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Water droplet mobility on a hydrophobic surface cannot be guaranteed even when the droplet 

exhibits a high contact angle with the surface. Droplet mobility is defined as the required force to 

move a droplet on the surface. In fact, droplet mobility on a surface, especially a fibrous surface, 

has remained an unsolved empirical problem. As the earth gravity may not be strong enough to 

initiate water droplet mobility or penetration into some hydrophobic fibrous coatings (electrospun 

polystyrene), a novel test method was designed. In the experiment, an aqueous ferrofluid droplets 

rather than water are used so that the body force on the droplets could be enhanced using a magnet, 

and droplet detachment or penetration could be induced. Our combined experimental-

computational revealed the role of microstructure on droplet mobility and penetration into a fibrous 

coating. It was found that a coating made of aligned fibers could have a droplet mobility less than 

a random coating. A fiber level force calculation showed that fibers in the middle of the surface 
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do not play a significant role in keeping the droplet on the surface (negligible relative contribution 

in resisting droplet detachment). Using the balance of forces acting on the detaching or penetrating 

droplet, novel easy-to-use expressions are developed to estimate droplet detachment (or 

penetration) force from (or into) a fibrous surface. This circumvents the need for running CPU-

intensive simulations for each and every droplet–coating combinations of interest, and provides a 

means for designing nonwoven materials with low droplet mobility, e.g., self-cleaning fabrics. In 

addition, a new technique to study a nonmagnetic droplet (e.g., water) adhesion on hydrophobic 

surfaces is developed. The nonmagnetic droplet is partially cloaked with a high-surface tension 

oil-based ferrofluid and a permanent magnet is used to detach the resulting droplet (i.e. compound 

droplet). At the end, an insightful analysis into the complex nature of this multiphase problem is 

also provided, and thereby a general-purpose plot that extends the application of our work to other 

oil–water–solid combinations is presented. 
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Chapter 1. Introduction 

1.1 Background Information 

Self-cleaning is a desirable property that allows a surface to remain clean for a longer period of 

time, and it is often brought about by water (or oil) repellency. Both the self-cleaning and water/oil 

repellency owe their effectiveness to droplet mobility on the surface (droplet ability to move on 

the surface). Over the past decade, there has been tremendous progress in creating water repellent 

(superhydrophobic) or oil repellent (superoleophobic) surfaces. In fact, the technology has 

advanced to a point where almost any surface can now be made hydrophobic (or even 

superhydrophobic) by simply applying a commercially-available spray-on coating or by many 

other ways. However, despite the advances in the chemistry of water-repellent surface/coatings, 

droplet mobility on a rough surface (e.g., a nonwoven) is neither understood nor formulated. In 

other words, while one can easily produce a nonwoven material that exhibits high water contact 

angles (through surface treatment or the choice of polymer), droplet mobility on such a nonwoven 

may be quite bad (see Figure 1.1) [1]. While hydrophobic nonwovens are more likely to repel 

water than their hydrophilic counterparts, the extent of this effect has not yet been quantified. No 

relationship has yet been established between the contact angle of a water (or oil) droplet on a 

nonwoven surface and the mobility of the same droplet on that surface. For instance, it is quite 

possible that a droplet forming a contact angle of 100 deg. with a particular nonwoven rolls off the 

surface a lot faster than the same droplet does on another nonwoven with which it forms a contact 

angle of 140 deg. Similarly, the penetration of a water droplet into a hydrophobic nonwoven (or 

an oil droplet into an oleophobic nonwoven) is not understood well. For instance, a water droplet 

may initially bead up on the surface of a hydrophobic nonwoven, but the very same droplet may 

penetrate into the structure over time (due to evaporation, as evaporation increases the pressure 
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inside a droplet) or upon impact with the surface. The question to answer here is how a surface 

can be designed to repel water (or oil) to remain clean not just initially but over time.  

Figure 1.1: Droplet with high apparent contact angle when the surface is tilted a) zero-degree b) 90 degrees 

c) 180 degrees [1] 

 

1.2. Droplet Mobility 

Mobility of a droplet on a nonwoven surface depends on the local wetting state of the surface 

underneath the droplet. These wetting states include the Cassie state, the Wenzel, the Rose Petal 

state, and the Gecko state. Briefly speaking, it is the droplet area of contact with the solid surface 

and the nature of the contact that determines the mobility of a droplet on a nonwoven fabric; the 

droplet contact angle is not the independent variable in this problem. 

This project can be of great interest to industry as it develops a series of experimental and 

computational tools that can be used for characterizing the behavior of a nonwoven interacting 

with a fluid. Industries that directly benefit from this research include, but are not limited to, 

protective clothing (“phobic” nonwovens resisting fluid penetration), absorbent media such as 

diapers (“philic” nonwovens promoting fluid absorption), fluid–fluid and fluid–air separation 

media (“philic” to one phase, “phobic” to the other), fuel cells (gas diffusion layer), and fluid 

coating processes (e.g., kiss-roll coating).  
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Understanding the interactions between a droplet and a fiber has been of great interest for many 

years. Droplet–fiber interactions have been studied in many pioneering studies, and it has been 

shown that the apparent contact angle of a droplet with a fiber can be quite different from the 

Young–Laplace Contact Angle (YLCA) obtained for a small droplet of the same liquid deposited 

on a flat surface made from the same material [2–10].  Roughness has been shown to affect the 

wettability of a surface. Wenzel proposed a relationship between YLCA and a droplet’s apparent 

contact angle on a rough flat surface in terms of the ratio of the actual to the projected area of the 

rough surface [11]. However, due to a variety of factors, the measured contact angles can be 

significantly different from the predictions of Wenzel simple relationship [12]. In fact, predicting 

a droplet apparent contact angle on a rough surface has remained an active area of research for the 

past decades (see e.g., [13]). Past research has shown that multiple states can be observed for a 

liquid droplet deposited on a rough surface (e.g., an electrospun Polystyrene nonwoven). These 

states include the Wenzel (wetted) state, the Cassie (dry) state, and a series of transition states 

between these extreme states [14–17]. The Wenzel state corresponds to the state where the liquid 

droplet fills the asperities of a rough surface. The Cassie state, on the other hand, refers to the state 

where the air bubbles are entrapped in the asperities of the surface under the droplet as the droplet 

resides only on the peaks of the protrusions. When a droplet transitions from the Cassie state to 

the Wenzel state, it tends to become “sticky”, and the surface loses its water repellent or self-

cleaning properties. High apparent contact angles and low contact angle hysteresis are often 

observed for a droplet at the Cassie state [17]. The volume of a droplet and how it is formed on 

the surface (or came into contact with the surface) generally dictates the wetting state of the 

droplet. High apparent contact angles combined with high stickiness was also observed with 

surfaces having hierarchical roughness. The two main examples of non-wetting but sticky surfaces 
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are those exhibiting the so-called Rose Petal and Gecko states [1,17]. The Rose Petal state is 

referred to the case of a non-wetting droplet that penetrates through the micro-scale asperities of 

the surface but cannot wet the nano-scale asperities [1,17]. The Gecko state is the case where 

sealed pockets of trapped air cause negative pressure (suction) against droplet movement of the 

surface. 

The angle between the tangent to the liquid-gas interface and the apparent solid surface is different 

from Young Laplace contact angle (YLCA) and it is known as the apparent contact angle. The 

shape of a droplet is almost spherical if the surface roughness is isotropic (the apparent contact 

angle formed by the droplet with the surface is uniform). When the surface roughness is anisotropic 

(e.g., nonwovens with high machine directionality), the droplet deviates from the spherical shape 

and the contact angles observed from the machine and cross directions should be different (see 

Figure 1.2).  

The Cassie–Baxter (CB) equation can be used for a rough surface in a heterogeneous wetting 

regime in order to predict apparent contact angle [18-20]. The CB apparent contact angle 𝜃𝐴𝑝𝑝 is 

given by 

            𝑐𝑜𝑠𝜃𝐴𝑝𝑝 =
𝛼𝑑

𝑠
𝑐𝑜𝑠𝜃𝑌𝐿 +

𝑑 𝑠𝑖𝑛 𝛼

𝑠
− 1                                                     (1.1) 

where 𝛼, 𝑑, 𝑠 and 𝜃𝑌𝐿 are the immersion angle, fiber diameter, fiber spacing, and YLCA, 

respectively. The immersion angle is dependent on the pressure drop 𝑝 and can be calculated using 

the following equation. 

                         𝑝 = −
2𝜎 𝑠𝑖𝑛(𝜃𝑌𝐿+𝛼)

(𝑠−𝑑 𝑠𝑖𝑛 𝛼)
                                                               (1.2) 

Here 𝜎 is the surface tension of fluid. Chhatre et al. [21] simplified the CB equation for 

cylindrically textured surfaces and used a dimensionless spacing ratio in order to consider the 
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effects of both diameter and spacing between cylinders (see [22–24] for more information about 

CB equation and its validity).  

 

Figure 1.2: A droplet on a striped SH surface: a) transverse side view; b) longitudinal side view [9] 

 

Predicting droplet mobility on a rough surface, i.e., the tendency of the droplet to move on the 

surface in response to an external force, is a challenge. This is because droplet mobility on a surface 

depends on many factors including, but not limited to, 1) area of contact between the droplet and 

the solid surface (wetted area, WA), 2) length of the three-phase air–water–solid contact line (CL), 

3) 3-D shape and orientation of WA and CL with respect to droplet’s direction of motion, and 4) 

slope of the air–water interface (AWI) along the CL. In addition, droplet pinning to surface non-

homogeneities is another unresolved issue that further complicates this problem [25–27]. For these 

reasons, it is almost impossible to accurately predict the force required to move a droplet on a 

surface via a first-principle theoretical approach. For the lack of a better option, designing a self-

cleaning surface has remained an empirical problem, often approached via try-and-error and 

characterized in terms of the intellectually-insignificant but easy-to-image largest and smallest 

ACAs along the perimeter of a droplet (loosely referred to as the advancing and receding ACAs, 
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respectively) [28–32]. Because of these limitations, the force required to detach a droplet from a 

surface is often presented in terms of the difference between the advancing and receding CAs (i.e., 

CA hysteresis) but scaled by yet another empirical factor 1 < 𝑘 < 3.14 that is there to compensate 

for all what is not known about the actual forces acting on the droplet [33–40], i.e.,  

𝐹 = 𝑘𝑤𝜎(𝑐𝑜𝑠𝜃𝑚𝑎𝑥 − 𝑐𝑜𝑠𝜃𝑚𝑖𝑛)                                                      (1.3) 

In this equation, 𝑤 is an arbitrary “width” perpendicular to the direction of the motion assigned to 

the droplet. Being so empirical in nature, this equation can only be used when one takes the effort 

to experimentally measure the advancing and receding CAs for the desired droplet–surface system 

at hand (where one may rather measure the force directly!). Fortunately, however, a theoretical 

approach can still be devised to predict the force needed to move a droplet on a rough hydrophobic 

surface, but only if droplet pinning is not an issue (e.g., when the surface asperities are not sharp) 

[41–45].  

 

1.3. Droplet Penetration 

Droplet penetration into the pores of a porous surface may take place spontaneously or in response 

to an external force, depending on the geometrical and wetting properties of the surface–droplet 

system [46, 47]. Understanding the interactions between a droplet and a fibrous material is of great 

significance to water-resistant membranes and barriers [48-52], wound dressing and functional 

textiles [53-56], self-cleaning coatings and surfaces [17, 57, 58], fuel cells [16, 19, 59], and fog 

harvesting [60-62] among many others. Another example of an industrially-important problem 

involving droplet–fiber interactions is the removal of dispersed droplets from a gas (e.g., engine 

exhaust) or a liquid (e.g., diesel fuel) stream, often referred to as coalescence filtration, which has 

remained an empirical problem since its infancy. Examples of such studies are the experiments 
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reported in [22, 63-67] where droplet penetration through a coalescing filter (averaged over the 

entire exposed surface of the filter) were measured at different air flowrates or for filters made of 

different polymers. Understanding and formulating droplet–fiber(s) interactions allows one to 

quantify the tendency of a fibrous media to reject or absorb an incoming liquid droplet, and can be 

used to custom-design the media for their intended specific applications. For instance, in a study 

on droplet impact on electrospun fibrous membranes, it was shown that inertial droplet penetration 

into a membrane can be categorized into different regimes depending on the interplay between 

droplet inertia (promoting droplet penetration) and capillary forces (resisting penetration in the 

case of hydrophobic membranes, but helping in the case of hydrophilic membranes) [68-71]. Such 

an enabling knowledge can also be used in designing water-repelling membranes for desalination 

or a variety of other applications as mentioned earlier [48-62].  

 

1.4. Compound Droplet 

To characterize the degree of hydrophobicity of a surface, one needs to measure the force needed 

to detach (or move) a droplet from (or on) the surface (i.e. normal and lateral adhesions). The 

traditional approach to measure the force of lateral adhesion between a water droplet and a surface 

has been to measure the role-off angle (the inclination angle at which the droplet rolls off the 

surface). Obviously, this method becomes inefficient if the force needed to move the droplet is 

greater than the weight of the droplet. Alternative methods therefore, have been proposed over the 

years to overcome this problem. These methods include, but are not limited to, centrifugal force 

(e.g., [28, 72] for lateral adhesion and [73, 74] for normal adhesion), the use of an external device 

like the tip of an atomic force microscope [75–77], or an air flow (e.g., [78–80]) for both lateral 

and normal adhesions. The first study to report measuring droplet detachment force using a magnet 
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was the work Amrei et al. [81], who studied normal adhesion force between a hydrophilic fishing 

line and a water-based ferrofluid droplet in 2016 (see also the work of Timonen et al. [82] for the 

use of magnetic field in studying droplet lateral adhesion). While the method of [81] was easy to 

implement and accurate for its simplicity, it could only be used for detaching ferrofluid droplets. 

To expand the application of this method to the case of non-magnetic fluids (e.g., water), Farhan 

and Tafreshi [83] recently developed a new droplet detachment approach in which the non-

magnetic droplet was cloaked with an immiscible ferrofluid (in the form of a compound droplet) 

to allow the use of a magnetic force for droplet vertical detachment (see also [84] for transport a 

sessile water droplet floating over spikes of an oil-based ferrofluid on a ferrofluid layer). The water 

droplet detachment via producing a compound droplet is a novel method. 

 

1.5. Overall Objectives of This Thesis 

 

Droplet mobility on a nonwoven surface is neither well-understood nor formulated. No 

relationship has yet been established for the mobility of a droplet on a nonwoven surface in terms 

of nonwovens’ microstructural parameters. The goal of this project is to fill the above knowledge 

gap, and to also provide a means for designing nonwoven materials allowing good mobility for 

water/oil droplets (e.g., self-cleaning fabrics). We consider a combination of numerical simulations 

and experiments to better our understating of the physics of droplet motion on a nonwoven surface.  

For the case of droplet mobility, we start the project by considering the simplest nonwoven 

microstructures, unidirectional and orthogonal nonwoven structures. The droplet detachment from 

these nonwoven structures in the vertical and horizontal directions is studied both computationally 

and experimentally. More specifically, we study the effects of Young-Laplace contact angle 

(YLCA) and fiber spacing on droplet detachment force (the force required to detach the droplet).  
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For the experimental component of this research, we design and build a test setup to measure 

droplet detachment forces in the vertical and horizontal directions. The experiments are imaged 

using a high-speed video camera, and the images are used to analyze the shape (contact line and 

contact angle) of the droplet during detachment or penetration. Easy-to-use expressions are 

developed to estimate droplet detachment force from a fibrous surface in the vertical and horizontal 

directions. In addition, a compound droplet made of two immiscible droplets has been studied and 

formulated. More specifically, a water droplet is partially cloaked with a high surface tension 

ferrofluid and a permanent magnet is used to detach the water droplet. Numerical simulations have 

provided an insight to a complex four phase compound droplet detachment.  

Droplet penetration into the pores of a porous surface may take place spontaneously or in response 

to an external force, depending on the geometrical and wetting properties of the surface–droplet 

system. Droplet penetration into a nonwoven surface is neither well-understood nor formulated 

similar to droplet mobility. For the case of droplet penetration, the same experimental setup as 

droplet mobility is also used to measure droplet’s penetration force. Effects of these parameters on 

the force needed to pull a droplet into a hydrophobic nonwoven are investigated as well. Easy-to-

use expressions are developed to estimate droplet penetration force into a fibrous surface.  

This study has three major goals each having a series of objectives. Goal 1 is to discover and 

formulate the important factors affecting droplet mobility (or droplet stickiness) on a nonwoven 

fabric (structure–droplet-mobility relationships). Goal 2 is to discover and formulate the important 

factors affecting droplet penetration into a nonwoven fabric (structure–droplet-penetration 

relationships). Goal 3 is developing structure–property relationships for droplet mobility and 

penetration. 
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Chapter 2. Droplet Adhesion to Hydrophobic Fibrous Surfaces                                                   

2.1. Introduction 

Previous studies have shown that a droplet deposited on a coating with unidirectional fibers may 

exhibit different ACAs in different directions [18, 19, 85, 86]. Therefore, one can potentially 

improve or control the adhesion force between a droplet and a fibrous coating by controlling the 

orientation of the fibers. The easiest way to produce a fibrous mat with directional fibers is to 

deposit parallel fibers in orthogonal layers. As will be seen later, the strength of droplet adhesion 

to such a surface depends strongly on the extent of interactions between the orthogonal fibers and 

the droplet. In this work, we characterize these interactions both computationally, via finite 

element simulations, and experimentally, using coatings comprised of orthogonal electrospun 

Polystyrene fibers. We obtain the force needed to detach a droplet from such orthogonal fibrous 

coatings in a direction normal to the surface (referred to here as droplet detachment force).  

 

2.2. Methods: Droplet Detachment Experiment and Simulation 

In this section, we first discuss the steps considered in producing electrospun Polystyrene (PS) 

coatings, and then present our method of measuring the force of adhesion between droplets of 

different volumes and these orthogonal fibrous structures. 

Electrospinning is a means of producing nanofibers from a solution driven by a strong electrostatic 

field. To produce electrospun PS mats, we dissolved PS pellets in a 70–30 wt% Toluene–

Tetrahydrofuran (THF) mixture to obtain a solution with 25 wt% PS concentration (a PS 

concentration of 25% was chosen based on previous experience with electrospinning PS with the 

same setup [87, 88]). The solution was allowed to rest for a day to ensure homogeneity. A positive 

voltage of 5.5 kV with respect to a grounded target was applied to a hypodermic syringe tip 
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mounted on a syringe pump with an infusion rate of 2.5 µL/min. The distance between the syringe 

tip and the target was set to 85 mm. The substrate was a microscope cover glass from McMaster 

Carr. To produce coatings with aligned fibers the substrate was placed on an axially moving 

rotating drum with rotational and translational speeds of 1200 rpm and 1.5 cm/s, respectively. The 

orthogonally-layered structures were made by rotating the substrate by a 90-degree angle after 

depositing each layer (see [87, 88] for more information), and the average fiber-to-fiber spacing 

was varied by varying the total spinning time for each layer. Figure 2.1a shows a SEM image of 

such an orthogonally-layered fibrous material. Note that, due to the inherent instability of the 

electrospinning process, it is not easy to obtain perfect fiber alignment or fiber–fiber spacing, and 

this obviously contributes to the errors associated with our experimental data, as will be discussed 

later. 

To measure the force required to detach a droplet from a surface, we use ferrofluid droplets in a 

magnetic field [81]. This method is quite easy to implement, and it is also flexible with regards to 

changing the direction at which droplet detachment force is measured (see Figure 2.1b). This is in 

contrast to the more established methods through centrifugal forces [73], an atomic force 

microscope [75], or air flow [78, 79]. The force of detachment was measured using a sensitive 

scale (Mettler Toledo XSE105DU with an accuracy of 0.01 mg). The ferrofluid used in the 

experiment (purchased from EMG508, Ferrotech, USA) was an aqueous suspension of Fe3O4 

nanoparticles (contained 1% volumetric) with a mixture density of ρ =1.05 g/cm3 at 25 °C. Note 

that, the detachment force obtained from our experiments using a ferrofluid droplet can be 

generalized to droplets of other fluids after scaling with their surface tension ratios. Droplets of 

various volumes (2–7 µL) where produced using a New Era NE-300 syringe pump, and gently 

deposited on the electrospun mats. The mats were mounted on a 3-D printed holder and the holder 
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was placed on the scale. Next, the scale was zeroed and a magnetic force was vertically applied to 

the droplet by a nickel-plated axially magnetized cylindrical permanent magnet with a diameter of 

22 mm and a length of 22 mm (K&J Magnetics).  

 

  

      
 

Figure 2.1: An example of our electrospun mats comprised of two orthogonal layers (3 minutes spinning 

per layer) of aligned PS fibers with a diameter is about 0.5 µm in shown in (a). Schematic and actual image 

of our experimental setup is given in (b). 

 

The magnetic force was increased incrementally by lowering the magnet (attached to a Mitutoyo 

electronic height gauge) toward the droplet, and the corresponding readings on the scale digital 

display was videoed (to ensure that the scale reading at the moment of droplet detachment is 

recorded). Note that the detachment process consists of a series of quasi-static equilibrium states, 
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where droplet shape changes in response to the external force, and a fast and spontaneous process, 

where it actually detaches from the surface. Our detachment force measurements correspond to 

the final state of droplet equilibrium before the spontaneous detachment process starts (see [81]). 

The entire droplet detachment experiment was recorded with a digital high-speed camera 

(Phantom Miro Lab 340 with) with a Tokina 100 mm F 2.8 D lens. An additional camera (Nikon 

D3100 camera with an AF-S micro Nikkor 105 mm lens) was used to take pictures from the residue 

left on the mat or from the droplet at an angle perpendicular to the high-speed camera.  

We use the Surface Evolver (SE) finite element code in this work for our simulations. SE uses an 

iterative method to obtain the equilibrium shape of a droplet by minimizing the total energy of the 

air–water–solid system (Eq. 2.1) [89].  

   𝐸 = 𝜎𝐴𝑎𝑤 − 𝜎 𝑐𝑜𝑠𝜃𝑌𝐿 ∬ 𝑑𝐴
𝐴𝑠𝑤

+ ∭ 𝜌𝑔𝑧𝑑𝑉𝑎                                                (2.1) 

In this equation, 𝐴𝑎𝑤, 𝐴𝑠𝑤 and 𝑉𝑎 denote the air–water and solid–water interfacial area, and droplet 

volume respectively. For our calculations, the solid–water interfacial area 𝐴𝑠𝑤 and volume of 

wetted fibers 𝑉𝑠 are defined and programed in SE so that the code can correctly calculate the droplet 

volume 𝑉𝑎 in presence of interacting fibers.  

𝑑𝐴𝑠𝑤 = −
𝑥𝑧

√𝑦2+𝑧2
𝑑𝑦 +

𝑥𝑦

√𝑦2+𝑧2
𝑑𝑧                                                              (2.2) 

𝑑𝑉𝑠 = (−𝑥𝑧𝑑𝑦 + 𝑥𝑦𝑑𝑧)/2                                                                       (2.3) 

Simulations start by placing a droplet with an arbitrary shape on the fibers. SE then continuously 

evolves the droplet shape to shapes that results in a lower total energy for the total system. In each 

iteration, the three-phase contact line (CL) moves over the surface, while the AWI maintains a 

slope corresponding to the YLCA with the solid surface. A constraint is also placed on the solid 

walls to prevent droplet from penetrating into the fibers (non-physical). After droplet’s equilibrium 

shape and position are obtained, an external force (in the in-plane or out-of-plane directions) is 
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exerted on the droplet and its magnitude is increased gradually until the droplet is about to move 

over the surface (in-plane) or detach from the fibers (out-of-plane directions). To ensure that our 

simulation results are not dependent on the choice of mesh density, the wetted area under a droplet 

with a volume of 0.5 𝜇𝐿 and an YLCA of 85 is calculated for a coating having a fiber diameter of 

10 𝜇𝑚, and a spacing of 80 𝜇𝑚. The mesh density was then increased incrementally and its effects 

on the wetted area as well as droplet’s ACA were recorded. It was found that simulations 

performed with a mesh density of 𝑑/20 along the CL produce numerical results with less than 

about 5% mesh dependence (not shown for the sake of brevity). Figure 2.2a is an example of our 

SE simulations conducted for a droplet with a volume of 0.5𝜇𝐿 deposited under the influence of 

gravity on two layers of parallel fibers placed orthogonally on top of one another (red on top and 

green on the bottom). The diameter of the fibers and their center-to-center spacing are 10 µm and 

110 µm, respectively. The YLCA of the material of the fibers is assumed to be 85 degrees. Figure 

2.2b shows a magnified image of droplet–fiber contact viewed from inside of the droplet. It can 

be seen that the droplet has come into contact with the bottom layer (green fiber) in addition to the 

fiber on top (the red fibers), but has not reached the substrate on which the fibers are deposited 

(see Figure 2.2c and 2.2d).  

The computational component of this research is devised to provide insight into the process of 

droplet detachment from a fibrous coating (e.g., electrospun mats). However, one should note that 

a series of simplifications has to be considered to make such simulations feasible. This is due 

mainly to two factors: 1) the inherent imperfection of electrospun mats in terms of fiber spacing, 

fiber diameter, and fiber alignment, which is hard to duplicate in a model, and 2) the computational 

challenges involved in modeling interactions between a millimeter-sized droplet and a large 

number of sub-micron fibers (three orders of magnitude size difference). To validate the accuracy 
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of our numerical simulations (through a one-on-one quantitative comparison), we produced 

orthogonal fibers with a diameter of 291 µm and a fiber spacing of 920 µm using a 5th Gen 

Makerbot Replicator 3-D printer. We spray-coated the printed structures with Ultra-Ever Dry 

solution from Ultratech Company. Prior to coating the fibers with Ultra-Ever Dry, a layer of 

adhesive was applied to the fibers and the fibers were left to dry for 30 min. The fibers were left 

to dry for a day before being used in the experiment. The coating was also applied on a glass slide 

and an YLCA of about 119 degrees was obtained for the coating with ferrofluid (not shown for 

brevity). Figures 2.2e–2.2g show a ferrofluid droplet with a volume of 15 µL on the above 3-D-

printed structures with orthogonal fibers from top, longitudinal, and transverse views, respectively. 

Figure 2.2h compares the results of numerical simulation with experiment conducted for the 

ferrofluid droplet on the same printed mesh but under the influence of a magnetic body force 

applied in the positive z-direction. In this experiment, the magnetic force was incrementally 

increased by lowering the magnet stepwise, and the droplet was imaged at each step (only a few 

steps are shown in Figure 2.2h for the sake of brevity). Good agreement can be seen between 

simulation results and experiment at each force increment. A final detachment force of 0.2g (i.e., 

2.0 N/kg) was obtained from the simulations, which is within 15% margin of error from the 

detachment force obtained experimentally (averaged over 5 repetitions using different parts of the 

same coated mesh). The parameters contributing to the mismatch between experimental and 

numerical results include, but are not limited to, non-uniformity in the coating applied to the fiber 

surface (possibly causing some variations in the YLCA of the fibers), and imperfection in the 

geometry of the printed fibers in terms of fiber spacing, fiber cross-sectional shape, and fiber 

surface roughness (leading to droplet pinning). These factors were obviously not included in the 
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simulations. More specifically, the fibers are assumed to be perfectly smooth cylinders in the 

simulations causing no resistance against droplet motion in the direction of the fibers.  

 

 

 

 

Figure 2.2: An example of droplet shape simulation on two orthogonal layers of aligned fibers is given in 

(a) for a droplet volume of 0.5µl, a fiber diameter of 10µm, and a fiber-fiber spacing of 110 µm. The air–

water interface in contact with the fibers is shown in (b), (c), and (d) as they are viewed from inside, from 

the transverse direction, and from the longitudinal direction, respectively. Images of a ferrofluid droplet 

with a volume of 15 µl on a 3-D printed structure are shown in (e), (f), and (g) from top, longitudinal, and 

transverse views, respectively. Diameter and spacing between the filaments in the printed structure are 291 

µm and 920 µm, respectively. Side-by-side simulation–experiment comparison is given in (h) for the shape 

of the above droplet as it changes in response to a body force increasing from left (downward gravity only) 

to right (net 0.2 g upward). 

 

2.3. Experimental Results  

In this section, we present our experimental detachment force data obtained for PS electrospun 

mats with orthogonal fibers. Polystyrene mats were produced in the form of 2, 3, or 4 layers of 

parallel fibers with 3 minutes of spinning time for each layer. Fiber diameter was measured from 

SEM images, and it was found to be about 0.5 µm on average.  Figure 2.3a shows the force required 

to detach a ferrofluid droplet with volume of 4𝜇𝐿 from these mats. It can be seen that detachment 

force is about 35 N/kg (3.5 times greater than the gravity) for both the three-layer and four-layer 
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mats, but it is about 60 N/kg for the two-layer mat (about 70% higher). Examples of droplet 

residues on the mats after detachment are also added to Figure 2.3a as insets, and it can be seen 

that the residue left on the two-layer mat is much larger than those left on the three-layer and four-

layer mats. To further explain the reason for this behavior, examples of detachment process are 

shown in Figures 2.3b and 2.3c for two-layer and three-layer coatings, respectively.  

 

 
 

Figure 2.3: Droplet detachment force versus number of layers of fibers is shown in (a). The inset images 

show droplet residue on the mat for each case (the large residue is from the Wenzel droplet). Examples of 

high-speed images of droplet detachment are shown in (b) and (c) for Wenzel and Cassie droplets, 

respectively. Transverse and longitudinal ACAs are given in (d) for ferrofluid droplets with a volume of 4 

µl. 

 

In these figures, magnetic force on the droplet is increased from left to right. Once the magnetic 

force reaches a critical value (referred to here as droplet detachment force), a spontaneous 

detachment process starts and continues until the droplet breaks up into two volumes (Figure 2.3b) 

or detaches with no measurable residue on the surface (Figure 2.3c). The reason for this behavior 

is that the droplet in Figure 2.3b had come into contact with the hydrophilic substrate underneath 
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the fibers (i.e., Wenzel state) but the one in Figure 2.3c had remained in the Cassie state. Figure 

2.3d shows the average ACAs of the droplets on the above mats in longitudinal and transverse 

directions in the absence of a magnetic force (gravity only). It is interesting to note that droplets’ 

average ACAs on all mats are within about 10% of one another despite their strikingly different 

detachment behavior. This is because the hydrophobic PS fibers resist against Wenzel droplets 

spreading over the surface. 

Figures 2.4a and 2.4b show detachment force, ACA, and critical ACA (the apparat contact angle 

of the droplet at its final equilibrium state before spontaneous detachment) for a droplet with a 

volume of 4𝜇𝐿 on mats comprised of one layer of parallel PS fibers, respectively. The x-axis in 

these figures is fiber deposition time, which is inversely proportional to fiber spacing as can be 

seen in the SEM images shown in Figure 2.4a. It can be seen that detachment force increases by a 

factor of about two when deposition time increases from 3 min to 8 min (when the mats become 

denser), but ACA and critical ACA vary only a few degrees, confirming the fact that contact angle 

information alone is not enough to quantify the degree of droplet adhesion to a surface. Note that 

the reported critical ACAs are imaged from the longitudinal direction only as additional 

synchronized high-speed cameras are needed to capture the critical ACA from more than one view. 

Also note in Figure 2.4b that critical ACAs are about 20 degree smaller than the ACAs for most 

cases. Figure 2.4c shows examples of droplet detachment sequences for three different fiber-mats 

having different fiber spacing (corresponding to 3, 5, and 8 minutes of electrospinning). The ACAs 

and critical ACAs are marked in these figures with blue and red frames, respectively. Figure 2.4c, 

also shows examples of droplet residues on the fiber-mats, and it can be seen that the residue is 

bigger when the fibers are packed more closely (e.g., the case of 8 min spinning time).  
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Figure 2.4: Droplet detachment force versus fiber spinning time per layer (inversely proportional to fiber-

to-fiber spacing in the layer) is given in (a) for a droplet with a volume of 4 µL. The mats used for the 

experiments were composed of aligned fibers. Transvers and longitudinal ACAs as well as critical ACAs 

(final state of equilibrium before detachment) are given in (b). The latter was only imaged from the 

longitudinal view. Examples of droplet detachment process from these mats are shown in (c) for mats with 

different fiber-to-fiber spacing (characterized by spinning time). Droplet volume is 4 µL. 
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Detachment force and ACA results are shown in Figures 2.5a for mats comprised of three layers 

of orthogonal fibers. It can again be seen that detachment force increases (although not so 

drastically) when deposition time increases from 3 min to 8 min (when the mats become denser), 

while ACA vary only negligibly (critical ACAs are not reported for the sake of brevity but a few 

examples can be seen in Figure 2.5b).  

 

Figure 2.5: Droplet detachment force versus fiber spinning time per layer (inversely proportional to fiber-

to-fiber spacing in the layer) is given in (a) for a droplet with a volume of 4 µL. The mats used for the 

experiments were composed of orthogonally layered aligned fibers. Examples of droplet detachment 

process from these mats are shown in (b) for mats with different fiber-to-fiber spacing (characterized by 

spinning time). Droplet volume is 4 µL. 
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Comparing the results obtained for three-layer mats with those obtained for one-layer mats (Figure 

2.4), one can see that ACAs are generally larger (but only about 10%) for the three-layer mats. 

The detachment forces are also generally higher for the three-layer mats with the exception of the 

one-layer mats at 8 min deposition. We conjecture that the increase in detachment force and the 

decrease in ACA with increasing deposition time is due to droplets coming into contact with more 

fibers. Figure 2.6a shows detachment force and ACA for a range of droplet volumes deposited on 

three-layer mats with a deposition time of 5 min. It can be seen that ACA decreases only slightly 

with increasing droplet volume, but the detachment force per unit mass decreases rapidly (as 

expected). Figure 2.6b shows the sequence of droplet detachment for different droplet volumes. 

 

Figure 2.6: Detachment force and ACAs for droplets with different volumes in given in (a). The mats used 

for the experiments were composed of 3 orthogonal layers with 5 min fiber spinning per layer. Examples 

of droplet detachment process from these mats are shown in (b) for different droplet volumes. 
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Overall, one can notice from Figures 2.3–2.6 that the force required to detach a droplet from a 

fibrous surface is not directly correlated to its ACA on the surface (hence the rose petal effect). 

We further discuss this in the next section using our simulation results. 

 

2.4. Simulation Results  

As mentioned earlier, simulating detachment of a millimeter-sized droplet from a coating 

comprised of submicron fibers is computationally prohibitive. Therefore, for our simulations in 

this section, we considered fibers with a fixed diameter of 10 µm (about 10 to 20 times larger than 

those produced experimentally), and used a droplet volume of 0.5 µL only. We consider water to 

be the fluid in the simulations. We start by studying the effects of fibers’ spacing and YLCA on 

droplet detachment from coatings with orthogonal fibers. To do so, we first discuss droplet ACAs 

in the absence of an external body force but then move on to simulate droplet detachment due to a 

vertical body force.   

Figure 2.7a shows the variation of the ACA, defined along the perimeter of the droplet area of 

contact with the surface. Here, we define local ACA as the angle between a plane tangent to the 

droplet at a certain distance above the surface of the fibers, and a horizontal plane at that location, 

i.e.,  

1 ˆ ˆcos ( . )App p dn n −=                                                                        (2.4) 

where ˆ
pn and ˆ

dn are normal vectors to these planes as shown in the inset figure. We obtain an 

average ACA by integrating the local ACA along the CL, i.e., 

App

App

dl

dl


 =




                                                                           (2.5) 
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Figure 2.7b shows the effects of fiber spacing and YLCA on average ACA for a droplet on a 

coating with two layers of orthogonal fibers. It can be seen that ACA generally increase with 

increasing fiber spacing for small fiber spacing values, but it reaches a plateau (with some 

fluctuations) with further increase in fiber spacing. In other words, ACA seems to increase with 

fiber spacing when the droplet is in contact with only the fibers in the first layer (shown in the 

figure with vertical dotted lines for each YLCA). Note that these computational ACAs cannot 

directly be compared with the experimental ACAs shown previously in Figures 2.3–2.6 because 

of the differences between the dimensions of fibers and droplets. More specifically, the droplets 

used in the experiment (being bigger than those used for the simulations) come into contact with 

more number of fibers (being smaller than those used in the simulations), and this tends to smooth 

out some of the ACA fluctuations shown in Figure 2.7b. Predictions of the CB equation are also 

added to Figure 2.7b for the range of fiber spacing values in which the droplet is in contact with 

the first layer only (CB cannot be applied to droplets in contact with more than one layer of fibers). 

Good agreement can be seen between the computational results and the CB equation. Figure 2.7b 

also shows that ACA is higher for surfaces with higher YLCAs, as expected.  

 

Figure 2.7: Local ACA along the perimeter of droplet contact area with the mats having different YLCAs 

or fiber spacing is given in (a). Effects of fiber spacing and YLCA on average ACA (averaged along CL) 

are shown in (b). Predictions of the Cassie–Baxter equation are also added for comparison (applicable only 

to droplets in contact with the top layer of fibers). 
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After an equilibrium shape was obtained for a droplet, we applied a small body force to the droplet 

and increase it with an arbitrary increment of ∆𝑔𝑧 = 0.5 N/kg until no stable shape was obtained 

for the droplet on the fibers. The largest body force under which a stable droplet shape could be 

obtained (plus an increment of ∆𝑔𝑧) was then taken as the force required to detach the droplet from 

the surface. Note that the simulation method considered in this work cannot be used to model the 

dynamics of droplet detachment from the surface or the volume of the droplet residue after 

detachment. Figures 2.8a and 2.8b show examples of droplet shape under the influence of a vertical 

body force from the longitudinal and bottom viewpoints. The droplets shown on top are in contact 

with only one layer of fibers (s =80 µm), whereas those shown on the bottom are in contact with 

both layers of fibers (s =140 µm). The average ACAs of these droplets are recorded as a function 

of the external force and are shown in Figure 2.8c. It can be seen that ACA does not vary much 

with varying external force, which is somewhat different from what we reported in Figure 2.4 

(where the critical ACA for each fiber spacing was about 20 degrees less than the ACA for that 

spacing). We believe this is due to two main reasons. Firstly, for a droplet as small as 0.5 µL 

(simulated droplets), the Laplace pressure is too high to allow the droplet shape to deviate from an 

almost spherical shape before the droplet detaches from the surface. This is not the case for the 

droplets used in the experiments as they were much bigger. Secondly, the simulated droplets in 

Figure 2.7 were all in the Cassie state, whereas those in the experiment might have partially (or 

locally) transitioned to the Wenzel state (and hence the small droplet residues on the surface as 

shown in Figure 2.4c). Our simulations also show that fibers’ wetted area and droplet CL decrease 

significantly with increasing the external force (Figure 8d), which also support the above 

argument, i.e., the unpinned CL shrinks in response to increasing the external force allowing the 

ACA to remain unchanged.  While we did not attempt to measure the wetted area or CL 
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experimentally in all cases, one can observe from droplet snapshots given in Figure 2.3–2.6 that 

they also decreased with increasing external force. 

 

  

 

 
 

Figure 2.8: Droplet profile as a function of net external force from longitudinal and bottom views are given 

in (a) for s =80 µm and in (b) for s =140. Effects of increasing vertical body force (leading to droplet 

detachment) on ACA (c) and on CL and wetted area (d) are shown for mats with two different fiber spacing 

but an identical YLCA of 85 degree. 

 

Figure 2.9a shows droplet detachment force for coatings with different fiber spacing and YLCAs. 
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exists a fiber spacing for which the vertical detachment force is minimal (i.e., maximum fiber 

spacing as long as the droplet is in contact with the fibers in the top layer only), which is an 

important conclusion from a practical point of view. Note that detachment force in all the cases 

reported in Figure 2.9a is more than 9.8 N/kg, meaning that gravity is not enough to detach the 

droplet from the surface even when it is turned upside down (sticky superhydrophobic surface).  

 

Figure 2.9: Effects of fiber-to-fiber spacing on droplet detachment force (a) and CL and wetted area (b) 

are shown for different YLCAs. Droplet detachment force is given in (c) in terms of critical ACA (i.e., 

receding contact angle). Droplet volume and fiber diameter are 0.5 µl, 10 µm, respectively. 
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2.5. Force Balance Analysis for a Detaching Droplet 

To better understand the balance of forces acting on a droplet during detachment, consider a fiber 

in contact with the droplet as shown in Figure 2.10a (e.g., the red fiber shown on the left side of 

Figure 2.2d). There are two capillary forces acting on the opposite sides of the fiber along the 

contact line, and each have a slope equal to the local slope of the AWI. There is also a compression 

force resulting from the positive pressure inside the droplet (Laplace pressure) distributed over the 

wetted area of the fiber. The capillary force resisting droplet detachment is the component of the 

capillary force in a direction opposite to the direction of the external force (see Figure 2.10a), and 

it varies along the length of the fiber (along the x-direction) depending on the local AWI slope. 

The total force on each fiber can be obtained by integrating the local capillary forces in the x-

direction, i.e.,  

sinz

CL WA

F dx pdA = +         (2.6) 

where  is the angle between the tangent to the AWI and a horizontal plane along the contact line 

on the fiber, and dA is the elemental wetted area of the fiber projected onto the same horizontal 

plane (see Figure 2.10a). More specifically, the forces acting on the left and right sides of the fiber 

can be written as,    

1 1 2 2

1 2 2 1

sin sin

(sin sin )dx (sin sin )dx

left right

z z z

CL WA CL WA

F F F dx pdA dx pdA

pr

   

    

= + = + − +

= − + +

   

 
        (2.7) 

where r is fiber radius. Equation 2.7 provides the force acting on each fiber in contact with the 

droplet, and so the summation of these individual forces should add up to the external body force 

applied to the droplet. The angles 1 and 2 can be calculated using the following equations: 

1 1cos sin( )
2

YL
  = + +                                                             (2.8) 



 

28 
 

2 2

3
cos sin( )

2

YL
  = − −                                                         (2.9) 

where 
1 and 

2 are the immersion angles on each side of the fiber as discussed earlier. Figure 

2.10b shows a few examples of how each fiber in an orthogonal coating contributes to the total 

capillary force resisting a vertical body force at the moment of droplet detachment. The total 

detachment force is shown with black symbols versus fiber spacing ranging from 50 to 185 µm. 

The fibers in contact with the droplet are numbered in the blue bottom-view images (white for 

fibers in the first layer and green for fibers in the second layer), and their individual contribution 

to the total force is given with different colors in the bar chart. It is interesting to note in Figure 

10b that fibers in the middle of contact area have negligible contribution to the total force resisting 

droplet detachment when the droplet is in contact with the first layer only. Moreover, the fibers in 

the second layer contribute more than the fibers in the first layer to the total resistance force against 

detachment when the droplet is in contact with both layers. It is also interesting to note that a fiber 

contribution to capillary force may become negative (helping detachment) depending on the local 

shape and position of the AWI.  

As discussed in before, one can obtained the force needed to detach a droplet from a fibrous coating 

by calculating the individual forces applied by each fiber (using Eq. 2.7) and adding them up 

together. Equation 2.7 however, is an integral equation that is not easy to solve in the absence of 

available computational data for each fiber in contact with the droplet. Moving forward with 

making the calculations more practical, we have developed approximate methods for force 

calculation as is discussed here in this section.  



 

29 
 

 

Figure 10: A free body diagram is given in (a) for the forces acting on a fiber in contact with a droplet. 

Forces acting on each individual fiber in contact with a detaching droplet is shown with different colors in 

the bar chart given in (b). Each bar represents a different mat with different fiber spacing, and the colors in 

each bar represent the force acting on the individual fibers in each mat. These fibers are numbered in the 

bottom view droplet images in each case. 

 

Consider slicing a droplet deposited on a fibrous surface with a horizontal plane as was shown 

previously in Figure 2.7a. Using a free body diagram as shown in Figure 2.11a, one can rewrite 

Eq. 2.6 as,   

sin Cr

z AppF L pA = −                                                               (2.10) 
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where L and A are the perimeter and cross-sectional area of the droplet in the slicing plane; Cr

App is 

the average critical ACA (obtained using Eqs. 2.4-2.5), and p is the droplet pressure obtained from 

SE.  Figure 2.11b compares predictions of Eq. 2.10 with those directly obtained from SE 

calculations and good agreement can be observed between the predictions. To be able to predict 

the force of detachment without needing to conduct a numerical simulation, we have further 

simplified Eq. 2.10. Keeping in mind that there are only a few geometric parameters can be 

obtained from a droplet image, we have approximated Cr

App with the average of the transvers and 

tangential ACAs (or one of them if both not available from experiment), and also assumed a 

circular shape for droplet cross-section in the slicing plane. Likewise, cird is taken as the average 

of the contact diameters measured from the transvers and tangential views (or one of them if both 

not available from experiment).   

𝐹 = 𝜎𝜋𝑑𝑐𝑖𝑟 𝑠𝑖𝑛𝜃𝐴𝑝𝑝
𝐶𝑟 − 𝑝𝜋𝑑𝑐𝑖𝑟

2 /4                                                        (2.11) 

We have also approximated droplet pressure with 𝑝 = 𝜎(1/𝑅1 + 1/𝑅2) ≅ 2𝜎/𝑑𝑐𝑖𝑟 assuming that 

droplet’s in-plane radius of curvature 𝑅2 (not to be confused with droplet diameter) is much larger 

than that in the out-of-plane direction 𝑅1 = 𝑑𝑐𝑖𝑟/2 (most accurate when ACA is 90 degrees). 

Predictions of Eq. 2.11 are also added to Figure 2.11b for comparison. It can be seen that this 

equation estimates the detachment force an accuracy of about 50–60%. Figure 2.11c shows 

predictions of Eq. 2.11 when used to estimate our experimental detachment force data from Figure 

2.4. It can be seen in this figure that predictions of Eq. 2.11 are reasonably good given the level of 

approximations considered in developing the equation. While not shown in Figure 2.11b for the 

sake of brevity, it should be mentioned that Eq. 2.11 is more accurate in estimating the simulation 

data obtained for 70YL o = , but less accurate when used for 100YL o = . This is because Cr

App is closer 

to 90 degrees for the former and much larger than 90 for the latter. The same reason explains why 
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Eq. 2.11 predicts experimental data better than the simulation data obtained for 85YL o = (see the 

inset in Figure 2.11c). See our published paper for more details on this task [90]. 

 

Figure 2.11: A free body diagram is given in (a) for the forces acting on a droplet at equilibrium on a 

surface. Comparison between droplet detachment forces versus fiber-to-fiber spacing obtained from 

numerical simulations, Eq. 2.10, and Eq. 2.11 is given in (b). Comparison is also given between predictions 

of Eq. 2.11 and our experimental data (c). The inset in (c) shows how 𝑑𝑐𝑖𝑟was obtained from droplet images 

right before detachment. 

 

2.6 Conclusions 

The force needed to detach a droplet from a sticky hydrophobic fibrous surface is investigated in 

this chapter experimentally and computationally. The experiments were performed using ferrofluid 

droplets deposited on electrospun PS coatings comprised of orthogonally-layered aligned fibers, 

and the simulations were conducted for conceptually similar systems but after some 
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simplifications. The following conclusions were drawn from our combined experimental-

computational study. It was observed from the simulations and experiments that droplet 

detachment force decreases with increasing fibers’ YLCA. It was also observed that droplet 

detachment force decreases or remains relatively constant with increasing fiber-to-fiber spacing 

depending on the number of layers of fibers in contact with the droplet. The variations are more 

predictable for when Cassie droplets are in contact with only one layer of fibers, but interactions 

become more complicated when fibers in the lower layers come into contact with the droplets or 

when the droplets are not in the Cassie state. Analyzing the individual capillary forces provided 

by the fibers in contact with a droplet, it was found that fibers in the middle of the surface wetted 

area do not play a significant role in keeping the droplet on the surface (negligible relative 

contribution in resisting droplet detachment). Contribution of the individual fibers in resisting 

droplet detachment becomes more complicated and unpredictable when the droplet is in contact 

with more than one layer.  No simple quantitative relationship was observed between droplet 

detachment force and droplet equilibrium ACA, or droplet CL (or surface wetted area). However, 

the trends of variation of these parameters with fiber-to-fiber spacing or YLCA seemed to agree 

with those of detachment force. A more clear relationship was observed between droplet 

detachment force and droplet critical ACA (also referred to as receding contact angle). Using the 

balance of forces acting on the detaching droplet, an easy-to-use expression is developed to 

estimate droplet detachment force from a fibrous surface. The predictions of this simple equation 

are compared with our experimental and computation results and reasonable agreement was 

observed. 
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Chapter 3. Measurement of the Force Required to Move a Droplet on a Hydrophobic 

Fibrous 

3.1. Introduction 

The focus of the work presented here, is to study droplet mobility on hydrophobic fibrous surfaces 

with low droplet mobility. Fibrous coatings are usually made by depositing fibers on top of one 

another. While a droplet can exhibit high apparent contact angles (ACAs) on such surfaces, its 

adhesion to the surface may be very unpredictable. The root cause of this problem is the empirical 

nature of the current surface manufacturing procedures in which a fibrous surface is first 

manufactured and then it is tested for droplet mobility. An ambitious but yet logical alternative to 

the traditional manufacturing approach would be to first design and test the surface virtually, and 

go on to then manufacture it if the performance was acceptable. This futuristic approach obviously 

requires detailed information about the impact of surface micro-scale morphology on the forces 

acting on a droplet. The study presented in this paper is therefore aimed at providing additional 

insight into the physics of droplet–fiber interactions specific to fibrous hydrophobic coatings. 

Similar approach for experiment and simulation to previous task is considered here. 

 

3.2. Experimental Results 

As mentioned earlier, the force required to move a droplet on the surface of our PS coatings was 

measured using a sensitive scale on which the coatings were placed in the vertical position. To 

start, a ferrofluid droplet was gently deposited on the coating in the horizontal position, and the 

coating was then rotated 90 degrees and mounted on the scale. A continuously increasing magnetic 

force was then applied to the droplet by lowering the magnet while recoding droplet deformation 

using a high-speed camera.  
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In studying droplet mobility on fibrous coatings, we limit our work to droplets that have not 

penetrated deep into the coatings to reach the underlying substrate. While we realize that there 

exists a series of partially-wetted transition states between the fully-dry Cassie and fully-wetted 

Wenzel states, we refer to such droplets as the Cassie droplets to distinguish them from the droplets 

that have come into contact with the substrate (referred to here as the Wenzel droplets) for the sake 

of simplicity. Since it is difficult to visually determine whether a droplet has come into contact 

with the substrate during an experiment, we use the ACAs, sliding force, and droplet residue on 

the coating in judging the state of the droplet as shown in Figure 3.1.  This figure reports droplet 

sliding force and ACAs on electrospun PS coatings comprised of two, three, and four orthogonal 

layers of parallel fibers (3 min electrospinning per layer). We have also included the contact angle 

hysteresis (CAH) for comparison.  

 

Figure 3.1 Droplet sliding force and critical CAs are given versus number of electrospun layers. Example 

snapshots of droplet deformation and sliding are also shown for Wenzel and Cassie droplets with a volume 

of 4µL. Droplet profile are extracted and overlaid for comparison. 
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It can be seen that the force needed to move the droplet over the two-layer coatings is almost two 

times higher than that needed to slide the droplet over the three- or four-layer coatings. Likewise, 

the CAH is greater on the two-layer coatings. This information indicate that ferrofluid droplets 

with a volume of 4 µL stay in the Cassie state on the three- or four-layer coatings but they transition 

to the Wenzel state when deposited on the two-layer coatings. This argument is also supported by 

the images obtained from droplet motion and the presence or the lack of a measureable droplet 

residue on the surface. As can be seen in the bottom-right image in Figure 3.1, a Wenzel droplet 

breaks up into smaller droplets as it moves over the surface, the so-called pearling effect. 

 Figure 3.2 shows sliding force and CA for droplets with a volume in the range of 2 µL to 7 µL on 

coatings comprised of three orthogonal layers of parallel PS fibers each spun for 5 minutes (the 

CAs will be later used for Figure 3.7). It can be seen that sliding force per droplet mass is smaller 

for larger droplets. From a design perspective, it is important to explore the importance of fiber–

fiber spacing (inversely proportional to spinning time per layer) and layer configuration on droplet 

mobility. Figure 5 shows the sliding force and CAs for a droplet with a volume of 4 µL placed on 

PS coatings with different fiber–fiber spacing. The results given in Figure 5a are for coatings made 

only of one layer of fibers (mounted on a stand to avoid contact with the underlying substrate), 

while those shown in Figure 3.3b are obtained with three-layer coatings. It can be seen that sliding 

force and CAH increase with decreasing fiber spacing.  
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Figure 3.2. Droplet sliding force and CAs are given versus for droplet volume. The coatings used for the 

experiments were composed of 3 orthogonal layers of electrospun parallel fibers with 5 min fiber spinning 

per layer. Example snapshots of droplet deformation are also shown for three different droplet volumes. 

 

It is interesting to note that sliding force and CAH values reported in Figure 3.3b are greater than 

their counterparts in Figure 3.3a. This indicates that for the droplet–fiber combinations considered 

in these experiments, the droplets penetrate deep into the coatings enough to come into contact 

with the fibers below the first layer. Additional discussion about the role of individual fibers and 

the effects fiber–fiber spacing is given in the last section (see Figure 3.6 and 3.7). 
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Figure 3.3. Droplet sliding force and CAs are given versus spinning time (inversely proportional to fiber-

to-fiber spacing) for a droplet with a volume of 4 µL on one-layer coatings made of aligned electrospun 

fibers in (a) and orthogonally layered aligned fibers in (b). The insets show droplet shape at the moment of 

detachment. 

 

3.3. Simulation Results 

Unless otherwise stated, the fiber diameter and droplet volume considered for the computational 

component of this research are 10 µm and 0.5 µL, respectively. Simulations start by first obtaining 

droplet’s equilibrium shape on horizontal coatings (with gravity normal to the plane of fibers). 

Mimicking droplet on a vertical coating as in the experiment, we then set the gravity to zero but 

apply an external force to the droplet in a direction parallel to the plain of coating. In simulating 

sliding force, we incrementally increase the force on the droplet (with an arbitrary increment of 

∆𝑔𝑧 = 0.5 N/kg) until no equilibrium shape and position can be obtained for the droplet. The 

largest body force at which an equilibrium shape is obtained (plus an increment of ∆𝑔𝑧) is then 

taken as the force required to slide the droplet on the surface. Note that the simulation method used 
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in this work cannot be used to model the dynamics of droplet sliding or the volume of the droplet 

residue left on the fibers after detachment.  

Figure 3.4a-3.4c shows examples of overlaid droplet shapes on fiber coatings with different 

properties. The blue-colored droplets are under the influence of gravity only (i.e., horizontal 

equilibrium position) while the red-colored droplets represent droplets on a vertical coating 

(exposed to an external body force parallel to the plain of fibers). The red-colored droplets are at 

their final state of equilibrium, i.e., they are about to slide on the surface. Footprint of each droplet 

on the coatings (portion of the droplet in contact with the coating) is also included for each case in 

Figure 3.4 with matching colors. Fibers in the first (top) and second layers are shown with green 

and dark-red colors, respectively. The droplets shown in Figure 3.4a are in contact with only one 

layer of fibers (s=70 µm), whereas those shown in Figure 3.4b and 3.4c are in contact with both 

layers of fibers (s=140 µm and s=125 µm). The external force is normal to the green fibers in 

Figures 3.4a and 3.4b, but it is parallel to the green fibers in Figure 3.4c. Effects of external body 

force on CL, fibers’ wetted area (Figure 3.4d), and CAH (Figure 3.4e) are also presented for 

quantitative comparison. It can be seen that increasing the body force increases the CAH but 

decreases CL and fibers wetted area which were expected conceptually but never quantified for 

fibrous surfaces.  

Figures 3.5a–3.5d show the effects of fiber spacing and YLCA on droplet 3-D shape and footprint 

on the coatings in presence (red-colored) and absence (blue-colored) of a parallel external force.  

Coating’s wetted area, droplet CL, CAH, and droplet sliding force (parallel to the surface but 

perpendicular to the fibers in the top layer) calculated and given in Figures 3.5e–3.5g as a function 

of fiber–fiber spacing. Our results indicate that sliding force is lower on coatings with high fiber–

fiber spacing (regardless of number of layers or YLCA of the fibers). This is because a droplet on 
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a coating with a greater fiber spacing is in contact with less number of fibers (smaller capillary 

force). 

 

 

Figure 3.4. Droplet profile and bottom views are given in (a), (b) and (c) for droplets on coatings with 

different fiber–fiber spacing. Effects of increasing horizontal body force (leading to droplet sliding) on CL 

and fiber wetted area (d), and CAH (e) are also given for coatings with three different fiber spacing but an 

identical YLCA of 85 degree. 

 

It can also be seen that sliding force is less on coatings comprised of fibers with a higher YLCA. 

The simulations also revealed that sliding force increases rapidly if the droplet comes into contact 

with the fibers in the second layer (i.e., mobility is less on coatings that allow the droplet to 

penetrate into the structure). Qualitative agreement can also be seen between our experimental data 
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(Figure 3.3) and the computational results (Figures 3.4 and 3.5) despite the differences in 

dimensions of the fibers and the droplets. It is worth noting that the sliding forces obtained 

experimentally for our electrospun coatings are larger than those obtained from the simulations. 

This is because the number of fibers in contact with a droplet deposited on an actual electrospun 

coating is more than that in the virtual coatings used in the simulations. 

When the external force is applied in a direction parallel to the fibers in the first layer (i.e., in the 

y-direction), the sliding forces are about an order of magnitude smaller than their counterparts in 

the x-direction. In fact, the sliding force is zero for droplets that do not reach the fibers in the 

second layer in this case (in the absence of viscous forces and CL pinning).  

It is also interesting to mention that sliding forces in the y-direction are less than g, which means 

that the droplets can roll off by simply tilting the surface (which was not the case when the external 

force was in the x-direction). This confirms that droplet mobility over a fibrous surface strongly 

depends on the relative angle between the fibers in contact with the droplet (fibers near the top of 

the surface) and the direction of the external force. 

 

3.4. Force Balance Analysis for Droplet Sliding Force 

An unanswered (or perhaps partially answered) question in the literature has been the relative 

contributions of the advancing and receding sides of a droplet in resisting against droplet motion. 

In this section, we use our numerical simulations to shed some more light on this issue and help 

better understand the role of individual fibers in resisting droplet mobility.  
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Figure 3.5. Droplet profile and bottom views are given in (a) through (d) for a droplet on coatings with 

different fiber spacing. Effects fiber spacing on CL and wetted area (e) and CAH (f), and sliding force (g) 

are of also given for comparison. Droplet volume and fiber diameter are 0.5 µl, 10 µm, respectively. 
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With the numerical simulation data available, one can study how each individual fiber in contact 

with a droplet contributes to the force resisting against the droplet motion. Figure 3.6a shows a 

schematic drawing of the contact between a fiber and a droplet. The capillary forces act on the 

opposite sides of the fiber in a direction tangent to the AWI along the fiber axis (the y-direction 

here) with a slope that is equal to the local slope of the AWI. Pressure forces, caused by the elevated 

pressure inside the droplet, act normal to the local curvature of the solid surface on the fiber’s 

wetted area (shown in red in Figure 3.6a). The fiber resistance to droplet motion is the summation 

of the components of the capillary and pressure forces in the direction opposite to that of the droplet 

motion, i.e.,  

cosx

CL WA

F dx pdA = +         (3.1) 

where   is the angle between the tangent to the AWI and the horizontal plane along the CL on 

the fiber, and dA is the elemental wetted area of the fiber projected onto a vertical plane as shown 

in Figure 3.6a. Expanding Eq. 3.1 using geometrical information given in Figure 3.6a, we obtain, 

1 1 2 2

1 2 2 1

cos cos

(cos cos ) dy (cos cos )dy

L R

x x x

CL WA CL WA

F F F dy pdA dy pdA

pr

   

    

= + = + − −

= − + −

   

 
           (3.2) 

where r  is the fiber radius. The superscripts L and R refer to left and right sides of the fiber as can 

be seen in Figure 3.6a.  Applying Equation 3.2 to all fibers in contact with the droplet results in 

the total resistance of the coating to droplet motion. Using Figure 3.6a, the angles 1 and 
2  can 

be written in terms of immersion angles on each side of the fiber ( 1 and 2 ), i.e.,  

1 1cos sin( )
2

YL
  = + +                                                             (3.3) 

2 2

3
cos sin( )

2

YL
  = − −                                                         (3.4) 
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The simulations reported earlier are considered here again in Figure 3.6b for its simplicity (there 

are only three fibers in contact with the droplet) to further analyze the forces between a droplet 

and its underlying fibers. As mentioned earlier, the net force exerted on each fiber is the resultants 

of the capillary (along the CL) and pressure (over the wetted area) forces on the left and right sides 

of the fiber. Table 3.1 compares these forces with one another for the case shown in Figure 3.6b. 

It is interesting to note that the fiber in the middle (Fiber 2) does not contribute to the total force 

acting on the droplet (forces cancel each other due to geometrical symmetry). The fiber on the 

advancing side (Fiber 3) makes the strongest resistance against droplet motion, while the fiber on 

the receding side (Fiber 1) tends to help the droplet to move. Note that the length of the CL is quite 

different on the receding and advancing sides of the droplet (CL is longer on the fiber on the 

advancing side as can be seen in the magnified images in Figure 3.6b). 

 

Table 3.1. Force components for a droplet with a volume of 30 µL on 3-D printed parallel fibers with a 

diameter of 362 µm and fiber spacing of 898 µm.  
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Figure 3.6. A free body diagram is given in (a) for the forces acting on a fiber in contact with a droplet. (b) 

Simulated force components are given for a droplet with a volume of 30 µL on the 3-D printed fibers (with 

diameter of 362 µm and fiber spacing of 898 µm). 

 

This observation may seem to contradict the commonly accepted conclusion that the receding end 

of a droplet plays the most important role in controlling droplet mobility.  However, the conclusion 
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was probably reached for droplets on surfaces that allow CL pinning (e.g., surfaces made of 

microfabricated sharp-edged posts).   

Coming back to the more complicated case of droplet on virtual coatings with orthogonal fibers, 

we present force per fiber for four different coatings in Figure 3.7. The bar chart of Figure 3.7a 

shows the contribution of each individual fiber in the total force against droplet motion (the total 

force shown with black circles) for a few virtual fibrous coatings with different fiber–fiber spacing 

(from Figure 3.5). The bar segments in Figure 3.7a are colored differently for different fibers. 

Figure 3.7b shows the droplet footprints on coatings with different fiber–fiber spacing values of 

50 µm, 70 µm, 125 µm, and 170 µm. Note that, fibers shown in red provide no resistance against 

droplet motion in the x-direction (they are parallel to the x-direction). It is interesting to note in 

Figure 3.7a that fibers on the droplet’s receding and advancing sides play the main role in resisting 

against droplet motion. In this figure, the positive forces help droplet motion while the negative 

force resist against it. 

An alternative approach to using Eq. 3.2 for sliding force prediction is to slice the droplet at a 

location slightly above the surface and to consider the balance of forces acting on the droplet as 

shown in Figure 3.8a (the distance between the fibers and the slicing plane is exaggerated for 

illustration). The new approach does not provide any fiber-level information (see Figure 3.7 and 

its discussion), but it is more practical as will be seen later in this section. Figure 3.8a also shows 

the capillary forces (black arrows) acting on the sliced droplet. The capillary forces are projected 

onto the slicing plane and are shown from below. The red arrows in this figure are the x-

components of these planar forces. Note that, the pressure forces acting on droplet cross-section 

have no components in the x-direction. 
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Figure 3.7: Forces acting on each individual fiber in contact with a droplet at the final state of equilibrium 

under an external horizontal force (a). Each bar represents a coating with a different fiber spacing, and the 

colors in each bar represent the force acting on the individual fibers in each coating (b).  

 

The sliding force can therefore be calculated as the x-component of the force obtain using Eq. 3.5, 

i.e.,  

cos cr

x app

CL

F dl =                                                                   (3.5) 
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where cr

app  is local apparent contact angle of the droplet (around the 3-D contact line) at its final 

equilibrium state before moving. Figure 3.8b compares the sliding force from simulations (Figure 

3.5) with the predictions of Eq. 3.5. To do so, we sliced the simulated droplets at a distance of 6d 

above the top surface of the fibers to extract cr

app and CL data for Eq. 3.5. Good agreement can be 

seen between the actual simulation data (black squares) and those obtained from the above slicing 

method (green circles), as expected.  

As mentioned earlier in the Introduction, one can estimate the droplet sliding force on a surface 

using Eq. 1.3. This equation however requires droplet’s advancing and receding CAs as well as 

the width of the droplet’s footprint on the surface w as input (assuming the empirical correction 

factor to be 1k = ). While in principle droplet’s width right before sliding crw should be used in 

Eq. 1, better agreement with simulation results was observed when we used footprint’s width in 

the absence of the magnetic force 0w  in the equation (see Figure 3.8b). The inset in Figure 3.8b 

shows the droplet footprint on the surface as a function of in-plane body force. It can be seen that 

w  decreases (though not monotonically) with increasing the in-plane body force on the droplet.  

The experimental counterparts to the computational results shown in Figure 3.8b are given in 

Figure 3.8c for a droplet with a volume of 4 µL on a single layer of aligned electrospun fibers (the 

experiments reported in Figure 3.3a). Since droplet footprint on the surface can be approximated 

as being circular in the absence of an in-plane body force, we used droplet length in place of droplet 

width when measuring 0w . To measure crw , the droplet was imaged from behind as it was pull 

up by the magnet. The inset in Figure 3.8c shows an example of such images obtained under 

different in-plane body forces (overlaid on top of each other for comparison).  It can again be seen 

that Eq. 1.3 tends to underestimate the sliding force when crw w= is used in the equation for 

footprint width. Equation 1.3 however, provides reasonable predictions with 0w w= .  
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Figure 3.8. Droplet slicing method on the capillary forces at the cross section are shown in (a). Comparison 

between droplet sliding forces obtained from numerical simulations, Eq. 3.5, and Eq. 1.3 is given in (b). 

Comparison between predictions of Eq. 1.3 and our experimental data is given in (c).  
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Regardless, we believe droplet footprint dimensions on the surface right before detachment (be it 

the width or other dimensions) are more logical parameters to use in predicting the sliding force. 

The reported inaccuracies in predictions obtained from Eq. 1.3 seem to be inherent to this 

oversimplified empirical equation (hence the empirical correction factor of 1 3.14k  as 

recommended in the literature). See our published paper for more details on this chapter [91]. 

 

3.5. Droplet Detachment from Mats with Random Fibers 

The force needed to detach a droplet from a fibrous surface made of parallel or orthogonal fibers 

with different number of layers was investigated before. In this section, the out-of-plane force 

(vertical force) and in-plane (horizontal force) are measured for a mat with randomly oriented 

fibers (see Figure 3.4). The detachment force in this case is almost constant independent of the  

electrospinning time. For PS coatings made of aligned fibers, depending on the spacing between 

the fibers (electrospinning time) or the number of fiber layers, we obtained out-of-plane and in-

plane detachment forces ranging from 22 to 60 N/kg, respectively. These forces however were 

found to be about 50 and 38 N/kg for mats with random fibers.   

 

Figure 3.9:  Droplet in-plane and out-of-plane detachment forces as a function of electrospinning time for 

a PS mat with randomly deposited fibers. 
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3.6. Conclusions 

Droplet mobility on electrospun PS coatings is studied experimentally and computationally in this 

chapter. To simplify the otherwise very complicated problem, we limited the orientation of the 

fibers to the x and y directions. Depending on the spacing between the fibers (and of course fiber 

and droplet diameters), a droplet on an electrospun PS coating can be at the Cassie state, at the 

Wenzel state, or at a transition state in between these extremes states. It appeared from our 

experiments that the Cassie (or near-Cassie) droplets leave a much smaller residue on the surface 

after sliding compared to the Wenzel (or near-Wenzel) droplets. The Wenzel droplets have to break 

up into two or more volumes before they can roll on the surface. Our results also indicate that 

Cassie droplets seem to require a smaller body force to roll on the surface. In the work presented 

here, we focused mostly on the Cassie droplets. The force needed to move a droplet on the surface 

of an electrospun PS coating is usually greater than the weight of the droplet (i.e., droplet does not 

roll off by tilting the surface). Our results indicate that droplet mobility is generally higher when 

the spacing between the fibers is larger. However, this depends on whether or not the droplet is in 

contact with the first layer of fibers. Excessive spacing between the fibers can lead to droplet 

penetration into the coating (even as small as one fiber diameter deep) to result in a significant 

reduction in droplet mobility.  Our study quantified the effects of droplet volume (as well as fiber 

spacing or YLCA) on the force needed to roll the droplet on the surface. An in-depth analysis was 

presented for the effects of external body force on droplet contact line or fibers’ wetted area. 

Calculating the force exerted on a droplet placed on a fibrous surface, it was found that the fibers 

on the receding and advancing sides of the droplet play the most important roles in determining 

the force needed to roll the droplet on the surface. 
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Chapter 4. Analysis of Droplet Penetration into a Nonwoven Fabric 

 

4.1 Introduction 

In this context, this work is the first to report the use of a magnetic field in quantifying the 

resistance of a non-wetting fibrous material to droplet spontaneous penetration. In our study 

however, no inertia is considered for the droplets so that a quasi-static approach could be 

considered to simplify the analysis. More specifically, we use a permanent magnet to measure the 

force needed to make a ferrofluid droplet penetrate into a thin non-wetting fibrous material. The 

measured forces are then used to relate the microstructural and wetting properties of the media to 

their ability to repel droplets of different properties. The measured body forces can, of course, be 

converted to their air (or liquid) drag force counterparts for comparison to a typical coalescence 

filtration experiment, if needed. The method for experiment and simulation is similar to chapter 1. 

 

4.2. Simulation–Experiment Comparison 

In this section, we present experimental and computational results obtained for 3-D printed (5th 

Gen Makerbot Replicator) mesh-like two-layer structures comprised of parallel fibers (with a fiber 

diameter of 345 µm and fiber spacing values of 905 and 1155 µm) layered orthogonally on top of 

one another (see Fig. 4.1). The printed fibers were coated with Ultra-Ever Dry solution from 

Ultratech to impart surface hydrophobicity (with an YLCA of about 120 on a microscope slide). 

Experiment with the ordered structures (equally-spaced large fibers of almost-identical diameters) 

allows us to produce a side-by-side simulation–experiment comparison (such a comparison cannot 

be made for a droplet on an electrospun fibrous coating, as excessive computational resources are 

needed to model a macroscopic droplet on submicron-sized PS fibers).  
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When a droplet sits on a hydrophobic porous surface, a meniscus forms inside the pores of the 

surface if the pressure inside the droplet is higher than the pressure of the fluid inside the pores 

(e.g., air). Generally speaking, a droplet does not penetrate too deep into a hydrophobic 

(oleophobic) surface when gravity is the only external force acting on the droplet. Applying an 

external body force increases the pressure inside the droplet and that leads to further penetration 

of the meniscus into the pores. The pressure at which a spontaneous droplet penetration starts is 

referred to as the critical pressure in this work. 

Figures 4.1a and 4.1b show the equilibrium shape of a droplet with a volume of 7 µL on the mesh-

like structures (see Fig. 4.1c) with fiber–fiber spacing of 905 and 1155 µm, respectively. Droplet 

shapes from simulation and experimental are compared with each other in these figures (gravity is 

the only body force acting on the droplets). While the predicted droplet apparent contact angles 

(ACAs) tend to be smaller than those predicted, good overall agreement between the simulation 

and experiment is noticeable. We believe that surface roughness (from 3-D printing or from spray 

coating) is the reason for the discrepancy between predicted and measured ACAs; the simulated 

droplets (in the absence of roughness or pinning effect) show slightly deeper meniscus penetration 

into the structure. Also note in Fig. 4.1 that, the 3-D printed fibers do not have a perfectly circular 

cross section. 

Figures 4.1d and 4.1e present the droplet equilibrium shapes in the presence of an increasing 

magnetic body force. Good general agreement can again be seen between the simulation and 

experiment. The smallest body force needed for the droplet to spontaneously penetrate in each 

mesh was obtained from the simulations and experiments, and is given in the figure (2.7g and 7.6g 

for meshes with a fiber spacing of 1155 µm and 905 µm, respectively). Note that, as SE equations 

are time-independent, our simulations are limited to conditions where an equilibrium shape can be 
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expected for the droplet, i.e., spontaneous droplet flow through the structure cannot be simulated. 

Also note in the experimental images of Fig. 4.1e that, due to 3-D printing imperfections, the 

droplet often tends to flow only through one of the openings between the fibers (where the 

resistance to the flow is minimum).  

 

Figure 4.1: Images in (a) and (b) show the under-gravity equilibrium shape of a droplet with a volume of 

7 µL on the mesh-like structures, shown in (c), with a spacing of 905 and 1155 µm, respectively. 

Comparison is made between droplet shapes from experiment and simulation. Images in (d) show examples 

of the droplet equilibrium shapes under the influence of an increasing magnetic body force. The force per 

unit mass needed to initiate spontaneous penetration was found to be 2.7g and 3.1g computationally and 

experimentally, respectively (note that simulation results are only given for forces smaller than the 

penetration force. Images shown in (e) are for a similar experiment but with a mesh with a smaller spacing 

leading to computational and experimental penetration forces of 7.6g and 8.2, respectively. 
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Pressure inside the droplet and the droplet ACA are also given in Fig. 4.1 for the simulated droplets 

as they provide valuable information about how a droplet interacts with the fibers, as will be 

discussed later. As expected, droplet pressure increases with increasing the body force on the 

droplet. 

 

4.3. Experiential Results  

In this section, effects of fiber–fiber spacing, droplet volume, coating thickness (number of layers), 

and fiber orientation on the force needed to initiate droplet spontaneous penetration are 

experimentally studied.  

Figure 4.2a shows the penetration of a 4 µL ferrofluid droplet into a single layer of PS parallel 

fibers spun for 3 minutes (see the inset figures in Fig. 4.2b). The first image from the left shows 

the equilibrium shape of the droplet under gravity. With increasing the magnetic force, the droplet 

first flattens slightly, and then starts penetrating into the space between the fibers. At a critical 

force of about 11.3g, the droplet spontaneously flows through the spacing between two 

neighboring fibers (perhaps the two with the largest spacing between them). Figure 3b shows the 

spontaneous penetration force for droplets of different volumes placed on single-layer coatings 

spun for 3 minutes (shown with red squares). This figure also shows (blue circles) how increasing 

the number of layers in a coating (each spun for a minute) increases the spontaneous penetration 

force measured for a droplet with a volume of 4 µL. It can be seen that, spontaneous penetration 

force increases with increasing droplet volume as the droplet will be in contact with more number 

of fibers. Note that the minimum force per mass needed to pull the droplet into the structure is 

much greater than the gravity. This force is also much bigger than the force needed to move the 

droplet on the surface of the coating or detach it in the vertical direction. It can also be seen in this 
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figure that, penetration force is much more sensitive to the number of layers of fibers in a coating 

than it is to the volume of the droplet (compare the red and blue symbols). It is worth mentioning 

that no noticeable residue was found on the fibers after droplets penetrated into the coatings (same 

as the case with the 3-D printed meshes). 

 

Figure 4.2: High-speed images of a ferrofluid droplet penetrating into a layer of parallel PS fibers 

electrospun for 3 min are shown in (a). Magnetic force increases from left to right. Droplet volume and 

fiber diameter are 4 µL and 0.5 µm, respectively. Effects of droplet volume and number of fiber layers on 

penetration force are shown in (b). The inset figures show examples of our electrospun PS coatings. 
 

An important parameter that affects droplet penetration force in a significant way is the spacing 

between the fibers. As it was mentioned before, a penetrating droplet tends to find the largest 

opening between the fibers and flow through that “pore” as opposed to simultaneously flowing 

through a series of smaller pores. Spacing between the fibers in our work is varied by varying the 
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electrospinning time per layer (for a drum lateral velocity of 15 mm/s). Figure 4.3a shows droplet 

spontaneous penetration force through single- and two-layer coatings.  

 

Figure 4.3: Effects of fiber spacing on the force needed to initiate droplet spontaneous penetration into 

one- and two-layer coatings are shown in (a). Effects of fiber orientation on the same are given in (b). 

 

As expected, penetration force is less for coatings with larger fiber–fiber spacing (shorter spinning 

time). In addition to fiber spacing, spontaneous penetration force is also dependent on the 

orientation of the fibers with respect to each other. The error bars for spinning time in Figure 4.3a 
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the fibers in each SEM image (this is quite easy as the fibers are parallel to one another) to obtain 

an average value and a fiber–fiber spacing standard deviation for each spinning time. To produce 

standard deviations in the unit of time, the standard deviations for the fiber–fiber spacing were 

divided by the average number of fibers per minute for each spinning time. Figure 4.3b shows the 

penetration force for two-layer coatings comprised of fibers with different relative angles. It can 

be seen that penetration force is the highest when the layers are orthogonal with respect to each 

other. Also note that, since the fibers are soft and flexible, it not unreasonable to assume that they 

may have moved in the lateral directions or deform in reaction to the forces exerted on them by 

the penetrating droplet.   

 

4.4. Simulation Results 

As mentioned earlier, simulating penetration of a droplet with a volume of about a few microliters 

into an electrospun PS coating comprised of submicron-sized fibers is computationally prohibitive. 

This is because such droplets are 3–4 orders of magnitude larger in diameter than the fibers, and 

conducting numerical simulations on such diverse length scales requires an excessive 

computational power. We have therefore considered a fiber diameter of 50 µm for our simulations 

to alleviate this problem. Figure 4.4a shows a droplet placed on a one-layer coating of fibers with 

a fiber spacing of 500 µm and an YLCA of 85 under gravity (shown with a blue color). The droplet 

is sliced from the middle to better show the penetration of the AWI between the fibers (penetration 

under gravity is relatively small as the YLCA is somewhat high). The AWI penetration between 

the fibers increases when a large body force is applied to the droplet as shown in Fig. 4.4a (shown 

with an orange color). Further increase in the body force for the case shown in this figure will lead 

to AWI burst or self-coalescence resulting in droplet spontaneous penetration into the structure. 

The burst and self-coalescence AWI failure mechanisms are explained graphically in Fig. 4.4b. 
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Consider the AWI between two parallel fibers as shown in Fig. 4.4b. Increasing the pressure over 

the AWI, results in the AWI penetrating deeper into the space between the fibers, as described by 

the so-called immersion angle. 

If the pressure acting on the meniscus between two fibers is too high for the fibers’ capillary forces 

to balance it, the meniscus continuously grows without reaching an equilibrium shape or position, 

and will eventually burst. This usually results in droplet spontaneous penetration into the structure 

unless the underlying fiber-layers are packed more densely (or if they are made of more 

hydrophobic materials). The highest pressure that an AWI between two parallel fibers can 

withstand before a burst failure takes place (also referred to as critical pressure) can be calculated 

using the following equation, 

2sin( )

sin

YL

f

p
s d

 




+
= −

−
                                                              (4.1) 

where , fd , and s are immersion angle, fiber diameter, and fiber spacing, respectively. For such 

calculations, one has to first calculate / 0p   = to find the immersion angle at which the pressure 

is the highest (i.e., burst ), and then evaluate the burst pressure for that immersion angle.  

The self-coalescence mechanism is the case where two neighboring meniscus come into contact 

with one another underneath a fibers (or group of fibers). In this case, the fiber in contact with both 

meniscus will become submerged in the droplet (or “wetted” by the droplet). When a fiber is 

wetted, its resistance to droplet penetration becomes significantly weaker, and this can lead to 

droplet spontaneous penetration.  

Figure 4.4c shows how droplet pressure (non-dimensionalized using droplet’s Laplace pressure

1

0 4 dp d −= , where dd is droplet diameter) and immersion angle varying with increasing the body 

force on the droplet for the case of a droplet with a volume of 4 µL on a coating comprised of 
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parallel fibers with fd =50 µm, s =400 µm, and YL = 850. The insets in Fig. 4.4c show the AWI 

between the two middle fibers from when droplet is only under gravity to when it is about to 

spontaneously penetrate into the structure.  

 

Figure 4.4:  Droplet shape under gravity and at the moment of penetration are shown in (a) on a coating 

with a fiber dimeter of 50 µm, YLCA of 85, and a spacing of 400 µm. The burst and coalescence failures 

are shown schematically in (b). Simulated droplet pressure and immersion angle are presented in (c) versus 

external body force. Fibers WA and CL are given in (d).  

 

a)

g

Fmax

YL YL

burst =

YL YL



burst 

failure 

coalescence 

failure 

(XY)  23 Jan 2019 

0 50 100 150 200 250 300

F/m (N/kg)

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

p
/p
0

90

100

110

120

130

140

150

160

170

180

190


(d
eg

0
)

(XY)  23 Jan 2019 

Near 

spontaneous 

penetration

under gravity Eq. 4

(XY)  25 Jan 2019 

0 50 100 150 200 250 300

F/m (N/kg)

0

25

50

75

100

125

150

175

200

L
c/
P
f

0

5

10

15

20

25

30

35

40

45

A
sw
/A

f

(XY)  25 Jan 2019 

under gravity

droplet view from inside
d)

b)

c)



 

60 
 

Note that, droplet pressure at the moment of spontaneous penetration is more than twice higher 

than its equilibrium value under gravity for the droplet–coating combination considered. The burst 

pressure predicted using Eq. 4.1 is also shown in Fig. 4.4c with green symbols. It can be seen that 

the immersion angle burst and burst pressure from Eq. 4.1 are in good agreement with the results 

from simulations obtained for the moment of spontaneous penetration. 

Increasing the body force on the droplet deforms the droplet shape and so increases the length of 

the droplet contact line (CL) cL  (non-dimensionalized with fiber perimeter 
f fP d= ) and the 

solid wetted area (WA) swA  (non-dimensionalized using fiber cross-sectional area 2 / 4f fA d= ), as 

can be seen in Fig. 4.4d. The insets in Fig. 4.4d are droplet footprints viewed from inside. 

 To study the effects of fiber–fiber spacing on droplet penetration, we report the force needed to 

initiate droplet spontaneous penetration versus fiber spacing for a droplet with a volume of 4 µL 

placed on a one-layer coating comprised of parallel fibers with a diameter of 50 µm but different 

YLCAs in Fig. 4.5a. It can be seen that penetration force depends strongly on both the fiber–fiber 

spacing and the YLCA (the inset figures in Fig. 4.5a show the droplet profile right before 

spontaneous penetration). More specifically, it can be seen that penetration force and its 

corresponding droplet pressure monotonically increase with decreasing the spacing between the 

fibers or with increasing the YLCA of the fibers (more force is needed to pull a droplet into a 

coating comprised of hydrophobic fibers or a coating with fibers packed more closely).   

Figure 4.5b shows the dimensionless CL length and solid WA for the same droplet–coating 

combinations reported in Fig. 4.5a. While CL length and WA clearly decrease with increasing 

fiber–fiber spacing, no clear trends were found in how they vary with varying fibers’ YLCA. This 

is because when the YLCA is lower, droplet’s initial (under gravity) footprint on the coating is 

relatively larger leading to a greater initial CL length and a larger WA.  
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Figure 4.5: Effects of fiber spacing and YLCA on penetration force, droplet pressure, droplet CL length, 

and fibers WA are shown in (a) and (b). Figure (c) compares droplet profiles under gravity and at the 

moment of penetration on a layer of parallel fibers with identical spacing but different YLCAs or 85 and 

70 degrees. Figure (c) also compared droplet footprints of these coatings under the gravity and at the 

penetration moment. The figures are color-coded for better illustration. 
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When the YLCA is higher, the droplet’s initial footprint is smaller, but it grows to a larger size 

(the droplet severely deforms and spreads over the surface) before the external body force becomes 

strong enough to pull the droplet in (a higher internal pressure is needed for the meniscus between 

two neighboring fibers to fail when the YLCA is higher). This leads to larger CL lengths and WAs 

for droplets on coatings with higher YLCAs. This is also shown in Fig. 4.5c using simulated 

droplet footprints overlaid on top of each other for comparison. 

To quantify how the spontaneous penetration force increases with increasing the number of fiber 

layers, we considered a water droplet with a volume of 4 µL on two-layer (orthogonally-layered) 

coatings of different fiber–fiber spacing but only one YLCA of 85 degrees in Fig. 4.6 (effects of 

YLCA is similar to those discussed in Fig. 4.5). As expected, penetration force and its 

corresponding droplet pressure decrease with increasing the spacing between the fibers. The results 

obtained previously for a one-layer coating with s=500µm are added to this figure for comparison. 

It can be seen that adding the second layer of fibers increased the penetration force by a factor of 

about 2.5. Obviously, applying such a strong body force to a droplet results in a significant droplet 

flattening over the surface (see the initial and final footprints of the droplet on an orthogonal 

coating with a fiber–fiber spacing of 500 µm in Fig. 4.6b). Such a significant droplet spreading 

brings about significant increase in the CL of the droplet and the fibers WA (Fig. 4.6c) relative to 

those obtained for the penetration of the same droplet through one-layer coatings.  

Neglecting the variation of the immersion angle along the length of the fibers, an approximate 

equation for the burst pressure for an AWI over the unit cell of a two-layer structure was produced 

in a previous work using the balance of forces (see Fig. 4.6d). Describing the vertical component 

of the pressure force on the AWI as 1 2( sin )( sin )f fp s d s d − − , the capillary forces along the CL 
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on the top fibers as 1 22 sin( )( sin )   + −YL

fs d , and capillary forces along the CL on the bottom 

fibers as 2 12 sin( )( sin )   + − −YL

f fs d d , one can obtain, 

1 2 2 1

1 2

sin( )( sin ) sin( )( sin )
2

( sin )( sin )

YL YL

f f f

f f

s d s d d
p

s d s d

     


 

+ − + + − −
= −

− −
                                 (4.2)  

 

Figure 4.6: Effects of fiber spacing and YLCA on spontaneous penetration force, droplet pressure, droplet 

CL length, and fibers WA are shown in (a) and (c) for two-layer coatings comprised of orthogonal fibers. 

Examples of droplet profiles and footprints under the influence of gravity and at the moment of spontaneous 

penetration are given in (b). A schematic diagram for the AWI over a square unit cell of a two-layer structure 

consisting of four fibers is given in (d). 
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Obviously, the length of the CL on the fibers in the lower layer is shorter than that of the fibers in 

the upper layer. To incorporate this into our pressure equation, we subtracted a length equal to a 

fiber diameter from the length of the lower fibers’ CL in each unit cell (the fd− term in the last 

parenthetical term in the numerator of the RHS of Eq. 4.2). The burst pressure can again be 

obtained by finding the immersion angles at which the pressure is the highest (i.e., solving 

1/ 0p   =  and 2/ 0p   =  simultaneous for burst

1 and burst

2 ). Figure 4.6a compares the predictions 

of Eq. 4.2 with those obtained from SE simulations at the moment of spontaneous penetration for 

different fiber–fiber spacing. The agreement between SE predictions and those of Eq. 4.2 is quite 

good given the number of simplifying assumptions considered to make such a purely analytical 

calculation possible.  

 

4.5. Force Balance Analysis 

Consider a droplet placed on a layer of parallel fibers aligned in the y-direction at the moment of 

spontaneous penetration. The forces acting on the fibers in the z-direction can be broken down into 

the capillary forces (acting along the CL) and the pressure forces (acting on the WA), i.e.,  

sinp

z

CL WA

F F F dl pdA  = + = +                                                                   (4.3) 

where  is the angle between the tangent to the AWI and a horizontal plane along the CL on the 

fiber (see Fig. 4.7a). In this equation, dl and dA are the CL and the WA, respectively. Using Eq. 

4.3 to obtain the force needed to initiate droplet spontaneous penetration into a fibrous coating 

requires the local slope of the AWI along the CL on each fiber as well as the WA of each fiber. 

Unfortunately, such fiber-level detailed information can only be obtained from a numerical 

simulation. In this concern, we have considered a series of simplifying approximations to make it 

possible to use Eq. 4.3 when such detailed information is not available, as described below. As 
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WA and CL are different on the fibers in the first and second layer, we describe each case 

separately.  

One of the most important parameters needed for predicting the local slope of the AWI along the 

fibers is the immersion angle (characterizing the local depth of the AWI). Consider the droplet 

shown in Fig. 4.7a, a droplet with a volume of 4 µL on a coating comprised of parallel fibers with 

a diameter of 50 µm with a fiber–fiber spacing of 500 µm, and an YLCA of 85 degrees. Figure 

4.7b reports the immersion angles along the length of the four fibers in contact with the droplet 

(the contact angle on the left and right sides of the fibers are shown with different symbols). It can 

be seen that immersion angle on a wetted fiber only changes near the edges of the fiber WA. For 

instance, immersion angle is greater than about 160 degrees for most of the wetted length of the 

fibers, except for the left side of the left fiber and right side of the right fiber (i.e., fibers near the 

left and right edges of the droplet, numbered fibers 1 and 4, respectively, in Fig. 4.7a). Therefore, 

an average immersion angle avg

CL

dl =  , could be defined and used in this analysis to simplify 

the problem at hand. Denoting the droplet maximum body and footprint lengths in the direction of 

the fibers (in the y-direction here) with max

yL  and fp

yL , respectively, we noticed from the simulations 

that the ratio of the length of the CL on a fiber having an  immersion angle of max  to the total 

length of the CL on that fiber (i.e., max / fp

y yL L ) is somewhat proportional to fp max/ 0.8y yL L   for fibers 

far from the edge of droplet footprint. This proportionality max max/ /fp fp

y y y yL L L L   depends of course 

on the shape of the droplet on the surface and so it may vary depending on fibers’ YLCA and 

spacing (see Fig. 4.7a). We use this ratio here to scale down the maximum immersion angle and 

use it as an approximation for the average immersion angle of the fibers, i.e., 

max max fp( / )aprx

avg y yL L = . To estimate the maximum immersion angle, we assumed the AWI failure 
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to be the burst mechanism and so assumed max burst  by calculating / 0p   = from Eq. 4.1 (i.e., 

we assumed the droplet pressure at the moment of penetration to be the burst pressure).  This 

allowed us to calculate an average (approximate) angle for the capillary force on the fiber with the 

horizon to be later used in Eq. 4.3, i.e.,  

aprx YL aprx

avg avg   = + −                                                                    (4.4) 

The next geometrical parameters to approximate are the length of the CL and the WA of each fiber. 

Considering an elliptical cross-section for the droplet footprint on the surface (Fig. 4.7a), one can 

write, 

2 22 2
( ) ( ) 1+ =

fp fp

x y

x y

L L
                                                             (4.5) 

To obtain an overall WA aprxA and CL length aprxC  for all the fibers in contact with the droplet, we 

can now consider  

1

2

f
xN

aprx

f i

i

A d y
=

=                                                               (4.6) 

                                                                
1

4

f
xN

aprx

i

i

C y
=

=                                                                (4.7) 

With the number of fibers in contact with the droplet in the fibers given as, 

/ 1f fp

x xN L s= +                                          (4.8) 

and 

                                                                22
1 ( )

2
= −

fp

y i
i fp

x

L x
y

L
                                                                   (4.9) 

and  

                                                                ( 1) ( ( 1) ) / 2= − + − −fp f

i x xx i s L N s                                            (4.10) 

An approximate form of Eq. 4.3 can now be written as, 
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                                                                2sin = +aprx aprx D aprx

z avg burstF C p A                                   (4.11)   

where aprxA , aprxC ,  aprx

avg
, and 

2D

burstp can be obtained from Eq. 4.6, Eq. 4.7, Eq. 4.4, and Eq. 4.1, 

respectively. Good agreement can be seen in Fig. 4.7d between the predictions of Eq. 4.11 and 

those from SE simulations for the force needed to initiate droplet spontaneous penetration in one-

layer coatings and those using fiber-level information from Eq. 4.3.  

For the case of two-layer coatings, the WA and CL for the top layer can be obtained using Eqs. 

4.6 through 4.10, the same exact way as it was done for a droplet on a one-layer coating. The WA 

for the second layer can be added to that of the first layer, as the fibers in both layers are exposed 

to the same pressure, i.e.,  

2

1 1

2 ( ) 2
= =

= + − 
ff
yx

NN
aprx f f

f i i x y f

i i

A d y x N N d      (4.12) 

with the number of fibers in contact with the droplet in the second layer given as  

/ 1f fp

y yN L s= +       (4.13) 

where  

22
1 ( )

2
= −

fp

x i
i fp

y

L y
x

L
                                                                  (4.14) 

and 

( 1) ( ( 1) ) / 2= − + − −fp f

i y yy i s L N s                                                       (4.15) 

Following the same logic discussed earlier in deriving Eq. 4.2, we have reduced the length of CL 

on the fibers in the second layer by a length equal to a fiber diameter in each unit cell. This will 

also reduce the WA of these fibers in each unit cell by a factor of 22 fd  or 22 f f

x y fN N d over the entire 

droplet footprint (see Eq. 4.12 and the black square in the magnified image in Fig. 4.7c).   
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In calculating the total capillary force for the two-layer coatings, the CL for the fibers in the first 

layer and that for the fibers in the second layer should be multiplied to their corresponding capillary 

force, i.e.,  ,1

1

sin( )4

f
xN

YL aprx

avg i

i

y  
=

+  for the first layer and ,2

1

sin( )(4 2 )

f
yN

YL aprx f f

avg i x y f

i

x N N d  
=

+ − for 

the second layer. Note that we have considered a similar approximation for the average immersion 

angle in the second layer, ,2 max max fp( / ) =aprx

avg x xL L . Also note that with the assumption of 

max burst  , one should obtain burst  from Eq. 4.2 as explained earlier in Section IIIB.  

Equation 14 can now be rewritten as,                 

,1 ,2

1 1

2 2

1 1

4 sin( ) (4 2 ) sin( )

(2 ( ) 2 )

     
= =

= =

= − + − − +

+ + −

 

 

ff
yx

ff
yx

NN
YL aprx f f YL aprx

z i avg i x y f avg

i i

NN
D f f

burst f i i x y f

i i

F y x N N d

p d y x N N d

                (4.16)                                                             

where 2D

burstp  should be obtained from Eq. 4.2.  

Good agreement can be seen in Fig. 4.7d between the predictions of Eq. 4.16 and those from SE 

simulations for the force needed to initiate droplet spontaneous penetration in two-layer coatings 

and those using fiber-level information from Eq. 4.3. See our published paper for more details on 

this chapter [92]. 
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Figure 4.7: Droplet shape from the transverse (schematic) and longitudinal (simulations) views are given 

in (a) on a one-layer coating with a fiber dimeter of 50 µm, a spacing of 500 µm, and a YLCA of 85 deg. 

A free body diagram for the forces acting on one side of a fiber as well as a schematic drawing for droplet 

footprint are also given in (a). Figure (b) reports the immersion angles along the length of each of the four 

fibers in contact with the droplet shown in (a). Figure (c) presents the same information as was given in (a) 

but for when the droplet is placed on a two-layer coating. Figure (d) compares prediction of our approximate 

equations (Eqs. 4.11 and 4.16) with those of SE simulations. Predictions of Eq. 4.3 (requiring fiber-level 

information from simulations) are also added for completeness of the study. 
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4.6. Conclusions 

Droplet penetration into idealized non-wetting fibrous coatings was studied computationally and 

experimentally in this chapter. As the earth gravity was not enough to initiate water droplet 

penetration into our hydrophobic fibrous coatings (electrospun polystyrene), we used aqueous 

ferrofluid droplets for our experiment so that the body force on the droplets could be enhanced 

using a magnet, and droplet penetration could be induced. It was found that the force needed to 

initiate droplet penetration varies with varying droplet volume or the geometrical properties of the 

fibrous coatings. Our experiments also revealed that increasing the relative angle between the 

fibers, in the range of angles from zero (parallel fibers) to ninety degrees (orthogonal fibers), 

increases the resistance of the material to droplet penetration. We also conducted a series of 

numerical simulations to provide additional insight into the physics of the problem and to develop 

an in-depth analysis of the forces acting on a droplet penetrating into a fibrous material. The 

accuracy of our simulations were verified through one-on-one comparison with experimental data 

obtained for droplet penetration into 3-D printed mesh-like structures. The simulations allowed us 

to isolate individual factors affecting droplet penetration (e.g., capillary forces acting on droplet¬–

fiber CL or pressure forces acting on fibers WA) and quantify their contribution. Novel easy-to-

use analytical expressions are derived for droplet penetration force to circumvent the need for 

running CPU-intensive simulations for each and every droplet–coating combinations of interest, 

and thereby expand the application of the reported experimental/computational results. 
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Chapter 5. Universal Equation for Droplet Adhesion and Mobility                                               

 

5.1 Introduction 

One way to design the desired surface for a specific application is using available and reliable 

experimental or computer simulation data that have been obtained by others. However, all 

empirical correlations are limited to a specific applications and limited range of data. A better 

alternative way is developed a universal correlation that one can use for a wide range of data and 

a variety of other applications. In a simple word, the goal is to developed an equation that one can 

simply plug in geometrical parameters of a fibrous surface such as fiber spacing, fiber diameter or 

Young Laplace Contact Angle (YLCA) and obtained the droplet detachment force without 

performing any experiment or computer simulations. 

 

5.2. Method 

A droplet deposited on a surface may not necessarily roll off by only tilting the surface, even when 

the surface is hydrophobic (when the droplet maintains a large apparent contact angle on the 

surface). In such a condition, a force greater than droplet’s weight is needed to detach the droplet 

from the surface (or to make it move on the surface). Equation 2.11 to estimate the vertical force 

needed to detach a droplet from a hydrophobic surface comprised of a layer of parallel fibers was 

developed in the first task which needs two parameters of droplet diameter near the surface 𝑑𝐶𝑖𝑟
𝐶𝑟  

and droplet’s apparent contact angle at the moment of detachment 𝜃𝐴𝑝𝑝
𝐶𝑟 . While this equation is 

easy to use and provides reasonable estimation for droplet detachment force, it unfortunately 

requires quantitative information about droplet shape at the moment of detachment. Similarly, for 

droplet motion on a surface, Equation 1.3 can be used. This equation requires a characteristic 



 

72 
 

length to describe the size of the droplet. While no universal dimension has yet been determined 

for this equation, one can logically expect droplet width (i.e., largest dimension perpendicular to 

droplet’s direction of motion) at the critical moment (i.e., when the in-plane body force exerted on 

the droplet is large enough to initiate droplet motion) to be the proper dimension for this equation, 

based on the balance of forces on the droplet. Given the difficulties involved in knowing droplet 

width at the critical moment without conducting an experiment or a numerical simulation (which 

otherwise would negate the whole point of using an equation for force prediction), different 

arbitrary dimensions have been used in the literature. It has also become customary to include an 

empirical correction factor (also known as “shape factor”) k to make up for the mismatch 

predictions of Eq. 1.3 and experimental or computational data.  

As was earlier, the main purpose of the current chapter is to develop an easy-to-use equation for 

predicting the force needed to vertically detach (or horizontally move) a droplet from (or on) an 

idealized fibrous surface without needing to conduct an experiment or a numerical simulation. To 

do so, our approach is to relate the droplet shape at the moment of detachment to its shape when it 

is only under gravity (no other external forces involved), and thereby estimated the required 

parameters in Eqs. 1.3 and 2.11 (i.e., 𝑑𝐶𝑖𝑟
𝐶𝑟 , 𝜃𝐴𝑝𝑝

𝐶𝑟 , 𝜃𝑅𝑒𝑐 , 𝜃𝐴𝑑𝑣 , 𝑤𝐶𝑟). In fact, one can calculate 𝑑𝐶𝑖𝑟
𝐺𝑟  

and 𝜃𝐴𝑝𝑝
𝐺𝑟  when a droplet is under gravity using the Cassie–Baxter (CB) equation modified for 

surfaces comprised of parallel fibers (Eq. 1.1). 

 

5.3. Results and Discussion 

In this section, we present our numerical simulation results obtained for the effects of geometrical 

and wetting properties of a coating comprised of a layer of parallel fibers (fiber dimeter, fiber–

fiber spacing, and YLCA) on droplet mobility. Figures 5.1a–5.1b show the out-of-plane and in-
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plane forces needed to detach or move a droplet on the aforementioned surface as a function of 

fiber–fiber spacing and YLCA, when the fiber diameter and the droplet volume are kept constant.  

 

Figure 5.1:  Effects of fiber spacing and YLCA on droplet detachment force per mass (F/m) in the out-of-

plane and in-plane directions are given in (a) and (b), respectively. Fiber diameter and droplet volume were 

kept constant at 60 µm and 6 µL, respectively. Examples of simulated droplet profiles and footprints on the 

coatings are also given to provide additional insight into droplet shape change under gravitational 

(downward), external out-of-plane (upward), and external in-plane forces (upward) forces. Droplet 

footprints are color-coded to match their corresponding droplet profiles. 
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The force values reported are obtained from SE simulations. The variables F, m and s denote force, 

droplet mass and fiber-fiber spacing. Examples of droplet shape simulations are given in this figure 

with colors red, blueish green, and green for droplet under the gravity, influenced by an out-of-

plane body force, and when pulled by an in-plane force, respectively. As expected, it is generally 

easier to move (or detach) a droplet placed on a coating with a higher YLCA (droplet is in contact 

with a smaller number of fibers). The same also explains why detachment force is smaller when 

the fiber–fiber spacing is larger.  

Figures 5.2a–5.2b show the effects of fiber diameter on out-of-plane and in-plane detachment 

forces when droplet volume and YLCA are constant. These results indicate that detachment force 

in both the out-of-plane and in-plane directions are higher on coatings with larger fiber diameters. 

This is because droplet contact length and fibers’ wetted area are larger for coatings made up of 

larger fibers (capillary force holding the droplet is higher), as shown with droplet footprint 

examples in Figure 5.2. Figures 5.3a–5.3b show droplet out-of-plane and in-plane detachment 

force vs. fiber–fiber spacing for droplets of different volumes (note that force is presented per unit 

of droplet mass). It can be seen that droplets with a smaller volume require a larger force per mass 

to become detached or mobilized. It should be noted that a droplet may retain more than one 

equilibrium shape on a rough surface, depending on how it was deposited on the surface and the 

local morphology of the surface underneath the droplet (see e.g., [38, 45, 93]). To investigate 

whether or not the detachment forces obtained from our simulations were dependent on the starting 

shape or position of the droplets, we considered four different arbitrary initial shape-position 

combinations (denoted as case A through case D) for one of the systems discussed in Figure 5.2 

(a droplet with a volume of 6 µL on a coating with df=20 µm, spacing=300 µm, and a YLCA=850). 
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We monitored how the shapes of these droplets evolved to an equilibrium shape under gravity and 

also under an external body force until they detached from the surface. 

 

Figure 5.2: Effects of fiber spacing and fiber diameter on droplet detachment force per mass (F/m) in the 

out-of-plane and in-plane directions are given in (a) and (b), respectively. YLCA and droplet volume were 

kept constant at 80 degrees and 6 µL, respectively. Examples of simulated droplet profiles and footprints 

on the coatings are also given to provide additional insight into droplet shape change under gravitational 

(downward), external out-of-plane (upward), and external in-plane forces (upward) forces. Droplet 

footprints are color-coded to match their corresponding droplet profiles. 
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Figure 5.3: Effects of fiber spacing and droplet volume on droplet detachment force per mass (F/m) in the 

out-of-plane and in-plane directions are given in (a) and (b), respectively. YLCA and fiber diameter were 

kept constant at 80 degrees and 60 µm, respectively. Examples of simulated droplet profiles and footprints 

on the coatings are also given to provide additional insight into droplet shape change under gravitational 

(downward), external out-of-plane (upward), and external in-plane forces (upward) forces. Droplet 

footprints are color-coded to match their corresponding droplet profiles. 
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all identical and unaffected by the choice of initial droplet shape-position combination (consistent 

with our previous study on droplet detachment from rough fibers by Amrei et al. [45]). 

 

 

Figure 5.4: Different arbitrary starting shapes (grey cubes denoted by A, B, C, and D) with a volume of 6 

µL are considered in our SE simulations to study their possible impact on droplet detachment force 

prediction. For case A, the dimensions a, b, and c are equal to 1817 µm and the cube is centered with one 

of the underlying fibers. For case B, the dimensions a, b, and c are changed to 2263, 1592 and 1592 µm, 

respectively. For cases C and D, dimensions are the same as case A but the cubes are off-centered by c'=100 

and c'=150 µm, respectively. Colors red, blue and green represent droplet under the gravity, droplet under 

a vertical detachment force and droplet under a horizontal detachment force, respectively. 
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equation for three examples of droplet–coating combinations. For the clarity of illustrations, the 

data are divided into three categories of 70 < 𝜃𝑌𝐿 < 110, 20 < 𝑑𝑓 < 100 𝜇𝑚 and 2 < 𝑉𝑎 <

10 𝜇𝐿. The differences between the predictions of SE simulations and those of CB equation 

(presented in the form of absolute error percentage 𝑒𝑑 = |
𝑑𝐶𝑖𝑟,𝑆𝐸

𝐺𝑟 −𝑑𝐶𝑖𝑟,𝐶𝐵
𝐺𝑟

𝑑𝐶𝑖𝑟,𝑆𝐸
𝐺𝑟 | and 𝑒𝜃 = |

𝜃𝐶𝑖𝑟,𝑆𝐸
𝐺𝑟 −𝜃𝐶𝑖𝑟,𝐶𝐵

𝐺𝑟

𝜃𝐶𝑖𝑟,𝑆𝐸
𝐺𝑟  

| for the eighty-five simulations reported in Figures 5.1–5.3). Despite some differences between 

the predictions of SE simulations and those of the CB equation, the CB equation is still used in the 

current study for its simplicity as we move on to further analyze the results reported in Figures 

5.1–5.3. Our objective here is to develop useful relationships between a droplet’s geometric 

properties under the gravity (i.e., 𝜃𝐴𝑝𝑝
𝐺𝑟 and 𝑑𝐶𝑖𝑟

𝐺𝑟 ) and those at the moment of out-of-plane (i.e., 

𝜃𝐴𝑝𝑝
𝐶𝑟 and 𝑑𝐶𝑖𝑟

𝐶𝑟 ) or in-plane (i.e., 𝜃𝐴𝑝𝑝
𝐺𝑟 , 𝑤𝐺𝑟and 𝜃𝐴𝑑𝑣, 𝜃𝑅𝑒𝑐 , 𝑤𝐶𝑟) detachment. Such relationships 

can then be used in Eqs. 1.3 and 2.11 for force prediction.  

 

 

Figure 5.5: Examples of droplet diameter and apparent contact angle obtained from our numerical 

simulations and from the Cassie–Baxter equation are given in (a) and (b), respectively. θApp
Gr

  and dCir
Gr  are 

apparent contact angle and droplet diameter near the surface when the droplet is only under the gravity, 

respectively. 
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Figure 5.6a shows the ratio of a droplet’s circular diameter under gravity to that at the moment of 

out-of-plane detachment 𝑑𝑐𝑖𝑟
𝐶𝑟 /𝑑𝐶𝑖𝑟

𝐺𝑟  (ratio of droplet diameter near the surface at the moment of 

detachment to that when the droplet is only under the gravity) versus fiber–fiber spacing for eighty-

five droplet–surface combinations. In the absence of an expected trend for how 𝑑𝑐𝑖𝑟
𝐶𝑟 /𝑑𝐶𝑖𝑟

𝐺𝑟  should 

vary with fiber–fiber spacing, we considered here a linear relationship for its simplicity, i.e.,  

𝑑𝐶𝑖𝑟
𝐶𝑟

𝑑𝐶𝑖𝑟
𝐺𝑟 = 𝜗1𝑠 + 𝜗2                                                                         (5.1) 

where 𝜗1 and 𝜗2 are 462 m-1 and 0.9163, respectively. A similar linear trend is also considered for 

the difference between droplet apparent contact angle under the gravity and that at the moment of 

out-of-plane detachment in Figure 5.6b, i.e.,  

 𝜃𝐴𝑝𝑝
𝐺𝑟 − 𝜃𝐴𝑝𝑝

𝐶𝑟 = 𝛽1𝑠 + 𝛽2                                                                     (5.2) 

where 𝛽1 and 𝛽2 are -39167 m-1 and 24, respectively. For the case of droplet in-plane detachment, 

the ratio of droplet’s width under the gravity to that at the moment of in-plane motion on the 

surface  
𝑤𝐶𝑟

𝑤𝐺𝑟 (ratio of droplet width at the moment of detachment to that when the droplet is only 

under the gravity) is considered versus fiber–fiber spacing for the all eighty-five cases (see Figure 

5.6c) to produce a linear fit as,  

𝑤𝐶𝑟

𝑤𝐺𝑟
= 𝛾1𝑠 + 𝛾2                                                                         (5.3) 

where 𝛾1 and 𝛾2 are 584.27 m-1 and 0.7824, respectively. Likewise, we considered the difference 

between the advancing (and receding) contact angle and that under gravity (see Figure 5.6d) to 

obtain the following equations. 

𝜃𝐴𝑑𝑣 − 𝜃𝐴𝑝𝑝
𝐺𝑟 = 𝛿1𝑠 + 𝛿2                                                                     (5.4) 

𝜃𝐴𝑝𝑝
𝐺𝑟 − 𝜃𝑅𝑒𝑐 = 𝜀1𝑠 + 𝜀2                                                                     (5.5) 

where 𝛿1, 𝛿2, 𝜀1 and 𝜀2 are -20943 m-1, 7.781, -52105 m-1, and 37.22, respectively. 
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Figure 5.6: Droplet dimensions at the moment of detachment relative to those at rest under gravity are 

given in (a) and (b) for out-of-plane detachment, and in (c) and (d) for in-plane detachment. dCir
Gr  , dCir

Cr ,  

dcir
Cr /dCir

Gr  , wCr, wGrand 
wCr

wGr are droplet diameter near the surface when the droplet is only under the gravity, 

droplet diameter near the surface at the moment of detachment, ratio of droplet diameter near the surface at 

the moment of detachment to that when the droplet is only under the gravity, droplet width at the moment 

of detachment, droplet width when droplet is only under the gravity, and the ratio of droplet width at the 

moment of detachment to that when the droplet is only under the gravity, respectively. 
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The above equations (Eqs. 5.1–5.5) can now be substituted in Eqs. 1.3 and 2.11 to produce easy-

to-use correlations to estimate the force 𝐹𝑧 required for the out-of-plane detachment of a droplet 

(or to move it on the surface 𝐹𝑥) knowing only the geometrical or wetting properties of the surface, 

i.e.,  

𝐹𝑧 = 𝜎𝜋(𝜗1𝑠 + 𝜗2)𝑑𝐶𝑖𝑟
𝐺𝑟 𝑠𝑖𝑛( 𝜃𝐴𝑝𝑝

𝐺𝑟 − 𝛽1𝑠 − 𝛽2) − 𝑝𝜋((𝛼1𝑠 + 𝛼2)𝑑𝐶𝑖𝑟
𝐺𝑟 )2/4              (5.6) 

 𝐹𝑥 = 𝑘𝑤𝐺𝑟(𝛾1𝑠 + 𝛾2)𝜎(cos (𝛿1𝑠 + 𝛿2 + 𝜃𝐴𝑝𝑝
𝐺𝑟 ) − cos (𝜃𝐴𝑝𝑝

𝐺𝑟 − 𝜀1𝑠 − 𝜀2))              (5.7) 

Following the work of [35], we have used a shape factor of k=48/π3 in Eq. 5.7 to improve its 

prediction (a shape factor of 1<k<π has been reported in many previous studies [35, 40]). As 

mentioned earlier, a shape factor of k=48/π3 was derived from first principle calculations 

accounting for the shape of the contact line and variation of the contact angle around the contact 

line [35]. Predictions obtained from Eqs. 5.6 and 5.7 are compared with our raw simulation data.  

While the absolute error 𝑒𝐹 = |
𝐹𝑒𝑞−𝐹𝑆𝐸

𝐹𝑆𝐸
| may reach as high as 150% for a few cases, they are 

generally about 70–80% on average. Note that these predictions (despite the errors) are obtained 

using only the properties of the fibers and droplets with no experimental or computation data as 

input. Using these equations, one can estimate the magnitude of the force needed to move or detach 

a droplet from a fibrous coating before the coating is made.  

Figures 5.7a and 5.7b show our experimental detachment force data obtained for aqueous 

ferrofluid droplets with a volume of 4 µL on single-layer electrospun PS coatings comprised of 

parallel fibers with a diameter of about 0.5 µm but different fiber–fiber spacing. As mentioned 

earlier, Eqs. 1.3 and 2.11 can predict the force of detachment in the out-of-plane and in-plane 

directions, but these equations require droplet geometrical dimensions right before detachment 

from the surface, i.e., 𝜃𝐴𝑝𝑝
𝐶𝑟  (the critical apparent contact angle) and 𝑑𝐶𝑖𝑟

𝐶𝑟  (droplet diameter near the 

surface at the moment of detachment, as shown in Figure 5.7c), and 𝜃𝐴𝑑𝑣, 𝜃𝑅𝑒𝑐 (advancing and 
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receding contact angles) and  𝑤𝐶𝑟  (droplet width at the moment of detachment, as shown in Figure 

5.7d). This means that Eqs. 1.3 and 2.11 cannot be used for designing a surface prior to its 

manufacturing. This is in contrast to Eqs. 5.6 and 5.7 where detachment force can be predicted 

based solely on the dimensions of fibrous surface with no need for conducting an experiment or 

simulation with a droplet on the surface. It is important to mention that Eqs. 5.6 and 5.7 were 

obtained from simulations conducted for coatings with a fiber diameter of 20 < 𝑑𝑓 < 100 𝜇𝑚 

(and a fiber–fiber spacing of  100 < 𝑠 < 400 𝜇𝑚) but they are used in this figure to predict the 

force of detachment from coatings with a fiber diameter of 𝑑𝑓 ≅ 0.5 𝜇𝑚 (and  1 < 𝑠 < 4 𝜇𝑚). 

This is because conducting a numerical simulation for a droplet as large as a few microliters on 

fibers as small as 0.5 µm in diameter (or producing fibers as large as 20–100 µm via 

electrospinning) are very challenging. One can obviously expect the predictions of Eqs. 5.6 and 

5.7 to become more accurate when compared to experimental data obtained for coatings with larger 

fibers. One should also keep in mind that the fibers is the simulations are assumed to be spaced 

equally with respect to one another, which obviously is not the case in the experiments.  

Note in Figure 5.7a that the out-of-plane detachment force is lower for larger fiber–fiber spacing 

due to droplet’s smaller contact area with solid fibers, which is consistent with the decrease of 𝑑𝐶𝑖𝑟
𝐶𝑟  

in Figure 5.7c (as 𝜃𝐴𝑝𝑝
𝐶𝑟  remained nearly constant), leading to a smaller capillary force acting on 

the droplet. Figure 5.7b also shows smaller detachment force in the in-plane direction when the 

fiber–fiber spacing is larger. This trend is also consistent with how 𝜃𝐴𝑑𝑣 − 𝜃𝑅𝑒𝑐 and  𝑤𝐶𝑟decrease 

with increasing spacing between the fibers. See our published paper for more details on this chapter 

[94]. 
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Figure 5.7: Droplet detachment force from experiment is compared to those from Eqs. 2.11 and 5.6 in (a) 

for out-of-plane detachment, and with those from Eqs. 1.3 and 5.7 in (b) for in-plane detachment. Droplet 

dimensions at the moment of detachment (needed as input for Eqs. 1.3 and 2.11) are given in (c) and (d) 

for out-of-plane and in-plane detachments, respectively. 

 

While the energy minimization method of Surface Evolver was used to provide detail and useful 

information regarding the impact of NW microstructure on detachment force (i.e. Eq. 5.6 and 5.7). 

We therefore considered developing an in-house code to provide such prediction at a higher rate 

but with somewhat less accuracy if needed.  
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In order to predict droplet shape and droplet detachment force, the Young-Laplace equation can 

be considered. Therefore, we started by solving the Young-Laplace equation for a surface with a 

roughness represented with a cosine wave. The Young-Laplace equation (2-D for now) can be 

expressed as 

𝑧̈

(1+𝑧2̇)
2

3⁄
= 𝜌𝑔𝑧 + ∆𝑝0                                                        (5.8) 

where g is gravity in the z-direction and ∆𝑝0 is a constant number. This is a non-linear second 

order differential equation that can be solved numerically using a MATLAB code. Figure 5.8a 

shows an example of a 2-D droplet profile under gravity for a cosine wave. It can be seen that 

droplet spreads more when the surface was made rougher (roughness makes a hydrophilic surface 

more hydrophilic). Figure 5.8b shows how a droplet profiles changes with vertical external force. 

It can be seen that a strong force is needed to detach the droplet from the surface. It should be 

noted that the tangent of surface to droplet profile is always remained as YLCA. Also, A is the 

area below profile and w is frequency of the cosine wave.  

 

 

Figure 5.8. Examples of 2D droplet profile for 2 different amplitude of cosine wave in (a) and different 

external force in (b).  

A=1e-06 m2, w=0.02e-06, YLCA=60 gz=9.81

amp=10e-06 m amp=100e-06 m

A=1e-06 m2, w=0.05e-06, amp=30e-06 m, YLCA=30
gz=9.81

F/m=-20
F/m=-60

a)

b)



 

85 
 

Effects of droplet volume (i.e. area in 2-D) on contact angle and detachment force is shown in 

Figure 5.9. It can be seen that a smaller force is needed for a droplet to be detached from the 

surface. This was also observed in our previous modeling results. 

 

Figure 5.9. An example of our 2-D droplet detachment force modeling. Detachment force vs. droplet 

volume (area).  

 

The MATLAB code that is developed to obtain droplet profile under gravity is also compared to 

the Surface Evolver simulation results. Figure 5.10 shows that there is a good agreement between 

the code and SE. The red line shows droplet profile using MATLAB code and blue profiles are 

obtained from SE.  

Figure 5.10. Comparison of droplet profiles under gravity obtained from the MATLAB code to SE. a) 

YLCA=30 V=2 µL b) YLCA=30 V=4 µL c) YLCA=60 V=4 µL. 
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Because there are many possible equilibrium shapes of droplet, the total energy of the system 

should be calculated. Generally, there are two main points in the energy plots which are local and 

global minimums. When a droplet is deposited on a surface, the droplet adjusts its location to go 

the local minimum energy. By shaking the surface, it is possible that droplet goes to its global 

minimum energy. We calculated the total energy to obtain droplet profile for all different 

possibilities. Figure 5.11 shows an example of a water droplet profiles on a flat surface with YLCA 

of 30 degrees and droplet volume of 4 µL as well as the total energy of the system for each profile. 

Both local and global minimum energies can be seen which the global one is close to 150 µm. This 

is also another advantage of this code compared to SE because SE results depend on the initial 

location of droplet that is deposited on the surface. Total energy calculated in the code has three 

main components similar to SE which are wetted surface energy, liquid energy and gravitational 

energy. In our code, since we use gravity as external force, therefore, this term of energy has a big 

impact on the total energy while it is small compared to the two other terms when there is no 

external force. It is also interesting that wetted surface and liquid energies work against each other. 

In another word, both of them become bigger as droplet spreads more on the surface but minimum 

energy of the system depends on how much the growth of each one is compared to the other one.  

 

Figure 5.11. Different possible droplet profiles with volume of 4 µL on a flat surface with YLCA of 30 

degrees in (a) and total energy of the system corresponding to the profiles in (b). 
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5.4. Conclusions 

Conducting a series of digital experiments for a Cassie droplet detaching from a fibrous coating 

comprised of parallel fibers, it was observed that detachment force in both the out-of-plane and in-

plane directions is lower when the fibers are smaller, when the spacing between them is larger, or 

when they are more hydrophobic. These simulation results (obtained for 70 < 𝜃𝑌𝐿 < 110,  20 <

𝑑𝑓 < 100 𝜇𝑚  , 100 < 𝑠 < 400 𝜇𝑚 and 2 < 𝑉𝑎 < 10 𝜇𝐿) were then used to produce semi-

empirical correlations for the force required to detach a droplet from a hydrophobic fibrous surface 

in the in-plane and out-of-plane directions. These easy-to-use correlations only require the physical 

properties of the fibers (e.g., fiber diameter, fiber spacing, and fiber contact angle) and the droplet 

(e.g., volume and surface tension) as inputs. The work presented here advances the field by 

providing a means to optimize the surface geometry prior to manufacturing. The accuracy of our 

easy-to-use correlations was examined using experimental data obtained for droplet detachment 

from electrospun polystyrene mats with fibers having a diameter of about two orders of magnitude 

smaller than those considered in developing the correlations. The predictions in the in-plane and 

out-of-plane directions were found to be off by about 45% and 30%, respectively, on average. 

Despite the lack of perfect agreement, we believe that these correlations have practical values for 

product design and development as they do not require any experimental or computational data as 

input (they can be used prior to manufacturing). One can also expect the predictions of our 

correlations to be more accurate when compared with experimental data obtained for fibrous mats 

with larger fibers. The simulation method and/or the mathematical approach considered in this 

work can also be used in future studies to investigate droplet mobility on microfabricated (e.g., 

pillar-structured) surfaces. 
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Chapter 6. Force Measurement for Nonmagnetic Droplet Detachment from Fibrous 

Surfaces 

 

6.1 Introduction 

It was shown in the previous chapters that a ferrofluid droplet, magnet and a scale can be used to 

measure droplet detachment force. In this chapter, a nonmagnetic droplet detachment on a 

nonwoven surface will be measured in our setup. To do so, a small amount of a ferrofluid which 

is the secondary fluid here will be added to a nonmagnetic droplet which is the primary fluid. This 

way, a compound droplet will be formed.  As the magnet gets closer to the compound droplet, the 

droplet deforms and eventually detaches. The scale will be used to measure the detachment force. 

 

6.2. Method 

A pendent compound droplet can be produced by nesting a small amount of water-based ferrofluid 

inside an oil droplet (a non-polar liquid) or by cloaking (engulfing) a water droplet (a polar liquid) 

with an oil-based ferrofluid. In the latter case (subject of interest in this paper), the oil can engulf 

the droplet completely or partially as shown in Figure 6.1a. In the absence of gravity, this can be 

determined using the so-called spreading coefficients 𝑆𝑖 = 𝜎𝑗𝑘 − 𝜎𝑖𝑗 − 𝜎𝑖𝑘, (i ≠ j ≠ k = 1,2, 3). 

Considering phase 1, 2, and 3 denoting water, air, and ferrofluid, respectively, a compound water 

droplet will be completely engulfed if S1 < 0,  S2 < 0,  S3 > 0, partially engulfed if S1 < 0, S2 <

0, S3 < 0, and not engulfed if S1 < 0, S2 > 0, S3 < 0 [95-98]. Partial cloaking is promoted here 

by using a high-surface-tension oil-based ferrofluid for the experiments (see Table 1). To estimate 

the interfacial tension between this ferrofluid and DI water we used the expression given in [99] 

where subscripts w, of, and w-of donate water, oil ferrofluid and water-oil ferrofluid, respectively, 
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𝜎𝑤−𝑜𝑓 =
cosh(

𝜎𝑤
𝑘

)𝜎𝑤
1−𝑚−cosh(

𝜎𝑜𝑓

𝑘
)𝜎𝑜𝑓

1−𝑚

cosh(
𝜎𝑤+𝜎𝑜𝑓−𝑐𝜎𝑤

𝑛 𝜎𝑜𝑓
1−𝑛

𝑘
)(𝜎𝑤+𝜎𝑜𝑓−𝑐𝜎𝑤

𝑛𝜎𝑜𝑓
1−𝑛)−𝑚

                                                (6.1) 

where 𝑚 = 0.938, 𝑛 = 0.949, 𝑐 = 0.837 and 𝑘 = 42.121 mN/m. Using the above equation and 

Table 1, one obtains 𝜎𝑤−𝑜𝑓 = 46 mN/m.  

 

Table 1: Fluid properties at 25 C0 

Fluid Density 

(𝑘𝑔 𝑚3⁄ ) 

Surface tension 

(𝑚𝑁 𝑚⁄ ) 

Water ρ
𝑤

= 998  σ𝑤 = 72 

Oil-based ferrofluid (APG2133) ρ
𝑜𝑓

= 1060 σ𝑜𝑓 = 32 

 

Figure 6.1b shows a schematic of our experimental setup. The experiment starts by producing a 

DI water droplet using a New Era NE-300 syringe pump and placing it on a PS coating. The 

assembly was then turned upside-down and placed on a 3-D printed holder mounted on a sensitive 

scale (Mettler Toledo XSE105DU with an accuracy of 0.01 mg) connected to a computer. The 

scale was then zeroed and a small amount of an oil-based ferrofluid droplet (APG2133 purchased 

from Ferrotech, USA) was gently added to the water droplet (the weight shown on the scale was 

used to calculate the volume of the ferrofluid). The scale was again set to zero and a permanent 

magnet mounted on a Mitutoyo electronic height gauge was used to detach the resulting compound 

droplet. A digital high-speed camera (Phantom Miro Lab 340 with) with a Tokina 100 mm F 2.8 

D lens was used to record the detachment process. Nikon D3100 camera with an AF-S micro 

Nikkor 105 mm lens was also used to take additional pictures when needed.  
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Figure 6.1. Schematic illustrations of a pendent compound droplet in the nested, partially-cloaked, and 

fully-cloaked configurations are given in (a). Our experimental setup is shown schematically in (b). 

 

With the above choice of ferrofluid, one can prevent the ferrofluid from climbing up the water 

droplet to reach and spread into the PS coatings. Additionally, partial cloaking has a much smaller 

impact on the contact angle, contact line, and surface tension of the water droplet than its complete 

cloaking counterpart, for obvious reasons. Figure 6.2a shows the process of producing a pendent 

partially cloaked water droplet and detaching it using a permanent magnet. The water and 

ferrofluid volumes are 3 µL and 0.6 µL, respectively. Frame 1 shows the compound droplet under 

gravity. Frame 2 shows the compound droplet under an increased body force. Frames 3–5 show 

the spontaneous detachment of the compound droplet (irreversible) at the critical (detachment) 

force, followed by frame 6 where droplet residue left on the surface after detachment is shown. 

The evolution of the body force acting on the droplet is shown in Figure 6.2b. The volume of the 

residue is calculated using the last reading from the scale (frame 6).  

 

oil

wf

water

o-f

water

o-f

N

S

scale

camera

computer

holder

height gauge 

0.0000 g

a)

b)

of
of



 

91 
 

 

Figure 6.2. The process of adding an oil-based ferrofluid (0.6 µL in volume) to a pendent water droplet (3 

µL in volume) and detaching the resulting compound droplet from an electrospun PS surface is shown in 

(a). An example of the force recorded by the scale during a detachment experiment is shown in (b). 

 

Note that, under the influence of the magnetic field, the ferrofluid (and more so the suspended 

Fe3O4 nano-paticles in it) tends to move downward toward the magnet. Therefore, the magnetic 

force is applied mostly to the lower part of the droplet. This however has a negligible impact on 

the measured detachment force as the force transferred to the solid surface depends (mostly) on 

the magnitude of the net force acting on the water droplet, but does not depend on the location to 

which the force is applied. It should be mentioned that when the droplet deforms due to this effect 

(when the droplet shape becomes pointy), the pressure force applied to the solid surface changes, 

but this does not make a significant impact on the force of detachment. 

The compound droplet shape is simulated using Surface Evolver (SE) in this work [89]. SE has 

shown to provide accurate predictions for single [45, 100-102] or multiphase [103-106] droplets 

interacting with a solid surface. The shape of a droplet under an external body force can be obtained 

by minimizing the total energy of the air–liquid-liquid–solid system using the following equation,   

𝐸 = 𝜎𝑎𝑙𝐴𝑎𝑙 + 𝜎𝑙𝑙𝐴𝑙𝑙 − 𝜎𝑎𝑙 𝑐𝑜𝑠𝜃𝑌𝐿 ∬ 𝑑𝐴
𝐴𝑠𝑙

+ ∭ 𝜌𝑤𝑔𝑧𝑑𝑉 + ∭ 𝜌𝑜𝑓𝑔𝑧𝑑𝑉                        (6.2) 
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where 𝜌𝑤, 𝜌𝑜𝑓, 𝜃𝑌𝐿, 𝐴𝑎𝑙, 𝐴𝑙𝑙, 𝐴𝑠𝑙 and 𝑉 are water density, ferrofluid density, Young–Laplace 

Contact Angle (YLCA), air–liquid interfacial area, liquid–liquid interfacial area, solid–liquid 

interfacial area, and droplet volume, respectively. The simulations start by considering two cubic 

droplets on top of one another, and evolves through iterations to reach an equilibrium condition. 

The cube on the top represents the water droplet and the one on the bottom is the ferrofluid. The 

YLCA for a smooth sheet of PS is about 85 degrees, but to incorporate the effects of the roughness 

of the electrospun surface in our simulations with a smooth solid surface, we used the ACA of the 

droplets (measured experimentally) in place of the YLCA (SE ensures that the air–water interface 

along the contact line with solid smooth surface maintains a slope corresponding to the ACA of 

the water droplet with the PS coatings). This simplifies the otherwise very challenging task of 

simulating a droplet on a surface with micrometer-sized random roughness. 

Our approach to simulate the effects of a magnetic force on a ferrofluid droplet, without actually 

simulating the magnetic field, has been to include an additional body force in our SE simulations 

of the droplet. This approach however does not work for a two-phase (cloaked) droplet since only 

a fraction of the droplet volume responds to a magnetic force. To circumvent this problem, we 

applied a fixed gravitational force per unit mass (g = 9.81 N/kg) to each phase, but artificially 

increased the density of the ferrofluid. In other words, we presented the gravitational energy in Eq. 

6.2 with two terms (∭ 𝜌𝑤𝑔𝑧𝑑𝑉 + ∭ 𝜌𝑜𝑓𝑔𝑧𝑑𝑉) to also include the effects of magnetic force. 

With the help of this artificial density, we were able to emulate the condition where the water 

droplet was subjected to the earth gravity but the ferrofluid was under the influence of the magnetic 

force (obviously greater than the gravity). To obtain the force of detachment for the compound 

droplet, ferrofluid density was continuously increased until no equilibrium shape was achievable 
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for the pendent compound droplet. The detachment force was then calculated by knowing the 

detachment density of the ferrofluid and the mass of each phase, i.e.,  

 𝐹𝑑 = (𝜌𝑜𝑓,𝑑𝑉𝑜𝑓 + 𝜌𝑤𝑉𝑤)𝑔         (6.3) 

Figure 6.3 compares compound droplet profiles (blue, red, and green represent air–water, air–

ferrofluid, and ferrofluid–water interfaces, respectively) obtained from simulations with those 

from experiment for a water droplet with a volume of 3 µL partially-cloaked with different 

amounts of ferrofluids (figures in the second row show droplet cross-section (sliced from the 

middle) with the water–ferrofluid interface shown in green). Good general agreement between the 

simulation and experimental results is evident. For the simulations, we considered 𝜎𝑤−𝑜𝑓 =

42 mN/m which is slightly lower than 𝜎𝑤−𝑜𝑓 = 46 mN/m from the empirical correlation (curve 

fit) given in Eq. 6.1 (note that the root mean squared error for some of the experimental data used 

in producing Eq. 6.1 was as high as 4.14 mN/m) [99]. A detachment force of 73 µN was obtained 

from the numerical simulations reported in Figure 6.3 in good agreement with its experimental 

counterpart of 76 µN.  

 

Figure 6.3. Side-by-side comparison between the experimental and computational compound droplets 

produced by adding different amount of ferrofluid to a water droplet with a volume of 3 µL. Blue, red, and 

green represent water–air, ferrofluid–air, and water–ferrofluid interfaces, respectively. 
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6.3. Results and Discussion 

The surface considered in our experiments is a fibrous coating comprised of 3 layers of 

orthogonally stacked electrospun PS fibers. As mentioned earlier in the Introduction, the fully-

cloaking method is not suitable for droplet detachment from a porous surface as the cloaking fluid 

can spread into the pores of the surface and further pin the droplet. The partial cloaking method on 

the other hand is a minimally-intrusive method that can be used to estimate the force of droplet 

detachment from a hydrophobic surface. In this section, we present a detailed analysis of the 

interplay between the interfacial forces acting on partially-cloaked multiphase droplets. We then 

used this information to create in a general-purpose phase-plot to be used in deciding on the volume 

and surface tension of the ferrofluid that is most suitable for detaching a water droplet from a given 

surface.  

To use the partial-cloaking method, one needs to know the volume of the ferrofluid required for 

the experiment. This is important as the volume of the ferrofluid should be large enough to impart 

sufficient body force to the water droplet, but small enough so that it does not reach up and spread 

into the PS surface. Figure 6.4a shows an example where the volume of the ferrofluid (0.2 µL) was 

insufficient for a successful detachment of a 3 µL water droplet. The frames in this figure show 

the steps in making the compound droplet and in applying a magnetic force on it. As can be seen 

in frames 1 through 6, applying a magnetic force to such a droplet results only in the separation of 

the ferrofluid cloak from the water droplet. Comparing the forces recorded for frame 1 and frame 

6 in Figure 6.4b, it can be seen that the volume of the water droplet after ferrofluid separation is 

about the same as that measured before the ferrofluid was added (within the expected margin of 

error). Also note in this figure that the maximum achievable force was about 53 µN which is much 

less than 76 µN needed to detach the water droplet from the surface. 
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Figure 6.4. A failed experiment in which the ferrofluid volume was insufficient for droplet detachment is 

shown in (a) along with its force recordings in (b). Compound droplet detachment force versus ferrofluid 

volume ratio 𝜗 is shown in (c). Force of detachment per unit mass of droplet (N/kg) is measured via partial 

cloaking for water droplets of different volumes in (d). 
 

Figure 6.4c shows the force of detachment measured for a water droplet with a volume of 3 µL 

from the above PS coatings cloaked partially with different amounts of ferrofluid (presented as 

ferrofluid volume ratio 𝜗 = 𝑉𝑜𝑓 𝑉𝑤⁄ ). As shown in Figure 6.4c, a minimum ferrofluid volume ratio 

of 𝜗 = 10% is needed to detach a 3 µL water droplet from our PS surface. In addition, it can be 

seen that the force required to detach such a compound droplet is independent of the volume of 
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the ferrofluid used for cloaking. This is a unique attribute of the proposed partial cloaking 

approach, and it is in contrast to the fully cloaking method. Figure 6.4d shows the detachment 

force (per unit mass) measured for water droplets of different volumes. It can be seen that 

detachment force per unit mass decreases with increasing droplet volume in agreement with those 

reported previously in [90] for water-based ferrofluids on similar (but not identical) PS coatings. 

To compare the results of our partial cloaking droplet detachment method with an alternative but 

intrusive detachment method, we conducted a set of experiments in which we detached a water 

droplet from our PS coatings using a nylon fishing line having a diameter of 210 µm. This was 

done by first bringing the fishing line into contact with the droplet to create an asymmetric liquid 

bridge and then by moving it back to stretch the droplet until droplet detached from the PS surface 

(see [107]). This experiment was conducted on the setup shown in Figure 6.1 with the forces 

applied to the PS surface recorded by the scale. Recordings from the scale showed a detachment 

force of 94 ± 8.9 µN for a 3 µL water droplet (averaged over 5 repetitions) and a small residue 

with an average volume of about 0.3 µL on the PS surface. This force is close, but is not identical, 

to the force obtained using the partial cloaking method, 76 ± 6.2 µN for the same droplet volume. 

The observed 20% mismatch between the two methods can be attributed to many factors including 

the inherent geometrical differences between a pendent droplet and an asymmetric liquid bridge 

(between a flat surface and a fiber). A second reason for the mismatch could be the errors 

associated with in our partial-cloaking method: we chose our oil-based ferrofluid based on a water–

oil surface tension estimate obtained from the approximate correlation given in Eq. 6.1. It is not 

impossible to assume that an invisible (nanometer thick) film of oil has formed over the water 

droplet all the way to the contact line, and has affected our original assumption (that the only fluid 

in contact with the PS is water). Given the complexity of the four-phase interfacial problem at 
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hand, it is hard to prove or disprove such a possibility. In addition (a third reason), it is possible 

that some surfactant in the oil-based ferrofluid has interacted with water and lowered its surface 

tension by 10–20%. Nevertheless, the extent to which these issues might have affected our results 

seems to be quite small. For instance, one can compare the apparent contact angle of the water 

droplet before and after adding the oil-based ferrofluid in Figure 6.2a or Figure 6.4a. Whether or 

not a nanometer thick film of oil has fully cloaked the water droplet (or if the water surface tension 

is slightly lowered), its impact on droplet shape or droplet’s apparent contact angle seems to be 

small. 

Figures 6.5a–6.5d show a water droplet with a volume of 3 µL cloaked with different amounts of 

ferrofluid. For each case, the magnetic body force acting on the droplet was increased from zero 

(leaving gravity as the only body force) to a maximum force at which no equilibrium shape was 

predicted for the compound droplet. This critical force is different for droplets made with different 

ferrofluid volume ratios (the values with red underlines). As stated earlier in discussing Figures 

6.2 and 6.4, increasing the magnetic force on a compound droplet results either in the detachment 

of the water droplet from the surface or in the separation of the ferrofluid from the water droplet. 

Figure 6.5e shows the critical forces (acting on the solid surface) obtained for compound droplets 

of different ferrofluid volume ratios.  It can be seen that the critical force increases with increasing 

the ferrofluid volume but reaches a plateau at about 𝜗 = 9.5%. Comparing this behavior with the 

behavior observed experimentally (where the measured force of droplet detachment was 

independent of the volume of the ferrofluid used for partial cloaking), it can be concluded that the 

simulated critical force is in fact the force needed to detach the water droplet when 𝜗 > 9.5%. On 

the other hand, applying a magnetic force to a compound droplet with 𝜗 < 9.5%, results only in 
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the separation of the ferrofluid, and the simulated critical force is the force needed for this fluid–

fluid separation.  

 

Figure 6.5. Simulation results for the shape of a partially cloaked water droplet under the influence of 

gravitational and magnetic forces are given in (a) through (d) for different ferrofluid volume ratios 𝜗. The 

water droplet is 3 µL in volume and maintains a YLCA of 120o with the solid surface. Simulation results 

for the critical and gravitational forces are given in (e) for compound droplets having different ferrofluid 

volume ratios. 

 

The weight of the above compound droplets is added to Figure 6.5e for comparison, and it can be 

seen that the difference between the force of detachment and droplet’s weight decreases with 

increasing 𝜗.  This means that increasing the ferrofluid volume, the resulting compound droplet 

will eventually detach from the surface under its own weight. 
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A force analysis is presented here to better our understanding of how a partially-cloaked (two-

phase) droplet can be detached from a surface using a magnetic force. Consider a free body 

diagram for the compound droplet as shown in Figure 6.6a. The balance of forces in the y-direction 

can be written as, 

𝐹𝑑,𝑦 = 𝐹𝑤,𝑦
𝜎 − 𝐹𝑤,𝑦

𝑝
                                                                          (6.4) 

where 𝐹𝑤,𝑦
𝜎 = 𝜋𝜎𝑤𝑑𝑤𝑠𝑖𝑛𝜃𝑤

𝑎𝑝𝑝
 and 𝐹𝑤,𝑦

𝑝 = 𝜋𝑝𝑤𝑑𝑤
2 /4 are the capillary force and pressure force 

acting on the water droplet at the solid surface, respectively, and 𝐹𝑑,𝑦 is the total body force acting 

on the compound droplet. In this equation 𝑑𝑤, 𝜃𝑤
𝑎𝑝𝑝

, and 𝑝𝑤 are the base diameter, apparent contact 

angle, and droplet pressure, respectively.  Likewise, considering a free body diagram for the 

ferrofluid droplet as shown in Figure 6.6b, one can write the balance of forces in the y-direction 

as,  

𝐹𝑠,𝑦 = 𝐹𝑜𝑓,𝑦
𝜎 − 𝐹𝑜𝑓,𝑦

𝑝
                                                                       (6.5) 

where 𝐹𝑜𝑓,𝑦
𝜎 = 𝜋𝜎𝑜𝑓𝑑𝑜𝑓sin 𝜃𝑜𝑓

𝑎𝑝𝑝
 and 𝐹𝑜𝑓,𝑦

𝑝
= 𝜋𝑝𝑜𝑓𝑑𝑜𝑓

2 /4 denote the capillary and pressure forces 

for the ferrofluid droplet, respectively, and 𝐹𝑠,𝑦 is the force acting to separate the ferrofluid from 

the water droplet. The parameters 𝑑𝑜𝑓 and 𝜃𝑜𝑓
𝑎𝑝𝑝

 denote the ferrofluid base diameter and ferrofluid 

apparent contact angle (angle with a horizontal plane going through the line of contact with water), 

respectively, and 𝑝𝑜𝑓 represents the ferrofluid pressure. The separation force 𝐹𝑠,𝑦 can also be 

calculated using the water droplet information (see the second free body diagram shown in Figure 

6.6b), as  

𝐹𝑠,𝑦 = 𝐹𝑜𝑓,𝑦
𝜎 + 𝐹𝑤−𝑜𝑓,𝑦

𝜎 − 𝐹𝑤−𝑜𝑓,𝑦
𝑝

     (6.6) 

where 𝐹𝑤−𝑜𝑓,𝑦
𝜎 = 𝜋𝜎𝑤−𝑜𝑓𝑑𝑜𝑓𝑠𝑖𝑛𝜃𝑤−𝑜𝑓

𝑎𝑝𝑝
 and 𝐹𝑤−𝑜𝑓,𝑦

𝑝 =  𝜋𝑝𝑤−𝑜𝑓𝑑𝑜𝑓
2 /4 denote the surface tension 

force for the water–ferrofluid interface and the water pressure force on that interface, respectively. 
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In this equation, 𝑝𝑤−𝑜𝑓 represents the pressure on the water–ferrofluid interface (water droplet 

pressure 𝑝𝑤 plus the hydrostatic pressure). The geometric parameters and droplet pressures shown 

in Eqs. 6.4–6.6 are obtained from our SE simulations and are shown in Figures 6.6c and 6.6d 

versus body force magnitude. It can be seen that pressure inside the water droplet slowly decreases 

with increasing the magnetic force or with increasing the volume ratio of the ferrofluid. This means 

that the shape of the water droplet deviates only slightly from a spherical shape under the influence 

of an increasing magnetic force (until it detaches from the surface). On the other hand, the pressure 

inside the ferrofluid droplet decreases significantly with increasing the magnetic force when the 

ferrofluid volume ratio is small (ferrofluid droplet significantly elongates with increasing the 

magnetic force). It is interesting to compare the elongated shapes of the ferrofluid droplets of 

different volumes at their specific critical forces in Figures 6.5a–6.5d.   

Figure 6.6d shows the base diameter for the water droplet at the solid surface 𝑑𝑤 and that for the 

ferrofluid droplet at a horizonal plane going through the line of contact with water 𝑑𝑜𝑓. It can be 

seen that 𝑑𝑤 decrease with increasing the magnetic force on the droplet as the area of contact 

between water and solid surface decreases as the droplet becomes closer to the moment of 

detachment. For the ferrofluid, 𝑑𝑜𝑓 decreases with force mostly because it moves downward on 

the surface of the water droplet (see Figures 6.5a–6.5d). Obviously, 𝑑𝑜𝑓 is more sensitive to 𝜗 as 

it is more strongly dependent on the volume of the ferrofluid droplet.  
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Figure 6.6. A free body diagram showing the forces acting on a partially cloaked water at its contact with 

the solid surface is given in (a). Two different ways of depicting the forces acting on the ferrofluid cloak 

are shown in (b). Pressure at water–solid (for water droplet) and water–ferrofluid (for ferrofluid droplet) 

interfaces and base diameter under the influence of an enhanced body force are shown in (c) and (d), 

respectively, for compound droplets with different ferrofluid volume ratios (starting points represent the 

weight of the compound droplets). 

 

As was shown earlier using the spreading factor, the oil-based ferrofluid used in our experiments 

cloaks the water droplet only partially. Considering the balance of forces acting on the three-phase 

contact line in the absence of an external body force such as gravity, one can obtain the contact 

angles between the three phases involved, 𝜃𝐴 and 𝜃𝐵, using the following equations (i.e., the 

Neumann triangle) [108-110]: 
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𝜎𝑤−𝑜𝑓𝑐𝑜𝑠𝜃𝐵 + 𝜎𝑤 + 𝜎𝑜𝑓 cos(𝜃𝐴 + 𝜃𝐵) = 0,                                              (6.7) 

𝜎𝑤−𝑜𝑓𝑐𝑜𝑠𝜃𝐴 + 𝜎𝑜𝑓 + 𝜎𝑤 cos(𝜃𝐴 + 𝜃𝐵) = 0.                                              (6.8) 

With the surface tension values known, one can solve these equations to obtain 𝜃𝐴 = 27𝑜 and 𝜃𝐵 =

168𝑜 in perfect agreement with the predictions of our two-phase numerical simulations conducted 

in the absence of a body force (see Figure 6.6a). In the presence of an external body force however, 

the contact angles obtained from the simulations show higher values for 𝜃𝐵 but smaller values for 

𝜃𝐴, confirming that Neumann triangle is only accurate in the absence of a body force (see Figure 

6.7). Figure 6.7 also shows the ACA (defined with respect to the horizon) for the water droplet 

𝜃𝑤
𝑎𝑝𝑝

 at two different ferrofluid volume ratios of 𝜗 = 5% and 𝜗 =100%.  It can be seen that, 𝜃𝑤
𝑎𝑝𝑝

 

does not change with increasing the magnetic force on the droplet. On the other hand, the ACA 

for the ferrofluid droplet 𝜃𝑜𝑓
𝑎𝑝𝑝

 increases significantly when 𝜗 = 5% (where ferrofluid separates 

from the water droplet), but decreases mildly when 𝜗 = 100%. It is also interesting to notice that 

𝜃𝑜𝑓
𝑎𝑝𝑝

 converges to 90 degrees regardless of the volume of the ferrofluid droplet.  

To isolate and study the effects of ferrofluid volume on the droplet capillary and pressure forces, 

we have plotted these forces individually for both the water and ferrofluid droplets in Figures 6.8a–

6.8c in the absence of a magnetic force (when gravity is the only body force acting on the droplet) 

and at the moment of detachment. It can be seen in Figure 6.8a that 𝐹𝑤,𝑦
𝑝

 decreases slowly with 

increasing  𝜗 but 𝐹𝑤,𝑦
𝜎  remains almost a constant (because 𝑑𝑤 and 𝜃𝑤

𝑎𝑝𝑝
 do not depend on 𝜗 

strongly, as discussed earlier in Figure 6.6). 𝐹𝑜𝑓,𝑦
𝜎  and 𝐹𝑜𝑓,𝑦

𝑝
 on the other hand, increase with 𝜗 to 

reach a plateau (as 𝑑𝑜𝑓 reaches a constant diameter about the spherical diameter of the water 

droplet).  The difference between 𝐹𝑤,𝑦
𝜎  and 𝐹𝑤,𝑦

𝑝
 represents the weight of the compound droplet and 

it obviously increases with increasing 𝜗.  
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Figure 6.7. Contact angles between water and ferrofluid 𝜃𝐴 and 𝜃𝐵 are shown under the influence of an 

enhanced body force for compound droplets with two different ferrofluid volume ratios. Apparent contact 

angles for water and ferrofluid droplets 𝜃𝑤
𝑎𝑝𝑝

 and 𝜃𝑜𝑓
𝑎𝑝𝑝

 (measured with respect to horizon) are also given 

for comparison. Water droplet volume and YLCA are 3 µL and 120o, respectively. 
 

Effects of increasing the volume ratio of the ferrofluid on capillary and pressure forces are different 

when the total body force acting on the droplet (magnetic plus gravitational) is at the critical value 

(Figures 6.8b and 6.8c).  
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Figure 6.8. Force components acting on water and ferrofluids are calculated for compound droplets with 

different ferrofluid volume ratios. Figure (a) is for when the compound droplet is under the influence of 

gravity, whereas (b), for water droplet, and (c), for ferrofluid droplet, are at the critical moment. The water 

droplet has a volume of 3 µL and it is on a surface with a YLCA of 120o. 

 

For the water droplet (Figure 6.8b), these forces first decrease with 𝜗 but then increase, and the 

ferrofluid volume ratio at which 𝐹𝑤,𝑦
𝜎  and 𝐹𝑤,𝑦

𝑝
 reach a minimum 𝜗∗ denote where a transition from 

the ferrofluid-separation regime (failed experiments) to the water-droplet-detachment regime takes 

place. It is also interesting to note that 𝐹𝑑,𝑦 (the difference between 𝐹𝑤,𝑦
𝜎  and 𝐹𝑤,𝑦

𝑝
) increases with 
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increasing 𝜗 at first but then it reaches a constant value after 𝜗 = 𝜗∗. For the ferrofluid droplet 

(Figure 6.8c), 𝐹𝑜𝑓
𝜎  and 𝐹𝑜𝑓

𝑝
 increase for all 𝜗 values as 𝑑𝑜𝑓 increases with 𝜗. 

To further expand the use of the proposed partial cloaking method to detach water droplets of 

different volumes from a sticky hydrophobic surface, we calculated the minimum required 

ferrofluid volume ratio 𝜗∗for a reasonable range of ferrofluid surface tensions 24 < 𝜎𝑜𝑓 <32 

mN/m, as can be seen in Figure 6.9.  We considered surfaces with three different YLCAs (or three 

different ACAs in the case of working with rough surfaces) of 100, 110, and 120 degrees. For the 

sake of presentation clarity, we have plotted these data in the form of shaded bands, with the 

ferrofluid surface tension deceasing in each band from 𝜎𝑜𝑓 = 32  mN/m on the left (shown with a 

red line) to 𝜎𝑜𝑓 = 24 mN/m on the right (shown with a blue line). Water droplets with a volume 

on the right side of the constant-surface tension lines will be detached successfully from the surface 

for each YLCA. Consider for instance a water droplet with a volume of   𝑉𝑤 = 10.5 𝜇𝐿 on a surface 

with an YLCA of 𝜃𝑌𝐿 = 110𝑜. This droplet can be detached using a ferrofluid  with a surface 

tension of 𝜎𝑜𝑓 = 32 mN/m with a volume greater than about 0.75 µL (𝜗∗ = 7.5%), a ferrofluid 

with a surface tension of 𝜎𝑜𝑓 = 24 mN/m with a volume greater than 3.1 µL (𝜗∗ = 30%), or any 

other ferrofluid with a surface and volume in between the above values (see green dotted lines in 

Figure 6.9) as long as they all have the same magnetization strength (Iron nanoparticle 

concentration).  
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Figure 6.9. Minimum ferrofluid volume ratio 𝜗∗ required for successful detachment of a water droplet is 

plotted versus water droplet volume for different ferrofluid surface tensions and surface YLCAs. The 

surface tension for the lower and upper bounds of the shaded areas are 24 and 32 mN/m, respectively. 

 

We used our numerical simulations to further examine the accuracy of partial cloaking method in 

emulate detachment of a pure water droplet from a surface. To this end, we compared detachment 

force values obtain for water droplets of different volume in the presence and absence of a 

ferrofluid cloak in Figure 6.10a for two different YLCAs. We also added our experimental data to 

this figure for comparison. It can be seen that detachment force for a pure water droplet is about 

20–30% higher than that of its partially cloaked counterpart. To further explore the reasons behind 

obtaining different forces, we plotted the pressure inside these droplets in Figure 6.10b for the case 

of a water droplet with a volume of 7 µL and a YLCA of 110 degrees. It can be seen that the 

average pressure inside the partially cloaked droplet is less than that of the pure water droplet. This 

is due to the flattening that occurs at the bottom of the water droplet resulting in a lower Laplace 

pressure inside the water droplet (note that the area of contact between water and ferrofluid is 

exposed to an interfacial tension lower than water surface tension, i.e., 𝜎𝑤−𝑜𝑓< 𝜎𝑤). Figure 6.10b 
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compares the pressure inside the water droplet 𝑝𝑤 in presence and absence of ferrofluid cloaks. A 

higher 𝑝𝑤 results in a higher 𝐹𝑤,𝑦
𝑝

which causes the difference between 𝐹𝑤,𝑦
𝜎  and 𝐹𝑤,𝑦

𝑝
 (i.e. the 

detachment force) to become smaller (𝐹𝑤,𝑦
𝜎  is always bigger than 𝐹𝑤,𝑦

𝑝
). Note that the area of contact 

between water and solid surface does not change significantly with adding the ferrofluid.  

 

 

Figure 6.10. Comparison between simulated detachment forces for pure and partially-cloaked water 

droplets is given in (a) for different water droplet volumes and YLCAs. 𝜃𝑌𝐿 = 120 and 𝑉𝑤 = 5 µ𝐿, for the 

droplets shown in the left inset, and 𝜃𝑌𝐿 = 110 and 𝑉𝑤 = 7 µ𝐿, for the droplets shown in the right inset. 

Water droplet pressure at the water–solid interface versus water droplet volume for YLCAs of 110o and 

120o are given in (b). The inset figure shows pressure contours inside a water droplet with the volume of 7 

µL and a YLCA of 110o with and without of a ferrofluid cloak. 
 

With regards to the comparison between the experimental and computational results, it should be 

note that the YLCA for the PS coatings generally varies in the range of 125𝑜 < 𝜃𝑌𝐿 < 135𝑜 as 

was shown earlier in Figure 6.3, and a perfect agreement can only be achieved by inputting the 

exact ACA from experiment (see the text describing Figure 6.3). See our published paper for more 

details on this chapter [111]. 
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6.4. Conclusions 

The concept of partial cloaking is used in this study to develop a new technique to measure the 

force needed to detach nonmagnetic (e.g., water) droplets of different volumes from hydrophobic 

surfaces (e.g., electrospun polystyrene coatings) using a magnet in a simple test setup. Partial 

cloaking is achieved through the use of high-surface tension oil-based ferrofluids that are unable 

to completely cloak a pendent water droplet (does not contaminate the solid surface), but can be 

used to impart enough body force to detach the droplet from the surface. Our experimental and 

computational results revealed that the detachment force obtained via partial cloaking is 

independent of the volume of the ferrofluid used in the experiment as long as the ferrofluid volume 

is greater than a minimum value (applying a magnetic force to a droplet with insufficient ferrofluid 

results only in the separation of the ferrofluid from water). The above minimum ferrofluid volume 

depends on the volume of the water droplet and increases with decreasing the surface tension of 

the ferrofluid or the YLCA of the surface. Our results indicate that the detachment force obtained 

via partial cloaking of a water droplet is within about 20–25% of the detachment force expected 

for the droplet. In this chapter, we also developed a new approach to simulate the effects of 

magnetic force on a partially cloaked water droplet, without actually simulating the magnetic field. 

To do this, we considered gravity as the only body force acting on the entire compound droplet, 

but artificially increased the density of the ferrofluid to emulate the effect of magnetic field, for 

the first time.In short, we presented a novel method to measure the force of detachment for a water 

droplet from a hydrophobic surface. We also provided an insightful analysis into the complex 

nature of this multiphase problem, and thereby developed a general-purpose plot (Figure 6.9) that 

extends the application of our work to other oil–water–solid combinations. 
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Chapter 7. Overall Conclusion 

Droplet adhesion, mobility and penetration into an electrospun PS coatings are studied 

experimentally and computationally in this work. To initiate water droplet detachment or 

penetration into our hydrophobic fibrous coatings (electrospun polystyrene), we used aqueous 

ferrofluid droplets for our experiment so that the body force on the droplets could be enhanced 

using a magnet (as the earth gravity was not enough), and droplet detachment or penetration could 

be induced. Depending on the spacing between the fibers (and of course fiber and droplet 

diameters), a droplet on an electrospun PS coating can be at the Cassie state, at the Wenzel state, 

or at a transition state in between these extremes’ states. It appeared from our experiments that the 

Cassie (or near-Cassie) droplets leave a much smaller residue on the surface after sliding compared 

to the Wenzel (or near-Wenzel) droplets. The combined experimental-computational study for the 

droplet adhesion showed that the droplet detachment force decreases with increasing fibers’ 

YLCA. It was also observed that droplet detachment force decreases or remains relatively constant 

with increasing fiber-to-fiber spacing depending on the number of layers of fibers in contact with 

the droplet. Our results from the droplet mobility study indicate it is generally higher when the 

spacing between the fibers is larger. Droplet penetration study showed that increasing the relative 

angle between the fibers, in the range of angles from zero (parallel fibers) to ninety degrees 

(orthogonal fibers), increases the resistance of the material to droplet penetration. A series of 

simulation results were then used to produce semi-empirical correlations for the force required to 

detach a droplet from a hydrophobic fibrous surface in the in-plane and out-of-plane directions. At 

the end, a high-surface tension oil-based ferrofluids was used to partially cloak a nonmagnetic 

droplet (e.g., water) which resulted in a compound droplet to measure the nonmagnetic droplet 

adhesion on hydrophobic surfaces. 
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