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Chapter 1: Native plant response to deer overbrowsing in a 
serpentine savannah 

 
 

 
Abstract 

Plants are particularly vulnerable to physical disturbance in low productivity areas, due to 

a high cost of replacing lost plant tissue. In the eastern United States, serpentine grasslands are 

fragmented ecosystems with high concentrations of rare endemic plant species, low 

concentrations of soil nutrients, and uncontrolled deer overpopulation. This study assessed 

functional responses of native angiosperms in a rare eastern serpentine savannah to selective deer 

browsing. Plant count, flower count, floral area, vegetative area, and plant height of 10 

serpentine plant species were compared inside and outside of deer exclusion structures 

throughout the growing season of 2019 (April-October). Throughout the growing season and 

across the plant community, deer presence consistently reduced values for all plant response 

traits measured. Species most impacted by deer herbivory included Oenothera biennis, Solidago 

nemoralis, Sabatia angularis, Liatris spicata, and serpentine endemic Symphyotrichum 

depauperatum. Eastern serpentine grasslands could lose biodiversity and be permanently 

degraded by continued intense browsing pressure. We recommend that management programs 

should be implemented to monitor rare serpentine flowering plant species, and that hunting be 

considered to limit the deer population in areas of high plant conservation priority.  
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Introduction 

Severe ecosystem disturbances including species invasion, anthropogenic land use 

change, and extinction of carnivores have resulted in dramatic changes in ecosystem composition 

and losses of global biodiversity (Myers et al., 2000, Rambo & Faeth, 2003, Raghubanshi 2009, 

Strong & Frank, 2010). Especially when disturbances directly impact the abundance and 

distribution of vegetation, their effects can propagate across foodwebs and cascade through 

ecosystems (Nakamura, 2000, Strong & Frank, 2010, Ripple & Bestcha, 2011).  As a result, 

acute or chronic disturbance can alter species interactions, reduce foodweb stability and 

resilience, and ultimately lead to lowered biodiversity (Raghubanshi 2009, Strong & Frank, 

2010). Understanding both the scale and cascading impacts of disturbance across ecosystems, 

and exploring their mitigation is imperative to prevent the loss of unique species (Raghubanshi 

2009). 

In the past few decades, white-tailed deer (Odocoileus virginianus Zimmerman, 1780) 

populations have expanded across the eastern United States, due to local extinction of natural 

predators, landscape and ecological changes, reduction in hunting pressure, and the ability of 

deer to adapt to human-modified ecosystems (Côté et al. 2004, Latham et al., 2005, Creacy, 

2006, Rawinski, 2008, Strong & Frank, 2010). At high densities, deer disperse exotic species 

(Williams & Ward, 2006, Knight et al, 2009, Averill et al., 2017), increase the spread of 

infectious disease (Belay et al., 2004, CFSPH, 2006, Borer et al., 2009), and alter community 

dynamics and ecosystem processes through trampling and selective browsing (Latham et al., 

2005, Rawinski, 2008, Averill et al., 2017). White-tailed deer are considered a keystone species, 

because their browsing has such strong direct and indirect impacts on the ecosystems they live in 

(Rooney, 2001, Rooney & Waller, 2003).   
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At high deer density, browsing limits floral biodiversity and promotes homogeneity 

(Miller et al., 1992, Rawinski, 2008). Browsing has an outsized effect on herbaceous plants, 

particularly when deer preferentially forage on reproductive plants (Augustine & Frelich, 1998, 

Ruhren & Handel, 2003, Geddes et al., 2006). During spring and summer months, deer feed 

primarily on herbaceous plants due to their digestibility and high nitrogen content (Miller et al., 

1992, Geddes et al., 2006). Browse-intolerant herbaceous plants found in areas of high deer 

density are often smaller, have fewer flowering heads, and are less likely to reproduce, either due 

to direct consumption or chronic resource depletion (Englund & Mayer, 1986, Augustine & 

Frelich, 1998, Ruhren & Handel, 2003, Côté et al., 2004, Wang et al., 2008). Deer browsing, 

especially florivory, can reduce the density and diversity of herbaceous plants over time, causing 

local extinctions (Augustine and Frelich, 1998, Strong & Frank, 2010). 

The effects of deer browsing on plant communities may be magnified in low productivity 

areas (Olff & Ritchie 1998; Proulx & Mazumder 1998, Bakker et al. 2006) where low soil 

nutrient availability increases the costs of replacing lost plant tissue (Janzen 1974). This may be 

especially true for serpentine barrens, which are globally rare, heavily fragmented habitats that 

occur on unique soils derived from ultramafic rock (Latham & McGeehin, 2012). These soils 

tend to be shallow and rocky, with low moisture, low soil nutrient availability, and high 

concentrations of heavy metals (Flinn et al., 2017). Due to the considerable obstacles for plant 

colonization, serpentine ecosystems are hotspots for rare and endemic plant species, with unique 

adaptations to the harsh conditions (Anacker, 2011, Kay et al., 2011, Wolf & Thorp, 2011).  

While serpentine soils can be found around the globe, most ecological research about 

serpentine systems is restricted to the west coast of the United States (Anacker, 2011, Kay et al., 

2011).  Based on these studies, we know that compared to non-serpentine taxa, many serpentine 
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species exhibit slow growth rates, high root:shoot ratios, small stature, small flower size, and 

mechanisms to prevent desiccation and regulate the uptake of heavy metals. (O’dell & 

Rajakaruna, 2011, Wolf & Thorpp, 2011) For example, the serpentine endemic Cerastium 

arvense Hollick & Briton (serpentine chickweed; Caryophyllaceae) prevents desiccation by 

producing a dense layer of hairs to reflect excess sunlight and to trap evaporating moisture 

(Prince et al., 2004). Another serpentine endemic, Alyssum lesbiacum, Candargy (Lesvos 

alyssum; Alyssae) hyperaccumulates nickel in storage tissues to prevent ion toxicity from nickel-

rich serpentine soils (Kazakou et al., 2010). Unique adaptations to serpentine have also been 

observed in species that grow both on and off serpentine substrates. For example, Leptosiphon 

parviflorus Porter & Johnson (variable linanthus; Polemoniaceae) exhibits decreased plant height 

and earlier flowering date, and Lasthenia californica Lindl (California goldfield; Asteraceae) 

shows physiological tolerance to ionic stress when grown on serpentine soils, as compared to 

adjacent non-serpentine soils (Kay et al., 2011).   

The unique adaptations that allow serpentine species to tolerate extreme soil conditions 

can be energetically and reproductively costly (Flinn et al., 2017). For example, secondary 

chemicals and heavy metals in nectar and fruits may negatively affect pollinators and other 

mutualist species, limiting pollination and seed dispersion for serpentine taxa (Strauss and Boyd, 

2011). Plants in these sparse, low diversity communities may also be both more conspicuous to 

herbivores, and susceptible to their impacts.  Due to the increased cost for regrowth in resource-

poor environments, serpentine species have reduced resilience to herbivory (Strauss & Boyd, 

2011, Flinn et al., 2017).  Additionally, because calcium is required for effective plant immune 

response, low soil calcium levels cause serpentine species to be susceptible to diseases carried by 

herbivores (Huntly, 1991, Borer et al., 2009, Kay et al., 2011, Strauss and Boyd, 2011).  
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While serpentine systems and their responses to disturbance have been studied rigorously 

in California and Oregon where serpentine soils are abundant, smaller, more fragmented eastern 

serpentine systems have been largely unstudied (Flinn, et al., 2017).  Remnants of an extensive 

prairie that covered most of the eastern United States 25,000 years ago, eastern serpentine 

grasslands are a vestige of a unique and ancient ecosystem (Prince, et. al, 2004). As the climate 

became cooler and wetter, and the prairies receded, serpentine areas remained open and grassy 

due to their low moisture retention and high heavy metal concentrations. Lightning induced fires 

and fires set by Native Americans to hunt deer maintained these grassy barrens for thousands of 

years until European colonization (Floyd, 2006, Prince, et. al, 2004, Tyndall, 1992). Although 

settlers used serpentine grasslands to graze livestock, these unique ecosystems began to decline 

due to encroachment of woody plants (Prince, et al., 2004, Floyd, 2006). Encroachment 

increased rapidly after livestock were removed in 1930, and over the course of the 20th century, a 

combination of residential development and mining of serpentine minerals, such as talc, 

asbestos, and chromite, decimated what was left of the serpentine barrens (Floyd, 2006, Prince, 

et. al, 2004). 

Today, 96% of eastern serpentine barrens are found in the Northern Piedmont of 

Maryland and Pennsylvania, covering only 3,400 acres in total (about 5 square miles) (Latham & 

McGeehan, 2012). These ecosystems are ecologically distinct both from the habitats that 

surround them, and from their western counterparts, with flora and fauna most similar to that of 

Midwest prairies (Latham & Anderson, 2003, Latham & McGeehin, 2012). A newspaper article 

in the 1960s described a serpentine barren in Maryland as a “hunk of the American (Mid)west 

dropped into Maryland” (Modell, 1967).  As such, eastern serpentine barrens are not only home 

to globally rare endemic serpentine species, but also to many plant species whose main ranges 
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are in the Midwest, and are thus locally or regionally endangered (Flinn et al., 2017, Rajakaruna, 

2009).  

While no studies to date have examined the impact of high deer densities on eastern or 

western serpentine systems, a few studies have described the significant negative impacts of deer 

overbrowsing in Midwest prairies (Anderson, 2003, Latham & McGeehin, 2012). Although 

prairie grass species are well adapted to herbivory, direct consumption of flowering forbs by deer 

reduces both their vigor and reproductive success. Additionally, deer generally avoid consuming 

invasive non-native plants, allowing them to proliferate unchecked (Latham & McGeehin, 2012). 

These competitive disadvantages to native forbs have resulted in shifts in community 

composition, and an overall decline in prairie floral diversity (Anderson, 2003, Strong & Frank, 

2010).  

Eastern serpentine barrens are typically small fragments of prairie habitat, surrounded by 

dense pine forest. White-tailed deer thrive along the forest edges of these serpentine grasslands, 

consuming a combination of saplings, shrubs, and wildflowers (Anderson, 2003, Latham & 

McGeehin, 2017). Rare plants in these fragmented ecosystems are especially vulnerable to deer 

browsing effects, due to an elevated rate of encounter, and a limited ability for plants to disperse 

and recolonize between habitat fragments (Miller et al. 1992). Several endangered flowering 

forbs, including Lobelia puberula Turner (downy lobelia; Campanulaceae) and Symphyotrichum 

ericoides Nesom (white heath aster; Asteraceae) have been locally extirpated from eastern 

serpentine barrens in the past decades (Latham & McGeehin, 2012). While it is unclear if deer 

overbrowsing is responsible for these declines, it is clear that rare and endangered species that 

are highly preferred by deer are extremely vulnerable. The regeneration of many rare eastern 

serpentine species has been slowed or halted completely due to the onslaught of deer 
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consumption (Latham & McGeehin, 2012). Due to a lack of knowledge about the specific dietary 

preferences and overall impacts of deer overbrowsing on eastern serpentine plant communities, 

Latham & McGeehin (2012) suggest that completely excluding deer and comparing vegetation 

response where deer are present and absent is the “only practical method” to monitor deer 

impacts on rare serpentine species.  

This study used deer exclusion plots to assess the impacts of deer browsing on flowering 

plant community composition in a rare serpentine savannah in the eastern United States.  

Specific objectives included: 1) quantifying the community response of serpentine vegetation to 

deer browsing, 2) determining plant species that were most impacted by deer presence, and 3) 

quantifying how the serpentine vegetation response to deer browsing shifted over the course of 

the growing season. Excluded areas were predicted to have higher abundances of flowering 

species, greater numbers of flowers, larger vegetative and floral areas, and taller flowering 

plants. Additionally, species that were preferred by deer were predicted to show stronger 

negative responses to deer presence than species deer avoided. This research provides valuable 

information about the effects of deer overbrowsing on eastern serpentine species which can be 

directly applied to management and conservation decisions in serpentine grasslands and other 

rare ecosystems occurring across the eastern United States. 

   

 

Methods 

 Study Site 

Serpentine savannas, defined as barrens with 10-25% tree cover (Flinn et al., 2017), are 

considered to have an especially high conservation value, and house nearly all of the rare 
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endemic plant and pollinator species characteristic of serpentine barrens (Floyd, 2006, Smith, 

2010, Flinn et al., 2017). Located in the midst of suburban Baltimore, Soldiers Delight Natural 

Environmental Area includes the largest remaining serpentine savannah ecosystem in the eastern 

United States (Floyd, 2006, Tyndall & Hull, 1999).  

The soil at Soldiers Delight is a sandy loam with a low concentration of calcium and a 

high concentration of magnesium and nickel (Tyndall, 2012). Dominant grassland species 

include true prairie grasses, such as Schizachyrium scoparium Michx. (little bluestem; Poaceae) 

and Sorghastrum nutans Nash. (indian grass; Poaceae) (Tyndall & Hull, 1999, Tyndall, 1994). 

There are also over 39 rare, threatened, or endangered plant species at Soldiers Delight, 

including the Gentianopsis crinita Froel. (fringed gentian flower; Gentianaceae), 

Symphyotrichum depauperatum Nesom. (serpentine aster, Asteraceae), Cerastium arvense L. 

var. villosum (serpentine chickweed) and Agalinis decemloba Greene (ten lobe false foxglove; 

Scrophulariaceae) (Tyndall & Hull, 1999, Tyndall, 1994, Tyndall, 2005, Floyd, 2006, Flinn, et 

al., 2017).  

The serpentine savanna ecosystem at Soldiers Delight is actively managed using a 

combination of cutting trees and controlled burns to limit the encroachment of Virginia Pine and 

Eastern Red Cedar (Tyndall & Hull, 1999, Tyndall, 1994, Floyd, 2006, Prince, et. al, 2004). 

However, rare and endangered serpentine flora are also threatened by competition from invasive 

species and consumption by herbivores (Flinn et al. 2017). White tailed deer density at Soldiers 

Delight has increased dramatically in the past few decades (Floyd, 2006), and have had an 

uncharacterized impact on the unique flora and fauna of this rare ecosystem. 
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Deer Exclusion Plot Construction 

Exclusion plots are frequently used to measure the effects of large herbivores on plant 

and insect communities (Rambo & Faeth, 1999, Pasari et al., 2014, Stephan et al. 2017, Averill 

et al., 2017). We identified two sites within Soldiers Delight with similar physical, topographic, 

and edaphic characteristics (39.4030190, -76.8240320, and 39.4025640, -76.8214420), shown in 

Fig. 1. At each site, we constructed five 5m x 5m deer exclosure plots, each paired with an 

adjacent control plot. Due to shallow soil depth at the study site, exclosures were constructed 

using 5-gallon buckets of cement anchoring 2 m tall wooden posts, and 2 m tall polypropylene 

fence with 2” mesh openings, to permit movement of pollinators and birds. Holes (4 x 6 inches) 

were cut in the bottom of the fence in order to allow small mammals to access plots, and 1 cm 

thick wire was wrapped around the bottom of each structure to prevent fawns from accessing the 

plots. 

 

Plant Sampling 

In ecosystems with low diversity, measuring changes in species abundance is considered 

to be more informative than measuring biodiversity alone, thus both were determined in this 

work (Mendenhall et al., 2011, Murphy & Romanuk, 2014). To quantify the impact of deer 

browsing on the diversity and abundance of flowering plant species, monthly plant inventories 

were conducted. Within each experimental plot, two 1 x 1 m quadrats were established, and 

percent cover of plant species was recorded for each sampling event. Additionally, for each plot, 

the number of flowering plants, the number of flowers on each plant, and the height of each plant 

was recorded. Sampling occurred every 2-3 weeks in order to capture peak bloom for all species 

present. 
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Some pollinator species, including bumblebees, preferentially visit patches with high 

floral densities (Westphal et al., 2003, Hegland & Boeke, 2006). For each flowering species 

encountered during the growing season, 30 inflorescences were photographed next to a ruler, and 

average floral areas for each species were calculated using the program ImageJ (Schneider et. al, 

2012). The area of compound flowers Solidago rugosa Mill (Asteraceae) and Packera anonyma 

Weber & Love (Asteraceae) was measured using the program GIMP (The GIMP Team, 2020), 

by dividing the number of pixels of all flowers on the plant by the number of pixels in a 1 cm 

square. This number was divided by the number of influorescences in an image to determine area 

per influorescence. The area for Polygala verticillata L. (Polygalaceae) was calculated for the 

entire flower rather than individual influorescences due to their tiny size (about 8 sq mm). The 

average floral area per species was multiplied by the number of inflorescences of each species 

present in each plot to obtain a standardized measure of species blossom density (Hegland & 

Boeke, 2006). Floral areas for each species in each plot were added together to calculate total 

floral density per plot. 

 

Statistical analyses 

To quantify patterns in community composition data over the growing season, we used a 

nonmetric multidimensional scaling (NMDS) ordination to divide sampling points throughout 

the year into distinct season groups based on their plant community compositions (NMDS; 

McCune & Grace, 2002). The input data were total counts for flowering plant species at each 

sampling date. The NMDS was performed using the package ‘vegan’ in R, using the Bray-Curtis 

dissimilarity index as a distance measure (Oksanen et. al, 2019). Based on their distinct 
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groupings, sampling dates were divided 5 significantly different seasons: spring, early summer, 

mid-summer, late summer, and fall. Community composition differences between these seasons 

were compared using a permanova.  

Counts of flowering plant number per plot, total flower number per plot, and flower 

number per plant for each species were compared between control and exclusion treatments for 

each unique combination of date, plot, and treatment using a negative binomial regression with 

repeated measures. All negative binomial regressions were run using the package “MASS” in R 

(Venable & Ripley, 2002).  

Total blossom area, mean herbaceous plant cover, and mean plant height per species for 

each unique combination of date, plot, and treatment were analyzed using general linear mixed 

effects model with repeated measures (GLMMs). In all models, “plot” and “quadrat” were 

treated as random factors. The GLMMs were validated visually (Zuur et al., 2010) leading to 

Box-Cox transformations of some response variables. All GLMMs were run using the package 

“lme4” in R (Bates et al., 2015), and best models were determined based on AIC values. Linear 

regressions were then used to assess how blossom density area related to herbaceous plant 

percent cover for each plot and treatment.  

To determine which flower species were particularly driving differences in flower counts 

between exclusion and control plots, average values for each species in control and exclusion 

plots were calculated for five plant functional responses: total plant number per plot, total flower 

number per plot, average blossom area per plot, average vegetative area per plot, and average 

height per plant. To determine the magnitude of difference between exclusion and control plant 

responses, the ratio of the response between exclusion and control for each species and each 

functional response was calculated. Responses were weighted equally by adding all ratio values 
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for each vegetation response and dividing each individual ratio value by the sum. An NMDS was 

performed comparing ratios of plant functional responses between exclusion and control plots 

across species, to determine which species showed the greatest differences in plant response 

between control and exclusion treatments.  NMDS analysis was performed using the package 

‘vegan’ in R, using the Euclidean distance as a dissimilarity index as a distance measure 

(Oksanen et. al, 2019).  

To assess community response to exclusion treatments, community weighted means  

(Garnier et al., 2004, Violle et al., 2007) were calculated for four plant functional responses: total 

flower number per plot, average blossom area per plot, average vegetative area per plot, and 

average height per plant. An NMDS was performed comparing plant functional trait responses 

between exclusion and control plots using the package ‘vegan’ in R, using the Euclidean distance 

as a dissimilarity index as a distance measure (Oksanen et. al, 2019). Number of flowers per 

plant was found to be significantly correlated to average blossom area, and was not used as a 

functional response variable for this analysis. The functional trait responses between control and 

exclusion treatments were compared using a permanova. 

Bray-Curtis dissimilarity indices between control and exclusion treatments at each date 

were calculated for 6 response variables: average vegetative plant area per plot, average blossom 

density area per plot, total number of flowering plants, total number of flowers, flower number 

per plant, and average plant height. To assess how community-wide dissimilarity varied over 

time between exclosure and control treatments, dissimilarity values were plotted over time. For 

each response variable, a linear or quadratic regression was run to assess how dissimilarity 

changed over the growing season. AIC values were used to determine whether linear or quadratic 

equations best represented the variance of the data.  
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Results  

 The total number of flowering plants on the landscape fluctuated over the course of the 

growing season, peaking during the late summer (Figure 2). Based on NMDS and permanova 

analysis, community composition was found to change over time, producing 5 significantly 

different season groupings: spring, early summer, mid-summer, late summer, and fall (F4,9  = 

18.535  p = 0.005, dimensions = 2, stress = 0.04).  

NMDS was used to assess how plant community functional responses differed between 

control and exclusion treatments. Both the magnitude and variability of all plant functional traits 

were higher in the exclusion treatment compared to the control treatment (dimensions = 2, stress 

= 0.02; Figure 3). Permanova results showed that plant functional responses were significantly 

greater in exclusion treatments than control treatments (F1,8 = 4.81, p = 0.02), and pairwise 

analysis showed that all plant response variables differed significantly between the two 

treatments (Table S2). 

Flowering plant count in deer exclusion treatments was consistently higher than in 

control plots (X21,94 = 12.79, p<0.001).  Deer presence had a significant negative impact on all 

measured plant response variables: species and floral counts, vegetative and floral area per plot, 

number of flowers per plant, and average plant height per species (Table 1). Based on NMDS 

analysis, flower species that were particularly preferred by deer included Liatris spicata L. 

(Asteraceae), Oenothera biennis L. (Onagraceae), Sabatia angularis L. (Gentianaceae), Solidago 

nemoralis, and Symphyotrichum depauperatum (dimensions = 2, stress < 0.001; Figure 4). 

Individual species scores for this ordination are shown in Table S3.  
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The linear relationship between vegetative and floral area was positive and highly 

significant (p value < 0.001, R2 = 0.92). Bray-Curtis dissimilarity between control and exclusion 

treatments showed a slight but nonsignificant linear increase over time for flower count and plant 

area (p value = 0.26, p value = 0.15; Figure 5). Community dissimilarity for plant height 

increased linearly over the growing season (p value = 0.04, R2 = 0.42). Plant count community 

dissimilarity followed a quadratic curve over time, peaking in the middle of summer, and then 

decreasing in the fall (p value = 0.02, R2 = 0.58).  

 

 

Discussion 

Deer presence had a significant effect on plants growing in the eastern serpentine 

savannah. In studying the effects of deer presence on plant and flower count, vegetative and 

floral area, flowers per plant, and plant height for herbaceous plants, we found that throughout 

the growing season (Figure 2) and across the plant community (Figure 3), deer presence 

consistently reduced values for all plant response traits measured (Table 1).  These results are 

consistent with numerous studies that have found deer presence dramatically reduces the 

abundance of flowering plants in prairie (Anderson, 2001) and temperate forest ecosystems 

(Ruhren & Handel, 2003, Sakata et al., 2015). Across ecosystem types, herbaceous plants are 

impacted by deer more than other plant taxa due to higher nitrogen content and an inability to 

outgrow a deer’s “zone of accessibility,” approximately 2 m from the ground (Alverson et al. 

1988, Ruhren & Handel, 2003).  

 Although deer presence caused lower response values for the plant community as a 

whole, not every plant species experienced this herbivory pressure in the same way. Species 
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most impacted by deer herbivory included S. depauperatum, O. biennis, S. nemoralis, S. 

angularis, and L. spicata. As shown in Figure 4, deer presence had the greatest negative impact 

on the height of S. depauperatum plants, while plant area was most affected for S. rugosa, and 

flower count was most affected for O. biennis. The only species that did not follow the 

community trend of decline due to deer presence was Polygonum tenue Michx. (Polygonaceae), 

which was only present in the control and exclusion treatments for Plot 1. In the control plot it 

grew taller and more abundant. The unexpected results from this species may indicate that P. 

tenue is unpalatable for deer, or reflect overall scarcity, rather than actual response to deer 

herbivory.  

Comparison of Bray-Curtis dissimilarity for community-wide plant responses between 

control and exclusion treatments over the growing season showed a small, non-significant linear 

increase over time for the following response variables: plant area, floral area, flower number, 

and flowers per plant (Figure 5). Community dissimilarity for plant height showed a significant 

positive linear trend over time, indicating that as the growing season proceeds, plant height 

between control and exclusion treatments increasingly diverges. Late blooming perennials persist 

on the landscape for the duration of the growing season, and may be browsed continuously, 

increasing the impact on relative plant height over time. Community dissimilarity of plant count 

over time was the only response variable that had a significant quadratic relationship. 

Dissimilarity between treatments increased between the spring and late summer, peaking in late 

August and early September, before dropping back down during the fall season. This decline in 

dissimilarity likely reflects local weather patterns rather than deer impact. A seasonal drought in 

the mid-Atlantic during the fall of 2019 caused a decrease in overall herbaceous plant abundance 

across both treatments, causing the plant numbers to become relatively more similar.  
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No differences in overall herbaceous plant diversity were observed between control and 

exclusion treatments. Because this study was only conducted for one year, these results are not 

unexpected. However, a continuation of this study might find different results. Low floral 

diversity in some Midwest prairie ecosystems has been attributed to decades of intense deer 

browsing (Anderson, 2001). Serpentine barrens are ecosystems characterized by low diversity, 

and are also particularly vulnerable to herbivory pressures (Strauss & Boyd, 2011, Flinn et al., 

2017, Safford & Malleck, 2011). Because most flowering herbaceous plants did not evolve under 

a strong vertebrate herbivory pressure, they are not resilient to browsing (Anderson, 2001). As a 

result, species that are preferentially consumed by deer at high densities may be driven to 

extinction, changing community composition and reducing biodiversity (Anderson, 2001, 

Latham & McGeehin, 2012). S. depauperatum, one of the species that we found was most 

impacted by deer, is critically endangered and near-endemic to eastern serpentine barrens 

(Rajakaruna, 2009, Latham & Mcgeehin, 2012, Flinn et al., 2017).  Already imperiled due to a 

combination of habitat loss, tree encroachment, and species invasion, serpentine grasslands could 

lose biodiversity and be permanently degraded by continued intense browsing pressure (Latham 

& McGeehin, 2012, Flinn et al. 2017). 

Florivory by deer not only has direct impacts on the abundance of herbaceous plants, but 

also indirect impacts that cascade throughout ecosystems. Many insect species in temperate 

grassland ecosystems are dietary specialists that have developed associations with one or a few 

native plant species over millions of years (Latham & McGeehin, 2012). These same insects are 

vital links in the foodweb for a variety of secondary consumers (Latham & McGeehin, 2012), 

and the loss of their host plants threatens the stability and biodiversity of the entire community. 

Additionally, numerous studies of deer impacts on flowering plants have observed higher density 
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of insect pollinators in areas where deer are excluded, compared to areas of deer presence 

(Anderson, 2001, Ruhren & Handel, 2003). Low floral abundance leads to a reduction in 

pollinator visitation, causing further population decline over time (Anderson, 2001, Ruhren & 

Handel, 2003). While our research indicated that deer detrimentally affect eastern serpentine 

plant species, the impact of deer browsing on native pollinators and plant reproductive success 

across grasslands across the mid-Atlantic region is unknown.  

The findings of this study have clear and important management implications. First, in 

serpentine areas where deer browsing is intense, management programs should be implemented 

to monitor flowering plant species that are preferentially browsed by deer (Anderson, 2001, 

Latham & McGeehin, 2012). Using season-specific indicator species will ensure that browsing 

impact is monitored throughout the growing season (Anderson, 2001). Ultimately, the local deer 

population must be reduced in order to sustain or restore rare eastern serpentine flora (Ruhren & 

Handel, 2003). Latham & McGeehin (2012) explain that any attempts to reintroduce extirpated 

species without drastically limiting the deer population will “be a lesson in futility”. We suggest 

that the number of permits for recreational deer hunting on serpentine barrens be increased, and 

to determine whether this method is effective, that the vegetation response to hunting be 

monitored over time (Latham and McGeehin, 2012). If recreational hunting is not sufficient to 

limit the detrimental impacts of deer browsing to serpentine vegetation, sharpshooter culling may 

be necessary to reduce deer populations to a sustainable level (Latham and McGeehin, 2012).  

Globally, temperate grasslands are considered to be one of the most critically imperiled 

ecosystems, having declined severely in total area and ecosystem functionality in the past 

century (Hoekstra et al., 2005, Latham & McGeehin, 2012). In the United States alone, more 

than 50% of temperate grassland habitat has been lost to anthropogenic land-use change 
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(Hoekstra et al., 2005). Serpentine grasslands in the eastern United States are of particular 

conservation concern, due to their high fragmentation, history of severe disturbance, and 

abundance of rare and endemic species (Latham & McGeehin, 2012, Flinn et al., 2017). As 

natural habitats become increasingly fragmented by anthropogenic land use changes, it is 

particularly important to study ecosystem interactions in naturally fragmented ecosystems (Wolf 

& Thorp, 2011). As such, serpentine barrens represent more than current zones of high 

conservation value (Flinn et al., 2017); they are excellent model systems for predicting and 

understanding ecosystem interactions of the future.  
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Figures and Tables 

Figure 1: location of field sites in Owings Mills Maryland  

 

Figure 2: Total flowering plant count between deer exclusion (E) and control plots (C) over the 

course of the growing season 
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Figure 3: NMDS plot showing net vegetation response based on community weighted means of 

plant response variables to deer presence and absence.  Points represent net average community 

response values for each control and exclusion plot, and arrow length reflects the relative 

contribution of each plant response variable to the magnitude of community response. The larger 

area for the exclusion treatment polygon reflects greater overall variability in plant response 

values compared to the control treatment.  
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Table 1: Effect of deer presence on vegetation over time using analysis of deviance (Type II 

test). P values for all explanatory variables were highly significant and equal to <0.001, except 

for Treatment in the Average Height per Treatment GLMM, which had a p value of 0.014. 

 

 

 

 

 

 

 

 

 

Response Variable Model Type Best Model Explanatory Variable X2 df 

Number of Plants Negative 
Binomial n ~ Treatment + Season Treatment 12.79 1 

   Season 31.16 4 

Number of Flowers Negative 
Binomial n ~ Treatment + Season Treatment 17.20 1 

   Season 48.70 4 
Flowers per Plant per 

Species 
Negative 
Binomial n ~ Treatment + Species Treatment 103.78 1 

 
  Species 11.63 12 

Average Floral Area 
(cm2) 

GLMM n0.2 ~ Treatment + Season Treatment 13.00 1 
   Season 35.33 4 

Average Vegetative 
Area (%) 

GLMM n0.3 ~ Treatment + Season Treatment 37.05 1 
   Season 106.66 4 

Average Height per 
Species (cm) 

GLMM n0.1 ~ Treatment + Season 
+ Species Treatment 6.024 1 

 
  Season 44.92 4 

   Species 426.03 12 
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Figure 4: NMDS plot showing that the species Liatris spicata (LISP), Oenothera biennis 

(OEBI), Sabatia angularis (SAAN), Solidago nemoralis (SONE), and Symphyotrichum 

depauperatum (SYDE) were most affected by deer presence, using an integrated combination of 

all plant response variables. Points represent average plant response values across species. 

Length of arrows corresponds to magnitude of the ratio in species response between disturbed 

and control plots, with longer length indicating greater differences between control and 

exclusion. Asterisks indicate p values < 0.05.  
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Figure 5: Bray-Curtis dissimilarity of plant response traits over the growing season. Shaded grey 

areas are 95% confidence intervals.   
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Supplementary Materials 

 
Table S1: Means and standard deviations for all plant response variables measured for each 

flowering plant species 

 
 
 
 
Table S2: NMDS results from Figure 4 comparing the trait responses for each species to deer 

exclusion treatment. Significant p values indicate that all plant response variables were 

significantly different between control and exclusion treatments.  

 
 
 
 
 
 
 
 
 

 
 
 

Response Variable NMDS1 NMDS2 r2 Pr(>r)  
Plant Height 0.93312 0.35956 0.898 0.001 *** 
Number of Flowers 0.7304 -0.68301 0.9333 0.001 *** 
Floral Area 0.56559 0.82469 0.871 0.006 ** 
Vegetative Area 0.75451 -0.65629 0.7944 0.014 * 
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Table S3:  NMDS results from Figure 2 comparing the trait responses for each species to deer 

exclusion treatment. Significant p values indicate species that experienced the strongest and most 

negative responses to the deer presence 

 
Species Code NMDS1 NMDS2 r2 Pr(>r)  
Arabis lyrata ARLY -0.27 0.96 0.93 0.13  
Cerastium arvense CEAR 0.01 -1.00 0.09 0.92  
Liatris spicata LISP 0.54 -0.84 0.96 0.03 * 
Oenothera biennis OEBI 0.13 -0.99 1.00 0.01 ** 
Oenothera perennis OEPE -0.35 0.93 0.50 0.48  
Packera anonyma PAAN 0.19 0.98 0.73 0.32  
Polyganum tenue POTE 0.87 0.48 0.66 0.42  
Polygala verticillata POVE -0.43 -0.90 0.15 0.81  
Sabatia angularis  SAAN 0.83 -0.56 0.99 0.02 * 
Sisyrinchium angustifolium SIAN 0.58 0.81 0.61 0.38  
Solidago nemoralis SONE -0.98 0.18 1.00 0.02 * 
Symphyotrichum depauperatum SYDE 0.60 0.80 0.96 0.02 * 
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Chapter 2: Disturbance disrupts pollinator network stability in a 
low diversity grassland 

 

 

Abstract 

Plants are the foundation of terrestrial foodwebs, so disturbances that degrade mutualist 

networks may threaten ecosystem functionality and ecosystem services. While mutualist 

networks are generally robust the loss of weakly interacting species, disturbances that impact 

strongly interacting keystone generalist species can decrease pollinator network stability. This 

study assessed how metrics of mutualist network stability were impacted when keystone 

pollinator groups were negatively affected by deer browsing disturbance. Deer exclusion plots 

were used to compare plant and pollinator response between disturbed and undisturbed habitat 

throughout a growing season. Pollinators were sampled with pan traps and visual surveys were 

used to document plant-pollinator interactions. Highly abundant flower species Liatris spicata 

was found to be a keystone plant species, while the pollinator group of Dipteran flies were found 

to be keystone pollinators. Although flies were equally as abundant between control and 

exclusion plots, the diversity and intensity of their interactions (species strength) was 

significantly decreased in exclusion plots. It was found that while community stability metrics of 

interaction strength asymmetry (ISA) and connectance stayed constant between disturbed and 

undisturbed habitats, nestedness, which reflects network redundancy, decreased in disturbed 

habitats. As a result of decreased species strength of a keystone generalist pollinator group, 

community nestedness and overall network stability also decreased. 
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Introduction 
 
Globally, habitat loss and disturbance have led to dramatic declines in the diversity and 

abundance of both plants and their pollinators (Biesmeijer, et al., 2006, Ricketts et al., 2008, 

Winfree et al., 2009). Losses of biodiversity in mutualist communities may disrupt plant-

pollinator associations and alter network dynamics (Kaiser-Bunbury et al., 2010, Aslan, et al., 

2013). Because plants are the foundation of terrestrial foodwebs, disturbances that degrade 

mutualist networks may threaten overall ecosystem functionality and ecosystem services (Harris 

& Johnson, 2004, Memmott et al., 2004, Potts et al., 2010).  Determining factors that contribute 

to mutualist network resiliency or vulnerability to different types of disturbance will improve 

overall understanding of plant-pollinator interactions and may inform conservation and 

restoration efforts (Vazquez & Simberloff, 2002, Harris & Johnson, 2004, Winfree et al. 2009, 

Koski et al., 2015, Carman & Jenkins, 2016, Kremen et al., 2018).  

Across ecosystems, most mutualist networks share certain important characteristics 

(Vasquez et al., 2009, Bascompte, & Jordano, 2009). A core group of highly interacting keystone 

generalist species are expected to have disproportionately important ecological roles as 

mutualists compared to more specialized species (Gilbert, 1980, Koski et al., 2015). Within 

pollinator networks, abundance frequently predicts which species are keystone mutualists (Koski 

et al., 2015). Abundant, common plants and pollinators are expected to have many interaction 

partners, while rare endemic species are expected to have fewer interaction partners (Vasquez et 

al., 2009, Koski et al., 2015). Mutualist networks generally have a high degree of redundancy, or 

nestedness, whereby specialist pollinators are reliant on keystone generalist plants, and specialist 

plants are reliant on keystone generalist pollinators (Vasquez & Aizen, 2004, Bascompte & 

Jordano, 2009, Vasquez et al., 2009, Potts et al., 2010, Koski et al., 2015). This nested structure 
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implies asymmetrical interaction strength between generalist and specialist species, and also 

indicates the importance of a core group of generalist species to overall network structure and 

function (Bascompte & Jordano, 2009, Vasquez et al., 2009). Mutualist networks also exhibit 

low overall connectance- the proportion of possible interspecific interactions that actually occur 

(Bascompte & Jordano, 2009, Vasquez et al., 2009). Because most plant-pollinator interactions 

are relatively weak, a few strong interactions provide the structural basis for most plant-

pollinator networks (Bascompte & Jordano, 2009, Vasquez et al., 2009).  

Past studies have examined the impacts of habitat loss, fire, grazing, and mechanical 

disturbance on pollinator networks (Winfree et al., 2009). Disturbance may impact mutualist 

networks by reducing both the diversity and abundance of plants and pollinators (Winfree et al., 

2009). Species that are habitat or dietary specialists often have little flexibility to cope with 

environmental changes, and are particularly vulnerable to disturbance (Harris & Johnson, 2004, 

Biesmeijer, et al., 2006, Ricketts et al., 2008, Winfree et al., 2009).  As a result, pollinator 

networks in disturbed communities are predicted to be simpler, have fewer specialist species, and 

be more dominated by generalists (Janzen, 1974, Vasquez & Simberloff, 2003, Harris & 

Johnson, 2004, Carmen & Jenkins, 2016). Because of their nested structures, most mutualist 

networks are resilient to the losses of weakly interacting species, but very vulnerable to the loss 

of strongly interacting generalist species (Vasquez & Aizen, 2004, Bascompte & Jordano, 2009, 

Vasquez et al., 2009). Losses of essential keystone species in interaction networks may lead to 

extinction cascades, whereby the loss of one or a few highly connected species triggers 

additional extinctions throughout a network system (Landi, 2018). In low diversity systems 

where keystone species are especially important, their losses may result in complete disassembly 

of mutualist webs (Rodriguez-Cabal et al., 2013). Identifying keystone mutualists and 
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determining whether their abundance or interactions are altered due to disturbance is therefore 

necessary to quantify the impact of disturbance to ecosystems (Koski et al., 2015).  

Although individual keystone species may have strong impacts on network structure and 

function, flowers and pollinators are often present on the landscape for only a short period of 

time (Caradona et al, 2017). Mutualist networks based on pollinator functional groups rather than 

species identities can show patterns and trends throughout the growing season, even as plant and 

pollinator species composition vary over time (Fontaine et al., 2006, Koski et al., 2015). To 

identify keystone mutualist functional groups, three network parameters are commonly used: 

strength, the number of interaction partners a species has and the frequency of those 

interactions, node specialization index (NSI), the number of interaction partners that a species 

or group shares with other species, and degree of specialization (d0), which indicates whether 

flower species are visited by opportunists or common pollinator species (Bascompte et al., 2006, 

Dormann, 2011, Koski et al., 2015). High strength, low NSI, and low d0 indicate keystone 

mutualists that are especially important for maintaining connectivity within mutualist networks 

(Koski et al., 2015).  

Ecosystem resilience, or resistance to disturbance is often predicted by network 

complexity and biodiversity (Bascompte & Jordano, 2007, Carman & Jenkins, 2016). Resilience 

may also be conferred by high levels of connectance, by strong symmetrical pairwise interactions 

between plants and pollinators, and by a high degree of nestedness (Vasquez & Aizen, 2004, 

Okuyama & Holland, 2008, Bascompte & Jordano, 2009, Vasquez et al., 2009, Passmore et al., 

2012, Potts et al., 2010, Koski et al., 2015). Although mutualist networks are generally robust to 

disturbance and species loss, if keystone mutualists are strongly affected by disturbance, network 

stability can be degraded (Bascompte & Jordano, 2009, Rodriguez-Cabal et al., 2013, Landi, 
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2018). By comparing metrics of nestedness, connectance, and interaction strength asymmetry 

(ISA) between disturbed and undisturbed areas of the same habitat, ecosystem stability and 

resilience to disturbance can be estimated (Kaiser-Bunbury et al., 2010, Passmore, 2012).  

This study assessed mutualist network response to overbrowsing by Odocoileus 

virginianus Zimmerman, 1780 (white tailed deer, Cervidae) in a low diversity serpentine 

grassland system over the course of one growing season. Unlike grazing or habitat 

fragmentation, browsing is a selective type of disturbance that disproportionately impacts certain 

plant species over others (Rooney, 2001, Rooney & Waller, 2003, Latham et al., 2005, Rawinski, 

2008, Averill et al., 2017). Through selective browsing, especially of plant reproductive 

structures, O. virginianus can reduce the density and diversity of flowering plant communities, 

disrupt plant pollinator associations, (Vazquez & Simberloff, 2003, Geddes et al., 2006, Wang et 

al., 2008) and damage important mutualist networks (Miller et al., 1992, Wang et al., 2008, 

Rodriguez-Cabal et al., 2013, Sakata & Yamasaki, 2015).  In low diversity ecosystems with 

limited possibilities for ecological interactions, targeted disturbances like browsing may have 

especially strong impacts on mutualist networks (Gilbert, 1980, Koski et al., 2015).  

Specific objectives for this research included: 1. Determining keystone plants and 

pollinator groups and assessing whether their abundances or interactions were affected by deer 

disturbance, and 2. Quantifying how network stability and resilience responded to disturbances 

to keystone mutualists over the growing season. Common, abundant flower species and 

pollinator functional groups were predicted to be important keystone species with many 

interaction partners. While overall abundance of plant and pollinators was predicted to be lower 

in disturbed habitat, network structure and stability were not predicted to change unless a 

keystone pollinator group was impacted.  
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Methods 

 Study Site 

Covering only 3,400 acres in total, serpentine grasslands in the eastern United States are 

home to both globally rare endemic plant species and regionally endangered plant and pollinator 

species (Flinn et al., 2017, Rajakaruna, 2009). Serpentine ecosystems are heavily fragmented, 

low-diversity ecosystems that harbor rare and endemic plant species with unique adaptations to 

combat harsh edaphic conditions (Latham & McGeehin, 2012, Flinn et al., 2017). Herbaceous 

plants growing on serpentine soils typically have smaller flowers and reduced pollen and nectar 

sources, thus more limited floral resources for pollinators, compared to plants in surrounding 

habitats (O’dell & Rajakaruna, 2011, Wolf & Thorpp, 2011). Threatened by a combination of 

species invasions, land-use change, and an unsustainably large deer population, eastern 

ecosystems are considered to be one of the highest conservation priorities in the United States 

(Prince, et. al, 2004, Floyd, 2006, Latham & McGeehin, 2012).  

Located in suburban Baltimore, Soldiers Delight Natural Environmental Area includes 

the largest remaining eastern serpentine grassland ecosystem in the United States (Floyd, 2006, 

Tyndall & Hull, 1999). Dominant grass species at this site include Schizachyrium scoparium 

Michx. (little bluestem, Poaceae) and Sorghastrum nutans Nash. (indian grass, Poaceae) 

(Tyndall & Hull, 1999, Tyndall, 1994). Over 39 rare, threatened, or endangered plant species can 

be found at Soldiers Delight, including the Gentianopsis crinita Froel. (fringed gentian flower, 

Gentianaceae), Symphyotrichum depauperatum Nesom. (serpentine aster, Asteraceae), 

Cerastium arvense L. var. villosum Hollick & Briton (serpentine chickweed, Carophyllaceae) 

and Agalinis decemloba Greene (ten lobe false foxglove, Scrophulariaceae) (Tyndall & Hull, 

1999, Tyndall, 1994, Tyndall, 2005, Floyd, 2006, Flinn, et al., 2017). Numerous rare pollinator 
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species are also found at Soldiers Delight, including Hesperia leonardus Harris 1862 (Leonard’s 

skipper, Hesperiidae), Hesperia metea Scudder 1863 (cobweb skipper; Hesperiidae) and 

Satyrium edwardsii Grote & Robinson (Edwards hairstreak; 1867). The population of white 

tailed deer at Soldiers Delight has dramatically increased in the past few decades (Floyd, 2006). 

The increased browsing pressure has had a significant, but undescribed impact on the rare 

flowering plants at Soldiers Delight and, presumably, their pollinators. 

 

Deer Exclusion Plot Construction 

Exclusion plots are often used to assess the effects of large herbivores on plant and insect 

communities (Rambo & Faeth, 1999, Pasari et al., 2014, Stephan et al. 2017, Averill et al., 

2017). Two sites at Soldiers Delight with similar physical, topographic, and edaphic 

characteristics were identified (39.4030190, -76.8240320, and 39.4025640, -76.8214420), shown 

in Fig. 1. Across the two sites, we constructed five 5m x 5m deer exclusion plots, each paired 

with an adjacent control plot. Due to shallow, rocky soil at the study site, exclusion plots were 

anchored using 5-gallon buckets of cement with 2 m tall wooden posts. 2 m tall polypropylene 

fence with 2” mesh openings was stretched between posts, and 4’’ by 6’’ holes were cut in the 

bottom of the fence in order to allow small mammals to move in and out of the plots. 1 cm thick 

wires were then wrapped around the base of each structure to prevent fawns from entering the 

plots. 

 

Plant Sampling 

To quantify the impact of deer browsing on flowering plant abundance, monthly plant 

inventories were conducted. For each sampling event, the number of flowering plants and the 
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total number of open flowers was recorded for each plot (CaraDonna et al., 2017). To capture 

peak bloom for all species present, sampling was conducted every 2-3 weeks throughout the 

growing season of 2019. 

Certain pollinator species, particularly bumblebees, will preferentially visit patches of 

vegetation with high floral areas (Westphal et al., 2003, Hegland et al., 2006). For each 

flowering species observed, we photographed 30 inflorescences next to a ruler, and determined 

average floral areas for each species using the program ImageJ (Schneider et. al, 2012). Because 

ImageJ has issues determining the area of objects with central gaps, the area for compound 

flowers Solidago rugosa Mill (Asteraceae) and Packera anonyma Weber & Love (Asteraceae) 

was measured in the program GIMP (The GIMP Team, 2020). For these species, the total 

number of pixels of flowers for each plant were divided by the number of pixels in a 1 cm 

square. This number was then divided by the number of inflorescences of the plant to determine 

average area per inflorescence. Due to tiny inflorescence size of Polygala verticillata L. 

(Polygalaceae; about 8 sq mm), floral area for this species was calculated for entire flowers 

rather than individual inflorescences. Average floral area for each species was multiplied by the 

number of inflorescences of each species present in each plot, to obtain a standardized measure 

of species floral area (Hegland, 2006). Species floral areas from each plot were additionally 

added together, to calculate total floral area per plot. 

 

Pollinator Sampling 

Pan traps are a common and effective method for collecting aerial pollinators such as 

wasps, bees, and flies (Campbell & Hanula, 2007, Tuell & Isaacs, 2009, Rubene et al. 2015, 
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Moreira et al., 2016). Brightly colored plastic bowls in yellow, white, and blue colors were 

covered in 1x1” mesh squares to prevent the unintentional killing of endangered butterfly 

species. These three colors are frequently used in combination for pollinator capture studies in 

the eastern United States flies (Campbell & Hanula, 2007, Rubene et al. 2015). At each sampling 

event, one trap of each color was positioned at ground level, and one trap of each color was 

positioned at vegetation height (1 m tall), on a wooden stand (Tuell & Isaacs, 2009, Moreira et 

al., 2016). A random number generator was used to determine which corners of a plot the raised 

and ground-level traps would be placed, and also the color order of the traps on the wooden 

stands (Moreira et al., 2016). Each trap was filled ¾ of the way full with water and a few drops 

of dish soap as a surfactant. Traps were installed in at approximately 10:00 am on one morning, 

and collected at approximately 6:00 pm the following evening, collecting insects for a period of 

about 32 hours. The insects from each trap were stored in 70% ethanol and then identified to the 

highest taxonomic level possible.  

Visual insect surveys were also conducted to determine plant-pollinator associations and 

frequency of flower visitation between control and exclusion treatments (Westphal et al., 2003). 

Surveys were conducted for twenty-minute periods, whereby one researcher would observe 

pollinator activity in the control plot and another researcher would simultaneously observe the 

exclusion plot. Each researcher would record the identity of each pollinator that entered a plot, 

the amount of time that it spent in the plot, the number of inflorescences it visited, and the 

species of each visited inflorescence. Surveys were conducted under weather conditions 

favorable for pollinators: temperature > 18 ºC, sunshine, and low wind (<6 m/s) (Lazaro et al., 

2016). During each sampling period, each plot was observed two to three times, depending on 

weather conditions.  
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Statistical analyses 

To quantify changes in plant community composition over the growing season, nonmetric 

multidimensional scaling was used (NMDS; McCune & Grace, 2002). The input data were total 

counts for flowering plant species at each sampling date. The NMDS was performed using the 

package ‘vegan’ in R, using the Bray-Curtis dissimilarity index as a distance measure (Oksanen 

et. al, 2019). Based on NMDS and permanova analysis, 5 significantly different plant community 

groups were present over time: spring, early summer, mid-summer, late summer, and fall. 

Based on captures from pan traps and insects observed during visual surveys, seven 

pollinator functional groups were created: ants, butterflies, skippers, bees, beetles, wasps, and 

flies. Each of these pollinator functional groups was found to be present during multiple seasons, 

and interacted with multiple flower species.  

To examine pollinator community response to deer disturbance, pollinator response 

variables were compared between control and exclusion plots over time. Total count of 

pollinators visiting plots, count of pollinators caught in pan traps, count of pollinators that visited 

flowers per plot, and average number of flowers visited were compared between control and 

exclusion treatments for each unique combination of season, pollinator functional group, plot, 

and treatment using a negative binomial regression with repeated measures. A negative binomial 

regression with repeated measures was also used to compare floral abundance between control 

and exclusion plots for each plant species. All negative binomial regressions were run using the 

package “MASS” in R (Venables & Ripley, 2002).  Average time spent visiting flowers for each 

unique combination of season, plot, insect type, and treatment were analyzed using linear mixed 

effects model with repeated measures (LMMs). In the LMM, “plot” and “quadrat” were treated 

as a random factors. The model was then validated visually (Zuur et al., 2010) leading to Box-
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Cox transformations of some response variables. LMMs were run using the package “lme4” in R 

(Bates et al., 2015), and best models were determined based on AIC values.  

Shannon’s diversity index was calculated for pollinating taxa caught in pan traps, and linear 

mixed effects models were used to assess how overall diversity varied between treatments over 

time, and also how diversity varied between treatments in pollinator functional groups. Linear 

regressions were then used to assess how flower visitation related to flower number, floral area, 

and time spent in plots by pollinators for each plot and treatment.  

Plant–flower visitor networks were constructed using the bipartite package in R 

(Dormann et al. 2008). To compare network response to disturbance, nestedness, connectance, 

and interaction strength asymmetry (ISA) were calculated for control and exclusion treatments at 

each season and plot. Connectance was calculated as the fraction of realized links relative to total 

possible links (Dunne et al. 2002). Nestedness was calculated by quantifying deviations between 

a theoretical perfectly nested matrix and the matrix of interest (Rodríguez-Gironés & Santamaría, 

2006). Nestedness values ranged from 0-100, with zero representing perfect nestedness. ISA is 

equal to the difference between relative dependencies of mutualists divided by the maximum 

mutualist dependency value (Bascompte, et al., 2006). Species network metrics of strength, NSI, 

and d0 were also calculated for pollinator functional groups at each unique combination of plot 

and treatment to determine which plant and pollinator species were keystone species. Strength 

was calculated as the sum of dependences of all organisms relying on a given mutualist value 

(Bascompte, et al., 2006). NSI was calculated as the as the mean geodesic distance between node 

positions (Dalsgaard, et al., 2008). We calculated d0 as the coefficient of variation of interactions 

of a mutualist, normalized to values between 0 and 1 (Julliard et al., 2006, Poisot et al., 2012). 

All species and community metrics were calculated using the bipartite package in R (Dormann et 
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al. 2008). LMMs with repeated measures were then used to compare species and community 

network metrics between treatments for pollinator groups.  

 

Results 

Ten flowering plant species and seven pollinator groups were found to interact in the 

mutualist network at Soldiers Delight (Figure 1, Table S1). No pollinators were observed to visit 

plant species Polygonum tenue or Viola spp. Total count of pollinators visiting plots was equal 

between exclusion and control plots for all insect functional groups except for butterflies and 

day-flying moths, which were more common in control plots (F6,408=31.7, p<0.001; Table 1, 

Table S2). Counts of pollinators that visited flowers per plot and counts of pollinators caught in 

pan traps were equal between control and exclusion plots for all insect groups (F1,261=2.6, 

p=0.10; F1,357=0.73, p=0.40). However, average time spent visiting flowers by individual 

pollinators, and average number of flowers visited by each pollinator were significantly higher in 

exclusion plots compared to control plots (F1,360=39.2, p<0.001; F1,337=39.4, p<0.001).  

Floral abundance, floral area, and time spent in plots by pollinators were all positively 

correlated with floral visitation (F1,23=67.9, p<0.001, R2 = 0.92; F1,23=43.5, p<0.001, R2 = 0.65; 

F1,23=11.6, p=0.002, R2 = 0.34). Shannon’s diversity did not vary between treatments for 

different pollinator functional groups and did not vary between treatments over time (F5,40=3.6, 

p=0.87 F4,12=1.0, p=0.91). Floral abundance was higher overall in exclusion treatments 

compared to control treatments, but there were no significant differences in floral abundance 

between treatments for individual flower species (X210,167=8.2, p=0.61; Table S2).  
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Community metrics of nestedness, connectance, and ISA were compared between control 

and exclusion treatments. While connectance and ISA did not vary significantly between control 

and exclusion plots (F1,8=0.21, p=0.66, F1,28=1.5, p=0.25), nestedness was significantly lower in 

control plots compared to exclusion plots (F1,8=5.8, p=0.04; Figure 2).  

With 1760 total flowers counted over the growing season, flower species Liatris spicata 

L. (Asteraceae) was very abundant during mid and late summer. Due to its high species strength 

(F9,56=19.2, p<0.001) and low d0 (F9,56=5.1, p<0.001), L. spicata was determined to be a keystone 

species (Figure 3).The second most abundant species, Symphyotrichum depauperatum also had a 

very low d0 (F9,56=5.1, p<0.001). Values for NSI were similar across all plant species except 

specialist Sabatia angularis L. (Gentianaceae), which was mostly found to be pollinated by bees 

in the genus Ceratina (F9,56=2.3, p=0.03). 

Skipper butterflies (Hesperiidae) were the most abundant pollinator group (Table S4), 

and were dominant pollinators for L. spicata, and also an important pollinator for S. 

depauperatum. Despite their high abundance, the overall species strength for skippers was 

relatively low, and the d0 was relatively high (Figure 4). Although less abundant, flies were a 

dominant keystone pollinator group with high species strength (X26,55=46.3, p<0.001) and low d0 

(X6,62=48.2, p<0.001). While values for ISA were similar between treatments for most taxa, the 

species strength of flies was significantly lower in control plots as compared to exclusion plots 

(X6,62=13.6, p<0.03) NSI was low and constant across all pollinator taxa (X6,62=10.6, p=0.1) 
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Discussion 

This study assessed how metrics of mutualist network stability were impacted when 

keystone pollinator groups were negatively affected by disturbance. While ISA and connectance 

were constant across disturbed and undisturbed treatments, browsing had the overall effect of 

decreasing pollinator network nestedness. Nestedness, which reflects network redundancy, is an 

important factor that maintains stability and resilience in pollinator networks (Vasquez & Aizen, 

2004, Okuyama & Holland, 2008, Bascompte & Jordano, 2009, Vasquez et al., 2009, Passmore 

et al., 2012). A decrease in nestedness following disturbance likely reflects that keystone 

mutualists were negatively impacted (Bascompte & Jordano, 2009, Rodriguez-Cabal et al., 2013, 

Landi, 2018). 

The hypothesis that abundance would predict whether or not taxa were keystone 

pollinators was partially supported. L. spicata was both the most abundant flowering plant 

species, and the most connected keystone plant species at Soldiers Delight. The correlation 

between abundance and connectivity can be explained by the concept of interaction neutrality 

(Vasquez et al., 2009). Interaction neutrality describes a scenario whereby all individual 

mutualists have the same probability of interacting with other individuals, regardless of their 

taxonomic identity (Vasquez, 2005, Vasquez et al., 2007, Vasquez et al., 2009). As a result, 

abundant species will interact more frequently and with a greater diversity of partners than rarer 

species (Vasquez, 2005, Vasquez et al., 2007, Vasquez et al., 2009). When the abundance of 

mutualists in networks are unevenly skewed, the distribution of interactions between mutualists 

will also be skewed (Vasquez et al., 2009). Although skipper butterflies were the most abundant 

pollinator group across all sites, they had low species d0. These results suggest that skippers are 

relatively more specialized than other pollinator groups.    
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Although they were not the most abundant pollinator, flies were found to be the most 

important keystone pollinator, with high species strength and low species specificity (low d0). 

From this functional group, 85% of observed pollinating flies were syrphid (Syrphidae), 4% 

were bee flies (Bombylidae), and 11% were unidentified non-Syrphid Dipterans. Many studies 

have emphasized the roles of flies, particularly syrphid flies, as highly connected and abundant 

generalist pollinators in mutualist networks (Branquart & Hemptinne, 2000, Orford et al., 2015, 

Klecka, et al., 2018). While flies were not observed to be abundant relative to other pollinator 

groups in this study, the small size and active flight pattern of syrphid flies likely made them 

difficult to detect (Weems, 1958). We assume that flies were probably more abundant as 

pollinators than were observed.   

While the interactions of most pollinator groups were not impacted by disturbance, flies 

were found to be less connected and have lower species strength in control plots compared to 

exclusion plots. The impact of disturbance on flies and not other pollinator groups may be related 

to their relatively small body size. Small-bodied pollinators have generally been shown to forage 

over shorter distances than larger pollinators (Greenleaf et al., 2007, Carman & Jenkins, 2016). 

Large-bodied pollinator groups that forage across wide spatial areas may be less affected by local 

disturbances, and therefore equally as abundant and interactive with flowers between disturbed 

and undisturbed areas (Memmott et al., 2004, Fortuna & Bascompte, 2006, Carman & Jenkins, 

2016). However, small pollinators like syrphid flies may be more sensitive to disturbance 

(Carman & Jenkins, 2016). 

A reduction in species strength for flies may explain lower network nestedness in control 

plots compared to exclusion plots. As a keystone pollinator group, flies have a disproportionate 

impact on the structure and function of the overall mutualist network. Even though flies were 
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equally as abundant between control and exclusion plots, the diversity of their interactions were 

significantly decreased. As a result of limited interaction diversity of a keystone generalist 

pollinator group, community nestedness may have decreased due to deer browsing (Bascompte 

& Jordano, 2009, Rodriguez-Cabal et al., 2013, Landi, 2018).  

This study was novel in that it assessed how pollinator networks responded to browsing - 

a distinct and targeted form of disturbance. Other studies of mutualist network response to 

disturbance have focused on grazing, or habitat fragmentation, or fire, which are all forms of 

disturbance that impact ecosystems more homogeneously (Winfree et al., 2009). In this study, 

although overall flower abundance was lower in browsed areas compared to control areas, 

abundance and interaction diversity of individual flowering plant species was not significantly 

different between treatments. In ecosystems with plant species particularly targeted by browsers, 

however, browsing may have stronger impacts on community stability (Vazquez & Simberloff, 

2003, Geddes et al., 2006, Wang et al., 2008). Rodriguez-Cabal et al. (2013) found that exotic 

ungulate browsing resulted in a trophic cascade that disassembled an entire interaction web.  

Despite perturbations that limit the diversity and abundance of mutualists and their 

interactions, most pollinator networks have been shown to be dynamic, resilient systems (Kaiser-

Bunbury et al., 2010, Burkle et al., 2013, Carradona et al., 2017). Carradona et al. (2017) 

describes "interaction re-wiring”, an attribute of mutualist networks whereby mutualist 

interactions are regularly reassembled over time due to seasonal and interannual changes. If 

temporal flexibility in interactions is an intrinsic component of mutualist networks, interaction 

re-wiring can be expected to buffer network stability and robustness in the face of species loss 

Kaiser-Bunbury et al., 2010, Burkle et al., 2013, Carradona et al., 2017. Future studies of 
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pollinator networks should evaluate factors that make networks resilient or vulnerable to targeted 

disturbances such as acute browsing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 49 

Figures and Tables 

Figure 1: Cumulative plant-pollinator interactions in control (A) and exclusion plots (B), 

including dominant plant species Liatris spicata (LISP), and then excluding it (C,D).  
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Table 1: Effect of deer presence on pollinators over time using analysis of deviance (Type II 

test). P values for all explanatory variables were highly significant and equal to <0.001.  

	

	
	
 
 
 
 
 
 
 
 
 
 
 

Response Variable Model 
Type 

Best Model Explanatory 
Variable 

X2 df 

Count of Pollinators 
Visiting Plots 

Negative 
Binomial 

n ~ Season + Type + 
Type*Season + Type*Treatment Season 76.7 4 

   
Type 117.1 6    

Type*Season 98.8 22 
   

Type*Treatment 31.7 6 

Count of Pollinators 
Visiting Flowers 

Negative 
Binomial 

n ~ Season + Type + 
Type*Season  Season 38.7 4 

   
Type 101.9 6 

   
Type*Season 69.8 19 

Count of Flowers 
Pollinated per Species 

Negative 
Binomial 

n ~ Treatment + Species Treatment 39.4 1 
   

Season 119.9 4 
   

Type 54.1 6 
   

Type*Season 63.9 19 

Average Time Spent 
Visiting Flowers 

LMM n0.2 ~ Treatment + Season + 
Type Treatment 16.3 1 

  

 
Season 6.7 4 

      Type 30.7 6 

Count of Pollinators 
Collected in Bowl 

Traps 

Negative 
Binomial 

n ~ Type + Type*Season Type 

Type*Season 

57.6 

90.6 

9 

26 
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Figure 2: Metrics of community mutualist network resilience between control and exclusion 

treatments. Nestedness scores are based on a scale of 0-100 with 0 being perfectly nested. A 

lower nestedness score for exclusion treatments indicates that the community is more nested. 

Interaction strength asymmetry and connectance are equal for mutualist networks across 

treatments. 

 
 

Figure 3: Species network metrics for plant species. Asterisks indicate significantly different 

species values. Keystone plants are expected to have high species strength, low species 

specificity, and a low node specialization index.  
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Figure 4: Species network metrics for pollinator species. Asterisks indicate significantly 

different species values. Keystone pollinator groups are expected to have high species strength, 

low species specificity, and a low node specialization index. Species strength of flies is 

significantly higher in exclusion plots compared to control plots.  
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Supplementary Materials 
 
Table S1: Total flower counts for all flowering plant species in experimental plots, and the 

number of flowers visited by pollinators in control and exclusion plots for each species.   

 

Plant Species Species 
Code 

Total Flower 
Count  

Flowers visited 
in controls 

Flowers visited 
in exclusions 

Arabis lyrata   ARLY 132 30 9 
Cerastium arvense CEAR 217 58 112 
Liatris spicata LISP 1760 2413 5185 
Oenothera spp OESP 361 15 38 
Packera anonyma PAAN 120 74 181 
Polygala verticillata POVE 340 0 2 
Polyganum tenue POTE 10 0 0 
Sabatia angularis  SAAN 15 3 8 
Sisyrinchium angustifolium SIAN 107 1 6 
Solidago nemoralis SONE 14 11 37 
Symphyotrichum depauperatum SYDE 587 177 524 
Viola spp VISP 1 0 0 

 
 
 
Table S2: Total counts for all pollinator groups observed in experimental plots during visual 

surveys, and means and standard deviations for all response variables measured for each 

pollinator group.  

Measurement Treatment Ant Bee Beetle Butterfly Fly Skipper Wasp 
Total count that 
entered plots Control 4 136 49 267 97 373 43 

Total count that 
entered plots Exclusion 18 170 77 99 156 301 56 

Count that visited 
flowers Control 1 66 33 111 60 225 14 

Count that visited 
flowers Exclusion 14 99 76 71 117 257 31 

Mean time spent 
in plots (s) Control 195.8 ± 390 49.1 ± 101 194.6 ± 346 50.1 ± 124 60.5 ± 154 102.3 ± 175 27.4 ± 92 

Mean time spent 
in plots (s) Exclusion 539.6 ± 415 88.8  ± 159 847.8 ± 437 151.8 ± 245 218.1 ± 332 198.1 ± 233 109.6 ± 207 

Total flowers 
visited Control 5 440 82 703 129 1378 45 

Total flowers 
visited Exclusion 32 676 205 913 414 3478 384 
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