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Abstract

THESIS PSEUDO-DATA GENERATION FOR IMPROVING CLINICAL NAMED

ENTITY RECOGNITION

By Jeffrey Smith

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2020.

Director: Thesis Dr. Bridget McInnes,

Assistant Professor, Department of Computer Science

One of the primary challenges for clinical Named Entity Recognition (NER)

is the availability of annotated training data. Technical and legal hurdles prevent

the creation and release of corpora related to electronic health records (EHRs). In

this work, we look at the imapct of pseudo-data generation on clinical NER us-

ing gazetteering and thresholding utilizing a neural network model. We report that

gazetteers can result in the inclusion of proper terms with the exclusion of determiners

and pronouns in preceding and middle positions. Gazetteers that had higher num-

bers of terms inclusive to the original dataset had a higher impact. We also report

that thresholding results in clear trend lines across the thresholds with some values

oscillating around a fixed point at the most confidence points.
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CHAPTER 1

INTRODUCTION

Named Entity Recognition (NER) is a subtask within the Information Extraction

(IE) a branch of Natural Language Processing (NLP). The goal of NER is to identify

and extract entities fitting a predetermined category from text. NER typically sits

in the middle of NLP pipelines as the information extracted is sent to downstream

tasks such as question answering[1], word sense disambiguation[2], and automatic text

summarization[3].

Classical NER sought to identify entities from categories such as person, place,

and location. Many early datasets utilized news sources as their primary corpora[4][5][6].

Traditional machine learning techniques for identifying sequences, such as conditional

random fields (CRF) and hidden markov models (HMM) were used as classifiers.

Modern NER now compromises of many domains, are domain specific, and utilize

neural network architectures with contextual word or character embeddings to label

sequences of entities[7][8]. In this thesis, we examine clinical NER focusing on the

extraction of medical entities from clinical records.

In the medical domain, NER systems identify and label entities ranging from

diseases and gene sequences to pharmaceuticals and medical equipment. Documents

used are often referred to as electronic health records (EHR) or electronic medical

records (EMR). Proper identification of these entities is critical for downstream tasks

that rely on them such as developing a clinical knowledge extraction system[9]. Un-

fortunately, NER models have shown that they do not generalize well and require

domain specific adaptation[10].
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In 2001, Poibeau and Kosseim[11] were one of the first groups to document

the issues of performing NER across different domains. Changes in the structure of

text, the vocabulary used, and the types of entities being extracted require differing

approaches which do not easily carry over between one another. Clinical NER is

no exception to this. EHRs and EMRs tend to be heavily unstructured, absent of

complete sentences, and make heavy use of domain specific abbreviations and jargon.

Each domain also requires annotated datasets built from related corpora.

One of the primary challenges in any supervised machine learning task is training

data. Large amounts of annotated training data are required to be efficient and gen-

eralize the problem space well. However, these datasets have to be annotated by hand

and require significant man-hours to assemble and normalize between annotators[12].

The clinical domain exposes additional challenges due to legal and ethical barriers.

Patient confidentiality requires that records be de-identified. There are risks that

data can be re-identified with modern machine learning techniques[13]. Care must be

taken such that the risk of re-identification is minimized[14].

A potential method of bypassing some of the challenges of generating datasets is

the use of pseudo-data, also known as artificial training data. Pseudo-data has been

used historically to generate additional samples in cases where there is a large class im-

balance. There are two main types of pseudo-data, synthetic and sampled. Synthetic

pseudo-data is data that has been produced through statistical or rule based methods

that attempts to mimic samples already available in the dataset. A popular algorithm

for generating synthetic data is SMOTE, or synthetic minority over-sampling tech-

nique[15], which uses a K-nearest neighbors algorithm to create new samples between

existing ones. Sampled pseudo-data is data that is extracted from corpora or datasets

and is labeled through semi-supervised[16] or unsupervised[17] methods.

Bootstrapping as a technique for machine learning (ML) has been around since
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the foundations of early machine learning models. One of the first major references

to the concept was detailed in 1966, in the paper ”Learning without a teacher.” [18]

where the concept of thresholding with statistical inferences from previous data is

detailed. Another 1966 paper[19] also detailed similar processes and is one of the

first papers to use the term bootstrapping in a machine learning setting. Use of the

technique was examined through the 1960s and into the 70s [20][21][22][23] and was

found to be useful for improving algorithms in low-information settings.

Use of the technique in NER can be found as far back as 2001[24], and is typically

used to add additional training data by selecting unlabeled entities that the initial

model is highly confident of. Vlachos and Gasperin[25] were able to demonstrate that

bootstrapping training data for biomedical entities was able to outperform manually

annotated data in their model.

In this work, we look at the impact of pseudo-data generation on clinical NER

using gazetteering and thresholding utilizing a neural network model. We examine

precision, recall, and F1 score on a variety of gazetteers and threshold confidence

values using the MIMIC-III Clinical Care Database as a pseudo-data source. The

contributions of this thesis are:

1. Examining the effect of gazetteering for clinical NER.

2. Examining the effect of thresholding for clinical NER.

3. Examining the trade-off between precision and recall when either of these tech-

niques are used.
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CHAPTER 2

LITERATURE REVIEW

In this section, we describe previous research in NER. We subdivide the previous work

into three categories: 1) Dictionary Methods, 2) Rule-Based Methods, 3) Supervised

Learning Methods. The remainder of this section describes each of these categories

in more detail.

2.1 Dictionary Methods

In NER, dictionary methods take a set of known terms and map them to entities.

While precision is often high, the recall in these systems is known to be low[26]. To

help solve this issue, partial matching techniques are employed to increase the number

of matches to the dictionary[26]. As the number of domains increase, dictionary

methods become less feasible to utilize as dictionaries for these domains are often

manually compiled. In the modern setting, dictionary methods are sometimes used

in tandem with supervised learning methods within the clinical domain [27] but rarely

on their own.

2.2 Rule-Based Methods

Rule-based methods take hand-crafted features based on known knowledge of

the domain and corpus structure, and use statistical models to predict labels. These

systems work on smaller data sets but have trouble when encountering larger or

diverse sets[28]. As an example, work on identifying proteins in a small corpus carried

over to MEDLINE had a significant drop in precision[29]. Unlike dictionary methods,
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rule-based methods still have opportunities to produce good results in the modern

setting[30].

2.3 Supervised Learning Methods

Supervised learning methods involve systems that take in data and generate

mathematical models that typically apply classification or regression. For NER, many

use weights and functions to shape input feature data into output label predictions.

Four general methods have seen the most use in NER prior to deep learning methods

and can be split into probabilistic and non-probabilistic categories. The probabilistic

methods are hidden markov models (HMM) and conditional random fields (CRF).

The non-probabilistic methods are support vector machines, basic feed-forward neural

networks (NN) and deep neural networks (DNNs). Currently a majority of NER

models utilize deep learning methods.

Hidden Markov Models (HMM). HMMs are probabilistic models that take

advantage of Markov chains. They utilize past state information to generate a directed

graph of predictions based on probabilities gleaned from data. In the most simple

case, a HMM predicts the label for x given y, where y is all of the previous information.

The moniker hidden comes from the assumption that not every possible state is known

by the system and thus some are hidden. Due to the nature of sparsity in the NLP

domain, the chain rule and naive assumptions are used to simplify the equation such

that only the previous state is needed to predict the current point of the sequence[31].

HMMs may run into issues for NER tasks, however, as a HMM seeks to maximize

the observation sequence and not the state sequence[32].

Conditional Random Fields (CRF). CRFs are a developed evolution of

HMMs that utilize an undirected graph structure. Unlike HMMs which are considered

generative models, CRFs are considered discriminative. That is, HMMs model a joint
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probability distribution and CRFs model a conditional probability distribution. In

the NLP domain, linear chain CRFs are normally used which result in conditionally

trained finite state machines[33]. This is in a sequence chain where each entity uses

probabilities from the previous, next, and current entity to determine classification.

CRFs were one of the stronger options for NER[34].

Support Vector Machines (SVM). In the context of NLP, SVMs are non-

probabilistic binary classifiers that attempt to define a hyperplane through a given

feature space such that the distinction between entities is maximized. Traditional

SVMs were linear classifiers. Over time, SVMs were adapted to support non-linear

classification through kernel functions that map a given vector space to a higher

dimensional space. Although SVMs work great for classification and regression tasks,

they are no longer frequently used in modern NLP tasks. As the feature size of many

NLP tasks has exploded, so has the time required to train SVMs. This is due to the

SVM model having to calculate the Lagrangian dual of the feature space for proper

optimization[35].

Feed-forward Neural Networks (NN). Feed-forward NNs are, in their sim-

plest form, a series of layers processed sequentially to give an output value. Each

layer contains a weight matrix which defines how inputs are prioritized and an acti-

vation function to shape the output. Layers between the input and output are called

hidden layers. The use of different activation functions allows NNs to approximate

solutions to both linear and non-linear problems[36][37]. Typically NNs are trained

through the use of backpropagation on the network which assigns loss to individual

weights and adjusts them based on a user defined learning rate, with recent advances

being able to represent both words and characters in an n-dimensional feature vector

of floating point values[38].

Deep Neural Networks (DNN). Within the last decade, multi-layer neural
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networks, referred to as deep neural networks (DNNs) have been commonly used

for NER tasks. DNNs utilizing recurrent nodes in networks, also called Recurrent

Neural Networks (RNNs), have been used for sequential classification problems[39].

RNNs store past sequence information by feeding layer output from previous network

activations into the input of current activations. Researchers have also found that

iterating over a sequence in both directions can provide contextual information for

layers further in the network[40]. Output from DNNs can also be fed into other ma-

chine learning models such as CRFs. Bi-directional Long Short-Term Memory - CRF

networks (BiLSTM+CRF) were the state of the art technique for many Biomedical

NER tasks before the development of transformer networks[41]. Transformer networks

are a new style of non-recurrent neural networks that utilize attention mechanisms

in conjunction with query key value (QKV) embeddings[42]. Attention is a scored

system that indicates how relevant a given network output is to the currently pro-

cessing input. In the context of NER, it can indicate how important other words in a

sentence are for classifying the given word. One method of assessing attention is the

use of cosine similarity. In this work, we use BiLSTM+CRF DNN which is described

in more detail in Section 3.4.

Feature Representation As most supervised learning methods require numer-

ical values to run, words (also referred to as tokens) from sentences require processing

into features. Features can represent numerous characteristics of a token, such as its

placement in a sentence, dependencies, or part of speech.

One of the earliest methods of representing tokens is through the use of one-hot

encodings where each word maps to a single position in a vector. This allows for

quick representation of n-grams, or a window of nearby words. One of the major

downsides of one-hot encodings that have resulted in decreased use for direct word

representation is the linear growth in dimensionality with increase of new vocabulary.

7



In the place of one-hot encodings, encodings that utilize context or dimension-

ality reduction have appeared. Clustering approaches attempt to take tokens and

cluster them into groups where similar features or context are found[43]. One exam-

ple of dimensionality reduction involves finding a co-occurrence matrix of tokens and

performing principal component analysis[44].

With the introduction of neural networks, new encoding methods have appeared

that are now heavily used in NER tasks. A basic method of using neural networks for

encodings is to develop an auto-encoder network, where a simple feed-forward neural

network is trained to map an input index to an output index[45][46]. The hidden

layer values for the token are used as the feature for the token. A more modern and

contextually aware method of generating embeddings is the Word2Vec algorithm[38].

The Word2Vec network utilizes either bag of words or skip-grams, and attempts to

map tokens to other tokens that would be found together in sentences. Mapping to

other tokens allows the network to model potential semantic dependencies between

words and acts as a more robust way to represent tokens in sentences.

Recently contextualized embeddings have been introduced which incorporates

the context surrounding the specific word when formulating its embedding repre-

sentation. For example, BERT which use transformers to learn a masked language

model at both the token and sentence level resulting in different embedding for each

word based on its positional information within a sentence[47]; XLNet which also uses

transformers, however it learns byte-pair encodings at the token level only[48]; and

ELMo which uses a BiLSTM to learn character-level embeddings which allow it to

handle out-of-vocabulary words[49].
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CHAPTER 3

BACKGROUND

3.1 Tools

3.1.1 SpaCy

SpaCy[50] is an open-source Python NLP library written mostly in C for rapid

processing of text. It provides built-in methods and dictionaries for a variety of NLP

tasks. Relevant to this study, it contains specific methods for parsing part-of-speech

and dependency information from text while maintaining original tokenization.

3.1.2 Tensorflow

Tensorflow[51] is a Python based end-to-end machine learning platform typically

used in the creation of advanced neural network models. It was originally designed

for internal use at Google before the company open-sourced the project and released

it publicly.

3.1.3 Gensim

Gensim[52] is a Python library used for NLP applications. It is being used solely

for loading of a trained Word2Vec model and mapping input tokens to vectors.
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Table 1. 2010 i2b2 Clinical Dataset Information

i2b2 Text Annotations

Set Files Sentences Tokens Problem Test Treatment

Train 170 16315 149541 7073 4608 4844

Test 256 27625 267249 12592 9225 9344

3.2 Corpora

3.2.1 2010 i2b2 Clinical Dataset

The 2010 i2b2 Clinical Dataset[53] is an annotated set of clinical data comprised

of discharge summaries from three healthcare systems, Partners Healthcare, Beth

Israel Deaconess Medical Center, and the University of Pittsburgh Medical Center.

The dataset was annotated for concept extraction, assertion classification and relation

classification, and was created to support the 2010 i2b2/VA shared task. The dataset

contains annotations for three concepts, problems, tests, and treatments. This dataset

was chosen as the gold standard corpus for our study. It has been used in literature as

a benchmark for many Clinical NER tasks and provides a good platform for evaluating

information extraction methods. Table 1 lists the exact details for the dataset. In

particular, the training set contains 170 annotated documents with 16,525 annotations

over 149,541 tokens; and the test data set contains 256 annotated documents with

31,161 annotations over 267,249 tokens.

Problems, tests, and treatments have specific definitions to limit their scope.

Problems, or medical problems, are phrases that contain observations made by pa-

tients or clinicians about the patient’s body or mind that are thought to be abnormal

or caused by a disease. Tests are phrases that describe procedures, panels, and mea-
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Fig. 1. Examples of Problems, Tests, and Treatments.

sures that are done to a patient or a body fluid or sample in order to discover, rule

out, or find more information about a medical problem. Treatments are phrases that

describe procedures, interventions, and substances given to a patient in an effort to

resolve a medical problem. Examples of each of these types can be seen in Figure

3.2.1.

3.2.2 MIMIC-III

The MIMIC Critical Care Database[54] (MIMIC-III) is a freely available de-

identified dataset comprising of electronic health records (EHRs) for over 40,000 crit-

ical care patients from the Beth Israel Deaconess Medical Center. It was collected

between 2001 and 2012 and includes documents ranging from caregiver notes to imag-

ing reports and prescribed medications. In particular, the caregiver notes section is

comprised of 2,083,180 individual documents from a variety of internal departments

with a total token count of 487,639,049. Caregiver notes can contain information such

as doctor or nurse reviews of patients and potential diagnostic information alongside

11



Table 2. Gazetteer Annotation Information

Source Problem Test Treatment

ICD10CM 86,168 - -

ICD10PCS - 303 59

CPT - 4,813 8,571

WebMD - 17,676 -

FDA Drug List - - 42,639

Southern Cross - - 2,599

treatment guidelines. The caregiver discharge notes were used by this study as the

primary data source for pseudo-data generation.

3.3 Gazetteer Annotation Sources

In this section we list the gazetteers used as annotation sources for pseudo-data

generation. The number of annotations for the three entities found in each gazetteer

is shown in Table 2. Additional information is provided in each sources respective

section.

3.3.1 ICD10

The International Statistical Classification of Diseases and Related Health Prob-

lems (ICD) is a medical classification list generated by the World Health Organization

that standardizes coding for medical terms across the globe1. The 10th revision was

first put into use in 1994. In the United States, ICD was modified into ICD-CM and

ICD-PCS. ICD-CM is the clinical modification of ICD for classifying diagnosis and

1https://www.cms.gov/Medicare/Coding/ICD10
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reasons for hospital visits. It is split into 21 chapters of differing categories. There

was 5,562 entries in the system that were used as a source for problem annotations.

ICD-PCS is the modification of ICD for standardizing procedure coding systems. All

of the tests and treatments used within the United States are codified in this database.

There were 1,065 tests and 9,165 treatments coded in the database that were used

for annotation sources.

3.3.2 CPT

Current Procedural Terminology (CPT) is another medical code set used in the

United States and maintained by the American Medical Association2. It contains in-

formation for surgical and diagnostic procedures and is released annually. There were

1,346 tests and 3,958 treatments coded in the database that were used as annotation

sources for this study.

3.3.3 FDA Approved Drug List

The Food and Drug Administration (FDA) Approved Drug List is a current list-

ing of all drugs that have been given approval in the United States to be distributed

either over the counter or by practicing physicians. Drugs are listed by both their

brand name and generic chemical name along with application method and distribut-

ing company. The database is freely available online at the FDA website3. A list of

current drugs was downloaded and used as a source of potential treatment annotations

for our system. A total of 8,906 treatments were present in the list.

2https://coder.aapc.com/cpt-codes/
3https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
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3.3.4 WebMD Medical Tests

WebMD is an American company that provides news and information relating

to medical care and diagnosis and was founded in 1996. The company maintains the

WebMD website4 and features glossaries for medical terms. One glossary is a list of

medical tests and information about them. The list of terms from the glossary[55]

was extracted and contained 625 tests.

3.3.5 Southern Cross Surgery List

Southern Cross is a healthcare system based out of New Zealand that maintains

their own coding database for all surgeries performed at their locations. This list of

surgeries was published online in 2014[56] and contains 43 pages of procedure codes

along with text representations for each which totaled 761 treatments. This list was

extracted and used as a source of treatment annotations for our system.

3.4 Named Entity Recognition (NER) System

In this study, we use a Bi-directional Long Short-Term Memory (BiLSTM) Re-

current Neural Network. The feature vectors are split by token and sentences are

fed into the network along with a scalar representing the number of words in each

sentence. Each sentence is read by two separate LSTM cells. One cell reads the infor-

mation left to right, and the other reads right to left. The output is concatenated and

shaped into a flat vector and fed into a dropout layer and a linear dense layer. The

data is then reshaped back into the original token and sentence format and classified

using a conditional random field (CRF). Figure 3(a) shows an high-level view of the

BiLSTM+CRF architectures. In the remainder of this section, we describe each of

4https://www.webmd.com/a-to-z-guides/tests
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Table 3. Gazetteer Model Hyperparameters

Parameter Value

Initialization Type Variance Scaling

Initialization Factor 2

Initialization Mode FAN IN

LSTM Layer Size 256

LSTM Initial Forget Bias 1

Training Dropout 0.5

Loss Function Log-Likelihood

Optimizer Adam

Learning Rate 0.005

the above components in more detail. Table 3 specifies the hyperparameters used in

the network.

Bi-directional LSTM. LSTMs allow for weighted retention of information from

previous instances in a specified window. It achieves this through two recurring

input/output pairs, H (the LSTM output) and C (the internal memory state). The

LSTM output (H) represents a basic view of the cell state between each iteration. In

comparison, the internal memory state (C) tries to keep information from multiple

iterations back based on trained weights. This difference between gates is where the

name ”long short” comes from in LSTM. An example LSTM cell can be seen in Figure

2. Given a feature vector X at point t:

LSTM(Xt, Ht−1, Ct−1) = Ht, Ct

The internal memory of the cell is a function of the previous memory state, the

previous output, and the current input and is given by the following formulas, where
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Fig. 2. LSTM Cell

U and W are learned weights:

ft = σ(XtUf +Ht−1Wf )

it = σ(XtUli+Ht−1Wi)

Ot = σ(XtUo +Ht−1Wo)

The input to the cell and the previous cell state are multiplied by weight matrices,

summed, and a sigmoid activation function is applied. This happens for ft, it and

Ot, with different learned weight matrices.

gt = tanh(XtUg +Ht−1Wg)

The input to the cell and the previous cell state are multiplied by weight matrices,

summed, and a hyperbolic tangent activation function is applied.

Ct = (Ct−1ft) + (gtit)
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The supplementary cell state (Ct), is multiplied by ft and added to the multiplication

of it and gt.

The output H is a function of the internal cell state and the input and is given

by the following:

Ht = Ot ∗ tanh(Ct)

The current cell state is the product of Ot and the hyperbolic tangent of the supple-

mental cell state.

Fig. 3. Example architecture of a BiLSTM+CRF model.
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3.4.1 Feature Vector Generation

A simplified representation of the way we generated feature vectors can be seen

in Figure 4(a). We loaded text documents containing already separated sentences

into memory alongside their respective annotation files and mapped them to one

another, marking information for annotation locations and types. Sentences were

split by token. We used pre-processing to remove symbols and convert numbers,

dates, and times into standardized values. Original sentence positions were marked

for reconstruction after network annotation. We ran each sentence through the SpaCy

POS/DEP parser to get POS and DEP tags for each token and mapped them to

locations in a one-hot vector. We then ran each token through a Word2Vec model

that was trained on the MIMIC-III clinical notes database. The output of this model

represented the first 200 values of the vector. The POS/DEP tags were appended

and represented the rest of the vector for each token. The final shape of the resulting

matrix was [sentences, tokens, features].

Fig. 4. Simplified Representation of Feature Vector Generation.
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3.5 Evaluation

We utilized the F1 metric for our experiments. F1 Score is the harmonic mean

between precision and recall. Precision is a measure of how accurate each prediction

was and utilizes the following formula:

Precision = tp
tp+fp

where tp is true positive and fp is false positive. Recall is a measure of how many of

the total tokens were predicted and utilizes the following formula:

Recall = tp
tp+fn

where tp is true positive and fn is false negative. The formula representing the

geometric mean between the two is defined as:

F1 = 2 ∗ Precision∗Recall
Precision+Recall

We evaluate our system at both the token and entity level. For the entity level

evaluation we use two methods: strict and lenient. Strict requires a true positive to

have exact span and tag matches. Lenient requires a partial match of the span with

the correct tag. If two or more tags match a phrase, it will only be counted as true

positive once, and the additional phrase will not be counted as a false.
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CHAPTER 4

GAZETTEER ANNOTATING

In this section, we describe the experiments we conducted on gazetteer annotating and

the reasoning behind them. The experiments are split into: 1) single-class experiments

and 2) multi-class experiments, where multi-class attempts to label all entities within

a single model. A full listing can be found in Table 4. The first set of experiments

we performed take each individual gazetteer source and train a model with an inverse

epoch structure. That is, a set number of epochs is defined and the gazetteer source

is trained on for a given number of epochs. Then for the rest of the epochs, the

model is trained on the i2b2 training data. This provides a way to determine what

kind of effect each gazetteer is having on the model in an isolated environment. The

next experiment takes every gazetteer source and trains them together on a multi-

class model. This allowed us to determine if there were cumulative effects from

including all of the gazetteers. Finally, we conducted two experiments only taking

the best performing gazetteers. The first followed the same pattern as the previous

experiments. The second kept the number of epochs for the i2b2 training static and

changed how many epochs we pre-trained on the gazetteer data for.

4.1 Methods

4.1.1 Preparatory Steps

We downloaded the MIMIC-III database, extracted discharge summaries, and ran

them through pre-processing. All gazetteer sources were downloaded and also pre-

processed. Gazetteer annotations were matched to text in the MIMIC-III discharge
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Table 4. Gazetteer Annotation Experiments

Name Model Type Sources Description

ICD10CM Problem Single-Class ICD10CM Measure of how much ICD10CM problem

pre-training changes precision and recall in

comparison to baseline.

CPT Test Single-Class CPT Measure of how much CPT test pre-training

changes precision and recall in comparison to

baseline.

ICD10PCS Test Single-Class ICD10PCS Measure of how much ICD10PCS test pre-

training changes precision and recall in com-

parison to baseline.

WebMD Test Single-Class WebMD Test List Measure of how much WebMD test pre-

training changes precision and recall in com-

parison to baseline.

CPT Treatment Single-Class CPT Measure of how much CPT treatment pre-

training changes precision and recall in com-

parison to baseline.

ICD10PCS Treatment Single-Class ICD10PCS Measure of how much ICD10PCS treatment

pre-training changes precision and recall in

comparison to baseline.

FDA Treatment Single-Class FDA Drug List Measure of how much FDA treatment pre-

training changes precision and recall in com-

parison to baseline.

Southern Cross Treatment Single-Class Southern Cross Surgery List Measure of how much Southern Cross treat-

ment pre-training changes precision and re-

call in comparison to baseline.

Comprehensive Multi-Class All Measure of how much all gazetteers pre-

trained together changes precision and recall

in comparison to baseline.

Selective Multi-Class ICD10CM, WebMD Test

List, FDA Drug List, South-

ern Cross Surgery List

Measure of how much top gazetteers pre-

trained together changes precision and recall

in comparison to baseline.

Selective Static Epoch Mutli-Class ICD10CM, WebMD Test

List, FDA Drug List, South-

ern Cross Surgery List

Measure of how much top gazetteers pre-

trained together changes precision and recall

in comparison to baseline when baseline has

static epochs.
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Fig. 5. Visual Pipeline Representing Gazetteer Annotation.

summaries and set aside as annotation files. A visual guide to the pipeline can be

seen in Figure 6.

Fig. 6. Visual Pipeline Representing Extraction of Pseudo Annotations from the MIM-

IC-III corpus.

4.2 Experimental Details

Preprocessing. Text for discharge summaries was extracted from the ’NoteEvents’

table where ’Category’ was set to ’Discharge summary’. Pre-processing started with

an initial step of combining all de-identified terms into single terms that could be

easily turned into features, including numbers, dates, and times. Punctuation was

then modified to match the format that the i2b2 dataset was in. To generate a ran-

dom sampling of MIMIC data, all pre-processed sentences were loaded into memory.
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Sentences less than 8 tokens in length were removed to obtain data similar to i2b2.

400,000 sentences were then randomly selected and sent to files. Annotations from

each gazetteer source were scanned for in the extracted MIMIC text and annota-

tion files were generated. For multi-class experiments, annotation files from different

sources were merged. In cases where there were overlapping annotations of different

classes, each annotation was thrown out.

Feature representation. Generated annotations and associated text were converted

into feature vectors with the following features: Word2Vec embeddings (length 200), is

a number, date, or time, part of speech tags (length 19), and dependency tags (length

52). The feature vectors were in the form [sentence, word, features] for feeding into

the BiLSTM+CRF architecture.

Model Parameters. Training occurred for 15 epochs in each experiment unless

otherwise stated. This number was chosen by training the network over a large

amount of epochs numerous times and selecting the point where additional training

produced negligible results. The BiLSTM+CRF architecture was pre-trained on the

MIMIC-III annotations for n epochs; and then fine-tuned over the i2b2 training data

for the remaining 15 − n epochs. The flow for the training can be seen in Figure 7.

Training utilized batch back propagation with an Adam optimizer at a learning rate

of 0.005. Every model was initialized and trained independently.

Evaluation. Evaluation was performed against the i2b2 test annotation set. When

generating annotations, output from the model went through post-processing to allow

for consistent tagging at the phrase level. This included removing tags from specific

punctuation and ensuring consistent tags between certain token types. These changes

were applied after token level evaluation and before phrase level. Token level metrics

included precision, recall, and F1 score. Phrase level metrics included lenient and

strict phrase level F1 scoring.

23



Fig. 7. Gazetteer Model Training.

4.3 Results and Discussion

4.3.1 Single class Gazetteer Pretraining

In this section, we present the results of our inverse epoch structure experiments

over each individual gazetteer source. This evaluation provides a way to determine

the effect each gazetteer is having on the model in an isolated environment.

4.3.1.1 Problem Entity Type

ICD10CM Problem Gazetteer Pretraining. Figure 8 shows the token level

precision, recall, and F1 scores of the problem entity type when we pretrained a single-

class model on annotations from ICD10CM. The precision of the model rises above

baseline when trained 1 or 2 epochs then declines until 10 epochs where it remains

roughly the same before finally diving 10 points. The recall follows an inverse pattern

where it initially declines, then by 5 epochs goes above the baseline. After six epochs,

the network has a continuous decline before the final dropoff. When compared to the

multi-class model, the precision and recall exhibit the same general pattern but with
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a larger range in numbers. Out of the 4349 annotations available in ICD10CM, only

620 and 678 of them were found in the i2b2 test and train datasets respectively. This

represents the highest percentage found in any of the gazetteers (Table 6).

Fig. 8. Statistical Measurements of Problem Entity Type as a Function of ICD10CM

Gazetteer Pretraining

4.3.1.2 Test Entity Type

CPT Test Gazetteer Pretraining. Figure 9 shows the token level precision, recall,

and F1 scores of the test entity type when we pretrained a single-class model on

annotations from CPT. Precision and recall oscillate below and above baseline as the

number of trained epochs increases. The oscillating pattern found here can also be

seen in the multi-class model. Out of the 1154 annotations available in CPT for the

test annotation group, only 64 and 67 were found in the i2b2 test and train datasets

respectively (Table 6).

ICD10PCS Test Gazetteer Pretraining. Figure 10 shows the token level preci-

sion, recall, and F1 scores of the test entity type when we pretrained a single-class

model on annotations from ICD10PCS. Like the CPT test results, the precision and
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Fig. 9. Statistical Measurements of Test Entity Type as a Function of CPT Gazetteer

Pretraining

recall oscillate around baseline. Between 4 and 7 epochs we get an increase in recall

at the cost of precision. Out of the 467 annotations available in ICD10PCS for the

test annotation group, only 12 were found in both the i2b2 test and train datasets

(Table 6).

WebMD Test Gazetteer Pretraining. Figure 11 shows the token level precision,

recall, and F1 scores of the test entity type when we pretrained a single-class model

on annotations from WebMD. Initial inclusion of the WebMD annotations from one

epoch and onward result in a fairly large ( 10%) increase in precision. The recall

inverses and falls, though not enough to offset the precision gains. Out of the 675

annotations available in WebMD, only 136 and 141 were found in the i2b2 test and

train datasets respectively (Table 6).

4.3.1.3 Treatment Entity Type

CPT Treatment Gazetteer Pretraining. Figure 12 shows the token level preci-

sion, recall, and F1 scores of the treatment entity type when we pretrained a single-
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Fig. 10. Statistical Measurements of Test Entity Type as a Function of ICD10PCS

Gazetteer Pretraining

Fig. 11. Statistical Measurements of Test Entity Type as a Function of WebMD

Gazetteer Pretraining
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Fig. 12. Statistical Measurements of Treatment Entity Type as a Function of CPT

Gazetteer Pretraining

class model on annotations from CPT. Precision and recall oscillate slightly around

baseline before suffering a steep dropoff. Out of the 1385 annotations available in

CPT for the treatment annotation group, only 50 were found in both the i2b2 test

and train datasets (Table 6).

ICD10PCS Treatment Gazetteer Pretraining. Figure 13 shows the token level

precision, recall, and F1 scores of the treatment entity type when we pretrained a

single-class model on annotations from ICD10PCS. Precision and recall both hover

slightly below baseline when trained for a few epochs. Like previous experiments, the

recall tanks at the end. Out of the 790 annotations available in ICD10PCS for the

treatment annotation group, only 21 and 23 were found in the i2b2 test and train

datasets respectively (Table 6).

FDA Drug Label Treatment Gazetteer Pretraining. Figure 14 shows the token

level precision, recall, and F1 scores of the treatment entity type when we pretrained

a single-class model on annotations from the FDA Drug List. The inclusion of the

FDA Drug List has a large impact (>10%) on recall when included in a single epoch
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Fig. 13. Statistical Measurements of Treatment Entity Type as a Function of

ICD10PCS Gazetteer Pretraining

and onward until past 10 epochs. There is a small hit to precision ( 2%) initially and

a larger hit ( 5-7%) from 3 epochs to 12. Out of the 7230 annotations available in

the FDA Drug List, only 338 and 405 were found in the i2b2 test and train datasets

respectively (Table 6).

Southern Cross Treatment Gazetteer Pretraining. Figure 15 shows the token

level precision, recall, and F1 scores of the treatment entity type when we pretrained

a single-class model on annotations from the Southern Cross Surgery List. When

included for a single epoch or four or more, precision gains a moderate amount ( 5%)

while recall declines a similar amount. This pattern holds until 10 epochs of pre-

training where the recall dives towards 0. Out of the 800 annotations available in the

Southern Cross Surgery List, only 103 and 111 were found in the i2b2 test and train

datasets respectively (Table 6).
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Fig. 14. Statistical Measurements of Treatment Entity Type as a Function of FDA

Drug List Gazetteer Pretraining

Fig. 15. Statistical Measurements of Treatment Entity Type as a Function of Southern

Cross Gazetteer Pretraining
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Table 5. Gazetteer Annotation Multi-Class Phrase Strict (Lenient) F1 Measurement

Source Class Precision Recall F1

Baseline Problem 0.696(0.919) 0.631(0.815) 0.662(0.864)

Test 0.793(0.902) 0.762(0.862) 0.777(0.881)

Treatment 0.706(0.882) 0.681(0.834) 0.693(0.857)

Selective Epoch 5 Problem 0.718(0.91) 0.655(0.821) 0.685(0.864)

Test 0.787(0.902) 0.754(0.86) 0.77(0.88)

Treatment 0.774(0.913) 0.705(0.824) 0.738(0.866)

Selective Static Problem 0.702(0.899) 0.657(0.831) 0.679(0.863)

Epoch 5 Test 0.742(0.885) 0.739(0.868) 0.74(0.877)

Treatment 0.764(0.904) 0.709(0.831) 0.735(0.866)

4.3.2 Multi-Class Gazetteer Pretraining

In this section, we evaluate our model by combining the gazeteer sources and

training them in a multi-class environment. This allows us to determine the cumula-

tive effects of including all sources.

Comprehensive Multi-Class Gazetteer Pretraining.

Figure 16 shows the token level precision, recall, and F1 scores of the problem,

treatment, and test labels respectively when we merged the annotations from all the

gazetteers and trained them on a multi-class model. The experiment was run three

times and the results averaged. With the problem and treatment entity types, pre-

training for one to five epochs results in a small ( 2%) increase in recall with a nearly

equivalent loss in precision. Training for longer periods of time results in a steep

decrease in recall which also results in a steep decline in F1 score. Precision remains
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Fig. 16. Statistical Measurements of Problem (Top), Test (Middle) and Treatment

(Bottom) Entity Types as a Function of Gazetteer Pretraining in a Compre-

hensive Multi-Class Model
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fairly high. The test entity type loses recall and gains precision at the same level as

the previous entity types when we incorporate the gazetteer pretraining.

Static Multi-Class Gazetteer Pretraining.

Figure 17 shows the token level precision, recall, and F1 scores of the problem,

treatment, and test labels respectively when we merged the annotations from only the

best the gazetteers and trained them on a multi-class model. The specific gazetteers

we used were ICD10CM (Test), WebMD Test List, FDA Drug List, and the Southern

Cross Surgery List. For problem and test, the precision rises for several epochs when

including the gazetteer data before eventually dropping off. The baseline treatment

precision remains the highest but doesn’t drop off drastically. The recall for the prob-

lem and treatment types also rise a couple of points whereas the recall for the test

type suffers. In all three instances, the highest F1 score is observed on the 5/10 ratio.

Selective Static Multi-Class Gazetteer Pretraining.

Figure 18 shows the token level precision, recall, and F1 scores of the problem,

treatment, and test labels respectively when we merged the annotations from only

the best the gazetteers and trained them on a multi-class model with a set number

of epochs on the i2b2 dataset. The specific gazetteers we used were the same as in

the selective multi-class experiment.

For the problem type, precision increases all the way to the max number of

epochs on the gazetteer data. Recall stops increasing after the 6th epoch and drops

off rapidly afterwards. In most of the chart, an inverse pattern between recall and

precision can be observed. For the test type, precision increases for one epoch after

the baseline but never again. Recall never increases. The test type benefits most

from no gazetteer data. For the treatment type, precision increases slightly on the
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Fig. 17. Statistical Measurements of Problem (Top), Test (Middle) and Treatment

(Bottom) Entity Types as a Function of Gazetteer Pretraining in a Selective

Multi-Class Model
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Fig. 18. Statistical Measurements of Problem (Top), Test (Middle) and Treatment

(Bottom) Entity Types as a Function of Gazetteer Pretraining in a Selective

Static Multi-Class Model
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Table 6. Gazetteer Annotation Term Crossover Analysis

Class Gazetteer # Types # Types in Mimic (%) # Types Matching i2b2 Train (%) # Types Matching i2b2 Test (%)

Problem ICD10CM 4349 1872 (4.30E-01) 620 (1.17E-01) 678 (9.44E-02)

Test

CPT 1154 127 (1.10E-01) 64 (1.21E-02) 67 (9.33E-03)

ICD10PCS 467 31 (6.64E-02) 12 (2.27E-03) 12 (1.67E-03)

WebMD 675 345 (5.11E-01) 136 (2.57E-02) 141 (1.96E-02)

Treatment

CPT 1385 98 (7.08E-02) 50 (9.46E-03) 50 (6.96E-03)

ICD10PCS 790 29 (3.67E-02) 21 (3.98E-03) 23 (3.20E-03)

FDA 7230 2213 (3.06E-01) 338 (6.40E-02) 405 (5.64E-02)

Southern 860 199 (2.31E-01) 103 (1.95E-02) 111 (1.55E-02)

first epoch then hovers around baseline. Recall increases towards the latter epochs

and falls back down at max epochs. The highest F1 scores were observed around 5/6

epochs except for test.

4.3.3 Overall Results

Throughout all of the gazetteering experiments, a common trend we observed was

a trade-off between precision and recall. As precision increased, recall decreased, and

vice versa. In most cases, the increase was high enough to make up for the decrease

resulting in an increase of the F1 score. When examining the strict and lenient phrase

F1 scores, problem and treatment were able to exceed the baseline while test was not.

Some gazetteers outperformed others by several points. To try and under-

stand the reason why, we analyzed the number of terms that overlapped between

the gazetteers and the datasets (Table 6). What we found is that gazetteers that had

a higher number of terms in the datasets had a higher impact. This is a logical con-

clusion, as more relevant data will results in better outcomes. What was surprising is

the amount of crossover some gazetteers had. ICD10PCS and CPT codes had a large

number of unique terms but very little crossover. This indicates that the vocabulary

used in billing codes does not match what is used by medical professionals. Public
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lists, such as the WebMD test list and the Southern Cross surgery list, had a high

level of crossover. The FDA drug list also had a high level of crossover. This makes

sense as drugs are a common treatment for almost any condition.

Precision and recall being reciprocal of each other is not a new phenomenon with

respect to machine learning. Many algorithms struggle to find a balance between the

two. In the context of our experiments, one potential reason for the trade-off is

the use of determiners and pronouns. In the i2b2 dataset, many of the annotations

include determiners and pronouns in the beginning or middle. Some examples are:

”an outpatient holter monitor”, ”his chest x-ray”, and ”a few fine crackles at the

left base”. With the annotations generated by gazetteering through MIMIC, these

pronouns and determiners are not selected. This could result in a case where training

too much on the gazetteering data results in the inclusion of proper terms with the

exclusion of pronouns and determiners.
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CHAPTER 5

THRESHOLDING

In this section, we describe the experiments we conducted on thresholding and the

reasoning behind them. The experiments are split into: 1) single-class experiments

and 2) multi-class experiments, where multi-class attempts to label all entities within

a single model. A full listing can be found in Table 7. The first set of experiments

we performed take each individual type and attempt to perform training based on

thresholded annotations for a given confidence score. Each experiment uses a set

number of epochs. The multi-class experiment does the same as the single-class

experiment except with all classes applied at the same time.

5.1 Methods

5.1.1 Preparatory Steps

MIMIC-III database was downloaded. Discharge summaries were extracted and

run through pre-processing.

5.2 Experimental Details

Text for discharge summaries was extracted from the ’NoteEvents’ table where

’Category’ was set to ’Discharge summary’. Pre-processing started with an initial

step of combining all de-identified terms into single terms that could be easily turned

into features, including numbers, dates, and times. Punctuation was then modified

to match the format that the i2b2 dataset was in.

To generate a random sampling of MIMIC data, all pre-processed sentences were
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Table 7. Thresholding Experiments

Name Model Type Description

Problem Thresholding Single-Class Experiment determining the impact on pre-

cision and recall in comparison to baseline for

the problem type when including thresholded

pseudo-data in the training process.

Test Thresholding Single-Class Experiment determining the impact on pre-

cision and recall in comparison to baseline

for the test type when including thresholded

pseudo-data in the training process.

Treatment Thresholding Single-Class Experiment determining the impact on preci-

sion and recall in comparison to baseline for

the treatment type when including thresh-

olded pseudo-data in the training process.

Multi-Class Thresholding Multi-Class Experiment determining the impact on pre-

cision and recall in comparison to baseline for

all types when including thresholded pseudo-

data in the training process.
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Fig. 19. Visual Pipeline Representing Thresholding.

loaded into memory. Sentences less than 8 tokens in length were removed to obtain

data similar to i2b2. 400,000 sentences were then randomly selected and sent to files.

We began the thresholding process by loading the i2b2 vectors into memory and

training a baseline network model. This model is then used to annotate the MIMIC-
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III dataset. All annotations above a set confidence level are kept for the next cycle

and added to a pool. We then train a new model on the i2b2 data and the pooled

annotations from the previous iteration. We repeat this process until the percent

difference between generated annotations is less than 5% or until 10 iterations have

been run. Analysis is then performed on the final generated model. We completed

this process for each annotation type in a single class model and in a combined multi-

class model with all three labels. All training occured over 15 epochs. This number

was chosen by training the network over a large amount of epochs numerous times

and selecting the point where additional training produced negligible results.

5.3 Results and Discussion

5.3.1 Problem Type Thresholding

Figure 20 shows the token level precision, recall, and F1 scores of the problem

entity type when we utilized a thresholding method and trained a single-class model

on both i2b2 annotations and pseudo-annotations from sampled MIMIC-III clinical

notes after 10 epochs of thresholding. Starting from a confidence score of 0.5, the

precision suffers a 5% loss from baseline, slowly rising as we increase the confidence

score. As we reach 0.9 and 0.95, there is a very marginal (<=1%) increase on the

precision over baseline. The recall starts below baseline at 0.5 confidence and almost

matches at 0.6, then continues to decline up to 0.95 confidence.

5.3.2 Test Type Thresholding

Figure 21 shows the token level precision, recall, and F1 scores of the test entity

type when we utilized a thresholding method and trained a single-class model on both

i2b2 annotations and pseudo-annotations from sampled MIMIC-III clinical notes after
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Fig. 20. Statistical Measurements of Problem Entity Type as a Function of Threshold

10 epochs of thresholding. Starting from a confidence score of 0.5, the precision suffers

a severe decrease ( 13%) and slowly climbs back up to baseline as the confidence

reaches 0.95. The recall at 0.5 confidence starts off about 2.5% above baseline before

quickly returning to baseline as we raise the confidence.

Fig. 21. Statistical Measurements of Test Entity Type as a Function of Threshold
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5.3.3 Treatment Type Thresholding

Figure 22 shows the token level precision, recall, and F1 scores of the treatment

entity type when we utilized a thresholding method and trained a single-class model on

both i2b2 annotations and pseudo-annotations from sampled MIMIC-III clinical notes

after 10 epochs of thresholding. Starting from a confidence score of 0.5, the precision

suffers a moderate decrease ( 8%) and slowly returns to slightly below baseline ( 3%)

as the confidence reaches 0.95. The recall at 0.5 confidence starts off about 5% above

baseline and maintains that position, even as the confidence reached 0.95.

Fig. 22. Statistical Measurements of Treatment Entity Type as a Function of Thresh-

old

5.3.4 Multi-Class Thresholding

Figure 23 shows the token level precision, recall, and F1 scores of the problem,

treatment, and test labels respectively when we utilized a thresholding method and

trained a multi-class model on both i2b2 annotations and pseudo-annotations from

sampled MIMIC-III clinical notes after 10 epochs of thresholding. The precision of the

problem type decreases with the introduction of the pseudo-annotations ( 5%) though
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Fig. 23. Statistical Measurements of Problem (Top), Test (Middle) and Treatment

(Bottom) Entity Type as a Function of Threshold in a Multi-Class Model
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Table 8. Thresholding Multi-Class Phrase Strict (Lenient) F1 Measurement

Source Class Precision Recall F1

Baseline Problem 0.696(0.919) 0.631(0.815) 0.662(0.864)

Test 0.793(0.902) 0.762(0.862) 0.777(0.881)

Treatment 0.706(0.882) 0.681(0.834) 0.693(0.857)

90 Confidence Problem 0.672(0.888) 0.644(0.833) 0.658(0.859)

Test 0.768(0.888) 0.732(0.839) 0.75(0.863)

Treatment 0.717(0.892) 0.684(0.833) 0.701(0.862)

95 Confidence Problem 0.632(0.858) 0.639(0.839) 0.635(0.848)

Test 0.73(0.871) 0.729(0.858) 0.729(0.864)

Treatment 0.663(0.851) 0.683(0.85) 0.673(0.851)

remains roughly at the same level as we increase the confidence. The recall continues

to climb upward above baseline as we increase confidence. This is opposite to the

observation had in the single-class model. The test precision and recall hover around

baseline as confidence increases, never deviating more than 1.5% from baseline for

both measurements. This differs greatly from the single-class model where precision

declined greatly. The precision of the treatment type hovers around 2-3% lower

than baseline while the recall hovers 1-2% above baseline. Like with the test type,

treatment differs greatly from how it behaved in the single-class model.
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5.3.5 Overall Results

When examining the single class graphs with respect to confidence, we get clear

trend lines with some values oscillating around a fixed point at the most confidence

points. The effects on precision are drastically higher than recall. What we get in

most of the graphs is an initial large drop in precision in return for a boost in recall

which reverses up to the 0.95 confidence point. Of the three types, only treatment

achieved a noticeable increase in F1 score over baseline in both token level and phrase

level evaluations. The multi-class model exhibited similar results to the single-class

model, though with more muted effects. The multi-class model failed to achieve

notable results above baseline. Like the gazetteering experiments, the precision-recall

trade-off can be observed in all of the thresholding experiments.
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CHAPTER 6

CONCLUSIONS & FUTURE WORK

In this work, we explored using gazetteering and thresholding as psuedo-data gen-

eration techniques to improve performance in a deep neural network architecture.

We showed that using gazetteers, there is a trade-off between precision and recall

depending on the entity type. We also showed the same pattern with thresholding.

However, the difference between the two was far more imbalanced with thresholding.

With the technique used, we do not recommend thresholding at this time.

One potential limitation that we found at the end of our work was the coverage

of our Word2Vec model. Only 86% of the terms in the training and test annotations

were found in the model. This limitation could provide an explanation for the upper

cap that the models demonstrated. Another limitation is the way that gazetteer an-

notations were generated compared to the original annotations. The training and test

annotations contained determiners pronouns at preceding and mid positions in many

cases whereas the gazetteer annotations did not. Regenerating the gazetteer anno-

tations and including preceding and mid determiners and pronouns could potentially

provide better results.

There are a number of follow-up studies that can be considered as well. To

generate sentence structures similar to that of the training and test documentation,

term swapping could be employed. This is where terms from gazetteer sources are

swapped in place of original terms in training annotations and trained on. Generating

new embedding models from different sources or merging multiple embeddings could

also be considered for better coverage. Other sources for gazetteers could also be
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considered that better align with the language used by practitioners writing clinical

notes.

The contributions of this thesis are:

1. Examining the effect of gazetteering on precision, recall, and F1 score for clinical

NER. Towards this end, we found:

• Gazetteers that had a higher number of terms in the datasets had a higher

impact. Medical lists used within a hospital system had a large number

of unique terms but very little crossover; whereas public lists had a high

level of crossover although less unique terms.

• Gazetteer annotation can result in the inclusion of proper terms with the

exclusion of preceding and middle determiners and pronouns that that are

annotated within the data set.

2. Examining the effect of thresholding on precision, recall, and F1 score for clinical

NER. Towards this end, we found:

• Clear trend lines across the thresholds with some values oscillating around

a fixed point at the most confidence points.

• The effects on precision are drastically higher than recall.

3. Examining the trade-off between precision and recall when either of these tech-

niques are used. Towards this end, we found:

• The measure that increases between precision and recall is based on the

entity type.

• Gazetteering had a more balanced trade-off when precision and recall

changed. Thresholding had a more dramatic trade-off that resulted in

48



lower F1 scores.
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Appendix A

ABBREVIATIONS

BiLSTM Bi-directional Long Short-Term Memory

CPT Current Procedural Terminology

CRF Conditional Random Field

EHR Electronic Health Record

FDA Food and Drug Administration

HMM Hidden Markov Model

ICD The International Statistical Classification of Diseases and Related Health Problems

IE Information Extraction

LSTM Long Short-Term Memory

ML Machine Learning

NER Named Entity Recognition

NLP Natural Language Processing

NN Neural Network

RNN Recurrent Neural Network

RVA Richmond Virginia

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

VCU Virginia Commonwealth University
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