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Abstract 

Overactive bladder (OAB) is a chronic filling phase condition affecting approximately 

20% of adults in the United States. It is a complex disorder with often difficult to assess causes. 

Detrusor overactivity (DO) is the presence of isolated, sporadic or periodic non-voiding 

contractions in the detrusor (bladder) muscle during filling and is present in some individuals with 

OAB. DO is currently identified visually during an invasive procedure called a urodynamics (UD) 

study that involves urethral and rectal pressure catheters and filling and voiding of the bladder to 

evaluate its function. UD studies do not currently provide objective metrics for the diagnosis of 

DO. In addition, UD provides limited subtyping of DO, and an incomplete understanding of the 

biomechanical mechanisms that contribute to OAB in some individuals. 

Aim 1 of this study was to develop objective tools to quantify, subgroup and better 

understand rhythmic DO. Using fast Fourier transforms, an objective algorithm for quantification 

of rhythmic DO was developed and implemented on retrospective bladder pressure data. During 

the retrospective study, the automated algorithm objectively identified a subgroup of participants 

with DO, quantified frequency and amplitude of the rhythmic DO, and provided a visual model 

for verification against the original data. The algorithm was then refined and applied during a 

prospective study in which participants were grouped by OAB symptoms and by the presence or 

absence of rhythmic DO. During the prospective study, rhythmic DO was characterized throughout 

filling and the amplitude of rhythmic activity correlated with OAB symptoms. The results indicate 

that high amplitude rhythmic DO may represent a clinically significant OAB subtype. 

Aim 2 focused on dynamic elasticity (DE), which is a biomechanical bladder property that 

was identified in humans during a previous pilot UD study. DE may contribute to acute regulation 

of bladder wall tension during filling. The present research characterized dynamic elasticity in a 
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larger group of participants, including those with and without OAB symptoms. A conceptual 

model linking DO and dynamic elasticity was developed to describe how the presence or absence 

DO may affect the regulation of bladder wall tension through the mechanisms of dynamic 

elasticity. This study identified a significant association between the presence of dynamic elasticity 

and the absence of DO, which supports the conceptual model and explains how DO could 

contribute to increased bladder wall tension during bladder filling and therefore contribute to OAB. 

Aim 2 also contributed to the development of an ex vivo pig bladder model to study 

dynamic elasticity. A study comparing an invasive catheter filling method with a less invasive 

external compression method of manipulating dynamic elasticity was completed in the pig model. 

The pig bladder studies showed that dynamic elasticity could be quantified in this model, and non-

invasive compression produced similar changes in dynamic elasticity as the invasive UD method 

used clinically. 

In summary, novel tools to detect and quantify DO in a more objective fashion were 

developed and used to characterize a rhythm-mediated DO subtype and provide evidence that high 

amplitude rhythmic DO may be clinically significant. Dynamic elasticity was characterized in 

individuals with and without OAB and in an isolated pig bladder model, and a novel dynamic 

elasticity index was defined. Furthermore, the conceptual model linking detrusor overactivity and 

dynamic elasticity was tested, and a significant association between dynamic elasticity and the 

absence of DO was identified, indicating that DO may alter the bladder’s ability to regulate wall 

tension through dynamic elasticity. These new techniques for quantifying DO and characterizing 

dynamic elasticity provided important insight into the regulation of bladder wall biomechanics 

through dynamic elasticity and how this regulation may be altered by DO in individuals with OAB.  
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Chapter 1 - Introduction and Motivation 

1.1 Anatomy and Bladder Function 

 The upper urinary tract consists of a pair of bean-shaped kidneys. These organs filter the 

blood of toxins, regulate minerals in the blood and maintain fluid balance by removing excess 

water. As it is filtered from the blood, this mixture, known as urine, is transported through muscular 

tubes, called ureters, to the lower urinary tract where it finally enters the bladder. It is stored in the 

bladder during the collection, or filling, phase before eventually being evacuated through the 

urethra during voiding1.  

 The urothelium is the innermost mucosal layer of the human bladder and is made up of five 

to seven epithelial cell layers. The lamina propria is the submucosal layer made up of collagen and 

provides support to the bladder wall. The detrusor is the muscular layer of the bladder and is 

characterized by three alternating layers of smooth muscle fibers2. 

These layers allow the bladder to perform several important functions during the collection 

phase. The urothelium helps maintain watertight containment preventing dangerous urine from 

seeping into different layers. The lamina propria and detrusor enable the bladder to maintain an 

efficient shape while being compliant to allow low pressure filling which prevents harmful reflux 

to the kidneys. When voiding, the detrusor smooth muscle contracts to provide the force needed 

to adequately empty. The bladder wall also provides filling sensation information to the brain 

through tension or strain sensors3. 

Three specific mechanical parameters directly affect the detrusor wall tension and therefore 

sensation, as shown in the model in Figure 1.1. Those parameters are the geometry of the bladder; 

its dynamic elasticity, a material property that gives it the ability to acutely regulate wall tension; 
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and spontaneous, non-voiding, often rhythmic contractions of the detrusor (bladder) smooth 

muscle4–6. These parameters affecting the load on the bladder tension sensor shown in Figure 1.1 

are described in detail in Chapter 2. Afferent nerves sense changes in bladder wall tension and the 

neural system processes activity from the brain and spinal cord to provide the sensation of bladder 

fullness and the desire or urgency to void7. A defect in one or more of these parameters could lead 

to bladder dysfunction, such as altered sensation during filling.  This project will focus on 

developing objective tools to quantify and relate the parameters of spontaneous rhythmic 

contractions and dynamic elasticity. 

 
Figure 1.1: Detrusor tension sensor model. Tension sensor model showing mechanical factors 

affecting bladder sensation.  

 

1.2 Overactive Bladder 

 Overactive bladder (OAB) is a chronic filling-phase condition that affects about one in five 

adults in the United States8. It is defined as elevated urinary urgency, often without identifiable 

causes and is usually associated with increased daytime frequency or nighttime nocturia, which 

means an individual has to wake one or more times throughout the night to void9.  

 OAB has many potential, but difficult to identify, causes. A change in the smooth muscle 

making up the detrusor wall could cause a change in wall tension for a given volume, altering the 
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degree of sensation associated with that volume. This change could be due to mechanical defects 

in the muscle, inflammation, aging or bladder outlet obstruction. Neurogenic factors due to damage 

to the brain or spinal cord could lead to changes in the bladder wall. Events in the past could 

influence individuals psychologically causing them to perceive sensation incorrectly, or OAB 

could be due to lifestyle factors such as excessive hydration or caffeine intake causing an 

overproduction of urine. Metabolic factors or certain medications they are taking could also affect 

urine production. 

 OAB is complex and has a large societal impact. Psychological effects are caused by this 

condition, with almost a third of people reporting that OAB symptoms also give them feelings of 

depression. It is important to note, however, that is unclear whether the OAB symptoms lead to 

depression or whether similar neurochemical abnormalities are present that cause both OAB and 

depression10.  There is also a physical impact it can have on individual. Due to increased frequency 

of voiding and rushing to get somewhere to void, those with OAB have an increased risk of falling 

of up to 30%8. 

1.3 Challenges Assessing OAB 

Despite OAB’s prevalence and its high impact, both physically and psychologically, there 

is only a limited understanding of this condition. The current gold standard for bladder filling and 

voiding evaluation, a urodynamic (UD) study9,11, measures bladder pressure during filling. Bladder 

wall tension affecting the load on the tension-sensitive nerves in the bladder wall responsible for 

sensation is affected by bladder wall geometry and material properties in addition to bladder 

pressure3,12.  As a result, measuring pressure during a UD study does not fully characterize detrusor 

wall tension during bladder filling. However, for a given volume and geometry, an increase in 

pressure would correlate with an increase in wall tension, such as during a non-voiding bladder 
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contraction. As a result, pressure measurements during UD studies are used to identify non-voiding 

contractions during filling; however, this process involves subjective, visual interpretation of 

pressure signals and more objective and quantitative techniques are needed.  UD studies can also 

quantify large, clinically significant increases in pressure between empty and full volumes, which 

identify bladders with low compliance due to chronic disorders such as bladder wall hypertrophy 

resulting from bladder outlet obstruction9,13–15. However, in the absence of subjective, visually 

identifiable pressure increases caused by non-voiding contractions, a single UD fill does not 

identify acutely regulated changes in bladder wall material properties from one fill to the next 

which may contribute to OAB16.  Thus, current UD studies can be ineffective at fully diagnosing 

the causes of OAB, and there exists a lack of objective metrics to sub-categorize different forms 

of OAB that prevents more specific diagnoses such as identifying OAB that is mediated by changes 

in bladder shape, acute changes in bladder wall elasticity or elevated spontaneous rhythmic 

contractions3,17,18. 

 A UD study is an invasive and potentially painful and embarrassing test that causes 

participants anxiety19. In addition, these tests provide only subjective bladder sensation 

information, and while objective pressure data is obtained, often these data must be visually 

interpreted. This leads to the potential for bias when diagnosing the condition. Though highly 

trained, urodynamicists must interpret the results, and they are sometimes unable to make 

definitive diagnoses due to inconclusive results. 

 The lack of objective metrics and subgroups for OAB also affects treatment. The severity 

of the condition cannot currently be objectively graded in individual patients. By not understanding 

the specific cause of a particular case of OAB, the current treatment options can be ineffective if 

they do not match the particular cause8. Potential causes of the ineffectiveness of these treatments 
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are a lack of identified subgroups for targeted prescription of specific treatments and an inability 

to objectively quantify treatment effectiveness. The goal of the present project was to develop tools 

to objectively detect and quantify changes in bladder pressure during UD studies that can be used 

to evaluate and subgroup OAB.  

 This dissertation has six chapters, including the introduction and motivation in Chapter 1. 

The remaining chapters are organized as follows. In Chapter 2, important background information 

and relevant literature are discussed. Chapter 3 describes the research objectives including the 

specific aims of this dissertation. Chapter 4 concentrates on Aim 1, the objective quantification of 

spontaneous rhythmic bladder contractions. Chapter 5 focuses on Aim 2, the characterization of 

bladder dynamic elasticity. The final chapter, Chapter 6, discusses the conclusions from this 

research, as well as potential future directions. 
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Chapter 2 - Background 

This chapter discusses relevant background information necessary to understand and 

motivate the research objectives and is organized into four subsections. The first subsection 

discusses urodynamics studies which are used clinically to evaluate bladder function and were 

used extensively to collect the data analyzed in this research. The second subsection discusses 

spontaneous rhythmic bladder contractions, including their proposed role in bladder biomechanics. 

The second subsection also discusses methods for detecting and measuring spontaneous rhythmic 

contractions, which is the focus of the first specific aim of this dissertation. The third subsection 

discusses the material property of the bladder known as dynamic elasticity, or reversible strain 

softening, which is one focus of the second aim of this dissertation. The final subsection will 

discuss a potential link between spontaneous rhythmic contractions and dynamic elasticity which 

is another focus of the second specific aim. 

2.1 Urodynamics Studies 

 The current gold standard for bladder evaluation and assessment of the function or 

dysfunction of the lower urinary tract, including the identification of detrusor overactivity is a UD 

study9. These studies are used to evaluate detrusor muscle function by measuring bladder pressure 

during filling and pressure and flow during voiding.  

 A standard UD study involves a catheter being placed into the bladder through the urethra. 

This catheter measures bladder pressure through one of three common arrangements, a water-filled 

catheter with external transducer or an air-filled catheter with either an external transducer or a 

catheter-tip transducer. These transducers must be accurate enough to adequately measure 

variation between 1-2.5 cm-H2O to sufficiently detect physiological changes across a range of -
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30-250 cm-H2O. A UD system must also have an analog to digital convertor capable of recording 

bladder pressure and flow with sampling frequency of at least 3 Hz according to the International 

Continence Society Guidelines on Urodynamic Equipment Performance, while UD practices 

suggest a sampling frequency of 10 Hz20,21. The UD systems used in this research collect data with 

an air-filled catheter that transmits pressure directly to the external transducer at a sampling 

frequency of 10 Hz. The urethral catheter allows for infusion of saline through an infusion pump. 

This infusion pump requires an adjustable infusion rate, and the system records infusion rate as 

well as infused volume. The final function of the urethral catheter is to permit the withdrawal of 

saline or urine throughout the study20. 

A second catheter is placed into the rectum or other abdominal cavity to measure 

abdominal pressure during the UD study. This pressure is important to differentiate pressure 

fluctuations caused by bladder activity from those caused by other bodily processes. 

Electromyography measurements are also taken during a UD study to record pelvic floor or 

sphincter muscle activity20. 

While it is the current gold standard, a UD study is an invasive test involving catheters in 

the bladder and another cavity, and in some cases needles for electromyography measurement. 

This invasive test currently focuses on measuring detrusor pressure, which is the difference 

between the vesical pressure measured by the bladder catheter and the abdominal pressure 

measured by the rectal catheter. Detrusor pressure is objective data that is clinically useful for 

identifying detrusor overactivity, as described in Chapter 1, but pressure alone cannot fully 

characterize changes in detrusor wall tension because UD studies do not measure bladder 

geometric parameters which are needed to relate the pressure to wall tension16.  
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2.2 Bladder Contractile Activity 

This subsection includes background information pertaining to bladder contractile activity 

during filling, including a bladder disorder identified during UD known as detrusor overactivity. 

Fast Fourier transform (FFT) methods used to quantify contractile activity throughout this 

research are discussed, along with the steps taken to prepare data for analysis and why they are 

necessary. In addition, a specific type of detrusor overactivity, spontaneous rhythmic contractions, 

that is the subject of the first specific aim of this research is discussed. 

 2.2.1 Detrusor Overactivity 

Detrusor overactivity is a urodynamic observation identified through involuntary 

contractions of the detrusor. These involuntary contractions can occur in several forms9. They can 

be rhythmic, meaning they produce periodic pressure fluctuations throughout filling (Fig 2.1A). 

DO can also be isolated or sporadic non-voiding contractions during filling (Fig 2.1B)22 or DO can 

be terminal, characterized by a single non-voiding contraction near capacity resulting in 

involuntary bladder voiding23.  A major focus of this project is the development of signal 

processing algorithms to quantify rhythmic DO. 
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Figure 2.1: Urodynamic pressure tracing. A urodynamic pressure tracing showing (A, blue circle) 

rhythmic DO and (B, blue circle) isolated DO24. 

2.2.2 Signal Processing 

A Fourier Transform is a mathematical function that decomposes a function or signal into 

a sum of sinusoidal waves of different amplitudes and frequencies that make up that signal. An 

FFT is a popular form of Fourier Transform that utilizes computers and symmetrical properties of 

periodic waveforms to reduce calculations (Figure 2.2)22. FFT allows a signal to be analyzed across 

a spectrum of frequencies to determine what frequency content makes up the signal. While not 

considered in this research, it is important to note that FFT also reports phase information. FFT 

also allows data quantification based on what underlying waveforms make up the entire signal. 

The example of FFT analysis shown in Figure 2.2 was performed using MATLAB (R2016A, 

MathWorks, Natick, MA), which was used throughout this project. The ideal sine wave in panel 
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A has a frequency of 5.0 Hz and an amplitude of 1.0. The FFT output in panel B has a peak at the 

expected frequency of 5.0 Hz and an amplitude of 1.0.  

 
Figure 2.2: Ideal fast Fourier transform. (A) An ideal sine wave and (B) corresponding FFT 

output demonstrating the conversion from the time to frequency domain that occurs during FFT 

analysis. 

 

 Analog signals represent a continuous physical variable that varies with time. When 

analyzing data using a digital computer for processing, the analog signal must be converted to 

digital form that is an adequate representation. Transducers convert an analog signal into a digital 

signal that follows the variations with time by collecting a value from the signal at discrete time 

intervals. Collection of instantaneous values at discrete times is known as sampling.  
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The Nyquist Sampling Theorem states that to adequately represent a signal, it must be 

sampled at a rate higher than twice the frequency of interest25. If data is not sampled adequately, 

aliasing can occur. Aliasing is the result of under-sampling that produces an incorrect 

representation of the signal (Figure 2.3). For example, if data is collected at a sampling rate of 

10Hz, then according to the Nyquist Sampling Theorem, the highest frequency that could 

adequately be reproduced would be 5Hz (300 cycles/min)25. 

 
Figure 2.3: Effects of under-sampling a signal. An example demonstration of the effects of under-

sampling showing (A) the original signal with frequency 0.1 Hz, (B) points being sampled at a 

rate of 0.15 Hz (red circles) which is too low to preserve the original signal and (C) the recreated 

signal 

 

 

 Once data has been collected and recorded, it must still undergo further preparation before 

FFT analysis. For this research, data preparation occurs in three steps (Figure 2.4). The first is 
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filtration using a 10-point smoothing filter that passes low frequencies and attenuates higher 

frequencies, which was chosen because the frequencies of interest are much lower than the 

sampling frequency (1.75-8 cycles/min vs. 600 cycles/min respectively). 

 The next step in the data preparation was to remove any steady state pressure offset from 

the signals. The effect of any steady state offset is reduced by linearly detrending the data. This 

process fits a line to the signal and then subtracts that line from the signal to remove the linear 

trend and allow for more accurate frequency spectra. 

 

Figure 2.4: Data preparation steps for FFT analysis. (A) A raw noisy signal with a linear trend 

and (B) corresponding FFT output for that signal. (C) The signal after applying a 10-point 

smoothing filter and (D) corresponding FFT output. (E) The signal after being linearly detrended 

and (F) corresponding FFT output which shows a clear distinct peak with a smaller scale to 

clearly see the peak. 

 

When analyzing data using a Fourier Transform, the analysis assumes a signal of infinite 

length. Using sampled data of finite-length is possible, but the transform will simulate infinite 

length by continuing from the first point after the last point. In many practical applications, these 

values are not equal leading to the introduction of noise in the frequency spectrum due to the 

discontinuity. To smooth any discontinuities at the beginning and end of the sampled data, a Hann 
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or Hanning window was applied by multiplying the sampled signal by a tapered cosine window 

26. Both Hamming and Hanning windows were considered for this work and the later was selected 

because it more exactly cancels the sidelobes by reaching zero at both ends of the signal when 

eliminating discontinuities26. It is important to note that an amplitude correction factor of 2.0 is 

necessary when quantifying amplitudes after applying the Hanning window to a signal. 

2.2.3 Spontaneous Rhythmic Contractions 

 During filling, the bladder develops tone and can exhibit local contractions and 

relaxations27. This contractile activity is believed to be myogenic and may be reinforced by 

signaling from the urothelium and lamina propria28,29. Spontaneous rhythmic contractions have 

been shown in both mammalian30–32 and human29,33,34 DSM during the bladder filling phase in the 

form of phasic non-voiding contractions that are low in amplitude when compared to maximal 

KCL-induced contractions35. They are thought to occur with the role of maintaining bladder tone 

throughout filling and allowing for an active voiding contraction to occur at any volume18. 

Studies have shown spontaneous rhythmic contractions to be elevated in DSM samples 

taken from patients with OAB36 and in bladders with DO3,34 when compared to normal bladders. 

Furthermore, these contractions have been shown to increase in amplitude, but not frequency in 

whole pig bladders with increasing volume37. This could suggest rhythmic contractions are a 

mechanism for the modulation of the detrusor muscle across a broad range of operating volumes 

and that a disorder involving rhythmic contractions is related to the presence of urgency as well as 

phasic DO18,38. 

Spontaneous rhythmic contractions have been identified over a range of frequencies39. 

Biers et al showed in human detrusor strips that rhythm in tension tracings occurred between 1.8-
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2.6 cycles/minute40. Drake et al measured micromotion between sensors placed on a balloon and 

filled inside the bladder during UD studies and identified frequencies of 2-5 cycles/minutes3. 

Bladder smooth muscle cells have shown action potentials at a frequency of 7.9 per minute41.  

The first study correlating in vitro human urinary bladder pressure waves with those found 

in human bladder strip analysis showed the potential FFT had as a tool for quantification and 

characterization of spontaneous rhythmic contractions in data obtained during UD studies33. This 

study by Colhoun et al showed an average frequency of 2.34 cycles/minute when analyzing UD 

study tracings, which was consistent with the other finding of a mean frequency of 1.97 

cycles/minute in human detrusor strips33. Peaks in amplitude in the frequency domain were 

identified visually before further analysis. For the UD data, the peak FFT amplitudes were 

compared to thresholds corresponding to a large vesical pressure amplitude relative to the rest of 

the signal (Figure 2.5B, Threshold 1) and also compared to the overall abdominal pressure signal 

(Figure 2.5B, Threshold 2) to confirm it was not caused by other bodily functions33. Aim 1 of the 

current project was to develop a tool for objective quantification and identification of spontaneous 

rhythmic contractions and characterized them throughout filling. 
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Figure 2.5: Visually identified spontaneous rhythmic contractions and FFT analysis. Pressure 

tracing of Pves (blue) and Pabd (red dashed) signals in the (A) time domain showing pressure 

fluctuations and (B) corresponding frequency transformation with a peak corresponding to the 

pressure fluctuations showing spontaneous rhythmic contraction frequency and amplitude33. 

 

2.3 Dynamic Elasticity of the Bladder 

 This subsection will cover background information about dynamic elasticity of the bladder. 

It will describe the material property of strain-induced stress softening. Studies identifying it as 

reversible in smooth muscle strips and the function of active and passive pressures within the 

bladder will be discussed. A pilot study quantifying dynamic elasticity clinically will be reviewed 

including the pilot study protocol and study limitations. Finally, the pig experimental set up used 

to investigate dynamic elasticity in whole pig bladders will be explained. 
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2.3.1 Strain-induced Stress Softening 

 Strain-induced stress softening was originally shown to be a property of rubber known as 

the Mullins’ effect42. This “strain softening” is the loss of stiffness or softening in a material after 

a stretch to a new force43. Strain softening results in a lower stress for the same applied strain and 

explains the phenomonon of preconditioning44. The most strain softening is caused by the first 

loading cycle and then less softening occurs in subsequent cycles of loading and unloading until 

an equilibrium is reached45. Strain softening only appears for strains equal or less than those 

already applied, and strains beyond that will show a similar stress response as initial loadings45. 

A common analogy for the strain softening effect when considering the bladder is a latex 

balloon. A previously unstretched balloon is difficult to inflate and has very stiff walls leading to 

high wall tension. After stretching or inflating it, the next few fills require less pressure with each 

subsequent fill due to broken polymer chains42. In the case of the latex balloon, and typically when 

considering most materials, strain softening is irreversible45. Studies involving smooth muscle, 

however, have shown this to be reversible after the muscle has been activated46. 

2.3.2 Dynamic Length-Tension Relationship in DSM 

Within the bladder, tension can be divided into preload and active components. Preload, or 

“passive,” tension allows the bladder to retain its shape during filling. The preload tension in 

detrusor smooth muscle was previously attributed to passive structures (collagen and elastin) and 

tension-maintaining actomyosin cross-links46,47. Studies suggest, however, that slowly cycling 

cross-bridges also contribute to the preload stiffness48. These cycling cross-bridges may ensure 

that the detrusor smooth muscle can operate over a broad range of working lengths47. Active 

tension is caused by the contraction itself and provides the force that drives voiding.  
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Historically, the preload and active relationships of length and tension were believed to be 

static. More recently, studies have shown these relationships to be dynamic and have challenged 

the static assumption in tracheal smooth muscle49 and bladder smooth muscle50. When conducting 

experiments, smooth muscle tissues usually undergo cyclic stretching to achieve consistent results 

in a process known as preconditioning51. The resulting change in steady-state stiffness in following 

loadings is thought to be the result of strain softening and is shown schematically in Figure 2.6 

(black arrow, green to blue line). 

 

Figure 2.6: Dynamic length-passive tension curves. Passive tension as a function of length for an 

initial loading (stretch 1, green) and passive tension at the same lengths for subsequent loadings 

(stretch 2, blue) resulting in strain softening (black arrow, green to blue line). Passive tension 

after strain softening reversal (stretch 3, red) which in smooth muscle results from muscle 

activation (dashed arrow, blue to red line). 
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Rabbit detrusor strips were shown to have irreversible strain softening when undergoing 

cyclic loading while the tissue remained in a calcium-free solution. These strips were shown to 

behave in a similar manner to latex strips also undergoing cyclic loading52. Both showed peak 

stiffness during the first loading before dropping and eventually having similar response to 

subsequent loadings, both documented features of strain softening. After potassium induced 

contractions, the strips regained stiffness and reversed the strain softening that had occurred(Figure 

2.6, dashed arrow, blue line to red line)46. Similar findings have been shown in other smooth 

muscles from rat esophagus53. 

An additional study into this reversible strain softening was conducted to validate the 

theory of a dynamic relationship between preload length and tension due to muscle strain and 

activation history54. By demonstrating a similar contraction strength (active force) before and after 

strain softening, but a difference in steady state tension (passive force), this study showed that the 

passive stiffness of detrusor muscle is adjustable, not static, as well as reversible52. Reversible 

strain softening has been shown in human detrusor strips55. 

2.3.3 Pilot Study of Dynamic Elasticity of the Human Bladder 

In addition to human detrusor strips, reversible strain softening has also been identified 

clinically in human bladders during a limited pilot study that termed the material property 

“dynamic elasticity”. The pilot study used a comparative-fill urodynamics protocol involving a 

clinical fill and four subsequent fills and compared pressures during each fill to quantify dynamic 

elasticity (Figures 2.4 and 2.5)56. When quantifying dynamic elasticity, the method in which the 

bladder is emptied contributes directly to the response observed in the following fill. 
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Figure 2.7: Pilot study comparative-fill urodynamics protocol. Comparative-fill urodynamics 

protocol used to identify dynamic elasticity56. 

 

The clinical fill was used to determine cystometric capacity (CCap, Figure 2.7, vertical 

axis) and was followed by an active void to contract the bladder and reset any strain softening. 

Following an active void, a baseline bladder pressure was measured, during Fill 1 (Figure 2.7, blue 

line) of the comparative-fill protocol. This fill went to 30% CCap and was followed by a passive 

emptying of the bladder through syringe aspiration to avoid an active contraction that would be 

expected to reset strain softening so that the loss of elasticity could be quantified in Fill 2 (Figure 

2.7, green line). During Fill 2, the bladder was further strain softened by filling to a volume of 60% 

CCap. This was followed again by passive emptying, and the additional strain softening from the 

increased volume could be quantified during Fill 3 (Figure 2.7, red line). After quantifying the 

additional strain softening during Fill 3, the participant’s bladder was filled completely followed 

by another active void to reset strain softening. The degree of strain softening reversal was 

quantified during Fill 4 (Figure 2.7, yellow line). 

The baseline pressure, which occurred after an active void, was recorded during Fill 1 

(Figure 2.8, blue bar). Passively emptying the bladder following Fills 1 and 2 prevented an active 

contraction from resetting strain softening, and decreased pressures were observed during Fill 2 
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and Fill 3 (Figure 2.8, green and red bars). Finally, the bladder was actively voided to reset strain 

softening following Fill 3, and increased pressure was observed during Fill 4(Figure 2.8, yellow 

bar).  Dynamic elasticity is characterized by the decrease in pressure following filling and passive 

emptying (Figure 2.8, blue vs red bars) and the restoration of filling pressure in a fill after an active 

void (Figure 2.8, yellow vs red bars). 

 
Figure 2.8: Pilot study pressure results demonstrating dynamic elasticity. Results of comparative-

fill urodynamics protocol with Fills 1-2 being followed by syringe aspiration and Fill 3 being 

followed by an active void56. 

 

While the dynamic elasticity pilot study identified and quantified dynamic elasticity 

clinically, it had a limited group of participants, all with OAB, and utilized four comparative fills.  

The present study will analyze comparative-fill UD data from a larger group of participants with 

and without OAB56. 

2.3.4 Pig Bladder Experiments 

 Bladders from adult pigs were harvested immediately after slaughter from local abattoirs 

and the vascular tree, ureters and urethra in tact57. The bladders were cannulated and perfused with 

heparinized Krebs-Henseleit buffer and stored on ice to the lab to be used within 48 hours58. Once 
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in the lab, the vesical arteries were cannulated and perfused with Krebs-Henseleit buffer at a rate 

of 4 mL/minute while the bladders were stored in a humidified and heated chamber (Figure 2.9)59. 

The urethra was catheterized to permit infusion and monitor vesical pressure using an Aquarius 

TT urodynamics unit (Laborie Inc., Mississauga, Ontario)59. This experimental setup was designed 

to mimic clinical UD studies while simulating physiological conditions for the whole bladders. 

This isolated pig bladder model was used to investigate dynamic elasticity in the present study and 

quantify the effects of compression versus filling on bladder pressure. 

 

Figure 2.9: Pig bladder in experimental chamber. (A) Photo of an isolated bladder being perfused 

and heated within experimental chamber. (B) Experimental schematic showing the UD and 

perfusion pump configuration.  
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Aim 2 of this project had both basic science and clinical sub-aims. The basic science sub-

aims were to investigate dynamic elasticity in an isolated pig bladder model and quantify the 

effects of compression versus filling on bladder pressure. The clinical sub-aims were to quantify 

dynamic elasticity in participants with and without OAB using a simplified UD protocol and to 

test a hypothesized model linking dynamic elasticity and DO. 

2.4 Connecting Spontaneous Rhythmic Contractions and Dynamic Elasticity 

 Because dynamic elasticity is reset via active voiding contractions18,56, this project tested 

the hypothesis that spontaneous rhythmic contractions during filling, i.e. DO, also affect dynamic 

elasticity and that the presence of DO and corresponds to a lack of dynamic elasticity. Any lack of 

identifiable dynamic elasticity would be expected to be caused by the DO acting as small active 

forces reestablishing actin-myosin connections throughout filling and preventing the bladder wall 

from strain softening to adjust its compliance to keep DSM wall tension low throughout filling. 

Altered dynamic elasticity could lead to a higher perceived bladder volume that could 

artificially elevate sensation and cause urgency resulting in overactive bladder. Aims 1 and 2 of 

this project explored the potential link between spontaneous rhythmic contractions and dynamic 

elasticity and how elevated spontaneous rhythmic contractions and/or altered dynamic elasticity 

could contribute to OAB. 
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Chapter 3 - Research Objectives 

3.1 Tension Sensor Model 

 Three mechanical factors are thought to contribute to perceived sensation by altering DSM 

wall tension (Figure 3.1). These factors are bladder geometry (perimeter, shape and surface area), 

rhythmic contractions that cause pressure fluctuations and the dynamic elasticity of the bladder 

wall, which if altered could raise vesical pressure. This relationship between the DSM and bladder 

sensation is a function of bladder volume and tension in the muscle affecting the load on the nerves 

is illustrated in Figure 3.1. 

 
Figure 3.1: Detrusor tension sensor model. Model showing detrusor as a tension sensor and the 

parameters affecting the load applied to this tension sensor. 

 

3.2 Proposed Model Linking Spontaneous Rhythmic Contractions and Dynamic Elasticity 

 As the bladder fills and other changes occur in the geometry of the bladder wall due to 

deformation from normal activity, the bladder undergoes strain softening. A conceptual model 

outlining the bladder as having a balance of competing forces was proposed (Figure 3.2). The 

model shows the passive mechanisms that affect the bladder leading to lower wall tension by 
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breaking actin-myosin connections through normal activity such as filling, moving, coughing or 

having pressure applied to the bladder, which has been shown to cause detectable strain 

softening59. In order to regulate wall tension and maintain elasticity, the bladder actively reverses 

these forces through voiding or non-voiding contractions and actin-myosin cross bridge cycling as 

demonstrated in previous studies47.  

 
Figure 3.2: Dynamic elasticity equilibrium model. Proposed conceptual model showing the 

hypothesized competing mechanisms acting on the bladder wall to regulate tension. 

 

 This model could explain the purpose of bladder rhythmic contractions and DSM cross-

bridge cycling during filling. The model also gives a potential explanation for the reasons DO is 

linked to overactive bladder. In some people, the contractions directly affect the tension sensors, 

but the dynamic elasticity equilibrium model gives another mechanism for DO to cause OAB. DO 

acts as an excessive active mechanism causing an imbalance. The bladder will not sufficiently 

acutely regulate its wall tension during filling. Even if the DO only occurs at low volumes, it could 

result in a less elastic, or stiffer, bladder. In conjunction with the tension sensor model, would 

explain the resulting increase in urgency (Figure 3.3, larger red arrow compared to Figure 3.2). 
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Figure 3.3: Detrusor elasticity equilibrium model for detrusor overactivity. Proposed conceptual 

model showing the hypothesized competing mechanisms acting on the bladder wall to regulate 

tension in a bladder with detrusor overactivity, with a larger red arrow representing an imbalance 

in forces due to increased non-voiding contractions. 

 

3.3 Dissertation Aims 

3.3.1 Specific Aim 1 – Objective Quantification of Rhythmic Detrusor Overactivity 

 Aim 1 was to develop tools to detect and quantify rhythmic detrusor overactivity in a 

more objective fashion and characterize a spontaneous rhythmic contraction-mediated 

detrusor overactivity subtype. Spontaneous rhythmic contractions of detrusor smooth muscle 

often show some degree of rhythmicity60 and have been identified in muscle strips from animals27 

and humans29. These contractions are responsible for localized micromotion during filling which 

has been associated with increased urgency3. In addition, they are elevated in patients with DO34. 

During UD studies, they are identified as vesical pressure fluctuations. 

SRC during bladder filling is has been identified visually from clinical UD data to diagnose 

DO.  A recent study quantified SRC manually using Fast Fourier Transforms (FFT) on the visually 
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identified regions33, but an objective tool for both the identification and quantification was lacking. 

The first step in identifying and understanding the link between bladder elasticity and spontaneous 

rhythmic contractions involved the development of such a tool. To achieve this aim, a Fast Fourier 

Transform algorithm was developed and used to identify and model the rhythmic activity of 

detrusor smooth muscle using clinical UD data. 

 This novel tool was first applied to retrospective urodynamics data at high bladder volume 

to quantify its effectiveness by detecting rhythmic contractions and a identify subgroup of those 

patients with DO22. The next step was applying this tool to both high and low bladder volume 

regions on prospective data to characterize the changes in rhythmic activity throughout filling. 

3.3.2 Specific Aim 2 – Characterization of Dynamic Elasticity 

 Aim 2 was to quantify dynamic elasticity in participants using a simplified protocol, 

investigate dynamic elasticity in an animal model and test the hypothesis that detrusor 

overactivity inhibits dynamic elasticity. Bladder wall tension is influenced by pressure changes 

during filling, bladder shape and volume. Changes in wall tension are important because they can 

affect urgency and influence OAB3,18. Standard UD studies consider the bladder to have static 

compliance and it was believed to not change in the absence of a chronic process23,61. Recent 

studies have challenged this concept and introduced the concept of bladder dynamic elasticity56,62 

Dynamic elasticity is a material property of detrusor smooth muscle that is responsible for 

acutely regulating bladder wall tension and is reduced due to strain-induced stress softening (strain 

softening) during filling63. The novel technique of comparative-fill urodynamics56,62 has the 

potential to identify changes in pressure-volume curves between one fill and the next due to acute 

changes in dynamic elasticity, assuming a relatively small changes in bladder geometry for a given 
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volume from one fill to the next, these change in pressure would directly correlated with changes 

in bladder wall tension16,18. Dynamic elasticity is restored by contractile activity during voiding46. 

This specific aim was to address and expand on multiple areas regarding dynamic elasticity in the 

bladder muscle using data from comparative fill UD studies.  

Dynamic elasticity was identified in detrusor strip studies55 and a limited clinical pilot 

study56, and this project expanded the study of DE to an isolated whole bladder model57–59 which 

allowed the mechanisms of dynamic elasticity to be studied without outside bodily influences. In 

addition, this study demonstrated that strain softening can be induced non-invasively through 

abdominal compression to acutely regulate bladder pressures and this technique has potential 

therapeutic applications59. Furthermore, this study tested the hypothesized link between the 

competing mechanisms of active and passive forces in the DSM wall in a human UD study to 

determine whether the clinical problem of DO affects DE. 
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Chapter 4 – Aim 1: Objective Quantification of Spontaneous Rhythmic Contractions 

Aim 1 was to develop tools to detect and quantify rhythmic DO in an objective fashion and 

characterize a spontaneous rhythmic contraction mediated DO subtype. This aim was broken into 

two sub-aims which were to: 

1) Develop an objective method of quantifying spontaneous rhythmic contractions 

2) Quantify changes in rhythmic contraction amplitude throughout filling 

4.1 Sub-Aim 1A – Objective method of quantifying spontaneous rhythmic contractions  

The purpose of this sub-aim was to develop an objective method to quantify spontaneous 

rhythmic contraction frequencies and amplitudes in UD without the potential bias of someone 

visually identifying a real signal initially. Once significant and independent (S&I) spontaneous 

rhythmic contractions (SRC) had been identified using an objective algorithm, the presence of 

S&I SRC was compared with the presence of urologist-diagnosed DO and used to determine if a 

subgroup of patients with spontaneous rhythmic contraction mediated DO existed. The published 

study corresponding to this sub-aim is attached in Appendix A22, and is summarized in this chapter. 

4.1.1 Introduction to Objective Quantification of SRC 

Human and animal muscle strips have been shown to exhibit spontaneous rhythmic 

contractions27,33. Often these contractions show some degree of rhythmicity60. They are elevated 

in patients with detrusor overactivity and generate afferent nerve activity31. During bladder filling, 

SRC are responsible for localized micromotion which, when elevated, has been associated with 

urgency34. DO is a urodynamic observation identified by the presence of non-voiding detrusor 
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smooth muscle contractions during the bladder filling phase and often contributes to overactive 

bladder16.  

DO can occur in various forms and has been observed as isolated or sporadic contractions 

in some, while in others DO is manifested as spontaneous rhythmic contractions. Previous work 

has used FFT to quantify visually identified SRC during urodynamic studies and determined the 

frequency in both UD and bladder muscle strips showed similar agreement33. Another study 

utilized time-frequency analysis, or wavelets, to identify non-voiding bladder activity64. The study 

by Colhoun, et al. required the visual inspection and identification of spontaneous rhythmic 

contractions before proceeding with FFT analysis65.  

Visually, the diagnosis of DO can be relatively straightforward9, determining if it 

corresponds with isolated and unrelated events of coordinated waveforms is more challenging. The 

present study used retrospective UD data to show the broad application of this technique by using 

“real-world” UD data to identify and characterize a subgroup of DO patients22. 

4.1.2 Methods for Objective Quantification of SRC 

Data from 239 consecutive UD studies performed in the Virginia Commonwealth 

University Urology Urodynamics Laboratory over a three-year period were collected directly from 

the Laborie Aquarius TTTM multichannel UD machine (Laborie, Toronto). Of those, 131 unique 

patients with complete medical records, meeting the required age of 21 and having at least 7 

minutes of standard UD filling were considered. Studies from 36 patients with leaks or multiple 

voiding events were not considering, resulting in a study consisting of 95 patients, shown in Table 

4.1, with a terminal or no voiding event. A blinded neurourologist and expert urodynamicist 

diagnosed DO in these individuals using ICS guidelines9. 



Chapter 4 Aim 1: Objective Quantification of Spontaneous Rhythmic Contractions 

30 

 

Table 4.1: Patient information for those included in the retrospective study. 

 

 

An automated FFT algorithm, outlined in Figure 4.1, was developed in MATLAB to 

analyze a region of interest of these retrospectively collected “real-world” UD studies ending prior 

to voiding22. During standard UD studies, a catheter is inserted into the bladder through the urethra 

to measure vesical pressure (Pves). Another catheter is inserted into the rectum to record abdominal 

pressure (Pabd) during the test. This is done to verify that any activity in Pves is caused by the bladder 

and not movement, digestion or other bodily functions9. 

 

DO not DO Total

N 52 43 95

Male 26 14 40

Female 26 29 55

Age (years) 53.4 ± 2.1 51.4 ± 2.2 52.4 ± 1.5

Neurogenic 28 17 45

Idiopathic 24 26 50
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Figure 4.1: Automated FFT spontaneous rhythmic contraction analysis flowchart. Flowchart for 

the FFT spontaneous rhythmic contractions detection and quantification algorithm including data 

processing steps, analysis and categorization of results. 

 

The voiding event, if any occurred, was identified using voided volume data. Contractile 

activity that shows a ramp-up pattern in Pves may occur immediately prior to voiding. This led to 

the selection and testing of three regions of interest ending at different times before voiding. These 

regions of interest of 205 seconds were defined as ending 1) at void, 2) 30 seconds prior to void, 

and 3) 60 seconds prior to void (Figure 4.2). Pves and Pabd data were smoothed with a 10-point 

moving average filter. Data were then shifted by subtracting the minimum value from each signal 

from every point in the signal to remove some of the effect of any steady state pressure. A Hann 

window was then applied to the signals to eliminate discontinuities at the beginning and end of the 

signals because the analysis assumes periodicity22. 
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Figure 4.2: Schematic of regions of interest within filling for FFT analysis. Three regions of 

interest within the entire signal (prior to void, 30s prior to void and 60s prior to void) were defined 

for analysis with the FFT algorithm. 

 

The algorithm identified the three largest rhythmic amplitude peaks in in the 1.75-6 

cycle/minute frequency range. This frequency range was selected for this study based on prior 

studies that identified bladder rhythmicity occurring between approximately 1.8-5 

cycles/minute3,29. The UD machine collected data at the standard frequency of 10Hz. According 

to the Nyquist theorem, this data should be free of aliasing that would obstruct in finding the 

desired signals. Collecting data at 10Hz would allow accuracy up to 5Hz or 300 cycles/minute, 

much higher than the anticipated 1.75-6 cycle/minute range22.  

Each peak in Pves found in this range were tested for two criteria. The first test was to 

determine whether they were significant (above baseline Pves activity) and the second was to 

determine if they were independent (distinct from any in Pabd rhythm). To be considered 

significant, a Pves peak needed an amplitude of 1.8cm-H2O and adequate prominence or sharpness. 

To evaluate sharpness, a slope criterion was established corresponding to a steep grade in the Pves 
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amplitude in the frequency spectra of at least 20% Pves per frequency step for at least one of the 

next two slower frequency steps and at least one of the next two faster frequency steps22.  

The independence criteria were important because translated abdominal events produce 

peaks in both Pves and Pabd tracings33. In addition, non-translated abdominal activity, such as rectal 

contractions, can produce peaks that only occur in Pabd. In order to assure that the rhythmic activity 

was caused by the bladder and not being produced by other abdominal activity that could confound 

analysis, each significant Pves signal was individually compared to the corresponding Pabd signal to 

ensure any bladder activity was independent of abdominal activity. This independence test was 

performed in multiple steps for each significant Pves peak. First, the Pves amplitude was required to 

be at least 1.5 times greater than Pabd at the same frequency. This identified only relatively large 

Pves signals. Next, Pabd was required to be less than 133% of Pabd at either neighboring frequency 

step, representing a relatively flat signal at that frequency with respect to its neighboring points22.  

A post hoc power analysis determined that a sample size of 52 (participants with DO) and 

43 (participants without DO) with a power level of 0.8 and a two-tailed alpha value of 0.05 would 

result in a power of 0.986. Fisher’s exact test was then used to determine if a significant association 

occurred between DO and the presence of S&I spontaneous rhythmic contractions. Additionally, 

the patients were grouped by gender and neurogenic (caused by relevant neurological condition) 

vs. idiopathic (no defined causes)9 DO to ensure no association existed based on those parameters.  

Participants with and without S&I SRC were compared by age using a t-test to ensure age was not 

a significant difference22. 
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4.1.3 Results for Objective Quantification of SRC 

Ninety-five UD studies met criteria for inclusion and were analyzed with the algorithm. 

During a blinded visual analysis, a neurourologist/urodynamicist identified 52/95 (55%) patients 

as having DO.  The algorithm was applied to the three defined regions of interest at high volume 

(ending 0, 30 and 60s prior to the start of voiding). The 30s prior to void region of interest resulted 

in the FFT algorithm identifying S&I spontaneous rhythmic contractions in 14/52 (27%) patients 

with DO and 0/43 patients (0%) without DO. This corresponds with 27% sensitivity (reasonable 

for a subgroup) and 100% specificity. A post hoc power analysis determined that a sample size of 

52 (participants with DO) and 43 (participants without DO) with an effect size of 0.8 and a two-

tailed alpha value of 0.05 would result in a power of 0.986. It quantified both frequency (3.11±0.34 

cycles/min) and amplitude (8.24±1.24 cm-H2O) of the slowest spontaneous rhythmic contraction 

frequency identified in this region of interest.  When using any of the 3 ranges, 22 of the 52 (42%) 

patients with DO were correctly identified, while only 1 out of 43 (2%) without were identified 

resulting in a specificity of 93% and the entire results are shown in Table 4.222. 

Table 4.2: Results of algorithm when applied to three different regions of interest 22. 

        

Analysis 

Range

Significant 

and 

Independent

Observed 

DO

No 

Observed 

DO

Total p-value Sensitivity Specificity

S&I 16 1 17

not S&I 36 42 78

Total 52 43 95

S&I 14 0 14

not S&I 38 43 81

Total 52 43 95

S&I 13 0 13

not S&I 39 43 82

Total 52 43 95

S&I 22 1 23

not S&I 30 42 72

Total 52 43 95

97.67%

100%

100%

93.33%45.82%<0.0001

0.0002 25%

26.92%<0.0001

Prior to 

void

30s prior 

to void

60s prior 

to void

Any 3 

ranges

0.0003 30.77%
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4.1.4 Conclusions for Objective Quantification of SRC 

This study developed an automated tool to objectively analyze UD data to determine the 

presence of and quantify S&I spontaneous rhythmic contractions. It highlighted the feasibility of 

fast Fourier transform analysis being applied to “real-world” UD studies to automatically 

characterize the frequency and amplitude of underlying spontaneous rhythmic contractions as well 

as provide a visual model to verify results as shown in Figure 4.3. Additionally, it identified and 

quantified a potential subgroup of patients with specifically SRC-mediated DO22.  

 
Figure 4.3: Visual confirmation of FFT model compared to original pressure signal. Identified 

signal showing the original vesical pressure signal (green) and a reconstructed modeled signal 

(red)22. 

 

When compared to the previous study that applied fast Fourier transform analysis to human 

UD studies33, the present study provides an objective tool that eliminates any bias from first 

visually inspecting pressure tracings for spontaneous rhythmic contractions. The automated 

algorithm also performs the analysis in under 5 seconds allowing for real-time data interpretation22.  

This study was limited by the potential of selection bias since studies with multiple voids 

or leaks being excluded. While the algorithm used an automated process to determine DO, these 

results were compared to the determination made by a urodynamicist which may have made a 

subjective diagnosis22. 
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This study demonstrated the first use of an automated FFT algorithm for identification and 

quantification of a DO subgroup with SRC in humans. This algorithm has the potential for real-

time data interpretation using data that is already being collected and identified a potential 

subgroup of patients with spontaneous rhythmic contractions-associated DO22. The quantification 

of SRC amplitude may be a valuable tool because it could be used to measure the effectiveness of 

specific treatments on outcomes for this subgroup of patients. 

4.2 Sub-Aim 1B - Quantify changes in rhythmic contraction amplitude throughout filling  

4.2.1 Introduction to quantifying changes in rhythmic contractions throughout filling 

Once a tool to identify and quantify spontaneous rhythmic contractions at high volumes 

had been developed22, the focus was then shifted to refining the tool parameters and using the tool 

to characterize changes in spontaneous rhythmic contractions throughout filling. The goals were 

1) to further quantify spontaneous rhythmic contractions throughout filling, 2) to determine if 

participants with normal functioning bladders (no or low OAB symptoms) show spontaneous 

rhythmic contractions and 3) to determine if the volume at which the DO is detected shows a 

correlation with OAB symptoms. For this prospective study, a validated International Consultation 

on Continence Overactive Bladder questionnaire (ICIq-OAB) was completed by each participant 

to identify OAB symptoms and form groups with no/low OAB and high OAB for comparison. 

Furthermore, the prospective urodynamics studies were blindly reviewed by a urodynamicist to 

identify DO and distinguish rhythmic DO from sporadic, isolated, or terminal DO.  The 

performance of the algorithm was optimized to maximize the sensitivity of identifying rhythmic 

DO based on the presence of rhythmic DO identified by the urodyanmicist.  Using the updated 
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algorithm, significant and independent rhythmic DO amplitudes and frequencies were correlated 

with OAB symptom severity and characterized as a function of percent bladder capacity.  

4.2.2 Methods for quantifying changes in rhythmic contractions throughout filling 

The previously developed algorithm was refined and applied to prospectively collected 

data. Instead of analyzing only three 205-second regions of interest at high volumes, the entire 

filling phase from the start of the UD pump to the last stop of the UD pump before a void occurred 

was analyzed iteratively. Typical UD studies fill at 10% bladder capacity and are expected to 

collect about 10 minutes of filling data66. During the initial retrospective study, 205 second regions 

of interest were used because that corresponded to 211 data points, or about 3.5 minutes of pressure 

data22. Using 210 data points, or 102 seconds, would have yielded almost 3 complete cycles at 1.75 

cycles/minute, the lowest frequency of interest. The next highest multiple of two was chosen 

instead because only three regions of interest were being analyzed and the retrospective study 

wanted to analyze as much “high volume” data as possible22. 

For the present prospective study that iteratively analyzed the entire filling phase, two 

signal lengths were tested, a smaller Pves peak threshold was used, and the significance and 

independence criteria were refined. For signal length, in addition to the 205 second range, the 

smaller, but still appropriate 102 second signal length was tested to more precisely identify the 

volume regions where SRC occurs during filling. The original minimum Pves amplitude of 1.8cm-

H2O was tested in addition to a smaller 1.0cm-H2O based on minimum urodynamic equipment 

standards20. The significance and independence criteria that were optimized included the slope 

criteria, the independence peak criteria, and the ratio of the Pves peak to the Pabd peak. In the original 

study, a slope of 20%Pves per frequency step was used to test for significance. While optimizing 
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the parameters, five slopes were tested (10%, 12.5%, 15%, 17.5% and the original 20%). The first 

independence criteria requiring the Pves amplitude to be 1.5 times as large as the Pabd amplitude at 

the same frequency was adjusted and tested at five different values (1.0, 1.2, 1.25, 1.3 and the 

original 1.5). The second independence criteria requiring the Pabd amplitude to be less than 133% 

of its neighboring peaks was iterated through seven values (100%, 125%, the original 133%, 

150%, 166%, 175% and 200%). All of these combinations were tested with the goal of maximizing 

sensitivity.  

From the start of filling with the UD pump, the first region of interest extended 205 seconds 

forward. Each subsequent overlapping region started 30 seconds later and extended 205 seconds 

forward. This sequence of overlapping regions of interest was repeated until the end of the region 

of interest passed the final pump stop before voiding.  At this point, the end of the region of interest 

was set at the pump stop time and extended backwards 205 seconds. It is important to note that 

each individual region of interest was processed individually after being segmented and not the 

entire signal as a whole. In addition to decreasing the pressure data signal length, the frequency 

range of interest was expanding from 1.75-6 cycle/min to 1.75-8 cycle/min to identify any higher 

frequency bladder activity based on studies revealing that the bladder smooth muscle cells exhibit 

spontaneous action potentials at a frequency of 7.9±4.2 per minute while remaining below average 

human breathing41. 

 Another improvement in the algorithm was the method of preparing data with respect to 

any steady state offset. In the prior retrospective study, the minimum value of the signal was 

subtracted from each point in the signal (Figure 4.4 A vs. B), while in the current iteration of the 

algorithm used for the prospective study, the data were linearly detrended (Figure 4.4 A vs. C) 

before having a Hanning window applied and undergoing FFT analysis. While this may seem to 
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be a subtle and insignificant change, the signals in the example in Figure 4.4 show that the effect 

of detrending on the FFT output is that the steady state value (Figure 4.4, D-F at 0 cycle/min) is 

removed and the noise at low frequencies making up the underlying trend is diminished (Figure 

4.4, 0-3 cycle/min of D and E vs. F). The improved clarity of the frequency spectrum due to the 

detrending technique is shown in Figure 4.4 with D, E and F corresponding to the respective signals 

in A, B and C.  

Because of the many overlapping volume ranges being analyzed and the large variation in 

bladder capacity from one participant to another, each region of interest was classified as “First 

Half” if at least half of the region lay in the first half of the fill based on volume (midpoint volume 

of the region of interest < capacity at voiding/2) and any region above that threshold was classified 

as “Second Half”. Participants with SRC identified in both “First Half of Filling” and “Second 

Half of Filling” were classified as “Throughout Filling”. Any significant rhythm detected in Pves 

between 1.75-8 cycles/minute was recorded and quantified and then compared to the Pabd signal as 

in the previous study22 to determine if it was independent of other rhythmic activity in the body to 

isolate the bladder as the cause. The volume at which S&I SRC occurred was recorded and the 

participant was flagged as having S&I SRC in the First Half, Second Half or Throughout filling. 
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Figure 4.4: Example of data preparation and FFT output. Pressure data being prepared for 

analysis: (A) raw data, (B) data minimized (prior algorithm) and (C) data after detrending 

(current algorithm). Corresponding frequency spectrums for: (D) raw data, (E) delta pressure 

(prior algorithm) and (F) detrended data (current algorithm).  
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4.2.3 Results for quantifying changes in rhythmic contractions throughout filling 

Prospective participants were enrolled in this study and completed an OAB survey to 

determine their symptoms. Complete data sets without relevant artifacts were available for 133 

individuals. From this group, 29 (22%) individuals were identified with rhythmic DO in the 

blinded analysis by a urologist (Table 4.3). 

The results of the original and refined algorithms are provided in Tables 4.4 and 4.5. The 

combination of refined parameters that yielded the highest sensitivity was as follows: the original 

signal length of 205 seconds, a minimum amplitude of 1.0cm-H2O, a slope of 15% per frequency 

step, a Pves value greater than 1.25 times the Pabd value and the original criteria of Pabd less than 

133% of its neighboring points. From the group of 133 participants, the original algorithm 

identified 28 (21%) individuals with significant and independent SRC (Table 4.4) and the refined 

algorithm identified 60 (45%) (Table 4.5). Then, participants with S&I SRC were grouped as either 

no/low OAB (ICIq-OAB 5a=0-1, n=23) or high OAB (5a=2-4, n=37) symptoms and the results 

are provided in Table 4.4 for the original algorithm parameters as compared to the results for the 

refined parameters shown in Table 4.5. By refining the parameters, seven additional participants 

with rhythmic DO were detected by the algorithm, improving the sensitivity to 82%. Maximizing 

sensitivity was the criteria for refining the algorithm because the expected application of this tool 

is to supplement a urologist’s review of the patient’s data, and therefore quantifying all rhythmic 

DO identified by the urologist was the most important objective. Also, because the tool could 

potentially identify real rhythmic DO that is not identified visually by a urologist, a specificity of 

less than 100% for the algorithm was expected and not considered to be a weakness. Furthermore, 

because this tool will overlay a model of any rhythmic DO identified onto the actual data for the 
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urologist to review, as shown in Figure 4.3, they will be able to determine whether the signal 

identified by the algorithm is clinically relevant or an artifact.  

Table 4.3: All Participant Characteristics by Significant and Independent SRC – Refined 

Algorithm. 

 

Table 4.4: Significant and Independent Against Rhythmic DO – Original Algorithm. 

 

Table 4.5: Significant and Independent Against Rhythmic DO – Refined Algorithm  

 

 The highest amplitude of rhythmic activity was recorded for each participant, along with 

the corresponding volume which was used to calculate the percentage of capacity at which it 

occurred. S&I SRC amplitude was found to be statistically higher, in participants with high OAB 

compared to those with no/low OAB, 6.86 cm-H2O and 3.01 cm-H2O respectively (Figure 4.5A, 

S&I not S&I Total

n 60 73 133

Rhythmic DO 24 5 29

Age 55.0±2.5 54.2±2.2 54.5±1.6

Male 16 25 41

Female 44 48 92

High OAB 37 36 73

No/low OAB 23 37 60

SI no SI Total

RDO 16 13 29

no RDO 12 92 104

Total 28 105 133

Sensitivity 55%

Specificity 88%

p-value <0.0001

SI no SI Total

RDO 24 5 29

no RDO 36 68 104

Total 60 73 133

Sensitivity 83%

Specificity 65%

p-value <0.0001
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p=0.02), while frequency was not different in participants with high OAB and no/low OAB, 3.47 

cycle/min and 3.46 cycle/min respectively (Figure 4.5B, p=0.97). 

 

Figure 4.5: Average peak SRC amplitude and corresponding frequency of groups by OAB. (A) 

Average amplitude of no/low OAB (blue) vs. high OAB (red) SRC (* denoting significant 

difference) and (B) average frequency of no/low OAB (green) and high OAB (orange) SRC. 

  

In addition to quantifying amplitude and frequency in individuals with and without OAB, 

this analysis compared the location of the detected S&I SRC by capacity. It was found that 41% 

of all participants were identified with S&I SRC in the first half compared to 59% in the second 

half regardless of their OAB symptoms (Figure 4.6, all points to the left and right of the black 

vertical line, respectively).  
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Figure 4.6: Peak significant and independent SRC amplitude versus percent capacity. Scatter plot 

showing the highest SRC amplitude for each participant with S&I SRC as a function of percent 

capacity for the no/low OAB group (orange) and high OAB group (blue). 

 

An additional analysis was performed using the slowest S&I SRC frequency found for each 

participant instead of the highest amplitude. The SRC amplitudes selected by the slowest S&I SRC 

frequency identified throughout filling are shown in Figure 4.7, noting the similar axis scale as 

Figure 4.6 for direct comparison. This analysis yielded similar results and the S&I SRC amplitude 

was statistically greater in participants with high OAB compared to those with no/low OAB 

(Figure 4.8, panel A, yellow bar compared to red). This shows consistency in the results and in the 

differences in amplitudes between the high and no/low OAB groups, and highlights the need for 

quantification of SRC amplitude. Prior work focused on quantifying just frequency3. Further 

quantifying frequency can be simply be done manually by counting peaks67, while quantifying 
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amplitude can be more difficult in complex waveforms or those with underlying trends, 

highlighting the need for the analysis tools developed in this project.   

 

Figure 4.7: Amplitude of S&I SRC with lowest frequency versus percent capacity. Scatter plot of 

amplitudes throughout filling when determining points using slowest frequency instead of highest 

amplitude. 

 

 

Figure 4.8: Average SRC amplitude and frequency for slowest S&I frequency grouped by OAB. 

Comparison of (A) amplitude and (B) frequency when using the slowest frequency significant and 

independent SRC. 
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4.2.4 Discussion for quantifying changes in rhythmic contractions throughout filling 

The outcome of this prospective study was the determination that the rhythmic DO 

amplitude may have some effect of the participants OAB symptoms since it was shown to be 

higher in those with higher OAB symptom scores. If a DO threshold amplitude of 7cm-H2O is 

established, only 1/23 (4%) of the participants with no/low OAB while 12/37 (33%) of those with 

high OAB had an amplitude higher than that threshold (Figure 4.9, Table 4.5, p-value = 0.0108). 

While S&I SRC was found across a variety of participants, those with no/low OAB typically had 

smaller amplitudes. While some studies have been conducted concerning algorithms to detect 

bladder contractions as they occur for bladder stimulation68, the algorithm developed in present 

study acts as a tool to detect significant and independent rhythmic bladder contractions over an 

entire UD study to aid clinicians in accurate diagnosis and quantification of severity. These results 

are similar to previous work suggesting the amplitude of DO contractions may contribute to OAB 

severity69 and are consistent with a pre-clinical animal study60 and another clinical study using 

time-frequency analysis64. The new algorithm could represent a clinically feasible step towards 

development of measures to quantify DO severity.  
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Figure 4.9: Number of participants identified with SRC by amplitude threshold for the no/low OAB 

group (orange) and high OAB group (blue) (* denoting significant difference, p=0.0108). 

 

Table 4.6: Contingency table of no/low OAB and High OAB by S&I SRC amplitude threshold. 

 

4.2.4 Conclusions for quantifying changes in rhythmic contractions throughout filling 

This study quantified SRC in participants in both frequency and amplitude. It determined 

that participants with high OAB symptoms showed an elevated amplitude of SRC when compared 

to those with no/low OAB symptoms while frequency remained similar in both groups. The 

clinical relevance of this study is the finding that the amplitude of rhythmic DO identified by the 

algorithm correlates with the severity of OAB symptoms.  

Below            

7 cm-H2O

Above          

7 cm-H2O
Total

No/low OAB 22 1 23

High OAB 25 12 37

Total 47 13 60



Chapter 5 Aim 2: Characterization of Dynamic Elasticity 

48 

 

Chapter 5 – Aim 2: Characterization of Dynamic Elasticity  

 Aim 2 investigated and characterized dynamic elasticity (DE). This aim was broken into 

the following four sub-aims: 

1) Develop an isolated bladder pig model to study the biomechanical mechanisms affecting 

dynamic elasticity 

2) Quantify dynamic elasticity in participants with and without overactive bladder using 

comparative-fill urodynamics data  

3) Test the hypothesis that dynamic elasticity is inhibited by detrusor overactivity using 

prospective urodynamics data to confirm Dynamic Elastic Equilibrium Model in Figure 

3.2 

4) Develop a method to induce dynamic elasticity non-invasively using compression for 

potential diagnostic and therapeutic applications  

5.1 Sub-Aim 2A – Develop isolated pig model to study mechanisms of dynamic elasticity 

In order to further study the mechanisms of dynamic elasticity in DSM without influence 

from other bodily organs and functions, an isolated pig model using whole pig bladders was 

developed. This study was the basis of the first sub-aim of the dynamic elasticity study of this 

research and is summarized in this subsection. 

5.1.1 Introduction to Pig Bladder Dynamic Elasticity Study 

An isolated whole pig bladder model was used to show that the vesical pressure of a whole 

bladder would significantly decrease following strain softening via filling and passive emptying 

by syringe aspiration56. The study also showed that by inducing voiding contractions that the 
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decrease in vesical pressure was reversed during the next fill as in previous muscle strips 

studies46,47 and the clinical pilot study56. This confirmed that dynamic elasticity could be recreated 

in an isolated environment and that it was an intrinsic mechanical property of the bladder.  

5.1.2 Methods for the Pig Bladder Dynamic Elasticity Study 

Following previously established methodology57,58, pig bladders were used in this study. 

Bladders with the vascular tree and a portion of the aorta were harvested from a local abattoir 

immediately after slaughter and the vascular system was flushed with Krebs‐Henseleit buffer. 

After transport to the lab in cold buffer, the superior vesical arteries were cannulated and perfused 

with oxygenated physiologic-temperature Krebs‐Henseleit buffer at 4 mL/min (Figure 5.1A). The 

urethra was catheterized to allow infusion, monitor invervesical pressure and permit voiding. The 

bladders then underwent a urodynamics protocol with an initial setup fill followed by four 

comparative test fills (1-3). During these fills, the bladder was filled to 250mL, assumed to be 50% 

of a total capacity of 500mL, followed by either passive emptying through syringe aspiration or 

potassium induced contractions to mimic active voiding (Figure 5.1B). 
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Figure 5.1: Isolated pig bladder photo and dynamic elasticity protocol. (A) Photo of pig bladder 

in experimental chamber and (B) comparative-fill urodynamics protocol. Fill1 is before strain 

softening, Fill2 is after strain softening and passive emptying and Fill3 is after an active void. 

 

The setup fill was followed by an active void to empty the bladder and reset any strain 

softening that occurred before the start of the experiment. Filling data “after active voiding” was 

recorded in Fill1 as the baseline filling pressure. Fill1 was expected to cause strain softening that 

could be observed during Fill2, and the bladder was passively emptied following Fill1 to prevent 

any potential reversal strain softening by way of an active contraction. Filling data was recorded 

“after passive emptying” during Fill2 and was expected to be less than during Fill1. The bladder 

was actively voided after Fill2, and this was expected to reverse any strain softening caused by 

Fill2. Filling data “after active voiding” was recorded in Fill3 and was expected to be greater than 

“after passive emptying” and similar to baseline filling “after active voiding”. The average 

pressure throughout each fill was calculated and dynamic elasticity was quantified as the change 

in average pressure between fills divided by the change in percent capacity of filling, assumed to 

be 50%56,70.  
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5.1.3 Results of the Pig Bladder Dynamic Elasticity Study 

This comparative-fill urodynamics protocol was performed on six male pig bladders. A 

quantifiable drop in filling pressure occurred due to strain softening that was regained during 

subsequent filling following active voiding. The average pressure during Fill2 was significantly 

lower than the average pressure during Fill1, while Fill1 and Fill3 showed no significant difference 

(Figure 5.2, p-values of 0.01 and 0.37, respectively). Dynamic elasticity was lost due to strain 

softening (-0.11 cm-H2O/%capacity) which was calculated by the change in pressure divided by 

the assumed change in capacity of 50%, but a comparable amount was regained following active 

voiding (0.12 cm-H2O/%capacity). 

 

Figure 5.2: Results demonstrating dynamic elasticity in isolated pig bladders. Average vesical 

pressure during Fill1-3 with * indicating significant difference from Fill1. 
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5.1.4 Conclusions from the Pig Bladder Dynamic Elasticity Study 

This study demonstrated that dynamic elasticity could be identified in pig bladders in an 

isolated environment. The results showed that dynamic elasticity could be quantified in this 

environment using the same methodology as previously shown in individuals with overactive 

bladder56. Dynamic elasticity regulation would affect bladder wall tension during filling, and 

consequently affect the stimulation of tension-sensitive nerves responsible for the bladder fullness 

sensation3.  

A defect in the regulation of dynamic elasticity could contribute to overactive bladder by 

altering this sensation18. More detailed investigations of this bladder material property can be 

conducted using this isolated pig bladder model to isolate such factors as incomplete voiding, non-

voiding contractions, and bladder ischemia that could affect dynamic elasticity35,53,54. This would 

lead to a better understanding of this material property and its effects on bladder biomechanics. 

Improved knowledge of the role of dynamic elasticity in bladder function and the mechanisms 

responsible for this property could have diagnostic and therapeutic implications in the management 

of bladder pathology. 

5.2 Sub-Aim 2B – Dynamic elasticity in participants with and without overactive bladder 

A pilot clinical study investigating dynamic elasticity was conducted previously56. This 

study focused on whether determining individuals displayed bladder dynamic elasticity and if it 

could be quantified. While this study revealed dynamic elasticity, it only included five participants, 

all of which had OAB56. One goal of the present study was to further determine whether dynamic 

elasticity is present in human bladders. This study included a larger group of participants and 

included those with and without OAB. Participants with and without urgency based on ICIq-OAB 
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surveys were prospectively enrolled in an IRB-approved comparative-fill UD protocol for this 

study. 

5.2.1 Introduction to the Clinical Dynamic Elasticity Study 

A comparative-fill UD protocol differs from a traditional UD protocol in that multiply fill-

void cycles are performed and compared during a single visit. Comparative fill UD allows a 

bladder material property known as dynamic elasticity to be measured. Dynamic elasticity is 

shown by a reduction in pressure during fills due to strain softening when the bladder is not allowed 

to actively void and to reset the effects of strain softening. After an active voiding contraction, a 

restoration in pressure is observed in the subsequent fill demonstrating the reversibility of strain 

softening in the bladder56.  

5.2.2 Participant Enrollment 

Participants over the age of 21 were prospectively enrolled both with and without OAB 

into the comparative-fill urodynamics protocol. These participants were categorized as having 

either no/low urgency (ICIq-OAB 5a = 0-1) or high urgency (ICIq-OAB 5a = 2-4). The presence 

or absence of DO based on urodynamics was also used to characterize participants, as this is more 

objective than patient reported survey scores.  

To determine the minimum number of participants needed for this study, a power analysis 

was performed based on results of the previous pilot study56. Linear interpolation of the normalized 

data for strain softening to 30% capacity and 60% capacity in the pilot study indicated an expected 

difference in means of 32% for strain softening to 40% capacity. The power analysis determined 
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that a sample size of 8 participants per group was needed to identify a statistical difference between 

groups with a power level of 0.8 and a two-tailed alpha value of 0.05. 

5.2.3 Dynamic Elasticity Detection 

To determine the presence or absence of dynamic elasticity, multiple urodynamic fills from 

a single session were compared for each participant. This allowed each individual to act as their 

own control. An initial “setup fill” to determine cystometric capacity was followed by three 

consecutive fills were completed by each participant. Each of these fills was followed by either an 

active void or passive emptying62. The fills are described as follows (Figure 5.3): 

• Fill 1 – Before strain softening: This fill occurs after the active void following the 

setup fill which should have reset any strain softening. This fill acts as a baseline 

for comparison during the next fills. Following this fill to 40% capacity, the bladder 

is passively emptied through syringe aspiration. 

• Fill 2 – After strain softening: This fill occurs after a passive emptying of the 

bladder so it should show a drop in pressure indicating that the bladder had been 

strain softened. The bladder is filled to 100% capacity during this fill, but for the 

comparison, only the pressure from 0-40% capacity is measured. After the 

participant reaches 100% capacity, they actively void their bladder. 

• Fill 3 – After active void: Following the active void at the end of Fill 2, the bladder 

should have reversed any strain softening that had occurred. Fill 3 is used to 

determine the degree of strain softening reversal that occurred. 
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Figure 5.3: Comparative-fill urodynamics protocol to identify dynamic elasticity. Fill 1: before 

strain softening. Fill 2: after strain softening and passive emptying. Fill 3: after active void62. 

 

The average pressures from Fills 1-3 were compared to determine if the participant 

demonstrated dynamic elasticity. A participant was classified as showing dynamic elasticity if the 

pressure after strain softening was lower than before strain softening and if it showed a return 

towards the baseline value after active voiding. All other participants were classified as not 

showing dynamic elasticity62. 

5.2.4 Results from the Entire Dynamic Elasticity Study Population 

Of the 43 consecutive studies completed, 28 of them were included in the analysis (Table 

5.1) while the other 15 were excluded, including 7 of the 22 no/low OAB participants, due to high 

post-void residuals which could potentially affect the amount of strain softening reversed 

following an active void. The group of 28 participants showed the expected trend of reduced 

pressure in Fill 2 compared to Fills 1 and 3, but did not show statistical significance (Fig. 5.4, 

p=0.17). These results suggest that either not all bladders exhibited DE during testing or that the 

protocol used in this study does not adequately detect DE in all participants62. 

 

 



Chapter 5 Aim 2: Characterization of Dynamic Elasticity 

56 

 

Table 5.1: Patients Characteristics Grouped by OAB. 

 

 
Figure 5.4: Pressure during each comparative UD fill for all participants. Average pressures 

during each fill of comparative-fill urodynamics protocol (n = 28). 

5.2.5 Results of Dynamic Elasticity Grouped by OAB 

To further investigate the dynamic elasticity property, participants were grouped as having 

“No/low OAB” (5a = 0-1, n = 15) and “High OAB” (5a = 2-4, n = 13) and comparative-fill UD 

results were compared based on this grouping. When comparing void diaries and cystometric 

capacity of the two groups, no differences were found. The ages were different between the groups, 

but OAB symptoms appear to increase with age71, so this does not represent a novel finding when 

grouping participants by OAB. While dynamic elasticity was identified during the pilot study with 

5 participants with OAB56, the drop in pressure when grouping the current participants by their 

No/low OAB High OAB p-value

Participants 15 13 -

Female 11 10 -

Male 4 2 -

Age (years) 28±3 49±5 <0.01

3-Day Diary Max Voided Volume (ml) 558±49 523±60 0.66

Cystometric Capacity (ml) 611±58 501±91 0.29

OAB = Overactive Bladder, No/low OAB: 5a = 0-1, High OAB: 5a = 2-4
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level of OAB was not statistically significant (Figure 5.5, p=0.14 Fill1 vs Fill2). Additionally, a 

pressure drop after passive voiding was only shown in 18/28 participants62.  

 

Figure 5.5: Pressure during each comparative UD fill grouped by OAB. Results of comparative-

fill studies when grouping participants by No/Low OAB (n=15) and High OAB (n=13). 

 

 While strain softening has been shown in other materials42 and even detrusor strips50, it 

was not shown in some of the participants suggesting that something was preventing it from 

occurring or it was not being measured adequately. Further studies were required to determine 

what factors might be affecting the dynamic elasticity of the bladder. 
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5.3 Sub-Aim 2C – Test the Dynamic Elasticity Equilibrium Model 

This sub-aim describes a published study linking dynamic elasticity and detrusor 

overactivity through the Dynamic Elasticity Equilibrium Model previously shown in Figure 3.262. 

The journal paper is attached in Appendix B and is summarized in this subsection62. 

5.3.1 Introduction to the Dynamic Elasticity Equilibrium Model Study 

Dynamic elasticity was identified in 18/28 participants in the study. Grouping the 

participants by OAB did not correlate with the presence or absence of dynamic elasticity. Since 

contractions reverse strain softening55, this sub-aim tested the hypothesis that spontaneous 

rhythmic contractions may affect DE. 

Spontaneous rhythmic contractions are elevated in the detrusor of patients with DO when 

compared to urodynamically normal bladders34. Elevated spontaneous rhythmic contractions, or 

micromotions38, have also been associated with urgency3,18.  

5.3.2 Dynamic Elasticity Equilibrium Model 

These studies suggest a link between dynamic elasticity and DO and were the motivation 

behind the construction of the conceptional biomechanical model (Figure 5.6) which is similar to 

the model proposed by van Duyl72. According to the model, dynamic elasticity is lowered by 

passive forces such as stretching that occurs during filling. This decreased tension is restored 

through active contractions of the bladder muscle. In urodynamically normal bladders, these active 

and passive mechanisms should be appropriately balanced such that they aid in maintaining 

optimal biomechanical conditions62.  
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Bladders with elevated contractile activity (DO), may have altered dynamic elasticity 

regulation leading them to exhibit less dynamic elasticity. Normal bladders are expected to have 

balanced mechanisms as shown in Figure 5.6. Bladders with DO do not fit this model because the 

active mechanisms are increased and do not show a drop in pressure due to strain softening. To 

test the DE Model in Figure 5.6, participants were grouped by the presence or absence of DO 

instead of by OAB symptoms to determine the effect DO has on the bladder’s ability to regulate 

wall tension through dynamic elasticity62. 

 
Figure 5.6: Dynamic elasticity equilibrium model. Conceptual model potentially explaining lack 

of pressure drop in some participants62. 

 5.3.3 Results of the Dynamic Elasticity Equilibrium Model Study 

Participants characteristics are listed in Table 5.1 for the groups with and without DO. 

Those groups were not found to be different based on age (t-test, p=0.73) and maximum voided 

volume during the 3-day void diary completed prior to the study (p=0.76, one participant with DO 

did not complete a void diary). The groups did show a difference when comparing the capacities 
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based on the setup fill and those without DO in this study were found to have larger cystometric 

capacities during UD studies (p=0.03)62. 

Table 5.2: Patient Characteristics Grouped by DO. 

 

A significant drop in pressure was found in participants without DO after strain softening, 

while those with DO did not show such drop (Figure 5.7, green bars p-value = 0.004 and yellow 

bars p-value = 0.0862, respectively). The group without DO then showed a return towards the 

baseline value following the active void (Figure 5.7)62. 

A dynamic elasticity index to quantify the degree of bladder dynamic elasticity in a single 

number was defined as: 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
((𝑃𝑣𝑒𝑠1 − 𝑃𝑣𝑒𝑠2) + (𝑃𝑣𝑒𝑠3 − 𝑃𝑣𝑒𝑠2))

40% 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

where Pves1 is the average pressure from 0-40% capacity during Fill 1, Pves2 is the average pressure 

from 0-40% capacity during Fill 2 and Pves3 is the average pressure from 0-40% capacity during 

Fill 3. By the definition of the dynamic elasticity index, a higher index would correspond to more 

dynamic elasticity or a larger loss of elasticity from strain softening and more restoration of 

elasticity due to an active void reversing strain softening. A threshold corresponding to 1.0 cm-

DO+ DO- p-value

Participants 15 13 -

Female 10 11 -

Male 5 2 -

High Urgency 10 3 -

No Urgency 5 10 -

Age (years) 39±5 36±5 0.73

3-Day Diary Max Voided Volume (ml) 554±60 530±35 0.76

Cystometric Capacity (ml) 443±74 667±61 0.03

DO = Detrusor Overactivity, + = positive, - = negative.
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H2O over 40% capacity was defined to divide the groups into higher dynamic elasticity (index ≥ 

0.025cm-H2O/%capacity, Figure 5.8, above red line) and reduced dynamic elasticity (index < 

0.025cm-H2O/%capacity, Figure 5.8, below red line). Participants without DO (9 out of 15, 60%) 

showed a dynamic elasticity index less than 0.025cm-H2O, while only 2 out of 13 (15%) of 

participants with DO showed an index below that threshold resulting in a significant association 

between reduced dynamic elasticity and DO (p-value = 0.024)62. 

 

Figure 5.7: Pressure during each comparative UD fill grouped by DO. Average bladder pressures 

between 0-40% capacity for participants without (green) and with (yellow) DO. Participants 

without DO showed a significant drop in pressure between Fills 1-2 (p=0.004), while those with 

DO did not. After active voiding the participants without DO showed a return toward the baseline 

value of Fill 162. 
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Figure 5.8: Dynamic elasticity index results. The average dynamic elasticity index was 

significantly less in participants with DO (yellow line, p=0.045, Ω) compared to those without DO 

(green line). A threshold was selected at 0.025 cm-H2O/%capacity (red line) to distinguish 

between those with reduced dynamic elasticity and those with greater dynamic elasticity62. 

Dynamic elasticity was identified mainly in individuals without DO, which supports the 

conceptually model proposed. This model describes the relationship between passive mechanisms, 

such as the bladder wall stretching during filling, which lower wall tension and active mechanisms, 

such as voiding contractions or DO, which increase wall tension. It may identify the purpose of 

SRC, which was shown in Chapter 4 to be present throughout filling even in some individuals 

without OAB symptoms. Additionally, the dynamic elasticity equilibrium model could explain the 

contribution DO has to OAB in that it creates an imbalance of active vs. passive mechanisms 

(Figure 5.6)62. 
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5.3.4 Conclusions of Dynamic Elasticity Equilibrium Model Study 

This study simplified the comparative-fill protocol by measuring and comparing pressure 

between the same volumes (0-40%) and removing an extra fill. A limitation of the study was the 

lack of objective metrics to identify DO. Many participants were also excluded due to high post-

void residuals, but this group also included several patients showing no/low OAB symptoms62.  

In summary, the study described in this sub-aim tested the conceptual model for dynamic 

elasticity with competing active and passive mechanisms presented in Figure 5.6. An association 

between DO and an absence of dynamic elasticity was found. This absence suggests that DO may 

cause an imbalance in the competing mechanisms affecting the bladders ability to regulate wall 

tension which is an important step in understanding the factors likely contributing to OAB in some 

individuals62. 

5.4 Sub-Aim 2D – Induce dynamic elasticity non-invasively using compression  

This sub-aim describes a published study on an innovative protocol involving external 

compression of the bladder to induce dynamic elasticity non-invasively in the previously described 

isolated pig bladder model57,58.  The journal paper is attached in Appendix C, and is summarized 

in this section59. 

5.4.1 Introduction to the Compression Study 

Prior studies have identified reversible strain-softening of the bladder, termed dynamic 

elasticity, during UD studies56,62. This biomechanical property of the bladder is responsible for 

acute regulation of bladder wall tension during filling. Those studies required invasive UD 

protocols, including the placement of a urethral catheter to facilitate passive emptying. UD studies 

have inherent risks19 and any strain softening caused by UD filling is expected to be reversed 
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during the next void. The present study aimed to strain-soften the bladder using non-invasive 

compression techniques to reduce intravesical pressure and possibly urinary urgency which may 

represent an essential step in potential therapies. 

5.4.2 Balloon Study Methods 

Latex balloons were infused using a urodynamics unit (Aquarius TT, Laborie, Ontario) and 

catheter similar to how an actual UD study would be performed clinically to determine if strain 

softening could be accomplished through compression. Each balloon was either filled to a volume 

of 3000 mL then emptied to 1500 mL before measuring pressure (“Fill” protocol, Figure 5.9 A 

and C) or filled to 1500 mL then pressed by hand to a similar pressure as the balloons during the 

Fill protocol experienced at 3000 mL (“Press” protocol, Figure 5.9 B and D)59.  
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Figure 5.9: Fill and compression protocols for quantifying strain softening. Protocols for balloon 

experiments showing time and volume for fill and compression (A and B respectively) and volume 

and pressure for fill and compression (C and D respectively) 59. 

 

Both Fill and Press protocols were applied to separate balloons and new balloons were used 

for each protocol. At 1500 mL after a 5-minute equilibration period, pressures from both groups 

were recorded and compared. Those that underwent the Fill protocol showed a comparable degree 

of strain-softening as those in the Press protocol validating the concept before it was applied to pig 

bladders59.  
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5.4.3 Pig Bladder Methods 

Pig bladders from adult male and female pigs were obtained immediately after harvest and 

cannulated with heparinized Krebs-Henseleit buffer for transport to the lab. Once in the lab, excess 

tissue was removed and vesical arteries were cannulated to allow perfusion of oxygenated Krebs-

Henseleit buffer at 4 mL/minute. The urethra was cannulated to allow infusion, voiding and 

monitoring of vesical pressure throughout filling or compression and the bladder was stored in a 

custom chamber to regulate temperature (Figure 5.10)59. 

 
Figure 5.10: Isolated pig bladder in experimental chamber. The chamber regulates humidity and 

temperature while the bladder is perfused to simulate physiologic conditions59. 

 A similar protocol was applied to the bladders as the balloons underwent. A fill and empty 

protocol (“Fill”) began by filling the bladder to 250 mL, allowing it to reach a stable pressure, then 

recording that pressure. The bladder was then filled to 500 mL, allowed to reach a steady state and 

record the pressure before being syringe aspirated to 250 mL and recording the pressure there after 

equilibration to quantify the pressure drop to strain softening. The compress-release protocol 
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(“Press”) filled the bladder to 250 mL and allowed to reach steady state before isovolumetric 

compression by hand to the same pressure reached at 500 mL during the previous Fill protocol. 

The pressure after compression was then recorded to compare the degree of strain softening from 

each method. Each bladder underwent 2 cycles of Fill then Press protocols. This allowed a 

maximal filling pressure value to be determined for each individual bladder so that subsequent 

compression could be applied to reach the same target pressure. It also demonstrated repeatability 

and that the compression protocol had not damaged the bladders59. 

5.4.4 Results from the Balloon and Pig Compression Studies 

 The balloon study involved ten balloons (n = 5, Fill and n = 5, Press, Figure 5.11, blue and 

red, respectively) and both protocols showed a significant drop in pressure due to the strain 

softening caused. A total of eight (n = 8) pig bladders underwent the Fill then Press protocols. A 

significant drop in pressure before and after filling was achieved. A similarly significant drop in 

pressure occurred when the bladders were compressed instead. After the active void following 

each protocol, the pressures showed no significant differences, indicating the strain softening was 

reversed (Figure 5.12)59. 
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Figure 5.11: Balloon stain softening results for filling versus compression. Normalized pressure 

of balloons when filled (blue) and compressed (red) 59. 

 
Figure 5.12: Pig bladder strain softening results for filling versus comparison. Average pressures 

for pig bladder experiments before strain softening (green) and after strain softening (yellow) and 

each fill and compression experiments59. 

 

This study showed that it was feasible to adjust bladder wall tension through non-invasive 

methods, in this case compression. This could potentially be used as a therapeutic tool to reduce 

bladder wall tension and therefore sensation which could prolong the filling phase and reduce 
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urgency associated with OAB. It also shows the potential the isolated pig model developed has 

when considering the study of dynamic elasticity and other related mechanisms within the 

bladder59. 

5.4.5 Limitations of Compression Study 

This study used an ex-vivo pig model which may not be representative of human bladder 

function. Reversible strain softening has been identified in multiple mammalian species warranting 

further studies. External compression may also increase the need to void in vivo. This suggests 

further studies would be required to find the magnitude and timing of compression to effectively 

treat symptoms59. 

5.4.6 Conclusions of Compression Study 

In summary, this study described in this sub-aim showed that strain softening could be 

demonstrated using both filling and isovolumetric compression. This strain softening was acutely 

reversible. This novel, noninvasive technique has the potential for diagnostic and therapeutic 

applications. The reduction of intravesical pressure may prolong filling and lead to a reduction in 

OAB symptoms59.
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Chapter 6 – Summary and Conclusions 

6.1 Research Summary 

OAB is a complex issue affecting many people, and many of the mechanisms that cause it 

are not understood. Therefore, new diagnostic tools improved subtyping are needed. This 

dissertation investigated the mechanisms regulating bladder biomechanics as a potential factor 

contributing to OAB. Additionally, methodologies were developed to objectively detect and 

quantify different types of DO. 

6.2 Specific Contributions 

This research provided the following specific contributions: 

• Developed a novel tool for quantification of spontaneous rhythmic contractions in clinical 

UD data22  

• Identified a DO subgroup with spontaneous rhythmic contractions22  

• Applied the quantification tool to prospective data throughout filling to characterize 

changes in rhythmic contractions as volume increases in individuals with and without OAB 

symptoms 

• Identified dynamic elasticity in an isolated pig bladder model to enable further study 

individual biomechanical factors  

• Quantified dynamic elasticity in individuals with and without OAB for the first time62 

• Defined a dynamic elasticity index to quantify degree of dynamic elasticity with a single 

value62 

• Linked dynamic elasticity to DO and developed a model of competing biomechanical 

mechanisms acting to acutely regulate bladder elasticity62 
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• Induced dynamic elasticity non-invasively through a novel external compression protocol 

in an isolated pig bladder model59   

Through the contributions of sub-aim 1A, this dissertation project showed the potential for 

subtyping of an SRC-mediated form of DO through automated, real-time analysis. Sub-aim 1B 

investigated changes in rhythm, both amplitude and frequency, throughout the filling phase and 

patients with and without OAB symptoms. The results of sub-aim 1B indicate that the amplitude 

of rhythmic activity correlates with OAB symptoms and that high amplitude rhythmic DO may 

represent a clinically significant OAB subtype. 

 

With regards to dynamic elasticity, sub-aim 2A showed that it could be studied in an ex-vivo 

pig model to isolate biomechanical factors for further study. Sub-aim 2B provided a simplified 

protocol for quantifying dynamic elasticity. Sub-aim 2C linked DO to dynamic elasticity and 

established a model of competing biomechanical mechanisms that regulate dynamic elasticity. 

Sub-aim 2D developed a novel technique to non-invasively induce strain softening using external 

compression, providing a necessary step toward future studies involving diagnostic and therapeutic 

tools for OAB. 

 These contributions have provided improved understanding of the biomechanical factors 

influencing OAB which could allow for more effective treatment and diagnostics. In addition, this 

work could provide the necessary background information for the development of additional 

objective and non-invasive tools surrounding OAB. 
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6.3 Future Directions 

 Improvements to the spontaneous rhythmic contraction quantification algorithm could be 

made that allow it to detect clinically relevant DO using only data obtained from bladder pressure 

tracings, eliminating the need for a second invasive catheter placement in the rectum. This stems 

from the idea that the bladder acts as a tension sensor and any increase in tension in the bladder 

wall, even those caused by other bodily activity, could have clinical relevance in the sensation 

feedback. Studies involving machine learning could be conducted to either optimize the current 

algorithm parameters or develop new parameters entirely now that the underlaying mechanisms 

have been investigated. 

 Further studies are needed involving dynamic elasticity to completely confirm the 

equilibrium model and how it is influenced by detrusor overactivity. Further studies should 

incorporate participants with underactive bladder, which may have the opposite effect on dynamic 

elasticity compared to DO. Additional studies are also needed to determine the exact feasibility of 

isovolumetric compression as a therapeutic tool. Specific studies are needed to determine 1) if it 

is possible to apply sufficient compression without generating an uncontrollable desire to void, 2) 

the magnitude of acute compression that is necessary to provide a meaningful decrease in pressure 

and sensation, and 3) the optimal timing of these compressions for relevantly prolonging the filling 

phase. 
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