components generally involve image

processing units, graphics processing units, camera sensors, GPS units, inertial move-

ment units, central processing units, and other sensors and actuators, many of which

form subsystems. By integrating these physical components that provide data con-

stantly and correctly, unmanned systems now have a highly-reliable, highly-available

16

system of sensors and actuators. The flight controller, which generally has a main

microcontroller or processor and various necessary peripherals, manages all of the

data processing and storage as well as communication between subsystems and other

parts of the unmanned system.

2.2 Vulnerabilities of UAS

During the planning and development of an unmanned system, the most important

aspects of the system are considered: safety and security. The following defines several

terms related to the security of a UAS.

1. Vulnerability - The presence of a component that can be used by attackers to

gain entry into the system

2. Safety - The state of the UAS being uncompromised and safeguarded against

external and internal threats

3. Security - The presence of several safeguards designed to protect the operational

state of the UAS

4. Mitigation technique - Actions taken in response to finding a threat or compro-

mised safety / security

5. Spoofing - The process of tricking a sensor or device by attacking the sensor’s

or device’s point of reference

6. Attack - The process of introducing errors and unfamiliar information and com-

mands into the system through exploitation of different vulnerabilities

7. Injection - The process of introducing different types of malware / unfamiliar

information, commands, or operations into the system intentionally under a

controlled testing environment

8. Threat - The existence of unfamiliar information, commands, or operations seen

from the system’s point of view

17

9. Attack Surface - The different ways that the attacker can gain access to the

system [7]

With aerial systems, there are several requirements put into place regarding oper-

ation and flight. The biggest concern is the ability for the UAS to not lose control and

fall out of the sky. While this may not be the case for many industrial commercial off

the shelf (COTS) drones, sometimes the security of the systems is overlooked. Aside

from the very basic requirements of an unmanned aerial system (vehicles need to have

security mechanisms in place to prevent UAS from falling out of the sky and other

requirements to prevent injury), a more in-depth analysis is often not considered.

Traditionally, the development of a UAS involves building the drone to operation,

then tackling the problems involved with security from a top-down overview [8]. This

approach is often not enough, considering the constant evolving cyber attacks that

involve targeting different parts of an unmanned system. Depending on the goal of

the adversary, attacks can either bring the entire vehicle down, or perform enough ma-

nipulation to throw the state of the UAS into chaos (such as manipulation orientation

or positional data either though sensor spoofing or false data injection).

The concept of security within many systems and subsystems can be classified

into four broad areas: Confidentiality, Integrity, Availability, and Authentication.

1. Confidentiality - The confidentiality is the measure that that determines who

has access to what information. Generally, rules are put into place to determine

ownership of specific data, along with evaluating the importance of data and

the detrimental effects of it being compromised.

2. Integrity - Integrity is a measure used to verify the integrity or authenticity of

data from a source. For data that is transmitted between devices, there is gen-

erally a communication protocol along with specific data constraints provided

by manufacturers. Often times, there are built-in mechanisms to verify integrity

of data during transmission to ensure that the data has not been manipulated

or changed.

18

3. Availability - Availability is a measure that is used to ensure that all systems

communicating between devices are reliably able to access data at any point

in time. Placing measures that ensures reliable communication for data at any

point in time, downtime between communication devices are minimized.

4. Authentication - Authentication is used to verify that the devices attempting

to communicate with each other are really the devices they claim to be. This

is usually done with addressing or identification bytes.

2.2.1 Naturally Occurring Faults vs. Cyber-Attacks

In systems such as a UAS, naturally occurring faults can arise. For example, single-

event upsets (SEU) may occur, especially in systems that spend time in high altitudes

where cosmic rays can induce naturally occurring faults. When this happens, a bit or

multiple bits within a device may be affected, changing the data to be reported to the

requesting device. In this case, data that is then reported appears to be manipulated.

However, the issue here is that it is difficult to differentiate naturally occurring faults

from direct cyber-attacks. For example, assuming that an adversary has successfully

injected malware that is intended to scramble the data being reported into a sensor

by randomly flipping bits, then this data that is being passed through a checker has

no way of verifying that the data is indeed from an attacked sensor as opposed to

environmental noise such as an SEU, since the data will appear to be scrambled.

Unless there is a method to identify patterns that are associated with cyber-attacks

as opposed to natural faults, it is extremely difficult to differentiate between the two.

If the user had information regarding how data is being scrambled by a compromised

sensor, then more information will be available for this. However, the chances are

very low for the checker to know attack information, especially with well-coordinated

attacks performed with the intention of hijacking sensors and systems where the

attacker may be able to inject malicious information. Well-coordinated attacks will

not follow the assumptions that the system will know information about outside

attacks, injected malware, or that the attacks target a single sensor. As a result, a

19

detection scheme attempting to differentiate between natural faults and cyber-attacks

will be more successful in determining any kind of discrepancy, rather than attempting

the classify the type of discrepancy.

2.2.2 System Security and Attack Surfaces

The security of a UAS is often described by several attributes, including how easily

attackable the system is (susceptibility), as well as how the system can be exploited

(accessibility). These two attributes describe the different actions on different attack

surfaces. Often times, attacks that are well coordinated and have extensive attack

surfaces are more successful against systems. In order to combat the different types of

attacks, the general operations of the attack surfaces need to be analyzed. Generally,

attacks involve some form of extraction, manipulation, and then reinsertion. This is

especially true for attacks on wireless communication links or communication buses

if access has been gained through either a man-in-the-middle attack or malicious

malware injection into the system / sensor.

In Figures 1-1 and 1-2 in the previous chapter, there are multiple attack surfaces

on a UAS. The first involves attacking the sensors and actuators themselves. Since

unmanned systems rely heavily on components that provide data on orientation and

position, the downtime of these components can result in fatal operation of the aerial

system. With many different sensors, their correct operation depends on the correct

functionality of a reference point. For example, GPS modules receive signals from four

or more satellites, completing a calculation that informs the receiver module where

they are geographically located. Satellites constantly transmit the time in which a

signal is sent, and based on the difference between the time the signal is received

by the GPS module and the time the signal is sent by the satellite, the receiver can

figure out the distance to each GPS satellite using trilateration. A spoofing attack can

work when the attacker can successfully replicate these satellite signals, and transmit

them locally. Since UAS are typically flying closer to the ground, it is possible that

GPS signals from the attackers can be picked up and override the GPS signals from

the satellites. In theory, this is possible. However, because unmanned systems in

20

the air are often moving and constantly changing, an active spoofing attack will be

very difficult, especially at higher altitudes and speeds. In section 4, a mitigation

technique for this is issue explored.

In many mobile phones, there are often software applications that allow for chang-

ing the device location, primarily through offering an alternative set of coordinates

to the operating system rather than relying on the data received from the GPS mod-

ules. On an unmanned system, a similar situation may occur. Attackers can attack

by sneaking in malicious software or firmware to the on-board to processor that either

manipulates the sensor to transmit incorrect data or overrides the sensor’s data and

inserts its own set of malicious data. Frequently, the firmware gets into the system

through an external source. Typically, these involve an attacker cloning an original

source of firmware and modifying the firmware to be re-distributed, the source comes

from the developers themselves (either with malicious intent or simply lack of test-

ing and verification), or source becomes corrupted through distribution through the

many points of contact (manufacturer, distributor, assembly or during programming)

[1]. This situation would be more often found in situations where a sensor does not

rely on an external reference point, such as an airspeed sensor. These sensors rely on

factory-written data in the calibration registers to be able to provide accurate data.

Malware within the sensor is able to manipulate the reported data or change the

calibration data.

In any generic unmanned system, there will typically be a communication path

between the on-board flight controller and the ground control station. Frequently,

when there are missions that need to be completed by the UAS, the ground controller

will send mission data (coordinates, way-points, geolocation data, etc) to the UAS,

and the UAS may send additional data back. Generally, communication between the

UAS and the ground controller will have a very specific protocol and data format.

Because of this, attackers may sit in between the two points and listen in on the

protocol. If the data being sent is not encrypted, it will only make it easier for the

attacker to figure out the protocol. Once the protocol has been figured out, the

attacker can either replicate or manipulate the data and resend the data back out,

21

performing a man-in-the-middle network attack on the flight controller.

Additionally, because the ground controller generally consists of a program that is

provided and maintained by third parties, there are no guarantees that the software

used in the ground control station is not compromised. In the event that an attacker

is able to trick the user into downloading a malicious version of the ground controller,

the attacker can use the ground controller to send malicious commands and data

to the flight controller. If the ground controller is developed by a user, any insecure

connection to the internet provides a point of entry for the attacker to inject malicious

data into the ground control station. A known instance of a compromised ground

control station is described in [9] and [10], where an attacker successfully implanted

keylogger malware into a ground station to be able to steal key information. A similar

process can be done here, especially if information is stored unsecured.

The use of an encryption method for communication will only provide further se-

curity between the points of communication. For an XBee communication transceiver,

there exists a built-in Advanced Encryption Standard (AES) encryption that can be

enabled. However, this requires that the user still provide an encryption key on ei-

ther end of the transmission link. If this information is stored on the ground control

station and the flight controller, the attacker can access this information if there is

an unsecured connection to the internet from the ground control station. AES is a

symmetric encryption algorithm, meaning the same key is used to decrypt and en-

crypt the block of data. As a result, if an attacker gains access to the key, they can

successfully encrypt and decrypt the data going both ways. With this information,

the attacker now has full control of the communication link, given that they are able

to determine the protocol and packet formation standard.

2.2.3 Types of Attacks on Unmanned Aerial Systems

In general, the failure of a UAS can be classified into two broad domains: UAS

mission-related failures and UAS safety-related failures. Mission-related failures are

related to the objectives or mission revolving around the user or autonomous missions.

On the other hand, safety-related failures are related to the failure of constraints put

22

in place to ensure safety to people, environment and infrastructure. Of these two

domains, there is potential for overlap. Mission-related failures can often be caused

by a failure of a component that does not provide correct data at any given point

in flight time. For a UAS, this means that a component or components have failed,

either through a hardware fault or a direct cyber-attack. On unmanned systems,

an example of a fault can result from single event upsets caused by cosmic rays.

Most commonly seen in systems in space, these events can happen more often to

aerial systems than ground systems due to their constant high altitude. When these

events happen, information provided by the component can be incorrect and will

result in a failed operation of the UAS. For direct cyber attacks, the manipulation

of the information coming off of the sensor are often controlled attacks. If the goal

is to divert the aircraft away from the area of operation (AO), then an attacker may

spoof a combination of sensors by manipulating the reference points to divert it in a

certain direction. However, this is very unlikely since manipulation of sensors without

external reference points will need to be from the supply chain level. With this

approach, an unmanned system with multiple sensors from the same distributor or

manufacturer will provide an advantage to the attacker. In either case, the presence

of a faulty sensor or a direct cyber-attack will place limits into the performance

requirements of the aircraft in order to complete its mission.

On the other hand, failure of safety constraints can result from faulty sensors.

With the failure of orientation and positional sensors such as the IMU or a GPS

module, the main points of reference for the UAS to maintain its position have been

lost. The UAS then has no way of knowing how to stay upright. The same effect

can be achieved by attacks on sensors by manipulating the reference points of the

sensors. For sensors such as GPS, attacks can be performed via spoofing or jamming.

As explained previously, the data reported by the sensor can be ignored and data

from a secondary source can be utilized. In the event that an attack is able to

insert malicious code prior to the flight, attacks can replace the incoming data with

malicious data, performing a false data injection via malware infection or a supply

chain attack.

23

Furthermore, a successful attempt to insert malicious code allows for attacks on

the source of the controller, or rather the processing platform itself. The presence of

malicious code can manipulate the behavior of the software and hardware modules

on-board. These involve forcing the flight controller to behave in unexpected ways

(running malicious or alternative code or hanging communication buses). Once the

firmware has successfully entered the system, there are several approaches that the

firmware can take. The firmware can run malicious code, forcing resources to be held

up or causing the battery to drain (resource locking and sleep deprivation), insert

malicious data into the local database or memory (database and false data injection),

or force malicious code to manipulate data processing, actuator control algorithms,

and memory management.

Outside of the flight controller, there is the possibility of attack between two com-

munication points. As most unmanned systems communicate over some form of a

network, there are many different types of attacks through a wireless entry point.

Between the flight controller and the ground control station, attackers are able to

perform a man-in-the-middle attack, where the attacker listens in on the communi-

cation protocol. If the series of data is encrypted as described above, attackers may

perform a brute-force attack on encryption algorithms to determine the key used to

encrypt the data. With any knowledge of a communication standard, attackers know

to look for a few sync bytes and a message length. The data can then be captured

and the communication standard can be broken down, allowing attackers to perform

replay and relay attacks. Furthermore, once the attackers know the protocol, they

are able to perform command injection or false data injection to manipulate the tasks

of the UAS. Alternatively, attacks can be carried out to perform denial-of-service

or communication jamming attacks by either dropping parts, if not all, of the data

packets going back and forth. Figure 2-1 summarizes a wide variety of attacks on

cyber-physical systems.

24

Figure 2-1: List of CPS Exploits, Adapted from [8]

2.3 Hierarchical Embedded Cyber-Attack Defense Sys-

tem (HECAD)

In order to be able to address the issues above, the hierarchical embedded cyber-

attack detection (HECAD) system is implemented. HECAD consists of a multi-level

hierarchical hardware and software architecture [1] that is designed to monitor and

detect the many different hardware, information and functional faults and attacks as

discussed previously. Within the HECAD architecture there are four levels of abstrac-

25

tion designed around detection at multiple levels of operation on a unmanned system.

This system is intended to verify mainly the integrity of information throughout the

many different subcomponents involved within the flight control system as described

in section 3. Figure 2-2 shows the general architecture of HECAD.

Figure 2-2: General HECAD Architecture in Zynq MPSoC

2.3.1 Hardware Resource Integrity Monitor

At the lowest level is the Hardware Resource Integrity Monitor (HRIM). The

HRIM is designed to monitor the operation of a module on one of the communication

ports: UART, I2C, and SPI. The HRIM monitors the hardware characteristics of a

sensor, such as the operation of the communication protocol, specifically to ensure

that the configuration of the protocol is the same on both the receiving and trans-

mitting ends, as well as to ensure the configuration does not change mid-operation.

26

The HRIM sniffs data passively, and if an error in the communication bus has been

detected, a switch can be triggered, detaching the faulty sensor until it has been re-

paired or reset, or simply alerting the operator. The HRIM can be applied to different

applications, not just monitoring a hardware protocol.

2.3.2 Information Integrity Monitor

The next level up is the Information Integrity Monitor (I2M). As the name sug-

gests, the I2M continuously checks for the integrity of the data. Unlike the HRIM,

the I2M cannot be reused across different sensors. A dedicated I2M will need to be

developed on a case-by-case basis for each sensor. This is to ensure that the I2M will

be able to parse data from each different sensor and is designed to be independent

from every other on-board sensor. However, despite the independence from the dif-

ferent sensors, there is a dependence on the HRIM, as the I2M receives correct data

information from the HRIM. The purpose of the HRIM is to pull the data from the

sensor and package it for analysis, while the I2M uses the packaged data for verifica-

tion. In most cases, the data from each sensor will already be packaged into different

registers, and the only task from here will be to identify the registers and their re-

spective values. The I2M knows only about the data coming from the sensor that it

is designed for: the operational ranges, typical values, and expected values.

2.3.3 Functional Integrity Monitor

Next comes the Functional Integrity Monitor (FIM). The FIM monitors the op-

eration status of all of the sensors and actuators on-board from a higher level than

the HRIM or I2M. At this level, data is collected from the sensors and actuators as

well as the communication with the ground control station to ensure that there are

no gradual changes to the data in accordance to its mission and functional require-

ments. An attack that cannot be detected by the HRIM and I2M will be analyzed

at this level. As an example, an attack performed targeting a GPS spoof will allow

attackers to manipulate the reference point of a GPS module. This in turns allows

27

for the attack to place their own GPS coordinates in the spoofing attack as desired.

Because it is a spoof attack, the HRIM and the I2M will not detect the attack, since

the data received by the GPS module will still transmit correctly over a specific com-

munication protocol (UART) and will be within a reasonable range. A slow drift in

the coordinates are categorized as correct data by both the HRIM and I2M. The data

reported by the GPS module will be different according to the attackers’s desired co-

ordinates. With this, the attacker has the opportunity to slowly drift the coordinates

away, causing the UAS to drift as a reaction to the change in coordinates. A sudden

and large change in the GPS coordinates will be caught by the I2M. From here, the

FIM detects that there has been a drift in the GPS coordinates, and uses another

metric for validation. The goal of the FIM is to be able to detect changes that are

forbidden at both the sensor / actuator level and the state of the flight controller

itself but passes the lower level checks implemented at the HRIM and the I2M.

2.3.4 Execution Integrity Monitor

On top of the HRIM, I2M, and FIM comes the Execution Integrity Monitor. At

the highest level of the HECAD hierarchy, the goal of the EIM is to be able to monitor

and detect abnormal changes to the hardware resources used by the flight controller.

While the goal of the HRIM, I2M (hardware and information in programmable fabric),

and the FIM (functional level in software) is to detect lower level faults and attacks,

the presence of malicious firmware and injected false data may not be caught by those

respective monitors if they match the configurations and data formats of the sensors,

especially if the firmware resides in the flight controller itself. Thus, the introduction

of the EIM allows for the monitoring of the execution state and resources of the flight

controller itself, including but not limited to: resource utilizing, memory status, state

based operation, and event calculus. With resource utilization and memory status,

the EIM can determine if there is malicious or alternative code running on the flight

controller, resulting in unexpected behavior by the flight controller shown by the

resource consumption or memory status. If there is malicious code that runs an

alternative block of code that is not obvious to resource and memory metrics, then

28

a change in the state based operation represented by a control flow graph [6] or an

event calculus model as explored in [11] can determine a potential fault within the

system. In [4], Sutton et al. describe the method of using decoy processes, where a

process is not intended to run in normal operating circumstances. If the presence of

malware triggers running of this process, then it shows the detection of the malware.

Furthermore, the access of specific resources such as a decoy file system or decoy I/O

and data that is only accessible through the decoy process indicates the presence of

malware. This can be used alongside an approach monitoring control flow as described

in [6], because the access of decoy resources indicates a change in the state. In order

for decoy processes to be effective, they should not consume as much resources as

the main flight controller. An additional metric that can be used to evaluate correct

execution characteristics exhibited by the flight controller. In [5], several power and

heat characteristics of a system were observed. Alongside a decoy process, this can

be used to ensure there is no change in the processing code of the flight controller.

2.3.5 Information Flow

The information flows upwards through the multiple levels of the hierarchy and

consists of both the data coming off of the sensor into the bus, and the error informa-

tion that causes an error to be detected. Going through the HRIM, the information

is packaged into bytes that can be interpreted in specific ways in the I2M. This infor-

mation does not contain configuration information such as start or stop bits in the

UART protocol or the acknowledge and not acknowledge bits in the I2C bus. This

configuration information is only used in the HRIM to verify that it is working cor-

rectly. In the I2M, every byte or bytes of data is taken and verified against the range

of data that is reported in the respective data sheet. If there needs to be a parser to

obtain the address and register of the data, this is also done here to ensure the slave

addresses and the register addresses are valid. If they are not, this information is sent

upwards to the FIM along with anything reported by the HRIM. The FIM then runs

a higher level of processing on the information, but ONLY on the correct forms of

data. Processing on incorrect data as determined on the lower levels of integrity will

29

also yield incorrect data on the functional level.

2.4 Related Works

In [6], Stracquodaine et al. provide a novel approach of securing unmanned sys-

tems using real-time software functionality analysis. This allows for the system to

detect presence of any faulty malware within the flight control system (autopilot and

operating system). By identifying internal code events (locations in the program’s

logic) as well as the software events, the flow of the system can be modeled and a

detection methodology is used to identify intrusion. Their solution is to implement

an embedded software solution within the flight controller itself. The issue with this

is that providing a software based, embedded solution provides a way for the attacker

to work around being detected. The presence of a profile is meant to safeguard this

issue, but an embedded solution can go down along with the whole system if the at-

tack is firmware based and injected long before the main autopilot code can even have

the chance to run. The approach here would represent the functionality intended at

the functional and executional integrity levels of the HECAD system.

A more independent approach is described in [12]. Sabaliauskaite and Mathur ex-

plores the use of intelligent checkers to verify the functionality of the specific devices

that it is measuring. In this paper, an intelligent checker (IC) is used in a cyber-

physical system control loop, where the data from an actuator is fed into a controlled

process. The output of the controlled process feeds into both the sensor and the

intelligent checker. The intelligent checker would ensure that the process makes valid

commands. This can be adapted to be used on a UAS, and would be checking com-

mands and operations from the flight controller as well as from the sensor. The

purposes of the intelligent checker is to be able to measure various parameters such

as temperature, light, and pressure. Depending on the sensor, certain parameters can

vary as well. For GPS sensors, parameters that can be introduced are signal strength

and direction of arrival, since they can be the most important factors in distinguishing

real and spoofed GPS signals [13]. An attempt to spoof a GPS signal will exhibit

30

large changes in either of those parameters, and therefore an intelligent checker will

be useful. In detecting the GPS spoofing signals, machine learning or the information

from the narrow band receivers can also be used [14]. While these parameters are ap-

plicable for large CPS systems, the use of this for an unmanned system will introduce

more environmental issues and less applicable parameters, specifically noise that is

emitted by the on-board components or environment (vibrational noise or environ-

mental noise). Therefore, this approach works well when the intended measurements

are represented digitally. If this concept were to be introduced, it would sit within

the hardware resource integrity monitor of the HECAD system.

Another approach to identifying abnormal functionality in a sensor network is

by introducing neural networks. In general, neural networks prove to be very useful

in identifying patterns and recognizing characteristics. While many of these uses

generally revolve around a static set of data (i.e. images), an adapted neural network

can be used to look for trends and characteristics in time-based data. In [15], Shin et

al. introduce the use of Long Short-Term Memory and Gated Recurrent Unit (LSTM,

GRU) neural networks to identify attacks using sensory information measured during

real time. In this paper, it is shown that the computational cost is very low, with

an execution time of 0.002104 seconds for LSTM and 0.001645 seconds for GRU

approaches for detection. The neural networks generally need to have a model that

considers the information correct and requires data sets that correspond with mission

data. If mission data is missing, it is hard for the neural network to isolate correct

versus incorrect sensor data.

In [16], Ding et al. explore the existing strategies to deal with falsely injected data:

bayesian detection with binary hypothesis, weighted least square, kalman filters, and

quasi-FDI. With the weighted least square approach, a framework is used to ensure

that the data being measured does not exceed a predetermined threshold values. This

is used as a way to ensure that a discrepancy in measurements are detected. For the

kalman filter approach, a version of the kalman filter that is existent on the flight

control system is adapted and modified, allowing for the processing of the raw sensor

data as well as the estimation of the aircraft’s physical state. By providing aircraft

31

information, additional information can be used to verify the estimation.

In [2], a similar application is used when the authors trained a convolutional

neural network to identify abnormal events in a video. Their work was split into two

stages, the first of which extracts features from a batch of inputs, and the second

of which is used to detect abnormal features. The problem here though is that

the training of the neural network relies on the use of still images, and requires

a different approach when looking at time-series data such as sensor data. This

approach can be very useful when dealing with mission specific applications, but not

so much when working with free-fly operations. At the functional level, this can

be introduced as a secondary detection mechanism that runs in parallel with the

available existing solution. A similar approach is done in [3], where a new algorithm

is introduced to detect faulty data injected into a UAV. In this implementation, an

adaptive neural network structure is used and trained for fault detection. A different

approach is used when determining fault classification. Instead of using conventional

neural network procedures, a nonlinear observer output and sensor output is used to

estimate faults. For weight updates in the neural network, an embedded kalmann

filter is used to perform online tuning, allowing for quicker and more accurate attack

detection. Online training is different from traditional training methods such as batch

training. Batch training is when a large set of data is used for training, while online

training is used for new data that comes into the system on the fly [17].

In [18], Sedjelmaci et al. explore the implementation of a hierarchical detection

and response for cyber-attacks within a network of unmanned systems. In this paper,

the system explores detection of attacks such as GPS spoofing, jamming, and gray

/ black hole attacks. By verifying information at both UAS nodes and the ground

station, the intrusion detection system can identify the incoming attacks. This is a

rule based approach when looking for specific attacks. This is a different approach

from the HECAD system described above, as it spans across outside communications

networks (flight control system and ground control station). HECAD is embedded

within the flight control system, and monitors not only communications between

the flight controller and the ground controller, but also operations within the flight

32

controller itself (sensor data, bus operations, and autopilot code).

33

Chapter 3

Subsystems

3.1 Implementation Platform: Avnet Ultrazed-EV

The Avnet Ultrazed-EV is a system on module that is based on the Zynq Multi-

Processor System on Chip (Zynq MPSoC). It is an field programmable gate array

with the ARM cortex-A53 processor. Within the Zynq MPSoC resides a processing

unit alongside the programmable fabric. The HECAD system is designed to run in

the Zynq MPSoC, with the HRIM and the I2M residing in the programmable fabric,

and the FIM and EIM residing in the processing system. Communication across the

programmable fabric with the processing system is done using memory mapped AXI

transactions. In high performance processing, data can alternatively be streamed

upwards into the processing system, instead of using memory mapped IO. Previous

work to develop individual portions of HECAD (only the HRIM or I2M for a GPS

module) were implemented on the Zynq-7000 System-On-Chip. After designing the

HRIM and I2M for an additional UART devices (VACS Parser, explained below) and

designing the HRIM and I2M for the I2C device (MS5611 Barometer), the amount

of resources required to implement all of the logic exceeded the available amount in

the Zynq-7000 chip. As a result, the entire design was exported to target the Zynq

MPSoC.

34

3.2 Monitored System: Aries Flight Controller

In order to understand the HECAD architecture, the sources of information from

which the data is coming to and from need to be identified. The purpose of HECAD is

to be able to pull data coming from the ground control station to the flight controller

and vice versa as well as GPS Module. This data is transmitted through the XBee

communication device, which communicates with the flight controller through the

UART bus. Next, data from the flight controller to the barometer sensors is pulled

through the I2C bus. As such, HECAD needs to be able to parse data from the I2C

bus and the UART bus.

The Aries flight controller is a heavily developed and tested flight controller that

has been built from scratch as a result of several years of research, development and

optimization by the VCU UAV laboratory. The Aries flight controller contains multi-

ple buses to communicate with the variety of peripherals as highlighted in figure 2-2.

On the I2C bus, there are 3 devices on the internal bus (barometer sensor, airspeed

sensor, and safety switch), and 2 devices on the external bus (compass and current

sensors). On the UART bus, there are 3 devices with several spares (mission control

system, ground control system, and global positioning system). Of these devices, the

barometer sensor and the GPS / VACS sensors are implemented in HECAD to ensure

correct functionality at the bus level and the information level.

3.3 Sensors

3.3.1 NEO-M8 GPS Module

The NEO-M8 GPS module by uBlox is a versatile GPS module that supports

multiple communication buses. For the purposes of this implementation, the M8

module is configured to UART at 115200. The M8 module allows for the NMEA

sentences protocols, and communicates with the flight controller through the UART

configuration. Out of the box configurations for the M8 module may not have the

device configured to a UART port at 115200 baud. As a result, the flight controller

35

runs a series of codes, trying several options of baud rate until an understandable set

of data is returned. This causes issues for HECAD as explained later.

3.3.2 VACS Packet Transmitter

The Virginia Commonwealth University Aerial Communication Standard (VACS

Packet) is the communication protocol that is used by the Aries flight controller to

communicate with the ground control station. The VACS packet is transmitted over

an XBee wireless link. The XBee device communicates with the flight controller and

the ground control station through UART.

For a specialized VACS packet, each byte of data represents a special header indi-

cating sync bytes, destination address, source address, message id, data length, and

checksum. As the name(s) suggests, the source indicates its source of transmission,

the intended destination, the message header, the length of the message, the data

payload, and the checksum. The checksum for the VACS packet is calculated as

follows:

checksum A = checksum A + current byte

checksum B = checksum B + checksum A

The checksum calculation does not include the sync bytes or the checksum bytes

transmitted by the sender. Each of these bytes has their own ranges, and every time

they are read in from the HRIM, they are stored and checked against the expected

ranges. For each packet that is transmitted, a checksum is calculated separately in

real-time. If there is a mismatch in the checksum values reported, then an error flag is

thrown, indicating at some point the data that has been transmitted has been either

modified or dropped.

3.3.3 MS5611 Barometric Pressure Sensor

The MS5611 is a barometric pressure sensor with the ability to communicate

with devices over both I2C and SPI communication devices. It allows for a 24-bit

36

ADC pressure and temperature value. The pressure and temperature has a 0.01

millibar and 0.01 Celcius precision respectively. Similar to the NEO M8 and the

VACS Packets, the MS5611 barometer sensor contains fields, including calibration

data, digital values and conversion values. Each of these has their own specified

absolute and recommended register size bounds. What this means is that even if

there is a recommended data type, the actual data size returned by the slave device

may not use up all of the bits. For example, the MS5611 contains a register that has

the difference between the reference and actual temperature. Even if the suggested

register size is a signed 32 bit integer, the actual value returned contains a range of

a 25 bit signed integer. For each of the registers, the ranges are checked for absolute

values to ensure nothing reported is out of range.

The checks as described above are designed as rationality checks to detect any

reported values that are not possible as shown in the data sheet. Within the I2M

is where large deltas and discrepancies are detected as well. In the example of the

MS5611, calculating the temperature and pressure will allow for range checking. A

large delta or change between two samples may occur, but because the I2C bus

operates at a high speed capacity, it is more realistic to keep a running average and

throw an alert if the average changes by a certain threshold. The data is kept in an

array, keeping a record of the average across the size of the array, for example 10

samples. If the averages change drastically (depending on the threshold that needs

to be set), then an alert is thrown. A similar approach is taken for samples that are

all zeroes, or all ones or flatlining in general. Realistically, they may return values

that are very close to zero or ones or a set value. By taking the running average,

any indication that the average is not changing indicates a no response or flatlined

system. As a result, this will throw an error.

37

3.4 Communication Buses

3.4.1 UART & Vulnerabilities

The verification of the sensors at the bus level ensures correct functionality at

the specific configuration at startup. The UART communication port is generally

configured in a specific manner. This will typically be the transmission of data at

a specific baud rate or correct number of data bits and start / stop and parity bits.

As explained previously, there are two devices on the UART bus: a GPS module

with NMEA sentences, and an Xbee device transmitting VACS packets. Both of

these devices are configured to communicate with the flight controller over UART at

115200 speed, 1 stop bit, and no parity bits.

When a UART device attempts to communicate with a microcontroller at a con-

figuration unknown to the microcontroller, several issues can happen. If the data is

not received at the correct speed, the data received will be jumbled and not inter-

pretable. If the timing for the baud rate is very large, control over the sensor will be

lost, as there will be no way to know the status of the device (still transmitting, idle,

stopped, etc). Attacks at this level can jam the UART bus with invalid or scrambled

data.

3.4.2 I2C & Vulnerabilities

The I2C communication is a shared communication bus between devices. The

master device can share a bus with multiple slaves, and the correct functionality

depends on the master device correctly identifying a valid slave address. With correct

operation, the master device will send the slave address (a 7 bit address) along with

a 0 write bit / 1 read bit, receive acknowledgement from the respective slave. Next,

the master will send a command (8 bit command), receive acknowledgement from the

slave, and then the master will send the slave address again with a 0 write bit / 1

read bit if the command is intended to read data, or a 1 write bit / 0 read bit if the

command is intended to write data to the slave. If the write bit is a 0, the slave will

38

send data back. If the write bit is a 1, the slave will acknowledge and wait for the

next byte of data to be received. Communication between either devices relies on the

SDA data line and the SCL clock line.

The operation of the I2C relies on the responsiveness of the SCL and SDA lines.

The SCL lines allow for the clocking of the data out, and the SDA lines allow for the

data to be changed when clocked out. If the SCL line is not responsive, it safe to

assume that either the master device is holding the SCL line high or low(failing to

clock data out), or that the slave device is holding the SCL line high or low (slave

has stopped responding or timed out). Similarly, if the SDA fails to change, and if

the SDA line is high, then either the master device has failed to acknowledge the

data, or the slave has failed to acknowledge the command. Attacks at this level can

manipulate either line to either lockup the bus, or to manipulate the data going in

either direction.

39

Chapter 4

Implementation of HECAD Hardware

and Information Monitors

There are two main protocols that will be explored in this implementation: Univer-

sal Asynchronous Receiver Transmitter (UART), and Inter-Integrated Circuit (I2C),

also commonly known as the Two-Wire Interface over three levels of the HECAD

hierarchy: HRIM, I2M, FIM. Each of the different sensors will communicate with the

flight controller through a specific bus. At the lowest level of abstraction, a Hardware

Resource Integrity Monitor (HRIM) is implemented in hardware to be able to detect

correct and incorrect sensor functionality at the bus level. One level up, the Informa-

tion Integrity Monitor is implemented in hardware to validate information integrity.

One level higher above the I2M, an FIM is implemented to hold all valid data com-

ing into HECAD from the two communication buses, but no further implementation

is done for the FIM due its being out of scope. Figure 4-1 shows the implemented

architecture of HECAD, with the expanded devices on each communication bus. For

the purposes of this thesis, the detection logic for the various different attacks appli-

cable to a GPS module, a VACS Packet transmitter, and a MS5611 barometer are

implemented, and mitigation techniques are explored.

40

Figure 4-1: Implemented HECAD Architecture in Zynq MPSoC for I2C and UART
Devices

4.1 Hardware Resource Integrity Monitor

In this implementation, the target of the HRIM was to be able to detect three

main things: a change in the baud rate, unexpected parity and to verify the start and

stop bits. An existing HRIM for the UART is taken from [1], and modified to work

with the updated baud rate configuration. Using oversampling, a baud rate change

is detected if there is a bit change outside of the middle of an oversampling clock. An

oversampling clock of 16 times the baud rate is used along with a 16 bit register. If a

change has occurred in the middle of the oversampling clock, half of the shift register

capturing the data from the baud rate clock should be low and half should be high

and vice-versa depending on the bit change. If the baud rate is different from what is

expected, then this condition will fail. If there is a non-one parity detected, no stop

bit detected, or more than 8 data bits at a time, then the HRIM will throw an error

for the respective case. Since the UART device is the same for both devices, the logic

41

to detect errors is the same for both. Since UART is not a shared bus, the HRIM

for UART is duplicated, despite having the same logic. In section 4, a more specific

VHDL approach is described.

In developing the hardware resource integrity monitor for the two-wire interface,

many of the concepts implemented for detecting changes on the UART bus can be

carried over. Similarly, an HRIM has been adopted to parse the I2C data coming in

from the MS5611 barometer sensor. For this sensor, several checks are implemented

at the I2C HRIM. This includes the address bytes, the command bytes, and the

characteristics of the SCL / SDA line.

Starting with the speed of transmission, it is known that the internal I2C bus

needs to run at a specified speed. In this case, the speed of the bus is configured

to be 336 kHz. From this, a frequency check can be made to ensure that the bus

operates at the right speed within a certain threshold, typically a few percentages.

Given the known frequency, the period of each SCL pulse is also known. Using the

system clock of 50 Mhz, a calculation is made to determine how many system clock

cycles are allocated to each SCL clock pulse. This same check can be applied for

the SDA, but instead of frequency of the SDA line, the responsiveness is checked to

ensure there is activity on either line.

In addition to the SDA and SCL line checks, address checking and command

checking will be done at the HRIM. Address checking needs to be completed in order

to properly parse data for incoming data. Because the I2C is a shared bus between

multiple devices, the I2C protocol depends on the master communicating with the

right slave device through addressing. For the I2C bus, the HRIM contains a parser

that checks for a start and a stop condition, pulling in data when it detects a master

read operation and checking commands when it is a master write operation. When

there are multiple devices on the bus, the addresses are checked across all slave device

addresses to ensure that the master is attempting to communicate with valid slave

devices. Command checking can be a little more difficult. If the commands are to

be checked in the HRIM, then all commands across all slave devices will need to be

checked. As a result, the logic for the HRIM will increase exponentially. It is more

42

beneficial to combine individual command checks to the I2M for the I2C device, where

the I2M is tailored to each specific sensor. This is further explained in section 4.

4.2 Information Integrity Monitor

On another level in the HECAD hierarchy, data may be able to pass the HRIM

checks, but perhaps the data may not meet sensor specifications. For example, the

communication link between a UAS and a ground controller may contain data that

is organized into a specific protocol. The communication link between the ground

controller and the flight control system transmits data packets organized in the VCU

Aerial Communication Standard. While the UART components transmitting these

VACS packets may be operating correctly, the data received at either end may not

be. Over a wireless link as shown in figure 4-2, dropped data packets are common,

resulting in entire packets if not partial parts of a data packet missing when received.

As a result, partial data is received. In alternative cases, checks for information

integrity are not limited to information formation such as a VACS packet. In specific

sensors interfaced over SPI or I2C, it is harder to distinguish packets from raw data

versus well formed data, especially since each sensor may transmit data differently.

As a result, different sensors will have different checks put in place. The I2M is

introduced, allowing for sensor information integrity verification at the information

level. At this level, the I2M knows only about the type of information to be expected

for the respective sensor. Since every sensor is almost guaranteed to transmit data in

their own order and have their own register maps, a dedicated I2M needs to be made

for individual sensors.

43

Figure 4-2: Communication Link between the UAS and the GCS

4.3 Functional Integrity Monitor

On an entire higher level of operation, an attack to the UAS can successfully pass

the checks at the information and hardware level, and ultimately target the operation

of the flight control system itself. While an adversary may not have direct access to

the system, an attacker may be able to repeatedly spoof the data in such a way that

slowly brings the system down. For a man-in-the-middle attack between the flight

controller and the ground control station, an attacker may be able to listen in and

successfully manipulate data that then gets sent out to its original destination. If

an attacker wants to be able to bring down the UAS all-together, they may attack

the reference points of the orientation and positional sensors to trick the system into

going in a certain direction. A common example is a spoofing attack on the GPS

sensor to slowly force the UAS to drift off into an opposite direction. In either case,

bus transfer protocol will be correct, and information will still be well formed by

the sensor. The Functional Integrity Monitor (FIM) is then introduced to monitor

all of the data coming in from all of the sensors at any given point in time. Here,

44

the validity of the data from the sensors is not checked byte-by-byte or at the bus

level, but rather multiple points of data will be taken over time. A higher level of

processing is performed on this set of data to make sure that the data looks reasonable

with respect to expected data values and mission-specific data. Multiple algorithms

will be explored and evaluated in future work. In the previous section, the idea of

taking a running average will be more useful and easily implemented here. Several

running averages are taken for the pressure and temperature values.

4.4 Hardware Validation Checks

The detection at the hardware level allows for the ability to find faults at the bus

level. Often times, an attack coming in from the outside may target the configuration

of communication protocols. Some of these examples include changing the config-

uration of the UART ports or manipulating the I2C lines during operations. The

following sections describe the process of detecting hardware faults and unexpected

configurations.

4.4.1 UART

The detection and parsing of a UART bus utilizes an oversampling clock and a

16 bit shift register. Upon detecting a start bit, the over sampling clock counts until

the middle of the start bit (8 clock cycles). From here, the counter is reset and starts

counting until 16 oversample clocks have passed. When this happens, this will place

the counter in the middle of the first transmitted bit. A secondary counter keeps

track of how many bits have been received. Once a total of 8 bits have been received,

the 9th bit is expected to be the stop bit. If this condition fails, then there is likely an

issue with baud rate, the number of data bits, or the parity bit. This state machine

is illustrated in figure 4-3.

45

Figure 4-3: UART HRIM State Machine

Baud Rate

In order to be able to detect a change in baud rate, an oversampling clock is

used. The oversampling counter is started when the start bit is detected, and then

the counter is reset when the middle of the start bit is detected. In the next iteration

when the oversampling clock reaches 16, the first transmitted bit is received. This

bit is then shifted into an eight bit shift register. If the baud rate of the UART

transmission is correct, the bit change will occur approximate halfway through a

16 bit count iteration. Within the shift register data, the upper 8 bits (previous

transmitted bit) should equal the lower 8 bits (next transmitted bit) when an XOR

operation is done across the bits. For example, a shift from a ’0’ to a ’1’ will result

in the shift register containing:

0000000011111111

46

Where the leftmost value is the first bit transmitted (less significant bit) and the

right most value being the second bit transmitted (more significant bit). If there is

no bit change, and the previous bit was a ’0’, and the new bit is a ’1’, then the shift

register will contain:

0000000011111111

Similarly, if the previous bit was a ’0’, and the new bit is also a ’0’, then the shift

register will stay the same. On the contrary, if the previous bit was a ’1’, and the

new bit is a ’0’, then the shift register will contain:

1111111100000000

If the previous bit transmitted is a ’1’, and the new incoming bit is a ’1’, then the

shift register will contain:

1111111111111111

By checking the the XOR operation of the upper 8 bits and the lower 8 bits, it

can be determined if there is a timing or framing issue. If the data that is being

transmitted matches the expected baud rate, then data should settle into the shift

register as expected. If the baud rate is higher or lower than expected, then the

switching point will be skewed either to the left or the right when a bit change is

detected. Figure 4-4 shows an example at 115200 baud rate. The state machine does

not detect how many stop bits there are, rather just detecting a stop bit and then

waiting for the next start bit for transmission.

47

Figure 4-4: Sampled UART Transmission at 115200, 2 stop bits

At approximately 10900, the strobe on q_enable indicates the midpoint of the

second transmitted bit. This bit is a 1. The first bit transmitted is a 0, shown at

approximately 10500, where the data is shifted into the shift register. At 10700, it is

the rising edge of the second transmitted bit. At this point in time, the second bit is

shifted into the 16 bit register. Since the first half that has been shifted in is all 0’s,

the second half of the shifted register is all 1’s. Since the timing is expected, exactly

half of the shift register is all 0’s and the other half is all 1’s. The XOR operation

on the upper half results in 0, and the XOR operation in the lower half results in 0.

This indicates no error with the baud rate.

1111111100000000

In a figure 4-5 is a simulation of a UART transmission running at a slower rate.

While the transmitted data captured is valid, a quick look at the tx line can easily

distinguish a baud rate issue. After the 8th bit of transmission, the stop bit is expected

to be present. A 0 bit is still present, and as a result, an error is thrown. The state

machine is expecting it to be the 9th bit, the stop bit, but in reality, it is most likely

5th or 6th bit in the transmission.

48

Figure 4-5: Sampled UART Transmission at 57600

Parity

The configuration for the UART transmission can be done with an optional parity

bit. If this parity bit is transmitted, then an even parity bit will be ’1’ if the number

of 1’s in the transmitted byte is odd, and ’0’ if it is even. On the contrary, an odd

parity bit will be ’1’ if the number of 1’s in the transmitted byte is even, and the

parity bit will be ’0’ if it is odd. In simpler terms, the parity represents the next bit

to be added to make the number of 1’s within the transmission either odd or even.

Stop Bits

The state machine developed for detection is designed to be able to detect the

existence of a stop bit. If there is at least one, even if there is one and half or

two, then it registers the transmission as successful. In the testing process, the state

machine is tested with a single byte of data. The state machine looks for a stop bit,

and the first stop bit detected by the state machine will reset the state machine to

the idle state after a successful transmission. The overhead is not significant enough

to cause a framing issue.

49

4.4.2 I2C

Within the hardware of the I2C, there are many opportunities to check for the

correct operation of the I2C bus. Many of the concepts from the HRIM in the UART

protocol carries over. Of these concepts, generally clocking frequency and responsive-

ness of the SCL and SDA lines are checked. At hardware level, since checking for

the correct addresses allows for determining if the master is attempting to commu-

nicate with a valid device, then addressing and command checking are validated as

well. While address checking and commands across all devices on the hardware level

may provide advantage in identifying incorrect address and command operations, the

combination of the number of commands and the number of devices makes the logic

within the HRIM too large to be implemented. It is more efficient to complete this

task in the I2M, where there is a dedicated I2M per slave device.

The I2C parser looks for the transactions as described in 4.4.2. The HRIM for

the I2C device looks for a start condition, followed by the address of the slave. Once

the address is received and validated, the HRIM looks for a slave acknowledge. Next,

the read / not write bit is examined, and if it is a read, then the state machine pulls

in the next byte along with a master acknowledge. If there is no acknowledge, the

state machine returns to idle. If there is, the state machine looks for the next byte

of data, and checks the master acknowledge again. This process will repeat as long

as there is a master acknowledge. If the state machine is to perform write operation,

the state machine picks up the next byte of data and looks for the slave acknowledge.

This state machine is illustrated in figure 4-6.

50

𝑖𝑑𝑙𝑒 𝑠𝑡𝑎𝑟𝑡 𝑎𝑑𝑑𝑟

𝑠𝐴𝑐𝑘

𝑟 𝑤

𝑠𝑆 𝑚𝑆

𝑟𝑠𝑡

start condition rcvd address valid and rcvd

𝑠𝑙𝑎𝑣𝑒 𝑎𝑐𝑘

read bit = 1 write bit = 1

𝑑𝑎𝑡𝑎 𝑟𝑐𝑣𝑑𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑐𝑘 𝑑𝑎𝑡𝑎 𝑟𝑐𝑣𝑑

𝑠𝑙𝑎𝑣𝑒 𝑎𝑐𝑘𝑚𝑎𝑠𝑡𝑒𝑟 𝑛𝑎𝑐𝑘

Figure 4-6: I2C HRIM State Machine

Slave and Master Acknowledgement

The state machine demonstrated in Figure 4-6 is used to parse data accordingly.

Both the slave and master devices acknowledge the data received from the transmitter.

However, the general acknowledgements by the slave devices must be made to ensure

the slave can respond accordingly. In industry standards, the I2C bus models pull-up

resistors. As a result, a high or undriven value indicates a no response from the slave

or master depending on who is sending the data. In order to ensure that the master

or slave is able to respond, the SDA lines need to be pulled down from either ends on

the rising end of the SCL clock. If there is no acknowledgement, then this indicates

either the end of the transmission or the failure to respond.

51

SCL Rate

When the clocking frequency is known for the SCL bus, then so are the periods

of the high and low cycles of each clocking period. A state machine is developed

here where both the frequency and the duty cycle of the pulse are checked. Upon

detecting a start condition (when the SDA line drops when the SCL line is high), a

counter starts to check the initial response of the SCL line (when SCL drops low). If

the SCL line fails to drop low after a full cycle, then it is assumed to be held in high.

Similarly, each transition during the transmission period is checked for each high and

low cycle of the SCL clock pulses. If the clock stays too long in the low or the high

cycles, then it gets thrown into an error state. Given the speed of the system clock,

the number of system clock cycles is calculated to allow for checking of the SCL line.

For example, for the configuration with a 50 Mhz clock and a clock speed of 336

kHz, there needs to be no more than 148 system clock cycles in the entire period, or

half for each rising / falling period:

50𝑀𝐻𝑧

336𝑘𝐻𝑧
=

50000000

336000
= 148 (4.1)

To avoid a strict bound, a certain percentage of error is given to the frequency to

get a high bound and a low bound. For each high and low frequency, the maximum

number of cycles is recalculated, and is used as the bounds in the frequency checker.

If the number of clock cycles that has passed for each period falls below or exceeds

the bounds, then the frequency for the measured SCL clock is higher or lower than

expected. This results in an error with the clocking speed of the bus.

The same concept can be used to detect inactivity on the lines. After a start

condition is detected, the SCL lines can possibly be held low or held high forever.

The condition for a start condition is the falling edge of the SDA line while the SCL

line is high, so the next step is to check for a SCL line held high. After the falling

edge of the SDA line, the SCL line should drop no more than half the period later.

However, because the duty cycle isn’t necessarily 50 percent as in the ideal case, this

threshold can be increased or decreased. If the SCL line is still high after this time,

52

then there is an issue on the bus and it is assumed that the line is not responding.

Similarly, the SCL line stuck low error can occur if the number of system clock cycles

bypasses that same threshold after the start condition.

A slave timeout can occur as well, and this error can be detected at either the

HRIM or the I2M level. If after a certain amount of time has passed and there has

been no activity from the lines, then it is safe to assume that there is no response. A

bidirectional checking can be done from both the master and the slave devices. If the

master sends the command and there is no acknowledgement for several commands,

then the slave has timed out. Similarly if the slave returns data but there is no

acknowledgement for the first byte of data returned, there will be a timeout. However,

the state machine adapted to parse data in from the bus line will prevent reading in

the first place if the slave device does not respond with an acknowledgement, even if

the address is correct. This leads to the assumption of no activity. The detection of

no activity on the SDA and SCL lines can indicate a bus crash as well. Generally, if

the flight controller is functioning as expected, and it is constantly requesting data,

then there needs to be activity on the SCL bus, at the very least. If there is no

activity, it indicates a crash of the flight controller, or the slave is holding the SCL

line low.

Command Checking

For the purposes of this implementation, the slave command checks are placed

at the I2M level. Although the command checking can be placed within the I2M to

minimize logic, the same effect can be achieved by using a state machine to check for

valid addresses and commands. State machine 4-7 describes the process.

Figure 4-7 describes the process of checking for valid commands. The state ma-

chine starts off in an idle state, and upon detecting the address of the slave device

of interest, then the state machines moves to a state waiting for the next command.

Here, if a command is received and it is valid, then we move to a valid state, which

then moves immediately back to the idle state. However, if the command is wrong, or

if the command is never received, then the state machine moves to an invalid state.

53

𝑠𝐼𝑑𝑙𝑒

𝑎𝑑𝑑𝑟𝑤 𝑎𝑑𝑑𝑟

𝑠𝐼𝑛𝑣𝑎𝑙𝑖𝑑

𝑐𝑚𝑑𝑤

𝑠𝑉 𝑎𝑙𝑖𝑑

ad
dr

ess
rec

eiv
ed

address valid

command received

command validad
dr

es
s

in
va

lid

com
mand inva

lid

co
m

m
an

d
tim

eo
ut

Figure 4-7: Command Checking State Machine

4.5 Information Validation Checks

While the detection at the hardware level may validate data, it only verifies that

the data is operating within the specifications of the communication protocol. Data

that has been validated at the hardware level may contain malicious data or data

injected from a secondary source. The following sections describe the process and

implementation of the different applicable checks at the information level.

4.5.1 Range

For every known register that a slave device is reporting, the corresponding data

type and data range is checked. It is crucial to ensure that there is no out of range

values returned because the data range may not take up the full range of a recom-

mended data type. If there are out of range values, these issues will cause problems

for other inner conversion calculations that need to be performed.

54

4.5.2 Flatlining

A check for flatlining is very straightforward. On the receiving end of the data

(after the master has requested a valid register), the data can be validated against

4 metrics: all 0’s, all 1’s, same value, and same running average over a certain time

window. The first two metrics can be tricky. Since data structures in which the data

does not take up the entire structure are managed, comparing them to all 1’s or all

0’s are theoretically incorrect.

For example, suppose a register value is recommended to be a 16 bit signed value.

This means that the range of values that can be returned is -32678 to 32767. But the

sensor only returns values from -4000 to 8000. The extra overhead is used to store

values resulting from arithmetic values used for other necessary calculations. The all

1’s or all 0’s for both the full range would result in -1 and 0, and which would be

useless if we are looking at practical uses. The more applicable approach would be to

check if the value is constantly -4000 or 8000, or constantly any number in between,

since the sensor cannot return a value outside of this range. If it does, it will be

caught in the range checking section.

On the other hand, detecting a non-changing value or a running average that has

not varied by more than a specific threshold is a little more straightforward. For

detecting a non-changing value, a process dedicated to the register or signal is used.

A synthesized and implemented design checks the value of the register or signal every

clock cycle, and a counter can be used to check the value of the register or signal

every certain amount of time. If there is no change in the signal over a long period

of time, then there is an issue with the data sent by the slave.

A similar approach is used when detecting a change in the running average of

the data. Instead of checking the sample every clock cycle, a counter register can be

used to add in a sample every time new data is read from the slave. Then, every

new sample that comes in after a set amount (say 20 samples), the oldest sample

can be removed, and the new sample can be added in. The new average is then

recalculated. From here, the new average is compared to the old average, and if there

55

are no differences from the two, there is an issue with the data coming in and it will

trigger an error. However, this is a very strict implementation, and the presence of a

noise will most likely represent a change in the average. The more realistic approach

is to keep the running average, but if the differences between a new and a old average

has not differed by a set threshold, then there is an issue with the data. This takes

a large amount of resources to maintain in the programmable fabric. The alternative

to checking running averages is to do this process in the FIM, where it is easier to

setup average checking over a set amount of due to the available data structures.

4.5.3 Discrepancy and Large Delta Changes

Detecting large discrepancy changes can be approached the same way as flatlining,

but rather than comparing a current value with a sliding average of past values, a

change in any two samples that are large will trigger an error. For example, in the

MS5611, several processes were used to calculate the temperature and temperature

compensated pressure. Between any two calculated samples, if there is a large enough

change by 0.5 degrees (temperature) or 0.5 mbar (pressure), then an error is thrown.

The problem with this is that this method is checking for changes between two

samples. Since this is a high speed bus, a practical fault (where the UAS is experienc-

ing non-ideal environmental conditions), a sudden change in temperature or pressure

will not necessarily be caught between two samples but rather over a large set of

samples. Nevertheless, it is still important to have this check.

To solve the issue of discrepancy for a practical application, one would need to

take the same approach as the flatlining approach: taking a running average, and

checking for a change in the samples. Alternatively, another approach can be done

by looking at the minimum and a maximum over a set of samples, and taking the

difference between the two. This is a simpler approach to finding discrepancies, but

may not necessarily cover a gradual change in data. The same ideas can be applied

to longitude, latitude and altitude for a GPS module. Any sudden changes to any of

these fields by either an average or a high to low will indicate a fault.

56

4.6 Information Flow

As explained previously, the information flows from the HRIM to the I2M to

the FIM. While the HRIM is important in detecting higher level attacks, the imple-

mentation of the FIM is out of scope for this project. An HRIM and the I2M is

implemented.

At the HRIM level, the hardware logic listens in on the bus and packages data

into different bytes accordingly. For each set of data, the data is packaged into single

bytes. For both the UART parser and the I2C parser, there is a state machine that

checks for correct configuration in the UART and the addresses and the required

slave acknowledge or master acknowledge. Every 8 bits of information that comes

into the HRIM is packaged into an 8 bit register that is then passed onto the FIM.

As explained previously, there are two devices that communicate on the UART bus.

There is the NEO-M8 GPS module, and there is the VACS Protocol. For both UART

buses, there are checks put into place the verify baud rate, parity, and start or stop

bits.

At the I2M level, the data is interpreted in context. For the VACS packet parser,

information such as the checksum validation bytes are checked. For the MS5611

barometer sensor, information such as temperature or pressure as well as their re-

spective ranges are checked. Given the data sheet information, the suggested data

types are used and the absolute ranges are given. Since the full range of the data

type are often much larger than what can be reported by the sensor, a large part of

the ranges are not used. This provides an opportunity to check for data ranges for all

applicable data registers within the sensor. This is applied to both the VACS parser

and the MS5611 barometer.

While the development of the FIM is out of this scope, the presence of memory

mapped registers in the programmable fabric allows for data to travel up from the

HRIM to the I2M and then up to the FIM through memory mapped registers. Only

valid data as determined by the HRIM and the I2M is forwarded into the FIM. Figure

4-8 shows the flow of data all the way up from the communication bus to the highest

57

level of the HECAD system.

Figure 4-8: Information and Error flow within HECAD

4.7 Data Management

The HRIM does not consist of many data management layers, since it is simply

checking the operation of the communication bus itself. While the HRIM can be used

for many other checks besides bus operation verification, this version only checks for

bus operation. As a result, there are generally no data to be managed here, except

an 8 bit shift register and an 8 bit slave register for comparison. Here, both HRIM

modules package incoming data into this shift register to be output to the FIM. For

the HRIM in the I2C bus, the slave address register is used to verify the slave devices

the master is attempting to communicate with is valid.

The data within the I2M is more in depth and detailed, and generally deals with

the internal operations. For sensors such as the MS5611, there are additional opera-

tions that need to be completed before the data becomes relevant. For example, the

MS5611 first reports calibration data such as pressure and temperature sensitivity,

58

temperature and pressure offset, and reference temperature. From here, the digital

temperature and pressure are reported, and the actual temperature is calculated by

the I2M using the coefficients and digital temperature and pressure. Then, the tem-

perature compensated pressure is calculated. Within the programmable fabric, each

of the values are stored in their respective and recommended data types. Using the

I2M I2C parser, data is stored when read in accordance to the register addresses as

described.

Within the FIM, data is stored as separate global registers. A specific register

is used for each field of data that is extracted from the I2M that is important to

determine a higher scale cyber-attack. For the MS5611 barometer, this will be the

pressure and temperature. For the GPS module, this will be timestamp, latitude,

longitude, and the altitude. For VACS, there are several fields of data extracted as

described in table 4.1.

VACS GPS MS5611
Sync1 Timestamp Digital Temperature
Sync2 Latitude Digital Pressure
Source Addr Longitude Calibration 1
Destination Addr Altitude Calibration 2
Low MSG ID Calibration 3
High MSG ID Calibration 4
Low Data ID Calibration 5
High Data ID Calibration 6
Low Data Length Actual Temperature
High Data Length Actual Pressure
Data Payload
Checksum A
Checksum B

Table 4.1: List of data fields - FIM

4.8 Error Management

In order to be able to manage data efficiently without locking up the HECAD

system, there are multiple ways to handle error. As demonstrated in the results

59

section, there are instances where false data is injected into the system and HECAD

locks up into a failed state, waiting for the user to manually clear or reset the errors.

Implementing a lockup allows for users to be more directly involved with the HECAD

system to monitor faults and errors, but in exchange prevents the detection of faults

and errors that can arise during downtime. An initial startup of the flight control

system may have many configurations unfamiliar to HECAD unintentionally, and

can cause HECAD to trip to an error state. As a result, HECAD is correctly picking

up unfamiliar operations at startup, but prevents any other detections during actual

operation. This allows for an evaluation of the FCS startup code.

An alternative would be to allow the HECAD system to return to an idle state

update detecting the fault or an error. An error strobe would be used to notify

any of the higher up levels of HECAD along with any other debugging information

(slave timeout, data error ranges, data flatlining, etc). This allows for tracing of

system error during flight if the FCS ever crashes due to an unresponsive device or

component on-board.

By providing a way to inform the other levels of a fault or an error, the HECAD

system gives a channel of communication for HECAD to act as a secondary device

in future works. If HECAD is to be able to fully replace the flight control system

or provide a way to mitigate certain sensors and actuators, at the very minimum it

needs to be able to be able to identify the source of an issue and the type of issue to

take the appropriate action.

4.9 Mitigation Techniques

The detection of the existence of a cyber-attack allows for the intervention of a

human operator for resolution. However, because the HECAD system is intended to

run in real-time, requiring a user intervention can cause the HECAD system to fail

to detect more important security incidents, especially if the first incident detected is

minor. A modification to the error logic can be introduced to allow for intervention

if the severity of the error is high enough. From here, the HECAD system does not

60

need to lock up, but rather the error logic can serve as a driver or enabler for the

control logic for mitigation techniques. If an error has been detected, several steps

can be taken as described below.

A safety switch component was imported in order to be able to allow a safety pilot

to take-over manual operation of the aircraft in the event that the automated code

on-board the aircraft fails or in an emergency where the pilot would need to take

over. Because the flight controller is modularized to work with any air frame, the set

of codes used for manual take-over will vary from frame to frame. For example, the

operation requirements for a tricopter will be significantly different from a quadcopter

which will be significantly different from a fixed wing vehicle. In all three frames, the

same flight controller can be used, but a different set of autopilot codes can be used

on the flight controller. The safety switch receives SBUS signals from the receiver and

the PWM signals are generated and forwarded to the flight controller for processing.

In the event anything in the autopilot software fails, or if there is any reason for

the autopilot to override the autopilot control, the safety switch will detect that the

manual mode switch has been triggered and will send the PWM signals directly from

the safety pilot operator to the actuators, bypassing the flight controller itself. As the

name suggests, the safety switch provides a mechanism for the safety pilot to control

the aircraft in the case the autopilot software fails.

The presence of the safety switch provides a mitigation technique for a malfunction

in the flight controller. However, ground pilots would only know there is an issue based

on a visual judgement on the aircraft. In other words, ground pilots would flip the

manual switch if it is determined to be in a failed state (when it does not appear to

be performing required actions for mission, or if it is failing to maintaining a flight

state). Because it is designed to be separate system from the flight controller, the risk

of the flight controller being compromised by third party vendors is minimal. There

is no way for the flight controller to communicate with the safety switch component.

Furthermore, the safety switch is maintained by developers, so the risk of infection

by a external attackers are also minimized. Nevertheless, additional monitoring of

the PWM and SBUS signals can be performed between the safety switch and the

61

actuators, to ensure that the signals fall within specifications. This ensures that the

HRIM can verify that the PWM and SBUS signals measured are expected (never

100 percent or 0 percent duty cycle) and the FIM can detect sudden changes to the

actuators.

For hardware faults and cyber attacks detected on sensors, a method of mitigation

for sensor attacks is to either swap out or power cycle the modules themselves. For

example, a GPS module can experience a spoofing attack as described above. De-

pending on the GPS module, information regarding the signal strength and positional

data may be extracted. A sudden change in the signal strength to the satellites or a

change in the positional data may indicate an attack or fault [19]. If implemented,

both indicators of faults can be caught by either the I2M or FIM and the operator

can be notified, and the error signal can trip a power signal or be used to trigger

reconfiguration logic.

While a direct GPS spoofing on a unmanned system is difficult, the injection

of malicious firmware can provide the same effect of GPS spoofing attacks through

supply chain attacks. If the malicious firmware awakes during runtime and begins

to provide false data, then the unmanned system may no longer have a point of

reference for its position. With a presence of multiple GPS components from different

manufacturers, the prevention of a supply-chain attack may be picked up in the FIM

in exchange for placing more GPS modules on-board. This can be done by cross

referencing multiple unique GPS devices to ensure they agree with each other to a

certain degree. Another approach can be done by cross referencing the other sensors

utilized. By checking the changes in nearby sensors in the sensor network on-board,

the FIM can potentially pick up a mismatch in the data reported by other sensors

reference. For example, the FIM may receive false data reported by the compromised

GPS that the unmanned system has recently changed direction. If the movement

of the aircraft is independent on the IMU and barometer sensors, then checking the

recent events on the IMU and the barometer sensors will determine that there has

not been a change in the speed and direction of the aircraft as suggested by the GPS

module. However, this assumption is valid only in the case where the UAS does not

62

utilize only GPS data to influence its direction and orientation. In the case that it

does, then the barometer and the IMU will likely agree with the recent events as

reported by the GPS, because the changing of orientation of the aircraft is based on

the faulty GPS data.

63

Chapter 5

Injection and Verification

5.1 Injection Process

The process of injection into the different levels of the HECAD system involves

separating the monitors out into their own workspace. When the inputs and outputs

are defined for each level, it is easy to introduce a set of inputs and the expected

outputs. For the UART HRIM, several VACS packets were sent at different config-

urations, including different baud rates, incorrect parity, and different data bit sizes.

For the I2C HRIM, the SCL lines were manipulated in many different ways to see if

the HRIM can detect a non-responsive data line.

In the I2M for the UART, a VACS packet parser was developed to ensure that re-

ceived packets are uniform and fully packed. This is done by calculating the checksum

in real-time. Similarly, the I2M for the I2C consisted of several validity, range and

flatlining checks. This includes valid command checking, calibration checking, out of

range checking, and pressure and temperature delta checking. These injections are

fully examined in section 6. In Figure 5-1, an example of injection when the HRIM

and I2M have been isolated is shown. At the HRIM, direct manipulations is done on

the communication lines (UART configurations, I2C SCL line manipulations). Sepa-

rating the outputs from the HRIM to the I2M, the I2M is injected with the different

types of data that can be returned from the device. Here, the assumption is made

that the data passes the HRIM configurations.

64

Figure 5-1: Injection Testbed for the GPS module

5.2 Hardware Level Injection

The testing of the implemented HECAD system involves injection data into two

communication buses and four different components: the UART bus, the I2C bus, the

two HRIM modules, and the two I2M modules. Each component is tested individually

using a variety of methods. At the hardware level, data injected into the system

is transmitted at different configurations using an FTDI chip. Because the UART

configuration is expected to be at a transmission speed of 115200, no parity, and one

stop bit, data is transmitted otherwise to check the detection of the discrepancies.

Table 5.1 describes the injections into the HRIM module for UART devices.

65

Type Target Field Coverage
Configuration Baud Rate Incorrect Baud Rate
Configuration Data Bits Incorrect Data Lengths
Configuration Parity Even Parity Existence
Configuration Parity Odd Parity Existence
Configuration Parity Space Parity Existence

Table 5.1: HRIM Injections for UART Bus

For the I2C, a similar approach is used. The two wire interface consists of the SCL

and SDA line used for bidirectional communication. First, a module to manipulate the

SCL line is used. This module generates SCL lines at different frequencies, different

duty cycles, lines that have been held high or low after a start condition and during a

transmission. A similar approach is used to generate an improper SDA line. However,

because the SDA generally represents data, the unexpected behavior of the SDA line

(no slave or master acknowledgement) will be caught by the state machine parsing

data coming into the HECAD system. Therefore, it makes sense for the data that is

sent on the SDA line to be validated by the I2M. Table 5.2 describes the injections

in the HRIM module for I2C devices.

Type Target Field Coverage
SCL Responsiveness SCL activity SCL held high after start
SCL Responsiveness SCL activity SCL held high during transmission
SCL Responsiveness SCL activity SCL held low after start
SCL Responsiveness SCL activity SCL held low during transmission
SCL Frequency SCL speed Frequency within a few percents of expected
SCL Duty Cycle SCL behavior Reasonable Duty cycle

Table 5.2: HRIM Injections for I2C Bus

5.3 Information Level Injection

Separating the I2M from the HRIM, each device is tested independently. This

allows for testing based on the known inputs and outputs as well as the correct type

of information. For the VACS transmitter on the UART bus, VACS will be injected,

66

with both correct and incorrect checksum calculations, as well as correct calculations

but manipulated packets. This is to show that attackers may be able to change the

information, but fail to properly change the verification bytes. Several changes are

made, including the known fields and respective data lengths and types. Table 5.3

describes the injections at the I2M level for the UART VACS device.

Type Target Field Coverage
Checksum Checksum A Checksum incorrect
Checksum Checksum B Checksum incorrect
Data Change Message Fields Changed Data
Data Change Message Fields Dropped Data

Table 5.3: I2M Injections for VACS Device

For the MS5611 I2M device, injections involving every single field are considered.

The processing of setting up and reading from the sensors involves reading in the

calibration data, reading in digital temperature and pressure, and performing a cal-

culation to translate it into real, interpretable data. First, the injection of calibration

data is performed. There are two types of calibration injections: incorrect calibration

data injected during the first read by the master device, and correct calibration data

during the first read by the master device and incorrect calibration data injected dur-

ing the second read by the master device. This covers checking for initial calibration

data against known values and checking for changes in the calibration at any point

during run time. Next, the injection of commands is performed. Any commands that

are considered incorrect or unknown are ignored, and the HRIM throws an error. An

injection is performed before and after a valid command has been received. Finally,

changes in temperature and pressure injections are performed. Given that pressure

generally is adjusted for temperature, an injected value that changes the tempera-

ture will also change the pressure. The opposite is not true, injections involving only

pressure and only temperature are performed, and discrepancies large enough to be

detected are shown. Table 5.4 describes the injections at the I2M level for the UART

VACS device.

67

Type Target Field Coverage
Calibration A1 Coefficient, First Read Unexpected Value
Calibration A2 Coefficient, First Read Unexpected Value
Calibration A3 Coefficient, First Read Unexpected Value
Calibration A4 Coefficient, First Read Unexpected Value
Calibration A5 Coefficient, First Read Unexpected Value
Calibration A6 Coefficient, First Read Unexpected Value
Calibration A1 Coefficient, Reread Changed Value
Calibration A2 Coefficient, Reread Changed Value
Calibration A3 Coefficient, Reread Changed Value
Calibration A4 Coefficient, Reread Changed Value
Calibration A5 Coefficient, Reread Changed Value
Calibration A6 Coefficient, Reread Changed Value
Commands All Commands Invalid command
Pressure Digital Pressure Large Change in Pressure
Pressure Digital Pressure Large Change in Pressure
Temperature Digital Temperature Large Change in Temperature
Temperature Digital Temperature Large Change in Temperature

Table 5.4: I2M Injections for MS5611

68

Chapter 6

Preliminary Results and Verification

The goal of the HECAD system is to be able to identify any existing and incoming

hardware faults and incoming errors as a result of either intended cyber-attacks or

faulty hardware induced at any point of the development and distribution process

and communicate this information with an operator. As such, faulty data is injected

into the system at both the hardware and information level. In the previous sections,

types of attacks are injected and the results are explored here.

6.1 HRIM

6.1.1 UART HRIM

The UART HRIM primarily detects changes in the UART configuration as well as

changes in the information level on two devices: a GPS module and a VACS device.

The configuration for both devices stays the same: transmission at 115200, one stop

bit, and no parity bit. Correct GPS and VACS data is injected into the HRIM module

at several different speeds, and at different configurations as shown below. In figure

6-1, data is sent into the module at a baud rate of 9600. Since this is such a low baud

rate, the figure shows a couple of transmissions before the error is detected. This is

because the low baud rate and the high oversampling rate catch a large part of the

start bit as the transmission bits. After the first bit is actually transmitted, then the

69

error is caught.

Figure 6-1: UART Injection at 9600 baud

In figures 6-2 and 6-3, data is sent into the module at a baud rate of 19200 and

57600 respectively. This is demonstrated to throw an error if the baud rate is a little

bit lower than the intended frequency. In figure 6-2, the start of the transmission

starts at approximately 29300, then after the first bit change, the error is caught.

Similarly, figure 6-3 demonstrates the same effect, where the start of a transmission

is at approximately 27500, and at approximately 31400 is the expected stop bit. In

both figures, the baud is so slow that the data transmitted is caught in between the

windows of the oversampling clock.

Figure 6-2: UART Injection at 19200 baud

The same experiments are used in figures 6-4 and 6-5 to demonstrate the same

functionality for baud rates at a higher rate than intended. In these cases, data is

sent into the module at a baud rate of 230000 and 500000 respectively. As expected,

70

Figure 6-3: UART Injection at 57600 baud

the error is caught after a brief moment in both situations. This is because the point

at which the bit has changed is not exactly in the middle of a 16-bit register generated

by the oversampled clock.

Figure 6-4: UART Injection at 230400 baud

In addition to the change in the baud rate, a different configuration for the parity

bits was used. Since the state machine checks for a non-existing parity bit to be

transmitted, the state machine throws an error if the parity bit is a ’0’, regardless if

it is an even parity or an odd parity. A transmission of a ’1’ parity bit is considered a

correct transmission since it is detected as the stop bit. A similar case appears if the

71

Figure 6-5: UART Injection at 500000 baud

the parity bit is a mark bit (where the bit is always a ’1’ and therefore is detected as

a stop bit) or if the parity bit is a space bit (where the bit is always a ’0’). In figure

6-6, at approximately 21910, the UART HRIM expects a ’1’ stop bit. The absence

of the stop bit throws the stop error. Figures 6-7 and 6-8 show a similar case, where

at the end of the transmission, a ’1’ stop bit is desired but a ’0’ bit is returned. Both

cases are caught by the UART HRIM.

Figure 6-6: UART GPS with Even Parity Bit

The final injection involving the UART configuration is the stop bits. The non-

existence of a stop bit is considered an error. However, the issue with injection is

that there is no module that can transmit without a stop bit. The FTDI and Putty

configuration does not allow the transmission of a byte without a stop bit. However,

the presence of a ’0’ bit when a ’1’ bit is expected in the previous examples shows

that the state machine can detect it as an error. In order to work with UART, the

72

Figure 6-7: UART GPS with Odd Parity Bit

Figure 6-8: UART GPS with Space Parity Bit

next transmission requires the line to be pulled up high in order to have a start bit,

so eventually the line will represent a stop bit, only at the wrong time, indicating a

configuration error. The detection of two stop bits will not represent an error, since

HRIM is simply looking for the first stop bit it detects. The rest is considered part

of the idling period. Additionally, the overhead induced from the extra bit will not

be significant enough to cause a framing error or baud error. An example of this is

shown in figure 6-9.

In the previous section, it was noted that when the GPS module is initially config-

ured to its factory settings out of the box, the flight controller runs a setup procedure

where the flight controller attempts to communicate with the GPS module at differ-

ent baud rates until a common baud rate is achieved. From here, the flight controller

sends the commands to reconfigure the GPS module to the desired configuration. The

73

Figure 6-9: UART GPS with Two Stop Bits

issue with this setup is, when the flight controller boots up, the HECAD system also

boots up, ideally at the same time. If the setup code attempts to communicate with

flight controller, then the HECAD system will catch the error in the initial commu-

nication configuration. This will cause state machine to run out of sync. The state

machine will have no way to distinguish the true start and stop points from the new

configuration. To solve this problem, the flight controller and the GPS module should

be configured to both communicate at the right configuration upon startup.

6.1.2 I2C HRIM

In the HRIM injection for the I2C device, the address validation still follows.

Furthermore, the more thorough checks for the I2C hardware bus involve the SCL line

and the SDA line to ensure that there is activity as well as response and frequency of

the response on the line. Upon detecting a start condition on the line, if the SCL line

is held low either after the start condition or during transmission, then the detector

will throw an error. Similarly, if the SCL line responds but gets stuck during the

initial transmission or during a transmission, then the detector will also throw an

error. Figures 6-10 and 6-11 show an injected and modified SCL line that is held

low after the start condition and during a transmission. After a approximately 75

percent of the SCL cycle has passed and no activity has been detected on the SCL

line, then the I2C HRIM throws an error. In figure 6-11, the SCL line is broken during

a transmission to show that the error can be caught outside of the start condition

74

as well. The number that is used as a threshold (75) can be modified so that it can

catch the error after a longer or shorter amount of time, depending on the expected

SCL bus speed.

Figure 6-10: I2C SCL Held Low after Start condition

Figure 6-11: I2C SCL Held Low during transmission

Similarly, the same concept is used for the I2C lines being held high after the start

or during the transmission. Figures 6-12 and 6-13 show the detection of the SCL lines

held high after the start condition and during transmission.

Figure 6-12: I2C SCL Held High after Start condition

Checking the frequency of the SCL line is the next injection. If the frequency of

the SCL line is known, then checking the time between each rising and falling edge

of the SCL line will allow for checking of the frequency. If the frequency is off by

more than 5 percent, then the detector will also throw an error. Several injections

75

Figure 6-13: I2C SCL Held High during transmission

are done to show that the HRIM can detect a change in frequency. For figure 6-14,

the frequency of the SCL line is modified to be 3.3 percent higher than the expected

frequency, running at 347222 Hz, or approximately 347 kHz. For figure 6-15, the I2C

SCL bus is modified to run at 250 kHz. For figure 6-16, the I2C SCL bus is modified

to run at 2 Mhz. This method of checking is a little more difficult, especially when

working with the actual speed of the SCL bus versus the intended speed of the bus.

During the experimentation, several attempts to measure the speed of the bus varied

between 312 kHz and 340 kHz. While this shows a reasonable drift on the bus, this

may cause a false positive in identifying malfunction incidents on the I2C bus. As a

result, the threshold in determining if there is a fault or an attack should be increased

to a larger number.

Figure 6-14: I2C Incorrect Frequency - 347222 Hz, +3.3 %

The HRIM also verifies the SCL duty cycle. If the frequency of the SCL line is

known, then generally so is the duty cycle. The injector used previously is modified to

output an SCL line with a different duty cycle that is unreasonable. In the injector,

the modified SCL line that is injected in the HRIM has a duty cycle of 80 percent. This

is to emulate an incorrect SCL line duty cycle, but not necessarily a non-responding

I2C SCL line. Figure 6-17 shows the detection of a responding SCL at the wrong

76

Figure 6-15: I2C Incorrect Frequency - 250 kHz, -25.6 %

Figure 6-16: I2C Incorrect Frequency - 2 MHz, +495 %

duty cycle. Since the SCL lines driven by a master device generally do not have a

50 percent duty cycle, this check may not serve useful or important in determining

existence of faults.

Figure 6-17: I2C Incorrect Duty Cycle

77

6.2 I2M

6.2.1 UART I2M

The injection at the UART I2M at the information level consists of working with

changing VACS or GPS packets. To demonstrate a detection in the error of infor-

mation received, the injections performed here will involve changing parts of a VACS

packet, including the data section and the checksum section. Changing part of the

data will result in an incorrect checksum and changing the checksum will lead to an

error detection thrown by the VACS parser. The two types of injections are per-

formed and shown here. In figures 6-18 and 6-19, a valid VACS packet is injected,

but the checksum is changed. In figure 6-20, a VACS packet is injected, but parts of

the packet itself are changed. In any situation, changing different parts of the VACS

packet is an attempt to demonstrate the failure to receive uniform and unaltered data.

Figure 6-18: VACS Packet - Checksum A changed

Figure 6-19: VACS Packet - Checksum B changed

78

Figure 6-20: VACS Packet - Data Payload changed

6.2.2 I2C I2M

The injection at the I2C information level consists of several changes in the dif-

ferent registers that can be returned by the slave device. This is the more extensive

injections test. First, the calibration registers are validated. Every slave device has

factory burned data into the device memory, so the reading of the calibration registers

should never change. As a result, data from the calibration register is read in and

stored during the first iteration of the reading of specific calibration register and then

checked against that stored data during the next iteration. There are a total of six

different calibration registers. Figures 6-21 through 6-23 demonstrate the injection of

an incorrect data value during the first iteration. This is intended to check the data

read from the calibration registers. It is known what the calibration registers should

be.

Figure 6-21: I2C C1 Calibration Injection

79

Figure 6-22: I2C C2 Calibration Injection

Figure 6-23: I2C C3 Calibration Injection

In the Aries flight controller, the autopilot code is set up to read the calibration

registers once, and then store those values in memory. In the case where data returned

is different, this can cause issues in calculations for the values that are calculated using

the calibration data. In order to demonstrate a change in the calibration data, two

iterations of reading calibration registers are performed: once with one set of data,

and again with a false set of data. Figures 6-24 through 6-26 show the injection of

the correct calibration value during the first iteration, and then a different calibration

value during a second iteration.

Figure 6-24: I2C C1 Calibration Change

80

‘

Figure 6-25: I2C C2 Calibration Change

Figure 6-26: I2C C3 Calibration Change

In addition to checking the calibration values in both initial setup and during

program operation, every command initiated and transmitted with the intended slave

address is checked against known commands. Given the datasheet for the MS5611,

there are a total of 14 available commands, eight of which are not used. This is

summarized in the previous section describing injection and validation techniques.

Figures 6-27 through 6-29 indicate several attempts to send invalid commands to the

correct slave address.

Figure 6-27: I2C Invalid Command Injection 1

81

Figure 6-28: I2C Invalid Command Injection 2

Figure 6-29: I2C Invalid Command Injection 3

At the final injection step at the information level, a change in the pressure and or

temperature is injected. Since the pressure is temperature compensated and depends

on the temperature, a change in the temperature warrants a change in the pressure

by a large amount, but the opposite may not be a true. A change in the pressure

alone will not affect a change in temperature. This is demonstrated in Figures 6-30

and 6-31.

Figure 6-30: I2C Pressure Injection 1

82

Figure 6-31: I2C Pressure Injection 2

To demonstrate that changing the temperature also changes pressure, figures 6-

32 through 6-34 represent a change in pressure, a change in only temperature, or a

change in both that is significant enough to warrant an error alert.

Figure 6-32: I2C Pressure Injection

Figure 6-33: I2C Temperature Injection

83

Figure 6-34: I2C Pressure and Temperature Injection

It is important to know that there are some assumptions being made here regard-

ing the parts of the data that are being manipulated. For example, the injections

involving the UART I2M VACS packets changed only a part of the data, either the

data payload or the checksum. Often times, a well-coordinated attack will consist of

attackers changing multiple parts of the protocol, especially if their goal is to be able

to inject data that is recognized as valid and reasonable. For this reason, an attack

that consists of injecting a data walkoff (where data drifts off constantly) will not be

detected (unless there is a large discrepancy between any two samples) at the HRIM

or I2M. A higher level of processing at the FIM will catch this data.

In many of the injections performed, HECAD demonstrated success detecting ab-

normalities throughout the system, at both the hardware and information level. At

the functional level, all of the valid data that has been received (GPS data, VACS

packets, and MS5611 data) at the hardware and information level are forwarded up-

wards and stored into global memory. From here, the higher level processing unit will

preform actions such as average tracking or a neural network based time series clas-

sification. While the different hardware and information integrity modules highlight

the errors that can occur during the transmission of data, the modules can further

be refined and tested to detect a more specific configuration, such as a single versus

two stop bits.

84

Chapter 7

Conclusions and Future Works

7.1 Conclusion

Over the years as the capabilities of unmanned systems have evolved, their area of

applications have expanded. As a result, an increasing number of unmanned systems

have become available to the general public. There results more opportunities for

adversaries to find ways to reverse engineer these unmanned systems to gain access.

There is a rising importance to find ways to secure these unmanned systems against

ever evolving cyber-security threats.

A hierarchical embedded cyber-attack defense system is introduced and imple-

mented as a non-intrusive detection and mitigation mechanism to safeguard against

varying hardware faults and cyber-attacks. The HECAD system consists of a multi-

level hierarchical detection system implemented in a FPGA, consisting of programmable

fabric and a system on a chip. Within the programmable fabric resides the hardware

integrity and information integrity monitors, which is intended to safeguard against

false configurations and malicious information. Data is parsed from the communica-

tion bus in the HRIM and packaged into 8 bit registers to be sent up into the I2M.

Within the I2M, the data is interpreted to its context, and its respective values and

ranges are verified against what is known. If the data is valid, then the data is sent

up to the FIM. In the FIM, data is managed using multiple global registers.

The HECAD device is implemented to work across the UART communication

85

bus and the I2C communication bus. On these two buses, the flight controller com-

municates with the ground control station, the GPS module, the barometer, and

several other devices. In this thesis, implementations for checking, injecting and val-

idating hardware configurations and operations along with information integrity is

implemented for the VACS Packets, the GPS modules, and the barometer over the

UART and the I2C bus respectively. This includes correct and incorrect UART con-

figurations (baud rate, data bits, and parity bits), I2C line behavior (SCL lines held

high or low), and VACS packet integrity (verification using checksums). Once valid

information has been checked and passed by both the HRIM and the I2M, the data

is then passed up to the FIM for further processing.

As shown in section 6, injections across both the hardware and information por-

tions of a sensor functionality were performed. This includes changing bus config-

urations, tapping into bus lines and manipulating clock and data lines, injecting

manipulated data packets for custom protocols, and injecting data against known

constraints provided by data sheets. The implemented HECAD system was success-

fully able to identify the various faults and attacks, alerting the operator along with

the error information.

7.2 Future work

In addition to the existing security checks implemented in place, the integration

of HECAD will pave the way for the additional security measures as well. By being

able to identify the sections of the UAS that have been compromised, HECAD will

have enough information to take targeted measures for specific communication buses

and devices. For specific devices, a simple power cycle will be sufficient to return the

device to a working state. For compromised systems, a tougher mitigation strategy

would need to be implemented.

86

7.2.1 Power Cycling

For devices capable of being power cycled, providing control logic for HECAD to

power cycle certain devices would be a form of a mitigation strategy. If a commu-

nication bus fails to respond after a reasonable amount of time, reset logic can be

tied to the power transistors of the I2C devices and used to power cycle the device.

This way, there is the ability to repair a broken communication link without utilizing

more resources to completely swap out a device for a new one. This tackles the issue

of a malfunction on a communication bus, but not necessarily the malfunction of the

device itself, especially if there is active malware on the sensor.

7.2.2 Hot Swapping

The purpose of using a hierarchical detection system such as HECAD is to allow

for the detection of issues on hardware information and functional level. For devices

that have been compromised as a supply chain attack (intentionally or not) there may

be existing conditions on multiple levels of transmission. If there are enough evidence

of a sensor or component malfunction, then it gives HECAD enough grounds for it

to implement hot swapping logic. However, in the case of intentional supply chain

attacks, it would only prove beneficial if the device that is being swapped out comes

from a different supplier and distributor, all while maintaining performance and power

requirements.

The introduction of using hard swapping also gives the ability to potentially repair

devices. If a device has the ability to be repaired, then the hard swapping logic can

also have recovery logic tied in as well. This works especially with devices that have

been affected by single-event upsets and power cycling on the spot will result in an

significant downtime.

7.2.3 Intelligent Detection

The existence of the FIM and EIM is to be able to detect higher level attacks that

are not easily detectable at the hardware or information level. These generally overlap

87

with a large portion of the supply-chain attack that manipulates attacks at a much

higher level. As an alternative to algorithms at the FIM level, a more open-minded

approach to detecting anomalies is to use a neural network or a convolutional neural

network to identify specific attack patterns on incoming data.

Convolutional neural networks trained to identify patterns and processes perform

better and more efficiently than rule based approaches such as supervised learning.

The concept may be applied here as well, where patterns and noise can be used as

training for the convolutional neural network. As a result, any unfamiliar behavior

that is happening with the UAS (sudden changes, drifts, plummets, etc) will trigger

an error. This approach works for mission-specific situations too. For waypoint-to-

waypoint missions, the behaviors described apply to a convolutional neural network.

Mission data fed into the network will serve as training for determining whether or

not UAS behavior is correct.

While the integration of a neural network is not imperative for proper functional-

ity, the ideal of self-awareness or reconfiguration paves the way for HECAD to act as

a secondary system. If HECAD can successfully identify issues with the flight control

system itself, HECAD can take over all of the subcomponents and act as a backup

flight controller.

7.2.4 HECAD as Flight Controller System

The HECAD system contains programmable fabric as well as a Quad-core, Zynq-

MPSoC processing system. The programmable fabric serves as hardware based veri-

fication logic to verify hardware and information level data. The A53 processor can

be used to run the FIM and communicate with the EIM. A final design should have

enough resources left over to run flight controller code. A part of the processor can

be dedicated to running the flight controller system.

An ideal system that comes together to form a minimally intrusive HECAD system

will consist of the programmable fabric used to verify data integrity at the HRIM and

at the I2M. As data comes into the HRIM, data is packaged and passed to the I2M

and then to the FIM. Within the FIM resides either a neural network or a simple

88

processor alongside a backup flight controller system.

In the near future, different and more in-depth cyber-attack detection methods

and mitigation techniques will be added into the various parts of the HECAD system.

Within the FIM, higher level algorithms can be introduced, or the neural network

approach can be applied. The EIM will be introduced along with the single wire

interface to communicate with the main HECAD system for debugging and execution

analysis. If it is possible to isolate the cores and dedicate them to specific parts of

an application program, then one or two cores will be dedicated to running autopilot

code on the side. Several interfaces will need to be used to allow for proper routing

of components to the backup system. The combination of the different levels of the

HECAD system along with the backup flight control system will allow for a tightly

coupled secure UAS.

89

REFERENCES

[1] Matthew Leccadito. “A Hierarchical Architectural Framework for Securing Un-
manned Aerial Systems”. In: Theses and Dissertations (Jan. 2017). doi: https:
//doi.org/10.25772/0DK3-E418. url: https://scholarscompass.vcu.
edu/etd/5037.

[2] Samir Bouindour, Mohamad Mazen Hittawe, Sandy Mahfouz, et al. “Abnormal
event detection using convolutional neural networks and 1-class SVM classifier”.
In: 8th International Conference on Imaging for Crime Detection and Preven-
tion (ICDP 2017). Dec. 2017, pp. 1–6. doi: 10.1049/ic.2017.0040.

[3] Alireza Abbaspour, Kang K. Yen, Shirin Noei, et al. “Detection of Fault Data
Injection Attack on UAV Using Adaptive Neural Network”. en. In: Procedia
Computer Science. Complex Adaptive Systems Los Angeles, CA November 2-4,
2016 95 (Jan. 2016), pp. 193–200. issn: 1877-0509. doi: 10.1016/j.procs.
2016.09.312. url: http://www.sciencedirect.com/science/article/
pii/S1877050916324851 (visited on 05/20/2020).

[4] Sara Sutton, Benjamin Bond, Sementa Tahiri, et al. “Countering Malware Via
Decoy Processes with Improved Resource Utilization Consistency”. en. In: 2019
First IEEE International Conference on Trust, Privacy and Security in Intelli-
gent Systems and Applications (TPS-ISA). Los Angeles, CA, USA: IEEE, Dec.
2019, pp. 110–119. isbn: 978-1-72816-741-1. doi: 10.1109/TPS- ISA48467.
2019.00022. url: https://ieeexplore.ieee.org/document/9014383/
(visited on 05/20/2020).

[5] Zeinab Abbasi, Mehdi Kargahi, and Morteza Mohaqeqi. “Anomaly detection in
embedded systems using simultaneous power and temperature monitoring”. In:
2014 11th International ISC Conference on Information Security and Cryptol-
ogy. Sept. 2014, pp. 115–119. doi: 10.1109/ISCISC.2014.6994033.

[6] Christina Stracquodaine, Andrey Dolgikh, Matthew Davis, et al. “Unmanned
Aerial System security using real-time autopilot software analysis”. In: 2016
International Conference on Unmanned Aircraft Systems (ICUAS). Meeting
Name: 2016 International Conference on Unmanned Aircraft Systems (ICUAS)
Reporter: 2016 International Conference on Unmanned Aircraft Systems (ICUAS)
ISSN: null. June 2016, pp. 830–839. doi: 10.1109/ICUAS.2016.7502633.

90

https://doi.org/https://doi.org/10.25772/0DK3-E418
https://doi.org/https://doi.org/10.25772/0DK3-E418
https://scholarscompass.vcu.edu/etd/5037
https://scholarscompass.vcu.edu/etd/5037
https://doi.org/10.1049/ic.2017.0040
https://doi.org/10.1016/j.procs.2016.09.312
https://doi.org/10.1016/j.procs.2016.09.312
http://www.sciencedirect.com/science/article/pii/S1877050916324851
http://www.sciencedirect.com/science/article/pii/S1877050916324851
https://doi.org/10.1109/TPS-ISA48467.2019.00022
https://doi.org/10.1109/TPS-ISA48467.2019.00022
https://ieeexplore.ieee.org/document/9014383/
https://doi.org/10.1109/ISCISC.2014.6994033
https://doi.org/10.1109/ICUAS.2016.7502633

[7] Pratyusa K. Manadhata and Jeannette M. Wing. “An Attack Surface Metric”.
In: IEEE Transactions on Software Engineering 37.3 (May 2011). Conference
Name: IEEE Transactions on Software Engineering, pp. 371–386. issn: 1939-
3520. doi: 10.1109/TSE.2010.60.

[8] Matthew Leccadito, Tim Bakker, Robert Klenke, et al. “A survey on securing
UAS cyber physical systems”. In: IEEE Aerospace and Electronic Systems Mag-
azine 33.10 (Oct. 2018). Number: 10 Reporter: IEEE Aerospace and Electronic
Systems Magazine, pp. 22–32. issn: 1557-959X. doi: 10.1109/MAES.2018.
160145.

[9] Bharat B Madan, Manoj Banik, and Doina Bein. “Securing unmanned au-
tonomous systems from cyber threats”. In: The Journal of Defense Modeling
and Simulation 16.2 (Apr. 2019). Publisher: SAGE Publications, pp. 119–136.
issn: 1548-5129. doi: 10.1177/1548512916628335. url: https://doi.org/
10.1177/1548512916628335 (visited on 05/20/2020).

[10] C. G. Leela Krishna and Robin R. Murphy. “A review on cybersecurity vulner-
abilities for unmanned aerial vehicles”. In: 2017 IEEE International Symposium
on Safety, Security and Rescue Robotics (SSRR). ISSN: 2475-8426. Oct. 2017,
pp. 194–199. doi: 10.1109/SSRR.2017.8088163.

[11] Ke Yue, Li Wang, Shangping Ren, et al. “An Adaptive Discrete Event Model for
Cyber-Physical System”. en. In: Analytic Virtual Integration of Cyber-Physical
Systems Workshop, USA (2010), pp. 9–15.

[12] Giedre Sabaliauskaite and Aditya P. Mathur. “Intelligent Checkers to Improve
Attack Detection in Cyber Physical Systems”. In: 2013 International Confer-
ence on Cyber-Enabled Distributed Computing and Knowledge Discovery. Meet-
ing Name: 2013 International Conference on Cyber-Enabled Distributed Com-
puting and Knowledge Discovery Reporter: 2013 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery ISSN: null.
Oct. 2013, pp. 27–30. doi: 10.1109/CyberC.2013.14.

[13] J. Magiera and R. Katulski. “Detection and Mitigation of GPS Spoofing Based
on Antenna Array Processing”. en. In: Journal of Applied Research and Tech-
nology 13.1 (Feb. 2015), pp. 45–57. issn: 1665-6423. doi: 10.1016/S1665-
6423(15)30004-3. url: http://www.sciencedirect.com/science/article/
pii/S1665642315300043 (visited on 05/07/2020).

[14] Mohsen Riahi Manesh and Naima Kaabouch. “Cyber-attacks on unmanned
aerial system networks: Detection, countermeasure, and future research direc-
tions”. en. In: Computers & Security 85 (Aug. 2019), pp. 386–401. issn: 0167-
4048. doi: 10.1016/j.cose.2019.05.003. url: http://www.sciencedirect.
com/science/article/pii/S0167404819300963 (visited on 05/11/2020).

91

https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/MAES.2018.160145
https://doi.org/10.1109/MAES.2018.160145
https://doi.org/10.1177/1548512916628335
https://doi.org/10.1177/1548512916628335
https://doi.org/10.1177/1548512916628335
https://doi.org/10.1109/SSRR.2017.8088163
https://doi.org/10.1109/CyberC.2013.14
https://doi.org/10.1016/S1665-6423(15)30004-3
https://doi.org/10.1016/S1665-6423(15)30004-3
http://www.sciencedirect.com/science/article/pii/S1665642315300043
http://www.sciencedirect.com/science/article/pii/S1665642315300043
https://doi.org/10.1016/j.cose.2019.05.003
http://www.sciencedirect.com/science/article/pii/S0167404819300963
http://www.sciencedirect.com/science/article/pii/S0167404819300963

[15] Jongho Shin, Youngmi Baek, Yongsoon Eun, et al. “Intelligent sensor attack
detection and identification for automotive cyber-physical systems”. In: 2017
IEEE Symposium Series on Computational Intelligence (SSCI). Meeting Name:
2017 IEEE Symposium Series on Computational Intelligence (SSCI) Reporter:
2017 IEEE Symposium Series on Computational Intelligence (SSCI) ISSN: null.
Nov. 2017, pp. 1–8. doi: 10.1109/SSCI.2017.8280915.

[16] Derui Ding, Qing-Long Han, Yang Xiang, et al. “A survey on security control
and attack detection for industrial cyber-physical systems”. en. In: Neurocom-
puting 275 (Jan. 2018), pp. 1674–1683. issn: 0925-2312. doi: 10.1016/j.
neucom.2017.10.009. url: http://www.sciencedirect.com/science/
article/pii/S0925231217316351 (visited on 05/07/2020).

[17] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In:
arXiv:1609.04747 [cs] (June 2017). arXiv: 1609.04747. url: http://arxiv.
org/abs/1609.04747 (visited on 05/20/2020).

[18] Hichem Sedjelmaci, Sidi Mohammed Senouci, and Nirwan Ansari. “A Hier-
archical Detection and Response System to Enhance Security Against Lethal
Cyber-Attacks in UAV Networks”. In: IEEE Transactions on Systems, Man, and
Cybernetics: Systems 48.9 (Sept. 2018). Conference Name: IEEE Transactions
on Systems, Man, and Cybernetics: Systems, pp. 1594–1606. issn: 2168-2232.
doi: 10.1109/TSMC.2017.2681698.

[19] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, et al. “On
the requirements for successful GPS spoofing attacks”. In: Proceedings of the
18th ACM conference on Computer and communications security. CCS ’11.
Chicago, Illinois, USA: Association for Computing Machinery, Oct. 2011, pp. 75–
86. isbn: 978-1-4503-0948-6. doi: 10.1145/2046707.2046719. url: https:
//doi.org/10.1145/2046707.2046719 (visited on 05/11/2020).

92

https://doi.org/10.1109/SSCI.2017.8280915
https://doi.org/10.1016/j.neucom.2017.10.009
https://doi.org/10.1016/j.neucom.2017.10.009
http://www.sciencedirect.com/science/article/pii/S0925231217316351
http://www.sciencedirect.com/science/article/pii/S0925231217316351
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.1109/TSMC.2017.2681698
https://doi.org/10.1145/2046707.2046719
https://doi.org/10.1145/2046707.2046719
https://doi.org/10.1145/2046707.2046719

	Implementation of a Hierarchical Embedded Cyber-Attack Detection System in Unmanned Aerial Systems
	Downloaded from

	Introduction
	Background and Related Works
	Unmanned Aerial System - General Architecture
	Vulnerabilities of UAS
	Naturally Occurring Faults vs. Cyber-Attacks
	System Security and Attack Surfaces
	Types of Attacks on Unmanned Aerial Systems

	Hierarchical Embedded Cyber-Attack Defense System (HECAD)
	Hardware Resource Integrity Monitor
	Information Integrity Monitor
	Functional Integrity Monitor
	Execution Integrity Monitor
	Information Flow

	Related Works

	Subsystems
	Implementation Platform: Avnet Ultrazed-EV
	Monitored System: Aries Flight Controller
	Sensors
	NEO-M8 GPS Module
	VACS Packet Transmitter
	MS5611 Barometric Pressure Sensor

	Communication Buses
	UART & Vulnerabilities
	I2C & Vulnerabilities

	Implementation of HECAD Hardware and Information Monitors
	Hardware Resource Integrity Monitor
	Information Integrity Monitor
	Functional Integrity Monitor
	Hardware Validation Checks
	UART
	I2C

	Information Validation Checks
	Range
	Flatlining
	Discrepancy and Large Delta Changes

	Information Flow
	Data Management
	Error Management
	Mitigation Techniques

	Injection and Verification
	Injection Process
	Hardware Level Injection
	Information Level Injection

	Preliminary Results and Verification
	HRIM
	UART HRIM
	I2C HRIM

	I2M
	UART I2M
	I2C I2M

	Conclusions and Future Works
	Conclusion
	Future work
	Power Cycling
	Hot Swapping
	Intelligent Detection
	HECAD as Flight Controller System

	REFERENCES

