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Abstract 

To meet the ever-growing demand of faster and smaller computers, increasing number of transistors are 

needed in the same chip area. Unfortunately, Silicon based transistors have almost reached their 

miniaturization limits mainly due to excessive heat generation. Nanomagnetic devices are one of the most 

promising alternatives of CMOS. In nanomagnetic devices, electron spin, instead of charge, is the 

information carrier. Hence, these devices are non-volatile: information can be stored in these devices 

without needing any external power which could enable computing architectures beyond traditional von-

Neumann computing. Additionally, these devices are also expected to be more energy efficient than CMOS 

devices as their operation does not involve translation of charge across the device. However, the energy 

dissipated in the clocking circuitry negates this perceived advantage and in practice CMOS devices still 

consume three orders of magnitudes less energy.  

Therefore, researchers have been looking for nanomagnetic devices that could be energy efficient in 

addition to being non-volatile which has led to the exploration of several switching strategies. Among those, 

electric field induced switching has proved to be a promising route towards scalable ultra-low power 

computing devices. Particularly Voltage Control of Magnetic Anisotropy (VCMA) based switching 

dissipates ~1 fJ energy. However, incoherence due to thermal noise and material inhomogeneity renders 

this switching error-prone. This dissertation is devoted towards studying VCMA induced switching of a 

spin spiral magnetic state, magnetic skyrmions, which can potentially alleviate this issue. 

Magnetic skyrmions has recently emerged as a viable candidate to be used in room temperature 

nanomagnetic devices. Most of the studies propose to utilize skyrmion motion in a magnetic track to 

implement memory devices. However, Magnetic Tunnel Junction (MTJ) devices based on skyrmions that 

are fixed in space might be advantageous in terms of footprint. To establish a new computing paradigm 

based on electrical manipulation of magnetization of fixed magnetic skyrmions we have studied: 
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i) Purely VCMA induced reversal of magnetic skyrmions using extensive micromagnetic simulations. This 

shows sequential increase and decrease of Perpendicular Magnetic Anisotropy (PMA) can result into 

toggling between skyrmionic and ferromagnetic states. We also demonstrate VCMA assisted Spin Transfer 

Torque (STT) induced reversal of magnetic skyrmions. 

ii) Complete reversal of ferromagnets mediated by intermediated skyrmion state using rigorous 

micromagnetic simulation. We show that the switching can be robust by limiting the “phase space” of the 

magnetization dynamics through a controlled skyrmion state. Thus, the switching error can be lowered 

compared to conventional VCMA switching. 

iii) Finally, we perform preliminary experiments on VCMA induced manipulation of skyrmions. We 

demonstrate that skyrmions can be annihilated when Perpendicular Magnetic Anisotropy of the system is 

increased by applying a negative voltage pulse and can be recreated by decreasing PMA by applying a 

positive voltage pulse. The experimental observations are corroborated using micromagnetic simulation. 

Future research should focus on demonstrating reversal of skyrmions experimentally in MTJ like devices 

and study the downscaling of the proposed device. These can enable realization of energy efficient and 

robust nanomagnetic memory devices based on voltage control switching of fixed magnetic skyrmions as 

wells as other neuromorphic computing devices. 
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Figure 5-1 Device structure and characterization. (a) Left: Cross-section of the device. Right: Top view of 

the device structure: The two current contacts can be used for applying current through the stack and 

the voltage contacts can be used for measuring transverse voltage. For VCMA, a voltage pulse was 

applied between one of the two top gate contacts, and any one of the other current and voltage contacts.  

(b) Anomalous Hall measurements for different CoFeB thicknesses, where HOOP denotes out-of-

plane magnetic field, (c) Magnetic force microscopy image showing magnetic states for different 

CoFeB thicknesses. At lower thickness uniform state was observed while at higher thicknesses 

skyrmions and a mixture of skyrmion and stripe domains were seen.  (d) Skyrmion profile obtained 

from the raw MFM image of a skyrmion shown in the inset which was qualitatively similar to the 

simulated skyrmion MFM profile as shown in (e). (f) Simulated MFM profile of a classical bubble. 
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Figure 5-2 Current-driven skyrmion motion imaged using magneto-optical Kerr effect (MOKE) 

microscopy. Current pulse has 9 mA amplitude (corresponding to a current density of 8.3 × 106 A/cm2 

through the IrMn layer) and a duration of 5 ms.  Blue circles indicate the position of skyrmions before 

and after the application of current pulse. Red (green) dashed line shows the initial horizontal (vertical) 

position of the skyrmion. At the final position, the skyrmion also shows a vertical shift in addition to 

the horizontal one, which is due to the skyrmion Hall effect. Reprinted with permission from [17], 

Copyright (2020), Springer Nature. .................................................................................................... 77 

Figure 5-3 VCMA induced manipulation of skyrmions. (a) Interfacial anisotropy (Ki) as a function of the 

applied electric field (E) in the sample with nominal CoFeB thickness of 1.06 nm. The slope of this 

plot is the VCMA coefficient (ξ). (b) Anomalous Hall (AHE) measurement on a sample with CoFeB 

thickness of 1.08 nm and under different gate voltages. The exchange bias and the difference in AHE 

resistance between the two states is almost the same for all samples. (c) MFM images obtained before 

and after application of electric field. Scale bars are 5 𝜇m. Left column: magnetization state before 

application of any electric field. Middle Column: Magnetization state obtained after applying a 

negative voltage pulse that increased PMA. Right Column: Magnetization state obtained after applying 

a positive voltage pulse that decreased PMA. Reprinted with permission from [17], Copyright (2020), 

Springer Nature. .................................................................................................................................. 78 

Figure 5-4 Incomplete annihilation that shows stripe domain to skyrmion transformation. Initial states are 

shown in the top panel and final state is shown in the bottom panel. Arrows mark some of the created 

skyrmions due to application of a negative voltage pulse. Scale bars are 5µm. Reprinted with 

permission from [17], Copyright (2020), Springer Nature. ................................................................ 80 

Figure 5-5 Skyrmions/stripe domains at almost exact position in different magnetization cycle and after 

electric field induced creation. Reprinted with permission from [17], Copyright (2020), Springer 

Nature. ................................................................................................................................................. 81 

Figure 5-6 Micromagnetic simulation of voltage control of skyrmions. (a) Simulated system with different 

regions having a gaussian PMA distribution. The blue regions correspond to lower anisotropy and 

these act as pinning sites. (b) Overview of the creation and annihilation process. Left column shows 

equilibrium magnetic state obtained by finding the equilibrium state starting from a random magnetic 

state. Middle Figure shows the annihilated state while the right figure shows created skyrmions. 

Arrows show that the skyrmion located at the same pinning site before annihilation and after creation. 

These pinning sites corresponds to the low anisotropy (blue) regions marked by circles in (a). (c) 
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Zoomed view of a skyrmion (left) with Neel like spin spiral, (d) Temporal PMA variation used in the 

simulation. (e) Annihilation process of skyrmion. (f) Creation process of skyrmions. The numbers 

represent time corresponding to the pulse shown in (d), (g) Pulse time dependence of skyrmion 

creation and annihilation process. Reprinted with permission from [17], Copyright (2020), Springer 

Nature. ................................................................................................................................................. 82 
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Chapter 1: Introduction 
 

Nanomagnetic devices have been investigated for their potential to replace CMOS based Random Access 

Memory and more recently envisioned to be utilized in neuromorphic computing application. This chapter 

begins with an overview of different nanomagnetic memory devices (1.1), followed by an overview of recent 

developments in one specific area of potential interest: magnetic skyrmions (1.2). Thereafter, we highlight 

the novelty and benefits of using fixed skyrmions and skyrmion mediated switching of perpendicular 

nanomagnets to implement memory devices (1.3). 

1.1  Overview of nanomagnetic memory  
 

The rapid development of computing technology was initiated by the invention of transistors in 1947. Since 

then, continuous miniaturization of transistors has paved way for revolutionizing the electronics industry. 

Numerous portable, handheld and implantable medical devices were enabled by accommodating increasing 

number of transistors in the same area of an electronic chip. This trend was envisioned by Gordon Moore, 

a co-founder of Intel Corporation, in the 1960’s. He predicted that the number of transistors in a chip will 

continue to double in roughly every 18 months [1]. Unfortunately, this trend is now unlikely to continue. 

The amount of heat generated in a given area in a chip is likely to become unmanageable by current heat-

sinking technology, if CMOS devices are further downscaled.  Therefore, excessive heat generation is the 

primary threat to continued miniaturization of computing devices in accordance with Moore’s law. To 

overcome this problem, many alternative low power computing strategies have been proposed. 

Nanomagnet-based computing is an attractive alternative to traditional transistor-based electronics. A 

typical nanomagnetic device is usually based on Magnetic Tunnel Junctions (MTJs) as shown in Figure 

1-1. An MTJ primarily consists of a free layer, a fixed layer and a tunnel barrier. There can be other layers 

such as synthetic antiferromagnetic layer, capping layer which are not shown in Figure 1-1 for simplicity. 

To encode binary bits, the magnetization orientation of the free layer is switched between two stable 

magnetization orientations. The resistance of the MTJ is dependent on the relative angle between the free 



2 

 

and the fixed layer. This is called tunnel magnetoresistance or TMR [2-4]. Therefore, when the 

magnetization state of the free layer reverses, a change in resistance occurs as shown in Figure 1-1 (b). To 

perform readout operation, a small current is passed through the MTJ and the voltage is indicative of 

whether the final magnetization state is parallel or antiparallel to the fixed layer.  

Figure 1-1 (a) Simplified sketch of a Magnetic Tunnel Junction (b) Parallel and anti-parallel states of MTJ which corresponds to 

high and low resistance states, (c) Equivalency between collective rotation of an ensemble of spins and rotation of a giant spin. 

On the other hand, a transistor encodes two logic states or binary bits by the presence or absence of electrons 

in its channel. If N is the number of electrons in the transistor and p is the bit error probability (the 

probability that the bit being written in the transistor is the wrong bit), then the minimum energy dissipated 

in switching a transistor to write a bit at a temperature T is NkBTln(1/p) [5,6]. As two different spin 

orientations encode the binary bit, information carriers in nanomagnetic switches are electrons spins rather 

than electron charge. While switching between bits, the spins can rotate together in unison due to exchange 

interaction [7]. This collective rotation of spins is equivalent to a giant spin rotating (Figure 1-1 (c)). 

Therefore, in an ideal case, the minimum energy dissipated in a switching operation of a single domain 

nanomagnet is ~kBTln(1/p) [6]. Hence, for the same bit error probability, a nanomagnetic switch should be 

N times more energy efficient compared to a transistor. 

Although nanomagnetic computing appears to be highly energy efficient, the energy dissipated in the clock 

(the electrical signal that causes the nanomagnet’s magnetization to switch) negates this perceived 

advantage. However, being “non-volatile” in nature is perhaps a more advantageous property of a 
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nanomagnet. To retain information in charge-based transistors, continuous refresh cycles are needed. 

Otherwise, charges leak, and the information is lost. Therefore, the information is “volatile”. On the other 

hand, nanomagnets have an energy barrier that separates the two bistable states (easy axes of magnetization) 

which prevents it from flipping spontaneously to an undesired state. Therefore, information stored in the 

magnetization state of a nanomagnet does not leak.  

An exemplary potential energy landscape is shown in Figure 1-2 (b) where the two stable magnetization 

states are separated by an energy barrier Eb. The height of this energy barrier determines the stability of the 

nanomagnet. While subjected to thermal noise, the spins may overcome the energy barrier and flip to the 

other energy minima. Mean time between flips can be quantified as 𝜏 = 𝜏𝑎𝑒
𝐸𝑏

𝑘𝐵𝑇⁄
, where 𝜏𝑎 is the inverse 

attempt frequency and kB is the Boltzmann’s constant [8]. By making the energy barrier Eb ~ 60 kBT at room 

temperature by appropriately choosing the material, shape and volume, the bit encoded in either stable 

direction can be retained for  ~3.62×107 years without being refreshed (i.e. when the device is switched 

off), considering 𝜏𝑎 = 1 ×10-12 [9].  

Furthermore, non-volatility allows a switch to store the computed bit internally without having to store it 

in a remote memory device. Such a switch can perform both logic and memory functions at the same time 

thus eliminating the need for external memory. Novel computer architectures can be designed based on this 

unique property of nanomagnets such as non-von-Neumann type architectures where there is no physical 

partition between the processor and the memory [10, 11]. Nanomagnetic devices also has potential to be 

Figure 1-2 The magnetization vector and four different states A, B, C and B’ defined by the magnetization orientation in a 

nanomagnet shaped like an elliptical disk. (b) Energy profile of a shape anisotropic nanomagnet (shaped like an elliptical disk) 

plotted as a function of the azimuthal angle. Reprinted with permission from [59], Copyright (2017), Institute of Physics. 
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used as the basis of neuromorphic computing [12]. Neuromorphic computing devices mimic the 

functionality of human brain: synapse and neurons. This type of computing can be advantageous in 

performing certain tasks such as pattern recognition, which are otherwise difficult to perform using Boolean 

algorithm. 

These abovementioned advantages spurred investigations to stabilize and control magnetization in 

nanomagnetic memory devices. In Subsection 1.1.1, we will discuss two broad classes of nanomagnetic 

devices: single domain and domain wall based. In the next subsection, we will present different ways of 

controlling the magnetization of these nanomagnets. 

1.1.1 Single domain and domain wall devices 

Single domain devices: Single domain nanomagnetic devices have stable magnetization state where all the 

spins are oriented in the same direction. The magnetization direction is switched between two such states 

to encode binary bits. To achieve bistability, the free layer of an MTJ can be implemented using shape 

anisotropic elliptical nanomagnets or perpendicularly polarized nanomagnets. In elliptical nanomagnets, to 

minimize the demagnetization energy, the preferred magnetization direction or the easy axis coincide with 

the major axis of the ellipse (Figure 1-3 a). On the other hand, easy magnetization direction is along ±z 

directions in perpendicularly polarized nanomagnets (Figure 1-3 b). 

The energy barrier between two bistable states is therefore determined by the lateral shape of the 

nanomagnet.  This shape energy barrier Eshape= μo (Ms2/2) × (Nx sin2θ cos2φ + Ny sin2θ sin2φ+Nz cos2θ) × 

volume. Here, φ is the azimuthal angle and θ is the polar angle (see Figure 1-2). Nx, Ny, and Nz are 

Figure 1-3 (a) Shape anisotropic elliptical nanomagnets, (b) Perpendicularly polarized nanomagnets, (c) Domain wall racetrack 

devices. Reprinted with permission from [16], Copyright (2012), IEEE. 
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demagnetization factors which depend on the aspect ratio of the magnet. If the thickness<<lateral 

dimensions, Nz ≈1. This forces θ ≈ 90°, or in other words, forces the magnetization to be in plane.  The 

more elliptical a magnet is, the larger the barrier between two bistable states. To scale below 20 nm, small 

lithographic variation (typically 1-2 nm laterally) may degrade the stability significantly.   

This issue can be addressed by using nanomagnets with easy magnetization direction perpendicular to plane 

easy axis. When a ferromagnetic layer is interfaced with a suitable material, surface anisotropy may exist. 

The surface anisotropy energy is given by Esurface= -(ksurf/t) × cos2θ ×volume. Here ksurf is surface anisotropy 

energy density per unit area and t is the thickness. In a circular thin magnet, Nz ≈ 1 and Nx = Ny ≈ 0. 

Therefore Eshape= (μo Ms2/2) × cos2θ × volume. If ksurf/t> μo Ms2/2, magnetization prefers θ=0° direction and 

points perpendicularly out of plane. In this case, two bistable states are ±z directions and therefore stability 

is not affected by lateral lithographic variation and scaling to smaller dimension becomes feasible. Due to 

scalability, perpendicular nanomagnets are now preferred for implementing nanomagnetic memory. 

Domain wall based devices:  In small nanomagnets, short-range exchange energy dominates, and uniform 

magnetic states are preferred. In larger nanomagnets, however, to minimize demagnetization energy, vortex 

states or multiple domain states are more prevalent. A domain wall separates two oppositely polarized 

magnetic domains. These domain walls can be moved by applying a current. Utilizing this phenomenon, 

domain wall based racetrack memory devices can be implemented [13, 14]. A domain wall racetrack device 

is shown in Figure 1-3c. In these devices, a train of domain walls in a magnetic nanowire represent the bits 

to write. MTJs are placed in several locations of the nanowire to readout the states. For speedy operation 

of racetrack devices, domain walls need to move rapidly. In this regard, extensive research has been 

performed [15, 16, 17] and domain walls in certain materials can be moved at ~1000 m/s [18]. Domain wall 

movement in a nanowire is also useful to implement neuromorphic devices [12].  

However, domain wall easily gets pinned due to edge roughness and defects in the nanowire. This poses a 

challenge in controlling the position of the domain wall, which is a primary requirement for reliable 
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operation of racetrack memory devices. Recently, a new magnetic structure called skyrmion has shown the 

potential to efficiently implement racetrack like devices. These magnetic structures can easily be depinned 

from defects due to their special spin structure. Details of magnetic skyrmions and their potential use as 

nanomagnetic devices will be discussed later. 

1.1.2 Methods of manipulating the magnetization in nanomagnetic devices 

The potential of nanomagnetic devices has led to the investigation of several strategies to control 

magnetization. The very first and the most obvious is the use of electric current-generated magnetic field 

[19]. In hard drives, magnetic bits are still written using localized magnetic field. However, generating 

magnetic field is energetically costly. There are other techniques to manipulate magnetization which can 

be broadly divided into two categories: (i) spin current controlled, (ii) electric field controlled. We will 

discuss some prominent technics that are relevant to this thesis. 

Spin Transfer Torque (STT): Electrical current usually carries same number of electrons with spin up and 

spin down orientation. The spins of the electrons carrying the current can be polarized. To distinguish 

between these two, we call the former charge current and the latter spin current. When spin current is passed 

through a nanomagnet, spin polarized electrons transfer their spin angular momentum to the spins of the 

nanomagnet [20-25]. This induces a torque, called spin transfer torque (STT), on the nanomagnet’s 

magnetization. This STT can be utilized to switch a nanomagnet’s magnetization to a desired orientation.  

The switching mechanism is shown in Figure 1-4. While passing through the fixed layer, electrons get 

polarized parallel to the fixed layer’s magnetization (Figure 1-4, Left). In other words, the fixed layer acts 

as the spin polarizer and injects spin polarized current into the free layer. The polarized spins transfer their 

momenta to the electrons in the free layer and ultimately align the spins along the fixed layer’s 

magnetization direction. Thus, the magnetization direction of the free layer become parallel to the fixed 

layer. To align the magnetization directions antiparallel to each other, the polarity of the current direction 

is reversed. In this case, the free layer injects electrons into the fixed layer. Spins that are parallel to the 

fixed layer’s magnetization gets preferentially transmitted by the fixed layer (Figure 1-4, Right). 
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Ultimately, spins that are antiparallel to the fixed layer’s magnetization become majority spins in the free 

layer population as spins that are parallel to the fixed layer’s magnetization deplete over the time. Hence, 

magnetization antiparallel to that of the fixed layer’s magnetization is stabilized in the free layer.  

Following the above-mentioned strategy, one can write either bit 0 or bit 1 into the memory selectively by 

choosing the current direction. Switching of 11 nm MTJ structures has been demonstrated with write error 

as low as 10-10 [26]. However, STT induced switching is not particularly energy-efficient due to unavoidable 

I2R loss. Energy dissipation was shown to be 100 fJ for 10 ns switching time in ref. [26] which is three 

orders of magnitude higher than CMOS based switching [27]. 

Spin Hall Effect (SHE): Spin hall effect is an alternative way to generate spin current which can reduce 

energy dissipation in switching a nanomagnet compared to STT induced switching [28-31]. When a charge 

current is injected in a thin slab of material with high spin orbit interaction, the electrons experience spin-

dependent scattering. As a result, oppositely polarized spins populate the top and bottom edge of the 

material. This is shown in Figure 1-5. A charge current is injected in the y-direction and consequently +x-

polarized spins are deflected to the bottom edge of the slab while –x-polarized spins are deflected to the top 

edge. If a ferromagnetic layer or an MTJ is delineated on top the slab, the spins diffuse into it, which results 

in a spin current. This spin current produces a torque that can ultimately rotate the magnetization of the 

Figure 1-4 Mechanism of Spin Transfer Torque induced switching of the free layer. Left: Parallel to the fixed layer, Right: 

Antiparallel to the fixed layer 
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ferromagnet or the free layer of the MTJ. For the case shown in Figure 1-5, the magnetization of the soft 

layer will turn to the –x direction. For switching the magnetization of the soft layer to the +x-direction, 

simply reversing the polarity of the charge current (i.e. reversing the spin orientations at the two edges) is 

enough.  

Figure 1-5 Spin Hall effect induced switching, Reprinted with permission from [58], Copyright (2018), Institute of Physics. 

SHE based switching is much more energy efficient compared to the STT based switching. The energy 

consumption has been shown to be ~1 fJ experimentally and can be further reduced by scaling the device 

geometry [31]. Another important parameter related to the efficiency of SHE based switching is spin current 

to charge current ratio (Js/Jc), called spin hall angle. Recent studies focus on improving this parameter to 

make this approach more energy efficient [32, 33]. SHE based switching faces a problem in reversing a 

perpendicular magnet as the spin current can drive the magnetization to one of the in-plane directions. 

Therefore, without any external bias, deterministic switching is not feasible. Exchange bias magnets [34], 

switching in conjunction with STT [35] can be employed to alleviate this problem to some extent. Three 

terminal device structure of SHE based devices may also lead to larger footprint. In conclusion, further 

optimization in design strategy and improved spin hall angle are required to enable energy efficient SHE 

based devices with deterministic switching. 

Voltage control of magnetic anisotropy (VCMA): Perpendicular anisotropy originates at a 

ferromagnet/oxide interface from the overlap between oxygen’s pz and ferromagnet’s hybridized dxz orbital 

[37]. Therefore, when the electron density at the interface is altered by employing a voltage pulse the 

perpendicular anisotropy present in the system consequently changes [38, 39]. This is shown in Figure 

1-6(a). The change in perpendicular anisotropy is expressed through a linear relationship of the form, ∆𝑃𝑀𝐴 
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= 𝑎 E/𝑡𝑓𝑟𝑒𝑒, where a is the so-called VCMA coefficient, E is the applied electric field. VCMA co-efficient 

is expressed as 𝑎 =
∆𝑃𝑀𝐴×𝑡𝑓𝑟𝑒𝑒

∆𝑉 𝑡𝑠𝑝𝑎𝑐𝑒𝑟⁄
. If an applied voltage increases PMA, then the easy axis will become 

perpendicular to the nanomagnet’s plane. On the other hand, if opposite polarity voltage is applied, all in-

plane directions would be equally probable for a circular nanomagnet. Voltage control of magnetic 

anisotropy and its effect on magnetization have been demonstrated in several interfaces experimentally over 

the last decade such as FeCo/MgO, CoFeB/MgO, Fe/MgO etc [40-47]. It has been shown that VCMA 

induced magnetization switching can be accomplished in 1 ns with ~6 fJ energy dissipation [48]. 

Figure 1-6 (a) Change of electron density and consequently PMA, (b) Mechanism of VCMA induced switching 

If we start form a perpendicular state, application of a voltage pulse that reduces PMA results in 

magnetization rotation towards the in-plane direction. When the voltage pulse is withdrawn, the 

magnetization has an equal probability of ultimately settling in any of the two bistable perpendicular 

orientations. However, deterministic and complete 180° magnetization reversal is desired to induce a high 

magnetoresistance change as well as to ensure nonvolatile operation. An in-plane magnetic field is utilized 

to achieve this. Upon application of a voltage pulse, the magnetization rotates to the planar orientation while 

also precessing about the magnetic field (Figure 1-6 (b)). Complete reversal can be achieved by designing 

the magnetic field strength and the voltage pulse duration appropriately. The VCMA voltage pulse duration 

is adjusted to approximately one-half of the precession period, which means that the voltage is withdrawn 

when the magnetization vector approaches the opposite normal-to-plane orientation (180° rotation). Since 

the normal-to-plane orientation coincides with the easy axis in the absence of the voltage, the magnetization 

will settle into this orientation at the end of the voltage pulse, completing the 180° rotation [49].  
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Unfortunately, this mode of switching is not very reliable at room temperature. In the presence of thermal 

noise and material inhomogeneity, the speed at which the magnetization precess around the magnetic field 

vary, which leads to switching error. Furthermore, the external in-plane bias magnetic field required in this 

switching mechanism is undesirable to incorporate on a chip.  

VCMA co-efficient: To beat an energy barrier of 40 kBT or 1 eV in a 45 nm diameter circular nanodisk of 

1 nm thickness (i.e. volume=1.59×10-25 m3), required change in PMA energy density ∆𝑃𝑀𝐴 = 40kBT/ 

Volume = 1×105 J/m3. This translates into VCMA co-efficient required 𝑎 =
∆𝑃𝑀𝐴×𝑡𝑓𝑟𝑒𝑒

𝐸
= 100 µJ/m2 per 

V/nm considering E=1 V/nm (MgO breakdown field 1-2 V/nm). Typically, experimentally measured 

VCMA co-efficient is in the range of 30-100 µJ/m2 per V/nm [40-46].   However, if the device is scaled 

down to 20 nm diameter, required value of VCMA co-efficient goes up to 500 µJ/m2 which is higher than 

that observed in those experiments. Therefore, improvement in VCMA co-efficient is needed for scaling. 

Recent theoretical studies show that the VCMA co-efficient can be 1800 µJ/m2 per V/nm in Au/FeCo/MgO 

heterostructures [50]. 

Magnetoelastic switching: When a material is subjected to a mechanical stress, the magnetization of the 

material reorients itself. This is also called the Villari effect or inverse magnetostriction [51]. The 

magnetoelastic energy produced by stress 𝐸 = − 3/2 𝜆𝑠𝜎𝑐𝑜𝑠2𝜃. uniaxial stress 𝜎 acting upon a magnetization 

that subtends an angle (𝜃°) with the stress's direction, and 𝜆𝑠 is the saturation magnetostriction. Strain 

induced switching of nanomagnets and magnetoelectric memory have been studied both theoretically and 

experimentally [36, 52-60]. 

To implement a magnetoelastic or straintronic memory device, a nanomagnet is deposited on top of a 

piezoelectric layer (Figure 1-7a). If the nanomagnet is a shape anisotropic elliptical nanomagnet, initially 

the magnetization points along one of the major axes (state A or state C). When an electric field is applied, 

the energy landscape alters due to the magnetoelastic energy. If a uniaxial compressive (tensile) stress along 

the major axis for a magnet with positive (negative) magnetostriction (𝜆𝑠) is applied, the magnetization 
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rotates away from the major axis toward the minor axis. The magnetization rotates completely to the minor 

axis if this magnetoelastic energy or stress anisotropy energy exceeds the shape anisotropy barrier. The 

energy landscape for such a scenario is drawn in Figure 1-7 (b). Clearly, the easy axis of magnetization 

(the magnetization orientation that corresponds to the energy minimum) is along the minor axis of the 

ellipse (state B or state B’) in the stressed state. The maximum possible rotation that can be induced in 

magnetostrictive nanomagnets by strain is thus 90°. 

When the stress is released, the magnetization can rotate from the minor axis toward either of the stable 

states along the major axis with 50% probability. This scenario is similar to SHE or VCMA induced 

switching. To achieve a complete 180° magnetization rotation (switching the magnetization from one 

orientation along the major axis to the antiparallel orientation along the major axis), precisely timed 

application and withdrawal of stress [58], dipole coupling with a neighboring nanomagnet [57], or 

sequential application of stress along different directions (with the aid of carefully designed electrode 

configuration) [60] can be employed. 

Another class of magnetoelastic memory uses surface acoustic wave to control magnetization. In these 

devices, alternative tensile and compressive stress cycle acts on the magnetization to reorient it. SAW 

induced magnetization rotation in thin films and nanomagnets have been demonstrated experimentally [61-

65]. High frequency SAW can trigger ferromagnetic resonance [66-67]. These resonant dynamics can assist 

spin torque-based switching and reduce energy consumption [68-69]. 

Figure 1-7 (a) Schematic of a straintronic switching device, (b) modified energy profile plotted as a function of the azimuthal 

angle with uniaxial compressive stress along the major axis for a magnet with positive magnetostriction (the same would be true 

for uniaxial tensile stress along the major axis for a magnet with negative magnetostriction), (c) introduction of asymmetry in the 

energy landscape due to dipole coupling plotted as a function of the azimuthal angle. Reprinted with permission from [59], 

Copyright (2017), Institute of Physics. 
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1.2 Overview of Magnetic Skyrmions 

Various competing interaction exists in a ferromagnetic material that lead to stabilization of a variety of 

magnetization orientation in a nanomagnet such as domain wall, vortices and perpendicular/in-plane 

uniform magnetization state. In previous sections, we have discussed single domain and domain wall based 

devices and several strategies to manipulate magnetization to implement such devices. Recently, 

Dzyaloshinskii-Moriya Interaction (DMI) has been extensively studied due to its ability to stabilize 

interesting magnetic states such as magnetic skyrmions. In this section, we will introduce skyrmions (1.2.1), 

discuss stabilization (1.2.2) and motion (1.2.3) of these magnetic objects. 

1.2.1 Introduction to magnetic skyrmions 

Dzyaloshinskii-Moriya Interaction (DMI) exists in inversion symmetry broken systems such as non-

centrosymmetric bulk ferromagnetic materials or at the interface of a ferromagnet with a material with high 

spin orbit coupling [70,71]. It was first described by Dzyaloshinskii to explain weak ferromagnetism [70] 

while Moriya discovered its connection to spin orbit coupling [71]. DMI energy between two spins is given 

by 𝐸𝐷𝑀𝐼 = 𝐷⃗⃗ 𝑖𝑗. (𝑆 𝑖 × 𝑆 𝑗). Hence, this interaction favors a perpendicular orientation between neighboring 

spins. The direction of DMI vector depends on the nature of asymmetry. Figure 1-8 shows the direction of 

DMI vector for bulk and interfacial DMI. While it is parallel to the line joining the atomic sites in the bulk 

case, the direction is perpendicular in the interfacial case. Thus, the nature of chirality becomes different. 

First principle calculation shows that, DMI in a Heavy Metal/Ferromagnet system can be as large as 12 

mJ/m2 [54]. Moreover, Ferromagnet/Oxide interface can significantly contribute to enhance the total DMI. 

In Co/Pt/MgO structures, 1.6 times increment of DMI value over Co/Pt/Vacuum is observed in experiments 

(2.1 mJ/m2 vs 1.5 mJ/m2) [55] and confirmed via first principles calculations (8 mJ/m2 vs 5 mJ/m2) [56]. 

DMI value was experimentally measured to be 2.1 mJ/m2 in Pt/CoFe/MgO [57]. 
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On the other hand, exchange interaction energy between two spins is given by 𝐸 = −𝐽(𝑆 𝑖. 𝑆 𝑗). Therefore, 

depending on the sign of the exchange stiffness, neighboring spins preferentially align parallelly or anti-

parallelly in a ferromagnetic system. Due to competition between exchange interaction and DMI canting 

between two spins can emerge. Ultimately, this can arrange the overall magnetic structure in different spiral 

orientations. Magnetic skyrmion is specifically important among these spiral states due to its potential 

application and non-trivial topology.  

Skyrmions were first described by particle physicist Tony Skyrme to describe elementary particles [72]. In 

magnetic systems, such a state was predicted theoretically in thin films and multilayers [73, 74]. The spins 

in the center of a magnetic skyrmion is opposite to the spins at the periphery. Depending on how the spins 

rotate from z=+1 at the center to z=-1 at the periphery, skyrmions can be classified into two types namely 

Bloch and Neel skyrmions. These are shown in Figure 1-8 (c-e). Stabilization of Bloch vs Neel skyrmion 

depends on the direction of the DMI vector. If DMI vector is perpendicular to the vector that joins the two 

spin sites, Neel skyrmions are formed. On the other hand, if these vectors are parallel to each other Bloch 

skyrmions form. In bulk system, DMI vector direction prefers Bloch skyrmions while interface driven DMI 

prefers Neel skyrmions. The handedness of the chirality originates from the sign of the DMI vector. 

Figure 1-8  (a) Bulk DMI, (b) Interfacial DMI, (c) Neel skyrmion wrapped around a sphere, (d) Stereographic projection of (c), 

(e) a Bloch skyrmion. (c-e) Reprinted with permission from [76], Copyright (2018), American Physical Society. 
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The specialty of skyrmion lies in its unique topology which can be described in terms of skyrmion number 

or topological number which is given as 𝑆 =
1

4𝜋
∫𝑑𝑥 𝑑𝑦 𝑚. (𝜕𝑥𝑚 × 𝜕𝑦𝑚). This gives us the number of 

times a skyrmion can be wrapped around a unit sphere. Converting to spherical co-ordinates, one can show, 

𝑆 =
1

4𝜋
∫ sin(𝜃)𝑑𝜃

𝜋

0 ∫ 𝑑∅
2𝜋

0
=

−1

4𝜋
[𝑐𝑜𝑠𝜃]0

𝜋 [∅]0
2𝜋 = 1 considering spins at the center pointing in the +z 

direction and spins at the boundary pointing in the -z direction [75]. We note that, in a mathematical system, 

transformation between two topologically distinct system is prohibited. However, unlike a continuous 

mathematical object, a magnetic system is discrete due to spins residing at different atomic lattice point. 

Therefore, transformation between topologically distinct objects can be accomplished if energy barrier 

between these two states is overcome [76]. 

1.2.2 Stabilization of skyrmions 

Skyrmion formation was first observed in bulk MnSi after a decade of the theoretical prediction [77]. Using 

neutron scattering, a lattice phase, named A-phase, with hexagonal symmetry was observed in between 

helical and paramagnetic phase, which occupied a small window in the temperature-magnetic field phase 

diagram (Figure 1-9a). This state was argued to be the skyrmion lattice from mean field theory calculation. 

Later, an additional component in the hall measurements was found that could be attributed to the topology 

of skyrmions [78]. This provides more evidence that the A-phase is indeed skyrmion lattice. Real-space 

observation of magnetic skyrmions using Lorentz transmission electron microscopy in FeCoSi was 

performed by Yu et al [79]. In these initial studies, skyrmions only existed at very low temperatures. Huang 

et al [80] and Yu et al [81] showed, in epitaxial FeGe films, skyrmions could exist near room temperature. 

Skyrmions were then observed in thin film Fe layer interfaced with heavy metal Ir layer [82]. This means 

skyrmions were stabilized by interfacial DMI. These skyrmions were atomically small (Figure 1-9b). 

However, they were stabilized at very low temperatures.  
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In a PdFe bilayer interfaced with Ir, controlled skyrmion creation and annihilation was demonstrated at 4.2 

K [83]. This was achieved by depositing energy into the system by injecting high energy electrons utilizing 

a Spin Polarized Scanning Tunneling microscope (SP-STM) tip. Current induced manipulation of chiral 

domain walls was used to create skyrmions by introducing a geometrical constriction [84]. Using a small 

magnetic field first sparse domain walls are created. After passing a current, the chiral domain wall moves 

under the constriction and experience an inhomogeneous current distribution along one direction that breaks 

the stripes into circular domains. This is shown in Figure 1-9 (c). Around same time, small skyrmion 

stabilization was shown by Moreau-Luchaire et al [85] and Boulle et el [86]. In [85], enhanced DMI was 

found by sandwiching the magnetic material between two heavy metal layers that lead to additive interfacial 

chiral interaction due to opposite DMI for Co on Ir and Co on Pt. The effective DMI value was around 2 

mJ/m2 and the skyrmions were sub 100 nm. Skyrmion creation with spin orbit torque at natural or artificial 

defect was demonstrated by Buttner et al [87].  

1.2.3 Skyrmion motion and its application 

Skyrmion motion driven by spin torque was first studied in MnSi [88] and FeGe [89] systems. Rotational 

and translational motion of skyrmion were observed.  The threshold current needed for skyrmion motion 

was found to be less than 100 A/cm2. This can be attributed to efficient Berry-phase coupling between 

conduction electrons and the spin structure and weak coupling to defects owing to the nature of the spiral 

spin structure. In domain walls, threshold current value to initiate motion is in the order of 105-107 A/cm2. 

Figure 1-9 (a) First observation of skyrmion which is denoted by the A-phase, Reprinted with permission from [77], Copyright 

(2009), American Association for the Advancement of Science, (b) Atomic scale skyrmion in Fe/Ir bilayer at low temperature, 

Reprinted with permission from [82], Copyright (2011), Springer Nature. (c) Blowing skyrmion bubbles (right) from chiral 

domains(left), Reprinted with permission from [84], Copyright (2015), American Association for the Advancement of Science. 
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A device operating with such high current values suffers from Joule heating issues. On the other hand, as 

skyrmion motion can be initiated with current that is 3-4 orders of magnitudes lower than that of domain 

walls, skyrmions were deemed promising to replace DW in racetrack memory devices. 

In the initial studies, skyrmion motion in the creep regime was investigated and therefore skyrmion speed 

was only micrometers per second. In the last couple of years, many material systems, primarily thin 

ferromagnetic layer interfaced with a heavy metal layer, have been investigated [84-87, 90-94] and room 

temperature high speed skyrmion motion (~100 m/s) was demonstrated [86, 92, 94]. Recently, skyrmion 

stabilization of ferrimagnetic material have been demonstrated [95-97], which is particularly promising as 

ultrasmall ~10 nm skyrmion can be stabilized. Additionally, at angular momentum compensation point, 

DW velocities were shown to be very high [95] and skyrmion motion is also expected to be very fast which 

makes ferrimagnetic materials further promising. 

Skyrmion motion based devices: Skyrmion motion can be utilized to implement logic and memory devices. 

Particularly, it has potential to replace domain walls in racetrack memory devices. Precise control of domain 

wall, which is necessary for implementation of racetrack memory, is difficult to achieve as DWs get pinned 

easily. Due to its spin structure, the skyrmions have very low depinning current and can overcome this 

problem. Therefore, skyrmion motion is investigated in different material systems although for similar 

Figure 1-10 . (a) Skyrmion motion on a racetrack, Reprinted with permission from [98], Copyright (2013), Springer 

Nature, (b) Skyrmion hall effect. Reprinted with permission from [107], Copyright (2017), Springer Nature. 
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velocities required currents are similar [98]. Using micromagnetic simulation, strategy to design efficient 

racetrack memory device was proposed [98-101]. An exemplary racetrack device is shown in Figure 1-10 

(a). Using patterned nanowires, skyrmion motion can also be utilized to perform logic operations [102, 

103]. Gyrotropic skyrmion motion of skyrmions can be used to implement nano-oscillators [104, 105]. 

Experimentally, proof-of-concept skyrmion shift device have been demonstrated by Yu et al [90]. 

Skyrmion Hall effect: Another important implication of skyrmion topology is skyrmion hall effect. This 

phenomenon is referred to as the SkHE. In ordinary hall effect, charged particles bend in the presence of a 

magnetic field due to Lorentz force. Magnetic skyrmions, when driven by a current, bend due to magnus 

force, which is a consequence of its topology. Therefore, skyrmions have both transverse and longitudinal 

component of velocity (Figure 1-10b). Skyrmion hall angle is defined as tan-1 (Vtrans/Vlong). This was first 

theoretically predicted by Kong et al. [106].  Recent experimental studies [94, 107] also confirmed this 

phenomenon. While this is interesting from a physics point of view, this creates a problem in racetrack 

memory implementation. Due to this hall effect, skyrmion can go towards the edge and gets annihilated 

[108]. There exist several strategies, such as using antiferromagnetic skyrmions where two opposite polarity 

skyrmion sublattice can cancel hall angle and therefore skyrmion can be driven in a straight line [109, 110]. 

1.3 Fixed magnetic skyrmions in confined geometry (contribution of this thesis) 

Skyrmion motion based racetrack memory faces multiple challenges that needs to be overcome for 

successful operation: 

(1) Controlled skyrmion capture at specific location is necessary for racetrack devices. Domain walls 

are captured at geometric notches fabricated in the racetrack structure. However, skyrmions interact 

weakly with notches. This gives it the advantage of low threshold current but affects controllability. 

 

(2) Skyrmion hall angle needs to be eliminated. This can be achieved utilizing antiferromagnetic 

skyrmions. Although, a reduction of skyrmion Hall angle was experimentally shown in partially 
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compensated sub-lattices of ferrimagnetic GdFeCo [96], complete suppression of spin hall effect 

is yet to be demonstrated. 

 

(3) Skyrmion motion is generally induced by a current pulse. To achieve high velocity, required current 

is similar to that of domain walls. Therefore, it may suffer from the same Joule heating issues as 

DW based racetrack devices. 

 

We propose to utilize fixed magnetic skyrmions that are confined in the free layer of an MTJ to implement 

memory devices. Therefore, this proposed device does not suffer from issues related to skyrmion motion 

(i.e. hall angle and controllability). To manipulate these skyrmions, we propose to use electric field, in 

particular VCMA which reduces energy dissipation. Hence, this proposed strategy can potentially address 

the issues mentioned above. 

Fixed Magnetic Skyrmions: Magnetic skyrmions (Fig 1-11 c) can exhibit bistable and degenerate magnetic 

states at room temperature: core pointing “up” and core pointing “down”. These two bistable states in a 

skyrmions are analogous to the two bistable “up” and “down” states of a shape anisotropic elliptical 

nanomagnet or a perpendicular nanomagnet where the magnetization points along the long axis or out of 

plane direction as shown in Figure 1-11 (a) and (b).  Therefore, the ability to switch deterministically and 

reliably between two stable skyrmionic states as well as detect (“read out”) these states could lead to an 

energy efficient paradigm for the realization of nanomagnetic memory and computing devices. The readout 

Figure 1-11 Bistable states in (a) shape anisotropic elliptical nanomagnets, (b) nanomagnets with perpendicular anisotropy, (c) 

magnetic skyrmions. 
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of the states can be performed using a vertically integrated magnetic tunneling junction (MTJ), which could 

result in high density memory elements.  

Voltage control of magnetic anisotropy (VCMA) offers an extremely energy efficient route for 

manipulating magnetization. Previous schemes for switching nanomagnets with perpendicular magnetic 

anisotropy (PMA) using VCMA could only achieve a maximum of 90° magnetization rotation (from out of 

plane to in-plane) and an external magnetic field is required to achieve complete magnetization reversal. 

However, in one of our studies, we showed with rigorous micromagnetic simulation that core reversal of a 

magnetic skyrmion can be achieved employing an electric field only (i.e. without requiring any external 

field). Furthermore, we can switch reversibly between two skyrmionic states and two ferromagnetic states, 

i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing up/down, 

and ferromagnetic states with magnetization pointing up/down, by applying a bipolar voltage pulse (i.e. 

sequential increase and decrease of the perpendicular magnetic anisotropy). Therefore, this switching 

strategy can provide functionality of a four-state memory element. Additionally, the energy dissipation can 

be as low as 100 aJ which is orders of magnitude lower than other competing technologies. This is further 

described in chapter 2.  

Reduction of the switching current can be achieved by employing methods to reduce perpendicular 

magnetic anisotropy, which temporarily depresses the energy barrier between the “up” and “down” state 

during spin current induced switching. This can improve the energy-efficiency and switching speed without 

compromising the thermal stability. In chapter 3, we examine such a hybrid scheme for reversal of 

skyrmions where application of a small voltage can reduce the threshold current needed, present rigorous 

micromagnetic simulation to explain the underlying physics of the reversal process and quantify 

improvements in terms of dissipated energy.  

In chapter 4, we propose and show preliminary simulations of memory devices based on complete 

ferromagnetic reversal mediated by skyrmions. Our work demonstrates that the presence of Dzyaloshinskii-

Moriya Interaction (DMI) can create alternative route for magnetization reversal that obviates the need for 
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utilizing precessional magnetization dynamics as well as a bias magnetic field that are employed in 

traditional voltage control of magnetic anisotropy (VCMA) based switching of perpendicular 

magnetization. We further study dynamic error due to the presence of thermal noise in these devices and 

show with extensive micromagnetic simulation, in the presence of thermal noise, that the proposed 

skyrmion mediated VCMA switching mechanism is robust at room temperature leading to extremely low 

error switching. 

In chapter 5, we demonstrate experimental switching of skyrmions. To demonstrate VCMA 

induced manipulation of skyrmions, we fabricate antiferromagnet/ferromagnet/oxide heterostructure films 

where skyrmions can be stabilized without any external magnetic field due to the presence of exchange 

bias. These isolated skyrmions were annihilated by applying a voltage pulse that increased PMA. On the 

other hand, decreasing PMA promoted formation of more skyrmions. Furthermore, skyrmions can be 

created from chiral domains by increasing PMA of the system. 

Finally, in the concluding chapter, we present future research directions. We discuss challenges in 

scaling our proposed device structure to 20 nm diameter which is competitive to existing STT-MRAM 

devices. We further show some promising application of skyrmions beyond memory application that can 

guide and motivate future research. 
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Chapter 2: Modeling and Experimental Imaging of Nanomagnetic 

Devices and Magnetic Skyrmions 
 

This chapter deals with modeling of magnetization dynamics inside a nanomagnet as well as several 

experimental characterization technics to image magnetization states of nanomagnets. We will first discuss 

modeling of nanomagnets in section 2.1. Modeling can be performed at different scales starting from 

quantum mechanical modeling that deals with electronic structure to macrospin assumption in which the 

whole magnet is considered as a giant spin. We particularly focus our discussion to describing 

micromagnetic simulation framework where a magnetic structure is divided into smaller cells and 

magnetization dynamics is solved for each of them.  In section 2.2, we introduce a variety of instruments 

that are used to image magnetization states in magnetic materials. We describe Magnetic Force Microscopy 

(MFM) in detail which was used to image magnetic skyrmions in our experiments. 

2.1 Micromagnetic Modeling of Magnetization Dynamics 

In the Micromagnetic framework, the magnetization dynamics is simulated using the Landau Lifshitz 

Gilbert (LLG) equation:   

𝜕𝑚⃗⃗⃗ 

𝜕𝑡
= 𝜏 = (

−𝛾

1+𝛼2) (𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓 + 𝛼 (𝑚⃗⃗ × (𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓)))                             (1) 

where 𝑚⃗⃗  is the reduced magnetization (𝑀⃗⃗ /Ms), Ms is the saturation magnetization, γ is the gyromagnetic 

ratio and α is the Gilbert damping coefficient. The quantity Heff is the effective magnetic field, which is 

given by, 

𝐻⃗⃗ 𝑒𝑓𝑓 = 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔 + 𝐻⃗⃗ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + 𝐻⃗⃗ 𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑝𝑦 + 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙                                      (2) 

Here, 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔 is the demagnetization (or magnetostatic) field, 𝐻⃗⃗ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 is the effective field due to 

Heisenberg exchange coupling and DMI interaction, 𝐻⃗⃗ 𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑝𝑦 is the effective field due to uniaxial 

anisotropy and 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is the random thermal field. These are evaluated in the Micromagnetic framework 

in the manner described in Ref. 1 and Ref. 2.  

 



33 

 

The effective field term for uniaxial anisotropy is given by, 

𝐻⃗⃗ 𝑎𝑛𝑖𝑠 =
2𝐾𝑢1

𝜇0𝑀𝑠𝑎𝑡
(𝑢⃗ . 𝑚⃗⃗ )𝑢⃗ +

4𝐾𝑢2

𝜇0𝑀𝑠𝑎𝑡
(𝑢⃗ . 𝑚⃗⃗ )3𝑢⃗           (3) 

where, 
1uK and 

2uK are first and second order uniaxial anisotropy constants, 
satM is the saturation 

magnetization and u is the unit vector in the direction of the anisotropy. For
2 0uK = , Equation (3) reduces 

to  

𝐻⃗⃗ 𝑎𝑛𝑖𝑠 =
2𝐾𝑢1

𝜇0𝑀𝑠𝑎𝑡
(𝑢⃗ . 𝑚⃗⃗ )𝑢⃗                                                   (4) 

VCMA effectively modulates the anisotropy energy density, which is given by ∆PMA = 𝑎E. Here 𝑎 and E 

are respectively the coefficient of electric field control of magnetic anisotropy and the applied electric field. 

The resultant change in uniaxial anisotropy due to VCMA is incorporated by modulating 
1uK while keeping

2uK = 0. 

To determine strain mediated magnetization dynamics, we incorporate the effect of stress using uniaxial 

anisotropy, facilitated by their equivalent contribution to the effective field as the micromagnetic 

frameworks lack any inbuilt functionality to directly accomplish this. The effective field due to an external 

uniaxial stress can be expressed as  

𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 =
3𝜆𝑠𝜎

𝜇0𝑀𝑠𝑎𝑡
(𝑠 . 𝑚⃗⃗ )𝑠                              (5) 

where, (3 2) s is the saturation magnetostriction,   is the external stress (Pa) and s is the unit vector in the 

direction of the applied stress. Comparing Equations (4) and (5),  

𝐾𝑢1 =
3𝜆𝑠𝜎

2
 (6) 

this equation was used to find the value of 
1uK to simulate the effect for a given uniaxial stress   applied 

in the same direction as the uniaxial anisotropy. 

The effect of thermal noise is incorporated by adding an equivalent field to the total effective field 
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𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜂 (𝑠𝑡𝑒𝑝)√
2𝛼𝑘𝐵𝑇

𝜇0𝑀𝑠𝛾ΔσΔt
                                                       (7) 

Where 𝜂 (𝑠𝑡𝑒𝑝) a random vector from a standard normal distribution whose value is changed after every 

time step, Δσ is the cell volume, Δt the time step and 𝑘𝐵 the Boltzmann constant. 

 

Magnetic skyrmions are stabilized due to the presence of The Dzyaloshinskii-Moriya interaction which has 

been introduced in an atomic description as 

𝐸𝐷𝑀𝐼 = ∑ 𝐷⃗⃗ 𝑖𝑗. (𝑆 𝑖 × 𝑆 𝑗)𝑖,𝑗                                                              (8) 

where 𝐷⃗⃗ 𝑖𝑗 is the DM interaction vector for the atomic bond ij (in Joule), 𝑆𝑖 the atomic moment unit vector, 

and the summation is performed on the neighbor pairs <i, j>.  

 

The DMI contribution to the effective exchange field is given by: 

𝐻⃗⃗ 𝐷𝑀𝐼 =
2𝐷

𝜇0𝑀𝑠
[(∇⃗⃗ . 𝑚⃗⃗ )𝑧̂ − ∇⃗⃗ 𝑚𝑧]                                                    (9) 

where 𝑚𝑧 is the z-component of magnetization and D is the continuous effective DMI constant. 

The torque due to spin current is given by, 

𝜏𝑆𝑇𝑇 =  𝛾𝛽 (𝑚⃗⃗ × (𝑚⃗⃗ × 𝑚⃗⃗ 𝑝))                                                     (10) 

𝛽 =
ℎ

2𝜋
 

𝑃𝐽

2𝜇0𝑒𝑀𝑠𝐿
                                                            (11) 

Here, 𝑚⃗⃗ 𝑝 is the unit vector of spin polarization direction, ℎ is Planck’s constant, P is the degree of spin 

polarization, J is the current density, 𝜇0 is vacuum permeability, e is the electron charge, L is the thickness 

of the free layer.  
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2.2 Experimental approaches to characterize magnetic skyrmions 

In the very first experiment that reported observation of magnetic skyrmions, small angle neutron scattering 

was used to identify skyrmions from the scattering pattern [1]. Later, topological hall effect arising due to 

emergent electrodynamics of the spiral spin structure of magnetic skyrmion was used to confirm this 

prediction [2]. Following this, experiments with a goal to realize real space observation of skyrmions were 

performed. skyrmion crystal was first observed in FeCoSi using Lorentz Transmission Electron Microscope 

[3]. Several technics have been used since this seminal study. In section 2.2.1, we will briefly survey some 

of these technics. In the next section, we will describe the operating principle of magnetic force microscopy 

which we used to study skyrmions in our experiments. 

2.2.1 Different imaging technics 

Lorentz Transmission Electron Microscope (Lorentz-TEM): In a TEM, electrons are transmitted through 

a very thin film and information about the sample, such as crystalline structure, chemical composition etc. 

are obtained from different electron-sample interactions. Electrons passing through a ferromagnetic 

material experience Lorentz force and therefore gets deflected. This interaction is used to form an image of 

the magnetization of the sample. Amount of deflection depends on the magnetization direction and 

therefore, contrast appears in the image when electrons pass through oppositely polarized magnetic 

domains. Lorentz-TEM was used in the very first real space observation of skyrmion [3]. This is shown in 

Figure 2-1 (a). Other examples can be found in reviews [4,5]. 

Spin Polarized-Scanning Tunneling Microscope (SP-STM): In a STM, a conducting tip is used to scan 

the surface. When a bias voltage is applied, electrons tunnel between the surface and the tip. This tunneling 

current is used to characterize a sample’s surface which depends on tip to sample distance, applied voltage 

etc. If a magnetized tip is used, tunneling current depends on the electron spin due to tunnel 

magnetoresistance. The spins that are parallel to the magnetization of the tip now have a higher probability 

to tunnel. Thus, information about surface magnetization can be obtained. In Ref [6], SP-STM was used to 

both image the skyrmions and create and destroy them by applying spin polarized current using the tip. 
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Several other studies also used SP-STM to image magnetic skyrmions [7-9]. One example of SP-STM 

imaging of skyrmions is shown in Figure 2-1 (b) where the blue and the read area mean high and low 

current. 

X-ray Magnetic Circular Dichroism (XMCD): Interaction between polarized X-ray and magnetic moment 

is dichroic in nature; absorption of X-ray is different depending on polarization of the X-ray (i.e. left vs 

right circular polarization) and the magnetization direction. The magnetic property of transition metals 

depends on the 3d electrons and there exists an imbalance between spin up and spin down electrons in the 

3d orbital. Therefore, to probe magnetic characteristics, X-ray absorption at L-edge (i.e. 2p to 3d transition) 

is performed. The imbalance can be measured using polarized X-rays. Right circularly polarized X-ray 

photons transfer the opposite momentum to the electron compared to left circularly polarized photons. 

Therefore, depending on the difference in number of spin up and spin down electrons in the 3d orbital, one 

of the X-rays is absorbed more than the other [10].  This gives rise to difference in the absorption spectra 

between left and right circularly polarized X-Ray absorption spectra, from which magnetization information 

can be interpreted. This is shown in Figure 2-1 (c). 

In transmission X-ray microscopy such as Scanning Transmission X-ray Microscopy (STXM), Magnetic 

transmission X-ray microscopy (MTXM), X-rays are transmitted through the sample and detected using a 

charge coupled device. Another kind of XMCD based device collects secondary electrons emitted in the 2p 

Figure 2-1 (a) Lorentz TEM image of skyrmions, Reprinted with permission from [3], Copyright (2013), Springer Nature, (b) SP-

STM image of skyrmions, Reprinted with permission from [9], Copyright (2015), American Physical Society, (c) Difference in 

X-ray absorption due to different polarization, Reprinted with permission from [10], Copyright (2014), Elsevier, (d) MOKE 

microscopy image of skyrmions, Reprinted with permission from [16], Copyright (2018), American Chemical Society. 
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to 3d electron transition process via X-ray absorption. This is called XMCD-PEEM (Photoelectron 

Emission Microscopy). Examples of XMCD based imaging of skyrmions can be found in Ref. [11-14]. 

Magneto Optical Kerr Effect (MOKE): When polarized light is reflected from a magnetized surface, the 

polarization and the intensity of the reflected light can change. Sample magnetization modulates the 

permittivity tensor differently in different direction by adding off-diagonal components to the tensor. Thus, 

circularly polarized light gets converted to elliptically polarized light. Depending on relative direction 

between magnetization and the plane of light incidence MOKE can be divided into three classes. Polar 

MOKE is particularly relevant to our discussion as it probes samples with out-of-plane magnetization. 

MOKE microscopy is used widely to image skyrmions [15-17] as it does not require vacuum and image 

collection is instantaneous. However, resolution of MOKE microscopy is limited by wavelength of light 

and typically ~1 µm (Figure 2-1 d). As smaller skyrmions are more desirable, other high-resolution technics 

described above could be more useful in future. 

2.2.2 Magnetic Force Microscopy 

Magnetic force microscopy is based on Atomic force microscopy (AFM) which is one of the prominent 

examples of scanning probe microscopy. This imaging technic became popular as it does not require 

vacuum and any cryogenic chambers. Also, the resolution is not limited by diffraction and can be as high 

as 25 nm laterally. One drawback is slow data collection the probe needs to scan the whole sample area to 

be imaged. In this section, we will discuss the basic operating principle of AFM and MFM. 

Atomic Force Microscopy (AFM) Instrumentation: 

Configuration of an AFM is shown in Figure 2-2(a). A sharp tip that interacts with the sample is attached 

to the free end of a cantilever which is mounted on a probe holder. This probe holder is attached to a piezo 

scanner that controls its position. A laser is reflected from the back of the cantilever to a series of 

photodiodes. When the tip deflects, the position of the laser in the photodiode changes. Thus, the change in 

position is recorded as an electrical signal. This information is sent to a controller which produces a 
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feedback signal to the piezo scanner that controls the tip location in the next step. AFM can be operated in 

constant height mode or constant force mode. This mode determines the feedback signal that changes the 

tip height such that either the tip sample distance or the force exerted on the tip by the sample always 

remains the same.  

Operating Mode: Primary technics used in AFM operation is contact mode and tapping mode. In contact 

mode, the probe comes in close contact with the sample. This applies a repulsive force on the tip. When the 

topographic features change, this repulsive force changes. This is compared against a set value. To keep 

the force constant and equal to the set value, a feedback signal drives the piezo to change the probe-sample 

distance. This feedback signal therefore is a measure of the sample topography. In contact mode, the sample 

or the tip is often damaged as the tip is dragged along the surface of the sample. Adhesion, electrostatic 

charges etc can also cause problem in imaging. 

In tapping mode, the tip intermittently touches the surface. To achieve this, the cantilever is oscillated near 

its resonant frequency, which is typically 50-500 KHz, with a vertical displacement amplitude of 20-200 

nm. During the downswing, the tip lightly touches the surfaces. When there is attractive (repulsive) force 

between tip and the sample, the resonant frequency is decreased (increased). An example of resonant 

behavior of AFM cantilever and its change due to interaction is shown in Figure 2-2 (b). This change in 

resonance frequency can be detected in three ways: (i) measuring the phase of the cantilever oscillation 

relative to the excitation signal (phase detection) (ii) measuring the variation in oscillation amplitude due 

to tip-sample interaction (amplitude detection) (iii) measuring the shift in resonant frequency (frequency 

detection). Thus, sample tip interaction is measured. As the tip is not always in contact with the sample, 

problems regarding damage, adhesion etc. can be minimized.  

Basic principles of MFM: In MFM, the magnetic interaction between the sample and the tip is detected. 

Usually, regular AFM tips are coated with a magnetic material to be used in MFM. The coercivity and 

moment of the coating depends on the application (e.g. nature of the sample to be probed). The tip is 

magnetized axially. To decouple the magnetic signal from the topographic signal, interleave mode is used. 
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This is a two pass technique. In the first pass, the topography of the sample is measured. Then, the probe is 

lifted vertically to a user-defined height, which is typically 10-100 nm. At this height, all other forces but 

magnetostatic force is minimized as magnetostatic energy is a long range energy. Therefore, the magnetic 

signal and the topographic signal can be separated using interleave mode.  

Tip-sample interaction in MFM is rather convoluted due to complex nature of stray field and its interaction 

with different areas of the tip. However, simplification of the interaction can be made by considering the 

tip to be a point dipole oriented along z-axis and its only sensitive to the sample magnetization along the z-

axis. The force on the tip and change in resonant frequency due to the sample in this case: 

𝐹 = 𝜇0𝑚𝑧,𝑡𝑖𝑝.
𝜕𝐻𝑧,𝑠𝑎𝑚𝑝𝑙𝑒

𝜕𝑧
 

∆𝜔 = −
𝜔0𝜇0

2𝑘
𝑚𝑧,𝑡𝑖𝑝.

𝜕2𝐻𝑧,𝑠𝑎𝑚𝑝𝑙𝑒

𝜕2𝑧
 

Figure 2-2 (a) Block diagram of an Atomic Force Microscope, (b) Resonant frequency of a cantilever and it's shift due to 

interaction, (c) Appearance of dark and bright contrast in an MFM image. Left: MFM image of single domain elliptical Cobalt 

nanomagnets. Right: Illustration of attractive and repulsive forces on the tip due to sample magnetization. 
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In these equations, 𝜇0 is the vacuum permeability, 𝑚𝑧,𝑡𝑖𝑝 and 𝐻𝑧,𝑠𝑎𝑚𝑝𝑙𝑒 is respectively the tip and the 

sample magnetization in z direction, 𝜔0 is the initial resonant frequency, 𝑘 is the spring constant of the 

cantilever. This change is detected through measuring change in phase due to better signal to noise ratio. In 

the MFM image this shows up as dark and bright contrast. Example of MFM images are shown in Figure 

2-2(c). Note that, this can only give us a qualitative picture of the magnetization of the sample. Quantitative 

imaging using MFM is also possible but requires ultra-high vacuum to ensure high-Q resonant behavior 

[21, 22]. 

The resolution of MFM depends on several factors. Lateral resolution is primarily dependent on the 

sharpness of the tip and usually this ranges between 25-50 nm. Vertical resolution depends on electronic, 

thermal and vibrational noise, tip sample distance, moment of the tip and the sample. If the tip sample 

distance is low, crosstalk with topographic information can corrupt the magnetic signal. On the other hand, 

if the distance is very high, signal strength decreases. If tip moment is very high, the signal level increases 

but it can disturb the sample magnetization. Low moment tip is preferable to minimize tip perturbation, but 

signal level decreases. The thinner the sample, the harder it becomes to detect any signal. Finally, 

optimizing scanning parameters such as amplitude setpoint, feedback gain can help to achieve higher 

resolution. 
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Chapter 3: Voltage controlled core reversal of fixed magnetic skyrmions 
 

In this chapter, we discuss two different strategies to achieve core reversal of a fixed magnetic skyrmion 

utilizing Voltage Control of Magnetic Anisotropy (VCMA). Using micromagnetic simulations, we show 

that, skyrmion core can be reversed solely by modulating the perpendicular anisotropy with an electric 

field, i.e. without any external magnetic field (Section 3.1). Furthermore, VCMA can assist in STT induced 

switching of magnetic skyrmion core and reduce energy consumption (Section 3.2). These strategies can 

have potential for memory application where a relatively simple modification of the standard STT-RAM to 

include a heavy metal adjacent to the soft magnetic layer (as shown in Figure 3-1). Interfacial DMI 

originates at the free layer/heavy metal interface equips the free layer to host a skyrmion. One common 

pair of electrodes is used for application of both VCMA and spin current.  With appropriate design of the 

tunnel barrier, this can lead to energy efficient and fast magnetic memory device based on the reversal of 

fixed skyrmions. 

3.1 Core reversal of skyrmion using only VCMA 

In this section, we demonstrate switching reversibly between two skyrmion states and two ferromagnetic 

states, i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing 

up/down, and ferromagnetic states with magnetization pointing up/down, by sequential increase and 

decrease of the perpendicular magnetic anisotropy [1]. The switching between these states is explained by 

the fact that the spin texture corresponding to each of these stable states minimizes the sum of the magnetic 

Figure 3-1 Proposed MTJ device, Reprinted with permission from [1], Copyright (2016), Springer Nature. 
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anisotropy, demagnetization, Dzyaloshinskii-Moriya interaction (DMI) and exchange energies. This 

mechanism along with micromagnetic magnetization states visited during the switching is discussed in 

section 3.1.1. In Section 3.1.2 we outline the energy efficiency of our proposed device. 

3.1.1  Switching Mechanism 

We simulate the magnetization dynamics in a perpendicular anisotropy CoFeB/MgO/CoFeB MTJ structure 

shown in Figure 3-1 to demonstrate skyrmion core reversal. The bottom CoFeB layer is the free layer which 

is chosen to be a nanodisk with diameter of 80 nm and thickness of 1 nm. The reversal of the skyrmionic 

state is achieved through modulation of the perpendicular magnetic anisotropy by applying an electrical 

voltage. Modulation of the PMA initiates a change in the orientation of the spins and ultimately the 

equilibrium spin configuration is determined by minimizing the total energy of the system which includes 

exchange energy, DMI energy, magnetic anisotropy energy and demagnetisation energy. We note that the 

micromagnetic simulation describes the evolution of the magnetic configuration with time to reach this 

local minimum. The reversal is a two-step process. The voltage profile and anisotropy energy density 

change with time, the magnetic energies of the system at various states and configurations of different 

magnetic states visited during the switching process are shown in Figure 3-2(a), Figure 3-2 (b) and Figure 

3-2(c, d) respectively. Typical parameters for the CoFeB layer are listed in table 1 [2]. (This is for 

Co20Fe60B20). 

We start with a skyrmion whose core points down (Figure 3-2 (c), state A). In the first step, a positive 

voltage is applied to the skyrmion which strengthens the perpendicular anisotropy. This forces more spins 

to point in the direction perpendicular to the x-y plane (i.e. in the direction ±z) to reduce the anisotropy 

energy. Minimization of curvature energy cost of the circular domain wall (i.e. the spin spiral) demands 

stabilization of a skyrmion with smaller core radius when PMA is increased. [3]. As a result, the diameter 

of the skyrmion core keeps reducing with increasing PMA (Figure 3-2 (c), state B). This makes +z direction 

the preferred direction among the two possible perpendicular spin orientations (±z). Allowing the spins to 

relax under this condition would transform the magnetization to a complete ferromagnetic state. However, 
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once a sufficient number of spins are pointing in the downward (-z) direction (very small core diameter as 

can be seen in Figure 3-2 (c), state B), exchange interaction can drive rest of the core spins downward and 

thus a ferromagnetic state can be achieved while reducing the applied voltage to zero (Figure 3-2 (c), state 

C). Increase in the DMI and demagnetization energy due to this transformation (from state A to state C) is 

compensated by the reduction in anisotropy and exchange energy as shown in Figure 3-2 (b). This 

ferromagnetic state is also stable (similar to the skyrmionic state A) and this is what makes it non-volatile.  

Note that, spins at the edge of a skyrmions confined in a nanodisk tilt in a plane containing the edge surface 

normal [3]. This can be seen by observing magnetization component in the z-direction of different points 

along the diameter in Figure 3-2 (c). Therefore, geometric edge could enable continuous annihilation. 

Table 3-1. Parameter values used in section 3.1 

In the next step, a negative voltage is applied to lower the perpendicular anisotropy. When the perpendicular 

anisotropy is made sufficiently low by applying a large enough negative voltage, the DMI and 

demagnetization energies become dominant. The spins then rearrange themselves in this altered energy 

landscape and transforms from the complete ferromagnetic state to an incomplete skyrmion state as shown 

in Figure 3-2 (c), state D. In this state, the spins in the core point up (+z) and the spins in the periphery are 

tilted downward (-z). Under these conditions, the spins finally stabilize as shown in Figure 3-2 (c), state E, 

Parameters Value 

Saturation Magnetization (Ms) 1 106 A/m 

Exchange Constant (A) 2 10-11 J/m 

Perpendicular Anisotropy Constant (Ku) 8 105 J/m3 

Gilbert Damping (α) 0.03 

DMI Parameter (D) 3 mJ/m2 
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forming an incomplete skyrmion with skyrmion number between 0.5 and 1. The tilting starts at the 

periphery of the disk because this results in a smaller penalty in terms of exchange energy than the tilting 

of the spins in the core. Finally, the applied voltage is removed, and the zero bias PMA is restored. The 

spins in the periphery of the nanodisk now rotates completely to the –z direction and the spins in the core 

retains their upward (+z) magnetization direction. As a result, a skyrmion state with core pointing up is 

formed as shown in Figure 3-2 (c), state F. The skyrmion formed in state F is not at equilibrium but can 

Figure 3-2 (a) Anisotropy energy density and voltage vs time, we considered the rise time and fall time of the electric field to be 

100ps (to charge the capacitive MgO layer). This is typically idealized as a trapezoidal shaped voltage pulse with a dwell time 

between the rise and fall. However, a tent like (triangular) positive pulse is used to show that skyrmion-ferromagnetic transition 

can occur as fast as 0.2 ns. In other words, we can immediately remove the electric field once it reaches peak value. We could 

also use a usual symmetrical trapezoidal shaped positive pulse without affecting the switching physics. (b) Energies of different 

magnetic states at corresponding discrete point in time during the switching process (connecting lines between two points are for 

ease of visualization and do not represent actual energies as a function of time between these points), (c) spin states at different 

time and associated magnetization component in the z-direction of different points along the diameter, (d) Different magnetic 

sates during the reversal of a skyrmion with upward core. Reprinted with permission from [1], Copyright (2016), Springer 

Nature. 



47 

 

reach equilibrium without any external bias after some time as shown in Figure 3-2 (c), state G. This is also 

non-volatile. Hence, we have bistable skyrmionic state “0” and “1”. A similar voltage pulse can be applied 

immediately to the skyrmion in state F to switch to the initial magnetic state. Transition from state A to 

state F takes 0.5 ns. Therefore, a memory device with speed of 2 GHz can be realized.  

We note that each equilibrium configuration (A, C, G) was attained by forming a magnetic configuration 

that corresponds to a local energy minimum closest to its prior state, i.e. the state from which this system 

evolves, and separated from other local minima by an energy barrier. Thus, when the system evolves from 

a state stabilized by high PMA due to VCMA with a positive voltage, it settles to the ferromagnetic state 

when the VCMA is reduced to zero.  But, when the system evolves from a state stabilized by low PMA due 

to VCMA with a negative voltage, it settles to the skyrmion state when the VCMA is reduced to zero. But 

it cannot spontaneously switch between the skyrmion and ferromagnetic state due to the energy barrier 

separating them.  

Switching of a skyrmion with upward core spins and downward periphery spins to a skyrmion with 

downward core spins and upward periphery spins can be achieved by applying the same voltage pulse as 

Figure 3-3 Normalized perpendicular magnetization (Mz vs. PMA). Reprinted with permission from [1], 

Copyright (2016), Springer Nature. 
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shown Figure 3-2 (a). The transition through the various magnetic states (from A’ to G’) during this 

switching process is shown in Figure 3-2 (d). We note that the electrically controlled skyrmion core reversal 

is deterministic.  With a sufficiently long positive (negative) voltage pulse, skyrmion-FM (FM-skyrmion) 

transition probability does not rely on precise pulse withdrawal as these states are stable and separated by 

an energy barrier. Consequently, reversible switching between all four states (two skyrmion and two 

ferromagnetic) is possible as can be seen in Figure 3-3. The ability to toggle between the possible states 

makes this device a viable memory element. 

3.1.2 Energy Dissipation 

We can estimate the energy dissipated in switching between the skyrmions states as follows: the 

modulation of the interface anisotropy energy is given by Jsa=Jo + 𝑎E, where 𝑎, E and J0 are respectively 

the coefficient of electric field control of magnetic anisotropy, the applied electric field and the interface 

anisotropy energy at zero bias field. Now, coefficient of electric field control of magnetic anisotropy is 

defined as,  𝑎 =
∆𝑘×𝑡𝐶𝑜𝐹𝑒𝐵

∆𝑉 𝑡𝑀𝑔𝑂⁄
. Reported value of "𝑎" is ≈100 𝜇𝐽 𝑚2⁄  per V/nm with appropriate iridium buffer 

[4]. Thus, with a 1 nm thick free layer and 1 nm thick MgO layer, 1×105 𝐽 𝑚3⁄  change in the anisotropy 

energy density can be obtained per volt. Note that a thinner fixed layer would provide large PMA and ensure 

the magnetization of this fixed layer is not affected by the voltage applied. The required maximum and 

minimum PMA can be achieved by applying electrical voltages of V1=3.4 V and V2= -2 V respectively for 

the proposed device configuration. These values translate into an energy dissipation of ≈ 2.4 fJ per switching 

cycle at a switching speed of 2 GHz if all the energy required to charge the capacitive MgO layer (relative 

permittivity ≈ 7 [5], thickness ≈ 1nm, diameter ≈  80 nm) is ultimately dissipated. Insertion of a Hafnium 

(Hf) monolayer between free and MgO layer can increase "𝑎" by 5.2 times [6]. Such optimization can 

reduce energy dissipation to only ≈ 90 aJ which is five times less than the energy dissipated to switch a 

conventional CMOS device [7] of comparable speed. The diameter of the nanodisk forming the free layer 

can be scaled down to 40 nm to further reduce the energy dissipation. However, an advantage of the 

nanomagnetic element is its non-volatility. Further, substantial reduction of energy dissipation may be 
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achieved by lowering the electric field needed for the switching process if the coefficient of anisotropy 

energy change (𝑎) is enhanced in future materials/interfaces. Moreover, we can switch between states in a 

few nanoseconds, which is competitive for computing applications, particularly given low energy 

dissipation and non-volatility.    

A recent study reported modification of exchange stiffness by applying Electric field [8] which is not 

considered in our model. However, a positive (negative) electric field will increase (decrease) the exchange 

stiffness which will enable easy transformation from skyrmion-ferromagnetic (FM-Sk) state which can be 

understood from the energy profile plotted in Figure 3-2(b). We have simulated scenarios considering 

electric field induced modification of exchange stiffness and verified that switching occurs at lower electric 

field. Hence, the voltage estimates we present are conservative.  

3.1.3 Additional Remarks 

MTJ Design: The fixed layer can be designed to be thinner to have much higher PMA which will ensure a 

minimal effect of changing PMA. In other words, the PMA in this fixed layer can be designed to be strong 

so that any voltage induced change of magnetic anisotropy will not perturb the magnetization direction of 

this fixed layer. Additionally, the coefficient of electric field control of magnetic anisotropy in the fixed 

layer can be tailored to be low. For example, one such method could be not inserting the Hafnium monolayer 

between the MgO and the fixed layer which will make the coefficient of electric field control of magnetic 

anisotropy smaller in the fixed layer. Furthermore, one can use a synthetic antiferromagnetic (SAF) [9] 

layer to increase magnetic stability of the fixed layer and electric field induced magnetization rotation in 

the fixed layer will be further minimized. Hence, we ignore anti-symmetric modification effects in our 

model. The synthetic antiferromagnetic (SAF) layer offsets the dipolar interaction between the fixed and 

the free layer. Hence, we also ignore dipolar effects in our model. 

Other ways to control magnetic anisotropy: In addition to directed voltage control of magnetic anisotropy 

one could modulate the magnetic anisotropy of magnetostrictive nanomagnets with acoustic waves or 
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voltage generated strain in a piezoelectric layer in elastic contact with the nanomagnet. However, assuming 

optimistically that ~100 MPa could be generated in a Terfenol-D nanomagnet with magnetostriciton ~ 1000 

ppm [10] the effective change in magnetic anisotropy energy density ~105 J/m3 can be achieved. This is 

about one order of magnitude smaller than the required change in anisotropy. Hence, strain mediated 

switching of skyrmion states could be feasible only if materials that have much larger magnetoelastic 

coupling and sufficient DMI (when interfaced with appropriate materials) to form skyrmions are developed.   

3.2  Energy efficient and fast reversal of a fixed skyrmions with spin current assisted by 

voltage controlled magnetic anisotropy 

Recent work [11, 12] suggests that ferromagnetic reversal with spin transfer torque (STT) requires more 

current in a system in the presence of DMI than switching a typical ferromagnet of the same dimensions 

and perpendicular magnetic anisotropy (PMA). However, DMI promotes stabilization of skyrmions and we 

report that when the perpendicular anisotropy is modulated (reduced) for both the skyrmion and 

ferromagnet, it takes much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in 

the same time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current.  

I2R loss in spin current induced magnetization reversal can be considerably large. Reducing this loss 

requires reduction of the switching current, which can be achieved by employing methods to reduce 

perpendicular magnetic anisotropy (PMA), which temporarily depresses the energy barrier between the 

“up” and “down” state during spin current induced switching. This can improve the energy-efficiency and 

switching speed without compromising the thermal stability of the nanomagnet based computing device. 

Reduction in switching current utilizing VCMA has been shown for magnetization reversal of ferromagnets 

with uniform magnetization orientation [13, 14]. We show with rigorous micromagnetic simulations that 

the skyrmion switching proceeds along a different path at very low PMA which results in a significant 

reduction in the spin current required or time required for reversal. The presence of DMI in a skyrmion 

system is what distinguishes our current study from those performed on uniformly magnetized 

ferromagnetic systems. In the previous section, we showed skyrmion core reversal by sequential increase 
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and decrease of PMA using VCMA only (i.e. no spin current). In this study, while the basic memory 

operation relies on reversing skyrmion core; the underlying physics (spin wave excitation), the switching 

agent employed to reverse the core (spin current induced switching facilitated by VCMA) and the switching 

path between two stable skyrmionic states are completely different. 

In this section, we demonstrate a hybrid scheme where application of a small voltage can reduce the 

threshold current needed for reversal of skyrmions (subsection 3.2.1), present rigorous micromagnetic 

simulation to explain the underlying physics of the reversal process, and quantify improvements in terms 

of dissipated energy and switching speed (subsection 3.2.2). 

3.2.1 Operating Principle 

A simplified Magnetic Tunnel Junction (MTJ) structure for the implementation of our proposed hybrid 

scheme for switching a magnetic skyrmion (free layer of the MTJ) is shown in Figure 3-1. Heavy 

Metal/Ferromagnet/Insulator trilayer can have epitaxial strain, which has been shown to give rise to a ∧-

shaped electric field dependence of magnetic anisotropy [15, 16]. As a result, application of a voltage, 

regardless of the polarity, will reduce the PMA.  However, the direction of the spin current will depend on 

the polarity of the applied voltage. Skyrmions can be reversed with a spin current when 𝑚⃗⃗ 𝑝. 𝑚⃗⃗ 𝑐 = 1, where 

𝑚⃗⃗ 𝑝 is the polarity of spin current and 𝑚⃗⃗ 𝑐 is the polarity of the skyrmion core [17]. This is very convenient 

since we can change the polarity of the applied voltage depending on the required direction of the spin 

polarized current for reversal and nevertheless achieve PMA reduction due to VCMA. Therefore, if we use 

a fixed layer with magnetization pointing up (down), we can reverse a skyrmion with core pointing up 

applying a positive (negative) voltage. Hence, this basic MTJ structure is sufficient to carry out our 

switching scheme given that an epitaxial strain and therefore a ∧-shaped electric field dependence of 

magnetic anisotropy is present in the structure. This is well suited to typical magnetic memory applications 

as this the structure is similar to existing spin transfer torque (STT) RAM and only requires appropriate 

design of the MgO layer thickness and addition of a heavy metal layer between the free layer and the 

substrate. Reversing the skyrmion will change the magnetoresistance of the ferromagnet (hard layer)/tunnel 
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barrier/skyrmion (soft later) MTJ structure appreciably, thereby allowing the skyrmion state to be read 

easily (more detail in supplement). 

Table 3-2 Parameter values used in section 3.2 (Ref. 18, 19). 

Parameters Value 

Saturation Magnetization (Ms) 1.3 106 A/m 

Exchange Constant (A) 1 10-11 J/m 

Perpendicular Anisotropy Constant (Ku1) 1.1 MJ/m3 

Effective Perpendicular Anisotropy 

(𝐾𝑒𝑓𝑓 = 𝐾𝑢1 −
𝜇0 

2
𝑀𝑠𝑎𝑡

2) 

43570 J/m3 

Gilbert Damping (α) 0.01 

DMI Parameter (D) 1.4 mJ/m2 

Degree of Spin Polarization (P) 0.4 

In this study, current is assumed to be uniform along the diameter of the nanodisk. For the sake of simplicity, 

field like torque and Oersted field due to current flow is not included. This is described in detail in chapter 

2. However, as these terms are consistently not considered for all the cases simulated, the key conclusions 

of this study will not change significantly even if these terms are considered.  If the pinned ferromagnetic 

layer has a high enough PMA, the spin current or the VCMA will not be able to rotate its magnetization 

significantly. Therefore, modeling the magnetization dynamics in the pinned layer can be avoided without 

compromising the accuracy of the simulation (see supplementary section for further discussion). Hence, we 

only simulated the free layer of an MTJ, which was chosen to be a nanodisk of 100 nm diameter and 0.8 

nm thickness. Our geometry was discretized into 2×2×0.8 nm3 cells. We used typical material parameters 
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of CoFe for the free layer in our simulations listed in the table below compiled from Ref. 18 and Ref. 19. 

We used a fixed ferromagnetic layer with magnetization pointing up. All simulations were carried out at 

T=0 K, i.e. effect of thermal noise on magnetization dynamics was not included in this study. However, we 

note that skyrmion is stable in the presence of room temperature thermal noise. 

3.2.2 Magnetization switching in various cases 

For these material parameters, ferromagnetic state is the ground state. Skyrmion can be formed by applying 

a current pulse and emerges as a stable state once formed. We start with a skyrmionic state with spins in 

the core pointing upwards and spins in the periphery pointing downwards. As our fixed layer points 

upwards, a positive current will initiate reversal (as, 𝑚⃗⃗ 𝑝. 𝑚⃗⃗ 𝑐 = 1). We inject a current pulse of 0.1 ns rise 

and 0.1 ns fall time (shown in Figure 3-4) and find the critical switching current and time required for 

reversal. Figure 3-4 shows snapshot of magnetization dynamics during the switching process while a spin 

current of 1× 1011 A/m2 was employed. The spin current excites breathing mode of increasing amplitude.  

Figure 3-4 Snapshot of magnetization dynamics during the switching process with only spin current (1× 1011 A/m2). The voltage 

pulse is shown on top. Note that, the rotational motion of domain wall spins is not shown here for simplicity. Reprinted with 

permission from [23], Copyright (2018), Institute of Physics. 
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Also, the skyrmion texture continually alters between Néel (radial outward and inward) and Bloch 

(counterclockwise and clockwise) states [20, 21]. These two motions are synchronized. Thus, the 

breathing mode stabilizes the Néel skyrmion texture at the largest and the smallest core size and Bloch 

texture in between these Néel states. Due to this spin wave excitation, the skyrmion core expands and 

shrinks (Figure 3-4, t=3.03 ns, 4.57 ns, 4.87 ns, 5.18 ns, 5.95 ns) and eventually reverses. Once reversal 

occurs (t=7.18 ns) the torque induced by the spin current acts as a damping agent and skyrmion with 

opposite core polarity is stabilized (Figure 3-4, Final). The critical switching current density is found to be 

6.5× 1010 A/m2 and takes 13.6 ns to complete the switching. The values of switching time and critical current 

are in line with the values reported in Ref. [17].  

Figure 3-5 Snapshot of magnetization dynamics during the switching process with spin current (6× 1010 A/m2) and small ∆PMA 

(10%). Reprinted with permission from [23], Copyright (2018), Institute of Physics. 

Next, we study the effect of reducing PMA on the switching behavior. Reduction in PMA creates alternative 

path for reversal. We studied two cases, 10% and 20% reduction in PMA (which we denote as ∆PMA=10% 

and ∆PMA=20%). This reduction in perpendicular anisotropy shifts the easy orientation from perpendicular 

to in plane with 𝐾𝑒𝑓𝑓 = −66430 J/𝑚3 for ∆PMA=10% and 𝐾𝑒𝑓𝑓 = −176430 J/𝑚3 for ∆PMA=20%. We 

assumed 0.1 ns rise and 0.1 ns fall time for both the pulses (i.e. spin current and perpendicular anisotropy 
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modulation). Figure 3-5 corresponds to the case where ∆PMA=10%.  This switching resembles the 

previous case where only spin current was used to reverse the skyrmion. The reversal stabilizes a skyrmion 

with opposite polarity, and after restoring the PMA a skyrmionic state exactly opposite to the initial state 

stabilizes (Figure 3-5, Final). Although the switching behavior remains same, the critical current density is 

reduced by ~1.6 times compared to the case where no VCMA is applied. The switching time vs. current 

density is discussed later in this paper. 

 

Figure 3-6 Snapshot of magnetization dynamics during the switching process with spin current (1.4× 1010 A/m2) and large ∆PMA 

(20%). Reprinted with permission from [23], Copyright (2018), Institute of Physics. 

Interestingly, when PMA is reduced further (∆PMA=20%), the switching follows a very different trajectory 

which is shown in Figure 3-6. At first, reduction in PMA pushes the peripheral spins to the x-y plane while 

the core still points upwards. (Figure 3-6, t=0.19 ns). The spin wave excitation alters the magnetic texture 

between circular (clockwise: Figure 3-6, t=0.7 ns and counter clockwise: Figure 3-6, t=1.09 ns) and radial 

vortex (Figure 3-6, t=0.9 ns) states [23] and ultimately reverses the core (Figure 3-6, t=1.39 ns). Therefore, 

a radial vortex state with core pointing downward is formed (Figure 3-6, t=1.39 ns). After reversal, restoring 

PMA pushes the peripheral spin upwards and thus a skyrmion with polarity opposite to the initial state is 
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stabilized (Figure 3-6, Final). Here, the critical current density is reduced by ~4.6 times compared to the 

case where no VCMA is applied along with a drastic reduction in switching time. 

Figure 3-7 shows switching time vs. current density for the three cases discussed. The critical current and 

the switching time needed for reversal of the fixed skyrmion is substantially reduced in the latter two cases. 

Also, with similar level of current, reduction in PMA results in faster switching. We compare this reversal 

with ferromagnetic reversal in a system with same PMA but no DMI. When, only spin current (i.e. no 

VCMA is considered) induces reversal, the skyrmionic reversal takes longer time (Figure 3-7) than for the 

ferromagnet without DMI. Furthermore, critical current density is almost 4 times smaller for the 

ferromagnetic case (not shown in Figure 3-7).  

Figure 3-7 Switching time vs current density for ferromagnetic and skyrmion reversal. Reprinted with permission from [23], 

Copyright (2018), Institute of Physics. 

However, the skyrmionic reversal shows an improved performance in the hybrid scheme. The skyrmion 

switching, in the case with highest VCMA (∆PMA=20%), can take place approximately five times faster 

(1.5 ns vs. 7.7 ns) than the ferromagnetic reversal for current densities of 1.4×1010 A/m2. For a fixed 

switching time ~1.5 ns the current density required to switch the skyrmion is more than 10 times smaller 
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than that required to switch the ferromagnet with the same VCMA (∆PMA=20%) (not shown in Figure 

3-7). The concomitant write energy (I2R loss) would therefore show two orders of magnitude improvement. 

Hence, one could write five times as faster at the same current density or write with two orders of magnitude 

less energy for the same switching time.  

Furthermore, if you consider conventional spin transfer torque (STT) devices without VCMA or DMI, then 

the current density to switch in ~ 1.5 ns is 3×1011 A/m2 (not shown in Figure 3-7) while the corresponding 

current density to switch in 1.5 ns for the skyrmion with VCMA is ~1.4×1010 A/m2. Thus, the best-case 

reduction in current density for switching in ~ 1.5ns is about 21 times which can result in ~441 times less 

energy dissipation.  

The modulation of the interface anisotropy energy is given by ∆PMA = 𝑎E, where 𝑎 and E are respectively 

the coefficient of electric field control of magnetic anisotropy and the applied electric field. The coefficient 

of electric field control of magnetic anisotropy is defined as, 𝑎 =
∆𝑘×𝑡𝐶𝑜𝐹𝑒

∆𝑉 𝑡𝑀𝑔𝑂⁄
 . The theoretical reported value 

of "𝑎" is 250 𝜇𝐽 𝑚2⁄  per V/nm [16]. Thus, with a 0.8 nm thick free layer and 1 nm thick MgO layer, 20% 

change in the perpendicular anisotropy can be obtained by applying 0.7 volt. The energy required to charge 

the capacitive MgO layer (relative permittivity ≈ 7 [5], thickness ≈ 1 nm, diameter ≈ 100 nm) is 0.12 fJ 

which is negligible compared to the typical write energy is conventional spin transfer torque (STT) devices. 

Thus, the use of VCMA in conjunction with spin current to switch fixed skyrmion based memory devices 

could result in an order of magnitude smaller energy dissipation compared to switching conventional STT 

devices or voltage assisted reversal of ferromagnets. 

In conclusion, we showed voltage assisted reversal process of skyrmionic state can significantly reduce the 

write energy over voltage assisted reversal of ferromagnets. Furthermore, comparing this with 

ferromagnetic switching, we found skyrmion switching induced by spin current can be faster while assisted 

by a small voltage induced change in perpendicular magnetic anisotropy. Moreover, our proposed device 

structure can be fabricated with very small modification to the existing spin transfer torque (STT) RAM 
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device. Hence, this work can contribute significantly towards implementing energy efficient non-volatile 

nanomagnetic memory devices based on existing spin transfer torque (STT) writing schemes. 
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Chapter 4: Skyrmion mediated voltage controlled switching of 

ferromagnets for reliable and energy efficient 2-terminal memory 

In this chapter, we discuss a two terminal nanomagnetic memory element based on magnetization reversal 

of a perpendicularly magnetized nanomagnet employing a unipolar voltage pulse that modifies the 

perpendicular anisotropy of the system [1]. Our work demonstrates that the presence of Dzyaloshinskii-

Moriya Interaction (DMI) can create alternative route for magnetization reversal that obviates the need 

for utilizing precessional magnetization dynamics as well as a bias magnetic field that are employed in 

traditional voltage control of magnetic anisotropy (VCMA) based switching of perpendicular 

magnetization. We show with extensive micromagnetic simulation, in the presence of thermal noise, that 

the proposed skyrmion mediated VCMA switching mechanism is robust at room temperature leading to 

extremely low error switching while also being potentially 1-2 orders of magnitude more energy efficient 

than state of the art spin transfer torque (STT) based switching. In Section 4.1, we discuss the device 

structure and magnetization dynamics of our proposed mechanism. In section 4.2 and 4.3 we respectively 

analyze the switching error rate and switching energy dissipation. 

4.1 Device Structure and magnetization dynamics:  

Our proposed structure is shown in Figure 4-1. PMA and DMI arise due to symmetry breaking at the 

oxide/free layer and free layer/heavy metal interfaces. We simulated the free layer of the MTJ structure in 

micromagnetic framework MuMax3. The free layer was chosen to be nanodisk of 100 nm diameter and 1 

nm thickness. We only simulated the free layer of our device. This does not affect our results as voltage 

induced change in the fixed layer PMA and dipolar interaction between the free and the fixed layer can 

both be negligible when a pinning synthetic antiferromagnetic layer is used on top of the fixed layer. 

Additionally, in the fixed layer, the coefficient of electric field control of magnetic anisotropy can be 

tailored to be low and PMA can be designed to be strong to further ensure the magnetization direction of 

fixed layer is not perturbed due to application of a voltage pulse.  



62 

 

Recent studies reported modification of exchange stiffness by applying Electric field [2] which are not 

considered in our model. However, increase (decrease) in the exchange stiffness due to a positive (negative) 

electric field will assist skyrmion-ferromagnetic (ferromagnetic-skyrmion) transformation. We verified this 

by simulating scenarios considering electric field induced modification of exchange stiffness and found that 

switching occurs at lower ∆PMA. Hence, the estimated voltage or energy dissipation in this study can be 

considered conservative. 

The material parameters used in the simulations are: saturation magnetization 𝑀𝑠=1.3 106 A/m, 

perpendicular anisotropy 𝐾𝑢1 = 1.1 MJ/m3, exchange stiffness 𝐴𝑒𝑥=25 pJ/m and Gilbert damping 

coefficient α=0.01 which are commonly found values for ferromagnets. Effective perpendicular anisotropy, 

𝐾𝑒𝑓𝑓 = 𝐾𝑢1 −
1

2
𝜇0𝑀𝑠

2=4.5 104 J/m3 without considering barrier reduction due to DMI. In our 

simulations, we choose DMI parameter D=1.2 mJ/m2. This DMI value is less than the critical value (𝐷𝑐𝑟𝑖𝑡 =

4

𝜋
√𝐴𝐾𝑒𝑓𝑓 =1.35 mJ/m2) needed to form a skyrmion at this PMA. Hence, (quasi)ferromagnetic state emerges 

as the only stable state where the spins at the periphery slightly tilt towards the x-y plane. 

Next, we study the behavior of the nanomagnet when PMA in the system is reduced through VCMA from 

1.1 MJ/m3 to 0.94 MJ/m3. The magnetization dynamics is shown in Figure 4-2(a). We take a quasi-FM 

state with spins tilting slightly at the disk edge (Figure 4-2b, 0 ns) as our initial state found by relaxation of 

an upward ferromagnetic state for 5 ns. When the PMA in the system is reduced, peripheral spins start to 

tilt more in the planar direction and undergo 180° rotation. The amount of rotation is smaller for the spins 

that are closer to the core and spins at the core do not budge from their initial position. Therefore, we find 

Figure 4-1 (a) Simple schematic representation of a magnetic tunnel junction, Reprinted with permission from [1], Copyright 

(2018), American Chemical Society.   
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a state where the spins at the core point up (+z) and the spins at the periphery are tilted downward (-z) and 

a core-up Neel skyrmion is formed (Figure 4-2b, 0.6 ns). Once the skyrmion is formed, breathing mode is 

excited due to which the skyrmion core expands and shrinks. Hence, the magnetization state of the system 

alternatively visits the skyrmionic and the quasi ferromagnetic state (Figure 4-2b). During this transition, 

clockwise and counterclockwise incomplete Bloch skyrmions appear as intermediate states (Figure 4-2b, 

0.4 ns and 0.8 ns). 

When the voltage pulse is withdrawn, the perpendicular anisotropy in the system is restored. To reduce the 

anisotropy energy, spins are forced to point in the direction perpendicular to the x-y plane, i.e. along the z-

axis. Therefore, restoration of PMA makes the up or down directions (i.e. ±z directions) the preferred 

orientations. Depending on the pulse width (PW) of the applied voltage pulse, the magnetization can be 

driven to upward or downward oriented ferromagnetic state. Magnetization dynamics for five different 

pulse width are shown in Figure 4-3. The magnetization reversal cannot take place if the pulse width is 

smaller than the time it takes to form a skyrmion (Figure 4-3, PW=0.4 ns) or if the pulse withdrawal time 

coincides with the expansion of skyrmion (Figure 4-3, PW=1.1 ns). Successful switching can be 

accomplished only if the pulse withdrawal coincides with skyrmion inbreathing (i.e. shrinking) motion 

(Figure 4-3, PW=0.5-0.7 ns) as restoration of PMA by withdrawing the voltage pulse when the skyrmion 

Figure 4-2 (a) Change in magnetization due to reduction in PMA, (b) Magnetization states visited during the first cycle of 

breathing mode, top left corner shows time in nanosecond. Reprinted with permission from [1], Copyright (2018), American 

Chemical Society. 
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is breathing in promotes further shrinkage of the core. Therefore, the skyrmionic state annihilates and 

transforms into a downward ferromagnetic state. As previously mentioned, while breathing, Bloch 

skyrmions appear as intermediate states. During the annihilation through continual reduction of core size, 

skyrmion remains as Bloch type (Figure 4-3). 

We note that, in a magnetic system, strict topological protection does not exist and micromagnetic energy 

balance plays an important role in addition to topology in its stability. Hence, transition between distinct 

topological states can be achieved by overcoming an energy barrier and skyrmion can be annihilated when 

subjected to external stimuli such as thermal perturbation, spin polarized current etc. [3,4]. Additionally, 

spins at the edge of a skyrmion confined in a nanodisk tilt in a manner that they have a magnetization 

component along the x-y plane. This geometric edge effect could enable continuous annihilation. To further 

elucidate the switching mechanism, we analyze the temporal evolution of topological charge (Figure 4-4). 

Three distinct regions can be identified from the Figure 4-4. During the formation of the skyrmion from 

the ferromagnetic state, topological charge increases from 0 to 1. After the formation, the PMA is restored 

Figure 4-3 Magnetization dynamics in response to voltage pulse of different pulse width. The voltage pulse is shown on the top 

left corner. The time to reach maximum voltage is taken to be 0.1 ns. Magnetization states visited due to the application of 

voltage pulse of PW=1.1 ns (top) and PW=0.5 ns (bottom) are shown to elaborate the dependence of pulse width on the final 

magnetization state. (NOTE: No thermal noise included here).  Reprinted with permission from [1], Copyright (2018), American 

Chemical Society. 
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and the skyrmion radius continually decreases. While shrinking, the topological nature is retained and 

therefore the topological charge remains unchanged. A sharp transition is observed when the skyrmion is 

annihilated. Annihilation ensures formation of a topologically trivial ferromagnetic state. Hence, the 

topological charge vanishes to zero.  

To analyze the evolution of magnetic energies of the system during the switching process, different energies 

along with magnetic configurations of different states visited are shown in Figure 4-5. When the anisotropy 

is lowered (state 1- state 3), an incomplete skyrmion forms. Increase in the anisotropy and the exchange 

energy is compensated by the reduction in the demagnetization energy and enables this transformation. 

Thereafter, the voltage pulse is withdrawn, which results in a transformation to an intermediate skyrmion 

Figure 4-4 Evolution of topological charge during the switching, Reprinted with 

permission from [1], Copyright (2018), American Chemical Society. 

Figure 4-5 Evolution of magnetic energies during the switching. Reprinted with permission from [1], 

Copyright (2018), American Chemical Society.   
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state (state-4). The DMI energy reaches the lowest value at this state. Finally, the skyrmion annihilates 

which brings back the system to its initial energy state. 

We show in Figure 4-6, magnetization dynamics of our proposed mechanism including the following:   

(i) Ambient magnetic field: We consider a typical ambient field of 10 Oe in two different directions and 

show that the magnetization dynamics is not affected due to this ambient field (Figure 4-6(a)). 

(ii) Perturbative spin current: With voltage control of magnetic anisotropy (VCMA) scheme, there is always 

some perturbative spin current. Considering the lower bound of RA product ≈ 225 ohm. μm2 [5], (i.e. 

maximum perturbative current) our simulations show that the magnetization dynamics involving the 

skyrmion mediated switching does not deviate in the presence of this spin current. 

(iii) Electric field induced modulation of DMI: Electric field induced change in DMI is calculated to be 26 

fJ/(Vm) [6]. Application of 1.6 V will change the DMI parameter by ~40 μJ/m2. We included such voltage 

induced modification of DMI in our simulations. We also simulated a case where the change in DMI due 

to electric field was considered to have same amplitude as change in PMA (100 fJ/Vm). In both cases, we 

show that the switching physics remains unchanged and the magnetization dynamics is negligibly affected. 

4.2 Switching Error Analysis under Thermal Noise: 

The skyrmion mediated reversal is oscillallatory in nature but nevertheless does not involve precession. 

Prior precessional schemes without DMI that involve precession around a effective magnetic field, suffer 

Figure 4-6  (a) Magnetization dynamics with and without considering ambient field during a switching event, pulse width=0.5 ns, 

(b) Magnetization dynamics with and without the perturbative spin current in addition to the VCMA.  Current density was taken 

to be J=7×109 A/m2 which corresponds to resistance area product of about 225 ohm. μm2. (c) Comparison of magnetization 

dynamics with and without modulation of DMI value due to application of an electric field for switching with a voltage pulse of 

0.5 ns pulse width. Reprinted with permission from [1], Copyright (2018), American Chemical Society. 
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from large error rates, possibly due to incoherence in magnetization dynamics, i.e. deviation from the single 

domain (macrospin) state, affects the switching. However, in our scheme, we accept that the reversal  

mechanism is inherently incoherent and then device a way to use DMI to provide a robust and reliable 

pathway among the multitide of pathways available for incoherent switching. This makes our scheme 

physically different and potentially more robust to thermal noise than other precessional schemes for 

switching ferromagnets. This is corroborated by rigorously simulating the switching behavior and 

calculating the switching probability using various voltage pulse width in the presence of room temperature 

thermal noise (Figure 4-7 (a)). An upward ferromagnetic state was relaxed for 1 ns and was subjected to 

voltage pulse of pulse width ranging from 0.4 ns to 1 ns. The voltage pulse is same as shown in Figure 4-

3.  Due to computational limitation only 100 events were simulated for every case. Switching is considered 

to be successful if mz˂-0.7 after 2 ns of pulse withdrawal. The probability shows an oscillatory behavior 

and between 0.48 ns to 0.68 ns all simulated events switched successfully. We picked a pulse width of 0.52 

ns which is in the middle of this range and performed 10,000 successful simulations which proves the 

reliability of our proposed switching scheme.  

To study the sensitivity of our approach to DMI strength, we study switching probability vs. pulse width 

for three different DMI values (Figure 4-7(b)). Increasing DMI value increases breathing frequency and 

shifts the probability curve to left. This gives rise to a spread in the switching probability. However, there 

Figure 4-7 (a) Switching probability vs pulse width. The diamond shows the pulse width for which 10,000 simulations were 

carried out. The blue line is a guide to the eye. Thermal noise is included in the magnetization dynamics. (b) Switching 

probability vs. pulse width for three different DMI values, Reprinted with permission from [1], Copyright (2018), American 

Chemical Society. 
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is considerable overlap (pulse widths between ~480 ps to 540 ps) for the three different DMI values where 

the switching probability is ~100%. Therefore, choosing a correct pulse width can make our scheme 

potentially immune to device variation. 

Next, we investigate the effect of disorders. the free layer was configured to have a random grain structure 

of average grain size of 4 nm using Voronoi tessellation (Figure 4-8). Perpendicular anisotropy and DMI 

values were drawn from a similar Gaussian distribution with mean PMA of 1.1 MJ/m3 and mean DMI of 

1.2 mJ/m2 with 10% standard deviation while easy axis orientation was assumed to be distributed with a 

3% standard deviation. A 10% reduction of exchange coupling between grains were also considered. The 

switching probability of both precessional and skyrmion mediated switching were calculated (Figure 4-9 

(a, b)). For precessional switching, an in-plane external magnetic field of 200 Oe along +x axis was 

employed while VCMA induced reduction in PMA was taken to be 1×105 J/m3. All other parameter values 

were taken to be the same as skyrmion mediated switching. No DMI was considered in this case. 

The peak switching probability is shifted as well as the switching percentage is deteriorated in both the 

cases, however, the deterioration is much smaller in the skyrmion mediated VCMA switching scheme. 

While 100% switching was achieved for pulse widths between 0.44 ns to 0.48 ns in the skyrmion mediated 

case with or without DMI variation, 3% WER was observed for best case precessional switching. We further 

simulated 1000 events for best case pulse widths. Skyrmion mediated switching showed 0 errors without 

considering DMI variation and 1 error considering DMI variation while precessional switching showed 54 

errors.  This proves that VCMA switching is more robust to disorders in the presence of room temperature 

thermal noise compared to precessional VCMA switching. We note that, a large defect density was 

Figure 4-8 (a) Random grain orientation, (b) Gaussian distribution of PMA.  Reprinted with permission from [1], Copyright 

(2018), American Chemical Society.   
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deliberately incorporated so that the switching error deteriorates to a point that 100 (and in limited cases 

1000) simulations are enough to bring out the difference between the two switching schemes. For lower 

defect density we expect the skyrmion mediated VCMA scheme will again be much more robust than the 

simple precessional VCMA scheme, but the switching error is both schemes will be much lower and larger 

number of simulations will be needed to establish the WERs. 

Figure 4-9 Switching probability in skyrmion mediated vs. precessional VCMA switching scheme with (a, b) disorder and (c, d) 

perturbative spin transfer torque. Reprinted with permission from [1], Copyright (2018), American Chemical Society. 

Finally, with any “purely” voltage control of magnetic anisotropy (VCMA) scheme, there is always some 

perturbative spin current (although much smaller than STT switching) that can lead to switching error. 

Furthermore, across a wafer, the resistance area product can vary significantly (Ref. [5] estimates the 

variation to be in the range of 225-650 ohm.μm2. Considering the lower bound of RA product, (i.e. 

maximum perturbative current) our simulations show that the magnetization dynamics involving the 

skyrmion mediated switching does not deviate in the presence of this spin current (Figure 4-6) and is 

therefore extremely robust to this perturbative spin current. Figure 4-9 (c, d) shows that additional STT 
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does not cause further increase in WER for skyrmion mediated switching but the WER rate for the 

precessional switching can deteriorate significantly. 

Write error rate (WER) in the conventional VCMA induced switching strongly depends on the voltage 

pulse duration. Peak switching probability is attained when pulse width is set to half period of magnetization 

precession. However, experimental studies achieved WER of only 4 10-3 [7], possibly due to incoherent 

magnetization states during the switching process that result in substantially higher error rates than 

predicted by single domain simulations of magnetization dynamics and presence of finite perturbative spin 

current. We note that the tolerable error limit for memory application can be 10-15 necessitating an iterative 

approach to lower the WER. For example, WER of 10-9 is achieved with 4 iterations while 10 iterations 

were needed to improve the WER to 10-17 [5]. This technique obviously consumes more energy and 

increases write time substantially. We evaluated the performance of our proposed method under room 

temperature thermal perturbation. Reliable performance with <10-4 switching error in the pulse width 

between the range of 0.48 ns to 0.68 ns was found. We note that we could only run 10,000 simulations (as 

solving the magnetization dynamics with thermal noise takes a lot of computational time) and saw no 

switching error. Hence, we only claim <10-4 switching error (which is an order magnitude better than other 

incoherent switching schemes in the presence of thermal noise [5]), while our scheme could be even more 

robust to switching in the presence of thermal noise. Our switching mechanism also performs better in the 

presence of disorder and perturbative spin current. This method therefore has the potential to eliminate or 

at least reduce the iterative write process which will consequently lower the write time and energy 

dissipation.  

4.3 Energy Dissipation: 

The modulation of the perpendicular magnetic anisotropy ∆PMA = 𝑎E, where 𝑎, and E are respectively the 

coefficient of electric field control of magnetic anisotropy, the applied electric field. The coefficient of 

electric field control of magnetic anisotropy is defined as,  𝑎 =
∆𝑘×𝑡𝑓𝑟𝑒𝑒

∆𝑉 𝑡𝑀𝑔𝑂⁄
. Reported value of "𝑎" is ≈100 
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𝜇𝐽 𝑚2⁄  per V/nm. Thus, with a 1 nm thick free layer and 1 nm thick MgO layer, 1×105 𝐽 𝑚3⁄  change in the 

anisotropy energy density can be obtained per volt. The required modulation of PMA can be achieved by 

applying a voltage pulse of 1.6 V for the proposed device configuration. These values translate into an 

energy dissipation of ≈ 0.6 fJ per switching cycle at a switching speed of ~2 GHz if all the energy required 

to charge the capacitive MgO layer (relative permittivity ≈ 7, thickness ≈ 1nm, and diameter ≈ 100 nm) is 

ultimately dissipated.  

Previous studies showed that DMI deteriorates the thermal energy barrier of a MTJ cell [8, 9]. For the DMI 

value used in our simulations, the thermal energy barrier can decrease by 20%. In other words, to maintain 

the same thermal stability we need a 𝐾𝑒𝑓𝑓 that is 20% higher than that of a system without any DMI. 

Additionally, one needs to reduce the anisotropy so that the skyrmion emerges as an intermediate state. 

This reduction is larger than the value needed to drive the anisotropy just in plane which is required for a 

system without DMI. Nevertheless, the energy dissipation is not significantly different (same order of 

magnitude as other VCMA schemes). As such, any non-volatile memory scheme with potential to switch a 

bit with < 1 fJ/bit energy dissipation is extremely competitive and 2 orders of magnitude more energy 

efficient than spin transfer torque random access memory (STT-RAM devices).  

In summary, our proposed method, is more robust to thermal noise, disorder, perturbative spin currents and 

does not need a bias magnetic field, unlike VCMA induced reversal of magnetization without DMI where 

the magnetization rotates to upward or downward ferromagnetic state with equal probability when the 

voltage pulse is withdrawn and precise precessional dynamics is required for switching. The key finding in 

this work is that the inclusion of a small DMI in the system can create an alternative pathway for skyrmion 

mediated incoherent reversal between two stable single domain ferromagnetic states. Therefore, 

deterministic magnetization reversal is possible without depending on the precessional motion of the 

magnetization about an in plane magnetic field.  
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Chapter 5: Creation and annihilation of non-volatile fixed magnetic 

Skyrmions using voltage control of magnetic anisotropy 

In this chapter, experimental manipulation of fixed magnetic skyrmions using voltage controlled magnetic 

anisotropy is discussed. Voltage control of skyrmions has recently been experimentally investigated. A 

scanning probe microscope tip was, for example, used to modify exchange interaction in an iron monolayer 

to create skyrmions at very low temperatures and high magnetic fields [1]. It has also been shown that 

room temperature skyrmion nucleation and annihilation can be achieved, by, primarily, changing the 

saturation magnetization due to changes in Curie temperature caused by the application of an electric field 

[2]. With this approach, the number of skyrmions varied as a function of electric field in a volatile manner. 

Room temperature creation and movement of skyrmion bubbles have also been demonstrated when domain 

walls are moved in an electric field-induced magnetic anisotropy gradient due to geometric effects [3]. We 

show that skyrmions can be stabilized in antiferromagnet/ferromagnet/oxide heterostructure films without 

any external magnetic field due to an exchange bias field in section 5.1. The isolated skyrmions are 

annihilated or formed by applying voltage pulses that increase or decrease the perpendicular magnetic 

anisotropy, respectively in section 5.2. We also show skyrmions can be created from chiral domains by 

increasing the perpendicular magnetic anisotropy of the system. Our experimental findings are 

corroborated using micromagnetic simulations in section 5.3. This could provide a pathway to realize of 

fixed skyrmion based high density and energy efficient magnetic memory devices. 

5.1 Device structure and characterization: 

The heterostructure used in our experiments was grown by our collaborators at UCLA. The structure is Ta 

(2) / IrMn (5) / CoFeB (0.52-1.21) / MgO (2.5) / Al2O3 (35) / ITO where the numbers represent the 

thicknesses in nm. The layers consisting of Ta (2) / IrMn (5) / CoFeB (0.52-1.21) / MgO (2.5) / Al2O3 (5) 

were grown on Si/SiO2 substrates by DC and RF magnetron sputtering at room temperature, where the 

numbers represent the thicknesses in nm. The CoFeB layer has a wedge shape with continuously changing 

thickness with a gradient of 0.115 nm per 1 cm of the sample length. The samples were then patterned into 
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an array of Hall bar devices using standard photolithography techniques. A 30 nm Al2O3 gate oxide was 

deposited using atomic layer deposition (ALD). Finally, transparent ITO layer was fabricated as a top gate 

electrode to facilitate Magneto Optical Kerr Effect (MOKE) imaging. The samples were then annealed at 

150° C for 30 minutes under an out-of-plane magnetic field of 6 kOe to introduce the exchange bias and 

enhance the perpendicular anisotropy. The dimensions of the Hall bars are 130 𝜇𝑚 × 20 𝜇𝑚. All electrical 

and optical measurements were done at room temperature using Keithley 6221 current source, Keithley 

2182A nanovoltmeter, Stanford Research Systems SR830 lock-in amplifier, and HeNe laser with 632.8 nm 

of wavelength. The external magnetic field is provided by an electromagnet driven by a Kepco power 

supply. The interface of CoFeB with the antiferromagnetic IrMn layer gives rise to DMI [4, 5]. Similar to 

conventional VCMA induced switching, ferromagnetic/oxide interface is used to achieve the necessary 

PMA as well as enable VCMA.   

 

Across the wafer, an array of several hall bars (130 𝜇𝑚 ×20 𝜇𝑚) was fabricated by collaborators at UCLA 

(Figure 5-1(a)). The thickness of the CoFeB layer was varied across the wafer roughly between 0.52 nm to 

1.21 nm. The magnetic properties of the devices, especially the PMA and the DMI, are expected to vary 

with the thickness of the CoFeB layer. To verify this, anomalous hall resistance due to Anomalous Hall 

Effect (AHE) was measured by collaborators at UCLA to estimate the magnetization component 

perpendicular to the film as a function of perpendicular magnetic field. This is shown in Figure 5-1(b), 

where the hysteresis loops obtained show the expected trend.  For example, devices in the range of 0.87 nm 

- 1.1 nm CoFeB layer exhibit higher perpendicular anisotropy and abrupt switching, while devices with 

thickness on either side of this range showed lower perpendicular anisotropy and gradual transition during 

reversal. Another important observation is the presence of exchange bias field in all the devices (5-20 Oe) 

that emerges from the ferromagnet/antiferromagnet interface. While presence of PMA and DMI are 

adequate, an external bias magnetic field is generally required to stabilize skyrmions in experiments. 
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However, in our structure, the readily available interfacial exchange bias field eliminates this requirement 

thus allowing stabilization of skyrmions at zero externally applied bias magnetic field [4]. 

The thickness dependence of magnetic states was imaged using Magnetic Force Microscopy (MFM). We 

obtained MFM image at room temperature and atmospheric pressure with Bruker Dimension Icon AFM 

system. We used Bruker MESP-LM low-moment probes to minimize tip-induced magnetization 

reorientation.  To confirm there is no tip induced effects, we scanned the same area twice (scanning up and 

down). These two scans produced similar images (see section 5.5). Nominal cantilever frequency, lift height 

and scan rate were respectively 75 kHz, 40 nm and 0.2 Hz. We note that, raw MFM images were processed 

using a Gaussian filter to aid visualization by eliminating noise. In devices with high perpendicular 

anisotropy, the magnetization orientation was found to be completely out of plane (t=1.092 nm, Figure 

5-1(c) top panel, we note that stripe like contrasts appear due to optical interference between the laser 

Figure 5-1 Device structure and characterization. (a) Left: Cross-section of the device. Right: Top view of the device structure: 

The two current contacts can be used for applying current through the stack and the voltage contacts can be used for measuring 

transverse voltage. For VCMA, a voltage pulse was applied between one of the two top gate contacts, and any one of the other 

current and voltage contacts.  (b) Anomalous Hall measurements for different CoFeB thicknesses, where HOOP denotes out-of-

plane magnetic field, (c) Magnetic force microscopy image showing magnetic states for different CoFeB thicknesses. At lower 

thickness uniform state was observed while at higher thicknesses skyrmions and a mixture of skyrmion and stripe domains were 

seen.  (d) Skyrmion profile obtained from the raw MFM image of a skyrmion shown in the inset which was qualitatively similar 

to the simulated skyrmion MFM profile as shown in (e). (f) Simulated MFM profile of a classical bubble. Reprinted with 

permission from [17], Copyright (2020), Springer Nature. 
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reflected from the cantilever and the sample surface). In devices with increased thickness, we observed a 

mixture of stripe domains and circular domains (t=1.126 nm, Figure 5-1(c) middle panel) and mostly 

circular domains (t=1.143 nm, Figure 5-1(c) bottom panel).  

Figure 5-1 (d) shows a phase profile extracted from the experimental MFM image of an observed domain 

along the line shown in the inset.  This profile qualitatively matches the simulated MFM profile (Figure 

5-1(e)) of a skyrmion stabilized in the presence of thermal noise and inhomogeneity and is fundamentally 

different from MFM profile of a classical bubble (Figure 5-1(f)) with 400 nm core diameter surrounded by 

a 300 nm domain wall separating the two oppositely polarized perpendicular regions. The MFM profile 

was simulated using micromagnetic simulation where the tip magnetization is modeled as a point monopole 

at the apex. We observe two side peaks that emerge due to the achiral domain wall with spins pointing in 

the same direction separating two perpendicular regions. We do not observe this in our MFM line scans. 

These give us confirmation of the presence of skyrmions in our system. The skyrmion has a collinear core 

at the center. The dip at the center of the MFM profile is indicative of that. Such textures are often called 

skyrmion bubbles. In a strict sense, spins in a skyrmion structure should rotate continuously with a single 

spin at the center pointing perpendicularly. However, there is no clear distinction between the skyrmion 

and the skyrmion bubble state and these terms are used interchangeably in the literature [6, 7]. Lastly, we 

note that, the observed stripe domain like states are expected to be topologically equivalent to the circular 

skyrmionic state. Therefore, these states are possibly elongated skyrmions or elliptically shaped skyrmions. 

However, to avoid confusion we call the mixed state as “skyrmions and stripe domains”. 

The MFM imaging was further complemented with magneto optical Kerr effect (MOKE) imaging by our 

collaborators at UCLA. Skyrmions and stripe domains were clearly observed in the intermediate steps of 

the switching during a cycle of perpendicular magnetic field. More importantly, we show that current 

induced motion of these magnetic objects exhibited skyrmion Hall Effect, which is a clear indication of the 

topological nature of these magnetic objects. We utilize spin-orbit torques from IrMn (with a thickness of 

5 nm) to drive the skyrmion motion [4]. It has been shown that IrMn has a sizable spin Hall angle [8], 
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allowing for a relatively large damping-like spin-orbit torque. First, we create skyrmions by scanning the 

external magnetic field, and then by utilizing electrical current in this system, we displace skyrmions by 

pulses with an amplitude of 9 mA and a duration of 5 ms. As seen in Figure 5-2, the direction of the current-

driven skyrmion motion is not along the current direction and has a transverse component. This 

phenomenon is the so-called skyrmion Hall effect [9], which is a signature of magnetic skyrmions. The 

calculated skyrmion Hall angle is around 10.4°. These results further confirm that our observed states have 

a topological nature and are indeed skyrmions.  

5.2 Manipulation of skyrmions with electric field alone in the absence of an external 

magnetic field:  

We probe the effect of application of an electric field in the devices where skyrmions and stripe domains 

were observed at zero magnetic field. A voltage pulse is applied between one of the two top gate contacts, 

and any one of the other current and voltage contacts. Current and voltage contacts are all attached to the 

Hall bar, which is metallic and conductive. In this way, the electric field is dropped over the MgO and 

Al2O3. Consequently, the electron density at the ferromagnet/oxide interface is modulated, leading to a 

modulation in the PMA of the system. We characterize VCMA coefficient in our perpendicularly 

Figure 5-2 Current-driven skyrmion motion imaged using magneto-optical Kerr effect (MOKE) microscopy. Current pulse has 9 

mA amplitude (corresponding to a current density of 8.3 × 106 A/cm2 through the IrMn layer) and a duration of 5 ms.  Blue 

circles indicate the position of skyrmions before and after the application of current pulse. Red (green) dashed line shows the 

initial horizontal (vertical) position of the skyrmion. At the final position, the skyrmion also shows a vertical shift in addition to 

the horizontal one, which is due to the skyrmion Hall effect. Reprinted with permission from [17], Copyright (2020), Springer 

Nature. 
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magnetized samples by measuring anomalous Hall resistance as a function of an in-plane magnetic field in 

our Hall bar structures with top gates. We can then calculate the interfacial anisotropy using the transport 

data and magnetization saturation obtained from SQUID measurement (~9×105±5%) A/m [10]. The results 

are shown in Figure 5-3(a), where interfacial anisotropy is plotted as a function of applied electric field. 

VCMA coefficient (ξ) is defined as the slope of this plot. The effect of voltage application is primarily 

limited to changing the perpendicular magnetic anisotropy of the system. In other words, applied voltage 

does not alter the saturation magnetization, exchange bias etc. In order to investigate the effect of the applied 

voltage on the exchange bias and magnetization saturation in our sample, we performed anomalous Hall 

Figure 5-3 VCMA induced manipulation of skyrmions. (a) Interfacial anisotropy (Ki) as a function of the applied electric field 

(E) in the sample with nominal CoFeB thickness of 1.06 nm. The slope of this plot is the VCMA coefficient (ξ). (b) Anomalous 

Hall (AHE) measurement on a sample with CoFeB thickness of 1.08 nm and under different gate voltages. The exchange bias 

and the difference in AHE resistance between the two states is almost the same for all samples. (c) MFM images obtained before 

and after application of electric field. Scale bars are 5 𝜇m. Left column: magnetization state before application of any electric 

field. Middle Column: Magnetization state obtained after applying a negative voltage pulse that increased PMA. Right Column: 

Magnetization state obtained after applying a positive voltage pulse that decreased PMA. Reprinted with permission from [17], 

Copyright (2020), Springer Nature. 
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effect measurements under different applied gate voltages as shown in Figure 5-3(b). This measurement is 

performed on the sample with nominal CoFeB thickness of around 1.08 nm. We observe that the exchange 

bias under different bias voltages is almost the same and the negligible changes might be due to the change 

in interfacial properties. Furthermore, the difference in anomalous Hall resistance between the up/down 

states is independent of the applied voltage, which suggests that the magnetization saturation (Ms) does not 

change.  

The oxide barrier breakdown voltage was observed to be around 8 V. In most of the cases, we applied ±7 

V across the oxide barrier (unless otherwise mentioned) by using a Keithley 2636B source meter and 

Signatone probe station, which corresponds to an electric field of 𝐸𝑀𝑔𝑂 =
𝑉

𝑡𝑀𝑔𝑂+
𝜖𝑀𝑔𝑂

𝜖𝐴𝑙𝑂𝑥
𝑡𝐴𝑙𝑂𝑥

= 0.157 V/nm, 

using 
𝜖𝑀𝑔𝑂

𝜖𝐴𝑙𝑂𝑥
=

9

7.5
. In our system, application of a positive (negative) electric field leads to decrease 

(increase) of the PMA (Figure 5-3(a)). Before applying this electric field, we imaged the initial 

magnetization state of the device as shown in the left column of Figure 5-3 (c). The initial states consist of 

skyrmions and stripe domains.  Next, we applied -7 V between the top and the bottom electrode for 1-2 

seconds to increase the PMA of the system. The voltage pulse was withdrawn and the transformation of the 

magnetic state due to application of this voltage pulse was imaged in the absence of an applied electric 

field. We observed that the skyrmions and the stripe domains were annihilated (middle column of Figure 

5-3(c)) and the magnetization of the system reoriented in the +z direction as evidenced by the MFM image. 

Subsequently, we applied an opposite polarity voltage pulse (i.e. +7V) in a similar manner. Due to this, the 

PMA decreases and DMI prevails over PMA. This is expected to be a favorable condition for formation of 

spin spiral states. Indeed, some skyrmions and stripe domains reappear as can be seen in the MFM images 

shown in the right column of Figure 5-3(c). We note that all imaging was performed at zero external 

magnetic field and zero applied electric field. Therefore, these creation and annihilation processes were 

nonvolatile and were achieved without the assistance of any external bias magnetic field. Therefore, the 
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skyrmion state and the saturated out of plane ferromagnetic state both emerged as stable states of the system 

and the applied electric field can result in switching between these states.  

Additionally, we observed incomplete annihilation where starting from an initial state with mostly stripe 

domains and some skyrmions; a negative voltage pulse could annihilate some of the skyrmions while many 

of the stripe domains transformed to more circular skyrmionic state as shown in Figure 5-4. Therefore, 

transformation from stripe domain to skyrmions is also achievable using VCMA. However, unlike the 

previous case, this transformation was found to be irreversible. In other words, application of a positive 

pulse could not recreate more skyrmions or transform the circular skyrmions back to original stripe 

domains. Possibly, when the stripe domains transform to circular skyrmions they get pinned more strongly. 

Therefore, subsequent application of a positive pulse (i.e. reduction of PMA) did not affect them 

substantially. Transformation from chiral domain to skyrmions were previously observed experimentally 

by using a current pulse [11, 12]. Theoretically, chopping skyrmions from chiral domain was proposed 

using strain using anisotropy modulation [13]. Here, we demonstrate the feasibility of such transformation 

by employing VCMA.  

All these different observations can be satisfactorily explained if we consider pinning sites in the thin film 

stack. The CoFeB and the IrMn films are polycrystalline in nature, which could lead to intergranular 

variation of PMA, DMI and exchange bias. Pinning sites could also exist due to inhomogeneity in film 

thickness and presence of material defects etc. We observed the size and shape of the skyrmions vary widely 

Figure 5-4 Incomplete annihilation that shows stripe domain to skyrmion transformation. Initial states are shown in the top panel 

and final state is shown in the bottom panel. Arrows mark some of the created skyrmions due to application of a negative voltage 

pulse. Scale bars are 5µm. Reprinted with permission from [17], Copyright (2020), Springer Nature. 

Initial State

Final State

Initial StateInitial State Initial State

Final State Final State Final State
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(Figure 5-1(c)) which indicate the existence of inhomogeneity. Due to corresponding non-uniformity of 

magnetic parameters across the film, the stripe domains and the skyrmions have a propensity to occupy the 

same location (e.g. emerge roughly at the same position in successive magnetization cycles as shown in 

Figure 5-5). Similarly, skyrmions created by VCMA appear at the same initial location that they occupied 

before annihilation as indicated by the arrows in the Figure 5-5. The same skyrmions were also present at 

the same location in all the magnetization cycles Figure 5-5. Finally, due to the pinning sites, fewer 

skyrmions were created by VCMA compared to the initial state (prior to annihilation) as shown in Figure 

5-3(c). In the next section, we establish the validity of these explanations using micromagnetic simulation.  

5.3 Simulations for manipulation of skyrmions with electric field:  

We perform micromagnetic simulation to show the voltage-controlled creation and annihilation process of 

skyrmions. Material parameters used in the simulation: saturation Magnetization (Ms)= 9.3×105 A/m 

(measured by SQUID= 9×105 ±5% A/m), Perpendicular Anisotropy Constant (Ku1) = 5.8×105 J/m3 (Figure 

5-3a), Exchange Bias=15 Oe (Figure 5-1b), Exchange Constant (A)=8 pJ/m [14], DMI Parameter (D)=135 

μJ/m2 [4], Gilbert Damping (α)=0.01. For simplicity, we incorporate the effect of inhomogeneity by varying 

only the perpendicular anisotropy. We simulated a 3.8 μm × 3.8 μm rectangular geometry with 1.1 nm 

thickness and divided it into regions of average 100 nm size using Voronoi tessellation with a gaussian 

PMA distribution with 1% standard deviation. Left column of Figure 5-6 (a) shows the PMA distribution 

in different regions across the film. Usually, grain size in CoFeB is in the order of 5-10 nm. However, 

Figure 5-5 Skyrmions/stripe domains at almost exact position in different magnetization cycle and after electric field induced 

creation. Reprinted with permission from [17], Copyright (2020), Springer Nature. 



82 

 

regions of such dimensions were not sufficient to pin skyrmions and consequently corresponding 

simulations did not reproduce all the experimentally observed scenarios. Ultimately, there can be many 

causes of inhomogeneity besides intergranular variations. Regions in the film (comprised of many grains) 

can have exchange bias, PMA, DMI that are clearly different from surrounding areas, particularly in 

IrMn/CoFeB interfaces. Additionally, there can be material defects in the sample acting as pinning sites. 

Thus, our systematic study of effect of spatial dimensions of the inhomogeneity indicates that regions that 

are on average ~100 nm and higher are most effective in pinning skyrmions.   

As previously discussed, applied voltage does not alter the saturation magnetization, exchange bias. There 

are recent reports of DMI modulation by applying an electric field [15]. However, these changes in DMI 

Figure 5-6 Micromagnetic simulation of voltage control of skyrmions. (a) Simulated system with different regions having a 

gaussian PMA distribution. The blue regions correspond to lower anisotropy and these act as pinning sites. (b) Overview of the 

creation and annihilation process. Left column shows equilibrium magnetic state obtained by finding the equilibrium state 

starting from a random magnetic state. Middle Figure shows the annihilated state while the right figure shows created skyrmions. 

Arrows show that the skyrmion located at the same pinning site before annihilation and after creation. These pinning sites 

corresponds to the low anisotropy (blue) regions marked by circles in (a). (c) Zoomed view of a skyrmion (left) with Neel like 

spin spiral, (d) Temporal PMA variation used in the simulation. (e) Annihilation process of skyrmion. (f) Creation process of 

skyrmions. The numbers represent time corresponding to the pulse shown in (d), (g) Pulse time dependence of skyrmion creation 

and annihilation process. Reprinted with permission from [17], Copyright (2020), Springer Nature. 
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are relatively small and do not affect the magnetization dynamics significantly [16]. Therefore, we only 

consider the change in PMA as a consequence of voltage application which is considered to be the same in 

all the regions. VCMA coefficient in 1.06 nm CoFeB was measured to be 38.2 fJ/Vm (Figure 5-3 (a)). 

Therefore, electric field of 0.157 V/nm can cause 5.5×103 J/m3 change in anisotropy energy density. In our 

simulations, we considered a change of 7×103 J/m3 in anisotropy density, which is close to the estimated 

change in anisotropy energy density. 

Figure 5-6 (b) shows the overview of the switching process. The initial magnetic state (Figure 5-6 (b), left 

column) was obtained by finding the equilibrium magnetization orientation starting from a random 

magnetization state. During this initialization, a labyrinth like state is first formed which then transforms 

into many skyrmions and stripe domains. Most of these skyrmions remain pinned due to prevalence of 

pinning sites of varying strength across the film.  These skyrmions were annihilated when PMA was 

increased and a ferromagnetic state was formed (Figure 5-6 (b), middle column). Lastly, when PMA was 

reduced dome skyrmions were created at the same initial location that they occupied before annihilation 

(marked by arrows in the Figure 5-6 (b)). We found that these locations are the low anisotropy regions of 

the film which act as pinning sites to the skyrmions. Figure 5-6 (c) shows zoomed in view of a skyrmion. 

We observe that the skyrmion is Neel like. This is expected as the heterostructure fabricated has interfacial 

DMI. 

Next, we analyze the dynamics of the switching process. As large pulse times (several seconds) were used 

in the experiment, we ran the simulations with long enough pulse time (200 ns) beyond which increasing 

pulse time makes no difference. The pulse used in our simulation is shown in Figure 5-6 (d) where increase 

(decrease) of PMA correspond to a negative (positive) voltage. Figure 5-6 (e) shows the annihilation 

process starting from the initial state. Due to increase of PMA, skyrmions start to shrink and ultimately 

annihilates. At t=280 ns, all the skyrmions are annihilated and a ferromagnetic state is reached. This 

ferromagnetic state persists when the PMA is restored to the original value (t=400-500 ns). Figure 5-6 (f) 

shows the creation process starting from a ferromagnetic state. Due to PMA reduction, domains start to 
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nucleate at regions of low PMA. Domain growth slows down over time and almost entirely stops at t=700 

ns. When the PMA is restored to the initial value, some of these domains start to annihilate. However, after 

200 ns (t=900 ns), 4 skyrmions still persist. Clearly, number of created skyrmions are fewer than the initial 

state. This is because, starting from a ferromagnetic state, domains nucleate only at very strong pinning 

sites when PMA is reduced. However, when skyrmions are formed from a labyrinth like state (which is 

observed in our initialization process), many skyrmions can interact with comparatively lower strength 

pinning sites and remain pinned there. This explains the creation of fewer skyrmions compared to the initial 

state. It was previously shown using a magnetic field, more skyrmions can be created from a labyrinth 

domain state than from a single domain saturated state due to non-uniformity [4] which is consistent with 

our simulation and experimental observations. Finally, we explore the pulse time dependence of skyrmion 

creation and annihilation process. We show in Figure 5-6 (g), the switching can be controlled by varying 

the pulse time and 80 ns is enough for both annihilation as well as creation of skyrmions.  

5.4 Estimation of energy dissipation:  

We estimate the total energy dissipation considering all the energy required to charge the capacitive oxide 

layer is ultimately dissipated. The capacitance of the 130 µm × 20 µm area with 35 nm Al2O3 layer and 2.5 

nm MgO layer is C= 4.66×10-12 F (relative permittivity of 9 and 7.5 respectively). Therefore, total energy 

dissipation= 
1

2
CV2= 109 pJ as V=7 V. Initially, the density of chiral objects (Skyrmions and stripe domains) 

observed in our devices was 0.183 µm-2. Therefore, the total number of such objects in a 130 µm× 20 µm 

area is expected to be around 660. Thus, the energy required to annihilate each object (skyrmion or stripe 

domain) on an average =166 fJ. On the other hand, number of created Skyrmions is fewer than the initial 

condition with a density of 0.03 µm-2. This translates into average energy dissipation to create a skyrmion 

= 995 fJ. We note that the oxide barrier was grown thicker compared to a patterned MTJ to avoid pinholes. 

In a scaled device, MgO thickness will usually be 1.5 nm. That will provide a reduction in the energy 

dissipation by a factor of 25 and the energy dissipated will be much lower (~6.6 fJ for annihilation, ~40 fJ 

for creation). Furthermore, interface optimization can lead to a higher VCMA co-efficient. For example, a 
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VCMA co-efficient of 100 µJ/m2 per V/nm [10] can reduce the energy dissipation to ~1 fJ for annihilation, 

~6 fJ for creation. Finally, these proof-of-concept experiments were performed with large skyrmions. If 

skyrmion diameter is ~100 nm, the energy dissipated could potentially be much smaller than 1 fJ/skyrmion 

creation or annihilation event. 

5.5 Additional images 

To confirm there is no tip induced effects, we scanned the same area twice (scanning up and down). These 

two scans produced similar images as shown in Figure 5-7 indicating that tip induced changes to the 

magnetic state of the films in minimal. 

Many of the magnetic force microscopy (MFM) images and some in the supplement have been presented 

after performing some image processing. The raw MFM images that correspond to these processed images 

are presented below. 

 

Figure 5-7 MFM image of the same location scanning up and down. Reprinted with permission 

from [17], Copyright (2020), Springer Nature. 

Figure 5-8 RAW MFM image corresponding to the following figures in the main or supplemental section: (a) Fig. 1(c), (b) Fig. 

3(b), (c) Fig. 4, (d) Fig. 5, (e) Fig. 7. Reprinted with permission from [17], Copyright (2020), Springer Nature. 
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In summary, we have reported experimental control of fixed magnetic skyrmions using VCMA. In 

particular, we showed that skyrmions can be stabilized without applying any external magnetic field and 

can be annihilated and recreated by applying voltages of opposite polarity. We also showed that skyrmions 

can be created from chiral domain states. This control is non-volatile and depends on the pinning sites 

across the device. Our experimental observations were corroborated using micromagnetic analysis. The 

electric field control of magnetic skyrmions could lead to the development of energy efficient high-density 

magnetic memory devices. 
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Chapter 6: Conclusion 

In the previous chapters, we discussed different strategies to implement fixed skyrmion based memory 

devices that are controlled by an electric field. We will conclude this dissertation outlining future research 

directions that can utilize our proposed methods to build efficient nanomagnetic devices. In section 6.1, we 

discuss our preliminary results on skyrmion switching in a nanodisk. In section 6.2, we analyze the 

feasibility of scaling skyrmion based memory device simulating MTJ free layer of different lateral 

dimensions. In section 6.3, we discuss the possibility of utilizing voltage induced skyrmion dynamics to 

design neuromorphic computing elements. Finally, we will end this dissertation with concluding remarks 

in section 6.4. 

6.1 Skyrmion switching in a confined geometry: 

In chapter 3 and chapter 4, we theoretically demonstrated that switching of skyrmions in a nanodisk can be 

used as magnetic memory devices. As a proof of concept experiment, we showed switching of skyrmions 

in a thin film heterostructure. However, in a film, complete reversal of skyrmion cannot be achieved by 

applying an electric field. Skyrmion confinement is required to reverse the core as the boundary plays a 

central role in the reversal process. Therefore, to demonstrate skyrmion reversal experimentally, we are 

currently performing experiments on MTJ like circular magnetic dots consisting of Ta/CoFeB/MgO layers. 

These dots are 3-8 µm in diameter. Figure 6-1 shows two such nanodots imaged using magnetic force 

microscopy (MFM). The skyrmions are 300-500 nm in size. Therefore, the boundary effect is small on 

Figure 6-1 Skyrmions confined in a nanodisk under externally applied magnetic field of 10 Oe and V=1300 mV 
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these skyrmions. However, we have observed annihilation and creation of skyrmion of skyrmion while 

imaging the nanodot under applied electric field. Further characterization is necessary to unambiguously 

prove this. Moreover, fabrication of smaller nanodots is necessary to increase confinement effect and 

demonstrate reversal of skyrmion core. 

6.2 Scaling of skyrmion-mediated memory devices: 

In chapter 4, we have shown skyrmion mediated switching of ferromagnets in a nanomagnet of lateral 

dimension 100 nm. To be competitive with the current miniaturization trend in Spin Transfer Torque 

Random Access Memory (STTRAM), further downscaling is required. In this section, we theoretically 

investigate the feasibility of downscaling the skyrmion mediated switching scheme by studying three MTJs 

of different sizes, 100nm, 50 nm and 20 nm respectively. We observe that with the reduction in lateral 

dimension, high perpendicular magnetic anisotropy, high DMI and a larger VCMA coefficient are required 

for successful operation of the device (Section 6.2.1). We also present switching error statistics in the 

presence of thermal noise using these material parameters. In Section 6.2.2, we discuss future directions 

towards downscaling the proposed device. 

6.2.1 Required material parameters: 

We simulate the magnetization dynamics of the free layer of the MTJs of diameter 100 nm, 50 nm and 20 

nm, which were discretized into 64×64×1, 32×32×1 and 16×16×1 cells respectively to keep the lateral (in-

plane) discretization similar to the extent possible. We start with an initial ferromagnetic state. Next, when 

the PMA is reduced (voltage applied), we need to form an intermediate skyrmion state to provide a robust 

pathway for magnetization reversal to the opposite ferromagnetic state when the PMA is restored (voltage 

withdrawn). We varied the perpendicular anisotropy (Ku1) and the DMI parameter (D) to fulfill these 

requirements. The rationale behind choosing different anisotropy and DMI values is discussed below. 

Firstly, to form the intermediate skyrmion state, we need a sizeable DMI. Moreover, reduction of lateral 

dimension requires higher DMI to form an intermediate skyrmion state. However, to maintain an initial 
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ferromagnetic state, the DMI value must be less than the critical value (Dcrit = 
4

𝜋
√𝐴𝐾𝐸𝐹𝐹, where𝐾𝐸𝐹𝐹= Ku1 

-
1

2
 µ0 Ms

2) at the corresponding initial PMA value. Here, KEFF is the effective perpendicular anisotropy and 

the Dcrit (critical DMI) value signifies a threshold beyond which a metastable skyrmion can be formed in 

the system. Energy barrier between two ferromagnetic states reduces due to the presence of DMI. To 

incorporate this reduction, we have estimated the energy barrier with Keff from the phenomenological 

equation Keff = (Ku1 - 
1

2
 µ0Ms

2- 
𝐷2𝜋2

16𝐴
). The perpendicular anisotropy is determined from the thermal stability 

factor KeffV/kBT, which was considered to be approximately around 50 for all three MTJs. Therefore, with 

reduction of lateral dimension, required DMI increases and consequently the uniaxial anisotropy Ku1 needs 

to be increased to ensure thermal stability with an energy barrier of ~50 kBT. Optimized material parameters 

are listed in Table I considering application of voltage pulse (ΔV) of 2.0 V across 1 nm thick MgO layer 

for all three MTJs. Exchange stiffness A=25 pJ/m, Saturation Magnetization Ms=1.3×106 A/m, Gilbert 

damping α=0.01 were used for all cases. 

Table 6-1 Required parameters 

MTJs Osc. Freq. 

(GHz) 

Ki 

(µJ/m2) 

ΔKi 

(µJ/m2) 

VCMA Coeff. 

(fJ/Vm) 

Dcrit 

(mJ/m2) 

D 

(mJ/ m2) 

100 nm ~1 1332 204 102 1.42 1.2 

50 nm ~8 1044 504 252 5.25 4.5 

20 nm ~60 3798 3138 1569 14.61 13.0 

Figure 6-2 Switching probability vs. pulse width of (a) 100nm (b) 50nm and (c) 20 nm nanomagnets. [For studying the switching 

percentage for different pulse widths, the simulations were run for 100 times for most points. For one point in each sub-figure, 

the simulations were run 1000 times. Thus, points marked as 100% with a star (indicate a better than 99.9% switch for 100 nm 

and 50 nm lateral dimension as there are no failure for 1000 runs). However, for 20 nm case, 19 failures in 1000 runs at pulse 

width of 7 ps indicate ~98% switching]. Reprinted with permission from [1], Copyright (2020), IEEE. 
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Using these material parameters, switching error was found to be >99.5% in the 100 nm and 50 nm cases 

and ~98% in the 20 nm case (Figure 6-2). Additionally, the breathing frequency of skyrmions in the 

downscaled nanomagnets is high leading to switching frequency ~1 GHz, ~10 GHz, ~100 GHz for 100 nm, 

50 nm and 20 nm respectively. Thus, as one scales to lateral dimension to 50 nm, faster, energy efficient 

and less error prone switching can be achieved. 

6.2.2 Route to downscaling: 

In summary, our simulations show that switching remains robust when scaling down to 50 nm lateral 

dimensions in the presence of thermal noise with appropriate choice of feasible material parameters based 

on experimentally reported values of VCMA coefficient (370 fJ/Vm) [2], PMA (3700 µJ/m2) [3] and DMI 

(~3mJ/m2) [4-6]. Similarly, while downscaling to 20 nm, thermally robust switching can be achieved 

provided material parameters with large VCMA [7], DMI [8, 9] and PMA [3, 6] are chosen. However, 

among these three parameters only PMA has been experimentally reported [3], while DMI and VCMA 

values (for the 20 nm nanomagnet simulation) have only been theoretically predicted [7-9] to date but not 

experimentally demonstrated. This is an important challenge in scaling from 50 to 20 nm which requires 

optimization of material system and interfaces. For aggressive scaling to 20 nm and below, ferrimagnet 

systems (rather than ferromagnets) could potentially offer a thermally robust skyrmion mediated switching 

route with experimentally demonstrated material parameters due to small stray fields and low DMI and 

PMA requirement to form skyrmions [10, 11].  

6.3 Resonate and Fire neuron with fixed skyrmions 

Nanomagnetic devices are one of the promising alternatives to implement neuromorphic computing and 

other non-von-Neumann like architectures due to their low energy consumption, nonlinear dynamics, and 

non-volatility [12–20]. Among artificial neurons, most emulate the behavior of (leaky) integrate and fire type 

neurons where the firing frequency depends only on the strength of the stimulus [21]. However, in the brain, 

many “resonate-and-fire” neurons  also feature damped or sustained subthreshold oscillation [22-25] of 

membrane potential and therefore show sensitivity towards the timing of stimulus. [26].  Artificial 
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“resonate-and-fire” neurons could also be useful in neural networks where computation involves 

synchronized oscillation of spin torque nano-oscillators (SNTOs) for pattern recognition [27].  

In this section, we show the implementation of an artificial resonate-and-fire neuron by utilizing the 

magnetization dynamics of a fixed magnetic skyrmion in the free layer of a magnetic tunnel junction.  The 

next subsection (6.3.1) describes device structure. This is followed by a discussion of damped skyrmion 

core oscillation (section 6.3.2), resonant behavior and application of the “resonate and fire” functionality 

for detection of phase and frequency synchronization (section 6.3.3).  

6.3.1 Device Structure 

Our proposed device is an MTJ structure in which the circular free layer hosts a fixed skyrmion. The 

anisotropy can be modulated via voltage control of magnetic anisotropy in the device shown in Figure 6-3 

(a) and voltage generated strain in the device shown in Figure 6-3 (b). Modulation of perpendicular 

anisotropy in the system induces breathing of skyrmions. which mimics the subthreshold damped 

oscillations of resonate and fire neurons. The electrical resistance of the MTJ layer (R2) changes during this 

breathing. A voltage divider consisting of a fixed resistor and the voltage controlled MTJ resistance can be 

used to drive a CMOS buffer from OFF to ON state as shown in Fig 6.3 and generate a firing pulse if the 

skyrmion core size increases beyond a threshold. Throughout this section we set a threshold value of 

average magnetization along the z-axis mz_threshold=0.8, magnetization is almost antiparallel to the free layer). 

=

Figure 6-3 (a) Proposed device structure operated with voltage control of magnetic anisotropy (VCMA) (b) MTJ structure 

stacked on PZT layer for strain control of magnetic anisotropy. Reprinted with permission from [29], Copyright (2018), 

American Physical Society. 
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For mz_free> mz_threshold, we consider the CMOS buffer to be in the ‘ON’ or “high” state and “OFF” or “low” 

otherwise.  

6.3.2 Damped Oscillatory Behavior of Skyrmions  

We simulated the magnetization dynamics in a 100 nm diameter nanodisk with thickness of 1 nm. Our 

geometry was discretized into 1× 1× 1 𝑛𝑚3 cells. The parameter values used were: Saturation 

Magnetization (Msat)=1× 106 A/m, Exchange Constant (Aex)=2× 10-11 J/m, Perpendicular Anisotropy 

Constant (Ku1) = 6×105 J/m3, Gilbert Damping (α)= 0.03. The ground magnetization state was found to be 

a skyrmion. A triangular input spike of ∆PMA=1×105 J/m3 was applied with 50 ps rise and 50 ps fall time. 

The momentary change in anisotropy causes the core of the skyrmions to expand and oscillate about the 

equilibrium state. The oscillatory behavior can be seen from the net magnetization curve in Figure 6-4 (a). 

This imitates the subthreshold neuron oscillation of a resonant neuron. The breathing frequency was found 

to be a strong function of interfacial parameters PMA and DMI as shown in Figure 6-4 (b)).  

6.3.3 Resonant behavior of Skyrmions 

Appropriate frequency triangular/sinusoidal inputs can result in firing due to resonance. Sinusoids of 

different frequencies with peak to peak ∆PMA=0.96×105 J/m3 were used as inputs in Figure 6-5. Strongest 

firing (4 spikes over 6 ns) was found around 2.86 GHz (time period of 0.35 ns) input frequency. Higher 

frequency (3 GHz or time period of 0.33 ns) and lower frequency (2.5 GHz or time period of 0.4 ns) resulted 

Figure 6-4 (a) Damped oscillation of a fixed skyrmion’s core due to stimulation with a single pulse [Red color line: Input spike, 

Blue color line: Output average magnetization along the perpendicular direction (z-axis) (b) Modulation of breathing frequency 

by varying the interfacial parameters. Reprinted with permission from [29], Copyright (2018), American Physical Society. 

(a) (b)
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in weaker spiking behavior (less than 4 spikes over the same 6 ns). Further deviation in frequency from 

resonance: 3.3 GHz (time period of 0.3 ns) and 2.38 GHz (time period of 0.42 ns) resulted in no spiking 

behavior at all.  

Figure 6-5 Resonant behavior with sinusoidal input. Reprinted with permission from [29], Copyright (2018), American Physical 

Society 

Figure 6-6 Frequency synchronization detection. Reprinted with permission from [29], Copyright (2018), American Physical 

Society. 
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Our proposed device (single voltage-controlled oscillator) can be used to detect the relative degree of phase 

and frequency synchronization of the outputs of two coupled STNOs (and, in general, any coupled 

oscillators). In Figure 6-6, we show frequency synchronization detection between two signals have different 

frequency but have no phase difference at t=0.  When both frequencies are equal (2.7 GHz) 4 spikes are 

produced in 10 ns; when mismatched by ~20% (e.g. the 3.33 GHz and 2.22 GHz cases), less than 4 spikes 

are produced in 10 ns and finally with significant deviation (e.g. 5 GHz and 1.82 GHz) no output spike is 

produced. The number of output spikes over a given time window can provide an estimate of the degree of 

synchronization. 

In conclusion, we studied novel nonlinear resonant dynamics of the core of a fixed skyrmion. The total 

energy requirement will be ~ 1 femto-Joule/spiking event. CMOS implementation of a resonate-and-fire 

neuron leads to an energy consumption per firing event in the range of pico-Joules, an area of many 

micrometer square and resonant frequency of a few 10s of Hz [28]. In fact, the proposed hybrid skyrmion-

MTJ and CMOS buffer implementation of the resonate and fire neuron, is capable of resonant frequencies 

~few GHz and is potentially 3 orders of magnitude more energy efficient/spiking event and potentially has 

2 orders of magnitude higher density than that the all CMOS implementation [28]. 

6.4 Concluding Remarks: 

In conclusion, we theoretically demonstrated skyrmion creation, annihilation and reversal using voltage 

control of magnetic anisotropy. We also experimentally demonstrated skyrmion creation and annihilation 

experimentally. These could result in energy efficient fixed skyrmion based memory devices. To 

accomplish this, experiments with skyrmions in confined geometry are required. Initial study also shows 

that, scaling of the proposed memory device will need further material optimization. These could be 

performed in future to establish voltage controlled fixed skyrmion based memory devices. Furthermore, 

voltage control of skyrmions has potential to be implemented in neuromorphic devices and nanomagnetic 

oscillators.  
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Therefore, this dissertation provides the foundation to implement voltage controlled-nanomagnetic memory 

and neuromorphic devices based on fixed magnetic skyrmions that are potentially very energy efficient, 

dense and fast. 
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A1: Micromagnetic Codes 
 

Code Used in Chapter 4: 

//DEFINE STRUCTURE 

SetMesh(50, 50, 1, 2e-09, 2e-09, 1e-09, 0, 0, 0) 

SetGeom(Circle(10e-08)) 

//MATERIAL PARAMETERS 

Aex = 2.5e-11 

alpha = 0.01 

Msat=1.3e6 

//MEAN VALUE OF PMA AND DMI 

Ku := 11e5 

D:=0.0012 

Temp=300 //TEMPERATURE 

FixDt=2.5e-13 //FIXED TIMESTEP 

//RANDOM GRAIN ORIENTATION 

grainSize := 4e-9 

randomSeed := 123 

maxRegion := 25 

ext_makegrains(grainSize, maxRegion, randomSeed) 

defregion(25, circle(10e-8).inverse()) 

//INTERGRANULAR VARIATION OF DMI AND PMA 

for i:=0; i<maxRegion; i++{ 

j:=randnorm() 

Ku1.SetRegion(i, ku+ku*j*0.1) 

Dind.SetRegion(i, D+D*j*0.1) 

} 

//INTERGRANULAR VARIATION OF PMA AXIS 

for i:=0; i<maxRegion; i++{ 
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anisU.Setregion(i,vector(0.03*randnorm(), 0.03*randnorm(),0.9+0.9*0.03*randnorm())) 

} 

//REDUCTION OF EXCHANGE INTERACTION BETWEEN GRAINS 

for i:=0; i<maxRegion; i++{ 

for j:=i+1; j<maxRegion; j++{ 

ext_ScaleExchange(i, j, 0.9) 

} 

} 

//LOOP TO CALCULATE WER FOR 0.5 ns PULSE 

for l:=1; l<=100; l++{ 

ThermSeed(l) 

m=uniform(0.01,0.01,0.99) //INITIAL ORIENTATION 

steps(4000) 

//0.1ns ramp 

for k:=1; k<=400; k++ { 

for i:=0; i<maxRegion; i++{ 

Ku1.SetRegion(i, ku1.getregion(i)-400) //corresponds to PMA reduction of 1.6e5 J/m3 

} 

S-6 

steps(1)} 

//0.3ns dwell 

steps(1200) 

//0.1ns ramp 

for k:=1; k<=400; k++ { 

for i:=0; i<maxRegion; i++{ 

Ku1.SetRegion(i, ku1.getregion(i)+400) //restoration of PMA 

} 

steps(1)} 

steps(8000) 
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} 

//STT PARAMETERS 

fixedlayer=vector (0, 0, 1) 

pol = 0.4 

Lambda=1.000 

EpsilonPrime=0.0002 

 

Code Used in Chapter 5: 

//Geometry 

SetMesh(1000, 1000, 1, 3.8e-09, 3.8e-09, 1.1e-09, 0, 0, 0) 

SetGeom(rect(3800e-9,3800e-9)) 

//Material Parameters 

Aex = 8e-12 

alpha = 0.01 

anisU = vector(0, 0, 1) 

Msat=9.3e5 

Dind=0.000135 

//Exchange Bias 

B_ext=vector(0,0,0.0015) 

//ThermalNoise 

Temp=300 

fixdt=8e-13 

ThermSeed(125) 

//Inhomogeneity 

grainSize := 100e-9 

randomSeed := 123 

maxRegion := 255 

ext_makegrains(grainSize, maxRegion, randomSeed) 

ku:=5.8e5 
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for i:=0; i<maxRegion; i++{ 

j:=randnorm() 

Ku1.SetRegion(i, ku+j*0.01*Ku) 

} 

//Initialization 

m=randommag() 

run (200e-9) 

//Annihilate 

for i:=0; i<maxRegion; i++{ 

Ku1.SetRegion(i, Ku1.getregion(i)+7e3) 

} 

run (200e-9) 

for i:=0; i<maxRegion; i++{ 

Ku1.SetRegion(i, Ku1.getregion(i)-7e3) 

} 

run (100e-9) 

//Create 

for i:=0; i<maxRegion; i++{ 

Ku1.SetRegion(i, Ku1.getregion(i)-7e3) 

} 

run (200e-9) 

for i:=0; i<maxRegion; i++{ 

Ku1.SetRegion(i, Ku1.getregion(i)+7e3) 

} 

run (200e-9) 
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