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ABSTRACT 

 
Organ transplants are a necessary intervention for many diseases that result in end stage 

organ failure. The donation pool cannot match the demands of the transplant list, so expanding 

the pool to include donation after cardiac death (DCD) is desired. However, there are increased 

odds of graft failure and ischemic cholangiopathy leading to inferior outcomes when DCD livers 

are used. Ischemic cholangiopathy consists of multiple diffuse strictures and fibrosis of the bile 

ducts leading to a loss of epithelialization and fibrosis. The cellular mechanism is proposed to be 

epithelial-to-mesenchymal transition (EMT). TGF-𝛽 is seen as a key initiator of EMT, especially 

following ischemic reperfusion injury. To determine if TGF-𝛽 is an inducer of EMT, cell 

migration assays were performed with human cholangiocytes exposed to warm and cold ischemia 

(DCD conditions) and tested for TGF-𝛽 expression using western blots, RT-PCR and 

immunocytochemistry. An inhibitor of TGF-𝛽 was also used to show causation.  The human 

cholangiocytes displayed migratory behavior following exposure to DCD conditions as well as 

an increase in TGF-𝛽 expression.  Cell morphology also transitioned with a loss of epithelial, 

cuboidal, characteristics and a gain of mesenchymal, spindle shaped, characteristics.  Prior 

exposure to the TGF-𝛽	 receptor antagonist prevented increased migration of the cells and 

retention of the epithelial appearance.  Our findings indicate TGF-𝛽 plays a major and causative 

role in the transition of cholangiocytes into mesenchymal cells. 
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INTRODUCTION 

Organ Donation 

 Organ transplantation is the preferred and highly effective treatment for most patients 

suffering from end stage organ failure. The benefits come in improved survival and quality of life 

in patients who receive transplants.1 However, the number of patients needing transplants 

outnumbers the amount available leading to a continual shortage of organs for transplant. Because 

of this shortage, the rate of liver transplant from deceased donors was on average 54.5 per 100 

years wait time in the United States in 2018. This results in high rates of mortality in pre-liver 

transplant patients at 11.8% over a three-year period and a number of patients being removed 

because they became too sick to transplant.2 This has led to an increased effort to expand the donor 

pool and improve outcomes across the board. Options being considered range from improving 

efficacy of organ preservation solutions and conditions at time of transplant, reducing the number 

of organs discarded and looking outside the standard pool of organ transplants from brain dead 

donors and living donors.3  

 

Organ Donor Types 

 The categories for organ donation are living donor donation or deceased donor donation. 

The deceased donor donation refers to donations of organs where the donor is no longer living, 

there are two categories with the most common being a donor having suffered brain death and 

referred to as donation after brain death (DBD). The second category under deceased donor 

donation is donation after cardiac death (DCD). The difference between these categories lies in 

state of the circulatory system and viability of the brain; while irreparable damage may have 

occurred in DCD patients, it may not meet the criteria for brain death.3 Because the heart must 
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stop and the circulatory system arrest in the DCD organs, there is a higher risk of damage and 

complications. DCD livers undergo two periods of warm ischemia: the first is the time between 

the donor heart stopping and the liver being flushed with cold preservation solution, the second is 

during implantation of the organ before it is perfused. Reducing the initial ischemic period and 

developing methods and solutions to help this process are key in reducing damage due to ischemic 

injury.3 Even so, there is a more careful selection of DCD grafts compared to DBD grafts as seen 

by the organ discard rate at 30% in DCD livers donated compared to 6.4% in DBD livers.1 Though 

there is a more careful selection of organs in DCD, the rates of graft survival are significantly 

lower than in DBD livers as well as increased complications.  

 Patients with DCD livers initially show similar complication rates in the Comprehensive 

Complication Index (CCI) but at the six-month postoperative mark, there was a significantly 

higher CCI score for DCD livers compared to DBD livers. For the DCD livers there was a three-

fold increase in rates of graft failure due to ischemic-type biliary lesions (ITBL).4,5 Graft failure 

resulted from higher rates of early allograft dysfunctions, acute renal failure and severe biliary 

complications.5 The rates are increased in this liver pool due to the increased warm ischemia time, 

transplants with greater than 35 minutes of warm ischemia lead to significantly increased graft 

failure rates.6 Complications in liver transplants range from biliary leaks and strictures to ischemic-

type biliary lesions. ITBL is characterized by intrahepatic strictures and dilations following 

ischemic insult.7 The hypoxic period of the warm ischemia time and hypoxia-generated reactive 

oxygen species are involved in initiating signaling pathways along with pro-fibrotic cytokines that 

cause problems after the reperfusion of the organ.8,9 Cellular injury occurs in part because of the 

large amounts of oxygen suddenly available again and overwhelming the pathways to scavenge 
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oxygen free-radicals.9,10 These cellular mechanisms can help lead to the aforementioned biliary 

lesions and graft failure, including a disease process termed ischemic cholangiopathy (IC).10  

 

Ischemic Cholangiopathy 

 Ischemic Cholangiopathy is characterized as a set of disorders including multiple diffuse 

intra-hepatic strictures or non-anastomotic.10 These strictures occur without any observable cause 

on imaging studies including a patent hepatic artery or exclusion of a hepatic artery thrombosis. 

The symptoms generally do not start right after transplantation but are progressive in nature.  IC 

will present the majority of its symptoms between 1 and 6 months and begin with general non-

specific symptoms or even asymptomatic in the initial stages and only being diagnosed when liver 

tests show elevated levels of serum alkaline phosphatase and gamma-glutamyl transferase.10,11 The 

progression of the disease will lead to cholestasis and cholangitis and later symptoms of liver 

failure such as jaundice and itching. This cholestasis can then cause gallstones, biliary sludge and 

casts and lead to obstruction and cholangitis.12 The diagnosis of this condition is done by the 

abnormal liver tests and visual confirmation of the intra-hepatic strictures in the liver by magnetic 

resonance imaging or endoscopic retrograde cholangiography (Figure 1).10,13  

 
Fig 1. Ischemic Cholangiopathy 

 
Figure 1: Ischemic Cholangiopathy seen in the cholangiography of the bile duct (including intra-hepatic) 
of a 59yo male; from left to right the arrows show multiple progressing stenoses after a DCD transplant13  
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Due to the severity of these symptoms, patients diagnosed with IC may have higher 

readmission rates, lengths of stay, procedures to alleviate symptoms and ultimately 3.2 times 

higher rate of re-transplantation in DCD livers.14,15 The rates of ischemic cholangiopathy in DCD 

livers are between 16% and 29% in comparison to DBD livers between 3% and 17%.10,15-17 All of 

this leads to greatly decreased quality of life and is a major problem in using DCD livers.  

 Due to the severity of this disease and the problems it causes, much research has been put 

into the underlying mechanisms and methods to prevent it.  Ischemic cholangiopathy has three 

established mechanisms of action: ischemia reperfusion injury, immune response and cytotoxic 

injury from bile salt toxicity.18-20 These mechanisms overlap and influence each other, causing the 

fibrosis of the epithelium and strictures seen in IC. The ischemic reperfusion injury is based on the 

reoxygenation of the epithelium instead of the anoxic period itself as there is a lower capacity of 

the cholangiocytes to be able to handle it. The biliary epithelium suffers a high rate of toxic oxygen 

species formation as stated above that is made worse by low basal levels of glutathione that would 

help combat these species.21 The ischemic injury can cause damage to the cholangiocytes as well 

as to the peribiliary vascular plexus (blood supply surrounding the intra-hepatic bile ducts) than 

can also damage the cholangiocytes or biliary epithelium and grows worse as cold ischemia time 

increases.19   

All these factors play a role in IC and therefore are aimed at preventing its occurrence. 

Studies have shown that reducing the amount of time organs undergo cold and warm ischemia 

helps reduce the occurrence of IC as well as using a thrombolytic flush on the liver graft to reduce 

biliary complications.22-25 The last technique heavily utilized in preventing the occurrence of IC is 

using perfusion to optimize the conditions at transplant. IC can be alleviated with low viscosity 

perfusion of the hepatic artery and peribiliary capillary plexus before transplant. There has been 
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debate between the comparative efficacies of machine hypothermic or normothermic perfusion 

with the former showing decreased graft injury rate compared to regular cold storage conditions 

and normothermic is showing promising reductions in IC as well that need further testing.26-29 

Regardless of these optimizations at time of transplant, the occurrence of graft injury and IC still 

has a high enough occurrence to warrant a more in depth look at the specific mechanisms of IC.  

 

Epithelial to Mesenchymal Transition 

  Epithelial to mesenchymal transition (EMT) is a cellular process that results in a loss of 

epithelium and gain of tissue fibrosis. During this time frame, the cells lose their specific epithelial 

traits and gain mesenchymal traits and appearance. The cells lose their adhesion and cell polarity 

in order to dissociate from the epithelial layer and migrate through the extracellular matrix. The 

newly changed cells gain mesenchymal markers and a fibroblast shape to accomplish the 

migration.30 There are three general causes of EMT, the first being what occurs during 

embryogenesis and the second being what occurs in metastasis in cancer enabling the tumors to 

travel throughout the body. The last cause of EMT is to escape various stressors such as 

mechanical, injury repair or hypoxia.31,32 EMT is becoming a higher focus in various diseases in 

the liver; it has been observed in fibrotic diseases such as biliary atresia and primary sclerosing 

cholangitis.33,34 It has also been observed in a very similar process to IC called chronic allograft 

tubular atrophy/interstitial fibrosis (TA/IF). TA/IF describes chronic allograft dysfunction in the 

kidney where EMT also occurs stimulated by myofibroblasts.36,37   

 This prompted the examination of EMT being the mechanism underlying IC. Our lab did 

an examination of this and looked at morphological changes after ischemia and changes of cellular 

markers for epithelial and mesenchymal cells. What they found was that in cells exposed to DCD 
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ischemic conditions, there was a change in morphology from cuboidal to spindle shaped. There 

was also data collected on the change of expression of both epithelial markers (CK-7, E-Cadherin) 

and mesenchymal markers (SNAIL, N-Cadherin, Vimentin) by analyzing immunocytochemistry 

(ICC) results (Figure 2A,B).37 These results showed EMT serving a role in IC, although certain 

limitations apply as just cholangiocytes were used. This could miss interactions with other cell 

populations, such as macrophages, in initiating EMT and producing one of the main inducers of 

EMT, TGF-𝛽.38 

 
 
Fig2A. Change in Marker Expression 

 
Figure 2A: Immunocytochemistry fluorescence images for the previously done EMT experiments. Results show 
fluorescence staining of epithelial markers (CK-7, E-Cadherin) and mesenchymal markers (Snail, Vimentin)37 
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Fig2B. Change in Marker Expression 

 

Figure 2B: Immunocytochemical expression of epithelial cell markers CK-7 and E-Cadherin (panel A) and 
mesenchymal cell markers SNAIL, N-Cadherin, Vimentin (panel B), comparison of fresh cholangiocytes, 24hr after 
cold storage (CS) and 24hr after 60min warm ischemia (WI+CS). The kinetics of expression of E-Cadherin (panel 
C) and Vimentin (panel D) are also shown.37  
 
 

TGF-𝛽 role in EMT 

 In order to study EMT more in depth and provide a possible route to reduce IC occurrence, 

the signaling pathway of EMT needed to be better studied. TGF-𝛽	is considered a main inducer of 

EMT fibroblast activation that leads to tissue fibrosis.30 This has been established by adding TGF-

𝛽	to various cell cultures causing a change in morphology and EMT to occur as seen by the change 

in epithelial/mesenchymal markers.34 In addition to inducing EMT, increases in TGF-𝛽 are seen 

in cell populations that have undergone EMT as seen in alveolar epithelial cells. To show causation 

and identify methods of preventing fibrosis, inhibitors such as FGF-1 have been used to prevent 

EMT and associated marker changes.30,39 The TGF-𝛽	 signaling	pathway has been studied for 

EMT, it has been shown that mechanical signaling and growth factor signaling play a role, likely 
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via proteins in the extracellular matrix.40 The pathway of TGF-𝛽 interaction likely includes SMAD 

phosphorylation once TGF-𝛽	binds its receptor via paracrine signaling. This pathway leads to other 

transcription factors and families of proteins causing the necessary EMT changes (Figure 3).41 

 
Fig3. TGF-𝛽 signaling pathway 
 

 
Figure 3: TGF-𝛽 signaling pathway that induces EMT, including transcriptional regulation. After TGF-𝛽 binds the 
receptor, SMAD2/3 form complexes with SMAD4 to regulate transcription of the target genes via three different 
families of transcription factors. Ultimately epithelial marker gene expression decreases while mesenchymal increase. 
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Purpose of Study 

 

The purpose of this study is to identify a potential role of TGF-𝛽 in epithelial to 

mesenchymal transition seen in ischemic cholangiopathy. Previous studies in the lab showed EMT 

serving a role in the loss of cholangiocytes during DCD organ transplant conditions.37 To further 

investigate these findings, this study sought to determine if TGF-𝛽 expression rose with ischemic 

conditions simulating DCD organ transplant. The second part was to use an inhibitor of TGF-𝛽R1 

to try and prevent EMT from occurring. TGF-𝛽	was chosen since it has been shown to be a 

potential initiator of EMT and we are interested in determining the initiating mediator in our 

models of IC. 

The study is replicating the effects of DCD conditions with a period of warm ischemia 

followed by cold storage ischemia and then recovery and reperfusion on cultured primary human 

cholangiocyte cells. By analyzing changes in TGF-𝛽 expression and cell morphology, we were 

able to determine if TGF-𝛽 served a correlative role in the epithelial to mesenchymal transition 

seen in ischemic DCD conditions. All of these were measured in vitro so the possible interactions 

with other cell populations, that may serve as a source of TGF-𝛽, are not seen. However, the impact 

of this study could be far reaching as an alternative pathway to reduce ischemic cholangiopathy 

occurrence and expand the available donor pool. 
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METHODS AND MATERIALS 

Human Cholangiocyte Cells 

Primary human cholangiocytes cells (HCC), biliary epithelium, (Celprogen, cat.#36755-

12) were cultured in flasks using human cholangiocyte cell growth medium with pre-added serum 

and antibiotics (Celprogen, cat.#M36755-12S) and grown in an incubator with 5% CO2 at 37°C. 

Cells were grown to a maximum 80% confluence for use and kept within eight passages. Trypsin 

(0.05%, Quality Biological) was used to passage the cells. The centrifuge was used to spin cells 

down at various points for 5 minutes at 1000 rpm. Other media used during experiments was a 

50% DMEM (Gibco) with added fetal bovine serum (10%, Thermo Fisher) and antibiotic 

antimycotic solution (1%, Gibco) and 50% HCC media for the mesenchymal cells after ischemia 

storage. Cell counts for various aspects of the experiments were done with a hemocytometer and 

light microscope at 10x magnification. The ratio of trypan blue to cells in media was 4:1 for the 

cell counts.  

In the basic cell model to simulate DCD conditions, cells are cultured for at least 24 hours 

pre-experiment to ensure sufficient attachment to the plates. Next, the cell cultures are placed in 

airtight (Tupperware) containers that undergo purging of the box atmosphere with 95% nitrogen 

and 5% CO2 for 10 minutes and then set in the incubator for 60 minutes to simulate the warm 

ischemia period between cardiac death and organ flushed with cold preservation solution. After 

this the container is placed in a larger airtight container in a layer of melting ice. The atmosphere 

is purged again, and the large container is placed in a fridge kept at 4°C for 24 hours to simulate 

cold storage and preservation of organs. After storage, the cells are removed from the containers 

and exposed to atmospheric oxygen again then placed back in the incubator and cultured as normal, 

this simulates reperfusion. After reperfusion the cells were collected at 1 day (for control and 
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ischemic conditions), 5 days and 7 days. The cell populations for the basic ischemic model are 

fresh control cholangiocytes (CC) without ischemia, ischemic samples collected at day 1, day 5 

and day 7.  

 

Cell Migration Assay 

 To separate cell populations that undergo migration after ischemia, Cytoselect invasion 

chambers (Cell Biolabs, cat.#CBA-110-COL) coated with type 1 collagen were used in 

conjunction with ischemia (Figure 4). The chambers were composed of wells with a collagen 

matrix sitting on top of a nylon filter. There were 300,000 human cholangiocyte cells placed in 

each well in 0.3mL of human cholangiocyte media. Each well was placed in a 24-well plate and a 

0.8mL mixture of 50% human cholangiocyte media and 50% DMEM was placed on the outside 

of each well. After being placed on the chambers they were allowed to culture for 24 hours. After 

this the cultures were subjected to ischemia representing DCD conditions as described above.  

 
Fig4. Cell Migration Assay 

 
Figure 4: Cell Migration Assay to study migratory behavior after being exposed to DCD conditions over 7 days. Fresh 
cholangiocytes (left) remain on top of the collagen gel matrix with no migration. On the right, cholangiocytes exposed 
to 1hr warm ischemia and 24hr cold storage migrate through the collagen matrix to rest on the nylon filter below. 
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 After the cells are removed from the storage ischemia, they are placed back in the incubator 

for varying timeframes to allow time for migration. The three different timepoints used for 

collection after cold storage ended were the same as above, 1 day, 5 days and 7 days. The initial 

experiment with these chambers was 3 days instead of 5 days. During these time frames media 

was changed every three days with inhibitor also being added again. Control populations that did 

not undergo ischemia also were used and pulled at the same timepoint as the 1-day culture. There 

were two different cell populations after the timepoints were finished, the cells that remain on top 

of the collagen matrix functionally resembling epithelial cells still. The cells at the bottom of the 

collagen matrix on the nylon filter and on the bottom of the plate functionally resembling 

mesenchymal cells. To recover the top culture, a cotton swab was gently run over the surface of 

the collagen and swirled in a tube with Phosphate Buffered Saline (PBS). Next the PBS tube was 

centrifuged for 5 minutes at 1000 rpm. The PBS is then aspirated off the top and trypsin is mixed 

in for 5 minutes at which point media is added and centrifuged down again. The trypsin/media is 

aspirated and 1mL of media is added, 10uL of this mixture is mixed with 40uL of trypan blue and 

a cell count is performed.  

 For the bottom cell population and after the top layer is removed trypsin is applied to the 

nylon filter and bottom of the plate for 5 minutes. After this media is added and this mixture is 

moved to a tube and centrifuged down. Next, the trypsin/media is aspirated off and 1mL of media 

is added with 10uL removed and added to 40uL of trypan blue and a cell count is performed. When 

the cell count is finished the cells in the media are added to fresh wells to culture for further analysis 

via western blot and reverse transcriptase polymerase chain reaction (RT-PCR). The cell samples 

collected are cholangiocyte control (CC) without an invasion chamber, control top/epithelial (CE) 

and bottom/mesenchymal (CM) without ischemia, top (DE) and bottom (DM) days 1, 5, and 7.  
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TGF-𝛽 Receptor Antagonist 

 To determine if TGF-𝛽 serves a causative role, an inhibitor was used. Galunisertib (Tocris, 

Cat.# 6956) is a TGF-𝛽R1 inhibitor with an IC50 value of 172nM and molecular weight of 369. It 

also inhibits TGF-𝛽R2 with sub-micromolar IC50s. The inhibitor was solubilized in DMSO to 

create a stock 1 solution inhibitor concentration of 5ug/uL in DMSO. A stock 2 solution was made 

by adding stock 1 to HCC media at a 1:100 dilution for an inhibitor concentration of 0.05ug/uL in 

HCC media. The concentration of inhibitor applied to the cell samples was then 1uM. A vehicle 

control was also performed using the same concentration of DMSO without inhibitor mixed in 

HCC media. After the inhibitor was added, there was an hour between the time of application and 

time of warm ischemia to allow the inhibitor time to work. Ischemic conditions were applied as 

described above. After the cold storage ischemia was complete the cells were kept for analysis in 

the same way as the non-inhibitor cell populations. The inhibitor was used in the cell morphology 

and immunocytochemistry (ICC) experiment. The cell populations used were the control group 

consisting of a fresh cholangiocyte control (CC), vehicle DMSO control (CD), inhibitor control 

without ischemia (CG), the ischemic group (D1, D5, D7) and inhibitor group (GD1, GD5, GD7). 

 

Western Blot 

 To collect protein, cell cultures were washed with PBS then given 0.5mL of RIPA buffer 

and 0.05mL of proteinase inhibitor. The samples used were collected after the cell migration assay 

at the specified timepoints and included fresh cholangiocytes. After this, a Bicinchoninic Acid 

Assay (BCA) was performed with an albumin standard curve. This curve was used to determine 

the protein concentration with a Biotek microplate reader. Based on the concentration, the samples 

were denatured and reduced with added Laemmli buffer and 2-Mercaptoethanol and boiling the 
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samples for protein concentrations of 50ug/20uL per well. Samples were stored in the -20°C 

freezer until use.   

 Electrophoresis was performed by loading 20uL of sample per well alongside 10uL of the 

ladder and run on Bio-Rad precast gels and SDS-PAGE (10%) with 1xMOPS SDS running buffer. 

The gels were run at 50V for 30 minutes and 150V for the remainder of the run until the loading 

dye reaches the bottom of the gel. The protein was then transferred onto Polyvinylidene fluoride 

(PVDF) with Novex transfer buffer. The PVDF membranes were first soaked in 100% MeOH and 

then equilibrated in transfer buffer alongside gel membranes. Filter pads are placed on each side 

of the membranes and fiber pads on the outside of these. This transfer was run for 60min at 100V. 

After transfer the blots were soaked in TBS/Blotto-B with 0.25% Tween-20 to block non-specific 

binding sites. After blocking, the membranes are incubated with 1:500 concentration of primary 

TGF-𝛽 antibody in the same Blotto-B solution. This was done for 18 hours on an orbital shaker at 

4°C. There was trouble using the loading control protein, GAPDH, that has a concentration of 

1:1000 concentration of primary/secondary antibody. After this period the blots were washed with 

multiple fast rinses of water followed by two washes of Blotto-B for 5 minutes each on an orbital 

shaker. The secondary antibody is then added conjugated to HRP at a 1:1000 dilution for 60 

minutes at room temperature. Another wash is performed using fast rinses of water, two washes 

with 0.05% Tween-20 in TBS for 5min followed by two washes with 0.1% Tween-20 in TBS for 

5min each and then a wash in 0.5M NaCl in TBS for two minutes. The blots were then developed 

in 15mL Santa Cruz Luminol reagent for 5min at room temperature and imaged for 

chemiluminescence on a ChemiDoc. ImageJ was then used for analysis.  
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Reverse Transcription Polymerase Chain Reaction 

 To study gene expression, RT-PCR was performed. The samples used were collected after 

the cell migration assay at the specified timepoints and included fresh cholangiocytes, though 

issues with storage prevented same experiment comparison. The bottom cell samples were from 

an earlier experiment and included 1 day, 3 day and 7 day. Cells were washed with PBS before 

beginning RNA isolation using the lysis Buffer RLT with added 2-Mercaptoethanol. This 

homogenized lysate was then put through a DNA spin column and then RNA spin column that is 

washed multiple time to isolate and purify the RNA. This purified sample is then measured for 

concentration using the Nanodrop One. This gave concentrations (ng/uL) and ratios of A260/280 

and A260/230 that indicate RNA purity and sample purity. These were checked to ensure the 

samples were sufficient to undergo RT-PCR. After this, the values were input into cDNA synthesis 

protocol calculation to determine amounts of reverse transcriptase, nuclease-free water and sample 

to add. Next the samples were put into a thermal cycler; the priming stage was 5min at 25°C, 

reverse transcriptase was 20min and 46°C and finally RT inactivation for 1min at 95°C. The 

samples were then held at 4°C.  

 Once this was done, the samples underwent RT-PCR with the specific primer sequences 

added. TGF-𝛽 was added with both the 5’-3’ forward primer and the 3’-5’ reverse primer as well 

as double deionized water. GAPDH was also used with the same requisite primer sequences as an 

internal control or housekeeping gene. Each sample was done in triplicate for both the TGF-𝛽 and 

GAPDH. Once the final data was collected, the samples underwent statistical analyses.  
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Immunocytochemistry 

 The cells underwent the basic ischemic model described above without the invasion 

chambers and included fresh cholangiocytes, control with DMSO, control with inhibitor 

Galunisertib, 1 day, 5 day and 7 day as well as the corresponding inhibitor days matching each.  

Cells were cultured and a 5x104 density was grown on the sterilized cover slips before being fixed 

in 4% paraformaldehyde in PBS. For the morphology pictures, the cell cultures were fixated 

without cover slips and then imaged with a light microscope. After washing with PBS, the cells 

were permeabilized with 0.15% TritonX-100 followed by blocking unspecified binding with 5% 

donkey serum in PBS. After this, the cells were incubated with the primary antibodies for two 

hours and diluted in 5% donkey serum. The concentration of antibody used for TGF-𝛽 and for 

cytokeratin-7 (CK-7) was 1:100. After this the cells were washed with 0.1% Tween20 in PBS and 

PBS and then incubated with secondary antibody (rabbit IgG) at a concentration of 1:200 in the 

dark. Secondary antibody control testing was done without applying the primary antibody. The 

cells were then washed again before mounting on cover slips. Fluorescent imaging was performed 

with the Zeiss Axioimager A1 microscope. Microscopy was performed at the VCU Microscopy 

Facility, supported, in part, by funding from NIH-NCI Cancer Center Support Grant P30 

CA016059.  

 

Statistical Analysis  

 All data were tested for distribution normality. Most data were analyzed by parametric one-

way ANOVA with Tukey HSD and Bonferroni multiple comparison correction. The ICC data was 

also analyzed with t-tests to compare the ischemic group to the ischemic plus inhibitor group. Most 

data are expressed as mean plus or minus the standard deviation. The analytical experiments were 
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usually run in duplicate or triplicate. Statistical analysis was performed using ImageJ, Microsoft 

Excel and Prism software. A P value less than 0.05 was considered statistically significant.  

 

Troubleshooting 

 The initial cell migration assay was repeated due to failure to collect the top cell layer. Due 

to COVID-19 and lab renovations, assay samples had to be tossed before the ICC was optimized 

and RNA samples misplaced, preventing a proper dual experiment. COVID-19 also forced a tight 

time frame preventing ideal quality of ICC images, it took five rounds of ICC to obtain decent 

images. Some ICC slides were still unable to be used. Multiple occurrences of bacterial 

contamination prevented a final alternate inhibitor study and a repeat paired RT-PCR experiment. 

Western blot loading control also was unable to work, likely due to technical error. 
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RESULTS 

Cell Migration Assay 

 Cholangiocytes that were put under DCD ischemic conditions in invasion chambers 

showed greatly increase migratory behavior (Figure 5). The cells were counted after ischemia and 

a hemocytometer was used in order to average the cells per area. These cells also showed a great 

decrease in epithelial growth in comparison. The control timepoint represented as zero time, were 

collected at the same time as the day one recovery but without ischemia and showed some 

migration as well. The top population is functionally acting as epithelial cells and the bottom 

population is functionally acting as mesenchymal cells.  

 

Fig5. Cell Count Invasion Chamber 

 

Figure 5: Percent cell counts performed at the different timepoints for the top and bottom cell populations of the 
invasion chambers. The zero-time point is the control population collected 24hr after culture. Percent refers to taking 
the specific cell population (top/bottom) and dividing by all cells collected at that timepoint (top+bottom). N = 1 
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Following the above experiment was another use of the invasion chambers to measure 

migratory behavior with a TGF-𝛽	inhibitor and DCD ischemic conditions. The percent cell counts 

showed a decrease in bottom or mesenchymal cell population in comparison to the top or epithelial 

population (Figure 6). There was a decrease in epithelial to mesenchymal transition because of the 

inhibitor application in comparison to the previous migration assay. The next step was to study the 

changes in TGF-𝛽	expression	in	these	collected	cell	populations. 

 

Fig6. Cell Count Invasion Chamber with Inhibitor 

 

Figure 6: Cell counts performed at the different time points of recovery with inhibitor added into the invasion 
chambers. These are percent counts and show an increase in the top cell population relative to the bottom. N = 1 
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TGF-𝛽 expression (WB, RT-PCR) 

 TGF-𝛽	expression was then measured by analysis of protein and gene expression. The RT-

PCR data showed significant differences in the bottom or mesenchymal cell populations in 

comparison to the top or epithelial cell populations (Figure 7). All three were significant in 

comparison to all other samples, the day 7 top was significant in comparison to the control fresh 

cholangiocyte sample. There was a problem with sample storage that necessitated using previous 

bottom cell collection, so the bottom has a 3 day while the top has a 5 day.  

 
Fig7. RT-PCR Results 

  

Figure 7: RT-PCR results for the invasion chamber populations on TGF-𝛽	gene expression. The CC is fresh control 
cholangiocytes, top and bottom are the respective top and bottom layer from the invasion chambers at the three time 
points. Bottom is 3 Day while the top is 5 Day. P value significance is set at less than 0.05 and indicated with an 
asterisk. The samples are the relative expression measured to the internal control GAPDH. N = 3 
 

The western blot results tested for protein expression of TGF-𝛽 in the invasion chamber 
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there is a trend seen both visually with the averaged samples from the duplicates and with 

normalized data to the control that suggests the bottom mesenchymal protein expression of TGF-

𝛽 increases while the top epithelial protein expression stays about the same as the control 

cholangiocyte samples (Figure 9). The GAPDH loading control was not able to work.  

 
Fig8. Western Blot 

 

Figure 8: Western Blot looking at protein expression of TGF-𝛽 at 44kDa. This was performed with a ladder and in 
duplicates of samples. Samples include Control (CC), bottom or mesenchymal control (CM) and top or epithelial 
control (CE) that did not undergo ischemia. The rest of the samples were collected at 1 day, 5 days and 7 days from 
the top or bottom of the invasion chamber.  
 
 
Fig9. Western Blot Results 

  
Figure 9: Western Blot results did not show significance due to low power, so the data was normalized to the control. 
Each value was the average of two loadings on the gel and then divided by the control value. The cell samples are 
from the top (epithelial) and bottom (mesenchymal) of the invasion chambers at 1, 5 and 7 days. N = 2 
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Cell morphology 

 Cell morphology was another important aspect for studying the effects of the inhibitor. The 

data was calculated by grading the images based on epithelial or mesenchymal characteristics 

(Figure 10). Grade I is a distinctly epithelial appearance (small, cuboidal), grade II is a mostly 

epithelial appearance, grade III is a mostly mesenchymal appearance and grade IV is a distinctly 

mesenchymal appearance (elongated, spindle). Each image was divided into four quadrants and 

graded. The percent of each grade out of total cells was used for the mean value.  

Fig10. Morphology Images  

 

Figure 10: Cell morphology change with exposure to DCD ischemia. CC refers to fresh control cholangiocytes, CD 
is the DMSO vehicle control for the inhibitor, CG is the inhibitor Galunisertib control (no ischemia), D1,5,7 underwent 
DCD conditions without inhibitor and GD1,5,7 underwent DCD conditions with inhibitor. 
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Significance is seen in the cells that underwent ischemic DCD conditions, without an 

invasion chamber, in comparison to the fresh cholangiocytes and other controls except for the 

ischemia treated day 1 (D1) in the grade I epithelial category (Figure 11A,B). The inhibitor day 1 

(GD1) showed significance in comparison to the fresh cholangiocytes for grades II, III, IV. 

Significance was also seen between the ischemic D5, D6 samples and the inhibitor GD5, GD7 

samples except in grade II.  

 
Fig11A. Cell Morphology Results  

 
 
Figure 11A: Cell morphology results from the grading of pictures taken with light microscopy. Data is plotted time 
points against the mean percent of cells out of total cells. There are three main groups, the control group with fresh 
cholangiocytes (CC), vehicle DMSO control (CD), and inhibitor control (CG). The second is ischemia treated time 
points (D1,D5,D7) and third is ischemic conditions plus inhibitor treatment (GD1,GD5,GD7). Significance with P 
value <0.05 is indicated with an asterisk. G1 refers to cuboidal appearance, GII mostly cuboidal appearance, GIII 
refers to mostly spindle appearance and GIV refers to spindle appearance. N = 4 
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Fig11B. Cell Morphology Results- Grading  

  

  
Figure 11B: Cell Morphology results with each of the gradings pulled into their own graph. Grade I (top left) appear 
distinctly cuboidal (epithelial), grade II (top right) appears mostly cuboidal, grade III (bottom left) appears mostly 
spindle shaped and grade IV (bottom right) appears distinctly spindle shaped (mesenchymal). The same cell test 
populations are used as before. P value is again indicated with an asterisk and significance level of less than 0.05. N=4 
 
 
Immunocytochemistry 

 After undergoing DCD ischemia, the cells were tested for TGF-𝛽 to show changes in 

concentration (Appendix A). Inhibitor was also applied to these cells. Significance was seen 

between all samples within the ischemia group and in the ischemia plus inhibitor group all were 

significant except for control inhibitor and day 7 inhibitor (Figure 12). Statistical significance was 

also seen between the inhibitor group and the non-inhibitor ischemic group at the comparative 

timepoints (control to control, D1 to D1, D7 to D7). Secondary antibody controls were also 

performed to ensure there was no nonspecific binding (Appendix A).  
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Fig12. ICC Results 

 
Figure 12: ICC Results for TGF-𝛽, the time points are plotted against the average pixel intensity with comparison 
between the ischemia plus inhibitor treated and ischemia untreated group along with controls of each that did not 
undergo ischemia. Control refers to a fresh cholangiocyte control for the ischemia group without ischemia and 
inhibitor control without ischemia for the inhibitor group. Significant P value of less than 0.05 indicated by asterisk. 
Ischemia control (N=299), D1 (N=611), D7 (N=588), inhibitor control (N=403), D1 (N=911), D7 (N=1556) 
 

Immunocytochemistry was again performed to see the differences in CK-7, an epithelial 

cell marker (Appendix A). The groups were again ischemia vs inhibitor treated with a fresh 

cholangiocyte control for ischemia and an inhibitor control (Figure 13). There was a significant 

difference detected between all samples within the two groups. There was also a significant 

difference when comparing across the groups (control to control, D1 to D1 and D7 to D7).  

 
Fig13. ICC CK-7 Results 

 
Figure 13: ICC results of CK-7 testing across the inhibitor treated ischemic group and the non-inhibitor treated 
ischemic group. Control refers to fresh cholangiocytes for the ischemic group and an inhibitor control for the inhibitor 
group. D1 and D7 refer to Day 1 and Day 7 for both groups. Significant P values of less than 0.05 are indicated by an 
asterisk. Ischemia control (N=272), D1 (N=493), D7 (N=849), inhibitor control (N=351), D1 (N=647), D7 (N=878)  
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DISCUSSION 

Major Findings 

 Ischemic Cholangiopathy is a serious condition affecting the bile duct with a high 

occurrence in DCD livers. The disease can lead to graft failure, need for re-transplantation and 

higher rates of mortality. Because of this high occurrence in DCD livers, there have been efforts 

to optimize transplants in these conditions to reduce IC. However, the rates are high enough to 

warrant further investigation into the exact mechanisms to try and solve the problem a different 

way. Previously in our lab, they found that when DCD conditions are applied to cholangiocyte 

cells, they undergo fibrosis and migration, losing their epithelial markers in favor of mesenchymal 

markers. This epithelial to mesenchymal transition or EMT was identified as a possible mechanism 

due to the similarity of other ischemic injuries leading to fibrosis. Because EMT was shown to 

occur in these ischemic conditions, the next step was finding the pathway signaling molecule that 

can prevent EMT from occurring.  

 The focus of this research is on the role TGF-𝛽	 plays in initiating the epithelial to 

mesenchymal transition that occurs in IC. As such, changes in TGF-𝛽 expression were studied and 

there was a significant increase in TGF-𝛽 expression when ischemic DCD conditions were applied, 

and migration occurred. This trend shows a strong correlation between the EMT occurring and 

TGF-𝛽. To look more into causation, an antagonist of TGF-𝛽R1 was used. This inhibitor was 

shown to decrease the migratory behavior of cells exposed to DCD conditions as well as prevent 

the transition to mesenchymal appearances and retain an epithelial marker. All of this together 

makes a strong case for TGF-𝛽 playing a role in initiating EMT after ischemia in human 

cholangiocytes. More studies need to be done in order to determine its clinical significance, but it 

serves as another possible path to reduce ischemic cholangiopathy in DCD liver transplants.  
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Phenotypic Changes 

In order to better study changes in TGF-𝛽 expression, invasion chambers were used to both 

see migratory behavior and select out the populations that transitioned. When DCD conditions 

were applied to the cholangiocytes, there was a clear increasing trend of migration that indicated 

EMT was occurring. This trend was an increased rate of cells that migrated down through the 

chamber compared to the cells that remained on top of the collagen matrix. This necessity to 

transition through a collagen matrix meant that the cells had to functionally change in order to 

move through. One thing to note was that, although few, there was a small number of cells that 

migrated without exposure to ischemia. However, there was a large increase in cells that 

transitioned with just one day of recovery time after ischemia exposure. The change in morphology 

that accompanied the transition was seen in both previous experiments done in the lab and the 

current experiment. There was a significant increase in spindle shaped cells, or mesenchymal cells, 

in cultures that underwent ischemia separate from the invasion chambers. Other phenotypic 

changes associated with EMT occurred as well; the lab had previously shown the reduction in 

epithelial markers (CK-7 and E-cadherin) leading to an increase in mesenchymal markers (Snail, 

Vimentin). Due to this, only the CK-7 epithelial marker was used in the ICC experiment to 

determine if epithelial characteristics were retained. The significant difference in the ischemia time 

points from the control indicates these cells were transitioning from epithelial cells. Overall there 

were significant phenotypic changes that occurred with DCD conditions that help reveal the role 

of TGF-𝛽 when compared to the TGF-𝛽 Receptor inhibitor.  
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TGF-𝛽 expression 
 After using the invasion chambers, the cell populations were collected in order to test for 

TGF-𝛽 expression. Since the populations were distinguished by functional changes leading to 

transition through collagen, this allowed for much greater selection to occur. The bottom culture 

should selectively resemble mesenchymal characteristics and express an increase in TGF-𝛽 during 

transition. The cells remaining in the top of the culture should functionally remain epithelial and 

therefore not show as much increase in TGF-𝛽 expression. This of course was not a perfect 

experiment as previous invasion chamber studies in the lab showed a maximal migration around 

day 21, these experiments were all collected at a maximum of day 7. This means there could have 

been cells still on the top of the chamber that were preparing to functionally change but had not 

transitioned yet. This would explain slight increases in TGF-𝛽 expression in the top cell samples.  

 TGF-𝛽 expression was significantly increased in the RNA collected from the mesenchymal 

bottom cell population. This indicated that there is a correlation between ischemic induction of 

EMT and TGF-𝛽. By day 7, there was a very large increase in TGF-𝛽 expression that clearly 

showed this correlation. Western blots were also performed to study the changes in TGF-𝛽 protein 

expression following DCD conditions. Although significance could not be tested due to the semi-

quantitative nature and low repetitions, there was a visible trend occurring with an increase in 

TGF-𝛽 expression as time progressed in the mesenchymal cell population. Conversely, in both 

RT-PCR and western blot, the epithelial cell populations TGF-𝛽 expression remained about the 

same or increase much more slowly which is as we expected.  

 Finally, TGF-𝛽 expression was also measured by studying ICC images. Obtaining the 

images was difficult due to optimization problems that led to the day 5 pictures being unable to 

use. The changes in fluorescence in these showed a significant difference in TGF-𝛽 availability in 
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the ischemic populations in comparison to the control and inhibitor populations. These results may 

have been muted in the experiment due to the population not being pure. For ICC, no invasion 

chambers were used, just cells left in wells and exposed to DCD conditions, so the isolated 

functionally mesenchymal population were not used to measure TGF-𝛽 expression. This means 

the results were likely weaker in comparison to what the functionally selected mesenchymal 

population as it includes all the cells, including the non-migratory cells. All three of these 

techniques help indicate the strong corollary role of TGF-𝛽 in EMT. The next step was to prove 

causation using an inhibitor. 

 

Inhibitor Studies 

 Galunisertib is a TGF-𝛽R1 small molecule antagonist that has been shown to be effective 

in the prevention of EMT from occurring. It also has some inhibitory effects on TGF-𝛽R2, albeit 

at a much higher concentration. Effects of inhibiting this receptor likely wouldn’t cause problems 

interpreting the effects as TGF-𝛽R2 activates expression of TGF-𝛽R1 so the promiscuity would 

amplify the biological effect. This inhibitor was used in two separate experiments in order to 

observe its effects on cell migration after DCD ischemic conditions were applied. The inhibitor, 

when applied to the migration chambers, prevented the cell migration seen via cell count in non-

inhibitor migration assay in comparison to ischemic group and the controls (fresh cholangiocytes, 

vehicle control, inhibitor control). Instead, there was a reversal of the rates of migration with a 

greater increase in the top epithelial population in comparison to the bottom mesenchymal. The 

inhibitor was again applied to another cholangiocyte population that underwent DCD conditions 

without the chamber assay. This experiment also showed a reversal of the previously seen increase 

in mesenchymal characteristics with ischemia. Instead of grade IV mesenchymal like cells 
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significantly increasing as time increased, there was a decrease in this cell group and an increase 

in grade I, II like that of the controls. The vehicle control of DMSO and inhibitor control showed 

no significant differences in cell morphology compared to the control cholangiocytes, indicating 

that the inhibitor and DMSO did not cause any changes themselves. 

 Finally, these cell populations that underwent DCD conditions without the invasion 

chambers also were used in ICC. TGF-𝛽 antibody binding was measured and compared to non-

inhibitor ischemic fluorescence. There was a significant difference between these populations that 

indicates the inhibitor was working to prevent the TGF-𝛽 signaling cascade leading to further EMT 

progression. This was also shown by the significant difference between the inhibitor and ischemic 

groups in the CK-7 ICC, indicating a prevention of loss of epithelial markers. The inhibitor data 

indicates that TGF-𝛽 serves an important role in initiating and perpetuating the EMT signaling 

cascade that leads to fibrotic changes. This is key for further investigation of TGF-𝛽 being a 

therapeutic target for inhibition to prevent ischemic cholangiopathy in DCD livers. 

 

Limitations and Future Studies 

 There were several limitations on this project due to COVID-19 restrictions and technical 

problems in performing experiments. The restrictions prevented lab work for almost three months 

and required samples to be tossed before preservation and then caused a number of delays with 

reopening in obtaining equipment and performing experiments. Other experiments simply would 

not work after repeated attempts. Limitations surrounding the study itself mainly focus on strength 

of the study and translatability to clinical practice. Since the study is focusing solely on 

cholangiocyte reaction to ischemia, there is no knowledge of the interaction with other cell 

populations that could influence or mediate the EMT response seen or alter TGF-𝛽 expression. 
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Because of this, there are more experiments to be done to build clinical significance. The strength 

of the study is also a limitation because of the lack of information on the proposed down-regulation 

of the TGF-𝛽 signaling pathway in EMT. The main points that show TGF-𝛽 plays a role in 

initiating EMT, and not just correlation, is the reduction of migration and decreases in TGF-𝛽 

effect with inhibitor. This leaves some gaps in the knowledge to be filled. 

 Proposed future experiments would begin with the planned alternate TGF-𝛽 receptor 

inhibitor of a distinctly different structural build then Galunisertib to show that the inhibitor effects 

were not simply a result of the inhibitor interacting with other signaling pathways. Next would be 

looking at the down-stream effects, like whether SMAD4 phosphorylation is increased during 

DCD conditions and decreased when inhibitor is applied. Repeating the western blot and RT-PCR 

would likely help increase the strength of the study. Next, in preparation for clinical application, 

inhibitor studies to find optimal concentrations should be done followed by animal models such 

as rat liver syngeneic transplantation. These experiments would help overcome the limitations 

mentioned and enable a path toward clinical relevance to help reduce IC in DCD patients  
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CONCLUSION 

 In conclusion, the purpose of this study was to identify what role TGF-𝛽 plays in the 

epithelial to mesenchymal transition of primary human cholangiocyte cells following ischemic 

DCD conditions. RT-PCR, western blot and immunocytochemistry were used to determine 

correlation between EMT and TGF-𝛽. There was a clear increase in expression of TGF-𝛽 that 

provoked further investigation. An inhibitor study was then done, and results showed a significant 

decrease in cell migration and morphology change in comparison to non-inhibitor DCD conditions. 

These reductions in EMT show TGF-𝛽	plays a key role in inducing EMT in human cholangiocytes. 

Further studies will allow clarification of the changes to the signaling pathway as well as strides 

toward clinical relevance. The DCD conditions and experimental model were based on identifying 

the underlying mechanisms of ischemic cholangiopathy in order to one day reduce its occurrence. 

Reducing the complications of utilizing a DCD liver will allow more donated livers to be 

considered viable and therefore more patients helped.  
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Appendix A 

TGF-𝛽 Immunocytochemistry Fluorescence Imaging 
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Secondary Antibody Control  
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CK-7 Immunocytochemistry Flourescene Imaging 
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