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Abstract

OPTICAL SPECTROSCOPY AND 

DYNAMICS IN GROUP-IV ALLOY QUANTUM DOTS 

By Rahnuma Rahman

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University

Virginia Commonwealth University, 2020.

Major Director: Ümit Özgür, Ph.D.
Professor 

Department of Electrical and Computer Engineering 

In recent years, Ge Snx alloy quantum dots (QDs) have attracted significant interest due to their 

potential applications in photodetectors and light emitting devices in visible to mid IR spectral 

range and compatibility with silicon based platforms. While bulk Ge is an indirect bandgap 

-Sn at 

concentrations of ~10%, which however lowers the bandgap.  Utilizing quantum confinement by 

reducing the size to below the Bohr radius also promotes direct transitions and more importantly 

increases the fundamental transition energies in GeSn alloy QDs, making them suitable for a 

variety of optoelectronic applications. The emission energy of the GeSn alloy QDs can be tuned 

(1.31eV to 2.0 eV) by changing the size as well as varying the Sn composition. Incorporation of 

-Sn is also predicted to increase the transition oscillator strengths in both GeSn bulk and GeSn 

alloy QDs, and therefore, enhance radiative recombination rates.  Colloidal synthesis, which is 

used here to realize the GeSn QDs, provide the added advantage of being a facile, low cost 

approach to production of alloy QDs that can be passivated with different types of ligands via 

solution processing to enhance emission and change emission wavelength.
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Variation of size and alloying with Sn impacts carrier dynamics by changing the bright and 

dark exciton splitting energy and recombination pathways in the colloidal GeSn QD system. As a 

result, the ultra-small QDs (size equal to or less than 2nm) exhibit a distinct characteristic of blue 

shift in peak photoluminescence with increasing temperature. Larger size QDs (~4nm) on the other 

hand show little to no shift in PL peak emission with temperature. In this thesis, temperature 

dependent steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) 

measurements were performed on ultrasmall (~2nm) and larger size (~4nm) QDs with varying Sn 

content (up to 6%) to reveal the underlying size and composition dependent physical properties 

that govern the carrier dynamics of the system. A rate equation model was developed considering 

the temperature dependences of excitonic levels, trap state densities, carrier transfer between 

excitonic and trap states, and radiative and non-radiative recombination to fit the integrated PL 

intensity and peak PL energy dependences on temperature.  

The model shows that there is an increase in surface trap state density with decrease in QD size

and increase in Sn content.  Smaller QDs show larger changes in excitonic levels with temperature 

which causes a steady increase in PL peak emission for ultra-small QDs from 15K to 300K. There 

is also activation of bright excitons which dominate higher temperature PL peak emission while 

lower temperature PL peak has significant contribution from trap states and dark excitons. These 

dependences explain the observed steady increase in PL peak emission for ultra-small QDs and 

excitons with increasing temperature from 15 to 300 K. On the other hand, for larger QD’s the 

exciton splitting is smaller and there is little change in the excitonic levels with temperature 

causing the PL peak emission to show negligible change with change in temperature. The model 

also shows that, the non-radiative channels activate at lower energies when there is significant 
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increase in Sn content for QD’s with comparable sizes and exciton binding energy stays more or 

less independent of Sn composition. 

Although GeSn QD system can span the spectrum from the visible to near-IR region, to extend the 

spectral coverage to shorter wavelengths (UV) alloying with Si can be employed. This thesis also 

explores GeSiSn alloy QD system using PL and TRPL studies. Introducing Si changes excitonic 

dynamics in the GeSiSn system with the decay time staying in ns range for the whole temperature 

range (15-300 K). Extension of the rate equation modelling is used to determine the luminescence 

mechanisms of the system and the temperature independent decay time is understood to be due to 

significant lowering of the dark-bright exciton splitting energy with Si incorporation.  These 

investigations into changes in optical properties, carrier relaxation and recombination processes 

with change in size and composition is crucial to designing future efficient optoelectronic devices

based on abundant group IV elements. 
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Introduction 
 

Among alternative materials that can be explored for application in optoelectronic devices, Silicon 

and Germanium draw substantial attention. These group IV elements are found in abundance in 

nature, are low cost, non-toxic and have well established existing processing technologies. Group 

IV materials are used in many optoelectronic devices like photodetectors, light emitting diodes, 

photovoltaics and imagers [1-7] and in recent years, the wavelength range  of operation for these 

devices have been extended to the mid and long-wave infrared (IR) regions. Light absorption cross 

section and emission efficiency from these devices however suffer from major limitation as it has

indirect nature of the bandgap (Ge bandgap 0.67 eV). Indirect semiconductors have relatively low 

optical transition probabilities as the momentum conservation for radiative recombination requires

the involvement of phonons.  

 
Figure 1.1: Band structure of bulk (a) Silicon (b) Germanium [8] 

There are number of methods that have been explored to achieve direct transition in 

Germanium over the years such as application of mechanical stress [9-11], heteroepitaxial growth

[12, 13] -Sn and Silicon [14-17] . Density functional theory (DFT) 

calculations performed by Gupta et al. and Yin et al. predict that 8% and 6.3% Sn content 

respectively, can cause the indirect to direct band gap crossover in GeSn alloys [18, 19]. 
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Photoluminescence study of strain free-GeSn layers suggest that direct gap transition occurs at 6–

8% Sn [20, 21]. -Sn incorporation also increases electron and hole mobility which can be useful 

in fabrication of high-speed optoelectronics [22, 23] -Sn (0.08eV) incorporation 

lowers the bandgap of the alloyed Ge and Sn system and promotes metallic character. This in turn 

limits spectral range of the devices based on GeSn alloys to the IR spectral range. To circumvent 

this lowering of bandgap, quantum confinement can be utilized. In fact, by using structures that 

utilize quantum confinement such as quantum wires [24] and quantum dots [25], the spectral range 

of alloyed GeSn system has been extended to visible. 

 
Figure 1.2: Change in band structure due to quantum confinement 

Semiconductor quantum dots (QDs) are lucrative as they can allow for wider bandgap 

tunability in addition to enhanced optical efficiency. This is a direct consequence of quantum 

confinement which originates from reduction in the size from bulk to that below the exciton Bohr 

radius of the material. Emission energy and probability of radiative transition hence can be tailored 

by changing the size of the nanoparticles. In quantum confined regime, effective mass 

approximation can be used to determine the change in energy gap for the nanocrystals given by 
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the following formula [26],  

=  
2

1
+

1
1.786 0.248     … . .1 

Here,  and  are effective masses of electrons and holes, R is the nanocrystal cluster radius, 

 is the effective Rydberg energy  

Colloidal synthesis of quantum dots offers additional advantages as they are low cost, solution 

processed routes of quantum dot synthesis. Quantum dots are prone to defects at surface which 

hinder radiative recombination. Passivation with different types of organic molecules are routinely 

used to enhance emission and quantum yield of the QD[27, 28]. Passivation can also alter emission 

characteristics in certain QD systems and even shift the emission wavelength[29, 30]. Colloidal 

synthesis also offers easy passivation of surface via wet chemistry. Colloidally synthesized ultra-

small GeSn QDs with sizes as small as 2 nm have recently been reported. These QDs have 

composition tunable energy gaps from visible to near infrared [31, 32]. In these ultra-small Ge1-

xSnx QDs, quantum confinement allows highly efficient optical transitions. Steady state 

photoluminescence (PL) of the QD’s show that, by varying Sn content between 5% to 23%, energy 

gaps can be varied from ~2eV to 1.72eV [33]. TRPL studies show, slow decays on the order of s 

at 15K and ns at 300K for the photoexcited carriers in these QDs. Theoretically, the slow decay is 

explained to be a result of radiative recombination of spin-forbidden dark exciton and from carriers 

at surface traps. At high temperature, with additional thermal energy, these excitons can transition 

to a spin-allowed bright state and recombine radiatively with short decay time on the order of ns. 

-Sn also enhances the oscillator strength in Ge QDs enhancing radiative transition rates and 

causes blending of excitonic states[32] which gives GeSn quantum dots great potential as emitters 

in different optoelectronic applications. The temperature dependent steady state PL studies show 

a blue shift in PL peak emission for the ultra-small QDs. To further extend the spectral coverage 
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to UV range, Si can be incorporated into the alloy system. 

In this thesis, Ge1-xSnx quantum dots that are of size ~2 nm QDs (Sn content 6.6% and 5.5%) 

and 4 nm QDs (Sn content 2.4% and 5.9%) have been investigated using solid state 

photoluminescence and time resolved photoluminescence. 2 nm size QDs show clear blue shift 

with increase in temperature of around 55 to 60 meV. 4 nm QDs do not exhibit any perceptible 

shift with temperature. To interpret these experimental observations, a rate equation based model 

has been explored in this thesis. This model considers the bright, dark and trap states in QDs and 

change in carrier distribution between these states with change in temperature. To explore 

possibility of extending spectral coverage towards UV, GeSiSn alloy QD system is investigated 

which shows ns decay in both low and high temperature regime. The model is then extended to 

the ternary alloy system to differentiate between the temperature dependent decay characteristics 

of the binary and ternary QD alloy system.  

The discussion in this thesis will be distributed over several chapters to introduce and 

sequentially explore the large topics of excitonic splitting (dark and bright states), change in 

splitting due to temperature, carrier distribution between excitonic and trap levels through 

interactions with phonon, and finally change in emission energy and PL quenching of group IV 

alloy QDs. The first chapter discusses the overall motivations of utilizing the group-IV binary and 

ternary QD material system, spectral coverage with change in size and composition, possible 

methods of extension of operational spectrum and the challenges that will likely arise in practical 

implementation of the QD system. Next chapters will focus on previous work done on this GeSn 

alloy. This will transition into detailed discussion about recent experimental results, the theoretical 

model being explored and a discussion of the physics governing the behaviors observed. This 

thesis in short, will consider exciton splitting, trap state distribution and overall energy landscape 

of quantum confined group IV alloys and then introduce a theoretical modelling to further explain 
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the PL behavior with change in temperature and explain the carrier dynamics. Once that 

background has been laid out, the mathematical model is used to derive a correlation is developed 

between the key parameters of the theoretical model and physical phenomenon occurring in the 

QD system. 
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2. Optical Properties of GeSn Alloy Quantum Dots 

 2.1 Background  

Silicon (Si) and Germanium (Ge) is a group IV non-toxic material and are found in abundance in 

nature. Both bulk Ge and Si have indirect bandgaps, that is the minimum of their bandgap is not 

 and radiative recombination of carriers requires phonons for momentum 

conservation. However, if the materials can be made direct by engineering its bandgap, it can 

unlock useful new properties that can find applications in different kinds of optoelectronic devices

spanning the UV to infrared spectrum. In the past few years, different methods have been explored 

experimentally to engineer the bandgap of group IV materials and make them direct. In Ge, since

140 meV), application of tensile strain can 

lower the L valley minima making it direct. Application of tensile strain can be achieved in several 

different methods such as micromechanical strain application on bulk germanium or via the 

method of epitaxial growth of Ge on larger lattice constant buffer layers etc.   

 
Figure 2.1. Calculated band structure for GeSn alloy with (a) 5% Sn, (b) 15% Sn, and (c) 25% Sn. [17] 

One other method is alloying with material with lattice constant mismatch like Germanium or 
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Silicon. Lattice constant of Ge is 5.65 Å. -Tin (Sn) is good conductor that has lattice constant of 

6.489 Å. As a result of alloying these two materials, the lattice constant changes because of tensile 

strain which in turn changes the bandgap to make it become more and more direct. It has been 

demonstrated that at around 6% to 10 % Sn integration with Sn [34], Ge tends to become quasi-

direct [15, 16]. It has also -Sn incorporation tends to increase mobility of the 

holes and electrons in GeSn alloy making it suitable for high speed applications. The alloy thus 

shows tremendous potential as a light emitting devices. These advantages are amplified manifold 

by the ease of integration with silicon platforms in Ge based devices at low cost [35]. 

The bandgap of Sn itself is on the lower side (0.08 eV), so although incorporation with Sn 

tends to make the alloy quasi-direct, it lowers the bandgap and puts a limit on access spectral 

bandwidth. One way to gain access to broader range can be done by utilizing quantum confinement 

by shrinking the size of the alloy from bulk to quantum dots (QD). Confinement offsets the effect 

of alloying as it tends to increase the energy gap. So, instead of using bulk Germanium, a better 

approach is to use GeSn alloy quantum dots. Also, at size scales that are smaller or comparable to 

bulk Bohr radius of the semiconductor [36, 37], the overlapping of electron hole wave functions 

result in discrete energy levels like atoms. This in turn enhances the efficiency of the radiative 

recombination manifold compared to alloyed bulk counterparts. Theoretical first principles 

-Sn incorporation increases the oscillator strength to the GeSn 

quantum dots mixing the bright dark exciton states [32]. GeSn quantum dots thus have potential 

as good emitters in different optoelectronic applications.  

Quantum Dots can be made in several ways. Some notable methods are molecular beam 

epitaxy, chemical vapor deposition or colloidal chemistry. Colloidal synthesis is both low cost and 

easy to implement wet chemical method. It also provides an easy route of ligand passivation for 

the synthesized quantum dots and can be later drop cast onto different substrates. Ligands are a 
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key parameter when preparing nanomaterials by wet chemical precursors; It can function primarily 

as a stabilizing agent, providing colloidal stability, stopping uncontrolled growth and 

agglomeration. The ligands control the rate of growth, particle morphology, reaction pathways and 

the particle size distribution. At a deeper level, the electronic structure of the passivating ligands 

contributes to the overall electronic and optical profile of the nanoparticles, blocks surface states 

and hence has a direct effect on emission yields [38]. In certain QD systems it can even alter the 

emission characteristics. Some QDs like Si nanoparticles are especially prone to oxidation so 

ligand passivation is routinely used to enhance emission and stop degradation of the QD over time 

[39].  

There are several drawbacks that tend to make the successful implementation of GeSn QD’s 

in different applications difficult. Sn is a large atom and puts significant strain around the lattice 

site where it substitutes Ge atoms causing the lattice constant to increase. This effect is significant 

and influences bandgap of GeSn alloy quantum dots to a great extent making the energy gap lower. 

It also increases disorder in the system. In the exceedingly small (less-than ~2 nm) size QDs, the 

ligands are at times not able to passivate all the free surface states. This is because the size of the 

ligands are usually large as they are organic long chain molecules. A loss of emission is observed 

at sizes of around 5-10 nm. This can be due to loss in quantum confinement which causes lowering 

of the energy gap. This lowering of energy gap when coupled with remaining defects and thermal 

variations can cause complete quenching [40] of any radiative recombination. Also, the highest 

transition energy with ultra-small dots have been around 2eV with Sn incorporation of 5.5%. To 

extend the coverage of the GeSn QD, another method can be incorporation of Silicon into the 

system to make a ternary alloy system. 

Moontagroon et. al [15]  reports that can be achieved 

in bulk SiGeSn alloy by varying the composition of Silicon and Sn. Lattice parameter of silicon 
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(5.43Å) is less than Ge and Sn and alloying can cause compressive strain which can shift the 

bandgap to higher energy. Quantum confined GeSiSn QDs can thus expand spectral coverage to

the short UV wavelength range giving larger control over tunability via both size and composition. 

2.2 Previous Work

GeSn bulk and GeSn thin films area well explored system. Ge Snx alloys  thin films have been 

produced via chemical vapor deposition and molecular beam epitaxy and demonstrate tunable 

band gap energies in the mid-IR region [41, 42]. There are, however, challenges associated with 

this as growth of homogenous thin films. They tend to show phase segregation during high 

temperature growth process due to poor crystallinity and show increased presence of high density 

of defects in case of low temperature growth [43]. 

To this end, colloidal synthesis has demonstrated high quality, solution processable Ge Snx

QDs while avoiding phase segregation of Sn.  Before the samples measured in this research, the 

synthesis of phase-pure Ge Snx 

with Sn compositions up to x = 0.279, have been demonstrated [31].  

 
Figure 2.2: PL spectra of Ge Sn
gaps as a function of Sn concentration in 2.1 and 2.7 nm QDs. Inset shows the size histogram of Ge0.77Sn0.23 QD sample, 
representative of QDs with di post synthetic size selection. [33] 

Ultra-small QDs have also been explored to investigate the full extent of quantum 
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confinement in GeSn QDs with size 2.0±0.7 nm and Sn compositions of x = 0.05, 0.07, 0.12, 

and 0.236 (Figure 2.2). These particles retain their diamond cubic structure and have 

homogeneous distribution of Ge and Sn. The GeSn alloy QDs have the same average particle 

size and spherical morphology, hence the systematic red-shift (1.88 to 1.6 eV at 15K) in PL 

can be attributed to the decrease of bulk bandgap due to increasing Sn content. As the gaps of 

Ge Snx QDs are well above those of their bulk counterparts (0.1- 0.6 eV) [44], it is clear 

indication of strong quantum confinement effects in this ultrasmall size regime. The 

theoretical energy gaps calculated using tuned HSE for 2.1 and 2.7 nm size GeSn QDs are 

plotted alongside the low and high temperature peak positions in Figure 2.2 with change in Sn 

content. Experimentally obtained band-gaps are consistent with theoretically calculated values 

for 2.7 nm QDs. The deviation from 2.1nm size can be attributed to a combined effect of the 

size variation in the sample and PL from larger size dots in the sample dominating radiative 

recombination due to better passivation. The PL peak positions are also significantly blue 

shifted in room temperature compared to low temperature. This temperature dependence shift 

in peak emission energy from QD could be due to the interplay between excitonic states.  

 
Figure 2.3: Dark forbidden and Bright  allowed. Bright and dark 

different spin arrangements (‘up’ or ‘down’) 

Excitons have significant effect on the optical properties of semiconductors. Excitons are 

electron–hole pairs that are bound by Coulomb interactions. Depending on the orientation of 
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the spin, excitons can be bright or dark. In bright excitons, spins of electron and hole are anti-

parallel and radiative transitions are allowed through photon emission. In dark excitons, the 

spins are parallel hence radiative recombination requires spin flip for spin-momentum 

conservation. As a result, bright excitons have higher probability of recombination, shorter 

lifetime (ns) and hence are considered optically active. Dark excitons have low transition 

probability as they require spin-flip, have long decay time  and are considered 

optically inactive or dark. Electron-hole exchange interaction causes there to be energy 

difference or splitting to exist between dark and bright exciton states ( ). Quantum 

confinement effect enhances the electron-hole exchange interaction and as a result the splitting 

observed in semiconductor nanocrystal is generally large compare to bulk semiconductors. In 

bulk II–VI semiconductors, splitting as low as 0.13 meV (CdSe) have been reported[45]. On 

the other hand DB can be in the order of few meV to several tens of meV [46, 47] depending 

on the QD system, size and composition. At low temperatures, excitons in the QDs occupy 

the lower-energy dark states and as the temperature increases, thermal activation of bright 

exciton takes place and consequently PL emission blue-shifts to higher energy. Temperature 

dependent photoluminescence studies on these sample samples showed fast ns decay at room 

temperature  which is consistent 

with the excitonic carrier dynamic. 

The decays were obtained in this work were obtained by fitting to a biexponential model 

given by, 

+ . 

Ultra-small QDs are harder to passivate and hence can contain large number of surface defects. 

Two-component PL decay is observed where non-radiative surface recombination is present 
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which is faster than radiative decay [48] as can be seen in Figure 2.4.  remains in the 

range or around 10 ns for QDs with Sn content up to 12% and 28 ns for the QD sample with 

23% of Sn. At low temperature,  (~ 24 showing no dependence on the Sn content  

 
Figure 2.4: PL decay times measured at (a) 15 K and (b) 295 K as a function of %Sn in Ge Sn  QDs. Fast decay components 
are shown in the insets of (a) and (b) [33] 

for up to 12 % Sn but  The room temperature 

decrease in PL decay time is indicative of activation of bright exciton states. Theoretically the 

decay time at room temperature is expected to be around 10-20ns showing very weak decrease 

with increase in Sn content. The dark excitons should have a theoretical lifetime of ~1-

with slight increase up to 5% Sn incorporation. The significant change at 23% indicates 

surface states that contribute to radiative recombination with slow decay. At low temperatures, 

carriers could be localized at the surface, with small overlap between the wavefunctions and 

these carriers could account for almost no change in PL lifetime up to 12.5% Sn. 

Another study by the same group has explored larger size Ge1-xSnx alloy quantum dots 

(QDs) with variation between 3.3±0.5 to 5.9±0.8 nm. The Sn composition was varied from 

(0–20.6%), and which leads to near infrared (IR) photoluminescence (PL) and tunable energy 

gap. Linear expansion of cubic Ge lattice with increasing Sn was observed that indicated stress 

free formation of nanoalloys. Energy gaps were significantly blue shifted from bulk Ge

(0.67eV) for Ge1-xSnx alloy QDs because of quantum confinement. 
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Table 1: Comparison of the elemental composition, crystallite and primary particle size, and room 
temperature solid state absorption onsets and photoluminescence peak energies for 3.3 ± 0.5 – 5.9 ± 
0.8 nm Ge Sn  alloy QDs.[40]

 

[a] e individually prepared samples 
and the averaged values obtained from 5 individual measurements for each sample are presented. [b]Average particle sizes 

[c]Crystallite 
sizes were calculated by applying the Scherrer formula to (111), (220), and (311) reflections of PXRD patterns and average 
values are presented. [d]

[e]Onset cut off due to detector limitation. [f] No detectable PL was noted. 

Table 2.1 lists the change in PL peak position observed with change in QD size and 

composition (Sn concentration). The PL peak energy varies in the near-IR with change in 

composition. In this study, the reported PL peak and absorption onsets were found to be 

remarkably close to each other which is indicative of energy gap transition. As can be noted here, 

PL from larger dots are not discernible in this study for samples with Sn content higher than 5.6%.

Poor surface passivation couple with weaker confinements because of increase in nanoparticle 

size, could lead to large numbers of non-radiative recombination that can lead to loss of 

luminescence. Carrier relaxation was again explored through TRPL at low and high temperatures 

for Ge1-xSnx QDs with Sn composition 1.9%, 4.2% and 5.6%. Biexponential fits like the one 
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previously mentioned revealed again fast decay in the order of 8 ns -11.7 ns and 80 ns -119 ns at 

room temperature. Low temperature decays were in the order of 1- 8- . 

In this thesis, carrier dynamics in ultra-small (~2nm) and larger (~4nm) GeSn QD systems are 

explored using temperature dependent steady-state and time-resolved photoluminescence. 

Changes in PL peak position and decay times with temperature for QD samples with varying sizes 

and compositions are investigated. The temperature dependent changes in decay time, Pl peak 

energy and integrated Pl intensity are explained using a rate equation modelling considering the 

change in exciton splitting with temperature as well as carrier redistribution between bright, dark 

excitonic states and trap states.  
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3. GeSn Alloy Quantum Dots: Modeling of Carrier Dynamics and Study of 

Steady-State and Time-resolved Photoluminescence with Size and Composition 

Variation 

GeSn quantum dot is an interesting alloy QD system due to its innate compatibility with existing 

silicon platforms. There is the additional advantage due to QD systems having inherent size tunable 

-

Sn. To utilize this system to unleash its full potential for, a complete understanding of excitonic 

dynamics, distribution of carrier populations after excitation, effect of trap states and effect of 

temperature on the overall performance of the QD system is necessary.  

       In this chapter, temperature dependent steady-state and time-resolved PL measurements on 

the GeSn QD system are discussed first. In the subsequent section, a rate equation model is 

introduced to explain the observed experimental behavior. This theoretical model aims to establish 

a correlation between carrier dynamics involving trap states and excitonic states via absorption 

and emission of phonons while considering the change in excitonic splitting energy that may occur 

with change in temperature. The following section will draw comparison between the experimental 

data and the theoretical estimates to further elucidate the physical significance of the parameters 

defined in the model. 

3.1 Temperature dependent steady-state and time-resolved PL measurements: 

Change in carrier dynamics and emission characteristics in Ge Snx QDs were explored using 

steady-state photoluminescence (PL) and time resolved photoluminescence (TRPL). Ge1-xSnx QD 

samples were produced by colloidal synthesis using high boiling alkylamine/alkene solvents and 

high temperature coreduction of halides in high boiling temperature [49]. The colloidal samples 

were drop cast onto sapphire or silicon substrates for optical measurements. The samples 



16 
 

investigated had 5.5% and 6.6% Sn for the ultra-small (2 ± 0.7nm sized) quantum dots and 2.4 

and 5.9% Sn for the (3.7 ± 0.4 nm sized) larger size quantum dots. The steady-state PL 

measurements were performed by using a frequency doubled Ti: Sapphire laser with 386 nm 

wavelength, 150 fs pulse width, and 8kHz - 80 MHz repetition rates. To prevent degradation of 

the sample, the power of the incident laser radiation was kept at 1-3mW (at 80 MHz repetition 

rate) with the laser focused to a spot size of 100 microns Considering the number of atoms in 1 

layer of QD (~1013 to ~1014), this gives less than 1 photons per QD on average. The number of 

carriers generated is thus very low. To detect this level of intensity of emitted photons, a liquid N2

cooled CCD camera connected to a spectrometer was used to obtain the steady-state PL spectra at 

different temperatures using a closed cycle He cryostat. TRPL at different temperatures were 

collected using the same excitation source and a Hamamatsu streak camera with 25 ps resolution.  

Figure 3.1: PL spectra of Ge Sn  QDs with varying Sn contents for temperatures ranging from 15K to 300K. (a) 5.5 % and (b) 
6.6 % Sn content (~2 nm QDs). (c) (c) 2.4 % and (d) 5.9 % Sn content 4 nm QDs.  

Figure 3.1 presents the solid state photoluminescence with temperature variation for the ultra-
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small (~2nm) [(a) and (b)] and for the larger size (~4nm) [(c) and (d)] quantum dots. The peak 

emission energy shifts from visible to near infrared (1.88 to 1.37) with the increase in QD size. 

There is slight red shift from 1.87 eV to 1.86 eV measured at 15K with the variation in Sn content 

for 2nm quantum dot system. Since the size has little variation between the two samples, this can 

be attributed to the increase in Sn content. The 4nm quantum dots however show broad peaks and 

the peak position for the QD with 2.4% Sn is around 1.38±0.3 eV measured at 15K. For the 5.9% 

Sn composition there is competition between two pronounced peaks at 1.37eV and 1.42eV at 15K. 

The broader peak could be due to size dispersion where two different sizes of QD’s in the sample 

that are luminescent at slightly different energies. Increasing Sn content is theoretically estimated 

to increase oscillator strength which could result in different sized QDs in the sample to have 

strong luminescence in the 5.9% Sn content sample at low temperature. As the temperature 

increases both smaller and larger size QDs show decrease in intensity of PL emission as non-

radiative recombination channels are activated. This ultimately smears the two prominent peaks 

giving one broad peak at 300K for 5.9% Sn sample.  There is also a tail observed with a peak 

coming up in the 4nm QD PL spectra at 1.6eV. Similar peaks and tails have been observed in other 

colloidal QD such as CdS with size variation between 3.1nm to 4.3nm[50]. These QD shows 

biexponential decay dynamic for the trap related peaks that show  ns lifetime. The faster decay 

components show significant contribution in the larger QDs and it was attributed to the deep trap 

state formation following shallow trap to trap diffusion in these systems. The slower components 

were attributed to the emission from the deep trap states. It was also observed that there is an 

increase in population of deep trap states with increase in QD size. More investigation into this 

high energy tail is necessary to understand the overall characteristics of this emission. Systemic 

size dependent TRPL studies can be proposed the future to understand this observed peak. 
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Figure 3.2: Variation in PL peak position with temperature in the (a) ~2nm ultra-small QDs with varying Sn content at different 
points in the samples denoted with P1, P2 and P3, and (b) ~4nm QDs with varying Sn content. 

For both sizes of QDs, PL peak energies have been obtained by fitting to Gaussian functions

As can be seen in Figure 3.2a, a clear blue shift of about 55-60 meV is evident for both 5.5% Sn 

and 6.6% Sn 2 nm QD samples as the temperature is increased from 15K to 300K. This blue shift 

can be attributed to the interplay between dark and bright exciton dynamics.  As alluded to earlier 

in Section 2.2, dark excitons are optically inactive and have low probability of radiative 

recombination as they are spin forbidden. Bright exciton recombination is allowed and more 

probable due to anti-parallel spins. Dark excitons hence have longer lifetimes and are lower in 

energy in most quantum dots as opposed to bright excitons which have shorter lifetimes. Increased 

electron-hole exchange interactions cause splitting between dark and bright states often denoted 

by . At low temperatures, emission is dominated by the recombination of long-lived dark 

exciton states. As the temperature increases, carriers can be thermally excited to occupy the high 

energy bright exciton states leading to higher energy emission and this results in the observed blue 

shift. While bright exciton recombination at high temperatures enhances the radiative efficiency, 

increase in non-radiative recombination with temperature overcomes this enhancement resulting 

in an overall reduction in PL intensity as temperature increases. The previously reported 

experimental PL peak blueshift values range from 35meV to 110 meV [33] for 2 nm GeSn QDs 
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of varying Sn compositions from 5.5% to 23.6%. The samples under investigation (5.5 – 6.6 % Sn 

content), however, show an additional 20 to 25 meV shift as temperature changes from 15 K to 

300 K. Theoretical calculations suggest a bright-dark exciton splitting value of around 50-60 meV 

for 2nm pure Ge QD systems (80 meV in 1.4 nm Ge QDs), and decreasing splitting with increasing 

Sn content. Larger than predicted shifts have been partially attributed to electron-hole radiative 

recombination via low energy surface states (also with relatively longer lifetime ) with 

decreasing temperature[32]. At higher temperatures carriers can be de-trapped from the surface 

states and can gradually repopulate the bright states with increase in thermal energy of carriers. 

Low temperature radiative recombination via shallow surface trap states and gradual activation of 

bright exciton states with increase in temperature can account for the additional blue shift observed 

in the investigated samples. 

The larger size quantum dots (~4nm) on the other hand exhibit no significant shift with very 

minor variation which is within the error margin of the Gaussian fits. A redshift of less than 10 

meV can be predicted based on measurement resolution. As in bulk semiconductors, redshifts of 

PL peak energy have been reported in many colloidal QD systems such as CdS [51], CdSe/ZnS 

[52], ZnS/InP [53], Ag2Se [54] due to energy gap lowering with increasing temperature and have 

been modeled using Varshni’s empirical formula. With increase in size, there is possible lowering 

of exciton splitting level. Again, change in carrier population as temperature is increased along 

with lowering of bright and dark exciton level, could result in a shift that is negligible in case of 

the larger GeSn QDs.  In the simplest picture, we consider there to be a slight energy gap shrinkage 

due to lattice expansion, electron-phonon interaction with increasing temperature and change in 

the dark-bright exciton splitting ( DB). The observed difference in shifts in the two different sizes 

of QDs with increasing temperature thus can be explained using an energy level model with the 

excitonic levels and trap levels. 
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Figure 3.3 XB XD) energy levels with temperature for 2 nm and 4 nm GeSn QDs, where 
the dark- DB  at high temperature 
and trap state recombination at low temperatures results in blue shifted emission in the 2 nm QDs, but insignificant change is 
observed for 4 nm QDs, where the energy gap shrinkage with temperature is comparable to DB.  

This three level energy diagram model is illustrated in Figure 3.3. As discussed in Chapter 1, 

ultra-small QDs are often harder to passivate with large organic ligands and thus are expected to 

have a larger number of surface trap states. Initially excited carriers can relax into the surface trap 

states along with dark states. PL at 15 K originates from radiative recombination of dark excitons 

and the surface trap states. With increasing temperature, while the energy gaps slightly shrink, 

thermal activation of higher energy spin singlet bright excitons and carrier detrapping from surface 

states due to thermal excitation results in a PL blueshift. On the other hand, the 4 nm QD samples 

do not show any discernible shift. 4nm QD’s can be better passivated due to their larger size and 

surface area. Therefore, their surface trap state densities are expected to be lower and lower number 

of carriers can initially relax into those states compared to the 2 nm QDs. So, in the lower 

temperature regime, 4nm QDs, radiative recombination happens primarily via dark excitons. The 

change in energy gap with increase in temperature and exciton splitting  DB are comparable. As a 

result, although bright excitons get activated and the energy levels of bright excitons at 300K is 

very close to the value at 15K and so, there is little to no shift observed in these samples.  Interplay 

between the number of radiative carriers in bright, dark and trap state along with the change in DB 
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and energy gap with change in temperature, results in an observed blue shift in ultra-small QD and 

no shift for larger QD sizes. 

Increase in PL peak energies with temperature (by 54 meV – from 0.893 eV at 10 K to 0.947 

meV at 300 K) [55] has been previously reported in silicate glass samples doped with PbS quantum 

dots and has been attributed to two energetically different emitting states that are results of dark 

and bright exciton splitting and thermal energy activated interplay between them. Temperature 

dependence of the PL decay and integrated PL of oleic acid capped 2-3 nm PbS quantum dots [56, 

57] similarly show a blue shift of around 30 meV in PL peak position with increasing temperature. 

Such behavior in PbS QDs has been explained using a three level system composed of bright 

exciton, dark exciton, and surface states, where dynamics were governed by redistribution of 

carriers between the dark and bright states in the low temperature regime (<180 K), by detrapping 

of carriers from the surface states to the dark and bright states in the intermediate temperature 

range (180 – 250 K) and by primarily bright exciton radiative recombination along with enhanced 

nonradiative processes in the high temperature range (> 250K). Using this model, a dark-bright 

exciton splitting energy of 3 meV was obtained, consistent with experimental expectations. 

Perovskites also tend to show blue shift in PL peak emission with increase in temperature in both 

films and in nanocrystal. Similar blue shift has also been observed in semiconductors such as 

copper halides (CuX, X = Cl, Br, and I) [58] and some ternary chalcopyrite containing Ag and Cu 

[59]. One of the largest blue shift with temperature is observed in lead halide perovskites such 

CH3NH3PbBr3 perovskite QD system that shows around 150 meV shift with change in temperature 

20K to 300K [60].  

Different non-radiative channels are activated with change in temeprature. Along with the PL 

peak shift, change in the integrated PL intensity with temperature can help determine the degree 

of non-radiative recombination processes involved in different size and composition of the QDs.  
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Figure 3.4: Integrated PL Intensity versus inverse temperature for Ge1- Sn  
dashed red lines are two-activation energy fits to data. P1, P2, P3 indicate different positions on the samples. 

 

Figure. 3.4 shows swift quenching of the integrated PL intensity with increasign temperature 

for both 2nm and 4nm GeSn QD samples with different compositions.  As the composition and 

the size changes, the amount of non-radiative channels present in the QD can change as well as 

the onset of their activation with temperature. The quenching has an onset at around 100K. The 

behavior of this temperature dependent quenching of the integrated PL intensity I(T) can be fitted 

using the following equation, 

( ) =   …… (2) 

Here, EA1 and EA2 are activation energies corresponding to two non-radiative processes, A1 and 

A2 are the corresponding amplitudes, T is the temperature, I0 is the intensity at T = 15K, and KB is 

the Boltzmann constant. Two activation energies were required for a good fit in this case. The 

activation energies for the 2 nm QDs do not show any significant dependence on the Sn 

compositions used and are EA1 = 25±4 meV and EA2 = 133±28 meV. For the 4 nm QDs, EA1 = 

19±2 meV and EA2 = 185±32 meV for the 2.43% Sn content sample and EA1 = 17±3 meV and EA2



23 
 

= 52±7 meV for the 5.9% Sn content sample. EA1 can be considered as the binding energy 

associated with exciton dissociation, and EA2 as the thermal activation energy corresponding to the 

escape of carriers from quantum confinement. While there is some variation in the activation 

energies for a given sample, it is consistent with change in quantum confinement with QD size.  In 

smaller QDs, the EA1 is higher in value. Significant reduction in the activation energy with 

increased size for a given Sn composition of 5-6% (from 133 meV in 2nm QDs to 52 meV in 4 

nm QDs) is a possible indication of increase in amount of nonradiative centers in the cores of the 

larger QDs due to increased volume. As the confinement is less in larger QDs, thus the activation 

energy to escape the localized center is expected to be lower. It can in turn give access to more 

nonradiative pathways in larger QDs, reducing the activation energy. In addition, there is a 

significant reduction of EA2 with increasing Sn content in 4 nm QDs, which suggests that excitons 

can more easily escape from the localized core centers and transfer to nonradiative centers and/or 

density of non-radiative PL quenching pathways increase with inclusion of Sn. Sn has been 

observed to increase disorder in the alloy system[61]. QD system may not segregate due to change 

in colloidal synthesis method but it could still lead to increase of non-radiative pathways. The 

activation energy values of those reported for 2-3 nm epitaxial Ge QDs are in the range of 140 - 

194 meV [62]. Slightly lower values have been reported for  colloidal 2-3 nm CdTe QDs (163 - 

205 meV) [63, 64]. The values obtained through the fits are hence comparable to the previously 

reported values in other QD systems.  

TRPL were performed on the sample to gain information about the type of excitonic state taking 

part in radiative recombination and trap related dynamics of a system. The decay of PL intensity 

with time can be fitted using bi-exponential equation with fast and slow decay components as 

given below, 

=  +  …. (3) 
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Figure 3.5: PL transients at different temperatures for the 2nm Ge0.945Sn0.055 QDs: (a) from 15K to 200 K (b) from 200K to 300 K. 
Note that the time window for the low temperature range is in the µs range while that for the high temperature is in the ns range. 
Solid line  

Figure. 3.7 shows the TRPL for 2nm QD with 5.5% Sn. TRPL studies were performed for the 

2nm QD with 5.5% Sn composition with temperature varying between 15K to 300K. As can be 

seen in the Figure 3.7,there is gradual decrease in decay times from 15 to 300 K, where the low 

temperature decays are in the µs range due to slowly recombining dark excitons and possibly from 

surface trap states, and the high temperature decays are in the ns range due to thermal activation 

of bright excitons. Crossover happens at around 200 to 220K region.  

Table 2 lists the fast and slow decay parameters derived from fitting to equation 14, 

Table 2: decay parameters of GeSn QD (~2nm) with 5.5% Sn 

Ge1-xSnx with x% Sn fast slow Afast/Aslow 

5.5 300K (RT) 2.48 ± 0.02 (ns) 33.22 ± 0.94 (ns) 4.5 

280K 2.63±0.06 (ns) 42.84 ± 1.56 (ns) 5.5 

260K 2.53±0.08 (ns) 56.02 ± 0.26 (ns) 5.12 

240K 2.59±0.07 (ns) 64.25 ± 1.68 (ns) 4.2 

220K 3.61 ± 0.18 (ns) 77 ± 2.74 (ns) 3.11 
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200K 0.1 ± 0.01 ( s) 1.62 ± 0.025 ( s) 0.75 

150K 0.1 ± 0.01 ( s) 1.85 ± 0.02 ( s) 0.53 

100K 0.1 ± 0.04 ( s) 2.3 ± 0.04 ( s) 0.24 

50K 0.04 ± 0.0 ( s) 2.83 ± 0.07 ( s) 0.56 

15K 0.03 ± 0.01 ( s) 2.87 ± 0.07 ( s) 0.59 

The Afast/Aslow ratio 

However, the fast decay components significantly contribute to decay at higher temperatures. 

Previously, reported temporal analysis of the PL decay[33] of the same Ge1-xSnx ultra-small QD 

reveals a short lived higher energy PL at 295K temperature which showed insignificant 

contribution to overall solid state PL and was therefore attributed to the non-radiative 

recombination. PL decay Ge nanocrystals embedded in a thermally grown SiO2 with size varying 

between 4–13 nm show fast decay component with around ~3ns lifetime[65]. The lifetime in these 

QD’s show decreasing fast component with increasing defect density and were similarly attributed 

to non-radiative decay mechanisms. As temperature is increased it is possible that, activation of 

more and more non-radiative channels causes faster decay components to contribute more 

significantly to the overall PL decay hence the trend. 
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Arrhenius plots of the slow decay times are presented in Fig. 3.6 together which are fitted 

using following equation where, C1 and C2 are constants, and EA is an activation energy, 

……. (4) 

The activation energies obtained from the fits are EA = 20±1 meV for the low temperature range 

and EA = 157±31 meV for the high temperature range.  

Table 3: Integrated PL Intensity for Different Size and Composition of 
GeSn Quantum Dots 

~2nm ~4nm 

5.5% 6.6% 2.4% 5.9% 

EA1 

(meV) 

EA2 

(meV) 

EA1 

(meV) 

EA2 

(meV) 

EA1 
(meV) 

EA2 
(meV) 

EA1 
(meV) 

EA2 
(meV) 

25±4 133±28 27±7.3 127±16 19±2 185±32 17±3  52±7 

       Note that these values are comparable to EA1 and EA2, respectively, obtained from the fits to 

integrated PL as indicated in Table 3. GeSn ultrasmall QDs discussed here show unique properties 

in terms of their change in PL position to shorter wavelengths with increasing temperature. Using 

steady-state PL and TRPL data and considering possible changes in energy gap, carrier population 

in different states within QD with temperature, a clear understanding of the carrier dynamics can 

be gained. The possible reasons for the difference in behavior between the two sizes of QD’s is 

further explained in the next section in this chapter by the formulation of a theoretical model. 

 3.2 Theoretical Model 

To better understand the overall temperature dependent behavior observed in the previous section, 

a rate equation model will be introduced in this section. This model considers the change in carrier 

1
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distributions across the bright and dark excitonic states and trap states to elucidate the behavior 

shown by the quantum dots. Both sizes of quantum dots exhibit change in integrated PL intensity 

with temperature. To account for the distribution of carriers between different states, longitudinal 

optical phonons are interacting with the carriers, resulting in phonon absorption and emission 

processes 

Figure 3.7: a GeSn alloy quantum dot showing radiative and non-radiative recombination 
pathways after optical  Purple Orange Lines indicated radiative transitions 
and red lines show non-radiative transitions. nD indicate the energies for the activation of the non-radiative pathways. 

In this model, an energy level structure as shown in figure 3.1 is considered. It consists of 

ground state dark exciton and bright exciton states with radiative decay rates b and d, 

respectively. The energy splitting between these two states depends on the system of QD being 

investigated. To transfer from the bright and dark exciton levels to the surface trap states, the 

carriers must overcome the barrier, denoted by E1 by absorbing longitudinal optical phonons (LO) 

and then emit phonons to reach the trap state at energy E2 with respect to the barrier level. The 

reverse process occurs via first absorption of phonon to overcome barrier E2 and then emission of 

phonons with energy E1 for the reverse process to occur. 
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The excitation source is a laser with pulse width is ~150 fs and with 12.5ns time-period that 

can be extended up to milliseconds using a pulse picker. This allows enough time for the initially 

excited carriers to relax to the dark, bright and trap states. This initial relaxation takes place in the 

order of pico-second and the redistribution of carrier population that follows hence has been 

regarded to have no dependence on the initial excitation in this model.  At low temperatures, the 

dark excitons with long lifetime predominantly take part in the emission process along with the 

carriers that are in the surface trap states with slow decay time  range). Due to carriers having 

low thermal energy, the non-radiative recombination and hence change in integrated PL intensity 

with change in temperature is low in this regime. As temperature increases, carriers with thermal 

energy < <  have greater probability of overcoming the barrier. More carriers can 

populate the surface states from bright and dark states and various non-radiative channels are 

activated. So, the integrated PL intensity starts to drop. At the same time, carriers with high thermal 

energy can repopulate the high energy bright states and dark states from trap states.  Bright excitons 

at higher temperature then start to dominate the emission process as they have higher probability 

of recombination and faster decay time. The initial value of bright and dark exciton ground state 

is set equal to the value at 15K. With change in temperature there is change in the levels that is 

accounted for in the model using Varshni’s empirical formula, 

( ) =   ………. (5) 

w s to Debye temperature of a given semiconductor 

material and fitted to the experimental data. This change in bright and dark exciton levels coupled 

with the change in carriers in each state can result in a shift of the emission energy to higher or 

lower energy when temperature changes from low to high. This behavior manifests itself in the 

photoluminescence spectra as either blue shift or red shift in the peak emission energy. The change 

in carrier population of each state is considered by defining relaxation rates B T and D T. The 
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relaxation rates for the carriers B T D T) states involve first absorption 

of phonons to overcome the barrier given by E1 (from bright exciton level) or E1+  (from dark 

exciton level) and then subsequent emission of phonons as the carriers relax to the trap state. The 

corresponding rates can be written as, 

=  (exp 1) × ( ) … … . (6)  

and, =  (exp 1)
( )

× ( ) … … . (7) 

where ko is a universal rate constant, which characterizes the efficiency of the thermally induced 

radiative relaxation processes.  

      Here, (exp (Eph/(kBT))  1) -n is the probability for a carrier to absorb n phonons of energy Eph. 

Also, [(exp (Eph/(kBT)))/ ((exp (Eph/(kBT))  1))]m is the probability for a carrier to emit m phonons 

of energy Eph. The number of phonons (Np) with energy equal to Eph is given by Bose Einstein 

statistics. Carriers can repopulate T B T D) states from the trap states with 

sufficient energy as the temperature rises. These rates are given by, 

=  (exp 1) × ( ) … … . (8)  

and, =  (exp 1) × ( ) … … . (9) 

The carriers with sufficient energy also redistribute between bright and dark excitonic states which 

is given by the following equations, 

=  (exp 1) … … . (10) 
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=  (
exp

exp 1

) … … . (11) 

As the temperature changes, these transition rates change slightly as  has some temperature 

dependence.  

Figure 3.8  Non-
red lines show non- nD  indicate the energies for the activation of the non-radiative pathways. 

       As shown in Figure 3.8, To account for the change in integrated PL intensity from non-

radiative transitions, two nonradiative recombination channels are introduced into this model. One 

of the channels accounts for non-radiative transition from the surface trap states. Excitons with 

sufficient thermal energy (Eesc), first escape the trap and then non-radiatively recombine through 

emission of phonons via the channel denoted with energy (EnT). Excitons can also dissociate with 

temperature and become free carriers (electron-holes). Excitons with energy Edis which can be 

compared to their binding energy can dissociate to form free carriers which can later non 

radiatively recombine with via channel with energy denoted by EnD. As the system in consideration 



31 
 

is a highly quantum confined structure, the free carrier radiative recombination is insignificant in 

comparison to the exciton recombination. It has been observed in certain thin film QD systems 

like perovskites, if the excitation density is sufficiently high that there can be significant number 

of free carriers as well as excitons formed in the system [66]. However, for the low range of 

excitations employed experimentally, has not been taken into consideration and only radiative 

recombination from the excitons are considered in this model as the effect would not be significant. 

First, the rate of the nonradiative transition that is associated with the escape from the trap is given 

by 

= (exp 1) (
exp

exp 1

) … … … (12) 

To recombine non-radiatively, the carriers must first escape the trap, which requires energy Eesc, 

and then emit phonons with energy EnT. The non-radiative recombination rate associated with the 

exciton dissociation is  

= (exp 1) (
exp

exp 1

) … … (13) 

 and , together account for the non-radiative processes that occur in the QD system with 

change in temperature and directly affect the onset of decrease in integrated PL intensity or the PL 

quenching. 

The following rate equations then govern, the change in bright and dark state populations, 

=  ( + + + ) + +  … . (14) 

=  ( + + + + ) + +  … . (15) 
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=  + + + + + +  … . (16) 

      Here, nbright, ndark, and ntrap are the carrier populations of the bright, dark, and trap states, which 

are time and temperature dependent, and b , d, trap are, respectively, the radiative relaxation rates 

of carriers from the bright, dark, and trap states. The relaxation times for the dark exciton and trap 

states are in the order of microseconds while that for bright excitons is in nanoseconds. An initial 

population is assigned to the trap state post excitation. The remaining population is set to be N(t = 

0) = nbright + ndark, while the population of the bright and dark states at t = 0 is assumed to follow 

the Boltzmann distribution (nbright/ndark) = e( E)/(k
B

T)).  

As mentioned earlier in section 3.1, the carriers can relax fast within ps after excitation and 

taking into the account the excitation pulse (~150 fs), this initially excited carriers are not affected 

by the source after excitation. Taking the redistribution of carriers with change in temperature and 

normalizing to initial carrier distribution, integrated PL intensity is then described by the change 

in exciton population due to radiative decay from bright, dark states and the trap states  

=  + + … . (17) 

        To model the peak position, the change in carriers that radiatively recombine is considered 

for each temperature from the three states: bright exciton, dark exciton, and trap state. Radiative 

recombination from each state is assume to produce a Gaussian shaped spectrum with finite 

linewidth (equal to the linewidth data obtained from experiment) and the maximum intensity of 

each spectrum is considered proportional to the number of carriers taking part in radiative 

recombination in that state at that temperature. The sum of these Gaussian shaped radiative spectra 

gives the overall radiative recombination spectrum at a temperature. The position of the peak 

emission for each temperature can be determined from this resultant spectrum. Details of the 

application of this model and the resultant fitted parameters will be discussed in Section 3.3. 
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3.3 Results and Discussion: Extracted Parameters from Rate Equation Modelling of 

Carrier Dynamics with Change in Temperature and Composition of QD and 

Comparison with Experimental Observations 

In this section, the model developed in section 3.2 has been applied to simulate change in PL peak 

position, carrier density in different states and integrated Pl intensity and compared with the 

experimental data observed and detailed in section 3.1. Here, phonon energy Eph has been set equal 

to Eph = 30.6 meV [67] which is the Longitudinal optical (LO) phonon energy observed in bulk 

Ge. Alloying has shown to decrease the energy of LO phonons [68] in different QD systems like 

GaInAs on InP substrate. Within the composition range of interest (5.5% to 6.6%), there should 

be little change (0.05 meV) in their energy. The transition rates for dark and bright exciton states 

were also fixed at values obtained from experiments. For 2nm QDs,  is set to bet 25 meV [32] 

as estimated for ~2nm sized quantum dots at 15K. To account for the changing energy gaps with 

temperature, Varshni’s empirical formula was used to induce a variation in the level of bright and 

dark exciton state with temperature given by,  

( ) =  . 

      ebye temperature of the 

material. Although, alloy composition changes Debye temperatures, but the percent variation in 

Sn in the samples (less than 5K with 5% Cu inclusion in Ni)[69]  under consideration is low and 

hence kept equal to the value of bulk Ge. b d) 

were derived from fit to the model. The temperature dependences of surface trap states and non-

radiative channel energy levels were not considered in these fits although are likely to have some 

dependence on temperature.  

      To implement the model to account for the observed behavior of the QD systems under 

consideration uniqueness plots were utilized to set the value of certain parameters in the model. 
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Figure 3.9: Uniqueness plots for change in mean square error in the fits of (a) Integrated PL Intensity and (b) PL peak position as 
a function of the initial trap concentration for ultra-small (~2nm) Ge1- Sn  with 5.5% Sn. 

The uniqueness plots were used to determine the optimal concentration of trap and thermalized 

carrier transfer rate ko in this QD system to get best fit for the experimental data. The error 

estimations were performed for larger range of values of ko and ntrap first and then multiple 

iterations were used to get the optimal value in a much narrower range. The uniqueness plots for 

the 2nm QD with 5.5% is shown in figure 3.11. As can be seen from 3.11(a), more than 50% trap 

concentration regardless of the value of ko gives 20% (or less) mean square error (MSE) in the fits 

for integrated PL intensity. At the same time, trap concentration of 50% (b) gives 10% for less 

value of MSE for the fits to PL peak position for ko values more than 
. ×

 . A value of 65% 

for initial population of carriers in trap and a value of =
×

  was set in this model for 

5.5% Sn and 75% was set for 6.6% Sn (Appendix A1), to keep the overall MSE of fit within 

reasonable limits of 15% (or less) error percentile. The value of k0 represents the overall efficiency 

of the carrier transfer process in the quantum dot system and the value was set to be in the order 

of ~106 s-1 and was determined via uniqueness plot analysis for the overall fit. These values are 

comparable to values obtained for PbS quantum dot systems with comparable size distribution 

[57].
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Change in composition of Sn is also estimated to have an effect of lowering of exciton splitting. 

However, in this model that change with composition within a specific size range was not 

considered as the composition does not vary significantly. 

 
Figure 3.10: Ultrasmall QD of size ~2nm 1- Sn alloy QD plotted as a function of 
temperature (dotted lines) with fits derived from the model(solid lines) for 5.5% (red line and black dots) and 6.6% Sn composition 
(blue line and violet dots) 1- Sn alloy QD is plotted as a function of 
temperature (dotted lines) with fits derived from the model(solid lines) for 5.5% Sn 

 
 

Figure 3.9 shows the fits for integrated PL intensity and PL peak position plotted alongside the 

experimental data. The integrated PL was obtained by taking the sum of radiative decay from 

bright, dark excitons and trap states (time interval of about 10-10 ns) for the total range of time of 

the simulation at each temperature. The relative radiative intensity for each of the three states that 

is dark, bright and trap state was first estimated. Then a gaussian profile of PL spectrum was 

obtained with fixed linewidth with intensity set equal to relative radiative intensity. The sum of 

the three gaussian spectrum gave the overall PL spectrum at that temperature. Peak emission 

energy was determined from taking sum of the resultant Gaussian spectra. The results obtained 

showed root mean square error (RMSE) of 0.084 (6.6% Sn) and 0.092 (5.5% Sn) for the fits to 

integrated PL intensity data obtained from experiments. For peak PL fits, they show RMSE values 

of 0.013 and 0.016 for 5.5% and 6.6% Sn, respectively. The confidence bounds change the fit 
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within 10% goodness of data for both set of fits. Table 4 gives the fitted parameters along with the 

set parameters for the ultra-small Ge1-xSnx QD for both compositions. 

Table 4: (~2nm) Ge1- Sn   
Sn 

Content 
Fixed Parameters 

 
Eph b(s-1) d(s-1) ko(s-1) (K) 

30.6 1

12 × 10
 

1

24 × 10
 

1

8.5 × 10
 

290 

Sn 

Content 
Fitted Parameters 

5.5% 

E1(meV) E2(meV) Edis(meV) EnD (meV) Eesc(meV) EnT (meV) 

60.18±9.5 105.2±10.3 25.25 ±

1.52 

40.3 ±2.3 62.3±13.8 125.12 ±5.6 

d(meV/K) b(meV)/K 

0.18±0.012 0.092±0.0029 

6.6% 

E1(meV) E2(meV) Edis(meV) EnD (meV) Eesc(meV) EnT (meV) 

58.18±10.6 110.8±9.2 33.12 ±3.8 35.12 ±8.1 55.3±4.6 120.12 ±20.8 

d(meV/K) b(meV)/K 

0.17±0.031 0.090±0.0076 

 

         E1 represents a barrier that the carriers need to overcome to redistribute themselves between 

different energy levels within the QD and show little dependence on the Sn composition. This is 

related to the confinement effect of the dots and hence has a more size dependent behavior as will 

become clear in the discussions later in this chapter. E2 is defined relative to the barrier E1 and 

represents shallow trap states on the surface that take part in the radiative recombination with long 

 and it has been kept equal to the radiative transition rate of dark exciton 

for sake of simplicity in this model. Taking into account,  and the energy level E2 with respect 

to barrier E1, the radiative recombination from the trap states can account for the additional 10 to 

20 meV shift observed in the PL peak position from the predicted values [32]. Edis and EnD 
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associated with the possible exciton dissociation energy of exciton and the subsequent loss of those 

carriers to non-radiative recombination channels. EnT are non-radiative recombination channel

through which carriers escaping the surface trap with thermal energy are lost and it is consistent 

with the activation energies derived from the experimental data. Esc represent the energy required 

for the trapped exciton from surface states to escape and its shows a decrease with increasing Sn 

content. As have been discussed before, increasing Sn content could make more non-radiative 

recombination channels available by introducing defects into the system which could lead to this 

lowering of energy. The  values reported in other nanocrystal systems like CdTe for around ~3nm 

nanocrystal is around 0.473 meV/K and 0.519 meV/K [70] and for colloidal CdSe/ZnS core-shell 

structures is around 0.41 meV/K [71] for ~2nm QD size. Fitted values obtained here are 

significantly lower but can be deemed reasonable given the variation of the QD along with change 

in composition. 

 
Figure 3.11: 1- Sn  QD with (a) 5.5% Sn 

(b) 6.6% Sn 

The change of PL peak position and the observed change in lifetime of the experimental data

for the 2nm dots, can be understood further by taking a look at the change in excitonic levels with 

change in temperature and the total population changes in certain time intervals after excitation 

which can be extracted from the theoretical model. As can be seen in Figure 3.11, the bright and 
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dark exciton decrease with temperature, but the bright exciton level is still at higher energy at 300K 

compared to the dark exciton level at 15K. Also, there is gradual lowering of the excitonic levels,

and this can account for the observed increase in PL peak emission in the experimental data. The 

PL peaks however do not change significantly in the 15K to 300K region. To better understand

decay dynamics due to carrier transfer, the change in carrier population taking part in different 

states can be extracted from the theoretical model. The radiative decay intensities in different 

energy states can be extracted from total radiative intensity. At any given temperature and at any 

given time, 

( , ) =  ( , ) + ( , ) + ( , ) . 

Figure 3.12: that are lost via radiative recombination at (a) t = 10ns 
and  for ~2nm QD with 6.6% Sn. 

As can be seen from Figure 3.12 (a), 10ns after excitation, the radiative decay is dominated 

by radiative recombination from the bright exciton state. Beyond temperature of 50K, over the 

entire range of temperatures, bright excitons contribute more and more. That is because bright state 

radiative transition rate is in the order of few ns, so the population lost from bright state for 

radiative recombination is fast and this is apparent in the Figure 3.12(a). There is still many carriers 

in trap and dark states in the lower temperature regime, 

radiatively recombine fast and contribute little at t=10ns time. With time, carriers can redistribute 
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themselves in these 3 states and some carriers non-radiatively recombine with activation of various 

channels. At t = , beyond 50K, bright exciton recombination starts to emerge. There is, 

however, a large portion of radiative recombination happening via dark and trap states. With 

increase in temperature, more and more of these dark and trap state excitons are redistributed to 

either bright states or lost via non-radiative recombination. Beyond 50K, the radiative 

recombination from dark state starts to decrease and beyond 250K there is no radiative 

recombination happening via dark states. For the trap state population, beyond 100K there is sharp 

decrease in radiative recombination. Beyond ~200K, entirely bright state population dominates the 

radiative recombination. So, between 100K to 200K, there is redistribution of carriers in between 

bright, dark and trap states with temperature. So, PL decay time would be dominated by the state 

that contributes most to recombination in this temperature range while the PL peak position will 

show a gradual shift. Comparing this to the decay times observed from experimental TRPL 

measurement in section 3.1, it is evident that the shift to ns lifetime beyond 200K  is in 

line with the change in the radiative recombination intensities observed here.  

 
  Figure 3.13: Normalized PL decay curves obtained from the modelling for different temperature ranges  

To further investigate the change in decay time relation with the change in carrier population, 

PL decay was simulated for different temperatures (Figure 3.13). As can be seen, more than two 



40 
 

orders of magnitude decays are observed for the temperatures above 220K in the ns regime. At the 

same time, for temperatures lower than 200K, most of the PL decay occurs  

So, looking at en 

dark, bright and trap state population with temperature shift the PL peak position gradually towards 

higher energy going from 15K to 300K and it also results in a drastic change in PL decay time 

with bright excitons with ns lifetime being completely responsible for radiative decay after 200K 

temperature. The results obtained from the model match the experimental observation in section 

3.1 with good accuracy. Quantum Yield was also calculated from this model by considering, the 

radiative to non-radiative transitions occurring at any given temperature. For, the 2nm samples

quantum yields are found to be around 21% and 23% for 5.5% and 6.6% Sn composition, 

respectively. The model considers only two pathways for non-radiative recombination when there 

are possibly many more channels that are activated in ultra-small quantum dots. This could be 

probable reason of the overestimation in the value of Quantum Yield. 

 
Figure 3.14: Uniqueness plots for change in mean square error in the fits of (a) Integrated PL Intensity and (b) PL peak 

position as a function of the initial trap concentration for larger (~4nm) Ge1- Sn  with 2.4% Sn. 

For larger QDs, initial carrier concentrations (Ntrap) and ko were again set by considering the 

uniqueness plots for MSE of the two fits. Initial trap carrier concentration was set to 10% (2.4% 
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Sn) and 15% (5.9% Sn). As can be seen from Figure 3.14, the value of MSE for integrated PL 

intensity fit shows little dependence on ko for trap concentration up to 55% with the MSE value 

being below 10% for concentrations up to 55%. For the PL peak fit, 1/ko values of 
. ×

 

and larger, with trap concentrations of 25% or less gives MSE less than 20%. Again, =

. ×
  and trap concentration of 10% was chosen to keep the value of MSE below 15% or 

less for the ~4nm QDs with 2.4% Sn. The 4nm QDs are easier to passivate owing to their greater 

surface to volume ratio with organic ligands hence this lower concentration of surface traps and 

lower value of initial carrier population in these QDs are within reasonable limits of theoretical 

expectations. 

 
Figure 3.15: QD of size ~4nm 1- Sn alloy QD plotted as a function of temperature 
(dotted lines) with fits derived from the model(solid lines) for 2.4% (blue line and black dots) and 5.9% Sn composition (orange 
line and violet dots) 1- Sn alloy QD is plotted as a function of temperature 
(dotted lines) with fits derived from the model(solid lines) for 2.4 9% Sn (red line and 

 

Figure 3.15 represents the experimental data along with the fit from model for the ~4nm QDs. The 

obtained fits showed root mean square error (RMSE) of 0.05 (2.4% Sn) and 0.14 (5.9% Sn) for 

the fits to integrated PL intensity data obtained from experiments. For peak PL fits, RMSE values 

of 0.007 and 0.015 for 2.4% and 5.9% Sn, respectively, were obtained. The confidence bounds 
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change the fit within 10% goodness of data for both set of fits.  

Table 5: 4nm) Ge1- Sn   

Sn 

Content 

Fixed Parameters 

 

Eph b(s-1) d(s-1) ko(s-1) (K) 

30.6 1

30 × 10
 

1

11 × 10
 

1

3.3 × 10
 

290 

Sn 

Content 

Fitted Parameters 

2.43% 

E1(meV) E2(meV) Edis(meV) EnD(meV

) 

Eesc(meV) EnT (meV) 

47.58±16

.2 

125±12.6 35.8±2.1 20.6 ±4.

7  

50.1±2.5 160.12 ±13

.1  

d(meV/K) b(meV)/K 

0.01±0.015 0.031±0.0015 

5.86% 

E1(meV) E2(meV) Edis(meV) EnD(meV

) 

Eesc(meV) EnT (meV) 

44.58±10

.9 

95.58±12.

4 

33.1±1.0

3 

21.3 ±5.

9 

49.01±0.9 70.12 ±5.6 

d(meV/K) b(meV)/K 

0.013±0.011 0.04±0.003 

    

As can be seen from the Table 5, the barrier value E1 again shows lowering with increase of 

Sn and it is noticeable here that barrier height is larger for 2nm dots compared to 4nm dots. This 

is possibly due to quantum confinement being stronger in smaller dots. The initial carrier 

population being low in the trap states, the contribution from these state in lower temperature end 

is not significant.  The significant lowering of the value of non-radiative channel energy with Sn 

concentration going from 2.4% to 5.9% is indicative of more core non-radiative channels being 

available with change in size. At the same time E2 values are higher when compared to activation 

energy and exciton splitting indicating deep level defects. Dissociation values obtained from the 
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fit however are comparable to the smaller sized counterparts. The size dispersion and alloying 

effect could together account for this increase in binding energy. Two non-radiative channels were 

considered in this fitting from the dissociation of carriers and the surface trap states denoted by 

energy EnT and EnD, and they were obtained from the fit. When compared to activation energies 

obtained from the experimental data, the values of energy levels for non-radiative channels are 

within similar range. 

Figure 3.16: Change in 1- Sn  QD (a) for 2.4% Sn (b) 
5.9% Sn 

For, 4nm QDs, the value of exciton splitting is set to be 15 meV at 15K. This is consistent with 

the fact that larger size QD have lower values of exciton splitting [72, 73] and change in exciton 

level is shown in Figure 3.15. Varshni’s empirical formula was used 

Varshni’s empirical formula is again set equal to Debye temperature of the material that is Ge. 

b d) were derived from fit to the model. As 

can be seen there is gradual lowering of excitonic levels and exciton splitting with temperature but 

compared to the 2nm system, the change is much smaller. So, even when the bright excitons are 

activated their energy level is comparable to the dark level before lowering of energy gap. Hence, 

there should be little to no observed shift as was discussed in the experimental results in section 

3.1. 
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Figure 3.17: 
~4nm Size QD with 5.9% Sn. 

Figure 3.17 gives the change in population undergoing radiative recombination with change 

in time between the bright, dark and trap states for 4nm QD with 2.4% Sn. As is evident, right 

after excitation, there is number of carriers in dark state and trap state but exceptionally low 

population of carriers in bright state at 15K. But the bright excitons have lifetime of ns so the in 

time window of t=10ns after excitation the bright states dominate after 30K temperature. Since, 

the trap state energetically represents a deep level trap, carriers do not repopulate bright or dark 

state that easily. Instead, the non-radiative recombination channels get activated with temperature 

and most likely causes the sharp decrease post 50K via dissociation of excitons first and then from 

the trap states. As majority of radiative recombination happen via excitonic states and there is 

smaller change in exciton splitting energy which changes in temperature, the peak emission from 

PL does not show significant change with change in temperature. e window, as can 

be within 50K temperature, the dark exciton radiative recombination starts to fall, and bright 

exciton dominates the emission mechanism. Looking at the carrier population taking part in these 

transitions in both time window, at T=300K, all the emission is coming from bright states with 

short lifetime. Hence, the lifetime observed would be in ns in 300K while the lifetime observed 
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dots as discussed in section 2.2. The quantum yield estimated for this system is 25% and 19% for 

Sn concentration variation from 2.4% to 5.9%. If we compare to the activation energies obtained 

for the ~4nm dots as discussed in section 3.1, higher Sn content and larger size results in more 

non-radiative channels in the core which could lead to more non-radiative channels. This is 

reflected in the reduction in activation energy observed in the fit to experimental data and in this 

model by the lower values of EnD, EnT and E2. 

In conclusion, this theoretical model can to a reasonable degree of accuracy account for the 

carrier dynamics that were observed in investigations of the different size and composition of GeSn 

QD. The PL quenching and PL peak position change can be accounted for by change in initial trap 

state population, change in the energy levels with temperature along with change in carrier 

population due to trapping and de-trapping of carrier from surface trap states. 
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4. GeSiSn Alloy: Carrier Dynamics Model, Results and Discussion 

The GeSn QD’s explored so far have range of spectrum that spans from visible to near-infrared. 

As was discussed before even ultra-small QD’s demonstrated so far are unable to extend the 

wavelength anymore beyond the visible in the shorter wavelength range (2.0 eV). So, Silicon 

incorporation can allow to extend to the short UV range in these quantum confined structures. In 

this chapter, first section will discuss aim to establish a background of Si QD system and GeSiSn 

alloy. Later sections will extend the rate equation model developed in Chapter 3, section 3.2 to 

GeSiSn model to aim to gain insight into behavior of the system with change in temperature. 

4.1 Background- Si nanocrystals and GeSiSn alloy 

Si is an indirect semiconductor that has a higher bandgap (1.12 eV) and a smaller lattice constant 

(5.43 Å) compared to both bulk Ge (0.67eV, 5.65Å) and Sn (0.08eV, 6.49Å). Although GeSn and 

GeSi systems of alloys have been widely explored, GeSiSn based alloys have been subjected to 

limited investigation. It has been explored as a potential IR semiconductor that can be used as 

active layers in optoelectronic devices via band gap tuning. It can also be used as a structural buffer 

for the integration of dissimilar compounds with silicon. In alloy form, it also presents a realistic 

opportunity for achieving independent strain and band structure manipulation in group IV 

materials. Temperature dependent photoluminescence studies have demonstrated that, bandgap of 

GeSiSn ternary alloy clearly increases after Si incorporation into GeSn. 

       Silicon is a group IV material known for its abundant use in microelectronic devices [74, 75] 

and also has been used in different optoelectronic devices such as photovoltaic cell and 

photodetectors.[76, 77] Silicon is generally not regarded as a material of choice for optoelectronics 

due to its indirect bandgap and as a result integrating both optical and electrical functions on a 

silicon based chip is both a challenge and a widely sought after target as it will unveil a plethora 

of integration option to existing platforms. Development of silicon based emitters has  started in 



47 
 

the beginning with porous silicon structures [78, 79] and then gradually moved to silicon quantum 

wells and superlattices [80-82], nanowires and finally to nanocrystals and quantum dots[83-86]. 

 
Figure 4.1: PL peak emission versus Si nanocrystal diameter 

 

The relation between size of Si nanocrystal and energy gap for various methods of synthesis over 

the years is given in Figure 4.2. The energy gap of the experimental data is from PL emission of 

silicon nanocrystals dispersed in solutions and the theoretical estimation is obtained the change of 

quantum confinement with change in size as described by Equation 1 from Chapter 1. As you 

gradually change the size of a material from bulk to that of close to its excitonic Bohr radius, the 

material loses its characteristic continuous band structure. The density of states changes from 

continuous to discrete and the energy gap increases causing a blue shift in the absorption and 

emission spectra enhancing the direct transition rates in the materials and this can be utilized to 

enhance emission from silicon[87]. Colloidal silicon nanocrystals and quantum dots offer added 

advantages such as low cost method of production, nontoxicity, bio-compatibility etc. Silicon is 

highly reactive to oxygen and hence capping with ligands is essential for getting good emission 

from silicon nanocrystals. Fabrication and synthesis methods, surface capping/ligands have shown 

to significantly alter the emission characteristics of silicon nanocrystals. Silicon nanocrystals 
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grown by high temperature nucleation of silicon from SiO, thermal decomposition of HSQ, non-

thermal plasma assisted growth (mean diameter between 2 to 6 nm) have shown to be in good 

agreement with size and quantum confinement[88-90]. Most of these dots are passivated with 

alkene ligands. 

Change in surface structure, ligand passivation causes significant changes on Si nanoparticle 

emission properties. Change in surface chemistry can lead to introduction of surface states which 

can act as trap centers and even recombination centers for electron, holes, and excitons. This leads 

to change in emission characteristics of the nanoparticle. Surface can be modified by using a 

variety of ligands in the case of Silicon nanocrystals. Silicon quantum dots that are with organic 

(decyl group) that is long chain carbon based ligands and hydride based passivation have generally 

shown emission characteristics that follow predicted emission due to quantum confinement of the 

core. Caroll et al. [91] demonstrated hydride terminated silicon nanocrystals that were prepared 

using non-thermal RF plasma and functionalized with alkyls, amides and alkoxide. All three ligand 

passivated nanocrystals showed change in PL peak emission energy with size as the size of the 

nanocrystals was varied from 3.5 nm to 6.5 nm. Dasog et al.[92] demonstrated tuning of Silicon 

nanoparticle emission colors from blue to green without any size dependence by changing the 

surface ligands for 3-4nm size silicon nanocrystals. Emission was tuned in the spectral range of 

1.53eV and 1.85eV. Li et al. [28] showed that, for colloidally  synthesized Nitrogen capped silicon 

nanocrystals, strong emission arises from radiative recombination on the surface nitrogen sites and 

these tend to show no noticeable dependence on size as the size was changed from 4.8nm to 2.8nm 

and gave a strong yellow emission. Emissions from Nitrogen based surface states however depends 

on the type and structure of the ligand and can thus different N2 groups tend to tune emission 

properties of Silicon nanoparticles [93, 94] differently. These Si nanoparticles with different 

nitrogen based surface ligands such as 4-aminoacetophenone, phenyl-1,4-phenylenediamine 
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groups have demonstrated shift in the emission from blue to red when excited with a source of 400 

nm and showed no size dependence. The degree of delocalization of the HOMO and LUMO can 

change as surface state energy levels mix with these trap states energy. This can cause the energy 

gap between them decrease due to the N2 groups. In case of passivation with nitrogen based 

ligands, generally arylamine groups show a red shift in PL position while allylamines show 

emission in the blue range with nanosecond lifetimes. Halogen[95] and Oxygen[96] also plays a 

crucial role in determining the emission characteristics of silicon nanocrystals. Depending on the 

type and structure of bond formation by these materials along with crystallinity, synergetic effects 

with surface, it can vary widely. Gradual oxidation of red emitting QD’s show slow decrease in 

red emission band(2.07eV) and a growing blue emission band(2.7eV) for 5-10 nm Si quantum dots 

and was a result of to the partial coverage of Si nanoparticles via different ligand groups and 

subsequent oxidation. To this end, blue to cyan emission has been observed for oxidized silicon 

nanoparticles that are treated in peroxides and usually have nanosecond lifetime[97, 98]. This has 

been attributed to decrease in core size because of oxidation. 

       As is clear from the discussion above, surface chemistry and size dependent emission from 

silicon based quantum dots have been well explored. Surface along with size undoubtedly places 

a significant role in the emission properties of silicon nanocrystals and quantum dots.  

Incorporation of Silicon into GeSn colloidal QD system hence offers not only a variety of methods 

to extend emission to shorter wavelength but also mechanisms to suppress the contribution of 

surface which can lead to enhanced emission from core of QD. This can be done by proper choice 

of colloidal synthesis method coupled with appropriate choice of passivating ligands.  In the 

succeeding section of this chapter, the change in emission characteristics and carrier dynamics in 

GeSiSn would be discussed and rate equation model would be extended to this system to 

understand the observations and difference with GeSn based system. 
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4.2 Steady-state and time-resolved PL measurements 

GeSiSn samples with Sn composition varying between 4% to 17% and Si composition varying 

between 6%, 16% and 24% was investigated with solid stated PL at room temperature and time 

resolved PL. 

1.5 2.0 2.5 3.0
Photon energy (eV)

 Ge0.72Si0.24Sn0.04

 Ge0.78Si0.16Sn0.04

 Ge0.77Si0.06Sn0.17

 
Figure 4.2: PL spectra of GeSiSn quantum dot with composition variation 

The steady-state spectra of polydisperse Si-Ge-Sn alloy QDs (2–10 nm) of varying 

compositions are shown in the figure above.  The blueshift in the PL spectrum is clear with 

increasing Si for samples having constant Sn or constant Ge content.  When compared to the PL 

spectra of QDs in solution, the solid-state samples drop-casted on sapphire or silicon substrates 

exhibit redshifts as large as 250 meV. This could be a result of poorer passivation of QDs in the 

solid-state, which leaves particularly the smallest particles non-emissive.  Si has larger effect on 

the bandgap if we compare the sample with composition of Sn varies from 4% to 17%, there is 

still clear blueshift with increase in Sn composition and PL peak position moves from 1.8 eV to 

2.4 eV. Compared to GeSn samples with 12.5% Sn composition there is a blue shift in PL peak 
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position with even as little as 6% Si incorporation. Theoretically, Si is smaller than all the other 

constituent elements, it tends to compensate the effect in the strain in the Ge lattice due to Sn. This 

should potentially decrease the effect of Sn. Since the bandgap in Si is larger than in Ge or Sn, the 

energy gap is reduction due to addition of Sn does not have significant effect when it is coupled 

with the quantum confinement. This could as a secondary effect lead to possible reduction in 

performance from QD with inclusion of Si, but oscillator strength is increased due to incorporation 

of Sn. Therefore, by adding Sn to the binary alloy and varying Sn and Si content, a wider range of 

energies in the visible become accessible, while maintaining strong oscillator strengths. This could 

account for small amounts of Si addition causing significant change on PL peak emission that is 

observed in this ternary alloy QD. 

 
Figure 4.3
and Si composition 6% at 300K and 15K 

TRPL decays in Ge1-x-ySixSny QDs also reveal some distinct features as shown in Figure 4.4 

(a) and (b). The decay of photoluminescence with time is biexponential in nature and decay 

constants from the TRPL was obtained by using a fitting given below, 

=  +  

The slow decay components at room temperature are in the order of 2 to 3ns.  It is almost
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independent of the temperature and only show slight increase when Silicon composition changes 

from 2,17ns to 3.13ns when Si composition changes from 6% to 24%. GeSn quantum dots had 

decay constants in the order of 8 to 12ns for similar Sn composition. The 15K data shows a slow 

decay constant on the order of 5.03ns. This behavior is drastically different when compared to Ge1-

xSnx QDs, which exhibited ~20 s PL decay times at 15 K, due to slow recombination of dark 

excitons and carriers localized at surface traps, suggesting vastly different carrier dynamics in 

ternary QDs. The results also are different from the decay characteristics found in GeSi self-

assembled QD’s on silicon which show change in photo-

[99].  

To extend the carrier dynamic model established in previous section, certain changes were made 

to the existing model and the results is shown in the figure 4.5. Here the LO phono energy is kept 

equal to the energy in GeSi alloy[100]. The model is simplified by  parameter equal to the value 

of Germanium LO phonons. The values of the parameters were obtained after simulation is listed 

in Table 6. 

Table 6: Parameters for fit to PL decay for GeSiSn QD 

Eph b(s-1) d(s-1) ko(s-1) 
 

 
(eV) 

 

34.6 1

1.5 × 10
 

1

2 × 10
 

1

4 × 10
 

2 290 

E1 

(meV) 
E2 

(meV) 
Edis 

(meV) 
Eesc 

(meV) 
EnD 

(meV) 
EnT 

(meV) 
 

(meV/K) 
 

(meV/K) 

57±11.6 89.2±7.8 30.23±3.9 37±9.0 27±1.3 20
± 2.6 

0.001±9.0 0.009±9.0 

The values for bright and dark exciton decay rate was kept constant as outlined in previous chapters 

based on GeSn system and ko and ntrap was obtained from uniqueness plots and 50% value for ntrap 

was set (See Appendix A3). As can be seen from the simulation, significant decrease in the value 
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bright and dark exciton splitting is observed. Initial value of exciton splitting was taken to be 2 

meV at 15K. This makes it possible for bright excitons to be populated even at exceptionally low 

temperatures which is why both 15K and 300K time decay is observed to be on the ns range. E1

and E2 values are comparable to the values obtained for GeSn systems. The biggest contribution 

to the PL decay comes from the value of splitting itself. It is known that inclusion of Sn causes 

lowering of the exciton splitting level, there could be further lowering with inclusion of Si into the 

system that could account for the ns delay. In most semiconductor QD systems like CdS, PbS, Si 

at least an order of magnitude change in decay constant is usually observed with change in 

temperature[51, 101, 102].  

 
                                   Figure 4.4: simulated d   

 

Figure 4.4 shows the simulated and experimental data plotted together for GeSiSn with 17% 

Sn and 6% Si. The goodness of varies by 10% within the bounds. The RMSE for the fits at 15K 

and 300K are calculated to be 0.15 and 0.29. The change in PL peak position as well as the 
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integrated PL intensity can also be obtained from the theoretical model. The obtained results are 

shown in Figure 4.5. As can be seen the PL has a sharp fall beyond 50K temperature. This could 

be due to exciton dissociation. Also, there is trap related non-radiative recombination channels that 

are activated post 50K. The model estimates the value of trap states and recombination channel 

being lower so there is possibility of significant reduction in PL intensity going from 15K to 300K. 

Quantum yield was estimated to be around 15% for this sample and will likely be in the lower 

range in actual sample as only two channels were considered here. The PL position does not show 

much variation. This could be due to the bright excitons being activated at very low temperatures 

combined with low values of lowering of the energy levels. This is clearly a significant outcome 

of Si incorporation as it gives stability to emission wavelength and suppresses change in emission 

wavelength with change in device temperature. This is a desired property in many light emitting 

devices. 

 
Figure 4.6: (a) Integrated PL Intensity (b) Change in PL Peak Position with temperature obtained from  

 

It can be concluded from this discussion that Silicon incorporation can both extend operational 

range of wavelength for the QD system but also allow for amazingly fast radiative recombination 

at both low and high temperatures with insignificant change in energy of PL peak emission which 

in turn will enhance the efficiency of the system.
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5. Conclusion and Future Prospect 

In the thesis, Ge Snx QDs and GeSiSn QDs were investigated using a set of experimental 

techniques such as PL, TRPL and a theoretical model was established to explore the nature and 

characteristics of recombination dynamics in these colloidal systems. GeSn and GeSiSn QDs are 

still in research phase in terms of production but shows great potential for integration with existing 

semiconductor platforms and as a material for optoelectronic device fabrication. To make inroads 

into device applications, the QDs explored here require proper passivation, narrow size dispersity 

and uniform incorporation of Sn and Si. These nanoparticles have the added advantage due to 

facile, low cost method of synthesis using fast colloidal chemistry and their non-toxicity. This 

thesis has aimed to explore the physics of carrier dynamics to predict behavior of the QD system 

with change in temperature and composition. Here, temperature dependent change in carrier 

dynamics in colloidally synthesized 2 nm sized Ge Snx QDs (x = 0.055, 0.066)  and 4nm sized 

QDs (x = 0.0243, 0.0586)   h

at 15 K due to surface traps and the slow recombination of spin forbidden dark excitons. At room 

temperature, they decreased to nano second range and this dramatic change was attributed to the 

effect of spin-allowed bright excitons. The transition occurs at a temperature of ~200K and surface 

trap state concentration, radiative recombination from bright, dark and trap states along with non-

radiative channels contribute to gradual blue shift in 2nm sized QDs and result in negligible shift 

in larger QDs. With 4nm dots, there was no observable changes in PL peak position energy. Using 

a rate equation model with dark, bright and trap states, carrier distribution in between the states 

with change in temperature, the shift observed in PL peak position and PL quenching has been 

explained. It is also estimated from the model that in 4nm QD system, the reduction in confinement 

tends to give access to more non radiative channels in them. Depending on the size of the quantum 

dot being investigated, surface trap states and the change in exciton and bright and dark level are 
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drastically different. This directly contributes to the difference in temperature dependent PL peak 

position change as well as decay dynamics. Aging and exposure to air also over a long period of 

time can affect these quantum dot systems. In the future, systematic aging studies can be explored 

to understand the long term characteristics of the system. 

      Incorporation of silicon was also investigated and the carrier dynamic model was extended to 

the ternary GeSiSn system to reveal drastically different high and low temperature carrier 

dynamics that could be due to dramatic decrease in exciton splitting energy as a result of both Sn 

and Si incorporation into the quantum dot system as well as faster relaxation rate for carrier 

exchange among different states. It also indicates that GeSiSn system should show little red shift 

to no change in PL peak emission with change in temperature which could be an extremely useful 

property in terms of device application. 

      Understanding the temperature dependent exciton dynamics of group IV alloy QD system 

uncovers a variety of opportunity in the future to apply these nanoparticles in devices. These 

devices can be manufactured through use of layers of QD thin film matrices. There are however 

several challenges that exist to achieve this end. Nanoparticles need to be well passivated through 

different types of ligands. But ligands being organic long chain molecules are detrimental to charge 

transport that is necessary for proper functioning of the device. Efficient and bright QD based light 

emitting devices need to have optimized excitonic confinement combined with excellent charge 

transport. One approach could be engineering the solution processed colloidal quantum dots 

(CQD) to have graded composition outer layer that suppresses recombination at surface[103] in a 

core-shell structure. Another approach is exchanging organic ligands completely with short, 

transport-compatible inorganic ligands[104, 105]. The ligand binding energies, before and after 

the exchange is significantly different and is primarily determined by the composition of the 

surface of the CQD. Due to distinct surface energy of different colloidal QDs, it is hard to 
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implement. However, some research groups have already shown success in implementing ligand 

exchange that retains both confinement and allows high transport[104].These methods make the 

passivation of QDs and later ligand exchange possible both in solution and in solid state. These 

QDs can then be spin coated on suitable substrates. Additional solution processed QD layers can 

be used to aid electron and hole injection and/or transport in the active layer of the device and then 

electric contact is patterned on these structures for fabrication of for example light emitting devices 

or photodetectors. One approach is illustrated in Figure 5.1. 

Figure 5.1: Zn chalcogenide-shelled colloidal quantum dots (a) A schematic representation (b) cross-
 (c) its energy band diagram in the unbiased condition. Contrary to a conventional device structure, the 

cture. Chlorination 
oleic acid ligands results in grafting of the surfaces of the colloidal quantum dots with passivating chloride anions. Improved 

high- -current region and a reduced turn-  
is observed as a result. (Li, et al. Nature Photonics, 2018) 

A different way to accomplish the same goal could be is to take advantage of the naturally 

occurring high density of trap states instead of passivation for fabrication of QD photodetectors. 

Multiple trappings and release transport dynamics in band tail states exist in these CQDs. High 

performance can be achieved by allowing carriers to be swept to the electrodes before they fall 

into the band tail states using sandwich microstrip transmission line photodetector[106].   It was 

demonstrated by Gao, et al. and the device schematic is illustrated in Figure 5.2. Potential for 

extending CQD film to different types of optoelectronic technology is nothing short of 

groundbreaking. In addition to LED’s, photodetectors large area all-solution based manufacture of
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thin-film solar cells are possible. Ligand exchange can be employed to improve sub bandgap trap 

states that can greatly enhance both power conversion efficiency and air stability[107]. 

 
Figure 5.2: PbSe CQD Photodetector (a) High-speed QD photodetector using a coplanar microstrip transmission line structure 
(b) Scheme of multiple trap and release transport dynamics in the band tail states, illustrating that activation a(t) increases with 

amics model is also 
applied to the hole carrier in the band tail states. (Gao, et al. ACS Photonics. 2017) 

Quantum dot buffer layer at the junction between thin film quantum dot active region layers 

can be utilized in these solar cells. Surface and size-tunable electronic properties of different 

quantum dots can be optimized to this end to improve its carrier concentration and energy band 

alignment in heterojunction solar cell structurers[108] and the device structure developed by Zhao, 

et al. is being shown in Figure 5.3. 

 
Figure 5.3: PbS QD solar cells by introducing a CdI2–  (a) Schematic 
of Device Structure (b) Current density–voltage (J–V) characteristics of representative solar cells without (black) and with (red) a 

 (Zhao, et al. ACS nano. 2016) 

In summary, QD thin film layers can be used in many ways to produce efficient optoelectronics

devices. The investigations performed in this thesis aim to understand the physics behind the 
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behaviors observed in the binary and ternary group IV alloy system with change in material 

composition and size. Valuable insight about possible effect of surface traps, change of energy 

levels as wells exciton splitting energy is obtained here that can be used to make effective and 

efficient light emitting devices with colloidally synthesized QD thin films.  Ease of integration of 

optoelectronic component into Silicon platforms using this alloy system makes it even more 

attractive as a possible light emitting material. Along with the results presented here, further 

investigations into the carrier dynamics, emission properties and charge transfer characteristics are 

necessary to fully utilize the scope of these nanoparticles and quantum dots to produce reliable, 

reproducible, low cost light emitting devices. 
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Appendix A 

A.1: Uniqueness Plot of MSE for 2nm Ge1-xSnx QD (6.6% Sn)

A.2: Uniqueness Plot of MSE 4nm Ge1-xSnx QD (5.9% Sn)
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A.3: Uniqueness Plot of MSE for Ge1-x-ySiySnx QD (17% Sn and 6% Si)

A.4: Goodness of Fit for Binary Alloy QD (Ge1-xSnx)

Composition, x% 

(size, nm) 

Integrated PL 

Intensity Curve Fit 

PL Peak Intensity 

Curve Fit 

RMSE RMSE 

5.5% (2nm) 0.092 0.013 

6.6% (2nm) 0.084 0.016 

2.4% (4nm) 0.05 0.007 

5.9% (4nm) 0.14 0.015 
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