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ABSTRACT 

 

THE IMPACT OF AGING ON ALVEOLAR EPITHELIAL AND MACROPHAGE RESPONSES IN 

ACUTE LUNG INJURY AND INFLAMMATION 

By 

Michael Sean Valentine 

B.S. in Biology, University of Virginia, 2013 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy at Virginia Commonwealth University 

 

Director: Rebecca L. Heise, Ph.D.  

Associate Professor, Department of Biomedical Engineering 

  

Patients with severe lung pathologies, such as Acute Respiratory Distress Syndrome (ARDS), 

often require mechanical ventilation as a clinical intervention; however, this procedure frequently 

exacerbates the original pulmonary issue and produces an exaggerated inflammatory response that 

potentially leads to sepsis, multisystem organ failure, and mortality. This acute lung injury (ALI) condition 

has been termed Ventilator-Induced Lung Injury (VILI). Alveolar overdistension, cyclic atelectasis, and 

biotrauma are the primary injury mechanisms in VILI that lead to the loss of alveolar barrier integrity and 

pulmonary inflammation. Stress and strains during mechanical ventilation are believed to initiate alveolar 

epithelial mechanotransduction signaling mechanisms that contribute to injury and repair responses and 

lead to the direct activation of resident lung and recruited macrophages. These types of cells, alveolar 

and interstitial macrophages, have various polarization states, such as M1 and M2, which are believed 

to play significant roles in tissue homeostasis and inflammatory regulation. Epidemiology studies have 

also suggested that age influences lung function and is a predictive factor in the severity of VILI; however, 
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the mechanisms of aging that influence the progression or increased susceptibility of VILI in the elderly 

are still unknown. Aging also critically impacts immune system function and may increase inflammation 

in healthy individuals, which is known as inflammaging. 

 Disruption to Endoplasmic Reticulum (ER) homeostasis results in a condition known as ER stress 

that leads to disruption of cellular homeostasis, apoptosis, and inflammation. ER stress is increased with 

aging and other pathological stimuli. We hypothesized that age and mechanical stretch increase alveolar 

epithelial cells’ pro-inflammatory responses that are mediated by ER stress. Furthermore, we 

hypothesized that inhibition of this upstream mechanism with 4PBA, an ER stress reducer, alleviates 

subsequent inflammation and monocyte recruitment. Type II alveolar epithelial cells (ATII) were 

harvested from C57Bl6/J mice 2 months (young) and 20 months (old) of age.  The cells were cyclically 

stretched at 15% change in surface area for up to 24 hours.  Prior to stretch, groups were administered 

4PBA or vehicle as a control. Mechanical stretch and age upregulated ER stress and proinflammatory 

signaling expression in ATIIs. Age increases susceptibility to stretch-induced ER stress and downstream 

inflammatory gene expression in a primary ATII epithelial cell model. Administration of 4PBA attenuated 

the increased ER stress and proinflammatory responses from stretch and/or age and significantly 

reduced monocyte migration to ATII conditioned media.    

Recent studies also suggest a critical, protective role for the bioactive sphingolipid mediator 

sphingosine-1-phosphate (S1P) signaling in several lung pathologies and macrophage differentiation and 

function. It is unknown whether aging alters S1P signaling that appears involved in lung inflammation, 

injury, and apoptosis. We postulated that aging and injurious mechanical ventilation synergistically impair 

macrophage polarization in the lung that is associated with dysfunctional S1P signaling and produces 

amplified alveolar barrier damage and diminished pulmonary function. Young (2-3mo) and old (20-25mo) 

C57BL/6 mice were mechanically ventilated for 2 hours using pressure-controlled mechanical ventilation 

(PCMV). We assessed tissue mechanics, lung injury/repair responses, macrophage polarization, and 

S1P/S1PL lung activity. PCMV  exacerbated lung injury in old mice. CD80 and CD206, classical and 

alternative macrophage markers, were both elevated in old alveolar and interstitial macrophages that 
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also further increased due to PCMV. S1P lung levels were elevated in the young ventilated mice 

compared to the control group, which was not observed with the old mice. S1P lyase expression 

increased in the young and old ventilated mice and the old nonventilated group. 2-Acetyl-4-

tetrahydroxybutyl Imidazole (THI) administration reduced indications of ALI in both young and old mice 

and altered macrophage polarization.  

The structural and cellular implications in injury responses of an aging lung more accurately 

represent clinical conditions and warrant further study at a cellular level. We found that aging significantly 

impacts alveolar epithelial and lung macrophage signaling and polarization; moreover, these aging 

disparities may result from elevated ER stress and/or a loss of protective S1P signaling in response to 

mechanical stretch that further contribute to the age-associated susceptibility and alveolar barrier 

dysfunction. Furthermore, administration of 4PBA, an ER stress inhibitor, and THI, an S1PL inhibitor, 

attenuated ER stress and S1PL activity, respectively, as well as several indications of ALI. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Rationale: 

Several lung pathologies and conditions require mechanical ventilation (MV) as a clinical 

intervention; however, this medical procedure frequently exacerbates the original pulmonary insult and 

produces an exaggerated inflammatory response that potentially leads to sepsis, multisystem organ 

failure, and mortality1. This acute lung injury (ALI) condition is termed Ventilator-Induced Lung Injury 

(VILI). VILI is characterized by hypoxia, an influx of inflammatory cytokines, loss of alveolar barrier 

integrity, and decreased lung compliance, believed to be caused mainly by three mechanisms of injury: 

alveolar overdistention, cyclic atelectasis, and biotrauma1,5 . The over-distension of aerated lung regions 

generates abnormally large strains on the epithelium that directly causes barrier disruption, cellular 

necrosis and apoptosis, and an immense secretion of pro-inflammatory cytokines1,9,10. The high 

transmural pressures produced can activate pro-inflammatory signaling pathways that further deteriorate 

alveolar barrier integrity1,11. These damaging mechanisms enhance the release of inflammatory 

mediators, classified as biotrauma, which can cause further lung and distal organ injury9,12. However, the 

factors that govern this progression need to be better understood to provide treatment targets. 

Alveolar epithelial cells contribute to the initiation, amplification, and resolution of inflammatory 

processes in the lung13,14,16. Although macrophages are the predominating players in mediating 

inflammation and tissue remodeling15, there is a lack of understanding of the role of epithelial cells and 

the mechanotransduction signaling to macrophages in related pathophysiological states. Epithelial cells 

can produce inflammatory mediators assumed to be involved with injury and repair responses, such as 

the recruitment and regulation of macrophages13,14,16,28. While the alveolar epithelium is considerably 

involved with the mechanotransduction and inflammatory responses that are characteristic of VILI, the 

precise mechanisms of how mechanical strain leads to inflammation are still widely unknown.  
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Furthermore, the largest population negatively affected by mechanical ventilation is elderly with 

high in-hospital mortality rates (53%)10,18. Age is a predictive factor in the severity of VILI18,19; however, 

the exact relationship and mechanisms between age and the severity of VILI are still unknown. For 

example, experimental injurious mechanical ventilation caused worsened pulmonary permeability and 

lung tissue damage in older subjects compared with young counterparts19,20. The increased sensitivity 

and susceptibility in the elderly may be attributed to the changes in lung structure and function that occur 

with aging. Several lung and supportive extrapulmonary structural changes occur with aging that have 

significant impacts on pulmonary function and physiology21. These structural deviations lead to adverse 

respiratory mechanics, which impact expiratory flow, lung volumes, and overall gas exchange22. The 

following associations occur with aging and the respiratory system: the chest wall becomes less 

compliant, the lung parenchyma loses elasticity, the average alveolar diameter increases, and overall 

lung capacity diminishes19,21,22. Additionally, the lungs capacity to recover from injury weakens, and 

inflammatory responses are believed to increase over time. These physiological changes in the aging 

lung correlate to each of the proposed mechanisms of VILI.  Accordingly, age is a predictive factor in the 

severity of VILI17-19; however, the exact relationship between age and the severity of VILI is currently 

unknown. The increase in the severity of VILI with patient age combined with the increased need for 

ventilation and mortality rate among the elderly stresses the need to investigate this relationship. The 

physiological changes in the aging lung correlate with the proposed mechanisms of VILI; however, the 

impact of age-related changes in pulmonary structure and function in VILI still lacks clarity. The increases 

in the severity and mortality rates of VILI with patient age combined with the greater need for mechanical 

ventilation among the elderly stresses the need to investigate the influence of aging in mechanical injury. 

The aging lung also exhibits indications of cellular senescence and is linked to aging of the 

immune system, known as immunosenscence23, as shown in Figure 1. A condition of mild, systemic 

inflammation is associated with and predictive of many age-related diseases24. This state, termed 

inflammaging, occurs without overt infections or injury and is characterized by a state of chronic, low-

intensity inflammation25. Comparative studies in healthy individuals suggest that the elderly have higher 
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signs of proinflammation compared with younger individuals, which may be associated with the increased 

susceptibility to ALI/VILI23–25. Aging of resident and systemic immune cells is believed to lead to an 

intensified proinflammatory environment and reduced capacity of fighting infectious diseases23,25. 
 

 

Figure 1: Implications of Aging on Lung Structure, Cellular Integrity, and the Innate Immune System. Aging results in an 
emphysema like morphology, cellular dysfunction and an accumulation of damage, cellular senescence, and inflammation.  

Lung macrophages, comprising of alveolar and interstitial macrophages, act as the first immune 

defense system of the lung by clearing harmful pathogens and activating the innate immune system26. 

Lung macrophages also contribute to barrier integrity and local inflammation as mediators of 

inflammatory signaling between the epithelium and other immune cells13,27,28. In experimental VILI 

models, alveolar macrophages were shown to be vital to the increases in lung vascular and alveolar 

epithelial permeability and subsequent pro-inflammatory activation and amplification29. Studies on age-

related effects of lung macrophages suggest that the cells’ phagocytic capacity, TLR signaling, cytokine 

release, and reactive oxygen species (ROS) activity are critically impaired or elevated in older 

individuals23,30. However, the evidence for age-related changes in inflammatory signaling and cytokine 

expression and secretion by lung macrophages remains controversial. Several in vitro studies of 

monocyte or macrophage function have been contradictory, as few showed that the capacity of several 
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myeloid cells to produce certain inflammatory cytokines could be impaired in old age, while others have 

shown proinflammatory secretion only to be enhanced23,24. As most age-related diseases share an 

inflammatory pathogenesis, this phenomenon needs more clarification in the context of acute lung injury 

and is believed to be a significant risk factor for both morbidity and mortality in the elderly population.  

Macrophages also show high plasticity and result in heterogenic subpopulations or polarized 

states that can be identified by specific cellular markers31. Macrophage phenotypes may be largely 

classified as either pro-inflammatory, also called M1 polarization, or they can reflect an M2 profile, which 

has been considered as anti-inflammatory24,32,33. M1 macrophages, or classical activation, promote the 

development of acute lung injury, whereas M2 macrophages, or alternative activation, may be involved 

in limiting or resolving lung inflammation31. Macrophage polarization is highly involved in physiological 

transitions from inflammation to tissue regeneration and is impaired with aging; however, the relevant 

studies have been contradictory and remain controversial.  

One potential regulator of age-associated inflammation is the Endoplasmic Reticulum (ER). The 

ER is a multifunctional organelle responsible for lipid biosynthesis, calcium storage, and protein folding 

and processing34,52. Disruption to Endoplasmic Reticulum (ER) homeostasis results in activation of the 

unfolded protein response (UPR) and accumulation of misfolded proteins, known as ER stress, which 

may lead to the impairment of cellular functions, cellular apoptosis, and plays a key role in many chronic 

inflammatory disease states52,63. Specifically, ER stress regulates apoptosis and epithelial to 

mesenchymal transition in alveolar epithelial cells72.  ER stress is be increasingly dysregulated with 

age34,54. There is a general age-associated increase in the occurrence of protein misfolding and 

accumulation54. Unsurprisingly, ER stress is implicated as a promoter of many pathological disease 

states associated with aging34.  For example, lung-related ER stress is implicated in the age-associated 

increase in pulmonary fibrosis61. To further validate that regulating the ER stress response may attenuate 

negative outcomes associated with ARDS and VILI, these aging inferences need to be investigated to 

understand the potential therapeutic targets.  
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  While several studies have shown convincing evidence for a dominant role of ER stress in various 

diseases, there have only been a few studies investigating ER stress in the context of ALI/VILI. ER stress 

has been shown to be involved in numerous lung diseases, including lung cancer, pulmonary fibrosis, 

asthma, cystic fibrosis, hyperoxia-induced lung injury, cigarette smoke exposure, pulmonary infection, 

and ALI5,52. Several ER stress pathway proteins are key modulators of epithelial permeability and barrier 

dysfunction in young mice and rats59,60,71. Zeng et al showed that unresolved ER stress played a 

significant role in LPS-induced inflammation62. Extended epithelial stretch activates ER stress pathways, 

which resulted in increased alveolar permeability, cell death, and proinflammatory signaling63,133; 

however, these implications have yet to be investigated in an aging model. Dolinay et al., revealed that 

ER stress and the UPR are key modulators of epithelial permeability63. Furthermore, inhibition of an 

upstream regulator of the ER stress pathway managed to decrease injury signaling and improve overall 

barrier function after prolonged cyclic stretch and injurious mechanical ventilation63. Evidence also 

suggests that ER stress also regulates macrophage polarization that is involved in inflammation, host 

defense, and maintaining tissue homeostasis64,68. Together, these findings implicate the role of ER stress 

in numerous diseases, including lung conditions such as ALI/VILI. Furthermore, the studies provide 

evidence that therapeutic targeting ER stress and the UPR may attenuate ALI/VILI and needs further 

evaluation. There is also a lack of investigations on how aging influences these responses in ALI/VILI, 

illustrating the need to understand better how ER stress relates to the increased susceptibility of the 

elderly population.  

The implication of ER stress in lung conditions and diseases suggest that targeting ER stress and 

the UPR may have vast therapeutic potential in mitigating ALI/VILI63. Dolinay et al., utilized a PERK 

inhibitor treatment for partial inhibition of the ER stress pathway following cyclic stretch and injurious 

mechanical ventilation, which caused reduced injury signaling and improved barrier function following 

injury induction63. More frequently, studies that examine ER stress intervention have utilized the chemical 

inhibitor, 4-phenylbutyrate (4PBA). 4PBA is a low molecular weight compound that acts as a general 

inhibitor of ER stress by stabilizing protein conformation, improving the folding capacity of the ER, and 
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chaperones mutant proteins to further suppress ER stress activity71,72. Zeng et al., demonstrated that 

4PBA administration prevented the activation of the NF-kB pathway, decreased the secretion of pro-

inflammatory mediators, such as Il-1b, TNFα, and IL-6, and significantly inhibited LPS-activated ER stress 

in a LPS-induced mouse model of ALI62. Furthermore, the authors showed that 4PBA also reduced 

autophagy activity, which may play a protective role through the classical AKT/mTOR signaling 

pathway62.  We believe that 4PBA may attenuate the negative outcomes associated with mechanical 

injury and the increased susceptibility to injury from aging.  

The cellular mechanotransduction that occurs at the alveolar barrier has a critical role in mediating 

ALI/VIL36. The mechanotransduction of the physical forces that stretch the pulmonary barrier leads to 

many biochemical and biophysical changes at the cellular and structural level that include extracellular 

matrix (ECM) remodeling, stress fiber reorientation, cell-cell and cell-ECM adhesions, activation of 

various nuclear transcription factors, and secretion of inflammatory cytokines and chemokines36. The 

mechanical forces from cell-stretch and injurious mechanical ventilation directly distend cell membranes 

and induce activation and phosphorylation of receptor73, cation channels74, phospholipases75, and 

relevant signaling pathways and transcription factors that regulate lung inflammation and injury76–78. 

Phospholipids and sphingolipids are membrane lipids that are present in all eukaryotic cells that act as 

structural components of cell membranes. Recently, evidence suggests these biomolecules and their 

metabolites also act as intracellular and extracellular signaling molecules in both normal and several 

pathological conditions79, including several lung conditions such as ALI/VILI37,80.   

Sphingosine-1-Phosphate (S1P), a very bioactive sphingolipid, is involved in several cellular 

functions, such as cell growth and apoptosis, and signals both intracellular and extracellularly35. S1P 

Lyase (S1PL) irreversible degrades S1P to hexadecenal and ethanolamine phosphate37. Recent studies 

suggest a critical role for S1P/S1PL signaling in several lung pathologies that includes sepsis, pulmonary 

artery hypertension, pulmonary fibrosis, asthma, and bronchopulmonary dysplasia36. Studies have shown 

that various ligands of G-protein coupled receptors, such as S1P, can greatly influence macrophage 

differentiation and function under physiological and disease conditions. To date, it is unknown whether 



 
 

18 

aging influences these signaling mechanisms that have been shown to help regulate lung inflammation, 

injury, and apoptosis36. Targeting the S1P metabolic pathway, including manipulating S1P levels or S1P 

Lyase expression with drugs, such as 2-Acetyl-4-tetrahydroxybutyl Imidazole (THI) that reduces S1PL 

expression, have shown tremendous promise in animal models of ALI and other lung diseases37 and 

should be further investigated as a protective therapy from mechanical injury and the increased 

susceptibility from aging.  

 Implementing “protective ventilator strategies” has only marginally improved negative outcomes, 

and the overall mortality rates for ventilated patients are still unacceptably high1-6,. Furthermore, few 

studies are performed on aged subjects, which is incongruent with the fact that elderly patients have a 

greater need for mechanical ventilation. These observations illustrate the major clinical need to develop 

treatments or therapies that prevent the cellular injury mechanisms and inflammation directly resulting 

from the pathological mechanical forces generated during mechanical ventilation.  
 

 
Figure 2: General overview schematic of the aims and approach. The objectives of this research investigation were broken down 
in three separate aims. Aim 1 evaluates injury responses in a cell-stretch and animal model of ALI/VILI. Aim 2 addresses the 
function of ER stress in the experimental ALI/VILI models. Aim 3 investigates the protective role of S1P in experimental ALI/VILI.   
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1.2 Objectives: 

The central focus of this research is to further understand the governing factors that contribute to 

the increased suceptibitliy of the elderly population to lung injury, specifically mechanical damage, and 

to determine the effectiveness of these identified, age-related therapteutic targets that may be 

manipulated to attenuate the lung injury and inflammation instigated by mechanical injury.  We suspected 

that the cellular and structural changes in aged lungs cause the elderly to be more susceptible to the 

negative outcomes resulting from the mechanical stresses generated during mechanical ventilation. I 

hypothesized that the age-dependent impairment of ATII injury responses and macrophage recruitment 

transpires from elevated endoplasmic reticulum stress, which may be mitigated with 4-phenylbutarate 

(4PBA). Furthermore, I hypothesized that there is a loss of S1P signaling with aging that contributes to 

an enhanced, prolonged acute inflammatory response and further produces alveolar barrier damage, 

alters macrophage polarization, and diminishes pulmonary function in ventilator-induced lung injury. 

Additionally, the administration of THI, an S1P Lyase suppressor, will increase S1P levels in aged lung 

tissue and improve the age-related negative outcomes associated with mechanical injury. We will 

investigate these hypotheses through the following aims: 
 

Aim 1A: Evaluate age-related disparities in alveolar epithelial type II cell injury and macrophage 

recruitment in an in vitro cell-stretch model. 

 This aim was evaluated by exposing primary Alveolar Epithelial Type II cells from young (2mo) 

and old (20mo) C56BL6 mice to injurious mechanical stretch as a model of ALI/VILI and studying  the 

acute injury and inflammatory responses. Injury and inflammatory signaling factors were quantified to 

better understand how aging impacts these mechanisms in an acute phase. Primary ATII cells were 

stimulated with 0% or 15% cell-stretch for durations of 4 and 24 hours to evaluate the temporal behaviors 

of these responses. Macrophage recruitment was also evaluated by exposing bone-marrow derived 

macrophages (BMDMs) from young (2mo) and old (20mo) C57BL6 mice to conditioned media from 

young and old ATIIs exposed to injurious mechanical stretch.  
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Aim 1B: Assess pulmonary structure, function, and macrophage responses in an injurious age-

related ALI/VILI/ rodent model. 

 An injurious pressure-controlled mechanical ventilation protocol was modified and implemented 

on young (2mo) and old (20mo) mice to compare them to non-ventilated controls. Several indications of 

acute lung injury were assessed between the two age groups, such as histological airspace enlargement 

and neutrophil accumulation, as well as age-related deviations in pulmonary structure and function with 

and without injury induction. Aging disparities between alveolar and interstitial macrophage polarization 

was evaluated by implementing a modified, systematic flow cytometry approach recently developed to 

study macrophage subsets in a normal and bleomycin-induced fibrosis mouse model.  

 

Aim 2: Examine the role of ER stress and the administration of 4PBA, and ER stress reducer, as 

therapeutic intervention in experimental ALI/VILI models 

Age-related indications of Endoplasmic Reticulum (ER) stress were characterized in the 

experimental models of ALI/VILI. The administration of 4PBA, a known ER stress reducer, prior to 

mechanical stretch or ventilation was examined as a preventative therapy to attenuate the increases in 

alveolar barrier damage and dysregulated inflammatory responses observed in Aim 1. We also 

investigated the protective effects of 4PBA on macrophage recruitment by exposing young and old 

BMDMs to conditioned media of ATII cells that were administered 4PBA prior to mechanical stretch. 

 

Aim 3: Investigate the protective effects of S1P signaling and S1P lyase suppression as a 

therapeutic intervention in experimental ALIVILI models.   

  Levels of Sphingosine-1-phosphate (S1P) and S1P lyase (S1PL) were quantified in the lung 

tissues of young and old ventilated mice and compared to non-ventilated controls to determine a 

protective role of S1P in response to mechanical injury. Following this characterization, the administration 

of 2-Acetyl-4-tetrahydroxybutyl Imidazole (THI), a drug that inhibits S1P lyase activity and elevates levels 

of S1P, was investigated as a protective therapy to mechanical injury.  
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CHAPTER 2: BACKGROUND 

 

2.1: The Effects of Mechanical Injury and Aging on ATII and Macrophage Responses: 

Mechanical ventilation frequently exacerbates underlying pulmonary conditions and produces an 

intensified inflammatory response that may lead to sepsis and multisystem organ failure1,7,8. This 

exacerbation or injury is classified as Ventilator-Induced Lung Injury (VILI). The pathophysiology of VILI 

is characterized by an exaggerated inflammatory cytokine release and influx of inflammatory cells, loss 

of alveolar barrier integrity and subsequent pulmonary edema formation, decreased lung compliance, 

and profound hypoxia1,5-8. These features reflect three integrated mechanisms of injury: alveolar over-

distention, cyclic atelectasis, and inflammatory cell activation1,7,8,. These physical injury mechanisms are 

frequently modeled in vitro with mechanical stretch using lung epithelial or endothelial cells14,74,78.  

 

 

Figure 3: Primary Alveolar Type II Cells (ATIIs) express Surfactant Protein C. Surfactant Protein C 
(Green) is  used to validate cell purity and separate from other cell types during isolation. The nuclei 
were stained with DAPI(Blue). (A) Depicts ATIIs isolated from young mice and (B) portrays old ATIIs.  

 

The alveolar epithelium plays a major role in maintaining adequate gas exchange by greatly 

contributing to the barrier formation and maintenance28,127. The epithelium is mostly comprised of 

squamous type I alveolar cells (ATI) and cuboidal type II epithelial cells (ATII).  Although ATI cells cover 

about 90% of the alveolar surface in adult lungs, ATII cells mediate surfactant homeostasis in order to 
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regulate surface tension in the lung and prevent total collapse leading to atelectasis injury28,127. ATII cells 

are characterized by prosurfactant C staining28, as shown in Figure 3. They also serve as the main 

progenitor cells during repair of the alveoli by functioning as self-renewing cells that transition into type I 

alveolar cells28,127. These cells create multiple barriers that are important in maintaining adequate gas 

exchange via their secretory products, surface glycocalyces and membranes, and intercellular junctional 

proteins28,127. Disruption to these complexes directly results in increased epithelial permeability and 

increases in local inflammation in both the conduction airways and the alveolar regions14,28,74,127. These 

responses are characteristic and contribute greatly to the pathogenesis of ARDS and VILI. Yet, the impact 

of aging on the alveolar epithelium’s responses in injury and repair still needs to be examined. 

Alveolar epithelial cells are exposed to a variety of physical forces during mechanical ventilation 

and mechanical stretch that lead to changes in structure, function, metabolism, and signaling28,127. These 

cells’ ability to sense mechanical forces and relay that information to surrounding cells via signaling 

cascades has been evident in numerous studies28,74,127. However, the underlying mechanisms of alveolar 

epithelial mechanosensation and mechanotransduction are thus far insufficiently comprehended. A high 

level of mechanical stretch has been shown to induce increased epithelial cell necrosis and extracellular 

matrix remodeling14,28,74,127, which plays a major role in structural maintenance and tissue 

homeostasis28,127. Other more recent studies have also suggested that alveolar epithelial cells participate 

in lung inflammation, which is a major component of VILI13,14,28,127. Epithelial cells produce cytokines and 

inflammatory mediators that are assumed to be involved in the recruitment and regulation of 

macrophages13,14,28,127. Cyclic stretch of alveolar epithelial cells resulted in increased cell injury and death, 

apoptosis, acidification, bacterial growth, and general inflammatory response, which is often represented 

with amplified gene expression and release of IL-6 and IL-8, and other cytokines and 

chemokines14,28,74,127. Studies showed that alveolar epithelial cells significantly participated in the 

initiation, amplification, down-regulation, and tissue-repair stages associated with lung inflammation13. In 

an in vitro model, cyclic stretch of alveolar epithelial cells triggered inflammatory signaling mechanisms 

in a force- and frequency-dependent manner14,74,78,137. Specifically, there was an increase in interleukin-
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8 (IL-8), which is a known marker of deformation-induced inflammatory signaling as it is a potent 

neutrophil chemoattractant that plays a major role in the pathogenesis of acute lung injury14,74. 

Mechanically stretched fetal rat lung cells induced significant cytokine production that may play a vital 

role in the induction and progression of VILI137. Mechanical stretch also generates a force- and frequency-

dependent production in macrophage inflammatory protein 2 (MIP-2), which is a rodent homologue of 

human IL-8 and is a vital mediator in many inflammatory reactions127. Furthermore, stretch-induced 

release and activation of matrix metalloproteinases (MMPs) and the modification of proteoglycan and 

glycosaminoglycans, which are involved in tissue repair51,113. MMPs are known to play a significant role 

in regulating ECM remodeling, while proteoglycans and glycosaminoglycans impact inflammatory 

responses through the interaction with various chemokines and by acting as ligands for Toll-like 

receptors51. These downstream responses lead to the induction and progression of several lung 

pathologies, including VILI. These observations further suggest that certain mechanisms exist between 

alveolar epithelial and immune cell interactions to regulate the local inflammatory milieu and maintain 

tissue homeostasis. Although these interactions are recognized, the underlying signaling mechanisms 

are still not well elucidated.   

Mechanical ventilation also leads to poorer outcomes in the elderly population. Mortality rates and 

hospital discharge to extended care facilities increased consistently for each decade of age over the age 

of 65 years in mechanically ventilated patients17-19. Epidemiological studies also suggest that age is a 

predictive factor in the severity of VILI17-19; however, the exact molecular mechanisms between age and 

VILI are still unknown17-19,.  In rodent models of VILI, we and others have shown that age increases 

susceptibility to ventilator-induced edema, injury, and mortality10,19. 

 The aging lung exhibits indications of cellular senescence and is closely linked to the aging of the 

immune system, known as immunosenescence23. A condition of mild, systemic inflammation is 

associated with and predictive of many age-related diseases24. This type of state, termed inflammaging, 

occurs without the presence of overt infections or injury and is characterized by a state of chronic, low-

intensity inflammation25. Comparative studies in healthy individuals suggest that the elderly have higher 
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indications of proinflammation compared with younger individuals, which could be associated with the 

increased susceptibility to ALI/VILI23–25. Aging of resident and systemic immune cells leads to an 

intensified proinflammatory environment and reduced capacity of fighting infectious diseases23,25. As 

shown in Figure 4, Inflammaging is believed to be macrophage centered38 and intensely associated with 

many aging and inflammatory pathologies. 

 

Figure 4: Proposed Lung Macrophage development and changes during lifespan. Exposure to environmental 
encounters over lifespan are believed to induce macrophage recruitment that differentiate into alveolar 
macrophages in response to local environment cues and stimuli. These monocyte-derived macrophages might 
remain in the lung and/or replace tissue-resident alveolar macrophages. Source: Morales-Nebreda et al., 2015157. 

 

Macrophages are critical cells in many inflammatory responses and are highly involved with tissue 

healing and regenerative responses in various tissues15,24,26. These types of immune cells are a major 

signaling target of the epithelium in response to mechanical stretch or injury28,127. As shown in Figure 5, 

lung macrophages are comprised of alveolar and interstitial macrophages, which are believed to have 

different origins and life spans in the lungs23,27,31. These cells are suspected of being key regulators of 

pathological and reparative processes and greatly contribute to barrier integrity and local 
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inflammation15,24,26. It’s been recently suggested that these two populations play opposing roles in lung 

injury31,101. Recent studies showed that alveolar macrophages appeared to limit neutrophil influx into the 

lung following acute injury induction or chronic exposure to dust, while interstitial macrophages were 

shown to promote neutrophil extravasation15,26,27,31. Frank et al., demonstrated that alveolar macrophages 

are vital to the increases in lung vascular and alveolar epithelial permeability that is characteristic of 

experimental VILI29. They showed that injurious mechanical ventilation directly activates alveolar 

macrophages and that these types of macrophages play a substantial role in the initial pathogenesis of 

VILI. Their study also suggests that alveolar epithelial cell-macrophage interaction was required for 

subsequent proinflammatory activation and amplification, indicating that mechanical stretch of epithelial 

cells or alveolar macrophages independently failed to result in significant, subsequent macrophage 

activation and inflammation. The specific roles of alveolar and interstitial macrophages in the context of 

acute lung injury and repair remain unclear and require further evaluation. As most age-related diseases 

share an inflammatory pathogenesis, this phenomenon needs more clarification in the context of ALI and 

is believed to be a highly significant risk factor for both morbidity and mortality in the elderly population.  

 

 

Figure 5: Types of lung macrophages in the alveolar blood-gas region. (A) Role of alveolar macrophages in injury and inflammatory 
responses in acute lung  injury. Source: Herald et al., 2011158. (B) Lung macrophages consist of Alveolar and Interstitial Macrophages 
This diagram depicts the location and types of immune cells around the alveolar blood-gas barrier. Source: Longworth 1997. 
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These roles are further complicated by the phenotypic plasticity of macrophages. As depicted in 

Figure 6, Macrophages show high plasticity, resulting in heterogenic subpopulations or polarized states 

that can be identified by specific cellular markers31. Macrophage phenotypes may be largely classified 

as either more proinflammatory or pro-injurious, also called classical macrophage polarization, or they 

can reflect an alternative activation profile, which has been considered as anti-inflammatory or pro-

repair24,32,33. Classically-activated macrophages promote the development of acute lung injury, whereas 

alternatively-activated macrophages may be involved in limiting or resolving lung inflammation31. 

Classical macrophage activation can be induced by various environmental cues, such as interferon-

gamma (IFN-g), Toll-like receptor (TLR) signaling, and many others24,32,33,39. This polarization state is 

associated with activation of transcriptions factors STAT1 and NF-kB24. IL-4 and IL-13 may induce 

alternative macrophage polarization, and STAT6 is the main transcription factor involved24. Classical 

polarization is characterized by an upregulation of iNOS, CD80, CD86, and HLA-DR and elevated 

cytokine release of TNF-a, IL-6, IL-1, IL-12, IL-23, and type 1 interferon24,31 in murine macrophages. 

Alternative activated murine macrophages are characterized by a cytokine release profile of IL-4, IL-10, 

IL-13, and IL-1ra and have increased expression of CD206, Ym1, CD163, CCL1, CCL18, FIZZ1, arginase 

1 (Arg1), CD71, RELMa, and chitotriosidase24,31. Macrophage polarization is highly involved in 

physiological transitions from inflammation to tissue regeneration and it’s believed to be impaired with 

aging; however, the relevant studies have been contradictory and remain controversial. Mahbub et al., 

found that M1 polarized splenocytes from aged mice resulted in decreased IL-1β and TNF-α protein 

levels compared to young counterparts40. Barrett et al., demonstrated that aged M1 polarized 

macrophages from rats had elevated responses to inflammatory stimuli compared to young counterparts, 

such as significantly higher levels of TNF-a expression41. Gibon et al. showed that aged macrophages 

overexpress both M1 and M2 surface markers, aged M1s upregulated TNF-a, aged M2 cells had reduced 

expression of Arg1 and CD206, and that aged M1 macrophages increase TNF-a secretion with no 

negative feedback42. These observations further indicate that the impact of aging on macrophage 
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polarization and function, especially in the context of acute lung injury, has been insufficiently 

investigated. The role of lung macrophage plasticity in response to VILI, and how aging impairs these 

mechanisms still lack clarity; however, the numerous subsets of activated macrophages appear to play 

a significant role in the progression and resolution of inflammatory responses, especially in the lung.  
 

 

Figure 4: Paradigm of Macrophage Polarization. Diagram illustrates sources, stimuli, activation 
status, and signaling responses of associated M1 and M2 polarized macrophages. The graphic 
also depicts their proposed roles in tissue inflammation and cancer. Source: Stahl et al., 2018159. 

 

 Age-specific cell signaling mechanisms by ATII cells or macrophages could be viable therapeutic 

targets for patients requiring mechanical ventilation by preventing or regulating the exaggerated 

inflammatory response that often leads to sepsis and mortality. More recently, novel therapies attempt to 

target macrophage polarization, which could be an effective, innovative method to regulate the 

downstream inflammation and prevent subsequent alveolar barrier destruction. As the majority of patients 

that are diagnosed with VILI are the elderly, better understanding the age-dependent factors associated 

with the mechanotransduction between the alveolar epithelium and innate immune system is detrimental 

to developing treatments for these types of lung diseases. 
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2.2: Lung Structural and Functional Impairment Associated with Aging and Mechanical Injury: 

As the majority of patients that receive mechanical ventilation as a medical intervention are the 

elderly and evidence suggest that the elderly population has increased proneness to lung injury and 

infection, it is critical to investigate the factors that may contribute to this sensitivity. Experimental injurious 

mechanical ventilation caused worsened pulmonary permeability and lung tissue damage in older 

subjects compared with young counterparts19,20. The increased sensitivity and susceptibility in the elderly 

may be attributed to or enhanced by the changes in lung structure and function that occur with aging. It 

is believed that these deviations in the mechanical properties of the lung and full respiratory system may 

significantly contribute to the predisposition of the elderly to ALI. 

 The four major injury mechanisms associated with ALI/VILI are volutrauma, barotrauma, 

atelectrauma, and biotrauma1,7-9. The volutrauma caused by higher tidal volumes, the barotrauma caused 

by elevated airway pressures, and the atelectrauma caused by the cyclic collapse and reopening are the 

three primary injury mechanisms associated with mechanical ventilation that contributes to VILI1,7-9. The 

over-distension of aerated lung regions generates abnormally large stretching forces on the epithelium 

that directly causes barrier disruption, cellular necrosis and apoptosis, and an immense secretion of pro-

inflammatory cytokines1,7-9. The atelectasis caused by the cyclic closure and reopening of fluid-filled 

airways generates dynamic air-liquid interfacial stresses that also contribute to significant barrier 

disruption and plasma membrane rupture1,7-9. The high transmural pressures produced can activate pro-

inflammatory signaling pathways that further deteriorate alveolar barrier integrity1,7-9. These damaging 

mechanisms often lead to an enhanced release of local and systemic pulmonary inflammatory mediators 

that can cause further lung and distal organ injury that is classified as biotrauma9. However, the factors 

and mechanisms that govern this progression still need to be better characterized and understood. 

Several pulmonary and supportive extra pulmonary structural changes occur with aging that have 

significant impacts on pulmonary function and physiology22,23,43,44. These structural deviations lead to 

adverse respiratory mechanics, which impact expiratory flow, lung volumes, and overall gas exchange22. 

Alveolar duct dilation and enlargement of alveolar air spaces that occur with aging lead to a reduction in 
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alveolar surface tension, increased lung compliance, and declines in tissue elasticity and dampening44. 

Changes in supportive extra pulmonary structures with aging include decreases in chest wall compliance 

and reductions in respiratory muscle strength which lead to increases in residual volumes and decreases 

in total lung capacities22,43,44. Age-related changes in gas exchange include V/Q inequality, which is the 

amount of air that reaches alveoli regions divided by the amount of blood flow in the alveoli capaliearies, 

and decreased diffusion capacity of the lung for carbon monoxide, which cause an increased alveolar-

arterial oxygen gradient and decreased PaO2
44. These physiological changes in the aging lung correlate 

with the proposed mechanisms of VILI; however, the impact of age-related changes in pulmonary 

structure and function in VILI still lacks great clarity. The increases in the severity and mortality rates of 

VILI with patient age combined with the greater need for mechanical ventilation among the elderly 

stresses the need to investigate possible associations between the structural and cellular changes that 

occur with aging and the increased susceptibility to lung injury of this population.  

  Damaged lungs are especially susceptible to the dynamic stresses and strains and injury 

mechanisms associated with VILI, such as volutrauma, barotrauma, and atelectrauma45. This is partially 

caused by the reduction in number of recruitable lung units and alveoli participating in gas exchange6,28,45. 

Collectively, the injury mechanics are believed to result in vast lung structural and functional changes, 

such as the degradation of lung mechanical properties46. Atelectrauma, caused by the increasing alveolar 

instability with cyclic alveolar recruitment and derecruitment and edema formation has been directly 

connected to reduction in lung mechanical properties46. Volutrauma and barotrauma result from the 

overdistention of interalveolar septa at high volumes or pressures, which have been shown to cause 

stress failure from interactions between cells and cell-matrix47. These injury mechanisms physically 

damage the alveolar barrier, lead to inflammation, and may produce secondary lung conditions such as 

pneumothorax or emphysema. The overdistention causes cell detachment from basement membranes, 

barrier cell junction ruptures, alveolar and interstitial edema, and cell death48. The secondary 

inflammatory response associated with VILI, known as biotrauma, leads to local tissue injury and cell 

death, edema formation, immune cell recruitment, and possible systemic and distal organ dysfunction. 
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Together, these responses cause vast alterations in lung structure and function. VILI is characterized by 

increased pulmonary pressure, diminished respiratory compliance, and increased physiological dead 

space in the lungs36. Surfactant dysfunction, alveolar collapse, edema formation, lung inflammation, 

fibrotic remodeling, and other characteristics of VILI impose harmful stresses and strains on surrounding 

tissue during ventilation that ultimately result in deviations in lung volume and structure, lung supportive 

structures, and cell/tissue composition48. These structural fluctuations result in vast variations in lung 

mechanical properties and lung function; such as the reduction in lung compliance and increased lung 

and chest wall elastance associated with VILI48–50. There is also a significant level of matrix remodeling 

that occurs following VILI. The increased cell proliferation, reduced collagen levels, and elevated MMP 

activity51. These indications of matrix remodeling lead to changes in lung structure and function51. 

 

2.3 Endoplasmic Reticulum Stress and Therapeutic Potential in Aging and Acute Lung Injury: 

As indications of biotrauma and lung inflammation are elevated in acute lung injury and aging 

appears to exaggerate these responses, it is critical to understand better the cellular mechanisms that 

regulate this age-related intensification. One potential component that may contribute to the age-

associated injury and inflammation is the endoplasmic reticulum (ER).  

The ER is a multifunctional organelle responsible for lipid biosynthesis, calcium storage, and 

protein folding and processing34,52. The ER contains high concentrations of molecular chaperones and 

enzymes that assist the folding of specific proteins34,52,54,60. Protein aggregation in the ER occurs if the 

rate at which new proteins enter the ER exceeds its folding and secretion potential, which is known as 

ER stress34,52,54,60. Due to the innate inefficiency of protein folding, there can be as many as 30% of 

proteins that never acquire their fully folded, programmed conformation34,52,54,60. The unfolded protein 

response (UPR) is the collective cellular processes that defend against ER stress by reducing the activity 

of ribosomes with mechanisms to increase the protein-folding capacity of the ER. Additionally, misfolded 

proteins are identified and transported to the cytoplasm for degradation by the ubiquitin proteasome 

system34,52,54,60. This type of ER-associated protein degradation appears to be enhanced by the UPR and 
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maintains the removal of misfolded secretory proteins from the cell. When these protective systems fail 

and sustained ER stress remains unresolved, cellular death pathways become activated and the cell 

undergoes apoptosis34,52,54,60. For example, ER stress has been shown to regulate apoptosis in alveolar 

epithelial cells72. The misfolding of proteins in the ER affects the pathogenesis of copious disorders and 

diseases that includes many lung diseases, such as pulmonary fibrosis and cancers34,52,54,60. Under 

normal physiological conditions, protein aggregates do not accumulate in the cells and protective cellular 

mechanisms are detected and activated53. The ER prevents protein aggregation by accurately initiating 

and regulating transcription and translation, chaperoning nascent or unfolded proteins, and transporting 

improperly folded polypeptides to degradation, preventing their accumulation34,52,54,60.    

 

Figure 5: Schematic Overview of associated ER stress-induced UPR signaling. Diagram depicts the several signaling 
branches associated with ER stress between the ER, cytosol, Golgi complex, and nucleus within a cell. These mechanisms 
are activated in order to reduce causes of ER stress and reestablish homeostasis. Source: Garg et al., 2012160. 



 
 

32 

 At the cellular level, the UPR activates three types of protective cellular responses: (1) increase 

ER chaperone activity, such as BiP/GRP78, to aid in the refolding of proteins; (2) protein translation 

attenuation by mediating PERK activity, which phosphorylates eIF2α and reduces protein translation; and 

degradation of misfolded proteins by the proteasome via the ER-associated degradation (ERAD) 

pathway34,52,54,60. Ultimately, the three UPR responses are protective cell mechanisms to limit protein load 

and resolve ER stress34,52,54,60. If the UPR fails to restore folding capacity and prolonged ER stress occurs, 

inflammatory signaling and intrinsic and extrinsic apoptotic pathways are activated34,52,54,60. ER stress-

related apoptosis is mainly mediated by C/EBP homologous protein (CHOP), which is downstream of the 

PERK and ATF6 pathways. CHOP induces the expression of numerous pro-apoptotic factors such as 

Tribbles 3, GADD34, and DR534,52,54,60. Additionally, Bcl-2 family molecules, caspase-12, and JNK 

kinases are also involved in ER stress-mediated apoptosis54. 
 

 

Figure 6: Schematic diagram of ER stress, the UPR, and subsequent cell response outcomes. 
Many of the UPR branches attempt to reduce the causes of ER stress; however, prolonged, 
unresolved ER stress results in inflammation and apoptosis. Source: Tanjore et al., 2013161.  
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Recent studies suggest a role for unfolded/misfolded proteins in normal aging and age-related 

cognitive dysfunction54. ER stress has been implicated in numerous age-related diseases and disorders 

such as Type 2 diabetes and other metabolic disorders, sleep deprivation, neurodegenerative diseases, 

atherosclerosis and Hyperhomocysteinemia, cancer, and more34,52,54. Age-related reductions in cellular 

factors leads to increased protein misfolding, accumulation, and aggregation34,52,54,60. Studies suggest 

this is partially due to a gradual loss or impairment of chaperoning systems and important ER enzymes, 

such as BiP, PDI, calnexin, and GRP94, that assist with the reduction of misfolding proteins in the ER55. 

Chaperones are continuously oxidized with aging, and this incessant process may contribute to their 

functional dwindling. Generally, proteins or protein fragments change from native soluble forms into 

insoluble fibrils or aggregated plaques that cluster in organs in many age-associated diseases. Evidence 

suggests that there is a transition that occurs during aging, where the protective adaptive response of 

the UPR becomes significantly reduced and the pro-apoptotic signaling becomes more robust53,56,57.  

 

 

Figure 7: Proposed triggers and implicated diseases associated with ER stress and the UPR. (A) Potential causes that lead to cellular ER 
stress. Source: Burman et al., 201861. (B) Related inflammatory diseases associated with ER stress. Interaction between inflammation and 
ER stress signaling is believed to compound or impede the pathogenesis and/or progression of certain diseases. Source: Garg et al., 2012160. 
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Naidoo et al., showed that BiP protein levels were decreased 30% in the cerebral cortex of aged 

(22-24-month old) C57/B6 mice compared to young (3-month old) mice53. Additionally, BiP mRNA and 

protein expression levels were decreased in the hippocampus of aged (23-26-month-old) Wistar rats 

compared to young (4-6-month-old)56. Evidence also suggests that BiP protein expression in peripheral 

tissue, such as the lung, is higher in young animals compared to aged57. Aging also impacts other 

components of the UPR than just the chaperones and enzymes. PERK mRNA was diminished in the 

hippocampus of aged rats compared to young56. Studies also showed that eIF2a kinase was less efficient 

when isolated from aged rat brain tissue compared to young rats. Additionally, GADD34 increased 

expression was observed in the cortical tissue of aged mice57. GADD34 suppression the translation block 

and allows for the synthesis of pro-apoptotic proteins like CHOP. Furthermore, increased basal and 

inducible CHOP expression levels are associated with aging. CHOP and Caspase-12 expression, which 

are both related to apoptotic activation, were induced in stressed aged rats, but not in the stressed young 

rats. JNK kinases, which contribute to the induction of apoptosis, are also upregulated with aging63. 

Collectively, these age-related changes suggest that aged animals are more vulnerable to ER stress and 

apoptosis. The UPR triggers autophagy in order to eliminate aggregates of misfolded proteins that are 

unable to be degraded by the ERAD pathway. Autophagy provides protection by augmenting clearance 

of the protein accumulations; however, autophagy also declines with age as the rate of autophagosome 

formation and maturation and the efficient of autophagosome/lysosome fusion are greatly reduced58. 

While several studies have shown convincing evidence for a dominant role of ER stress in various 

diseases, there have only been a few studies investigating ER stress in the context of ALI/VILI. ER stress 

is involved in numerous lung diseases, including lung cancer, pulmonary fibrosis, asthma, cystic fibrosis, 

hyperoxia-induced lung injury, cigarette smoke exposure, pulmonary infection, and ALI59,60. ER stress 

responses in ATIIs, fibroblasts, and macrophages has been linked to pulmonary fibrosis61. In septic shock 

models and LPS-induced ALI models, ER stress occurs in the injured lung and seems to be a prominent 

pathological feature in the process59. Local inflammatory cytokines and neutrophil 

accumulation/activation appear to be associated with the development of ER stress and activation of the 
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UPR59. Several ER stress pathway proteins are key modulators of epithelial permeability and barrier 

dysfunction in young mice and rats59,60. Zeng et al., showed that unresolved ER stress played a significant 

role in LPS-induced inflammation62. Extended epithelial stretch activates ER stress pathways, which 

resulted in increased alveolar permeability, cell death, and proinflammatory signaling63; however, these 

implications have yet to be investigated in an aging model. Dolinay et al., revealed that ER stress and 

the UPR are key modulators of epithelial permeability63. Prolonged stretch of rat primary type I-like 

alveolar epithelial cells and injurious mechanical ventilation cause ER stress and activate the UPR, which 

lead to increased alveolar permeability, apoptosis, and proinflammation63. Furthermore, chemical 

inhibition of an upstream regulator of the ER stress pathway managed to reduce injury signaling and 

recover overall barrier function following prolonged cyclic stretch and damaging mechanical ventilation63.  

Together, these findings implicate the role of ER stress in numerous diseases, including lung conditions 

such as ALI/VILI. Furthermore, the studies provide reinforced evidence that therapeutic targeting ER 

stress and the UPR may attenuate ALI/VILI and needs further evaluation. There is also a lack of 

investigations on how aging influences these responses in ALI/VILI, illustrating the need to better 

understand how ER stress relates to the increased susceptibility of the elderly population.  
 

  
 

Figure 8: Theorized role of ER stress and the UPR in pathophysiology of mechanical-induced ALI/VILI. Reprinted with permission 
of the American Thoracic Society. Copyright © 2020 American Thoracic Society. All rights reserved. Dolinay et al., 201763. The 
American Journal of Respiratory Cell and Molecular Biology is an official journal of the American Thoracic Society. 
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As mentioned before, macrophages play critical roles in tissue inflammation, host defense, and 

maintenance of tissue homeostasis. Their activation is generally described as pro-inflammatory (M1) that 

assist in tissue destruction and host defense, or anti-inflammatory (M2) that are believed to participate in 

tissue regeneration and repair64. ER stress is activated in macrophages, and this stimulation resulted in 

an M1 polarization state following the activation of the IRE1α component of the ER stress and UPR 

signaling in a fatty liver disease model64. This ER stress-dependent activation resulted in increased 

ischemia-reperfusion injury64. Additionally, another study found that the TRAF2 component, another 

component of the IRE1α signaling branch, is also activated in macrophages stimulated with palmitic 

acid65. Furthermore, preliminary studies indicated that ATF6 and IRE1α, two of the major ER membrane 

resident proteins, may be involved with macrophage polarization66. Evidence also suggests that ER 

stress is activated during NAFLD progression in macrophages and prolonged ER stress induces 

proinflammatory polarization. A recent study showed that this ER stress related macrophage polarization 

was regulated via pancreatic eIF-2a kinase (PERK), which plays a major role in ER stress64. 

There is also evidence for ER stress regulating macrophage polarization in several lung 

conditions and diseases61. Kennedy et al., demonstrated that macrophage cytokine production and UPR 

responses to ER stress are dependent on the M1 or M2 polarization state in COPD (Kennedy 2013). The 

authors showed that ER stress upregulated 33 proinflammatory genes in M1 macrophages compared to 

M2, which included IL-8, TNF, IL-6, and CCL8. ER stress also induced the activation of the inflammasome 

of M1 macrophages; however, this did not occur in M2 macrophages. Furthermore, the expression of the 

UPR components and specific pathways were distinct between M1 and M2 macrophages, where the M2 

macrophages did not express UPR components that induced apoptosis in response to ER stress67. In 

addition to COPD, studies suggest that ER stress is implicated in other lung diseases, such as pulmonary 

fibrosis61. ER stress has been reported in lung macrophages obtained by bronchoalveolar lavage from 

asbestosis patients and in alveolar macrophages in a murine asbestos-induced lung fibrosis model61. 

Yao et al., showed that M2 macrophages had increased expression of CHOP in IPF patients68. Burman 

et al., suggests that ER stress-activated in ATII cells, fibroblasts, and macrophages greatly contribute to 
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the initiation and progression of pulmonary fibrosis61. ER stress activated in ATIIs leads to apoptosis and 

epithelial-to-mesenchymal transition, which produces loss of lung structure, impaired reepithelization, 

and increased presence of mesenchymal cells. They also suggest that ER stress induces an M2 

polarization state in macrophages, which leads to increased production of profibrotic mediators, such as 

TGFβ and PDGFB. Together, these ER stress-induced cell responses result in pro-fibrotic conditions and 

fibrosis development61. While several studies have shown that ER stress may influence macrophage 

polarization, most reports are inconsistent and remain controversial. In murine obesity models, increased 

M2 macrophages resulted from genetic deficiencies surrounding IRE1α or CHOP, resulting in a loss of 

ER stress activation (Shan 2017, Grant 2014). Conversely, other studies indicate that ER stress induces 

macrophages towards M2 polarization, possibly via ER stress-induced JNK activation69. CHOP induces 

M2 polarization in lung macrophages in bleomycin models of pulmonary fibrosis and a murine model of 

allergic airway inflammation68,70. Furthermore, chemical inhibition of ER stress in bone marrow-derived 

macrophages prevented palmitate-induced M2 polarization. While these studies indicate a direct effect 

of ER stress activation and macrophage polarization. ER stress may also have indirect effects on 

macrophage responses. Evidence suggests that ER stress can induce apoptosis in macrophages, which 

would abrogate the effects of M2 polarization61. This relationship between macrophage polarization and 

ER stress needs better understanding in the context of aging and mechanical injury in order to develop 

therapies that target these types of molecular mechanisms.   
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Figure 9: Proposed mechanism for the induction of ER stress-induced Pulmonary Fibrosis. ER stress is believed 
to influence ATII, macrophage, and fibroblast differentiation and signaling. Source: Burman et al., 201861. 

The implication of ER stress in lung conditions and diseases suggest that targeting ER stress and 

the UPR may have vast therapeutic potential in mitigating ALI/VILI63. Dolinay et al., utilized a PERK 

inhibitor treatment for the chemical inhibition of ER stress and UPR following cyclic stretch and injurious 

mechanical ventilation, which inhibits the PERK branch of the ER stress mechanism and resulted in 

decreased injury signaling and improved barrier function following injury induction63. More frequently, 

studies that examine ER stress intervention have utilized the chemical inhibitor, 4-phenylbutyrate (4PBA). 

4PBA is a low molecular weight compound that acts as a general inhibitor of ER stress by stabilizing 

protein conformation, improving the folding capacity of the ER, and chaperones mutant proteins to further 

suppress ER stress activity71,72. Zeng et al., showed that 4PBA dosing prevented the activation of the 

NF-kB pathway, decreased the secretion of pro-inflammatory mediators, such as Il-1b, TNFα, and IL-6, 

and significantly inhibited LPS-activated ER stress in a LPS-induced mouse model of ALI62. Furthermore, 

the authors showed that 4PBA also reduced autophagy activity, which may play a protective role through 

the classical AKT/mTOR signaling pathway.  
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 Our objective was to understand better how lung cells, such as ATIIs and macrophages, 

contribute and respond to ER stress and how aging and mechanical injury affect these behaviors. To 

further validate that therapeutic targeting of the ER stress response may attenuate VILI, we investigated 

the therapeutic potential of 4PBA in our age-related experimental VILI models.  

 

2.4 Sphingosine-1-Phosphate and S1P Lyase Suppression in Aging and Acute Lung Injury: 

The cellular mechanotransduction that occurs at the alveolar barrier has a critical role in mediating 

ALI/VIL36. The mechanotransduction of the physical forces that stretch the pulmonary barrier leads to 

many biochemical and biophysical changes at the cellular and structural level that include extracellular 

matrix (ECM) remodeling, stress fiber reorientation, cell-cell and cell-ECM adhesions, activation of 

various nuclear transcription factors, and secretion of inflammatory cytokines and chemokines28. The 

mechanical forces from cell-stretch and injurious mechanical ventilation directly distend cell membranes 

and induce activation and phosphorylation of receptor73, cation channels74, phospholipases75, and 

relevant signaling pathways and transcription factors that regulate lung inflammation and injury76–78. 

Phospholipids and sphingolipids are membrane lipids that are present in all eukaryotic cells that act as 

structural components of cell membranes. Recently, evidence suggests these biomolecules and their 

metabolites also act as intracellular and extracellular signaling molecules in both normal and several 

pathological conditions79, including several lung conditions such as ALI/VILI37,80.   

 Sphingolipids are specialized constituents present in all eukaryotic cells that provide structural 

integrity to cell membranes and are essential to development and maintenance80. They are comprised of 

a distinct group of lipids that encompass sphingosine, sphinganine (dihydrosphingosine), or 

phytosphingosine as a sphingoid base backbone that is attached to long-chain fatty acids37. Recent 

studies suggest that Sphingosine-1-Phosphate (S1P), a bioactive sphingolipid metabolite, acts as an 

effective bioactive lipid signaling molecule with the potential to regulate numerous cell processes and 

behaviors that include cell proliferation, survival/apoptosis, barrier function, inflammation, immune 

regulation81,82, motility and cytoskeletal reorganization83, adherens junctions84, tight junction assembly85, 
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autophagy86,87, and many more80. Evidence suggests that S1P produces both intracellular and 

extracellular signaling pathways that may play crucial roles in development and disease related 

pathologies, including respiratory disorders37. It is suggested that the S1P-related metabolic pathway 

that’s associated with various respiratory diseases may be an effective target for numerous lung diseases 

and that influencing S1P levels could be a viable therapy in attenuating lung conditions such as ALI/VILI.  
 

 

Figure 10: Schematic overviews of the S1P signaling axis and the cellular actions of S1P. S1P synthesis and related S1P/SphKs/S1PL 
signaling axis. Figure also depicts Intracellular and extracellular S1P signaling actions Source: Muhammed et al., 201780. 

 

S1P is synthesized through the phosphorylation of sphingosine by the activation of specific 

kinases, SphK1 and SphK2, which rigorously controls the cellular S1P concentrations. Sphingosine is 

generally produced from the conversion of ceramide via ceramidases88. S1P degradation can either be 
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through reversible phosphorylation, such as S1P phosphatases (SPPs) or lipid phosphate phosphatases 

(LPPs), or through irreversible phosphorylation, which occurs by S1P Lyase (S1PL). S1PL irrevocable 

converts S1P into hexadecenal and ethanolamine phosphate89.  S1P signaling is mediated in a G-protein 

coupled receptor-dependent manner through S1P receptors 1-5 located on cell membranes, or through 

a receptor independent manner, such as the intracellular targets HDACs and TRAF2. Intracellularly, S1P 

acts as a second messenger and helps regulate calcium homeostasis; although, there is a lack of 

information regarding intracellular targets of S1P37.  

 

Figure 11: Pathophysiological conditions and diseases throughout the body  that are associated 
with S1P. Evidence suggests that S1P is implicated in several diseases and conditions that affect 
almost every organ in the body, including almost every type of cancer. Source: Maceyka et al., 201279. 

 

 Studies have shown that the SphK/S1P/S1PL metabolic pathway is associated in several 

diseases, such as cardiovascular disease, cancer, inflammatory diseases, obesity, as well as many 

others, and is often considered for therapeutic targeting79. Furthermore, the expression levels of S1P and 



 
 

42 

SphK1 appear to correlate with certain disease grades, severity, and patient mortality80. As for lung 

disorders, various studies suggest that S1P and sphingolipid signaling is implemented in asthma, lung 

cancer, pulmonary hypertension, cystic fibrosis, pulmonary fibrosis, chronic obstructive pulmonary 

disease, influenza, and acute lung injury (ALI)80. Several studies suggest that the S1P/SphK1/S1PL 

signaling axis may have a significant impact in the pathophysiology of ALI35,90,91. For example, the 

administration of S1P diminished lung edema formation and promoted survival in an acute lung injury 

model produced by loss of Forkhead protein in endothelial cells80. The S1P role in endothelial barrier 

function is attributed to its S1P1 and S1P3 singling that activates downstream Rho GTPases and 

cytoskeletal rearrangement83. Additionally, the knockdown of Forkhead protein leads to increased 

expression of S1P1, which was suggested to help maintain barrier integrity80. Sphk1 has also been shown 

to provide protection again radiation-induced lung injury, SphK1-/- mice were highly susceptible to the 

radiation damage; furthermore, S1P receptor agonists were administered and attenuated the radiation 

damage80. Currently, glucocorticoids are in clinical trials for patients with ALI. Glucocorticoid treatments 

enhance the synthesis of Sphk1 and S1P formation and blocking Sphk1 expression inhibited the effects 

of glucocorticoids in ALI. Additionally, SphK1-/- mice had greater vascular leakage and reduced recovery 

from LPS-induced ALI, and these negative outcomes were assuaged by the administration of exogenous 

S1P80. In other LPS-induced murine ALI models, intravenous S1P administration also reduced lung 

vascular permeability and inflammation92. There has also been a genetic link between S1P and ALI, 

although indirectly. Genetic screening of ALI patients identified a robust connection between a single 

nucleotide polymorphism in cortactin gene and ALI. Interestingly, this cortactin-related polymorphism, 

which is involved in maintaining barrier integrity was responsible for making endothelial cells more 

susceptible to ALI by reducing the barrier protective effects of S1P80. Collectively, studies generally 

suggest that the barrier enhancing effects of S1P occurs via ligation to S1P1. This activates downstream 

signaling cascades that includes Rac activation, cortactin translocation, myosin light chain 

phosphorylation, and focal adhesion and adherens junction protein rearrangement101. Conversely, 

several in vitro and in vivo studies demonstrated that elevated concentrations of S1P (>5-10uM) may 
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produce barrier disruption. Furthermore, intravenous infusion of S1P at 0.5 mg/kg body weight produced 

pulmonary edema in mice93. Alternatively, to S1P1 ligation, ligation of S1P to S1P3 leads to cell migration 

and vascular barrier dysfunction101. Likewise, genetic knockdown of Sphk1 in mice caused increased 

susceptibility and elevated negative outcomes in an LPS-induced ALI model94. S1PL expression also 

appears to be elevated in LPS-induced lung injury models, which reduces the S1P levels in the lung and 

increases inflammation and injury95. Collectively, these observations demonstrate the role and 

association of S1P signaling in various lung disorders and insinuate that the S1P metabolic pathway has 

vast therapeutic potential against ALI. 
 

 

Figure 12: Targeting sphingolipid signaling has therapeutic potential in fibrosis diseases, such as pulmonary 
fibrosis, as well as many other pathophysiologic conditions. This diagram depicts many of the inhibitors of 
S1P signaling that target enzymes involved in the sphingolipid pathway. This includes Sphingosine Kinase 
Inhibitors, Agonizing/antagonizing S1P Receptors, and others. Source: Gonzales-Fernandez et al., 2017162. 
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While there have been a few studies that have examined the role of S1P signaling in acute lung 

injury models, only a small fraction is focused on mechanically induced ALI. Suryadevara et al., indicated 

that volume-controlled mechanical ventilation (30 mL/kg,4hr) in mice resulted in elevated S1PL 

expression, reduced S1P levels in lung tissue, and increased inflammation, injury, and apoptosis. They 

demonstrated that deletion of SphK1 mitigated VILI in mice. Moreover, the authors revealed that alveolar 

epithelial MLE-12 cells exposed to 18% cyclic stretch caused increased S1PL expression and changes 

to levels of sphingoid bases compared to physiological stretch conditions36. Administration of 4-

deoxypyridozine, a S1PL inhibitor, prior to pathophysiological stretch also attenuated barrier dysfunction, 

cell apoptosis, and cytokine secretion. Collectively, these findings further suggest that S1PL inhibition 

may have therapeutic potential and protection against VILI. While there are only a few investigating the 

protective roles of S1P and S1PL inhibition in VILI, there are currently no studies examining the 

consequences of aging on these protective roles in VILI that would offer greater pathological insight. 

 Interestingly, studies have shown that sphingolipids play critical roles in regulating lifespan in 

certain organisms, such as yeast, worms, and flies96. There has also been evidence of sphingolipids 

regulating cellular senescence in mammalian cells96. Furthermore, mechanisms upstream and 

downstream of sphingolipid metabolism have been shown to be associated in regulating senescence96. 

Several studies have suggested that membrane lipids, specifically sphingolipids, are biomarkers of 

human aging97. Profiling serum samples of long-lived humans indicated an increase in specific 

sphingolipids with aging. Furthermore, certain plasma sphingolipids and their metabolites were increased 

in long-lived naked mole rats. While these studies suggest an increase of sphingolipids in circulation with 

aging, other investigations suggest that ceramide levels increase and S1P levels decrease in aged tissue. 

The balance between the S1P and ceramides modulates the aging process97. In healthy aged brain 

tissue, ceramide levels were increased and S1P levels were reduced with aging98. While very few studies 

have examined the role of S1P signaling with healthy aging, numerous findings reveal reduced S1P levels 

in age-related diseases, such as neurodegenerative diseases and diabetes, suggesting that the S1P and 

S1P metabolites are greatly implicated in those diseases98.  



 
 

45 

 S1P signaling has an essential role in controlling complex immune regulatory networks that 

contribute to homeostasis and disease, including pulmonary conditions and diseases79. Sphingolipids act 

as important mediators involved in cell survival, stress responses, and inflammation99. Sphingosine-1-

phosphate and the S1P receptors are extensively involved in inflammatory diseases100 (Yang 2018). 

Studies have shown that S1P, along with the S1P signaling axis, can greatly influence macrophage 

differentiation and function under physiological and disease conditions101. Evidence suggests that S1P 

binding to certain S1P receptors on macrophages produced specific functional responses. These 

macrophage responses have been implicated in particular diseases and conditions101. Yang et al., 

showed that bone marrow derived-macrophages expressed S1P1-3, but not S1P4/5. Furthermore, the 

authors found that S1PR2/3 mediated S1P-induced M1 macrophage polarization. Interestingly, S1P1 had 

no effect on macrophage polarization. Additionally, the use of inhibitors prevented the upregulation of M1 

gene expression mediated by S1P/S1PR2/3
100. Conversely, Muller et al., found that all 5 S1P receptors 

were expressed in bone marrow-derived macrophages102. They provided evidence that suggests that M1 

and M2 polarized macrophages resulted in significant downregulation of S1P1 and influenced the 

expression of S1P4. This study also indicated that S1P induced chemotaxis in M1 macrophages and 

altered cytokine secretion in M2 macrophages. Interestingly, S1P increased expression of iNOS only 

under M2-polarizing conditions, but it had no effect on phagocytosis of either M1 or M2 macrophages102. 

Another study found that exogenous S1P administration increased iNOS expression in mouse bone 

marrow-derived macrophages stimulated with LPS/IFN-gamma102. Evidence suggests that S1P3 is 

implicated in LPS-induced ALI models and might be the most important S1P receptor on macrophages 

regulating inflammation101. Early studies in human alveolar macrophages indicated that S1P induced 

(NOX)2-dependent production of ROS to promote IL-1β and TNF-α production by murine peritoneal 

macrophages. Previously, Intracellular S1P produced by Sphk1 was also suggested as a cofactor 

involved in macrophage activation. IL-1 signaling, an activator in NFκB inflammation, also requires 

Sphk1-dependent S1P as an intracellular cofactor103. Sphk1 is also activated downstream of other 

inflammatory stimuli, such as LPS104–106. Stimulation of human THP-1 macrophages with LPS required 
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Sphk1 activity to generate IL-6, IL-1β, TNF-α, and/or NO104. In RAW264.7 macrophages, S1P1 and S1P2 

were involved in IL-6 production in a LPS-induced ALI model107. Furthermore, S1P1 binding increased 

ARG1 activity and suppressed NO production, suggesting a shift from M1 to M2 polarization states in 

murine macrophages108. S1P5 on macrophages is associated with impaired phagocytosis; however, it 

remains unclear if this S1P receptor impacts macrophage polarization101. Collectively, these observations 

suggest that S1P modulates macrophage activation and responses according to the local environment, 

the intracellular and extracellular concentrations of S1P, and the S1P receptors activated on specific101.  

 

 

Figure 13: S1P signaling and macrophage responses. Evidence suggests that the S1P/Sphks/S1PR  signaling 
axis may regulate critical macrophage functions and polarization states. Source: Weigert et al., 2019101.  
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Figure 14: S1PR signaling and macrophage polarization implicated in disease. S1P binds to S1P receptors 
on macrophages that activate certain functional responses. These S1P receptor-specific responses 
represent potential therapeutic targets for various diseases or conditions. Source: Weigert et al., 2018101.  

 

 There are numerous studies that focus on targeting various components of S1P signaling for 

several diseases, including some lung disorders. The intracellular and extracellular signaling 

mechanisms of S1P that allow for various autocrine and paracrine effects and its implementation in 

disease progression provides vast therapeutic potential for numerous diseases; including respiratory 

disorders37. Targeting S1P levels in certain conditions by increasing or decreasing S1P levels in 

circulation or tissue is significantly effective35,109,110. For example, the administration of anti-S1P 

monoclonal antibodies to deactivate extracellular S1P and hinder its receptor signaling is being 

investigated in pre-clinical and phase I and II trials for tumor growth suppression and age-related macular 

degeneration111. As studies have shown that S1PL expression is elevated in several ALI models, such 

as LPS-induced, that causes reduced S1P levels and increased inflammation, targeting S1PL has shown 

promise in attenuating many of the negative outcomes associated with ALI95. Targeting S1PL in vitro 
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using siRNA in human lung microvascular endothelial cells that received LPS lead to reduced barrier 

disruption, IL-6 secretion, and LPS-induced p38 MAPK phosphorylation95. Zhao et al., further showed 

that inhibiting S1PL expression in vivo resulted in increased intracellular S1P levels and decreased LPS-

induced inflammation. Mice that were treated with 2-Acetyl-4-tetrahydroxybutyl Imidazole (THI) (0.05 

mg/mL water), which inhibits S1PL expression, for 2 days retained raised S1P levels in the lung tissues 

and BALF fluids following intratracheal LPS instillation. Furthermore, THI treatment resulted in reduced 

neutrophil infiltration in the alveolar space and reduced IL-6 secretion as protection against LPS-induced 

lung injury95, further suggesting the therapeutic potential of targeting S1PL, specifically via THI 

intervention. 

 We hypothesized that influencing S1P signaling may be a viable therapeutic approach to 

attenuating age-related negative outcomes associated with mechanical injury and acute lung injury. 

Further investigation is critical to understand the protective effects of S1P signaling and S1PL inhibition 

in the context of aging and mechanical injury. The loss of S1P levels or elevated S1PL expression in the 

lungs of aged individuals may represent age-specific mechanisms leading to the elderly’s increased 

susceptibility to lung injury. The possible molecular regulation of these signaling components represents 

promising, potential therapeutic targets for age-related ALI.  
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CHAPTER 3: AGING INFLUENCES ATII AND MACROPHAGE RESPONSES  

TRIGGERED BY INJURIOUS CELL-STRETCH 
 

Some of the content in this chapter was previously published in 2018 with the following citation: Valentine et al., 

Inflammation and Monocyte Recruitment due to Aging and Mechanical Stretch in Alveolar Epithelium are Inhibited 

by the Molecular Chaperone 4-phenylbutyrate, Cell and Mol. Bioengineering, 2018 

 

3.1 Rationale: 

Mechanical ventilation frequently exacerbates underlying pulmonary conditions and produces an 

exaggerated inflammatory response that potentially leads to sepsis and multisystem organ failure1,73,112. 

This exacerbation or injury is classified as Ventilator-Induced Lung Injury (VILI). The pathophysiology of 

VILI is characterized by an exaggerated proinflammatory cytokine release and influx of inflammatory 

cells, loss of alveolar barrier integrity and subsequent pulmonary edema formation, decreased lung 

compliance, and profound hypoxia. These features reflect three integrated mechanisms of injury: alveolar 

over-distention, cyclic atelectasis, and inflammatory cell activation1,5,73. These physical injury 

mechanisms are frequently modeled in vitro with mechanical cyclic stretch using lung epithelial or 

endothelial cells.  

 

Figure 15: Flexcell FX-5000TM Tension System used to simulate in vivo tissue strains. The cell-stretch 
system produces a defined, controlled, static or cyclic deformation to a monolayer of cells. Mimics in 
vivo conditions for cells in the lung and other organ systems. Source: Flex Cell International Corporation 
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Lung tissues are continuously exposed to cyclic stretch during spontaneous breathing or 

mechanical ventilation28,127. The alveolar epithelium maintains adequate gas exchange during these 

activities by greatly contributing to the barrier formation and maintenance; however, there are prominent 

changes in mechanical stresses and strains and the microenvironments in pathological lung conditions, 

such as ALI/VILI, that influence the barrier’s integrity113. Once the alveolar barrier integrity is 

compromised, pulmonary edema and increased susceptibility to infection occur and repair of the barrier 

is a critical determinant of outcome. The overdistension of aerated lung regions generates abnormally 

large strains on the epithelium that directly causes barrier disruption, cellular necrosis and apoptosis, and 

an immense secretion of pro-inflammatory cytokines1. The repetitive collapse and reopening of the alveoli 

produces atelectrauma, which also injures alveoli1,5. The high transmural pressures produced can 

activate proinflammatory signaling pathways that may further deteriorate alveolar barrier integrity5,114. 

These damaging mechanisms often lead to biotrauma, an enhanced release of local and systemic 

pulmonary inflammatory mediators that can cause further lung and distal organ injury45.  

Although volutrauma, atelectrauma, and biotrauma injury mechanisms have been proposed to 

occur in vivo, there is little direct understanding of the changes in mechanical forces and the resulting 

deformation responses in age-related experimental ALI/VILI models. Furthermore, while overdistention 

of alveolar epithelial cells is thought to play a significant role in the initiation of ALI/VILI, there is limited 

evidence of these cells’ mechanotransduction responses and mechanisms that lead to epithelial 

dysfunction and limited repair. These cells’ ability to sense mechanical forces and relay that information 

to surrounding cells via signaling cascades has been evident in numerous studies; although, the 

underlying mechanisms of alveolar epithelial mechanosensation and mechanotransduction are thus far 

insufficiently comprehended. A high level of mechanical stretch has been shown to induce increased 

epithelial cell necrosis and extracellular matrix (ECM) remodeling, which plays a major role in structural 

maintenance and tissue homeostasis28,127. Studies showed that alveolar epithelial cells significantly 

contribute to the initiation, amplification, down-regulation, and tissue-repair stages associated with lung 

inflammation13,28,127. Epithelial cells produce cytokines and inflammatory mediators that are assumed to 
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be involved in the recruitment and regulation of macrophages13,28,127. Furthermore, cyclic stretch of 

epithelial cells grown on deformable membranes causes injury and induces cytokine release by alveolar 

epithelial cells74,78. Cyclic stretch of alveolar epithelial cells resulted in increased cell injury and death, 

apoptosis, acidification, bacterial growth, and general inflammatory response, which is often represented 

with amplified gene expression and release of IL-6 and IL-813,28,63,127. Cyclic stretch of alveolar epithelial 

cells also triggered inflammatory signaling mechanisms in a force- and frequency-dependent 

manner14,74,78,137. These mechanotransduction responses are believed to have a significant impact with 

the induction and progression of several lung pathologies, including ALI/VILI.   

Mechanical ventilation also leads to poorer outcomes in the elderly population. Mortality rates and 

hospital discharge to extended care facilities increased consistently for each decade of age over the age 

of 65 years in mechanically ventilated patients17-19. Epidemiological studies also suggest that age is a 

predictive factor in the severity of VILI; however, the exact molecular  mechanisms between age and VILI 

are still unknown17-19. In rodent models of VILI, we and others have shown that age increases 

susceptibility to ventilator-induced edema, injury, and mortality10,19.  In general, advanced age is also 

known to promote an increasingly dysregulated innate immune/inflammatory response to injury with an 

overall shift towards a proinflammatory state that is known as inflammaging25,38. Aging promotes chronic 

inflammation in the murine lung25,38 and also inhibits repair of the lung epithelium following influenza 

insult25,38.  Better understanding these age-associated influences are critical to developing therapeutic 

approaches that aim to target the possible age-associated mechanisms of injury. 

 As VILI is characterized by inflammation, recent evidence has suggested that lung-recruited 

monocytes may also play a significant role in the pathogenesis of ALI124,126. Recent studies show that 

immature monocytes enter the circulation from the bone marrow and migrate to local sites of inflammation 

and injury126. Using mouse models, monocytes have been shown to be rapidly recruited to the lung during 

inflammation and contribute to the development of ALI by promoting the activation of pulmonary 

endothelial and epithelial cells126. Additionally, monocyte recruitment has been shown to be heavily 

involved in the development of pulmonary edema under harmful mechanical ventilation1,7-9. Furthermore, 
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advanced age has also been shown to impact the function and responsiveness of monocytes and 

macrophages, although why this occurs and how it impacts the age-associated susceptibility to lung injury 

and inflammaging conditions are not clear24,25,38,.   

We hypothesized that the alveolar type II (ATII) cells respond age-dependently to mechanical 

stretch with increased inflammation and monocyte recruitment. To investigate this relationship, we 

isolated and cultured primary alveolar epithelial ATIIs from young and old murine subjects.  These cells 

were exposed to cyclic mechanical stretch to model alveolar over-distension.  We measured age-

associated differences in cell injury/inflammation and apoptosis. Additionally, we quantified the migration 

of bone marrow-derived monocytes to ATII conditioned media. Our data suggest that age and mechanical 

stretch influence inflammatory responses and monocyte recruitment in alveolar type II epithelial cells. 
 

3.2 Materials and Methods: 

 

Figure 16: Schematic overview of the experimental methods for Aim 1A that examines the 
effects of aging in an injurious cell-stretch model using ATII cells isolated from young and old mice. 
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C57BL/6J Mice: All C57BL/6J mice were housed in accordance with guidelines from the American 

Association for Laboratory Animal Care and Research protocols and approved by the Institutional Animal 

Care Use Committee at Virginia Commonwealth University (Protocol No. AD1000009).  

 

ATII cell isolation and culture:  We harvested, isolated, and cultured ATII primary alveolar epithelial 

cells from young (2 months) and old (20 months) C57BL/6J wild-type mice using previously cited methods 

115.  We selected to use an aged-mouse model as it has previously been suggested that mice are an ideal 

mammalian model for studying the effects of aging and due to the lack of availability of aged-human cell 

lines or clinical specimens 116. ATII were then cultured in Bronchial Epithelial Cell Growth Media (BEGM, 

Lonza), with the included supplements except for hydrocortisone, supplemented with 10 ng/ml 

keratinocyte growth factor (KGF, PeproTech). For stretch experiments, cells were plated onto Collagen 

I-coated, 6-well silicone bottomed plates (Flexcell International Corp., BF-3001A BioFlex) and cultured 

for 48 hours prior to stimulation. ATIIs were found to be greater than 93% pure in both young and old 

cultures by staining for positive pro-surfactant C and the inclusion of lamellar bodies. Cell viability was 

also validated with MTT assays (Roche) according to manufacturer's instructions. 

 

Mechanical Cell-Stretch: Using the Flexcell Tension Plus System (Flexcell Inc), we applied radial, cyclic 

(0.86Hz) stretch corresponding to a 15% change in surface area. Statically cultured ATII cells were used 

as controls.  Cells underwent stretch or static conditions, and after 4 hours or 24 hours, RLT buffer 

(Qiagen) or 4% paraformaldehyde were added to wells for further processing. Cell supernatants were 

collected for cytokine analysis and conditioned media experiments. 

 

Immunofluorescence Staining: Fixed wells were probed for CHOP (L63F7) mouse mAB (1:3200) and 

ATF-4 (D4B8) rabbit mAB (1:200) using secondary antibodies anti-mouse Alexa Fluor® 594 conjugate 

(1:250) and anti-rabbit Alexa Fluor® 488 conjugate respectively. All primary and secondary antibodies 

were obtained from Cell Signaling Technology (Danvers, MA, USA). The counterstaining was done using 



 
 

54 

Prolong® Gold antifade mounting with DAPI (ThermoFisher, Waltham, MA, USA). Finally, samples were 

imaged with an Olympus IX71 under appropriate emission/excitation wavelengths.  

 

Quantitative real-time Polymerase Chain Reaction: Total RNA was isolated and purified from each 

treatment group using RLT buffer (Qiagen) and the RNeasy mini kit (Qiagen, Valencia, CA). We then 

synthesized the complementary DNA using the iScript RT kit (Biorad). For cDNA from the ATII primary 

alveolar epithelial cell, we used custom QPCR plates (Biorad) to perform an analysis of IL-6st, MCP-1 

(CCL2), and MIP-1β (CCL4). QPCR was performed using Sybr Green (Applied Biosystems) and the 

CFX96 Touch™ Real-Time PCR Detection System (Biorad). Data were analyzed using the 2-DDCT method, 

and target genes were normalized to two housekeeping genes using ribosomal 18s and GAPDH. 

 

Inflammatory Mediator Analysis:  We measured the concentrations of MCP-1/CCL2 and MIP-1β /CCL4 

inflammatory cytokines in the collected cell media of each experimental group using MCP-1 (DY479) and 

MIP-1β (DY451) Mouse DuoSet ELISA kits (R&D Systems) according to the manufacturer’s instructions.  

 

Monocyte Invasion Assay: Bone marrow-derived monocytes (BMDMs) were isolated from young (2 

months) and old (20 months) C57BL/6J mice, as described by Trouplin et al., 117. Monocyte migration 

was then evaluated using an invasion assay, performed as described by Murray et al., 118, with minor 

modifications. BMDMs were seeded at a density of 1 x105 cells/100ul BMDM growth media without FBS, 

on Collagen I-coated (Sigma-Aldrich) Transwell inserts with 8.0 um pore sizes (Corning, USA). 0.6 ml of 

BEGM or conditioned media from the ATII 24-hour groups were placed in the reservoir.   

 

A Live/Dead Viability Assay (ThermoFisher) was used to quantify cell invasion through the Transwell 

membrane.  Live/Dead images were taken immediately after the staining procedure an Olympus IX71 

Microscope (Olympus).  Total cell counts were performed using ImageJ’s particle analysis function with 

the following inclusion parameters: Size (in Pixels): 10-120. Circularity: 0.10-0.99.  



 
 

55 

Statistics: A total of 114 mice were used for this study. All experiments were performed with a minimum 

of n=3 primary cell isolations in triplicate wells. Larger n values were utilized where possible. Limitations 

exist in the number of 20-month-old mice available from the National Institute on Aging. Therefore, 

minimum numbers to achieve statistical significance via a power analysis were used. Results are 

presented as mean +/- SD. GraphPad Prism was used for all statistical analyses. For multiple-group 

comparisons, we used a two-way analysis of variance (ANOVA) with age and stretch as factors, followed 

by a post-hoc Tukey test to determine significance. P<0.05 was considered statistically significant. 

 

3.3 Results: 

We first examined the impact of age and mechanical stretch on the inflammatory response of 

alveolar epithelial type II cells (ATII), which is one of the inidications of ALI/VILI.  The mechanically 

stimulated ATII cells were cyclically stretched up to a 15% change in surface area for durations of 4 or 

24 hours, after which RNA was isolated and analyzed. We evaluated changes in gene expression of 

several inflammatory signaling molecules caused by aging alone (Figure 19) and aging and mechancical 

injury for 4 hours (Figure 20). This includes Monocyte Chemoattractant Protein 1 (MCP-1/CCL2), CCL3, 

Macrophage Inflammatory Protein 1 beta (MIP-1β/CCL4), CCL7, CCL9, CCL12, CCL20, IL-1a, IL-6, and 

IL-10. These proinflammatory chemokines are heavily involved in leukocyte recruitment and lung injury 

and inflammatory signaling (48, 64, 82). Binding of IL-6 to IL-6R induces IL-6st expression (37), and IL-

6 is a proinflammatory cytokine that has previously been shown to increase after mechanical stimulation 

of ATIIs with cyclic stretch (10, 61). Fold changes of gene expression in ATII cells stretched or static for 

4 hours are norrmalized to the Young Static ATII group (Figures 19-20). When comparing Old Static ATIIs 

with Young Static ATIIs, advanced age alone resulted in significantly increased gene expression of MCP-

1/CCL2, CCL7, CCL9, CCL12, IL-1a, and IL-6. Aging alone did not cause any considerable gene 

expression changes that were detectable for CCL3, CCL4, CCL20, and IL10.  
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Figure 17: Aging alone Influences the expression of several inflammatory mediator. These genes are 
associated with proinflammatory signaling and immune cell recruitment/activation and samples were 
collected following 4 hours of static conditions. Columns are normalized fold change differences in gene 
expression obtained through qPCR compared with Young Static. Data are presented as mean +/- SD, n = 3 per 
group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared to young static of same gene. 

As shown in Figure 20, we also observed increased gene expression following 4 hours of cell-

stretch for CCL2, CCL3, CCL4, CCL7, CCL12, and CCL20 when we compared Young ATIIs that were 

stretched to Young ATIIs that were static in culture. Interestingly, there was no difference in IL-6 or IL-10 

gene expression when comparing Young ATIIs that were stretched to young ATIIs that remained static 

in culture. When we compared Old ATIIs that were stretched to Old ATIIs that were static in culture, we 

found that the gene expression of CCL2, CCL3, CCL4, CCL12, CCL20, and IL-10 were considerably 

different. Interestingly, CCL2 and IL-10 gene expression were substantially reduced, while CCL3, CCL4, 

CCL12, and CCL20 chemokines were notably upregulated from cell-stretch. We then examined the 

differences in inflammatory gene expression caused by age and mechanical injury. Unexpectedly, we 

observed diminished gene expression of MCP-1/CCL2, CCL3, MIP-1β/CCL4, CCL7, CCL12, and CCL20 

when comparing Old Stretched ATIIs to Young Stretched ATIIs. Additionally, there was no change in 

gene expression of IL-6 or IL-10 when comparing Old Stretched ATIIs to Young Stretched ATII cells. 

Young vs Old Static Inflammatory Gene Expression
Fo

ld
 C

ha
ng

e

CCL2
 (M

CP-1)

CCL3
 (M

IP
-1a

)

CCL4
 (M

IP
-1b

)

CCL7
 (M

CP-3)

CCL9
 (M

IP
-1y

)

CCL1
2 (

MCP-5)

CCL2
0 (

MIP
-3a

)

IL1
a (

IL-
1a

)

IL6
st 

(IL
-6)

IL1
0r

b (
IL-

10
)

0

5

10

15
Young Static

Old Static

****

**

****

****

****
*



 
 

57 

Suprisingly, none of the inflammatory genes examined were upregulated in the Old ATIIs subjected to 

cell-stretch compared to the young ATIIs undergoing mechanical injury. These results show that aging 

and/or mechanical injury induce specific deviations in the expression of several inflammatory genes.   

 

 

Figure 18: Cyclic Stretch (15%) for 4 hours +/-  age upregulate inflammatory genes.  These genes are associated 
with proinflammatory signaling and immune cell recruitment/activation. Columns are normalized fold change 
differences in gene expression compared with Young Static placed on a log10 scale to observe large changes in 
expression. Data are presented as mean +/- SD, n = 3 per group. Statistically significance is shown on figure. 
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significant difference in gene expression between Old Static and Young Static groups or between Young 

Stretched and Young Static ATII cells (Figure shown in Chapter 5). After evaluating changes in MCP-

1/CCl2 gene expression, we assessed the differences in corresponding protein secretion. These 

concentrations were normalized by the average number of ATII cells per experimental condition as 

determined by its corresponding MTT data (Figure shown in Chapter 5). We observed significantly 

greater MCP-1/CCL2 secretion by Old Static ATII cells compared to Young Static ATIIs as well as from 

Old Stretched ATIIs compared to Young Stretched ATII cells. Interestingly, we did not observe any 

differences in the secretion of this cytokine when comparing age-matched stretched to static conditions. 

Cyclic stretch significantly increased MIP-1β/CCL4 gene expression after 24 hours in Young ATII cells 

(Figure shown in Chapter 5).  Age significantly increased MIP-1β/CCL4 gene expression, regardless of 

stimulation with mechanical stretch. Concurrent with the gene expression data for 4 (Figure 20) and 24 

hours (Figure shown in Chapter 5), MIP-1β/CCL4 cytokine concentration in the media was elevated after 

24 hours in Old Stretched and Static ATII cells compared to Young Stretched and Static groups. As seen 

before with the MCP-1/CCl2 protein secretion, there was no difference in MIP-1β/CCL4 production when 

comparing the age-matched stretched to static conditions. Interestingly, we observed no differences in 

IL-6 or IL-10 gene expression triggered by aging and/or cell-stretch for 24 hours, as shown in Figure 22. 
 

 

Figure 19: Aging or Cell-stretch for 24hours had no effect on IL-6 or IL-10 gene expression. These inflammatory 
cytokines are often associated with ALI models and cell recruitment; however, no changes in gene expression 
were detected due to age or mechanical stretch. Data are presented as mean +/- SD, n = 3 per group 
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In order to determine the ability of age and stretch to influence ATII recruitment of monocytes, we 

performed conditioned media experiments by exposing primary BMDMs to ATII conditioned media (CM) 

from all groups. As shown in Figure 22, we performed a live-dead stain on the cells following the 24 

migration period to discriminate and quantify viable BMDMs that were recruited to the bottom reservoir. 

Representative images taken at 4x magnification show viable cells (green) and dead cells (red) that 

attached to the bottom of the transwell. We first quantified Young and Old BMDM migration using the 

ATII growth media (Figure 23A) and age-matched CM from the ATII stretch experiments (Figure 23B). 

As before, we normalized the recruited monocyte cell counts by the average number of ATII cells per 

condition as determined by the MTT data. We observed significantly decreased (p<0.05) BMDM 

migration with Old BMDMs/Old Static ATII CM in comparison to Young BMDMs/Young ATII Static CM. 

We also observed this same significant decrease (p<0.05) in migration with Old BMDMs/Old ATII Stretch 

CM in comparison to Young BMDMs/Young ATII Stretch CM. 
 

 
 

Figure 20: Age and Mechanical Stretch Cause Variations in Monocyte Recruitment. Young and Old BMDMs were placed in wells of an 
invasion assay with the various condition medias in the reservoirs. The cells were allowed to migrate for 24 hours and were then stained 
using Live/Dead Stain Kit to quantify the recruitment. Live cells are shown in green and dead cells are shown in red. Magnification = 4x. 
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Figure 21: Monocyte Migration with (A) ATII Growth Media (GM) and (B) ATII Conditioned Media. Old BMDMs resulted in increased 
recruitment when stimulated with ATII GM. Young BMDMs had increased recruitment compared to Old BMDMs when stimulated 
with Young ATII Static or Stretch CM. Data are presented as mean +/- SD, n = 3 per group, *p < 0.05, **p < 0.01, ***p < 0.001. 

In order to determine if it was the age of the ATII cells producing the CM or the age of the BMDMs 

that more greatly influenced migration, we quantified migration of Young BMDMs with CM from the Old 

Stretched and Static groups and Old BMDMs with conditioned media from the Young Stretched and 

Static groups to represent Mismatched CM monocyte recruitment (Figure 24). Young BMDMs/Young 

ATII Static CM significantly increased migration, p<0.05, compared to Old BMDMs/Young ATII Static CM 

and Old BMDMs/Old ATII Stretch CM.  

 
 

Figure 22: Monocyte Migration with Age-Matched and Mismatched ATII 
Conditioned Media. Data are presented as mean +/- SD, n = 3 per group, *p < 0.05. 
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3.4 Discussion:  

 VILI is characterized by an influx of inflammatory cytokines, loss of alveolar barrier integrity with 

pulmonary edema formation, and altered tissue mechanics. Mechanical ventilation causes alveolar 

overdistension and other types of lung injury in inflamed regions of the lung1,7-9. The over-distension of 

aerated lung regions generates abnormally large mechanical stretching forces on the epithelium that 

causes an immense secretion of proinflammatory cytokines and increased permeability1,7-9.  

Implementing “protective ventilator strategies” has only marginally improved negative outcomes, and the 

overall mortality rates for ventilated patients are still unacceptably high1-9. Furthermore, few studies are 

performed on aged subjects, which is incongruent with the fact that elderly patients have a greater need 

for mechanical ventilation17-19. These observations illustrate the major clinical need to develop treatments 

or therapies that prevent the cellular injury mechanisms and inflammation directly resulting from the 

pathological mechanical forces generated during mechanical ventilation.  

 We observed significant increases in the expression of MCP-1/CCL2 and MIP-1β/CCL4 in 

response to advanced age and/or mechanical stretch after 4 hours (Figure 20). These genes are 

associated with increased levels of inflammation in the lung and leukocyte recruitment which are 

characteristic of VILI9,14,74,134. MCP-1/CCL2 showed increased gene expression with age alone, 

mechanical stretch alone in the Young ATII cells, and with the combination of age and stretch when 

compared to Young Static ATIIs. Interestingly, mechanical stretch resulted in decreased MCP-1/CCL2 in 

Old ATII cells compared to the Old Static ATIIs. More interestingly, there was also less expression of 

MCP-1/CCL2 when comparing Old Stretched ATIIs to Young Stretched groups. These results suggest 

that MCP-1/CCL2 expression or activation is sensitive due to age under static conditions, and mechanical 

stretch differentially alters this activation based on the age of the ATII cells. MCP-1/CCL2 is a well-studied 

chemokine that is believed to assist in the recruitment of monocytes, memory T cells, and dendritic cells 

to sites of inflammation in response to tissue injury or infection14,74,134. It has also been shown to increase 

in aged mice in response to injury or infection135. Other studies have shown increased MCP-1/CCL2 

expression and protein production in experimental VILI models14,74,134. Furthermore, we observed 
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increased MIP-1β/CCL4 (macrophage inflammatory protein-1β) expression in response to advanced age 

or mechanical stretch (Figure 20). However, as seen with the changes in MCP-1/CCL2 expression, the 

Young Stretched ATII cells resulted in increased MIP-1β/CCL4 gene expression compared to the Old 

Stretched ATIIs. MIP-1β/CCL4 is believed to be a chemoattractant for monocytes, natural killer cells, and 

other immune cell participants14,74,134. Taken together, these results validate that advanced age and 

mechanical stretch impact ATII inflammatory signaling. It appears that the Old ATII cells have increased 

proinflammatory signaling during non-injurious or baseline conditions, and then they fail to respond as 

intensely as the Young ATII cells in response to injury. It is possible that the initial increased 

proinflammatory state of the unstimulated Old ATII cells reduces their sensitivity and ability to properly 

response properly when an injury occurs. This behavior was previously observed and suggested with 

advanced age and several immune cell responses, such as with macrophages24. We selected MCP-

1/CCL2 and MIP-1β/CCL4 as the targets for further study in age-associated ER stress and inflammatory 

experiments due to the significant changes in gene expression observed from mechanical injury and 

advanced age. In addition to its role in monocyte/macrophage recruitment14, numerous studies indicate 

that MCP-1/CCL2 is significantly increased in experimental models of mechanically ventilated mice14,134 

and in lipopolysaccharide (LPS)-induced acute lung injury models using lung epithelial cells62,95,134,135. 

While MIP-1β/CCL4 also plays a role in monocyte/macrophage recruitment, studies demonstrate that it 

is also increased in experimental acute lung injury models14,74,134. 

 Intriguingly, we did not observe significant changes in IL-6st, Interleukin 6 Signal Transducer, 

gene expression due to advanced age or in response to cyclic stretch for 4 or 24 hours. As mentioned 

before, the binding of IL-6 to IL-6R induces IL-6st activation9. The proinflammatory gene IL-6 is a known 

biological marker of ventilator-induced lung injury and has previously been shown to be upregulated in in 

vitro and in vivo models of VILI1,9,14,74,134. It is possible that this may be the result of implementing a 15% 

change in surface area for our cyclic stretch conditions, which may not be large enough for modeling 

pathophysiological alveolar over-distension. Additionally, much of the evidence for IL-6 increases in 

experimental VILI models are derived from in vivo models or in vitro models using MLE-12 or A549 cells. 
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It’s possible that cyclic stretch on only primary murine ATII cells does not show the same upregulated 

proinflammatory profile. Furthermore, this gene may not be influenced by advanced age, which may 

explain why we did not observe changes in gene expression when comparing Young Static ATII cells to 

Old Static ATIIs.   

 Downstream from alveolar epithelial cells’ contribution to injury and inflammatory signaling, 

monocytes/macrophages are thought to be one of the major targets of the mechanically stretch-induced 

signaling mechanisms of the alveolar epithelium28,127. Macrophages in the alveolar space greatly 

contribute to barrier integrity and local inflammation as they are a major participant in inflammatory 

signaling between the epithelium and innate immune response15. Furthermore, more recent studies have 

shown that macrophage polarization and function are impaired with aging24,25,38. This concept has been 

classified as “inflammaging” in which a chronic progressive increase in the proinflammatory status with a 

decrease in adaptive and innate immune response occurs with aging25,38. Due to incongruent findings 

between recent studies, the effects of aging on macrophage function and polarization are still 

insufficiently investigated and remain controversial24. Consequently, we investigated the impact of age 

and/or stretch on monocyte recruitment using Bone Marrow-Derived Monocytes (BMDMs) to understand 

the interaction between macrophages/monocytes and epithelial cell signaling that occurs in ALI and VILI. 

We chose to use this primary cell type in order to examine age-related differences because large 

quantities are more easily obtained with BMDMs compared with alveolar macrophages, and they are 

more suitable for microscopy applications117.  

 Collectively, the age-matched and age mismatched experiments (Figure 24) suggest that 

advanced age greatly influences the cellular behavior and responses of the alveolar epithelial cells and/or 

monocytes regardless of injury conditions. We are the first to demonstrate age-dependent differential 

response of epithelial and monocyte/macrophage interaction and signaling. Overall, our results indicate 

that aged ATII cells produce greater concentrations of proinflammatory cytokines/chemokines under 

resting and stretched conditions, the age-related increased MCP-1/CCL2 and MIP-1β/CCL4 chemokines 

interestingly failed to correlate with age-related increased monocyte recruitment, and aged BMDMs 
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responded differently and were recruited to a lesser extent than younger BMDMs. These findings further 

validate and elucidate the concept of inflammaging and its impact on lung injury and inflammation. Our 

observations also correlate the recent study by Gibon et al., which suggested that aged bone marrow 

macrophages respond differentially to polarizing stimuli compared to younger cells. They showed that 

aged bone marrow macrophages exist in a preactivated resting state with increased baseline cytokine 

secretion compared to younger resting macrophages. Furthermore, the authors suggest that the aged 

macrophages may have less feedback control over inflammatory signaling in the context of resolution 

and healing. Overall, they found that aged bone marrow macrophages had increased resting levels of 

oxidative stress, skewed ratios of proinflammatory to anti-inflammatory markers, and delayed healing 

response mechanisms compared to younger macrophages24, which correlate with our findings.  

 It was somewhat unexpected that we observed less monocyte recruitment induced by the Old 

ATII CM compared to BMDM’s stimulated with the Young ATII CM after the aged ATII cells expressed 

and secreted greater amounts of the proinflammatory cytokines/chemokines MCP-1/CCL2 and MIP-

1β/CCL4 (Figures 23 & 24). This incongruity is perplexing; however, it may be influenced by several 

factors. While the chemokines are believed to be important chemoattractants for monocytes and other 

immune cells134, our data suggest that an increase in these proteins by ATII cells either had little to no 

significant impact on monocyte migration. There may be other inflammatory proteins secreted in the 

conditioned media due to advanced age and/or mechanical stretch that may be more influential in injury 

signaling and leukocyte migration. We plan to investigate and characterize additional inflammatory 

proteins in our CM groups in future work. Additionally, Franck et al. demonstrated that a direct interaction 

between alveolar epithelial cell and macrophages were required for subsequent macrophage activation 

and signaling to occur in their study29, which may also explain why our conditioned media led to 

unexpected recruitment. Another possible cause may be derived from age-related differences in the 

secreted chemokines or chemokine receptors on the BMDMs. Further molecular analysis of the structure 

and bioactivity of the chemokines produced by the Young and Old ATII cells and surface characterization 

of the BMDMs are required to examine these possibilities.  
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 There are some minor limitations in this the study. Multiple studies have suggested that 15% 

stretch is insufficient to injure young alveolar epithelial cells137,138. This possibility might explain why we 

did not see the same inflammatory changes that we observed in the Old ATII cells. However, our results 

suggest that advanced age impacts inflammatory activation in ATII cells in response to physiologically 

relevant mechanical stimuli.  We have shown previously that while cell membrane integrity is retained, 

cyclic stretch of Young ATII cells at 15% change in surface area is sufficient to affect gene expression 

and phenotype139.  Our results indicate that Old ATII cells respond differently to mechanical stretch 

compared with young ATII cells, potentially indicating that even under low tidal volume mechanical 

ventilation, older subjects may have an intensified or altered inflammatory response.  

 As the compounding effects of aging and mechanical injury reveal significant changes in ATII and 

macrophage responses, we need to better understand the mechanisms and implications of these age-

dependent factors associated with the increased susceptibility of the elderly to ALI/VILI. 
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CHAPTER 4: AGING IMPACTS PULMONARY RESPONSES IN A HIGH  

PRESSURE-CONTROLLED MECHANICAL VENTILATION ALI/VILI MODEL 

 

4.1 Rationale: 

Although patients with Acute Lung Injury (ALI) or other severe lung conditions often require 

mechanical ventilation to provide adequate gas exchange for survival, this intervention often produces 

several pathological mechanical forces. These mechanical forces produce or exacerbate a pre-existing 

lung injury causing ventilator-induced lung injury (VILI) that results in alveolar barrier damage, pulmonary 

edema, hypoxia and hypoxemia, and chronic inflammation. These conditions often prolong the necessity 

of mechanical ventilation, which may result in further lung injury, multi-system organ failure, and 

mortality1. The over-distension of aerated lung regions generates abnormally large strains on the 

epithelium that directly causes barrier disruption, cellular necrosis and apoptosis, and an immense 

secretion of pro-inflammatory cytokines1,9,10. The high transmural pressures produced can activate pro-

inflammatory signaling pathways that further deteriorate alveolar barrier integrity1,11. These damaging 

mechanisms enhance the release of inflammatory mediators, classified as biotrauma, which can cause 

further lung and distal organ injury9,12. However, the factors and mechanisms that govern this progression 

need to be better understood to provide treatment targets. 

 The largest population of patients requiring mechanical ventilation is the elderly, and age is a 

known predictor for the severity of VILI. Experimental injurious mechanical ventilation caused worsened 

pulmonary permeability and lung tissue damage in older subjects compared with young counterparts19,20. 

The increased sensitivity and susceptibility in the elderly may be attributed to or enhanced by the changes 

in lung structure and function that occur with aging. Several pulmonary and supportive extra pulmonary 

structural changes occur with aging that have significant impacts on pulmonary function and 

physiology22,23,43,44. These structural deviations lead to adverse respiratory mechanics, which impact 

expiratory flow, lung volumes, and overall gas exchange22. Alveolar duct dilation and enlargement of 

alveolar air spaces that occur with aging lead to a reduction in alveolar surface tension, increased lung 



 
 

67 

compliance, and declines in tissue elasticity and dampening44. Changes in supportive extra pulmonary 

structures with aging include decreases in chest wall compliance and reductions in respiratory muscle 

strength, which lead to increases in residual volumes and decreases in total lung capacities22,43,44. Age-

related changes in gas exchange include V/Q inequality and decreased diffusion capacity of the lung for 

carbon monoxide, which cause an increased alveolar-arterial oxygen gradient and decreased PaO2
44. 

These changes in the aging lung correlate with the proposed mechanisms of VILI; however, the impact 

of age-related changes in lung structure and function in VILI still lacks great clarity. The increases in the 

severity and mortality rates of VILI with patient age combined with the greater need for mechanical 

ventilation among the elderly stresses the need to investigate associations between the structural and 

cellular changes that occur with aging and the increased susceptibility to lung injury of this population.  

 The aging lung also exhibits indications of cellular senescence and is closely linked to aging of 

the immune system, known as immunosenescence23. A condition of mild, systemic inflammation is 

associated with and predictive of many age-related diseases24. This type of state, termed inflammaging, 

occurs without the presence of overt infections or injury and is characterized by a state of chronic, low-

intensity inflammation25. Comparative studies in healthy individuals suggest that the elderly have higher 

indications of proinflammation compared with younger individuals, which could be associated with the 

increased susceptibility to ALI/VILI23–25. Aging of resident and systemic immune cells leads to an 

intensified proinflammatory environment and reduced capacity of fighting infectious diseases23,25. 

Inflammaging is believed to be macrophage centered38 and intensely associated with many aging and 

inflammatory pathologies. 

Lung macrophages, comprising of alveolar and interstitial macrophages, act as the first immune 

defense system of the lung by clearing harmful pathogens and activating the innate immune system26. 

Lung macrophages also contribute to barrier integrity and local inflammation as mediators of 

inflammatory signaling between the epithelium and other immune cells13,27,28. In experimental VILI 

models, alveolar macrophages were shown to be vital to the increases in lung vascular and alveolar 

epithelial permeability and subsequent proinflammatory activation and amplification29. Studies on age-
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related effects of lung macrophages suggest that the cells’ phagocytic capacity, TLR signaling, cytokine 

release, and reactive oxygen species (ROS) activity are critically impaired or elevated in older 

individuals23,30. However, the evidence for age-related changes in inflammatory signaling and cytokine 

expression and secretion by lung macrophages remains controversial. Several in vitro studies of 

monocyte or macrophage function have been contradictory, as few showed that the capacity of several 

myeloid cells to produce certain inflammatory cytokines can be impaired in old age, while others have 

shown proinflammatory secretion only to be enhanced23,24. As most age-related diseases share an 

inflammatory pathogenesis, this phenomenon needs more clarification in the context of ALI/VILI and is 

believed to be a highly significant risk factor for both morbidity and mortality in the elderly population. 

Macrophages also show high plasticity and result in heterogenic subpopulations or polarized 

states that can be identified by specific cellular markers31. Macrophage phenotypes may be largely 

classified as either more proinflammatory or pro-injurious, also called classical macrophage polarization, 

or they can reflect an alternative activation profile, which has been considered as anti-inflammatory or 

pro-repair24,32,33. Classically-activated macrophages promote the development of acute lung injury, 

whereas alternatively-activated macrophages may be involved in limiting or resolving lung inflammation31. 

Classical macrophage activation can be induced by various environmental cues, such as interferon-

gamma (IFN-g), Toll-like receptor (TLR) signaling, and many others24,32,33,39. This polarization state is 

associated with activation of transcriptions factors STAT1 and NF-kB24. Alternative macrophage 

polarization may be induced by IL-4 and IL-13, and STAT6 is the main transcription factor involved24. 

Classical polarization is characterized by an upregulation of iNOS, CD80, CD86, and HLA-DR and 

elevated cytokine release of TNF-a, IL-6, IL-1, IL-12, IL-23, and type 1 interferon24,31 in murine 

macrophages. Alternative activated murine macrophages are characterized by a cytokine release profile 

of IL-4, IL-10, IL-13, and IL-1ra and have increased expression of CD206, Ym1, CD163, CCL1, CCL18, 

FIZZ1, arginase 1 (Arg1), CD71, RELMa, and chitotriosidase24,31. Macrophage polarization has been 
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shown to be highly involved in physiological transitions from inflammation to tissue regeneration and it’s 

believed to be impaired with aging; however, the relevant studies have been contradictory. 

 This work is based on the scientific premise that the structural and cellular changes in aged lungs 

precondition the elderly to be more susceptible to injury and other negative outcomes resulting from the 

damaging stresses generated during mechanical ventilation. We hypothesize that aging and injurious 

mechanical ventilation synergistically impair macrophage polarization in the lung. This impairment 

produces amplified alveolar barrier damage and diminished pulmonary function. We tested this 

hypothesis utilizing young and old mice exposed to high-pressure mechanical ventilation and 

characterized their response.  
 

4.2 Materials and Methods: 
 

 

Figure 23: Schematic overview of age-related animal mechanical ventilation procedure and 
collection. Figure depicts the SQIREQ FlexiVent Animal Ventilator that delivers the high PCMV.  
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Animals: Male C57BL/6 mice 8 weeks of age were purchased from Jackson Laboratory (Bar Harbor, 

ME). Male C57BL/6 mice 20 months of age were provided by the National Institute on Aging (Bethesda, 

MD). All animals were housed in accordance with guidelines from the American Association for 

Laboratory Animal Care and Research protocols and approved by the Institutional Animal Care Use 

Committee at Virginia Commonwealth University (Protocol No. AD10000465).  

 

Pressure-Controlled Ventilator-Induced Lung Injury Model: We mechanically ventilated young (2-3 

mo.) and old (20-25 mo.) C57BL/6J wild-type mice using a Scireq FlexiVent computer-driven small-

animal ventilator (Montreal, Canada) and previously cited methods10 with slight modifications. Mice were 

anesthetized, tracheotomized, and then ventilated for 5 minutes using a low pressure-controlled strategy 

(peak inspiratory pressure (PIP): 15 cmH20, respiratory rate (RR): 125 breaths/min, positive end-

expiratory pressure (PEEP): 3 cmH20). Mice were then ventilated for 2 hours using a high pressure-

controlled mechanical ventilation (PCMV) protocol (PIP: 35-45 cmH20, RR: 90 breaths/min, and PEEP: 

0 cmH20). Pulmonary function and tissue mechanics were measured and collected at baseline and every 

hour during the 2-hour high PCMV duration using the SCIREQ FlexiVent system and FlexiWare 7 

Software. A separate group of mice was anesthetized, tracheotomized, and maintained on spontaneous 

ventilation for 2 hours. 

 

Tissue Processing: Immediately following mechanical ventilation, the right lobes of the lung were snap-

frozen with liquid nitrogen, then stored at -80°C for further analysis. The left lobes of the lung were then 

inflated with digestion solution containing 1.5 mg/mL of Collagenase A (Roche) and 0.4 mg/mL DNaseI 

(Roche) in HBSS with 5% fetal bovine serum and 10mM HEPES and processed as previously 

described119. The resulting cells were counted, and dead cells were excluded using trypan blue. Subsets 

of the experimental groups were also used to collect bronchoalveolar lavage fluid (BALF) fluid, differential 

cell counts, and left lobes for histological analysis.  
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Flow Cytometric Analysis: Following live cell counts, 4x106 cells per sample were incubated in blocking 

solution containing 5% fetal bovine serum and 2% FcBlock (BD Biosciences) in PBS. The cells were then 

stained using a previously validated immunophenotyping panel of fluorochrome-conjugated antibodies31 

with slight modifications, as shown in Table 1. Following the staining procedure, cells were washed and 

fixed with 1% paraformaldehyde in PBS. Data were acquired and analyzed with a BD LSRFortessa-X20 

flow cytometer using BD FACSDiva software (BD Bioscience). Histogram plots were generated using 

FCS Express 5 software (De Novo). Compensation was performed on the BD LSRFortessa-X20 flow 

cytometer at the beginning of each experiment. “Fluorescence minus one” controls were used when 

necessary. Cell populations were identified using a sequential gating strategy that was previously 

developed31. The expression of activation markers is presented as median fluorescence intensity (MFI).   

 
 

Table 1: Phenotypes of Alveolar and Interstitial Macrophages in the Healthy  Mouse Lung and 
Corresponding Antibodies and Conjugated Fluorochomres  Used for Flow Cytometric Analysis. 

 

Bronchoalveolar Lavage Fluid (BALF) Cytometry and Protein Concentrations: The BALF was 

collected and centrifuged to collect a cell pellet and supernatant, as previously described10. Cell pellets 

were resuspended in saline and mounted onto glass slides using a cytospin device (Thermo Shandon). 

Cells were stained (3 Diff-Quick solutions staining kit) and immune cell populations were quantified. The 

quantification of total BALF protein in the supernatants was measured by using the Pierce BCA Protein 

Assay Kit (Thermo Scientific).  

Marker Alveolar 
Macrophages

Interstitial 
Macrophages Clone Isotype Fluorochrome 

Conjugate
Dilution 
Factor

CD45 + + 30-F11 Rat IgG2b,κ BB515 1:100

CD11b - + Μ1/70 Rat IgG2b,κ BUV395 1:100

CD11c + + HL3
Armenian 
Hamster 
IgG1, λ2

BV786 1:50

CD24 - - M1/69 Rat IgG2b,κ AF700 1:300

CD64 + + X54-5/7.1
Mouse IgG1, 

κ PE 1:200

MHCII +/- + M5/114.1
5.2 Rat IgG2b,κ PerCP-Cy5.5 1:300

CD80 (M1) +/- +/- 16-10A1
Armenian 
Hamster 
IgG1, λ2

BV421 1:200

CD206 (M2) +/- +/- MR5D3 Rat IgG2a AF647 1:200
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Histology: Lung tissue samples were embedded and stained with hematoxylin and eosin (H&E). The 

mean linear intercept (Lm), an index of airspace enlargement, quantify relative differences in alveolar 

airspace area within lung histology sections and were measured and analyzed as previously described10. 

 

Statistics: A total of 44 young and old mice were used for this study. All experiments were performed 

with a minimum of n=3. Larger n values were utilized where possible. Limitations exist in the number of 

20-25-month-old mice available from the National Institute on Aging. Therefore, we used minimum 

numbers to achieve a power of 0.8. Results are presented as mean +/- SEM. GraphPad Prism was used 

for all statistical analyses. For multiple-group comparisons, we used a two-way analysis of variance 

(ANOVA) with age and mechanical ventilation as factors, followed by a posthoc Tukey test to determine 

significance. P<0.05 was considered statistically significant.  

 

4.3 Results: 

High PCMV-induced VILI is Elevated in Aged Mice Compared to Young 

 The induction of ALI was assessed by evaluating the histological evidence of tissue injury, 

alteration of the alveolar-capillary barrier, and the existence of an inflammatory response following 

mechanical ventilation. As shown in Figure 26, these studies showed a highly reproducible degree of ALI 

in both age groups following the 2-hour duration of high PCMV.  

 Increased BAL fluid protein concentrations in the young and old mice that received high PCMV 

groups compared to their non-ventilated counterparts suggest there was sufficient indication of acute 

tissue injury (Figure 26A). Increases in BALF protein indicate pulmonary edema and alveolar-capillary 

barrier leakage, which were significantly elevated in young and old high PCMV mice compared to 

controls. Differential cell counts also showed that neutrophil accumulation in the BAL fluid were 

substantially elevated in both young and old high PCMV mice compared to their non-ventilated 

counterparts as well (Figure 26B). This result indicates the presence of an age-related inflammatory 
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response120. High PCMV enlarged the airspace in both young and old mice.   Representative images are 

shown in Figure 26C. The mean linear intercept (Lm), which is an index of airspace enlargement, was 

quantified to further assess the extent of injury (Figure 26C). There was significantly increased airspace 

enlargement in the old PCMV group compared to the young and old non-ventilated controls. These 

findings suggest that there was a substantial generation of acute lung injury in both the young and old 

age groups; however, the severity appears intensified with the old mice.  

  

 

Figure 24: High PCMV Induces Injury in Young and Old C57BL/6 Mice. (A) Bronchoalveolar Lavage (BAL) fluids from 
control and high PCMV mice were analyzed for total protein (A) and neutrophil accumulation (B). Lung tissue sections 
from control and high PCMV mice were processed for staining with hematoxylin and eosin for histological analysis. Shown 
is a representative staining of the lung tissue from at least three independent experiments (C). Quantification of airspace 
enlargement of the stained histological sections using the mean linear intercept (Lm) as described previously (D). Data are 
presented as mean +/- SEM, n ³ 3 per group. * p<0.05, ** p<0.01, ***  p<0.001, ****  p<0.0001 as indicated. 
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Aged Mice Exhibit More Severe Changes in Pulmonary Function and Tissue Mechanics Following 

High PCMV  

Assessing the respiratory system mechanics and lung function in this investigation revealed 

significant differences between the young and old mice at baseline and following the high PCMV, as 

shown in Figure 27. The baseline inspiratory capacity (Figure 27A) and respiratory system compliance 

(C) (Figure 27C) were all significantly higher in aged mice compared to young. These properties were 

also higher following 1 hour and 2 hours of high PCMV in the old mice compared to young. There was 

also a significant reduction in the respiratory system compliance of old mice seen after 1 hour of high 

PCMV and substantial declines in the inspiratory capacity and respiratory system compliance of old mice 

after 2 hours of high PCMV.  

The Newtonian resistance (Rn), which is indicative of airway resistance (Figure 27B), the lung 

tissue damping (G) (Figure 27E), and the lung tissue elasticity (H) (Figure 27F) properties were all 

significantly lower in old mice compared to young at bassline. The tissue damping and tissue elasticity 

properties were also lower following 1 and 2 hours of high PCMV in the aged mice compared to the 

young. There was also a substantial increase in tissue elasticity following 2 hours of high PCMV in both 

the young and old mice; however, there was only a significant increase in lung tissue damping in the 

aged mice when comparing the measurements collected following the 2-hour PCMV to baseline 

indications.  
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Figure 25: Aging and high PCMV cause Deviations in Tissue Mechanics and Pulmonary Function. Tissue mechanics and lung function 
was determined with a SCIREQ FlexiVent rodent ventilator for mice. Changes were determined in inspiratory capacity (A), airway 
resistance (B), respiratory system compliance (C), respiratory system resistance (D), lung tissue damping (E), and lung tissue elasticity 
(F). Data are presented as mean +/- SEM, n ³ 6 per experimental group. * p<0.05, **  p<0.01, *** p<0.001, **** p<0.0001 as indicated. 

 

While there was no difference in the total respiratory resistance (R) (Figure 27B) between young 

and old mice at baseline, there was a substantial increase in this property in the young mice that received 

high PCMV compared to the young controls; which was not observed in the old mice.  R was also 

substantially lower in old mice compared to young following high PCMV for 2 hours.  

Young 
Old 

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Inspiratory Capacity

In
sp

ria
to

ry
 C

ap
ac

ity
 (m

L)

0 Hours

1 Hour

****

2 Hours

**

Young 
Old 

0.0

0.1

0.2

0.3

0.4

0.5

Airway Resistance (Rn)

Re
sis

ta
nc

e 
(c

m
H 2O

.s/
m

L)

O Hours

1 Hour

2 Hours

**

Young 
Old 

0

2

4

6

Lung Tissue Damping (G)

Ti
ss

ue
 D

am
pin

g 
(c

m
H 2O

/m
L/

s)

O Hours

1 Hour

2 Hours

**
*

***

Young 
Old 

0.03

0.04

0.05

0.06

0.07

Respiratory System Compliance (C)

Co
m

pli
an

ce
 (m

L/
cm

H2
O)

O Hours

1 Hour

****
****

*
2 Hours

Young 
Old 

0.0

0.5

1.0

1.5

2.0

2.5

Respiratory System Resistance (R)

Re
sis

ta
nc

e 
(c

m
H2

O
.s

/m
L)

O Hours

1 Hour

*
**

2 Hours

Young 
Old 

0

10

20

30

40

Lung Tissue Elasticity (H)

Ti
ss

ue
 E

las
tic

ity
 (c

m
H 2O

/m
L/

s)

O Hours

1 Hour

2 Hours
**

****

**

A B

C D

E F



 
 

76 

Together, these considerable alterations in tissue mechanics and lung function from aging and 

high PCMV further validate the induction of acute lung injury in both the young and old mice using the 

high PCMV; moreover, most of the mechanics deviated more severely in the old mice that underwent 

high PCMV compared to the young. There were noteworthy differences in several of these properties 

between the young and old at baseline. These observations indicate that the structural changes that 

occur with aging and injury, independently, are intensified and compounded in the older population during 

mechanical ventilation.   

 

 

Figure 26: Pressure-Volume Curves were generated using MATLAB. The diagram depicts the average 
changes in PV curves over the 2-hour time course of mechanical ventilation for young (blue) and old (red) mice. 

 

 We also examined the pressure-volume curve data obtained during the mechanical ventilation 

procedures from the FlexiVent’s PV-V and PV-P pertubations. The collected data points from the same 

experimetneal groups were then averaged for each time point of the PCMV procedure and used to 

generate PV curves using MATLAB. As shown in Figure 28, the PV curves represent the average values 

of young (blue) and old (red) mice at time 0h (A), 1h(B), and 2h(C). The slopes of the PV curves depict 

the respiratory system’s compliance of young and old mice. As depicted in the figure, the slopes of young 

and old mice are decreasing over the 2 hour time course of high PCMV.  
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Changes in CD80 and CD206 Expression Reveal Classical and Alternative Polarization Shifts of 

Lung Macrophages Caused by Aging and High PCMV  

 As shown in the representative histograms in Figure 29, analyzing the alveolar and interstitial 

macrophages using the standardized flow cytometric analysis revealed significant age-related changes 

to CD80 and CD206 expression of these cells, as well as deviations produced by 2 hours of high PCMV. 

The expression of CD80 is a surface marker associated with classically activated state of macrophages. 

CD206 (mannose receptor) is a surface marker that is associated with alternatively activated polarization 

state of macrophages.  
 

 

Figure 27: Macrophages from Aged Mice and Mice that Underwent High PCMV Overexpress Associated Polarization Markers CD80 and 
CD206. Histograms displaying the expression levels of markers associated with classical (CD80) and alternative (CD206) activated alveolar 
(A&B) and interstitial macrophages (C&D) from young and old mice with and without high PCMV. Black curves represent nonventilated 
control groups and the yellow curves depict PCMV groups. Histogram plots are representative of at least 4 independent experiments. 
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There is an overall increase in both CD80 and CD206 expression on both alveolar and interstitial 

macrophages isolated from the unventilated aged mice compared to the isolated young control mice 

(Figure 29). There were increases in both CD80 and CD206 expression in the alveolar macrophage 

populations (Figure 29) from both the young and old mice; however, the histogram peak shifts were more 

considerable in the young mice than the old compared to their respective controls. Furthermore, the 

histogram peaks of CD80 and CD206 were also shifted in the old nonventilated and the old PCMV 

alveolar macrophages compared to their young counterparts, suggesting increased expression of both 

classical and alternative macrophage activation markers due to aging and high PCMV. There was also a 

greater change in CD80 expression than CD206 expression in the young PCMV alveolar macrophages 

compared their respective controls. This was not observed with the old alveolar macrophages. The 

interstitial macrophage populations (Figure 29) revealed similar relationships; however, they were less 

pronounced compared to the alveolar macrophage populations. While comparable changes in CD80 and 

CD206 expression were observed with these cell populations due to aging and PCMV, the histogram 

peak shifts were less prominent. These findings suggest that both aging and high PCMV for 2 hours 

causes both main types of lung macrophages to overexpress both classical and alternative activation 

surface markers or shifts in their polarization states.  

We supplemented a final gating strategy in order to identify and enumerate alveolar and interstitial 

macrophage subset populations, such as CD80-/CD206- cells (Figure 30A&B), CD80+ cells (Figure 

30C&D), CD206+ cells (Figure 30E&F), and CD80+/CD206+ double-positive cells (Figure 30G&H). By 

doing so, we observed interesting age-related differences that exist at baseline and changes to these 

populations caused by high PCMV. When comparing the old controls to the young controls, we found 

that the percentages of CD80-/CD206- alveolar macrophages (Figure 30A) and CD206+ interstitial 

macrophages (Figure 30F) substantially decreases due to age alone. In the same comparison, the 

percentages of CD80-/CD206- interstitial macrophages (Figure 30B) and CD80+/CD206+ double-positive 

alveolar macrophages (Figure 30G) significantly increased. When assessing the factor of high PCMV 

alone, there was a considerable rise in the percentage of CD80+ alveolar macrophages (Figure 30C) and 
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CD80+/CD206+ double-positive alveolar macrophages (Figure 30G) when comparing young mice that 

received high PCMV to young controls. The percentage of CD206+ alveolar macrophages (Figure 30E) 

decreased in old mice that underwent high PCMV for 2 hours compared to the old control mice. When 

evaluating the influence of both aging and high PCMV, we discovered that the percentage of CD80-

/CD206- (Figure 30A) and CD206+ alveolar macrophages (Figure 30E) was reduced, while  

CD80+/CD206+ alveolar macrophages increased (Figure 30G), when comparing old mice that received 

high PCMV to young controls. When comparing young and old mice that underwent PCMV, there were 

less CD80-/CD206- alveolar macrophages (Figure 30A) and more CD80+/CD206+ alveolar macrophage 

populations (Figure 30G) when further looking at age-related differences between the groups.  
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Figure 28: Aging and High PCMV Influence Lung Macrophage Polarization in C57BL/6 Mice. Quantifiable changes of 
macrophage subsets were identified using the set of surface markers and gating strategy described in the methods. The 
populations of CD80-/CD206- (A&B), CD80+ (C&D), CD206+ (E&F), and CD80+/CD206+ (G&H) macrophages are depicted 
as percentages of total alveolar (A, C, E, G) and interstitial macrophage (B, D, F, H) populations. Data are presented as 
mean +/- SEM, n ³ 4 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated. 

Contro
l

PCMV
0

20

40

60

80

CD80+/CD206+ Alveolar Macrophages

%
 of

 A
lve

ola
r M

ac
ro

ph
ag

es

Young

Old**** **
****

****

Contro
l

PCMV
0

10

20

30

40

50

CD80+/CD206+ Interstitial Macrophages

%
 of

 In
ter

sti
tia

l M
ac

ro
ph

ag
es Young

Old

Contro
l

PCMV
0

1

2

3

4

5

CD80+ Interstitial Macrophages

%
 of

 In
ter

sti
tia

l M
ac

ro
ph

ag
es

Young

Old

Contro
l

PCMV
0

10

20

30

CD206+ Alveolar Macrophages

%
 of

 A
lve

ola
r M

ac
ro

ph
ag

es

Young

Old

**
**

Contro
l

PCMV
0

20

40

60

80

CD206+ Interstitial Macrophages

%
 of

 In
ter

sti
tia

l M
ac

ro
ph

ag
es Young

Old
*

Contro
l

PCMV
0

20

40

60

80

CD80-/CD206- Alveolar Macrophages

%
 of

 A
lve

ola
r M

ac
ro

ph
ag

es
Young

Old
****

***

*

Contro
l

PCMV
0

20

40

60

CD80-/CD206- Interstitial Macrophages

%
 of

 In
ter

sti
tia

l M
ac

ro
ph

ag
es Young

Old

**

Contro
l

PCMV
0

2

4

6

8

10

CD80+ Alveolar Macrophages

%
 of

 A
lve

ola
r M

ac
ro

ph
ag

es

Young

Old
*

A B

C D

E F

G H



 
 

81 

4.4 Discussion:  

Despite recent advances in our knowledge of the pathophysiology of ALI and VILI, successful 

treatments do not exist for this lung condition and the mortality rates remain high, especially for the elderly 

population19,95. The aim of the current study was to better understand how aging primes the lung to be 

more susceptible to ALI (VILI) and to determine how aging and injurious PCMV influence the polarization 

states of lung macrophages. The outcomes of this investigation provide further evidence that aging 

exacerbates outcomes of acute lung injury, which resulted in a greater deterioration in lung function, 

elevated inflammation, and impairment to macrophage polarization.  

As elderly patients comprise a substantial proportion of patients requiring mechanical ventilation 

in the clinic, we need a better understanding of the age-related factors that increase these patients’ 

susceptibility to lung injury. Furthermore, epidemiological data suggest that advanced age strongly 

correlates with a significant increase in ventilator mortality19,121. Additionally, experimental studies showed 

that injurious mechanical ventilation caused elevated pulmonary permeability and lung tissue damage in 

aged, senescent rats compared with young20. Senescence-associated changes in pulmonary structure 

and function in the elderly population may prime the lungs to be more susceptible to injury or insults, 

including the stresses and strains induced by mechanical ventilators. While our data, as shown in Figure 

26, and others support the notion that an association between aging and enhanced vulnerability to VILI 

exists, the underlying age-related mechanisms that cause increased susceptibility remain unclear.  

In addition to structural and functional lung changes that occur with advanced age, recent studies 

have revealed that the acute innate immune response is highly impaired with advanced age that results 

in the upregulation of low-grade inflammation in various tissues24,25,122. As macrophages amplify and 

orchestrate inflammatory responses and help regulate tissue healing and regenerative responses in 

various tissues24, we investigated how aging and injurious PCMV impact alveolar and interstitial 

macrophage polarization. Macrophage polarization is broadly defined as proinflammatory/pro-injurious, 

or classical activation, and anti-inflammatory/pro-repair, or alternative activation. As mentioned before, 

macrophage polarization influences physiological transitions from inflammation to tissue regeneration 
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which may be highly impaired with aging; however, these findings have been conflicting and remain highly 

controversial33,41. While other studies found either increases or decreases in the proinflammatory 

responses of aged classically activated macrophages, Gibon et al. revealed that aged macrophages 

overexpress both classical and alternative activation surface markers, aged alternative activated 

macrophages had reduced expression of Arg1 and CD206, and that aged classical activation 

macrophages increase TNF-α secretion with no negative feedback24. These observations further indicate 

that the impact of aging on macrophage polarization and function, especially in the context of acute lung 

injury, needs further investigation.  

The subsets of activated macrophages appear to play a significant role in the progression and 

resolution of inflammatory responses, especially in the lung. Alveolar and interstitial lung macrophages 

possess different origins and life spans in the lung and may play opposing roles in lung injury31. Studies 

have shown that alveolar macrophages are tissue-resident cells that inhabit lung tissue during early 

development. These cells remain viable for longer periods and have minimal replenishment from bone 

marrow-derived monocytes123. Contrarily, interstitial macrophages originate from bone marrow-derived 

monocytes and have shorter lifespans124. Evidence suggests that alveolar macrophages regulate lung 

homeostasis by removing pathogens and particulate without the recruitment of monocytes and 

neutrophils, while interstitial macrophages are recruited monocyte-derived cells from the circulation 

following acute lung injury and are major contributors to inflammatory responses. For example, studies 

have shown that alveolar macrophages limit neutrophil influx into the lung during acute lung injury125 while 

interstitial macrophages promote neutrophil extravasation126.  The complex architecture of the lung 

causes the external stresses to be transmitted throughout a discrete three-dimensional (3D) meshwork 

that focuses the stress into the parenchyma where alveolar and interstitial macrophages are located127. 

Modeling the micromechanics of the parenchyma showed that the basal lamina and ECM are the principal 

support structures that resist stress and become stress-bearing at larger lung volumes128. These are the 

structures that form the scaffold to which alveolar cells, interstitial cells, and endothelial cells are fixed via 

focal adhesions and other cell-matrix interactions46. Stress and strains acting on the ECM are transmitted 
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to the stress-bearing elements of these cell types via cell-matrix and cell-cell contacts that may result in 

cellular deformation, differentiation, and signaling 28,46; however, it remains unclear how the magnitudes 

and types of stresses and strains vary between alveolar and interstitial lung macrophages during both 

physiological and pathological states.   

 We observed age-related differences that exist at baseline and changes to the macrophage 

subpopulations caused by high PCMV, as indicated in Figure 29 and Figure 30. We detected enhanced 

CD80 and CD206 expression on both alveolar and interstitial macrophages isolated from the unventilated 

aged cells, young PCMV cells, and old PCMV cells compared to the young control cells (Figure 29); 

however, the greatest change occurred in the old PCMV group. The shifts of CD80 and CD206 were 

more intense in the young PCMV cells compared to the old PCMV cells when normalized to their 

respective control groups. Furthermore, we observed elevated expression of the polarization markers of 

aged cells at baseline compared to young. When assessing age only, we found that there was a 

substantial reduction in CD80-/CD206- alveolar macrophages (Figure 30) and CD206+ interstitial 

macrophages (Figure 30). We also observed significant increases in CD80-/CD206- interstitial 

macrophages (Figure 30) and CD80+/CD206+ double-positive alveolar macrophage populations (Figure 

30). These age-related impairments to macrophage polarization may contribute to the elevated baseline 

inflammation in aged mice and desensitized responses of aged cells observed in several inflammaging 

studies as there are less inactivated cells present to respond to stimuli and polarization states and less 

alternative activated interstitial macrophages that are associated with inflammatory resolution, tissue 

repair, tissue regeneration, ECM remodeling, and fibrosis responses 24,25,30,129.  The impact of high PCMV 

alone produced rises in CD80+ alveolar macrophages (Figure 30) in young mice only and increases in 

CD80+/CD206+ double-positive alveolar macrophages (Figure 30) in both young and old mice compared 

to their respective controls. As alveolar macrophages act as the first line of cellular defense against 

respiratory pathogens and are involved with inflammatory responses26, the loss of this classical activation 

potential in the aged mice may reflect their reduced ability to respond to injurious stimuli leading to a 

dysfunctional or impaired inflammatory response. CD80-/CD206- alveolar macrophages (Figure 30) were 
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reduced  in both young and old mice; however, there was a more significant decrease in the young cells 

compared to the old. This observation further reflects the loss of potential or efficiency in aged cells to 

respond to injury following stimulation. High PCMV also caused a loss in CD206+ alveolar macrophages 

(Figure 30) in old mice compared to the control group. The reduction of alternative activation 

macrophages following injurious stimulation may also contribute to inflammaging, dysfunctional age-

related inflammatory responses, and the increased susceptibility of injury in aged populations. Evidence 

suggests that this macrophage population is highly involved in inflammatory resolution and tissue repair 

responses26,32. Our findings indicate that aging, injurious PCMV, and the combination of the two factors 

differentially impact macrophage polarization that resulted with an overall age-related loss in activation 

efficiency of the aged cells in response to mechanical stimuli. The impairments to macrophage 

polarization appear to have similar changes as the age-related indications of injury and lung function 

deviations. These observations suggest that the macrophage polarization deviations caused by aging 

and PCMV may act as a cellular mechanism for the age-related increased susceptibility to injury in the 

aged populations.   
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CHAPTER 5: PULMONARY ENDOPLASMIC REITICULUM STRESS RESPONSE ASSOCIATED 

WITH AGING AND MECHANICAL INJURY AND THE THERAPEUTIC EFFECTS OF 4PBA 

 

Some of the content in this chapter was previously published in 2018 with the following citation: Valentine et al., 

Inflammation and Monocyte Recruitment due to Aging and Mechanical Stretch in Alveolar Epithelium are Inhibited 

by the Molecular Chaperone 4-phenylbutyrate, Cell and Mol. Bioengineering, 2018 

 

5.1 Rationale: 

Mechanical ventilation frequently exacerbates underlying pulmonary conditions and produces an 

exaggerated inflammatory response that potentially leads to sepsis and multisystem organ failure1,7-9. 

This exacerbation or injury is classified as Ventilator-Induced Lung Injury (VILI). The pathophysiology of 

VILI is characterized by an exaggerated proinflammatory cytokine release and influx of inflammatory 

cells, loss of alveolar barrier integrity and subsequent pulmonary edema formation, decreased lung 

compliance, and profound hypoxia. These features reflect three integrated mechanisms of injury: alveolar 

over-distention, cyclic atelectasis, and inflammatory cell activation1,7-9.  

 One potential regulator of age-associated inflammation is the Endoplasmic Reticulum (ER). The 

ER is a multifunctional organelle responsible for lipid biosynthesis, calcium storage, and protein folding 

and processing34,52,60. Disruption to Endoplasmic Reticulum (ER) homeostasis results in activation of the 

unfolded protein response (UPR) and accumulation of misfolded proteins that is known as ER stress, 

which may lead to the impairment of cellular functions, cellular apoptosis, and has been shown to play a 

key role in many chronic inflammatory disease states34,52. Specifically, ER stress has been shown to 

regulate apoptosis and epithelial to mesenchymal transition in alveolar epithelial cells72.   

 As VILI and ER stress are characterized by inflammation, recent evidence has suggested that 

lung-recruited monocytes may also play a significant role in the pathogenesis of ALI15,126. Recent studies 

show that immature monocytes enter the circulation from the bone marrow and migrate to local sites of 

inflammation and injury15,126. Using mouse models, monocytes are rapidly recruited to the lung during 
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inflammation and contribute to the development of ALI by promoting the activation of pulmonary 

endothelial and epithelial cells15,126. Additionally, monocyte recruitment is heavily involved in the 

development of pulmonary edema under harmful mechanical ventilation126. Furthermore, advanced age 

has also been shown to impact the function and responsiveness of monocytes and macrophages, 

although why this occurs and how it impacts the age-associated susceptibility to lung injury and 

inflammaging conditions are not clear25,38. 

 ER stress has also been shown to be increasingly dysregulated with age34,53.  There is a general 

age-associated increase in the occurrence of protein misfolding and accumulation. Unsurprisingly, ER 

stress is implicated as a promoter of many pathological disease states associated with aging34,53.  

Additionally, lung-related ER stress is involved in the age-associated increase in pulmonary fibrosis61.  

 While various studies have shown convincing evidence for the dominant role of ER stress in 

various inflammatory disease states, there have only been a few studies investigating ER stress in the 

context of acute lung injury and/or ventilator-induced lung injury in young adults. Several ER stress 

pathway proteins are key modulators of epithelial permeability and barrier dysfunction in young mice and 

rats59,63. Extended epithelial stretch activates ER stress pathways, which resulted in increased alveolar 

permeability, cell death, and proinflammatory signaling63; however, these implications have yet to be 

investigated in an aging model. To further validate that therapeutic targeting of the ER stress response 

may attenuate VILI, these inferences need to be investigated in the context of aging to understand the 

potential therapeutic targets.  

We postulated that the alveolar type II (ATII) cells respond age-dependently to mechanical stretch 

with increased inflammation and monocyte recruitment, dependent upon ER stress. To investigate this 

relationship, we isolated and cultured primary alveolar epithelial ATIIs from young and old murine 

subjects.  These cells were exposed to cyclic mechanical stretch to model alveolar over-distension.  We 

measured age-associated differences in ER stress mediators, cell injury/inflammation, and apoptosis. 

We then used the chaperone 4-phenylbutyrate (4PBA), an ER stress reducer (42). Additionally, we 

quantified the migration of bone marrow-derived monocytes to ATII conditioned media. 
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5.2 Materials and Methods:  
 

  

Figure 29: General overview of Aim 2A. This aim investigates the role of Aging, ER 
stress, and the therapeutic intervention of 4PBA in injurious mechanical stretch. 

 

Mice: All C57BL/6J mice were housed in accordance with guidelines from the American Association for 

Laboratory Animal Care and Research protocols and approved by the Institutional Animal Care Use 

Committee at Virginia Commonwealth University (Protocol No. AD1000009).  

 

ATII cell isolation and culture:  We harvested, isolated, and cultured ATII primary alveolar epithelial 

cells from young (2 months) and old (20 months) C57BL/6J wild-type mice using previously cited methods 

115.  We selected to use an aged-mouse model as it has previously been suggested that mice are an ideal 

mammalian model for studying the effects of aging and due to the lack of availability of aged-human cell 

lines or clinical specimens 116. ATII were then cultured in Bronchial Epithelial Cell Growth Media (BEGM, 

Lonza), with the included supplements except for hydrocortisone, supplemented with 10 ng/ml 

keratinocyte growth factor (KGF, PeproTech). For stretch experiments, cells were plated onto Collagen 

Aim 2A

1 Hour

+/- 4PBA
(10mM)

VILI Cell-Stretch Paramters:
Stretch: 0%, 5%, and 15%
Frequency: 0.86 Hz
Duration: 4 and 24 hours

4 or 24 hours

Macrophage 
Recruitment Assay

2 mo

20-25 mo

Cell Staining & 
Sample Collection:
• RNA
• Protein
• CMProtein and RNA Analysis:

Injury and Repair Markers

Reservoir Media

BME = Collagen I

Serum Free 
Media

Young/Old 
BMDMs

Transwell Set-up

8um-Pore Insert

24 Hours

Flexcell Fx-5000TM

Tension System
Flexcell BioFlex
Culture Plates

*Collagen I-Coated

48 Hours

ATII GMATIIs

Flexcell BioFlex
Culture Plates

*Collagen I-Coated

BMDM Staining and 
Sample Collection:
• RNA
• Protein
• CM

ATII CM

BMDMs



 
 

88 

I-coated, 6-well silicone bottomed plates (Flexcell International Corp., BF-3001A BioFlex) and cultured 

for 48 hours prior to stimulation. ATIIs were found to be greater than 93% pure in both young and old 

cultures by staining for positive pro-surfactant C and the inclusion of lamellar bodies. Cell viability was 

also validated with MTT assays (Roche) according to manufacturer's instructions. 

 

Mechanical Cell-Stretch: Using the Flexcell Tension Plus System (Flexcell Inc), we applied radial, cyclic 

(0.86Hz) stretch corresponding to a 15% change in surface area. Statically cultured ATII cells were used 

as controls.  Cells underwent stretch or static conditions, and after 4 hours or 24 hours, RLT buffer 

(Qiagen) or 4% paraformaldehyde were added to wells for further processing. Cell supernatants were 

collected for cytokine analysis and conditioned media experiments. 

 

ER Stress Intervention in Cell-Stretch:  One hour before mechanical stretch, each well received either 

20ul vehicle (ultrapure water) or 10 mM sodium 4-phenylbutyrate (4PBA) (Calbiochem, San Diego, CA) 

in ultrapure water. 4PBA is approved by the FDA and is already in use clinically as a successful treatment 

for chronic inflammatory diseases and some age-related diseases, such as type II diabetes and obesity-

caused chronic inflammation 130,131. 4PBA acts as an ER stress reducer 130 by inhibiting misfolded protein 

accumulation, and 4PBA showed no effect on ATII cell viability in the MTT assays. 

 

Immunofluorescence Staining for CHOP, ATF4: Fixed wells were probed for CHOP (L63F7) mouse 

mAB (1:3200) and ATF4 (D4B8) rabbit mAB (1:200) using secondary antibodies anti-mouse Alexa Fluor® 

594 conjugate (1:250) and anti-rabbit Alexa Fluor® 488 conjugate respectively. All primary and secondary 

antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA). The counterstaining was 

done using Prolong® Gold antifade mounting with DAPI (ThermoFisher, Waltham, MA, USA). Samples 

were imaged with an Olympus IX71 under appropriate emission/excitation wavelengths.  
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Quantitative real-time Polymerase Chain Reaction: Total RNA was isolated and purified from each 

treatment group using RLT buffer (Qiagen) and the RNeasy mini kit (Qiagen, Valencia, CA). We then 

synthesized the complementary DNA using the iScript RT kit (Biorad). For cDNA from the ATII primary 

alveolar epithelial cell, we used custom QPCR plates (Biorad) to perform an analysis of IL-6st, MCP-1 

(CCL2), and MIP-1β (CCL4). Additional primers for ER stress-related genes, CHOP and ATF4, were 

purchased from Integrated DNA Technologies. QPCR was performed using Sybr Green (Applied 

Biosystems) and the CFX96 Touch™ Real-Time PCR Detection System (Biorad). Data were analyzed 

using the 2-DDCT method, and target genes were normalized to two housekeeping genes using ribosomal 

18s and GAPDH. 

 

Inflammatory Mediator Analysis:  We measured the concentrations of MCP-1/CCL2 and MIP-1β /CCL4 

inflammatory cytokines in the collected cell media of each experimental group using MCP-1 (DY479) and 

MIP-1β (DY451) Mouse DuoSet ELISA kits (R&D Systems) according to the manufacturer’s instructions.  

 

Monocyte Invasion Assay: Bone marrow-derived monocytes (BMDMs) were isolated from young (2 

months) and old (20 months) C57BL/6J mice, as described by Trouplin et al. 117. Monocyte migration was 

then evaluated using an invasion assay, performed as described by Murray et al. 118, with minor 

modifications. BMDMs were seeded at a density of 1 x105 cells/100ul BMDM growth media without FBS, 

on Collagen I-coated (Sigma-Aldrich) Transwell inserts with 8.0 um pore sizes (Corning, USA). 0.6 ml of 

BEGM or conditioned media from the ATII 24-hour groups were placed in the reservoir.   

 

A Live/Dead Viability Assay (ThermoFisher) was used to quantify cell invasion through the Transwell 

membrane.  Live/Dead images were taken immediately after the staining procedure an Olympus IX71 

Microscope (Olympus).  Total cell counts were performed using ImageJ’s particle analysis function with 

the following inclusion parameters: Size (in Pixels): 10-120. Circularity: 0.10-0.99.  
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Figure 30: General overview of Aim 2B. This aim investigates the role of Aging, 

ER stress, and the therapeutic intervention of 4PBA in an experimental VILI model. 

 

Animals: Male C57BL/6 mice 8 weeks of age were purchased from Jackson Laboratory (Bar Harbor, 

ME). All animals were housed in accordance with guidelines from the American Association for 

Laboratory Animal Care and Research protocols and approved by the Institutional Animal Care Use 

Committee at Virginia Commonwealth University (Protocol No. AD10000465).  

 

Pressure-Controlled Ventilator-Induced Lung Injury Model: We mechanically ventilated young (2-3 

mo.) and old (20-25 mo.) C57BL/6J wild-type mice using a Scireq FlexiVent computer-driven small-

animal ventilator (Montreal, Canada) and previously cited methods10 with slight modifications. Mice were 

anesthetized, tracheotomized, and then ventilated for 5 minutes using a low pressure-controlled strategy 

(peak inspiratory pressure (PIP): 15 cmH20, respiratory rate (RR): 125 breaths/min, positive end-
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expiratory pressure (PEEP): 3 cmH20). Mice were then ventilated for 3 hours using a high pressure-

controlled mechanical ventilation (PCMV) protocol (PIP: 35-45 cmH20, RR: 90 breaths/min, and PEEP: 

0 cmH20). Pulmonary function and tissue mechanics were measured and collected at baseline and every 

hour during the 2-hour high PCMV duration using the SCIREQ FlexiVent system and FlexiWare 7 

Software. A separate group of mice was anesthetized, tracheotomized, and maintained on spontaneous 

ventilation for 3 hours. 

 

ER Stress Intervention in Cell-Stretch:  One hour before mechanical ventilation, each mouse received 

either 100 mg/kg vehicle (ultrapure water) or 4-phenylbutyrate (4PBA) (Calbiochem, San Diego, CA) in 

ultrapure water, I.P injection.  

 

Tissue Processing: Immediately following mechanical ventilation, the right lobes of the lung were snap 

frozen with liquid nitrogen, then stored at -80°C for further analysis. The left lobes of the lung were then 

inflated with digestion solution containing 1.5 mg/mL of Collagenase A (Roche) and 0.4 mg/mL DNaseI 

(Roche) in HBSS with 5% fetal bovine serum and 10mM HEPES and processed as previously 

described119. The resulting cells were counted, and dead cells were excluded using trypan blue. Subsets 

of the experimental groups were also used to collect bronchoalveolar lavage fluid (BALF) fluid, differential 

cell counts, and left lobes for histological analysis.  

 

Flow Cytometric Analysis: Following live cell counts, 4x106 cells per sample were incubated in blocking 

solution containing 5% fetal bovine serum and 2% FcBlock (BD Biosciences) in PBS. The cells were then 

stained using a previously validated immunophenotyping panel of fluorochrome-conjugated antibodies31 

with slight modifications (See S1 Table for a list of antibodies, clones, manufacturers, and 

concentrations). Following the staining procedure, cells were washed and fixed with 1% 

paraformaldehyde in PBS. Data were acquired and analyzed with a BD LSRFortessa-X20 flow cytometer 

using BD FACSDiva software (BD Bioscience). Histogram plots were generated using FCS Express 5 
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software (De Novo). Compensation was performed on the BD LSRFortessa-X20 flow cytometer at the 

beginning of each experiment. “Fluorescence minus one” controls were used when necessary. Cell 

populations were identified using a sequential gating strategy that was previously developed31. The 

expression of activation markers is presented as median fluorescence intensity (MFI).   

 

Bronchoalveolar Lavage Fluid (BALF) Cytometry and Protein Concentrations: The BALF was 

collected and centrifuged to collect a cell pellet and supernatant, as previously described10. Cell pellets 

were resuspended in saline and mounted onto glass slides using a cytospin device (Thermo Shandon). 

Cells were stained (3 Diff-Quick solutions staining kit) and immune cell populations were quantified. The 

quantification of total BALF protein in the supernatants was measured by using the Pierce BCA Protein 

Assay Kit (Thermo Scientific).  

 

Histology: Lung tissue samples were embedded and stained with hematoxylin and eosin (H&E). The 

mean linear intercept (Lm), an index of airspace enlargement, quantify relative differences in alveolar 

airspace area within lung histology sections and were measured and analyzed as previously described10. 

 

Statistics: A total of 114 young mice were used for this study. All experiments were performed with a 

minimum of n=3 primary cell isolations in triplicate wells. Larger n values were utilized where possible. 

Limitations exist in the number of 20-month-old mice available from the National Institute on Aging. 

Therefore, minimum numbers to achieve statistical significance via a power analysis were utilized. 

Results are presented as mean +/- SD. GraphPad Prism was used for all statistical analyses. For 

multiple-group comparisons, we used a two-way analysis of variance (ANOVA) with age and stretch as 

factors, followed by a post-hoc Tukey test to determine significance. P<0.05 was considered statistically 

significant. 
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5.3 Results: 

4PBA Treatment Diminishes Associated ER Stress Markers CHOP and ATF4 Induced by 

Mechanical Stretch and/or Aging: 

 After observing the upregulation of the inflammatory and injury related chemokines by age and/or 

mechanical stretch, we assessed the role of ER stress as a potential upstream regulator, which has been 

shown to increase inflammation and apoptosis. In order to evaluate alveolar epithelial ER stress 

responses of young and old cells exposed to mechanical stretch, we investigated the immunofluorescent 

staining and gene expression of two key indicators and downstream markers of ER stress and the 

Unfolded Protein Response (UPR): C/EBP homologous protein expression (CHOP) and Activating 

Transcription Factor 4 (ATF4). These results are shown in Figures 33.  

 
 

Figure 31: Cyclic Stretch (15%) for 24 h +/- Age influences detection of (a–h) CHOP and (i–p) ATF4 in ATII Cells. Representative images 
were randomly chosen from individual wells in replicated (n = 3) experiments for each condition: (a and i) Young Static, (b and j) Young 
Stretch, (c and k) Old Static, (d and l) Old Stretch, (e and m) Young Static + 4PBA, (f and n) Young Stretch + 4PBA, (g and o) Old Static + 
4PBA, and (h and p) Old Stretch + 4PBA. (a–h) DAPI (blue) and CHOP (green). (i–p) DAPI (blue) and ATF4 (red). Scale bars represent 20 μm 
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We first assessed and quantified the CHOP+ ATII cells and ATF4+ ATIIs through the 

immunofluorescent staining (Fig. 33). Qualitatively, the Old Static ATIIs (Fig. 33E) were more positively 

stained for CHOP when compared to the Young Static ATIIs (Fig. 33A). Also, the presence of CHOP is 

more accentuated with stretch in the Young ATIIs (Fig. 33A and 33B). Additionally, 4PBA attenuated 

CHOP (Fig. 33E, 33F, 33G, and 33H) compared to the PBS vehicle controls (Fig. 33A, 33B, 33C, and 

33D). Similarly, Old ATIIs (Fig. 33K) were more positively stained for ATF4 under static conditions when 

compared to Young ATIIs (Fig. 33I), though the difference is less pronounced compared to the CHOP 

stained images. Similarly, the presence of ATF4 is more accentuated with stretch in the Old ATIIs (Fig. 

33K and 33L).  4PBA also attenuated the positive staining of ATF4 (Fig. 33M, 33N, 33O, and 33P) 

compared to vehicle controls (Fig. 33I, 33J, 33K, and 33L).  

 

Aging and/or Prolonged Mechanical Injury Trigger Activation of CHOP and ATF4 in ATII Cells; 

4PBA Treatment Attenuates ER Stress Indications Caused by Aging and/or Cell-stretch.   

After qualitatively assessing the immunofluorescent staining in the ATII cells, we also quantified 

the mean fraction of CHOP+ ATIIs and ATF4+ ATIIs from the total number of cells per field of view. These 

findings are shown as in Figure 34. We found that there was a significant increase in the fraction of 

CHOP+ ATII cells in the Old Static and Young Stretch groups compared to the Young Static ATII cells. 

We also observed a reduction in the fraction of CHOP+ ATIIs in the Old Static + 4PBA experimental 

group compared to the Old Static ATIIs (Fig. 34A). Interestingly, we did not see any difference in the 

fraction of ATF4+ ATII cells between any of the experimental groups (Fig. 34B).  
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Figure 32: Quantification of CHOP+ ATII Cells and ATF4+ ATII Cells in response to Cyclic Stretch (15%) for 24 h +/- Age. Columns are 
fraction of positive-stained cells for (A) CHOP and (B) ATF4. Data are presented as mean 6 SD, n = 3 per group. *p < 0.05 as indicated. 

 

In order to further verify the differences in ER stress between the experimental conditions, we 

evaluated the gene expression of these markers in response to both age and mechanical stretch. We 

observed significantly increased CHOP expression in response to advanced age alone, mechanical 

stretch alone, and in combination (Fig. 35A). CHOP is a transcription factor activated by ER stress, which 

is believed to help mediate cellular apoptosis and inflammation68. As before with the findings in Figure 

33, we did not see the same age- and stretch-induced upregulation with ATF4 (Fig. 35B), which regulates 

several UPR target genes, such as those involved in ER stress-mediated apoptosis52.  However, we 

observed significantly increased ATF4 gene expression in the Old ATIIs in response to mechanical 

stretch. After administrating 4PBA, an ER stress reducer, we observed significant decreases in the ER 

stress marker CHOP in Young and Old ATIIs that received mechanical stretch and in statically cultured 

Old ATII cells; however, CHOP expression did not change in statically cultured Young ATII cells (Fig. 

35). 4PBA administration also attenuated increased ATF4 expression in the Old Stretched ATIIs; 

however, there was no change in Young Stretched ATIIs, or in the statically cultured cells.  
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Figure 33: (A) CHOP and (B) ATF4 gene expression after 24 h of stretch or static culture +/- 4PBA. Columns are 
normalized fold change differences in gene expression relative to Young Static. Data are presented as mean +/- SD, n 
= 3 per group. (A) A log10 scale was used to observe large changes in expression. (A) & (B) *p < 0.05, when comparing 
Old experimental groups to their $# Young counterpart. p < 0.05, when comparing same-age stretch groups to their 
static counterparts. p < 0.05, when comparing same age and stretch groups with PBA to those without PBA. 

 

4PBA Treatment Mitigates Inflammatory Responses Induced by Aging and/or Prolonged, Cell-

stretch of ATII Cells:  

 We next examined the effect of 4PBA administration on MCP-1/CCL2 and MIP-1β/CCL4 

inflammatory signaling after 24 hours, which we previously showed were upregulated due to age and/or 

cyclic stretch for 4 hours (Fig. 36). Gene expression for MCP-1/CCL2 remained elevated after 24 hours 

when comparing Old Stretched ATII cells to Old Static ATIIs. Furthermore, MCP-1/CCL2 gene expression 

was considerably increased in Old Stretched ATIIs compared to Young Stretched ATII cells; however, 

there was no significant difference in gene expression between Old Static and Young Static groups or 

between Young Stretched and Young Static ATII cells (Fig. 36A). 4PBA notably decreased MCP-1/CCL2 

gene expression in Old Stretched ATII cells, but 4PBA did not decrease MCP-1/CCL2 gene expression 

in the Young Stretched ATII cells or the Young and Old Static groups (Fig. 36A).  After evaluating changes 

in MCP-1/CCl2 gene expression, we assessed the differences in corresponding protein secretion. These 

concentrations were normalized by the average number of ATII cells per experimental condition as 
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determined by its corresponding MTT data (Fig. 36B). We observed significantly greater MCP-1/CCL2 

secretion by Old Static ATII cells compared to Young Static ATIIs as well as from Old Stretched ATIIs 

compared to Young Stretched ATII cells. Interestingly, we did not observe any differences in the secretion 

of this cytokine when comparing age-matched stretched to static conditions. Furthermore, 4PBA 

significantly reduced MCP-1/CCL2 secretion in both static and stretched conditions with Young and Old 

ATII cells (Fig. 36B), while there was still a significant difference in MCP-1/CCL2 secretion in the Old 

Stretched and Static groups with 4PBA compared to the Young Stretched and Static ATII cells with 4PBA.  

 

 

Figure 34: Effect of 4PBA on (a) MCP-1 (CCL2) gene expression and (b) cytokine secretion and (c) MIP-1b (CCL4) gene 
expression (d) and cytokine secretion in ATII cells after 24 h. Gene expression data are fold change compared with static Young. 
Data are presented as mean 6 SD, n ‡ 3 per group, in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as indicated. 
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Cyclic stretch significantly increased MIP-1β/CCL4 gene expression after 24 hours in Young ATII 

cells (Fig. 36C).  Age significantly increased MIP-1β/CCL4 gene expression, regardless of stimulation 

with mechanical stretch (Fig. 36C). The administration of 4PBA attenuated the increased MIP-1β/CCL4 

expression in Old Stretched or Static ATIIs; however, there were no significant differences seen in Young 

Stretched or Static groups. Concurrent with the gene expression data for 24 hours (Fig. 36C), MIP-

1β/CCL4 cytokine concentration in the media was elevated after 24 hours in Old Stretched and Static 

ATII cells compared to Young Stretched and Static groups (Fig. 36D). As seen before with the MCP-

1/CCl2 protein secretion, there was no difference in MIP-1β/CCL4 production when comparing the age-

matched stretched to static conditions. Additionally, the administration of 4PBA decreased MIP-1β/CCL4 

concentrations in the Old Stretched and Static conditions; however, this effect was not seen in the Young 

ATII groups (Fig. 36D). 

 

4PBA Administration Reduces Monocyte Recruitment Caused by Aging and/or Mechanical Injury: 

In order to determine the ability of age and stretch to influence ATII recruitment of monocytes, we 

performed conditioned media experiments by exposing primary BMDMs to ATII conditioned media (CM) 

from all groups. As shown in Figure 37, the representative images depict the young and old monocyte 

recruitment stimulated with the growth media of ATIIs and various ATII conditioned media from the cell-

stretch experiments. We first quantified Young and Old BMDM migration using age-matched CM from 

the ATII stretch experiments (Fig. 38). As before, we normalized the recruited monocyte cell counts by 

the average number of ATII cells per condition as determined by the MTT data. We observed significantly 

decreased (p<0.05) BMDM migration with Old BMDMs/Old Static ATII CM in comparison to Young 

BMDMs/Young ATII Static CM. We also observed this same significant decrease (p<0.05) in migration 

with Old BMDMs/Old ATII Stretch CM in comparison to Young BMDMs/Young ATII Stretch CM. There 

was also a significant reduction in migration with Young BMDMs/Young ATII Static CM + 4PBA in 

comparison to Young BMDMs/Young ATII Static CM. This same reduction in migration with 4PBA was 

also observed in Young BMDMs/Young ATII Stretch CM + 4PBA in comparison to Young BMDMs/Young 
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ATII Stretch CM. Although not statistically significant, 4PBA appeared to decrease both Young and Old 

BMDM migration in response to Old ATII Stretch or Static CM + 4PBA (Fig. 38) when compared to Old 

ATII Stretch and Static CM, respectively.  In order to determine if it was the age of the ATII cells producing 

the CM or the age of the BMDMs that more greatly influenced migration, we quantified migration of Young 

BMDMs with CM from the Old Stretched and Static groups and Old BMDMs with conditioned media from 

the Young Stretched and Static groups to represent Mismatched CM monocyte recruitment (Fig. 38, gray 

bars in Young ATII and black bars in Old ATII). Young BMDMs/Young ATII Static CM significantly 

increased migration, p<0.05, compared to Young BMDMs/Old ATII Static CM and Old BMDMs/Old ATII 

static CM. Furthermore, Young BMDMs/Young ATII Stretch CM resulted in increased migration, p<0.05, 

in comparison to Young BMDMs/Old ATII Stretch CM and Old BMDMs/Old ATII Stretch CM. In summary, 

Old ATII CM with Young and Old BMDM caused a significant decrease in migration compared with Young 

ATII CM with Young BMDMs in both stretched and static groups (as indicated by “sy”, Fig. 38). 

 

Figure 35: 4PBA diminishes Young and Old BMDM recruitment. Young and Old BMDMs were placed in wells of an invasion assay 
with the various condition medias in the reservoirs. The cells were allowed to migrate for 24 hours and were then stained using 
Live/Dead Stain Kit to quantify the recruitment. Live cells are shown in green and dead cells are shown in red. Magnification =  4x. 
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Figure 36: Monocyte Migration with Age-Matched and Mis- matched ATII Conditioned Media. Data are 
presented as mean +/- SD, n = 3 per group, *p < 0.01, sy statistically significant with p < 0.05 compared with Young 
ATII/Young BMDMs counterpart. Additional statistically significant differences are described in the Results section. 

 

The Effects of 4PBA Administration Prior to High PCMV-induced ALI/VILI in Young Mice: 

 After examining the implications of aging and ER stress in our cell-stretch model with ATIIs and 

providing evidence for the beneficial effects of administering the preventative treatment, 4PBA, prior to 

mechanical injury, it was critical to determine the effectiveness of the 4PBA therapy and ER stress 

reduction in our animal model using high PCMV to induce ALI/VILI. While the Old ATII cells that received 

mechanical injury produced more severe indications of ER stress and ALI, we also detected signs of ER 

stress and ALI in the young ATII cells that were stimulated with injurious, cyclic cell-stretch. Additionally, 

4PBA treatment effectively reduced several inflammatory responses and monocyte recruitment produced 

by both the Young and Old ATII cells following mechanical injury. Therefore, we chose to initially assess 

the therapeutic effects of 4PBA in young, healthy individuals that develop ALI/VILI.  
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Figure 37: 4PBA prevents neutriphil accumulation in Young mice following high PCMV. 
Bronchoalveolar Lavage Fluid (BALF) samples were analyzed for total protein (A) and neutrophil 
accumulation (B). Data are presented as mean +/- SEM, n ³ 3 per group. * p<0.05, as indicated. 

 We found that 4PBA treatment dispensed at a concentration of 100 mg/kg in a single dose IP 

given one hour before mechanical injury effectively attenuated neotrphil accumulation that is associated 

with ALI development and progression. Neutrophil influx was substantially reduced in young mice that 

received 4PBA prior to high PCMV. Additionally, high PCMV for a duration of 3 hours resulted in elevated 

neutrophil accumulation when compared to high PCMV for 2 hours (comparison not shown on figure, 

please see Fig. 26). However, 4PBA treatment failed to improve protein accumulation in the BALF 

samples of young mice that were mechanically injured, which is another indication of ALI/VILI.   

 We also assessed the preventative effects of 4PBA on the mechanical property changes that 

occur with ALI/VILI development and progression in young mice. We initially examined the effects of 

4PBA on the baseline mechancs of young mice, prior to mechanical injury stimulation. Interestingly, 4PBA 

caused significant changes to lung elasticity and the respiratory system elastance (E) at baseline prior to 

high PCMV. Nevertheless, 4PBA treatment had no effect on any of the other lung or respsiratory system 

mechanical properties at baseline in Young mice. Unfortunately, 4PBA treatment appears to exacerbate 

the changes in tissue mechanical properties of young mice leading to greater deteriorations and 

fluctuations following 3 hours of high PCMV, as shown in Figure 40. While 3 hours of high PCMV caused 

protein accumulation, immune cell influx, and other indicaitions of ALI/VILI in young mice, the lung and 

respiratory mechanical properties did not signfiacntly change following the 3 hours of mechanical injury. 
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Figure 38: 4PBA treatment caused further fluctuations in several tissue mechanical properties in young mice. Tissue 
mechanics and lung function was determined with a SCIREQ FlexiVent rodent ventilator for mice. Figure depicts Changes 
were determined in inspiratory capacity (A), airway resistance (B), respiratory system compliance (C), respiratory system 
resistance (D), lung tissue damping (E), lung tissue elasticity (F), and quasi-static compliance (G). Data are presented as 
mean +/- SEM, n ³ 3 per experimental group. * p<0.05, **  p<0.01, *** p<0.001, as indicated. 
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5.4 Discussion:  

 We investigated ER stress as a mediator of the stretch and age-induced inflammation because 

ER stress plays a significant contributory role in age-related diseases and chronic inflammation52,58,60. 

Conditions such as hypoxia, calcium ion depletion, oxidative injury, infections, and inflammatory 

cytokines have the ability to disrupt the ER and prevent the normal protein folding35,52,60,63. The 

accumulation of folded and misfolded proteins in the ER leads to ER stress and the Unfolded Protein 

Response (UPR). Failure of the cell to mitigate protein accumulation leads to inflammation35,52,60,63. Age 

and/or mechanical stretch likely further disrupt the epithelial cells’ ability to alleviate the unfolded and 

misfolded protein accumulation in the ER, which leads to intensified inflammation and apoptosis that 

contribute to barrier dysfunction and increased permeability24,52. While it has been recently shown that 

ER stress regulates alveolar epithelial homeostasis in response to mechanical stimuli63, our current study 

provides the first evidence that aging significantly impacts the ER stress-related gene expression and 

inflammatory signaling in alveolar epithelial cells with and without the addition of mechanical stretch.  

  In order to attenuate the age-associated increases in mechanical stretch-induced ER stress and 

inflammation, we administered 4PBA or PBS vehicle to the ATII cultures. 4PBA is believed to be an ER 

stress reducer and acts as a molecular chaperone to aid in the prevention of misfolded protein 

accumulation62,132,133. 4PBA is commercially available, approved by the FDA, clinically used to cure cyclic 

urea disorders130. Additionally, several studies have already demonstrated that 4PBA can be effective in 

alleviating chronic inflammation and age-related disease outcomes, such as lipopolysaccharide (LPS)-

induced lung inflammation in a murine model, through mitigation of ER stress62,71. Based upon these prior 

results, we tested 4PBA in our in vitro cell-stretch model.  

  4PBA successfully induced a reduction in concentrations of inflammatory cytokines secreted into 

the cell media (Figure 36). The reduction in these concentrations may also be linked to the significantly 

reduced monocyte recruitment, as they are believed to help regulate monocyte and other immune cell 

recruitment and activation134–136. While we did not see significant differences in the secretion of MCP-

1/CCl2 and MIP-1β/CCL4 due to mechanical stretch alone, we did observe substantial disparities due to 
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advanced age. This suggests that age alone may be a dominant factor contributing to the altered injury 

and inflammatory response signaling of ATII cells. Similar to the recent findings published by Gibon et 

al., we also showed that aged cells express and produce increased proinflammatory 

cytokines/chemokines at baseline conditions compared to younger cells42. While that study shows how 

aging impacts primary bone marrow macrophages, we are the first to validate that aged epithelial cells 

also express and secrete greater amounts of proinflammatory cytokines/chemokines under static, 

baseline conditions and after stimulation with mechanical stretch. Notably, the administration of 4PBA 

(Figure 38) also significantly reduced BMDM recruitment with Young BMDMs/Young Static CM, Young 

BMDMs/Young Stretch CM, and with Old BMDMs/Young Stretch CM. Our findings suggest that 4PBA 

inhibits or reduces the alveolar epithelial ER stress and subsequent inflammatory responses, which 

consequently lessens the monocyte recruitment. These results further indicate that 4PBA may quell 

inflammation and macrophage recruitment in response to mechanical stretch-induced lung injury.  

 There are some minor limitations in this the study. Some studies have suggested that 15% stretch 

is insufficient to injure young alveolar epithelial cells137,138. This possibility might explain why we did not 

see the same inflammatory or ER stress response changes that we observed in the Old ATII cells. 

However, our results suggest that aging impacts inflammatory and ER stress activation in ATII cells in 

response to physiologically relevant mechanical stimuli. We have shown previously that while cell 

membrane integrity is retained, cyclic stretch of Young ATII cells at 15% change in surface area is 

sufficient to affect gene expression and phenotype139. Our results indicate that Old ATII cells respond 

differently to cell-stretch compared with young ATII cells, potentially indicating that even under low tidal 

volume mechanical ventilation, older subjects may have an intensified or altered inflammatory response.   

 After observing the preventative effects of 4BPA treatment on the inflammatory signaling and 

monocyte recruitment generated by injurious cell-stretch, we examined the therapeutic effects of 4PBA 

in vivo. We assessed 4PBA administration prior to mechanical ventilation in the development and 

progression of ALI/VILI development in Young mice. Regrettably, 4PBA treatment failed to improve 

several of the indicaitons of ALI/VILI in young mice that received mechanical ventilation. 4PBA treatment 
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attenuated the neutrophil accumulation in BALF samples of young mice; however, it did not improve 

protein accumulation, lung and respiratory mechanics, deteriorations in lung structure, or other immune 

cell recruitment. It is important to note that the injury induction of ALI/VILI using the high PCMV protocol 

was less severe in young mice compared to old; therefore, it is possible that insufficnt injury was produced 

from high PCMV in the young mice to observe significant effects of treatment. Other possible causes for 

the limited effectiveness of 4PBA in the prevention of ALI/VILI that we observed in the young mice include 

the drug delivery method and delivered dosage. We selected to administer 4PBA in a single dose at a 

concentration of 100 mg/kg via Intraperitoneal (IP) delivery 1 hour before injury induction because 

previous studies have shown its effectiveness using that delivery method in other types of ALI models, 

such as LPS-induced, and we believed that this drug delivery method would yield the highest efficacy of 

the 4PBA treatment in our ALI/VILI model. Intraperitoneal drug delivery is an alternate route to the more 

conventual drug delivery routes, such as I.V. or oral drug delivery. Previous studies that examined 4BPA 

treatment in various disease applications suggested that the route of administration possibly influences 

its efficacy140. The concentration of 4BPA, number of doses, and time of dosing utilized may also limit the 

effectiveness of 4PBA and explain our lack of improvement in preventing ALI/VILI141,142. Furthermore, as 

the old mice presented more severe inidications of ER stress and inflammation compared to young mice 

and that mechanical injury further intensified these indicaitions in old subjects, 4PBA therapy should be 

investigated in aged mice stimulatd with mechanical injury that better represents clinical patients. 

 As the compounding effects of aging on lung injury and inflammation are becoming increasingly 

recognized, these age-dependent factors that may be associated with the injury and inflammation 

responses between the alveolar epithelium and innate immune system still need more clarity.  While the 

administration of 4PBA shows promise in treating the ER stress and inflammation responses following 

mechanical stretch, the age- and stretch-dependent mechanisms and the use of 4PBA to mitigate 

inflammation and ER stress require further in vivo study to prove their practicality for future lung injury-

related clinical potential. 
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CHAPTER 6: PROTECTIVE ROLE OF SPHINGOSINE-1-PHOSPHATE IN ALI/VILI AND THE 

APPLICATION OF TETRAHYDROXYBUTYLIMIDAZOLE (THI) THERAPY FOR AGE-RELATED ALI 

 

6.1 Rationale:  

While cytokines and chemokines highly regulate macrophage differentiation and function, other 

molecules, such as lysophospholipids, can also considerably influence macrophage differentiation and 

function102,143. Sphingosine-1-phosphate (S1P) is a highly active lysophospholipid that has been recently 

shown to be significantly involved in the regulation of immune responses under both physiological and 

pathological conditions35,80,144. It exerts its biological action as an extracellular messenger via G-protein 

coupled receptors on cell membranes, but it can also signal intracellularly through intracellular generation 

and catabolism of S1P involving sphingomyelin, ceramide, sphingosine kinases, and S1P lyases35,80,95. 

Five different S1P binding receptors (S1P1-5) have been identified, and S1P signaling affects many 

biological responses of various macrophage populations in both healthy and diseased states102,143. The 

substantial effects of S1P on barrier integrity, cell growth and migration, apoptosis, cytokine release, 

inflammation, and neutrophil accumulation in alveoli are evident in several in vitro and in vivo 

studies36,80,95,145. These observations suggest that S1P acts as a protective mechanism for barrier 

maintenance and integrity, under both healthy and injured states. Furthermore, recent studies indicate 

significant involvement of S1P signaling in various disease conditions, including many lung 

diseases35,80,145. While the involvement of S1P signaling in ALI and other lung diseases is evident, the 

influence of aging and macrophage polarization linking S1P signaling remains unclear and may reveal 

therapeutic targets for clinical intervention.  

 This work is based on the scientific premise that the structural and cellular changes in aged lungs 

precondition the elderly to be more susceptible to injury and other negative outcomes resulting from the 

damaging stresses generated during mechanical ventilation. We hypothesized that aging and injurious 

mechanical ventilation elevate S1PL activity that diminishes S1P lung levels and causes further alveolar 
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barrier damage and impaired pulmonary function. Furthermore, the administration of THI, a S1PL 

inhibitor, prior to injury elevates S1P lung levels and restores S1P-associated protection against ALI.  

 

6.2 Materials and Methods: 

 

 

Figure 39: General overview of Aim 3. Aim 3 investigates the protective role of S1PL Inhibition using THI. 

 

Animals: Male C57BL/6 mice 8 weeks of age were purchased from Jackson Laboratory (Bar Harbor, 

ME). Male C57BL/6 mice 20 months of age were provided by the National Institute on Aging (Bethesda, 

MD). All animals were housed in accordance with guidelines from the American Association for 

Laboratory Animal Care and Research protocols and approved by the Institutional Animal Care Use 

Committee at Virginia Commonwealth University (Protocol No. AD10000465).  
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Pressure-Controlled Ventilator-Induced Lung Injury Model: We mechanically ventilated young (2-3 

mo.) and old (20-25 mo.) C57BL/6J wild-type mice using a Scireq FlexiVent computer-driven small-

animal ventilator (Montreal, Canada) and previously cited methods10 with slight modifications. Mice were 

anesthetized, tracheotomized, and then ventilated for 5 minutes using a low pressure-controlled strategy 

(peak inspiratory pressure (PIP): 15 cmH20, respiratory rate (RR): 125 breaths/min, positive end-

expiratory pressure (PEEP): 3 cmH20). Mice were then ventilated for 2 hours using a high pressure-

controlled mechanical ventilation (PCMV) protocol (PIP: 35-45 cmH20, RR: 90 breaths/min, and PEEP: 

0 cmH20). Pulmonary function and tissue mechanics were measured and collected at baseline and every 

hour during the 2-hour high PCMV duration using the SCIREQ FlexiVent system and FlexiWare 7 

Software. A separate group of mice was anesthetized, tracheotomized, and maintained on spontaneous 

ventilation for 2 hours. 

 

THI Administration:  C57Bl/6 mice received vehicle or 50 mg/L Tetrahydroxybutylimidazole (THI) 

administered ad libitum in water 72 hours before mechanical ventilation. Water intake was not different 

between vehicle- and THI-treated groups. 

 

Tissue Processing: Immediately following mechanical ventilation, the right lobes of the lung were snap 

frozen with liquid nitrogen, then stored at -80°C for further analysis. The left lobes of the lung were then 

inflated with digestion solution containing 1.5 mg/mL of Collagenase A (Roche) and 0.4 mg/mL DNaseI 

(Roche) in HBSS with 5% fetal bovine serum and 10mM HEPES and processed as previously 

described119. The resulting cells were counted, and dead cells were excluded using trypan blue. Subsets 

of the experimental groups were also used to collect bronchoalveolar lavage fluid (BALF) fluid, differential 

cell counts, and left lobes for histological analysis.  

 

Flow Cytometric Analysis: Following live cell counts, 4x106 cells per sample were incubated in blocking 

solution containing 5% fetal bovine serum and 2% FcBlock (BD Biosciences) in PBS. The cells were then 

stained using a previously validated immunophenotyping panel of fluorochrome-conjugated antibodies31 
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with slight modifications. Following the staining procedure, cells were washed and fixed with 1% 

paraformaldehyde in PBS. Data were acquired and analyzed with a BD LSRFortessa-X20 flow cytometer 

using BD FACSDiva software (BD Bioscience). Histogram plots were generated using FCS Express 5 

software (De Novo). Compensation was performed on the BD LSRFortessa-X20 flow cytometer at the 

beginning of each experiment. “Fluorescence minus one” controls were used when necessary. Cell 

populations were identified using a sequential gating strategy that was previously developed31. The 

expression of activation markers is presented as median fluorescence intensity (MFI).   

 

Bronchoalveolar Lavage Fluid (BALF) Cytometry and Protein Concentrations: The BALF was 

collected and centrifuged to collect a cell pellet and supernatant, as previously described10. Cell pellets 

were resuspended in saline and mounted onto glass slides using a cytospin device (Thermo Shandon). 

Cells were stained (3 Diff-Quick solutions staining kit) and immune cell populations were quantified. The 

quantification of total BALF protein in the supernatants was measured by using the Pierce BCA Protein 

Assay Kit (Thermo Scientific).  

 

Analysis of Sphingoid Base-1-Phosphates and S1P Lyase: S1P levels were evaluated in the lung 

tissue and bronchoalveolar lavage (BAL) fluids by reverse-phase high-performance liquid 

chromatography separation, negative-ion electrospray ionization, and tandem mass spectrometry 

analysis, as previously described36. S1P lyase (S1PL) expression was determined in the lung tissue 

lysates by western blotting; S1P-Lyase (H-300); rabbit; 1:1,000; sc-67368 (Santa Cruz Biotechnology). 

 

Histology: Lung tissue samples were embedded and stained with hematoxylin and eosin (H&E). The 

mean linear intercept (Lm), an index of airspace enlargement, quantify relative differences in alveolar 

airspace area within lung histology sections and were measured and analyzed as previously described10. 

 

Statistics: A total of 44 young and old mice were used for this study. All experiments were performed 

with a minimum of n=3. Larger n values were utilized where possible. Limitations exist in the number of 
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20-25-month-old mice available from the National Institute on Aging. Therefore, we used minimum 

numbers to achieve a power of 0.8. Results are presented as mean +/- SEM. GraphPad Prism was used 

for all statistical analyses. For multiple-group comparisons, we used a two-way analysis of variance 

(ANOVA) with age and mechanical ventilation as factors, followed by a posthoc Tukey test to determine 

significance. P<0.05 was considered statistically significant.  

 

6.3 Results: 

Aging and/or High PCMV Alters Levels of Sphingoid Bases and Expression of S1P Lyase in 

C57/Bl6 Mouse Lungs: 

Aging and High PCMV resulted in several changes to various sphingoid bases, as shown in Table 

2. Interestingly, we did not detect any significant variations to sphingosine, dihydrosphingosine, S1P, or 

dihydrosphingosine-1-phosphate concentrations in aged lung tissue compared to young mice. 

Conversely, aged mice contained significant alterations in concentrations of various ceramide and 

sphingomyelin forms in their lung tissue compared to young mice (Table 3). High PCMV alone caused 

substantial deviations to sphingosine, dihydrosphingosine, and S1P (Table 2); however, High PCMV did 

not lead to significant changes in ceramide or sphingomyelin bases (Table 3). The aged mice that 

received high PCMV resulted in noteworthy fluctuations in dihydrosphingosine, S1P, and specific 

ceramide and sphingomyelin bases, as depicted in Table 2&3.  
 

 

Table 2: Long Chain (Sphingoid) Base Changes caused by Aging and/or High PCMV. Data are 
presented as mean +/- SEM, n ³ 3 per experimental group. *p<0.05, ** p<0.01, as indicated 

Table 1: Lipidomic Changes due to Age and/or High PCMV
Changes with Age 

at Baseline
Changes with 
High PCMV

Young Control Compared 
to Old PCMV

Sphingosine n.s. * (w/ Y) n.s.
DHSo n.s. * (w/ Y and O) *
S1P n.s. ** (w/ Y) **

DHS1P n.s. n.s. n.s.
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Table 3: Ceramide and Sphingomyelin Base Changes Caused by Aging and/or High PCMV. Data 
are presented as mean +/- SEM, n ³ 3 per experimental group. *p<0.05, ** p<0.01, as indicated. 

 

 High PCMV for a duration of 2 hours significantly increased S1P levels (~2-fold) in the young 

mouse lung tissue compared to mice with spontaneous breathing (Figure 42A). The slight increase in 

S1P levels in the old mouse lung tissue that underwent high PCMV was not statistically different 

compared to the non-ventilated control groups. Following high PCMV for 2 hours, the aged mice failed to 

produce a significant increase in S1P compared to the young counterparts. The effects of aging and high 

PCMV on the expression of S1PL, which is highly involved in the catabolism and metabolism of S1P, 

was also assessed. The old non-ventilated controls and both the young and old high PCMV groups 

resulted in increased expression of S1PL compared to the young non-ventilated control group (Figure 

42B), which was assessed by immunoblotting. This finding indicates that aging and high PCMV enhance 

S1PL expression.  

Table 1: Lipidomic (Ceramides) Changes due to Age and/or High PCMV
Changes with 

Age at Baseline
Changes with 
High PCMV

Young PCMV Compared
to Old PCMV

C14:0 ** n.s. n.s.
C16:0 * n.s. n.s.
C18:1 ** n.s. n.s.
C18:0 * n.s. **
C20:0 ** n.s. *
C22:0 ** n.s. *
C24:0 * n.s. *
C26:0 * n.s. n.s.

Table 1: Lipidomic (Sphingomyelin) Changes due to Age and/or High PCMV
Changes with Age 

at Baseline
Changes with 
High PCMV

Young PCMV Compared 
to Old PCMV

C14:0 ** n.s. n.s.
C16:0 * n.s. n.s.
C18:1 ** n.s. n.s.
C18:0 * n.s. **
C20:0 ** n.s. *
C22:0 ** n.s. *
C24:0 * n.s. *
C26:0 * n.s. n.s.
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Figure 40: Effects of Aging and High PCMV on S1P levels and S1PL expression in lung tissue. S1P levels in lung tissue (A) were 
quantified by liquid chromatography-tandem mas spectrometry (LC-MS/MS). Data are presented as mean +/- SEM, n ³ 4 per 
experimental group. ** p<0.01, as indicated. Total lung tissue lysates from control and high PCMV mice were also analyzed for S1PL 
protein expression by Western Blotting (B). Shown are representative blots of S1PL expression from three independent experiments. 

 

These findings indicate that aging and high PCMV differently altered sphingoid bases levels in 

the lung, including ceramide and sphingomyelin base forms. Aging and mechanical injury also enhanced 

S1PL protein expression in the aged mice, with and without PCMV, and in young mice instigated with 

mechanical injury. The enhanced S1Pl expression reflects similar macrophage polarization deviations 

and increased injury outcomes from mechanical injury (shown in Chapter 3), such as the M1 alveolar 

macrophage popualtions and the CD80+/CD206+ alveolar macrophages.  

 

THI Attenuates Lymphocyte and Neutrophil Accumulation Following High PCMV in Young Mice:  

High PCMV caused elevated lymphocyte (Figure 43A), neutrophil (Figure 43B),  and basophil 

accumulation (Figure 43C) that were detected in the BALF samples of young mice. Neutrophil influx is a 

hallmark of ALI/VILI45. The cells in the BALF were subjected to a Cytospin protocol, mounted to 

microscope slides, and stained using a differential-stain kit to separate and count the different types of 

immune cells in the BALF. Young mice that received THI in drinking water for three days prior to 
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mechanical ventilation resulted in reduced lymphocyte (Figure 43A) and neutrophil (Figure 43B) influx 

compared to young mice that underwent PCMV without THI administration. Important to note, THI 

administration had no effect on these cell populations without PCMV. Interestingly, the basophil influx did 

not change with THI dosing prior to PCMV compared to young mice without THI.  

 

 

Figure 41: THI attenuates lymphocyte and neutrophil influx following high PCMV in young mice. 
Differential cell counts were performed on cytospin samples prepared from the BALF of young mice that 
received THI or vehicle control following high PCMV or spontaneous breathing Data are presented as mean 
+/- SEM, n ³ 3 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated. 
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THI Treatment Diminishes Lymphocyte, Neutrophil, and Basophil Accumulation Following High 

PCMV in Old Mice Lungs:  

 The aged mice that were stimulated with high PCMV resulted in increased lymphocyte (Figure 

44A), neutrophil (Figure 44B), and basophil accumulation (Figure 44C) in BALF samples compared to 

aged, nonventilated control mice. Important to note, although not depicted in the figures, the percentages 

of immune cell accumulation were overall higher that were collected in the old mice BALF samples 

compared to the young mice data that is shown in Figure 43. Old mice that were treated with THI prior to 

high PCMV developed reductions in lymphocyte (Figure 44A), neutrophil (Figure 44B), and basophil influx 

compared to aged mice that underwent PCMV without THI administration. As with the young mice, there 

was no significant effect of the THI treatment alone to any of these immune cell populations. 
 

 

Figure 42: THI mitigates lymphocyte, neutrophil, and basophil influx following high PCMV in old mice. 
Differential cell counts were performed on cytospin samples prepared from the BALF of old mice that 
received THI or vehicle control following high PCMV or spontaneous breathing. Data are presented as mean 
+/- SEM, n ³ 2 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated. 
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The Impact of THI Administration on Lung Protein Accumulation Following High PCMV in Young 

and Old Mice: 

High PCMV produced increased protein concentrations in the BALF samples of both young and 

old mice that underwent high PCMV compared to their age-matched control groups (Figure 45); however, 

there were no differences in BALF protein concentrations detected between young and old controls. 

Notably, there was no substantial change in BALF protein levels in young or old mice that received THI 

treatments prior to high PCMV compared to their age-matched control groups that were also administered 

THI. Interestingly, there was no change in BALF protein accumulation in the young control mice that 

received THI compared to young control mice that did not. However, there was a significant decrease in 

BALF protein concentrations of old control mice with THI compared to old control mice without THI.  

 

 

Figure 43: THI improves the protein accumulation in BALF samples of young and old mice following high PCMV. 
Bronchoalveolar Lavage (BAL) fluids from (A) young and (B) old mice that received THI or vehicle control following 
high PCMV or spontaneous breathing were assessed for protein concentrations.(C) Shows the comparison of both age 
groups.  Data are presented as mean +/- SEM, n ³ 3 per group. * p<0.05, ***  p<0.001, ****  p<0.0001 as indicated. 
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The Effect of THI Treatment on Alveolar and Interstitial Macrophage Populations in Young and 

Old Mice Following High PCMV: 

THI treatment produced several changes in macrophage populations of young mice. Young mice 

that received high PCMV resulted in a loss in total alveolar macrophage populations; however, young 

mice that were administered THI prior to high PCMV led to no significant loss in total alveolar 

macrophages. There were no detectable changes in overall interstitial macrophage populations from high 

PCMV or the THI treatment. 

 

Figure 44: Effects of Aging and High PCMV on Young Lung Macrophage Polarization in C57BL/6 Mice. Quantifiable changes 
of young macrophage subsets were identified using the set of surface markers and gating strategy described in the methods. 
The populations of Alveolar (A) and Interstitial macrophages (B)  are depicted as percentages of total CD45+ Cells. Data are 
presented as mean +/- SEM, n ³ 4 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated. 

 

 

Figure 45: Effects of Aging and High PCMV on Old Lung Macrophage Polarization in C57BL/6 Mice. Quantifiable changes 
of old macrophage subsets were identified using the set of surface markers and gating strategy described in the methods. 
The populations of Alveolar (A) and Interstitial macrophages (B)  are depicted as percentages of total CD45+ Cells. Data are 
presented as mean +/- SEM, n ³ 4 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated 
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THI treatment also influenced the lung macrophage populations of old mice. Interestingly, there 

was no change in alveolar macrophage populations of aged mice with or without THI (Figure 47A). 

Conversely, Old mice that received high PCMV resulted in a loss in total interstitial macrophage 

populations (Figure 47B); however, old mice that were administered THI prior to high PCMV led to no 

significant loss in total interstitial macrophages.  
 

THI Dosing Effects on Lung Macrophage Subpopulations Following High PCMV in Young Mice: 

THI treatment also had substantial effects on the subpopulations of alveolar and interstitial 

macrophages. Naïve interstitial macrophage populations were also amplified in young mice given THI 

prior to high PCMV compared to young control mice; however, there was no significant change to this 

cell population in young mice with THI that had high PCMV compared to young PCMV mice without THI. 

THI treatment also increased naïve alveolar macrophage populations compared to young mice that 

underwent high PCMV without THI. High PCMV increased M1 alveolar macrophages in young mice 

compared to young controls; however, this significant change was not detected in young mice that 

received THI prior to PCMV compared to young control mice (Figure 48A).  Young mice stimulated with 

high PCMV also resulted in elevated CD80+/CD206+ alveolar macrophages compared to young control 

mice. There was a significant reduction in CD80+/CD206+ alveolar macrophages in young mice with THI 

prior to high PCMV compared to young PCMV mice without THI. THI treatment had no effect on M1, M2, 

or CD80+/CD206+ interstitial macrophage populations in young mice with or without PCMV. Interestingly, 

THI administration reduced M2 alveolar macrophage populations in young control mice compared to 

young control mice without THI; however, THI treatment did not alter M1 or CD80+/CD206+ alveolar 

macrophage populations in young control mice compared to young control mice without THI.  
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Figure 46: Aging and High PCMV Influence Lung Macrophage Polarization in C57BL/6 Mice. Quantifiable changes of 
macrophage subsets were identified using the set of surface markers and gating strategy described in the methods. The 
populations of CD80-/CD206- (A&B), CD80+ (C&D), CD206+ (E&F), and CD80+/CD206+ (G&H) macrophages are depicted 
as percentages of total alveolar (A, C, E, G) and interstitial macrophage (B, D, F, H) populations. Data are presented as 
mean +/- SEM, n ³ 4 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated. 
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THI Treatment on Old Lung Macrophage Subpopulations Following Mechanical Injury: 

THI treatment also had a considerable impact on the subpopulations of old alveolar and interstitial 

macrophages. THI administration increased old naïve alveolar macrophage populations in PCMV mice 

compared to old control mice without PCMV or THI (Figure 49C); however, there was no significant 

change to this cell population in old mice with THI that had high PCMV compared to old PCMV mice 

without THI. PCMV with aged mice also caused a loss in naïve interstitial macrophages compared to old 

control mice; furthermore, THI treatment increased the naïve interstitial macrophage population when 

comparing old PCMV mice with THI to old PCMV mice without treatment.  Interestingly, THI treatment 

produced an increase in naïve alveolar macrophage populations and a loss in total interstitial 

macrophage populations in old control mice compared to old control mice without THI. PCMV or THI had 

no significant effect on old M1 alveolar macrophages (Figure 49A); however, the administration of THI 

caused a substantial increase in old M2 alveolar macrophage populations compared to old mice that 

underwent high PCMV without THI. THI treatment also considerably reduced CD80+/CD206+ alveolar 

macrophages in aged mice stimulated with high PCMV compared to old PCMV mice without THI 

treatment. THI treatment had no influence on M1 or M2 interstitial macrophages in aged, PCMV mice 

compared to aged, PCMV mice without treatment; however, there was a reduction in CD80+/CD206+ 

interstitial macrophages in aged, PCMV mice that received THI treatment compared to aged, PCMV mice 

without THI. THI administration had no effect on both M1, or M2, alveolar and interstitial macrophages or 

CD80+/CD206+ alveolar macrophages in old control mice; however, THI treatment reduced 

CD80+/CD206+ interstitial macrophages in old control mice compared to old control mice without 

treatment.  
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Figure 47: Aging and High PCMV Influence Lung Macrophage Polarization in C57BL/6 Mice. Quantifiable changes of 
macrophage subsets were identified using the set of surface markers and gating strategy described in the methods. The 
populations of CD80-/CD206- (A&B), CD80+ (C&D), CD206+ (E&F), and CD80+/CD206+ (G&H) macrophages are depicted 
as percentages of total alveolar (A, C, E, G) and interstitial macrophage (B, D, F, H) populations. Data are presented as 
mean +/- SEM, n ³ 4 per experimental group. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 as indicated. 
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The Effects of THI on the Mechanical Properties of Young and Old Mice During High PCMV:  

We also assessed changes in tissue mechanics in young and old mice that received THI prior to 

mechanical ventilation and compared them to age-matched control groups that received THI or vehicle 

control (H20). We initially examined the effect of THI on baseline mechanical properties of Young and 

Old mice. Althgouh not shown, we found that THI treatment had no effect on the respiratory system 

resistance (R), the lung compliance (C), the newtonian resistance (Rn), and tissue damping mechanical 

properties at baseline of the Young and Old mice. Interestingly, THI treatment produced minor changes 

in inspiratory capacity, respiratory system elastance (E), and lung tissue elasticity (H) in young mice at 

baseline; however, THI therapy had no effect on the mechanical properties of old mice at baseline.  

THI treatment also improved several tissue mechanical properties in young mice, as shown in 

Figure 51. The inspiratory capacity, the respiratory system compliance (C), and lung tissue elasticity (H) 

in young mice all showed improvements as early as 1 hour after high PCMV was initiated. It is important 

to note that there were less mechanical property deviations caused by high PCMV in young mice 

compared to old (shown in Figure 27). THI produced no change in airway resistance (Rn), respiratory 

system resistance (R), Lung tissue damping (G), respiratory system elastance, or quasi-static compliance 

(Cst) during induction of injury by high PCMV. 

THI treatment also mitigated several lung and respiratory mechanical properties in old mice, as 

shown in Figure 52. The respiratory compliance (C), lung tissue damping (G), and quasi-static 

compliance (Cst) in old mice all revealed improvements after 2 hours of high PCMV. THI administration 

resulted in no significance difference in inspiratory capacity, respiratory system resistance (R), Lung 

tissue elasticity (H), or respiratory system elastance in old mice during induction of injury by high PCMV 

compared to old mice that were mechanically injured without THI treatment administered prior. However, 

it is important to note that there were significant deviations in inspiratory capacity, respiratory system 

compliance, respiratory system resistance, lung tissue damping, lung tissue elasticity, and respiratory 

system elastance caused by high PCMV without THI compared over the 2 hour period that was not 

observed in the old mice dosed with THI prior to mechanical injury.  
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Figure 48: THI treatment resulted in the attenuation of several tissue mechanical properties in young mice. Tissue 
mechanics and lung function was determined with a SCIREQ FlexiVent rodent ventilator for mice. Figure depicts Changes 
were determined in inspiratory capacity (A), airway resistance (B), respiratory system compliance (C), respiratory system 
resistance (D), lung tissue damping (E), lung tissue elasticity (F), and quasi-static compliance (G). Data are presented as 
mean +/- SEM, n ³ 3 per experimental group. * p<0.05, **  p<0.01, *** p<0.001, **** p<0.0001 as indicated. 
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Figure 49: THI treatment resulted in the attenuation of several tissue mechanical properties in old mice. Tissue 
mechanics and lung function was determined with a SCIREQ FlexiVent rodent ventilator for mice. Figure depicts Changes 
were determined in inspiratory capacity (A), airway resistance (B), respiratory system compliance (C), respiratory system 
resistance (D), lung tissue damping (E), lung tissue elasticity (F), and quasi-static compliance (G). Data are presented as 
mean +/- SEM, n ³ 3 per experimental group. * p<0.05, **  p<0.01, *** p<0.001, **** p<0.0001 as indicated. 
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6.4 Discussion:  

 Acute lung injuries, such as VILI, are damaging disorders that remain a major issue with high 

frequencies of annual hospitalizations, in-hospital mortality rates, and severe complications despite 

recent advances in understanding of the mechanisms and pathophysiology associated with the condition. 

Implementing “protective ventilator strategies” has only marginally improved negative outcomes, and the 

overall mortality rates for ventilated patients are still unacceptably high. Furthermore, few studies are 

performed on aged subjects, which is incongruent with the fact that elderly patients have a greater need 

for mechanical ventilation. These observations illustrate the major clinical need to develop treatments or 

therapies that prevent the cellular injury mechanisms and inflammation directly resulting from the 

pathological mechanical forces generated during mechanical ventilation. These age-related and injury-

related impaired cellular responses represent potential molecular targets for therapeutic intervention for 

patients that are diagnosed with ALI or required mechanical ventilation. 

 In this study, we evaluated the role of S1PL that regulates intracellular S1P levels as an effective 

age-related therapeutic target of ALI/VILI. Sphingolipids, such as S1P and sphingolipid metabolizing 

enzymes, such as S1PL, have been shown to diversely impact various respiratory diseases80. S1P is 

involved in numerous cellular processes that include cell survival, growth and proliferation, apoptosis, 

endothelial and epithelial barrier function, immune regulation, and inflammation80,146,147. Our findings 

demonstrate that aging and/or mechanical injury produces elevated expression levels of S1PL in lung 

tissue. Aging and/or mechanical injury also resulted in substantial changes to several sphingoid bases 

present in lung tissue. The investigation revealed that S1P lung levels were considerably elevated in 

young mice lungs that underwent high PCMV; however, there was no substantial increase in S1P levels 

in old mouse lungs following high PCMV. This disparity also correlated with the injury outcomes 

associated with young and old mice following mechanical injury. Furthermore, our findings indicate that 

the administration of THI, a S1PL inhibitor that prevents the irreversible loss of S1P and enhances the 

accumulation of S1P in lung tissue, diminished several of the associated indications of acute lung injury. 

THI administration prior to mechanical injury reduced immune cell recruitment to alveolar regions, lung 
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protein accumulation, and deviations in lung and respiratory mechanical priorities in both young and old 

mice. Furthermore, THI treatment also altered macrophage polarization by increasing the number of 

naïve alveolar macrophages in young and old mice, increasing the number of naïve interstitial 

macrophages in old mice, reducing CD80+/CD206+ alveolar macrophages in young and old mice, 

reducing the CD80+/CD206+ interstial macrophages in old mice, and increasing the number of M2 

alveolar macrophages in old mice following induction of injury by high PCMV.  

Lung conditions such as ALI/VILI are characterized by increased permeability and alveolar 

flooding, immune cell recruitment and activation, and an overall deterioration of the alveolar barrier 

integrity1,5. Overall, this research further indicates that regulating S1P and its related components 

provides a protective effect against the development and progression of ALI, which has been suggested 

in recent studies. For example, the administration of S1P diminished lung edema formation and promoted 

survival in an acute lung injury model produced by loss of Forkhead protein in endothelial cells80. 

Additionally, the knockdown of Forkhead protein leads to increased expression of S1P1, which was 

suggested to help maintain barrier integrity80. Sphk1 has also been shown to provide protection again 

radiation-induced lung injury, SphK1-/- mice were highly susceptible to the radiation damage; furthermore, 

S1P receptor agonists were administered and attenuated the radiation damage80. Additionally, SphK1-/- 

mice had greater vascular leakage and reduced recovery from LPS-induced ALI and these negative 

outcomes were assuaged by the administration of exogenous S1P80. In other LPS-induced murine ALI 

models, intravenous S1P administration also reduced lung vascular permeability and inflammation92. 

Collectively, studies generally suggest that the barrier enhancing effects of S1P occurs via ligation to 

S1P1. This activates downstream signaling cascades that includes Rac activation, cortactin translocation, 

myosin light chain phosphorylation, and focal adhesion and adherens junction protein rearrangement101. 

Conversely, several in vitro and in vivo studies demonstrated that elevated concentrations of S1P (>5-

10uM) may produce barrier disruption. Furthermore, intravenous infusion of S1P at 0.5 mg/kg body 

weight produced pulmonary edema in mice93. Alternatively, to S1P1 ligation, ligation of S1P to S1P3 leads 

to cell migration and vascular barrier dysfunction101. Likewise, genetic knockdown of Sphk1 in mice 
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caused increased susceptibility and elevated negative outcomes in an LPS-induced ALI model94. S1PL 

expression also appears to be elevated in LPS-induced lung injury models, which reduces the S1P levels 

in the lung and increases inflammation and injury95. Collectively, these observations demonstrate the role 

and association of S1P signaling in various lung disorders and insinuate that the S1P metabolic pathway 

have vast therapeutic potential against ALI. Our findings suggest that blocking S1PL in order to elevate 

the intracellular levels of S1P in the lung by the administration of THI treatment was effective in reducing 

the increased permeability, immune cell recruitment, and deteriorations in tissue mechanical properties 

of the lung and respiratory system that’s associated with mechanical lung injury.  

Currently, there are numerous studies that focus on targeting various components of S1P 

signaling for several diseases, including some lung disorders. As studies have shown that S1PL 

expression is elevated in several ALI models, such as LPS-induced, that causes reduced S1P levels and 

increased inflammation, targeting S1PL has shown promise in attenuating many of the negative 

outcomes associated with ALI95. Targeting S1PL in vitro using siRNA in human lung microvascular 

endothelial cells that received LPS lead to reduced barrier disruption, IL-6 secretion, and LPS-induced 

p38 MAPK phosphorylation95. Zhao et al., further showed that inhibiting S1PL expression in vivo resulted 

in increased intracellular S1P levels and decreased LPS-induced inflammation. Mice that were treated 

with THI for 2 days retained raised S1P levels in the lung tissues and BALF fluids following intratracheal 

LPS instillation. Furthermore, THI treatment resulted in reduced neutrophil infiltration in the alveolar 

space and reduced IL-6 secretion as protection against LPS-induced lung injury95, further suggesting the 

therapeutic potential of targeting S1PL, specifically via THI intervention. Studies using direct, exogenous 

S1P administration revealed substantial limitations and often resulted in undesired side effects, such as 

bradycardia and airway hyper-responsiveness93. Modulation of intracellular S1P production is robustly 

controlled by its synthesis and degradation, and these S1P-related catabolism and metabolism 

components can also be manipulated to alter intracellular S1P levels95. S1P-mediated biosynthesis is 

catalyzed by SphKs and its degradation is mediated by S1PL and S1P phosphatases148–150. While several 

studies have investigated the protective effects of SphK regulation, the involvement and manipulation of 
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SphKs in lung injury remains controversial and appears to depend on the insult95. Many of these altered 

SphK studies in the context of ALI models resulted in enhanced pulmonary leak and injury, while other 

showed improvement94. These observations suggest the need to examine alternative methods for 

modulating intracellular S1P levels, such as inhibiting S1PL. In our investigation, oral treatment with THI 

mitigated several of the mechanical ventilator-induced indications of lung injury and inflammation, further 

suggesting a protective role for S1P and S1PL inhibition in ALI/VILI. Oral administration of THI over 3 

days effectively alters S1P tissue levels and blocks S1PL enzymatic activity151. Furthermore, evidence 

suggests that 3 days of THI treatment to block S1PL activity and alter S1P tissue levels appears to be 

optimal compared to longer treatment durations. It was demonstrated that this treatment regimen results 

in elevated lung tissue S1P levels by Day 2 without altering plasma S1P levels. However; prolonged 

treatment, such as implementing S1PL knockout models, resulted in very high plasma and tissue S1P 

levels, which resulted in accumulation of ceramides and other sphingolipids in the liver152. Our 

investigation in regulating S1P lung levels by administrating THI to block S1PL activity attenuated 

increases in alveolar barrier permeability and immune cell recruitment, changes in pulmonary structure 

and function, and macrophage polarization deviations caused by mechanical injury; furthermore, THI 

treatment also improved the injury and inflammatory indications of aged mice that were worsened 

compared to young mice following high PCMV-induced lung injury. 

The research presented in this chapter shows that high PCMV for 2 hours induces substantial 

indications of lung injury that is exaggerated in old mice. Aged mice that received mechanical injury 

resulted in greater indications of pulmonary leak, immune cell influx, impairment to macrophage 

polarization, and diminished pulmonary mechanics and function compared to young mice. This further 

validates an age-related influence or susceptibility on the induction and progression of ALI/VILI. The study 

also revealed that high PCMV and aging alone caused vast changes in various sphingoid bases present 

in the lung, including S1P and several ceramide and sphingomyelin bases. Additionally, it provides novel 

evidence and endorsement for the clinical use of THI and S1PL inhibition as protective mechanisms in 

mechanical injury, especially for elderly individuals with increased susceptibility to lung injury and 
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inflammation. While there have been a few studies that have examined the role of S1P signaling in acute 

lung injury models, only a small fraction is focused on mechanically induced ALI. Suryadevara et al., 

indicated that volume-controlled mechanical ventilation (30 mL/kg,4hr) in mice resulted in elevated S1PL 

expression, reduced S1P levels in lung tissue, and increased inflammation, injury, and apoptosis36. They 

investigated deeper into the S1P mechanism and they demonstrated that deletion of SphK1 mitigated 

VILI in mice. Moreover, the authors revealed that alveolar epithelial MLE-12 cells exposed to 18% cyclic 

stretch caused increased S1PL expression and changes to levels of sphingoid bases compared to 

physiological stretch conditions36. Administration of 4-deoxypyridozine, a S1PL inhibitor, prior to 

pathophysiological stretch also attenuated barrier dysfunction, cell apoptosis, and cytokine secretion36. 

In accordance, these findings further suggest that S1PL inhibition may have therapeutic potential and 

protection against VILI. While there are only a few investigating the protective roles of S1P and S1PL 

inhibition in VILI, there are no current studies investigating the influences of aging and mechanical injury 

on S1P and S1PL regulation.  

The following are limitations of the scope of this study: It is important to note that this study does 

not assess or indicate which cell types in the lung are responsible for the increased S1PL expression or 

varying S1P levels caused by aging and/or mechanical lung injury; however, it is believed that ATIIs and 

immune cells, such as macrophages, exhibit substantial S1PL expression, which have been 

demonstrated in several in vitro ALI models101. It is particularly difficult to determine the sources of S1PL 

expression and S1P production in vivo with current techniques and due to the numerous types of cells 

present in the lung. This issue is further complicated by the several types of immune cells that infiltrate 

into the alveolar space during lung injury. Further studies should be conducted in vitro to determine 

specific ATII and macrophage contributions of S1P and S1PL expression in response to mechanical 

injury and aging. While also not addressed in this study, the S1P receptor signaling axis in the context of 

aging and mechanical injury should also be investigated in the future following the evidence provided by 

this research of the implication of S1P and S1PL inhibition as a protective role in ALI/VILI. Recent studies 

suggest that the Sphingosine-1-phosphate and the S1P receptors are extensively involved in the 
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development and progression of several diseases100. Evidence suggests that S1P binding to certain S1P 

receptors on macrophages produced specific functional responses. These macrophage responses have 

been implicated in particular diseases and conditions101. Yang et al., showed that bone marrow derived-

macrophages expressed S1P1-3, but not S1P4/5. Furthermore, the authors found that S1P2/3 mediated 

S1P-induced M1 macrophage polarization. Interestingly, S1P1 had no effect on macrophage polarization. 

Additionally, the use of inhibitors prevented the upregulation of M1 gene expression mediated by 

S1P/S1PR2/3
100. Conversely, Muller et al., found that all 5 S1P receptors were expressed in bone marrow-

derived macrophages102. They provided evidence that suggests that M1 and M2 polarized macrophages 

resulted in significant downregulation of S1P1 and influenced the expression of S1P4. This study also 

indicated that S1P induced chemotaxis in M1 macrophages and altered cytokine secretion in M2 

macrophages. Interestingly, S1P increased expression of iNOS only under M2-polarizing conditions, but 

it had no effect on phagocytosis of either M1 or M2 macrophages102. Evidence suggests that S1P3 is 

implicated in LPS-induced ALI models and might be the most important S1P receptor on macrophages 

regulating inflammation101. Early studies in human alveolar macrophages indicated that S1P induced 

(NOX)2-dependent production of ROS to promote IL-1β and TNF-α production by murine peritoneal 

macrophages. Previously, Intracellular S1P produced by Sphk1 was also suggested as a cofactor 

involved in macrophage activation. IL-1 signaling, an activator in NFκB inflammation, also requires 

Sphk1-depedent S1P as an intracellular cofactor103. Sphk1 is also activated downstream of other 

inflammatory stimuli, such as LPS104–106. Stimulation of human THP-1 macrophages with LPS required 

Sphk1 activity to generate IL-6, IL-1β, TNF-α, and/or NO104. In RAW264.7 macrophages, S1P1 and S1P2 

were involved in IL-6 production in a LPS-induced ALI model107. Furthermore, S1P1 binding increased 

ARG1 activity and suppressed NO production, suggesting a shift from M1 to M2 polarization sates in 

murine macrophages108. S1P5 on macrophages is associated with impaired phagocytosis; however, it 

remains unclear if this S1P receptor impacts macrophage polarization101. Collectively, these observations 

suggest that S1P modulates macrophage activation and responses according to the local environment, 

the intracellular and extracellular concentrations of S1P, and the S1P receptors activated on specific101. 
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While our study revealed substantial changes to macrophage polarization states caused by aging and/or 

mechanical injury and that THI treatment reduces those deviations, it fails to address potential modulation 

by specific S1P receptor binding. Further in vitro studies should be conducted to determine how aging 

and mechanical injury impact S1P receptor binding and downstream effector functions that may correlate 

with the polarization changes seen in our study.  

This investigation also has a few experimental limitations. Primarily, the panel of surface markers 

and flow cytometric analysis implemented investigated a limited number of associated macrophage 

polarization markers. While these are highly relevant and frequently published24,31,32,39,153, other related 

classical and alternative phenotypic markers for macrophages should be considered and assessed to 

further analyze more defined polarization states. Another limitation is the duration of high PCMV. While 

2 hours of high PCMV was sufficient to induce ALI/VILI in both young and old mice, other durations should 

be evaluated to determine other temporal effects of PCMV on structural and cellular changes in the lung.  

Longer durations were initially tested; however, there was a high mortality for both young and old mice 

when ventilated up to 4 hours. Furthermore, this study mainly examines changes to macrophage 

populations; although these cells interact with many other cell lineages in vivo. Other lung cell 

populations, such as neutrophils and monocytes, should be further investigated to better understand the 

role of macrophage polarization in acute lung injury. Lastly, this study investigated murine macrophage 

polarization in the context of acute lung injury. Although murine macrophage cells were examined to 

simulate cellular responses in humans, many cellular responses and characterizations are conserved 

across species154. Animal models provide an exclusive approach to evaluate related mechanisms and 

potential new therapies by acting as proof of concepts in experimental studies. Further studies are 

necessary to determine differences that exist between murine and human macrophage populations, 

especially in the context of aging and ALI/VILI.  

 Overall, this research indicates that aging and/or mechanical injury result in vast changes in lung 

sphingoid bases that are implicated in the proposed protective S1P/S1PL signaling associated ALI. Aging 

and mechanical injury caused increased S1PL expression, while only young mice resulted in substantial 
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S1P levels following mechanical injury. Our findings further suggest that THI treatment effectively inhibits 

S1PL expression and increases the lung levels of S1P, which resulted in improved outcomes following   

mechanical injury and deviations caused by aging alone. Further investigation is critical to better 

understand the mechanistic effects and the roles of ATIIs and lung macrophages surrounding S1P 

signaling and S1PL inhibition in the context of aging and mechanical injury. The loss of S1P levels or 

elevated S1PL expression in the lungs of aged individuals appears to represent age-specific mechanisms 

leading to the elderly’s increased susceptibility to lung injury. The molecular regulation of these signaling 

components represent promising, potential therapeutic targets for age-related ALI.  
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS  

 

Despite recent advances in our knowledge of the pathophysiology of ALI and VILI, “protective 

ventilator strategies” have had minimal impact, and no effective treatments nor therapies are available  

for this lung condition. The mortality rates remain high, especially for the elderly population19,95. The aim 

of this dissertation was to understand better how aging primes the lung to be more susceptible to ALI/VILI 

and identify cellular and structural response deviations that represent molecular, therapeutic targets for 

intervention. The outcomes of this investigation provide further evidence that aging exacerbates 

outcomes of mechanical injury, which resulted in a greater deterioration in lung function, pulmonary 

structural deviations, elevated lung inflammation at baseline, dysregulating inflammatory signaling 

following mechanical injury, and dysregulation in macrophage polarization. We also characterized 

indications of ER stress and S1P/S1PL in our experimental VILI models, which revealed significant age-

induced and injury-induced implications in the progression of ALI/VILI. Furthermore, we evaluated the 

protective effects of ER stress reduction, via 4PBA, and S1PL inhibition, through THI, to determine the 

therapeutic potential of these age-related moeluclar targets.  

As elderly patients comprise a substantial proportion of patients requiring mechanical ventilation 

in the clinic, we need to identify and elucidate the age-related factors that increase these patients’ 

susceptibility to lung injury. These factors represent possible targets for more effective therapeutic 

intervention the the development and progression of lung injury, especially with the elderly population. 

Few studies are performed on aged subjects, which is incongruent with the fact that elderly patients have 

a greater need for mechanical ventilation. Our findings from these investigations identfified and further 

validated considerable age-related associations and cellular responses that may offer vast therapeutic 

potential in ALI/VILI. Furthermore, we evaluated two related treatment opportunities, 4PBA and THI, that 

effectively reduced specific age-related factors, ER stress and S1P/S1PL activity,respectively, and 

several other negative outcomes associated with mechanical injury.    
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We first indicated the effects of aging on ATII and macrophage responses without mechanical 

injury, which is detailed fully in the third chapter of this dissertation. We demonstrated that aging alone 

increased the gene expression and secretion of several inflammatory medaitors, suggesting a more 

intense inflammatory response at baseline, without mechanical injury. We then showed the influence of 

aging and mechanical injury on various pulmonary responses in vivo, which is described thoroughly in 

the fourth chapter of this thesis. Our findings revealed that the pulmonary structure, tissue mechanics 

and pulmonary function, and lung macrophages’ polarization in mice is prominently altered with aging. 

Furthermore, aged lung macrophages and those that underwent high PCMV overexpressed both CD80 

and CD206 associated polarization markers and the percentage of alveolar subset macrophage 

populations changed significantly due to age and/or high PCMV. 

Following the assessments of aging and mechanical injury on ATII and macrophage signaling, as 

well as their effects on lung structure and function, we validated that ER stress is implicated in both 

mechanical injury and aging. We evaluated indications of ER stress in our age-related experimental VILI 

models, and our findings suggest that age increases susceptibility to stretch-induced ER stress and 

downstream inflammation in a primary ATII epithelial cell model. Administration of 4-PBA attenuated both 

the increased ER stress and proinflammatory responses from stretch and/or age and significantly 

reduced monocyte migration to ATII conditioned media. As the majority of patients that are diagnosed 

with VILI are the elderly, better understanding the age-dependent factors associated with the 

mechanotransduction between the alveolar epithelium and innate immune system is detrimental to 

developing treatments for these types of lung diseases. 

Recent studies also indicated that S1P acts as a protective mechanism in LPS-induced ALI by 

producing endothelial cell barrier enhancement144, reducing lung edema and vascular leak95, and limiting 

lung injury indications and inflammation, while enhanced S1P lyase expression is believed to further 

reduce the S1P signaling and limit the protective potential of S1P35,80,95,144. Following the assessment of 

S1P/S1PL in our age-related experimental VILI models, we found that aging and/or mechanical injury 

result in vast changes in lung sphingoid bases that are implicated in the proposed protective S1P/S1PL 
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signaling associated ALI. Aging and mechanical injury caused increased S1PL expression, while only 

young mice resulted in substantial S1P levels following mechanical injury. Our findings further suggest 

that THI treatment effectively inhibits S1PL expression, which resulted in improved outcomes following 

mechanical injury and deviations caused by aging alone. Further investigation is critical to better 

understand the mechanistic effects and the roles of ATIIs and lung macrophages surrounding S1P 

signaling and S1PL inhibition in the context of aging and mechanical injury. The loss of S1P levels or 

elevated S1PL expression in the lungs of aged individuals appears to represent age-specific mechanisms 

leading to the elderly’s increased susceptibility to lung injury. The molecular regulation of these signaling 

components represent promising, potential therapeutic targets for age-related ALI. Our findings further 

indicate that S1P may act as a protective mechanism in ALI. This signaling appears to be reduced with 

aging and may represent potential age-related therapeutic intervention targets for patients with ALI. 

Interstingly, the deviations in the alveolar macrophage subpopulations and indications of injury reflect the 

similar changes in S1P signaling and S1P lyase expression due to aging and high PCMV. As 

macrophages are key cells in both injury/repair and inflammatory responses in the lung, the impairment 

to their polarization states caused by aging or injury may be a strong factor or determinant for the elderly’s 

increased susceptibility to ALI (VILI) and worsened repair mechanisms. Our findings suggest that the 

age-related changes in S1P signaling and S1PL activity are associated with the macrophage polarization 

impairment and mechanical property changes that occur with aging. Furthermore, this signaling appears 

to be diminished with aging and may represent potential age-related therapeutic intervention targets for 

patients with ALI.   

Many lung pathologies and age-associated diseases reflect high levels of inflammation in the 

tissue that results in high morbidity and mortality rates, which drives the desire to develop a therapy 

aimed to regulate the inflammatory processes that lead to these conditions. Improved understanding of 

how aging and physical forces from mechanical ventilators impact these epithelial mechanotranduction 

signaling mechanisms and macrophage polarization states may greatly assist in the generation of novel 

therapies that manipulate macrophage function or epithelial signaling to limit proinflammatory responses 
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or improve tissue remodeling during the repair stages of epithelial repair in the lung. Although our 

invesigations focused on lung injury and inflammation provided insight that is lung-tissue specific, this 

knowledge can be applied across systems to examine comparisons of tissue-specific epithelial injury 

responses and macrophage polarization aspects that regulate inflammation. 

 
 

Figure 50: Summary Diagram of the Dissertation Findings and Inferences. The figure illustrates the effects of 
Mechanical Injury, Aging, 4PBA therapy, and THI treatment on the development and progression of ALI/VILI. 

As depicted in Figure 52, our findings suggest that the implication of ER stress and the therapeutic 

intervention using 4PBA in the context of aging and ALI/VILI should be further investigated. Our research 

further indicated that mechanical injury induces ER stress, which is intensified in older individuals. 

Injurious cyclic cell-stretch using alveolar epithelail type II cells resulted in ER stress, inflammation, and 

other injury outcomes that were elevated in aged ATIIs. We also demonstrated that ER stress was 

associated, and possibly a determinant, of the biotrauma produced by mechanical injury, which included 

monocyte/macrophage recruitment. Furthermore, we demonstrated that 4PBA, an ER stress inhibitor, 

reduces indiciations of ER stress, inflammation, monocyte recruitment, and injury. These findings suggest 
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that 4PBA may be a viable, more effective treatment for the development and progression of ALI, 

especially for the elderly population that has greater susceptibility and responsivness to lung injury. While 

this research evaluated ER stress and the theraptuic potential of 4PBA in an aging in vitro cell-stretch 

model, we were only able to evaluate this cell response in young mice stimulated with mechanical 

ventilation. The findings from both our in vitro and in vivo studies indicate that ER stress and 4BPA 

administration should be futher assessed in aged mice receieving mechanical injury, as shown in Figure 

53. As indications of ER stress were intensified in old ATII cells, both at baseline and following mechanical 

injury, compared to the young ATIIs, this implication needs to be evaluated in aged mice. As the 

intensified injury and inflammatory responses produced by mechanical injury were associated with ER 

stress and attenuated with 4PBA treatment in the cell-stretch of old ATIIs, we believe that ER stress in 

the aged mouse lungs also infleunces the inflammatory and injury responses produced from injurious 

mechanical ventilation. Our data suggests that 4BPA therapy has the potential to mitigate the age-

dependent ER stress and inflammation that contributes to the elderly’s susceptibility to ALI/VILI. 

 
Figure 51: The Schematic Overview of Methhods to Futher Examine ER Stress and 4PBA in the 
Aging VILI model. This aim will evaluate the factors of aging and mechanical injury on ER stress in vivo. 
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The protective role of S1PL inhibition in the development and progression of ALI/VILI also 

warrants further investigation. While our research revealed that S1P/S1PL activity is associated with the 

injury and inflammation triggered by mechanical injury, aging influences S1P/S1PL levels and 

expression, and S1PL inhibition alters the phenotypes of lung macrophages, the study fails to determine 

the cell sources of S1P/S1PL activity in the lung. Futhermore, the effects of S1P/S1PL activity on 

macrophage polarization needs to be further elucidated. As mentioned before, recent studies suggest 

that S1P, along with the S1P signaling axis, can greatly influence macrophage differentiation and function 

under physiological and disease conditions101. Evidence suggests that S1P binding to certain S1P 

receptors on macrophages produced specific functional responses. These macrophage responses have 

been implicated in particular diseases and conditions101. The effects of aging and various S1P 

concentrations on macrophage phenotype and function should be further evaluated in vitro to understand 

better the findings from our research, as shown in Figure 54. This will help determine the underlying 

mechanisns that govern S1P-induced macrophage polarization and inflammatory responses with the 

implications of aging and mechanical injury. We believe these S1P-related mechanisms represent 

effective therapeutic targets for the prevention or attenuation of ALI, especially the elderly population.    
 

 
Figure 52: The Schematic Overview of Methhods to Futher Examine S1P and Macropahge Polarization in VILI. 
This aim will evaluate the factors of aging and various concentrations of S1P on macrophage phenotypes and function.  
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The effects of aging, mechanical injury, ER stress, and S1P/S1PL activity should also be 

evalualted in a “two-hit” VILI model with a recovery period established following mechanical injury, as 

shown in Figure 55.  The “two-hit” VILI insult system usually consists of a secondary trigger of ALI, such 

as a bacterial infection, and better represents patients requiring mechanical ventilation with pre-existing 

lung conditions, which is far more common in VILI. The administration of LPS models a preexisting 

bacterial infection, which is common and more clinically relevant in patients with ARDS, a more severe 

form of ALI, that often necessitates mechanical ventilaton. The fundamental mechanisms that drive the 

development and progression of ALI/VILI remain inadequately comprehended155. This is partially 

attributed to the cell culture systems utilized to study ALI/VILI, which are only partially able to model the 

complex pulmonary microenviroment and cell interactions that exist in vivo156. Furthermore, most 

experimental lung injury animal models only investigate a particular cause of ALI and fail to fully model 

the complex pathophysiology of clinical ALI, which is more often caused by several factors156. Therefore, 

“two-hit” VILI models are more translational and effective at capturing the complexity of ALI conditions, 

which could reveal greater understanding surrounding the mechanisms and comounded interactions that 

trigger ALI/VILI. A recovery period following mechanical injury should also be included to assess the 

effects of aging on repair and resolution mechanisms associated with ALI, such as their possible 

impairment or loss. Additionally, as mentioned before, clinical ALI patients often have sufficient injury or 

infections prior to mechanical ventilation; therefore, recovery should be investigated to better develop a 

therapy or treatment that can be administered after injury, which is more translational and likely to be 

effective in the clinical setting.  These implications should be investigated following our evaluation of 

mechanical injury as a single factor in the induction and progression of ALI/VILI.  
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Figure 53: The Schematic Overview of Methods for Future Directions Experiments. This aim 
will evaluate the factors of aging and mechanical injury in a “two-hit” VILI model with Recovery. 

 

Our findings suggest that age-specific cell signaling mechanisms by ATII cells or macrophages 

represent viable therapeutic targets for patients requiring mechanical ventilation by preventing or 

regulating the exaggerated inflammatory response that often leads to sepsis and mortality. More recently, 

novel therapies attempt to target macrophage polarization, which could be an effective, innovative 

method to regulate the downstream inflammation and prevent subsequent alveolar barrier destruction. 

As the majority of patients that are diagnosed with VILI are the elderly, better understanding the age-

dependent factors associated with the mechanotransduction between the alveolar epithelium and innate 

immune system is detrimental to developing treatments for these types of lung diseases. 
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APPENDIX A 

 

MLI Anlaysis MATLAB Code: 

%% Cells = imread('cells.tif'); 
[FileName,PathName]= uigetfile('*.tif','Select Image'); % Lauches user interface to 
get file; saves file name and file path as a string in an array 
 cells =imread(strcat(PathName,FileName)); % reads in previously loaded image file 
and saves it as variable 'Cells' 
Pixel_Length = (1*10^(-6)); % (1micrometer on histo Whiz images) Side length of a 
single square pixel (in meters) based on pixel normalinzation 
Pixel_Area = Pixel_Length^2; % Calculates area of a single pixel (meters^2) 
level = graythresh(cells);  % THIS IS IMPORTANT AND MAY REQUIRE ADJUSTMENT BASED ON 
THE IMAGE 
%GRAYTHRESH() FINDS THE MEAN THRESHOLD OF THE IMAGE 
%SOMETIMES THIS NUMBER MAY NEED ADJUSTED BASED ON IMAGE QUALITY -- Ranges 
%from 0-1. Best way to adjust is to run the code finding graythresh and 
%raise or lower value from there 
  
bw = im2bw(cells, level); % Converts image into binary form 
wb = imcomplement(bw); % finds complement of image -- May or may not be  
%neccessary depending on image lighting. If software doesn't work properly, 
%use bw instead of wb for the remainder of the code 
  
  
se2 = strel('disk',2);          %Creates structuring element to slightly sharpen 
the image 
closewb = imclose(wb, se2);     %Closes off structures using above SE 
  
se = strel('line',10,3);        % Same 
closewb2 = imclose(closewb,se); % Same 
  
  
wb2 = bwareaopen(closewb2,150); %Fills tiny hold (under 150px threshold) that 
aren't detected by original conversion 
  
figure(1)        % Shows converted image to demonstrate code is working 
subplot(1,2,1) 
imshow(wb) 
subplot(1,2,2) 
imshow(cells)  
  
% subplot(1,2,1), subimage(cells) 
% xlabel('Initial Image') 
%  
% subplot(1,2,2), subimage(wb2) 
% xlabel('Binary Conversion') 
  
%% Exclusion 
  
% When running this section of code, be sure to carefully follow the steps: 
    % 1.) Run section 
    % 2.) Press '1' followed by enter if you would like to exclude area OR 
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    % Press '0' followed by enter if you want to exit the exclusion process 
        % Only exclude spaces that are not airspaces (mainly vasculature) 
    % 3.) If excluding, click once in every space you would like to exclude 
        % Following clicking every desired space, double click within an 
        % excluded area to end the process. Then exit the image 
    % 4.) If you are done excluding press '0' followed by enter, if not 
    % press '1' followed by enter to exlude more area and repeat the above 
    % steps 
    % 5.) At this point, the image w/ excluded regions will appear for your 
    % verification. If it looks good, move on to the next section, 
    % otherwise, restart this section of code and try again 
         
play = wb2; 
question = 1; 
  
while question == 1 
    question = input('Press 1 to exclude area, press 0 to continue\n' ); 
    if question == 1 
    play = imfill(play); 
        end 
end 
  
xxx = play; 
imshow(xxx) 
  
%% MLI 
  
%This section calculates MLI of the image (not the metric we use but still 
%valuable for comparison) 
  
for i = 1:5 
     
 row_num = 130*i; 
 lines(i,:) = xxx(row_num,:); 
        
end 
  
for i = 1:5 
  
intersect = find(lines(i,:)==1) 
  
a = diff(intersect); 
b = find([a inf]>1); 
length_consec = diff([0 b]) 
number_int(i) = length(length_consec) 
total_exclusion(i) = sum(length_consec) 
Lengths(i) = (940-sum(lines(i,:))) 
  
end 
  
L_m = (Lengths / number_int) % This is MLI 
  
%% Individual Area 
  
%This section calculates a variety of the region properties required for 
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%determination of the enlargement index. 
  
ww = imcomplement(xxx); 
  
stats = regionprops(ww , 'area'); 
Area_Pix = struct2array(stats); 
Area_Actual = (Area_Pix * Pixel_Area); 
  
stats2 = regionprops(ww,'MajorAxisLength'); 
Major_Axis_Length_Pix = struct2array(stats2); 
Major_Axis_Length_Actual = (Major_Axis_Length_Pix*Pixel_Length); 
  
stats3 = regionprops(ww, 'MinorAxisLength'); 
Minor_Axis_Length_Pix = struct2array(stats3); 
Minor_Axis_Length_Actual = (Minor_Axis_Length_Pix*Pixel_Length); 
  
stats4 = regionprops(ww , 'perimeter'); 
Perimeter_Pixel = struct2array(stats4); 
Perimeter_Actual = (Perimeter_Pixel*Pixel_Length); 
  
Diameter_Average = 2*(sqrt(Area_Actual/pi)); 
  
Statistics = [Area_Actual; Diameter_Average; Major_Axis_Length_Actual; 
Minor_Axis_Length_Actual]; 
  
 Average = (Major_Axis_Length_Actual + Minor_Axis_Length_Actual)/2; 
  
 Comp = [Average ; Diameter_Average]; 
  
 %% Using Area to approx diameter 
 %There are two methods to calculate enlargment index 
 %This section assumes every airspace is a circle and back-calculates 
 %diameter from the area (This is innaccurate as you'll see most of the 
 %airspaces are not circular 
  
%  D_0 = mean(Diameter_Average); 
%  Variance_Diameter = var(Diameter_Average); 
%  Skewness_Diameter = skewness(Diameter_Average); 
%   
%  D_1 = ((D_0)*(1+(Variance_Diameter/(D_0)^2))); 
%   
%  D_2 = 
D_0*(1+((((Variance_Diameter)/(((D_0)^2)+Variance_Diameter))*(2+((sqrt(Variance_Dia
meter))*(Skewness_Diameter))/(D_0))))); 
%   
  
%% Using max and min axis 
%This uses the major and minor axis to calculate the enlargement index 
  
D_0 = mean(Average); 
 Variance_Diameter = var(Average); 
 Skewness_Diameter = skewness(Average); 
  
 D_1 = ((D_0)*(1+(Variance_Diameter/(D_0)^2))); 
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 D_2 = 
D_0*(1+((((Variance_Diameter)/(((D_0)^2)+Variance_Diameter))*(2+((sqrt(Variance_Dia
meter))*(Skewness_Diameter))/(D_0))))); 
  
D = [D_0 , D_1 , D_2]    % These are the 3 metrics calculated from the regionsprops 
    % D_0 is simply the average of every major/minor average axis length 
    % average(average(major+minor)) 
    % D_1 weights the index based on its variance in the average diameter 
    % D_2 weights the index based on its variance and skewness in the average 
diameter  
  
%% 
%This final section visually summarizes the analyzed images 
final = (xxx - wb2); 
figure 
  
subplot(2,2,1), subimage(cells) 
xlabel('Initial Image (Pixels)') 
  
subplot(2,2,2), subimage(bw) 
xlabel('Binary Conversion (Pixels)') 
  
subplot(2,2,3), subimage(wb2) 
xlabel('Pre-Exclusion (Pixels)') 
  
subplot(2,2,4), subimage(xxx) 
xlabel('Final Image(Pixels)') 
  
% subplot(2,3,6) 
% xlabel('Closed Binary(Pixels)') 
  
title('100 Pixels is Approximately Equal to 100 micrometers') 
  
%% 
%USE THE FOLLOWING MICROSCOPE SETTINGS 
%BE SURE TO UTILIZE THE BACKGROUND SUBTRACT FEATURE OF THE MICROSCOPY 
%SOFTWARE (FOCUS SCOPE ON HISTOSECTION, REMOVE SLIDE, TAKE PICTURE OF 
%BACKGROUND) REPLACE SLIDE AND CAPTURE IMAGE THEN SUBTRACT BACKGROUN 
  
%USE THE SETTINGS BELOW 
%Setting 3 10xhe  with the 10 x lens 
%QI CAM 12 bit 10x scale bar 
%Non-destructive - set to 500 um 
%Capture 5 randomly located images of every lung section average D_2 values 
%for each sample 
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reinforced personal expertise in this field of research.  
¨ Instructed students how to utilize cell-stretch and animal models, as well as techniques such as cell culture, primary cell 

isolations, animal handling and surgery, tissue collection, Flow Cytometry/FACS, qPCR, , ELISAs, western blotting, 
immunofluorescence and IHC staining, microscopy, immunoassays, and other research skills to study pulmonary 
mechanobiology of disease.  

 
Deans Early Research Initiative –  VCU BME Department 
Virginia Commonwealth University: Richmond, VA  
¨ Selected as a graduate student mentor to work with a high school student over a year long program.  
¨ Designed independent research project proposal for student that was reviewed and assessed. 
¨ Enhanced student’s development of critical skills in biomedical engineering research and research proposal writing. 

2018-2019 
 
 
 
 

 
 

 

2017-2019 
 
 
 

 
 

 

2015-2019 
 
 
 
 
 
 
 

2013-2019 
 
 
 
 
 
 
 
 

2016-2017 
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¨ Mentored students on how to implement cellular and animal models to investigate influence of aging and mechanical forces 
on pulmonary cell and tissue responses.  

¨ Strengthened mentoring, managing, leadership, and communication proficiency. 
¨ Received $500 DERI Travel Grant to attend and present project at a scientific conference. 
 
Teaching Assistant – VCU BME Department     
Virginia Commonwealth University: Richmond, VA  
¨ Assisted EGRB102: Intro to Biomedical Engineering for 4 semesters under 3 different professors. 
¨ Conducted seminars, grading, tutoring, student evaluations, and demonstrations during lecture and lab sessions. 
¨ Managed and designed lab sessions/activities for students independently. 
¨ Contributed to design of lecture and lab curriculum/examinations.  
¨ Further developed communication, public speaking, and teaching expertise.  

 
Peer Teaching Program – UVA Biology Department 
University of Virginia: Charlottesville, VA  
¨ Served as a learning assistant for BIOL2100: Introduction to Biology: Cell Biology and Genetics Laboratory with Dr. David 

Kittleson for 2 semesters. 
¨ Contributed to students’ learning experience and further developed communication and teaching skills by leading lab 

sessions and assisting professor, graduate students, and undergraduate students with assignments and activities. 
¨ Fostered excitement and enthusiasm and promoted further understanding of the material for students and acted as a 

liaison between the students and professor. 
¨ Expanded knowledge and understanding regarding DNA analysis, such as extraction, cloning, transformation, restriction 

mapping, sequencing, and bioinformatics, and enzyme analysis.  

 
 
 

 
2015-2017 

 
 
 
 
 
 

2012-2013 
 
 
 
 
 

 

LEADERSHIP  
 

Community Engagement and Outreach Leader 
Virginia Commonwealth University: Richmond, VA  
¨ Lead and managed several VCU community outreach program sessions : Early Engineers, Teacher Professional 

Development Workshops, STEAM Day Camp, and local Innovation Day events. 
¨ Conducted and assisted activities and demonstrations for community outreach events and programs initiated by VCU 

College of Engineering for students, educators, and administrators in grades K-12.  
¨ Designed and optimized lung modeling STEAM activity for students and teachers in early education.   
¨ Presented “Research and Careers in Regenerative Medicine and Biomedical Engineering” at local high schools and 

college events to encourage students to pursue BME degrees and research experience in the field.  
 
Recruitment Chair – VCU Biomedical Graduate Student Council   
Virginia Commonwealth University: Richmond, VA  
¨ Co-founder of the graduate student organization: Assisted in establishing the VCU charter and forming student council 

to support the Biomedical Engineering graduate student body at VCU. 
¨ Elected Recruitment Chair and Council Member and established the following initiatives:  

¨ VCU BME Prospective Graduate Student Visits 
¨ Recruitment Efforts at Biomedical Engineering Society and other Annual Conferences 
¨ BME Graduate Student Ambassador Program 
¨ Webinar Informational Sessions: Pursuing a Graduate Degree in BME at VCU 

¨ Facilitate all recruiting efforts for prospective graduate students in the Biomedical Engineering program at VCU. 
¨ Responsible for planning, organizing, and implementing events and services that help promote interest and applications 

for the VCU Biomedical Engineering graduate program. 
¨ Served as a representative for the graduate student body in the BME program and liaison between the BME 

administration and student body.  
 
Treasurer – VCU Biomedical Graduate Student Council    
Virginia Commonwealth University: Richmond, VA  
¨ Elected Treasurer of student council organization. 
¨ Established annual budgets to support organization’s imitative programs and events. 
¨ Coordinated with VCU BME financial department and VCU BME graduate dean to secure funding. 

o Procured $20,000 in funding by VCU BME Department and VCU Graduate School. 
o Determined funding allocation to internal committees and sponsored events.   

¨ Generated budget reports that assessed the financial efficiency and efficacy of sponsored initiatives and events.  

2017-2019 
 
 
 
 
 
 

 
2017-2019 

 
 
 
 
 
 
 
 
 
 

 
 

2017-2018 
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RELATED SKILLS 
Laboratory/Research Skills             Computer/Interpersonal Skills 

• Regenerative Medicine 
• Immunoengineering 
• Aging Research  
• Cell Culture 
• Flow Cytometry/FACS 
• Animal Handling 
• Histology 
• Animal Surgery 
• qPCR 
• Immunoassays 
• Tissue Collection 
• Immunofluorescence/IHC 
• Pulmonary Drug 

Development and Delivery 
• Biomechanical Modeling 

and Testing 
• Biomaterial Development 
• Nanoparticle Development 

and Testing 

• Mechanobiology 
• Tissue Engineering 
• Experimental Design 
• Lab Safety 
• Animal Models  
• Cell-Stretch Models 
• Cytology 
• Stem Cells 
• Microscopy 
• Mechanical Ventilation 
• Sample Processing 
• ELISAs 
• Western Blotting 
• Data Analysis 
• Precision Cut Lung 

Slicing (PCLS) 
• Transepithelial 

electrical resistance 
(TEER) Testing 

 

• GraphPad Prism 
• Microsoft Office 
• LabView 
• Quartzy 
• Statistics  
• Image Processing 
• Image Analysis 
• R Programming 
• Communication 
• Problem Solving 
• Leadership 
• Collaboration 
• Consulting 
• Creative Thinking 

• Image J/FIJI 
• MATLAB 
• Adobe Acrobat 
• Grant Writing 
• Teaching 
• Mentoring 
• Public Speaking 
• Teamwork 
• Project 

Management 
• Networking 
• Conflict 

Management 
• Interviewing 

 

AWARDS AND HONORS 
 
 
 
 
 
 

2014-2015 
 
 
 
 

 
 
 
 

2013-2015 
 
 
 
 
 
 
 

2011-2013 

 

VCU Graduate School Travel Grant Award (5x) 

VCU Engineering Graduate School Travel Grant Award (5x) 

VCU Board of Visitors Student Representative 

World Congress of Biomechanics Travel Bursary Award  

Virginia Academy of Science Best Student Presentation Award 

2015-2019 

2015-2019    

2018 

2018 

2018 

PROFESSIONAL SOCEITY MEMBERSHIPS 
 

 

Sigma Xi, Scientific Research Honor Society 

Virginia Academy of Science (VAS) 

Virginia Biotechnology Association (VA Bio) 

American Physiological Society (APS)  

Biomedical Engineering Society (BMES) 
 
 

 

2018-PRESENT 

2016-PRESENT 

2016-PRESENT 

2016-PRESENT 

2015-PRESENT 
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PEER-REVIEWED PUBLICATIONS 
 

1. Robert A. Pouliot, Patrick Link, Nabil Mikhaiel, Matthew Schneck, Michael S. Valentine, Franck J. Kamga Gninzeko, Joseph A. 
Herbert, Masahiro Sakagami, Rebecca L. Heise. Development and characterization of a naturally derived lung extracellular 
matrix hydrogel. Journal of Biomedical Materials Research Part A. doi:10.1002/jbm.a.35726. 2016. 

 

2. Joseph A. Herbert, Michael S. Valentine, Nivi Saravanan, Matthew B. Schneck, Ramana Pidaparti, Alpha A. Fowler III, Angela 
M. Reynolds, Rebecca L. Heise, Conservative fluid management prevents age-associated ventilator induced mortality. 
Experimental Gerontology, Volume 81, August 2016, Pages 101-109, ISSN 0531-5565, 
http://dx.doi.org/10.1016/j.exger.2016.05.005. 

 

3. Michael S. Valentine, Patrick Link, Joseph Herbert, Matthew Schneck, Keerthana Shankar, Jewel Nkwocha, Angela M. 
Reynolds, Rebecca L. Heise. Inflammation and Monocyte Recruitment due to Aging and Mechanical Stretch in Alveolar 
Epithelium are Inhibited by the Molecular Chaperone 4-phenylbutyrate. Cellular and Molecular Bioengineering, June 2018. 
https://doi.org/10.1007/s12195-018-0537-8 

 

4. Patrick A. Link, Alexandria M. Ritchie, Gabrielle M. Cotman, Michael S. Valentine, Bret S. Dereski, Rebecca L. Heise. 
Electrosprayed ECM Nanoparticles Induce a Pro-regenerative Cell Response. Journal of Tissue Engineering and Regenerative 
Medicine, October 2018. DOI:10.1002/term.2768 

MANUSCRIPTS IN REVIEW/PREPARATION 
 

 

1. Kamga Gninzeko FJ, Valentine MS, Tho CK, Chindal SR, Boc S, Dhapare S, Momin MM, Hassan A, Hindle M, Farkas D, Longest 
PW, Heise RL: Excipient Enhanced Growth (EEG) Aerosol Surfactant Replacement Therapy In An In Vivo Rat Lung Injury Model. 
J Aerosol Med Pulm Drug Deliv. Jan 2020 (In review). 

 

2. S. B. Minucci, R. L. Heise, M. S. Valentine, F. J. Kamga Gninzeko, A. M. Reynolds.  Understanding the Role of Macrophages in 
Lung Inflammation Through Mathematical Modeling. Journal of Theoretical Biology. April 2020 (In review) 

 

3. Michael S. Valentine, Franck J. Kamga Gninzeko, Cynthia Tho, Cynthia Weigel, Sarah Spiegel, Rebecca L. Heise. Macrophage 
Polarization and Sphingosine-1-Phosphate (S1P) Signaling in the Lung are Impaired by Aging and High Pressure-Controlled 
Mechanical Ventilation. Aging and Disease. (In preparation) 

 

CONFERENCE PRESENTATIONS 
 

1. Herbert J, Valentine M, Patel P, Pidaparti R, Reynolds A, Heise R. The Effect of Age on the Severity of Ventilator Induced Lung 
Injury in an Aging Mouse Model. Poster presentation, American Thoracic Society, 2014; San Diego, CA.  

 

2. Schneck MB, Valentine M, Herbert JA, Pidaparti R, Reynolds A, and Heise RL. 2015. Quantification of Airspace Enlargement 
due to Ventilator Induced Lung Injury in an Aging Lung Model. Poster Presentation, Biomedical Engineering Society, 2015 
Annual Meeting, Tampa, FL. 

 

3. Gninzeko FK, Valentine M, Herbert J, Schneck M, Heise R. Cellular Endoplasmic Reticulum Stress and Cytokine Response in 
Age-Associated Experimental Ventilator Induced Lung Injury. Poster Presentation, Biomedical Engineering Society, 2016 
Annual Meeting, Minneapolis, MN. 

 

4. Herbert J, Valentine M, Patel P, Pidaparti R, Reynolds A, Heise R. Age Related Changes in Pulmonary Mechanics and 
Inflammatory Response to Experimental Ventilator Induced Lung Injury. Oral Presentation, Biomedical Engineering Society, 
2014; San Antonio, TX  

 

5. Herbert J, Valentine M, Patel P, Nkwocha J, Fowler A, Pidaparti R, Reynolds A, Heise R. Aging and Mechanical Stretch Increase 
Inflammatory Gene Expression and ER Stress in In Vitro and In Vivo Models of Lung Injury. Oral Presentation, Biomedical 
Engineering Society, 2015; Tampa, Fl.  

 

6. Valentine M, Herbert J, Gninzeko FK, Schneck M, Reynolds A, Heise R.  Alveolar Type II Epithelial Cells Exhibit Age-dependent 
Differential Response to Mechanical Stretch and Monocyte Recruitment. Oral Presentation, VCU ACHOO Series, September 
21, 2016; Richmond, VA.  
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7. Valentine M, Herbert J, Gninzeko FK, Schneck M, Reynolds A, Heise R.  Alveolar Type II Epithelial Cells Exhibit Age-dependent 
Differential Response to Mechanical Stretch and Monocyte Recruitment. Oral Presentation, Biomedical Engineering Society, 
2016; Minneapolis, MN.  

 

8. Gninzeko FK, Valentine M, Herbert J, Link, P, Reynolds A, Heise R. Age as a Factor of Endoplasmic Reticulum Stress in 
Ventilator Induced Lung Injury. Poster Presentation, Virginia Academy of Science Annual Meeting, 2017; Richmond, VA. 

 

9. Valentine M. Research and Careers in Regenerative Medicine and Biomedical Engineering. Oral Presentation, Colonial 
Heights STEM Night, 2017; Colonial Heights, VA. 

 

10. Valentine M, Gninzeko FK, Herbert J, Link P, Parekh M, Shankar K, Reynolds A, Heise R. Advanced Age Alters Cytokine 
Secretion and Macrophage Polarization in a Pressure-Controlled Ventilator-Induced Lung Injury Mouse Model. Poster 
Presentation, Graduate Research Symposium, 2018; Richmond, VA. 

 

11. Valentine M, Gninzeko FK, Herbert J, Link P, Parekh M, Shankar K, Heise R. Aging and Mechanical Stretch Influence Alveolar 
Epithelial Injury Responses and Monocyte Recruitment. Oral Presentation, Virginia Academy of Science Annual Meeting, 
2018; Farmville, VA. 

 

12. Ritchie A, Link P, Valentine M, Cotman G, Heise R. Nanoparticles formed from porcine lung extracellular matrix guide pro-
regenerative macrophage phenotype in vitro and in vivo. Oral Presentation, Virginia Academy of Science Annual Meeting, 
2018; Farmville, VA. 

 

13. Valentine M, Gninzeko FK, Herbert J, Link P, Parekh M, Shankar K, Reynolds A, Heise R. The Impact of Aging and Mechanical 
Stretch on Monocyte Recruitment and Macrophage Polarization in Experimental Ventilator-Induced Lung Injury. Oral 
Presentation, World Congress of Biomechanics, 2018; Dublin, Ireland. 

 

14. Valentine M, Link P, Gninzeko FK, Parekh M, Ritchie A, Cotman G, Reynolds A, Heise R. Macrophage Polarization and 
Reprogramming Using ECM Nanoparticles in Experimental Lung Injury. Poster Presentation, Biomedical Engineering Society, 
2018; Atlanta, GA. 

 

15. Gninzeko FK, Valentine M, Chindal S, Boc S, Dhapare S, Hindle M, Farkas D, Longest PW, Heise R. Aerosolized Surfactant 
Replacement Therapy In An In Vivo Rodent Lung Injury Model. Oral Presentation, Summer Biomechanics, Bioengineering, and 
Biotransport Conference, 2019; Seven Springs, PA.  

 

16. Valentine M, Gninzeko FK, Chindal S, Parekh M, Reynolds A, Heise R. High Pressure-Controlled Mechanical Ventilation 
Induces Age-Specific Alterations in Lung Tissue Mechanics and Macrophage Polarization. Poster Presentation, Graduate 
Research Symposium, 2019; Richmond, VA. 

 

17. Valentine M, Gninzeko FK, Chindal S, Parekh M, Weigel C, Reynolds A, Spiegel S, Heise R. Mechanical and Cellular Changes 
Induced by Aging and High Pressure-Controlled Mechanical Ventilation. Oral Presentation, Virginia Academy of Science 
Annual Meeting, 2019; Farmville, VA. 

 

18. Valentine M, Gninzeko FK, Chindal S, Parekh M, Weigel C, Spiegel S, Heise R. Macrophage Polarization and Sphingosine-1-
Phosphate (S1P) Signaling in the Lung are Impaired by Aging and High Pressure-Controlled Mechanical Ventilation. Poster 
Presentation, Gordon Research Conference, 2019; Lewiston, ME.  

 

19. Valentine M, Gninzeko FK, Chindal S, Parekh M, Weigel C, Spiegel S, Heise R. Age-Specific Alterations in Lung Mechanics and 
Macrophage Polarization Induced by High Pressure-Controlled Mechanical Ventilation Are Impaired via Diminished 
Sphingosine-1-Phosphate. Oral Presentation, Biomedical Engineering Society, 2019; Philadelphia, PA.  
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