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Chapter 1

Introduction

1.1 Equal versus Response-Adaptive Randomization

Two considerations are paramount when designing a clinical trial. First is to ensure that the trial

is sufficiently powerful to detect some clinically-meaningful difference between treatment groups,

should one exist; while second is ensuring that the trial adheres to the ethical principles of research

with human subjects set forth by the Belmont Report. [1,2] However, consider a phase III randomized

clinical trial (RCT) where evidence exists suggesting that a novel treatment is superior to a current

method of treatment (i.e., an active-control). In such a scenario, the power-versus-ethics dynamic

of the RCT may be at-odds, a situation that will be discussed at length throughout the present

work.

Equal randomization (ER) occurs when an equal number of trial participants are randomized

to each study arm. In addition to being the most implement and conceptually-straightforward

method of randomization in RCTs, ER is also the most powerful method of randomization when

the responses obtained from each arm of the RCT vary equally. Therefore, implementing ER may

save both time and money throughout the duration of the trial because a clinically-meaningful

difference can be detected using response information obtained from fewer participants than would

be required under any other type of randomization. [1] Equal randomization may be unethical if a
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treatment difference exists despite its power and ease of implementation. Returning to the context

of the phase III RCT where a novel treatment has shown evidence of outperforming a standard-

of-care treatment, by definition, half of all trial participants will be randomized to the inferior

active-control group.

In this instance, two ethical principles of research with human subjects are being violated. First

is the principle of beneficence, or the “do no harm” principle which seeks to maximize the benefit and

minimize the risk to human subjects. [2] Beneficence dictates that human subjects should undergo

the most superior treatment available for their ailment. To allocate any subject to an inferior

treatment could be considered harmful in that it is not acting in the subject’s best interest: the

subject is not benefiting from the best treatment available and may be experiencing a greater risk

of experiencing poorer health outcomes as a result. The second principle of research with human

subjects that may be violated is the justice principle which calls for the equitable treatment of and

access to resources for every human subject. [2] Using similar logic, to deny any subject access to

a superior treatment may be considered unjust treatment in that available resources that could

benefit the subject are being withheld.

A more ethical randomization mechanism is one that, in the presence of a treatment difference,

apportions subjects to competing treatment arms in such a way that power is maintained and the

greatest number of subjects possible receives the most beneficial treatment. [3] Such a randomization

method is called response-adaptive randomization (RAR). Response-adaptive randomization is a

sequentially-updating process in which the treatment responses from participants who have com-

pleted the trial are used to influence randomization for incoming subjects such that randomization

tends toward the better-performing treatment group, should one exist. [3–7] Existing RAR designs

can be grouped into two broad categories: non-optimal (§1.2) and optimal designs (§1.3). Optimal

RAR mechanisms strike a balance between randomization according to ethical and statistical pow-
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er, while non-optimal RAR designs target ethical randomization. While optimal RAR is the focus

of the present work, a brief description of non-optimal designs are provided in what follows.

1.2 Non-optimal Response-Adaptive Randomization Designs

There are a number of non-optimal RAR designs. Some randomize subjects according to a distribu-

tional link function (described in Appendix A.1), while others are adapted from methods originally

purposed for binary response data or are based on nonparametric score functions. Examples of the

former include the Doubly-adaptive Biased Coin Design [1,3,8–10] (DBCD), the Continuous Drop-

the-Loser (CDL) design [11,12], and the Randomized Play-the-Winner (RPW) design [13]. A brief

overview of these methods is available in Appendix A.2, and the DBCD as it relates to RAR is

discussed later in this chapter.

Nonparametric scores can also be used to construct RAR designs for continuous and time-

to-event response data. Rosenberger [14] developed nonparametric RAR designs for continuous

data using treatment effect mapping (TEM), while Rosenberger and Seshaiyer [15] and Hallstrom

et al. [16] used TEM for time-to-event response data. Bandyopadhyay and Biswas [17] developed

the Wilcoxon-Mann-Whitney adaptive design (WAD) using components from both the Wilcoxon-

Mann-Whitney (WMW) test [17–19] and the Friedman-Wei (FW) urn design [20–22]. Treatment effect

mapping designs and WAD are described in more detail in Appendices A.3 and A.4, respectively.

1.3 Optimal Response-Adaptive Randomization Designs for Continuous Re-

sponse Data

Non-optimal RAR designs target ethical randomization. Trials focused purely on the ethical aspect

could allocate nearly all subjects to the superior treatment without regard for the necessary accrual

of subjects in each treatment group to maintain an adequate level of power to detect a treatment

difference. Thus, the determination of treatment superiority would be impossible. Optimal RAR,
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on the other hand, optimizes an objective function based upon an importance criterion subject

to a variance constraint. [4–7] An importance criterion is the primary ethical concern of the trial,

such as minimizing the expected number of treatment failures, the total expected sample size, the

total expected cost, or the expected number of subjects allocated to the inferior treatment. This

importance criterion is translated into an objective function governed by the treatment-specific

sample sizes and the moments of some assumed response distribution. A variance constraint is

imposed upon the ethical concern represented by the objective function such that a larger number

of subjects will receive the superior treatment when a treatment difference exists while also ensuring

that the number of subjects necessary to maintain power will undergo the inferior treatment. If

no treatment difference exists, the variance constraint ensures ER is maintained. The variance

constraint is established by setting-equal a constant and the asymptotic variance of the estimated

treatment difference, where the variance constraint is focused on the variance related to the statistic

used to test the study hypothesis. Optimization occurs when the objective function is subject to

the variance constraint, producing an optimization problem which returns the powerful and ethical

optimal randomization ratio. Optimization details are provided in Appendix A.5 and will be

referenced throughout the present work.

Jennison and Turnbill [23] and Biswas and Mandal [5] developed early iterations of optimal RAR

designs; each of these are described with greater detail in Appendices A.6 and A.7, respectively.

From these, Zhang and Rosenberger [6] developed an optimal RAR design. In this design, assume

two groups, a treatment T and an active control C, where groups are denoted by g, i.e., g ∈ {T,C},

and group-specific responses have a mean µg and variance σ2
g . As well, assume σ2

T and σ2
C are

unknown and smaller responses are more desirable. Then, this design minimizes the total expected

4



response using the following objective function:

min
nT /nC

{
E

[ C∑
g=T

ng∑
i=1

Ygi

]}

=
min

nT /nC

{
E

[ nT∑
i=1

YT i +

nC∑
i=1

YCi

]}
=

min
nT /nC

{
nT µT + nC µC

}
, (1.1)

where E[·] is the expectation function. Solving this according to the asymptotic variance of the

estimated treatment difference,

V ar(µ̂C − µ̂T ) =
σ2
C

nC
+
σ2
T

nT
= V, for some constant V, (1.2)

where ng is the number of subjects allocated to treatment g and setting V equal to one, as suggested

by Biswas and Bhattacharya [7], gives the following optimal RAR ratio to T :

ρZR =
σT
√
µC

σT
√
µC + σC

√
µT

. (1.3)

A noted criticism of this design is that it degenerates if either of the group-specific response

mean estimates, µ̂T or µ̂C , are negative. [3,6] Otherwise, this design can be applied whenever response

values are known to be positive. One proposed solution for negative responses is to add a sufficiently

large positive constant, ypos ∈ R+, such that all responses are positive-valued. [3,6] Then, Zhang

and Rosenberger [6] propose the following probability of randomization to treatment T :

ρZR;ypos =
σT
√
µC + ypos

σT
√
µC + ypos + σC

√
µT + ypos

. (1.4)

Atkinson and Biswas [3] caution, however, that randomization will tend toward Neyman-Pearson

randomization,

ρNP =
σT

σT + σC
, (1.5)

as ypos tends toward infinity. Neyman-Pearson randomization is optimal, but not ethical. Therefore,
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for responses taking negative values, Atkinson and Biswas [3] suggested assuming a distribution left-

truncated at zero. Such a distribution is defined as P (X = x) = f(x) for x ≥ 0, 0 otherwise, where

f(x) is the density function of a random variable X.

Nevertheless, the Zhang and Rosenberger [6] randomization rule can be applied whenever re-

sponse values are known to be positive. One such example is when responses are assumed to be

exponentially-distributed, i.e., Yg ∼ Exp(θg), where the expected group-specific response is given

by E(Yg) = θg. The objective function is:

min
nT /nC

{
nT θT + nC θC

}
, (1.6)

and, since V ar(Yg) = θ2
g , the variance constraint of (1.2) takes the form:

V ar(θ̂C − θ̂T ) =
θ2
C

nC
+
θ2
T

nT
= V, for some constant V. (1.7)

Per this optimal RAR framework, solving (1.6) subject to (1.7) gives the following optimal RAR

ratio to T for exponential responses:

ρZR;E =

√
θT√

θT +
√
θC
. (1.8)

Similar results can be obtained when response values followed gamma distributions, i.e., Yg ∼

Gam(αg, βg), as well. The expected group-specific response is given by E(Yg) = αgβg; therefore,

the objective function to minimize the total expected response is given by:

min
nT /nC

{
nT αTβT + nC αCβC

}
; (1.9)

and, since V ar(Yg) = αgβ
2
g , the variance constraint is given by:

V ar(α̂C β̂C − α̂T β̂T ) =
αCβ

2
C

nC
+
αTβ

2
T

nT
= V, for some constant V. (1.10)

The solution to (1.9) subject to (1.10) yields a similar optimal randomization probability to T given
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in (1.8):

ρZR;G =

√
αT√

αT +
√
αC

. (1.11)

1.3.1 Tuning Based on Treatment Effect

Biswas and Bhattacharya [7] capitalized on the applicability of the Zhang and Rosenberger [6] design

to any positive real-valued continuous response distribution in order to create an optimal RAR

framework. [4,6,7] Introduced into this design are:

1. Ψ, a general representation of the function of the moments comprising the objective function,

2. ρ0 ∈ (0, 1), a prespecified target randomization probability for a given effect size,

3. τ ≥ 0, a tuning parameter used to achieve ρ0 when a desired treatment difference is observed,

4. Additional constraints based on ng/(nT +nC) ≥ b intended to bound the randomization ratio

between b and 1− b, where b ∈ [0, 1/2) and small.

Biswas and Bhattacharya [4] applied these modifications to the Zhang and Rosenberger design.

Representing the moments of the objective function with Ψ(·), the objective function of (1.1) is

given by:

min
nT /nC

{
nT Ψ(µT ) + nC Ψ(µC)

}
. (1.12)

Subjecting this to the variance constraint of (1.2) yields the optimal RAR ratio to T given by:

ρ =
σT
√

Ψ(µC)

σT
√

Ψ(µC) + σC
√

Ψ(µT )
, (1.13)

The choice of Ψ(·) is objective-specific based upon the desired importance criterion. [7] Where the

goal of Zhang and Rosenberger’s design [6] was to minimize the total expected mean response, Biswas

and Bhattacharya [4] suggested using Ψ(x) = xτ . The desired randomization ratio, ρ0, is defined
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according to µg0 and σg0, the group-specific moments necessary to observe a desired treatment

effect. Therefore,

ρ0 =
σT0 Ψ(µC0)

σT0 Ψ(µC0) + σC0 Ψ(µT0)
(1.14)

=
σT0 µ

τ/2
C0

σT0 µ
τ/2
C0 + σC0 µ

τ/2
T0

. (1.15)

It follows that:

τ = 2
log
(

1−ρ0
ρ0

)
+ log

(
σT0
σC0

)
log(µC0/µT0)

. (1.16)

This value, τ , permits the integration and attainment of a predetermined target randomization

proportion within the randomization procedure itself. This ensures that the randomization propor-

tion occurs at approximately the same rate for a given treatment difference regardless of the scale

of the outcome measure.

Subjecting (1.12) to (1.2) using the Biswas and Bhattacharya’s [4] Ψ(x) = xτ generalization of

Zhang and Rosenberger’s [6] framework yields the optimal RAR ratio given by:

ρ′ =
σT µ

τ/2
C

σT µ
τ/2
C + σC µ

τ/2
T

, (1.17)

8



and bounded as follows:

ρ =



b, if {Ψ(µT ) > 0 and Ψ(µC) > 0 and ρ′ < b}

ρ, if {Ψ(µT ) > 0 and Ψ(µC) > 0 and b ≤ ρ′ ≤ 1− b}

1− b, if {Ψ(µT ) > 0 and Ψ(µC) > 0 and ρ′ > 1− b}

b, if {Ψ(µT ) > 0 and Ψ(µC) < 0}

1− b, if {Ψ(µT ) < 0 and Ψ(µC) > 0}

1− b, if {Ψ(µT ) < 0 and Ψ(µC) < 0 and σT
σC

<
√

Ψ(µT )
Ψ(µC)}

b, if {Ψ(µT ) < 0 and Ψ(µC) < 0 and σT
σC

>
√

Ψ(µT )
Ψ(µC)},

where ρ represents the probability that a subject is randomized to treatment group T . Because the

Biswas and Bhattacharya [7] optimal RAR design provides a general framework for the optimal RAR

process, is bounded between b and 1− b, and allows randomization to target a desired proportion

which is achieved when a desired treatment difference is observed, this framework is the one used

in the present work for continuous response data.

1.4 Motivation: The Problem of Misspecification

For most types of statistical analyses, data are typically assessed for some distributional assump-

tion prior to statistical analysis as a safeguard against erroneous statistical conclusions. This is

not the case for response-adaptive RCTs. Recalling Section 1.1, when planning a RCT, an inves-

tigator must know the number of subjects that will be enrolled into the trial in order to detect

a clinically-meaningful difference between treatment groups. Typically, in the context of RCTs

with continuous response data, this value is determined by assuming subject responses will follow

a normal distribution. Section 1.3 described how optimal RAR is dictated by the moments of the

assumed response distribution. Therefore, for RCTs employing optimal RAR, it is ideal that the
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observed response data match the assumed distribution. If the observed responses do not follow the

intended distribution, the randomization mechanism may be misspecified. Consequently, partici-

pant randomization may differ from what was intended, possibly producing study characteristics

(i.e., ethics and power) dissimilar from those originally anticipated. These effects may be more

profound in smaller samples and scenarios where the intended response distribution is symmetric

yet observed response data are skewed or vice versa. Though means tend to be robust against

distributional misspecification, treatment group variance estimation is heavily contingent upon the

correct specification of the assumed distribution. [24]

1.4.1 The Biasedness Dilemma

Consider the randomization ratio of (1.17). Assume that ρ′ is already bounded and is, therefore,

ρ. As discussed in Section 1.3, (1.17) is a function of some unknown group-specific population

parameters µg and σ2
g . However, pursuant to the optimal RAR process, [4–7] randomization is dic-

tated by the observed response information obtained from subjects who have already completed the

trial. Therefore, the observed optimal RAR ratio for continuous response data is calculated using

the estimated treatment-specific mean and variance of the response data obtained from subjects

{1, 2, · · · , i}, denoted µ̂gi and σ̂2
gi, respectively. Therefore, the RAR ratio for participant i+ 1 to T

is based on the sample statistics, and is denoted by:

ρ̂T ;i+1 =
σ̂T i µ̂

τ/2
Ci

σ̂T i µ̂
τ/2
Ci + σ̂Ci µ̂

τ/2
T i

. (1.18)

By Jensen’s Inequality, [24] replacing the distributional parameters with sample estimates could

result in a biased estimate of the randomization ratio. Despite this, plug-in estimators, specifically

maximum likelihood estimators (MLEs), are convention and, therefore, are used in the present

work.
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1.4.2 Objective and Outline of Present Work

There exists a paucity of information regarding the trial ramifications that may occur if the distri-

butional assumption of the participant response data is not met. That is, existing literature falls

short of addressing the behavior of the derived methodologies in the presence of distributional mis-

specification of the observed response data, a conceivable possibility given the assumed distribution

is chosen prior to data collection. [4–7,23] This is an important consideration given randomization of

incoming participants is contingent upon the response data obtained to that point, and the estima-

tion of the mean and variance used to estimate the RAR ratio is effected by the specification of the

response data. Traditionally, the DBCD is employed to account for unintended trial characteristics

resulting from a small sample size, e.g., large variance. [8–10] This procedure operates as a function

of the optimal RAR ratio, and therefore is not, in itself, optimal. The DBCD dampens the effect of

the power-versus-ethics dynamic of the optimal RAR framework, no longer randomizing subjects

based on the observed effect size. Of interest in the present work, however, is to study the effects

of misspecification on optimal RAR. Therefore, the DBCD was not used.

The present work sought to identify flexible methodologies that produced an estimator of the

optimal RAR ratio that was robust against departures from a prespecified parametric response dis-

tribution. To this end, nonparametric methods were first used to estimate the empirical distribution

of the observed response data in order to obtain distribution-free estimates of the group-specific

sample moments (Chapter 2). These were, in turn, used to develop an estimator of the RAR

ratio that is robust to distributional misspecification. A step further was the utilization of the

weighted-average approach, a method that allowed the randomization ratio to adjust automatically

according to the distributional fit of a set of parametric candidate response distributions, regardless

of the a priori distributional assumption (Chapter 3). Chapters 2 and 3 detail these approaches

in the context of continuous response data. Chapter 4 centers about right-censored survival out-
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comes, evaluating the misspecification of the conventional Zhang and Rosenberger [25] RAR ratio

and developing a RAR ratio using the cumulative hazard function. The final chapter (Chapter 5)

discusses implications, limitations, and future work.
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Chapter 2

Robust Estimation of Continuous Moments Using the

Empirical Distribution Function

2.1 Distribution-independent Estimation of Moments

The goal of the present chapter is to obtain distribution-independent estimates of the group-specific

means and SDs of the observed response data. These estimates, in turn, are used to produce an

estimate of the RAR ratio that is robust against distributional misspecification. Distribution-

independent moment estimates can be obtained using the cumulative distribution function [26–29]

(CDF), F (y), as follows. For a random variable Y ,

E(Y ) =

∫ ∞
0

(1− F (y))dy, (2.1)

E(Y 2) = 2

∫ ∞
0

y(1− F (y))dy, (2.2)

Then, V ar(Y ) = E(Y 2)− E(Y )2, (2.3)

and, SD(Y ) = V ar(Y )1/2, (2.4)

where (2.1) and (2.2) are derived in Muldowney et al. [29] The CDF lacks an easily-estimable closed-

form solution for observed response data that are not assumed to follow a parametric distribu-

tion. [26–28] Therefore, obtaining distribution-independent moment estimates requires an empirical
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estimate of the CDF (eCDF). [26–29] The eCDF can be estimated by sorting the observed response

data into ascending sequence and setting the mass of each observed response value at a height equal

to the number of responses less than or equal to that response value, divided by the total number

of observed responses. While this is a simple and effective approach for obtaining the underlying

distribution function, the resulting data-generating function is a step function modeling a discrete

random variable. Therefore, because the focus of this work is on continuous response data, the

relationship between the survival function [26–28] (SF), S(y), and the CDF,

F (y) = 1− S(y), (2.5)

was exploited. With this, continuous fits of the empirical distribution function, denoted F̂ (y), could

be obtained such that distribution-independent estimates of the means and SDs could be estimated

from the observed response data directly. A number of methodologies have been developed to

estimate the SF, [30–32] but piecewise-linear estimation of the Kaplan-Meier (KM) estimate of the SF

(PLKM) by Kaczynski et al. [33] and Hazard Estimation with Flexible Tails (HEFT) by Kooperberg

et al. [34] were utilized in the present work. The PLKM and HEFT methods were selected for their

simplicity and complexity, respectively, and are detailed in Sections 2.1.1 and 2.1.2, respectively.

Once these empirical SF modeling approaches yielded F̂ (y), group-specific distribution-independent

estimates of the mean and SD, Ê(Yg) and ŜD(Yg), respectively, were obtained as follows:

Ê(Yg) =

∫ ∞
0

(1− F̂ (yg))dyg, (2.6)

Ê(Y 2
g ) = 2

∫ ∞
0

yg(1− F̂ (yg))dyg, (2.7)

Then, ̂V ar(Yg) = Ê(Y 2
g )− Ê(Yg)

2, (2.8)

and, ŜD(Yg) = ̂V ar(Yg)1/2. (2.9)
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Plugging these empirical moment estimates into the equation for the RAR ratio given by (1.18)

produces a robust estimator of the RAR ratio.

2.1.1 Piecewise-linear Estimation of the Kaplan-Meier Estimate of the Survival Func-

tion

Mentioned previously, methods of estimating the SF were exploited so that continuous distribution

functions could be obtained from the observed response data. The first method selected for this task

relied upon one of the most common and straightforward estimators of the SF: the KM estimator,

denoted SKM (y). [31–33] For survival outcomes, SKM (y) may be interpreted as the probability of

surviving until immediately prior to a given time y.i In the absence of censoring, however, SKM (y)

is simply the complement of the previously-detailed eCDF. [32]

2.1.1.1 Fitting PLKM

Letting j index a set of K observed subject responses, denoted y(j) (j = 1, 2, · · · ,K), ordered such

that y(1) < y(2) < · · · < y(K), where y(j) denotes the jth ordered value in the set of K observed

responses, the KM probability of survival corresponding to each observed response value are se-

quenced in descending order, SKM (y(1)) > SKM (y(2)) > · · · > SKM (y(K)), generating a decreasing

step function. In order to obtain a continuous estimate of SKM (y), information between each ob-

served response value (i.e., each downward step) was interpolated using a series of piecewise-linear

functions. [33] To this end, knot points were placed at each observed response value at heights given

by h(j) = K−j
K−1 , such that h(1) = 1 > h(2) > · · · > h(K−1) > h(K) = 0, and were connected using

line segments with slope
h(j)−h(j+1)

y(j)−y(j+1)
for j = 1, 2, · · · ,K − 1. This concatenation of line segments

produced ŜP (y), a continuous piecewise-linear approximation of the discrete KM estimate of the

SF.

iy, versus more conventional t notation, used to represent survival time (1) to ensure consistent representation
of observed response data, and (2) because present methods, though typically discussed in a survival context, are
centered about continuous response data in this chapter.
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2.1.1.2 Moment Estimation Using PLKM Fit

Using ŜP (y), distribution-independent moments were estimated using numerical integration by the

trapezoidal rule. [35] Specifically, Ê(Y )P was found by summing the area of the trapezoids bounded

on the right and the left by y(j+1) and y(j), respectively, and above and below by ŜP (y) and 0,

respectively. Overlooking group affiliationii for the following derivations, (2.6) gives:

Ê(Y )P =

∫ y(K)

y(1)

ŜP (y)dy (2.10)

≈ 1

2

K−1∑
j=1

(
h(j) + h(j+1)

)
∆yj , (2.11)

where ∆yj = (y(j+1) − y(j)). Next, to obtain Ê(Y 2)P , ŜP2 (y), a piecewise-linear curve representing

the height of each knot point multiplied by the observed response value corresponding to the

location of that knot point, i.e.,

ŜP2 (y) = h(j) × y(j), (2.12)

was calculated. With this, Ê(Y 2)P was calculated by summing the same trapezoids used to calculate

Ê(Y )P , except bounded above by ŜP2 (y) instead of ŜP (y). Building upon (2.7),

Ê(Y 2)P = 2

∫ y(K)

y(1)

yŜP2 (y)dy (2.13)

≈ 2

K−1∑
j=1

(
h(j) × y(j) + h(j+1) × y(j+1)

)
∆yj . (2.14)

The distribution-independent estimate of the variance follows directly from (2.8) and ŜD(Y )P

from (2.9). With this, defining ρ̂T ;i+1 of (1.18), a function of {µ̂gi, σ̂gi}, as ρ̂PT ;i+1, a function

of

{
Ê(Ygi)

P , ̂SD(Ygi)
P

}
gives the robust RAR estimator obtained using the PLKM empirical

estimation method.

iiGroup affiliation dropped for remainder of PLKM moment derivations for ease of notation and without loss of
generality.
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2.1.2 Hazard Estimation with Flexible Tails

The second method for obtaining a continuous distribution function from the observed response

data was HEFT estimation, a more sophisticated and procedurally-complex estimation method

than PLKM. [34,36] Hansen et al. states that, in survival analysis, the hazard function, λ(y)dy, “is

often of-interest since it can be interpreted as the probability that someone dies in the next time-

interval of infinitesimal length dy, given he is alive at time y.” [36] Attempting to model the hazard

function directly can be problematic, however. [31,32,34,36,37] Therefore, Kooperberg et al. [34,37] and

Hansen et al. [36] suggested modeling the logarithm of the unknown hazard function (i.e., log-hazard

function) instead. Compared to the hazard, density, or distribution function, positivity constraints

are not a concern when modeling the log-hazard function, and such an approach lends itself well

to Cox proportional hazards modeling. Described in the following section, the HEFT estimation

method uses cubic splines to model the log-hazard function in a way that allows for and captures

a wide range of tail behavior.

Polynomial splines are piecewise polynomials of some degree d, and knots mark the breakpoints

from one polynomial to the next. [34,36] Splines satisfy smoothness constraints that describe how

the different pieces are to be joined, typically in terms of s, the number of continuous derivatives

exhibited by the piecewise polynomials. Specifically, cubic splines are piecewise cubic functions

having two continuous derivatives, allowing jumps in the third derivative at the knots. Given a

degree d and a knot vector y = (y1, y2, · · · , yK)′, the collection of polynomial splines having s

continuous derivatives forms a linear space. The collection of linear splines with knot sequence y

is spanned by the functions:

1, x, (x− y1)+, · · · , (x− yK)+, (2.15)

where (·)+ = max(·, 0). This is the truncated power basis. In the case of the cubic spline, where
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d = 3 and s = 2, the basis, B(y), is spanned by:

1, x, x2, x3, (x− y1)3
+, · · · , (x− yK)3

+. (2.16)

Technical details regarding polynomial spline modeling are available in Chapter 2 of Hansen et

al. [36]

2.1.2.1 Fitting HEFT

Let f be a positive density function on (0,∞), ϕ = log(f) be the log-density function, λ = f/(1−F )

be the hazard function, α = log(λ) be the log-hazard function, and, Q = F−1 be the quantile

function such that Q(F (y)) = y for y > 0 and F (Q(p)) = p for 0 < p < 1. Then, for y ≥ 0,

1− F (y) = exp

(
−
∫ y

0
λ(u)du

)
(2.17)

= exp

(
−
∫ y

0
exp(α(u))du

)
. (2.18)

And, since (i) F (y) < 1 for 0 < y <∞ and (ii) lim
y → ∞ F (y) = 1, it was concluded that

∫ y

0
exp(α(u))du <∞ for 0 < y <∞, and (2.19)∫ ∞

0
exp(α(y))dy =∞. (2.20)

Noting λ = exp(α), for y > 0,

f(y) = exp(α(y)) exp

(
−
∫ y

0
exp(α(u))du

)
, and (2.21)

ϕ(y) = α(y)−
∫ y

0
exp(α(u))du. (2.22)

Now, in an arrangement similar to that of the PLKM method, consider K ≥ 3 observed respons-

es given by y(j) (j = 1, 2, · · · ,K) such that 0 < y(1) < y(2) < · · · < y(K) < ∞, and let p = K − 2.

As well, let G be a p-dimensional space of twice-continuously differentiable functions s on [0,∞)

such that s is constant on [0, y(1)] and [y(K),∞), and the restriction of s to each of the intervals
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[y(1), y(2)], · · · , [y(K−1), y(K)] is a cubic polynomial. With this, the functions in G are cubic splines

having simple knots at y(1), y(2), · · · , y(K). Now, let B1(y), B2(y), · · · , Bp(y) be a basis of this space

such that Bp(y) = 1 on [0,∞) and B1(y), B2(y), · · · , Bp−1(y) = 0 on [y(K),∞). Take ε to be the

75th percentile of the observed response data, and set

B−1(y) = log

(
y

y + ε

)
and B0(y) = log(y + ε), for y > 0. (2.23)

Kooperberg et al. [34] and Hansen et al. [36] provide details motivating the inclusion of these addi-

tional log terms. Then, B−1(y), B0(y), B1(y), · · · , Bp(y) is a basis of the linear space spanned by

G ∪ {B−1, B0} such that:

α(·|θ) = θ−1B−1(y) + θ0B0(y) + θ1B1(y) + · · ·+ θpBp(y), (2.24)

θ = (θ−1, θ0, θ1, · · · , θp)′ ∈ RK , and (2.25)

Θ =

{
θ ∈ RK :

∫ y

0
exp(α(u|θ))du <∞ for 0 < y <∞ and

∫ ∞
0

exp(α(y|θ))dt =∞
}

(2.26)

=

{
θ = (θ−1, θ0, θ1, · · · , θp)′ ∈ RK : θ−1 > −1 and θ0 ≥ −1

}
. (2.27)

With this, α(·|θ), θ ∈ Θ, is the log-hazard function fit to the observed response data using

cubic spline modeling per the HEFT method. Additionally, given basis coefficients θ ∈ Θ,

the corresponding hazard, density, log-density, and survival functions are, respectively, given by

λ(·|θ) = exp(α(·|θ)), and, for y > 0,

f(y|θ) = exp(α(t|θ)) exp

(
−
∫ y

0
exp(α(u|θ))du

)
, (2.28)

ϕ(y|θ) = α(t|θ)−
∫ y

0
exp(α(u|θ))du, and (2.29)

1− F (y|θ) = exp

(
−
∫ y

0
exp(α(u|θ))du

)
. (2.30)
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2.1.2.2 Moment Estimation Using HEFT Fit

The aforedescribed modeling of α(·|θ) and 1 − F (y|θ) was performed in R using the polspline

package, where α(·|θ) was obtained using the polspline::heft function and F (y|θ) was obtained

using the polspline::pheft function. [38,39] Denoting ŜH(y) = 1 − F (y|θ), once more, numerical

integration by the trapezoidal rule was used to obtain the distribution-independent mean, Ê(Y )H ,

and SD, ŜD(Y )H . That is, Ê(Y )H , ŜH2 (y), and Ê(Y 2)H were obtained using (2.11), (2.12), and

(2.14), respectively, but with a single change. Where the PLKM method inherently produced K−1

trapezoids for numerical integration across the j = 1, 2, · · · ,K ordered subject responses, the HEFT

method produces a smooth fit of the SF. Therefore, the minimum and maximum observed response

values, y(1) and y(K), respectively, were obtained, and K = 1, 000 equally-spaced intervals were

used to produce K − 1 = 999 trapezoids of equal width between y(1) and y(K). Letting the left-

hand side of a given trapezoid be j and the right-hand side be j + 1, the top of the trapezoid was

given by the line segment connecting h(j) = ŜH(y(j)) and h(j+1) = ŜH(y(j+1)) (or h(j) = ŜH2 (y(j))

and h(j+1) = ŜH2 (y(j+1)) for second moment estimation). With this, (2.11), (2.12), and (2.14) was

applied, and Ê(Ygi)
H and ̂SD(Ygi)

H were supplanted into (1.18) to produce the HEFT-derived

robust RAR ratio estimator ρ̂HT ;i+1.

2.2 Methods Evaluation and Simulation Process

A simulation study was performed to determine how well the PLKM and HEFT methods account-

ed for the distributional misspecification of the RAR ratio. The goal of this simulation study was

to assess the bias, precision, and ethicality of the RAR ratios obtained using each of the empir-

ical methods of moment estimation. Bias and precision were evaluated to gauge how well the

distribution-independent empirical estimation methods response-adaptively randomized subjects

into a trial when observed responses followed a parametric continuous distribution. The means
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and 95% confidence intervals (CI) of the RAR ratios comprised of moments estimated using either

the PLKM or HEFT empirical estimation methods averaged over 1,000 simulated trials, denoted

ρ̂P and ρ̂H, respectively, were plotted with respect to both the means and 95% CIs of the RAR

ratios estimated using the MLEs of the correctly-specified, true response distribution, denoted ρ̂T,

and the RAR ratio intended by the trial design, denoted ρd. Means of the 1,000 simulated trials

were plotted to measure bias, where smaller distances from the empirically-estimated ρ̂P or ρ̂H to

ρ̂T or ρd represented less bias, and, thereby, greater accuracy of the empirical methods. Ninety-

five percent CIs about the mean RAR ratios were provided as a measure of the precision of these

estimators.

Plots of the percent-difference between the observed and expected ethical objective function

(%O-E) were used to evaluate whether or not the empirical estimators of the RAR ratio randomized

participants into the trial in a manner consistent with the ethical objective of RAR. If RAR adhered

to the intended ethical objective, the observed ethical objective function should have matched the

ethical objective function intended by the trial design. Therefore, estimators of the RAR ratio with

%O-E closer to zero were considered better behaved and, thereby, better performing in this context.

Details for the calculation of the %O-E metric are provided later in this section. Finally, type I error,

i.e., detecting a treatment difference when one does not exist, was evaluated using an independent

samples t-test based on the observed responses from the first 100 participants enrolled into the

simulated trials where no treatment effect was generated (i.e., δ = 0.0, described subsequently).

Figure 2.1 provides a visual representation of the complete simulation process. In these simu-

lations, group-specific participant response data were generated to follow four parametric response

distributions: two exponential family distributions, the symmetrical normal distribution and the

right-skewed gamma distribution, and two non-exponential family mixture distributions, the heav-

ily right-skewed χ2-Uniform (X2U) mixture distribution with a long, thick tail and a bimodal
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Figure 2.1: Simulation process for evaluation of empirical estimation methods using parametric
continuous response data.

mixture of two normal random variables, i.e., the Normal-Mixture (NM) distribution. Algorithms

describing trial generation and participant randomization as well as the simulation of X2U and NM

response data are provided in Appendices A.8-A.10, respectively. These distributions were selected

to show the behavior of RAR in increasingly complex settings. Group-specific means and SDs were

obtained by estimating the MLEs of the parameters that characterize each response distribution.

Derivation of the normal, gamma, X2U, and NM distribution MLEs, along with their means and

SDs, are provided in Appendices A.11-A.14, respectively. These MLE-derived means and SDs were

supplanted into the RAR ratio given by (1.18) in Section 1.4.1 to produce distribution-specific

estimators of the RAR ratio.

Four treatment differences, or effect sizes, denoted δ, were considered in this simulation process.
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These treatment differences were calculated using Cohens D assuming a pooled SD:

δ =
µC0 − µT0√

(1− ρ0) σ2
C0 + ρ0 σ2

T0

, (2.31)

where ρ0 was used as a proxy for the group-specific sample sizes. [40,41] With this, group-specific

response data reflecting no (δ = 0.0), small (δ = 0.2), moderate (δ = 0.5), and large (δ = 0.8)

treatment differences were generated. [40,41] The aforementioned evaluation of type I error was in-

corporated into the scenarios where no treatment difference existed (δ = 0.0).

Table 2.1: Distribution-specific parameter values for simulation of treatment
and control group response data by effect size.

Parameter values fixed across effect sizes
Truth Type Value τ for ρ0 = 0.75
Normal Scale/SD, σ0 8.00 33.22
Gamma Shape, α0 4.00 7.89
X2U Mixture, π0 0.50 2.38

Uniform lower bound, a0 0.50
Uniform upper bound, b0 50.50

NM Mixture, π0 0.50 17.99
1st & 2nd Nrv SD, σ1,g0 & σ2,g0 15.00
Overall SD, σ0 38.08

Parameter values varied by effect size
Control/None Small Moderate Large

Truth Type δ = 0.0 δ = 0.2 δ = 0.5 δ = 0.8

Normal Location/Mean, µg0 100.00 98.40 96.00 93.60
Intended RAR ratio, ρd 0.50 0.57 0.66 0.75

Gamma Scale, βg0 2.50 2.27 1.97 1.72
Mean, µg0 10.00 6.89 7.88 9.07
SD, σg0 5.00 4.53 3.94 3.44
Intended RAR ratio, ρd 0.50 0.57 0.67 0.75

X2U X2 DF, kg0 25.00 20.43 12.73 1.12
Overall mean, µg0 25.25 22.96 19.11 13.31
Overall SD, σg0 11.37 11.45 12.56 15.93
Intended RAR ratio, ρd 0.50 0.53 0.61 0.75

NM 1st Nrv mean, µ1,g0 230.00 222.38 210.96 199.54
2nd Nrv mean, µ2,g0 300.00 292.38 280.96 269.54
Overall mean, µg0 265.00 257.38 245.96 234.54
Intended RAR ratio, ρd 0.50 0.57 0.66 0.75

Nrv: Normal random variable

Distribution-specific parameter values are provided in Table 2.1, and visual displays of each
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Figure 2.2: Distribution-specific densities based on intended trial parameters
for simulation of treatment and control group response data by effect sizes.
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response distribution characterized by these parameter values are provided in Figure 2.2. With-

out loss of generality, the treatment group was considered superior to the control group when a

treatment difference existed (δ > 0.0); as such, the treatment group had a mean response value

that was lower than the mean response value of the control group. Also provided in Table 2.1

is the value of τ required to achieve 3:1 randomization (ρd = ρ0 = 0.75) when a large treatment

difference was observed. This tuning parameter also dictated ρd when a large treatment difference

was not observed. When no treatment difference existed (δ = 0.0), intended randomization was 0.5

(ρd = 0.5). Intended randomization ratios varied for small (δ = 0.2) and moderate (δ = 0.5) effect

sizes, and are provided in Table 2.1.

Results using preliminary data with 500 trial participants showed no differences in random-

ization for greater than 200 participants; therefore, the simulation studies were limited to 200

participants in each simulated trial. To produce the previously-described plots of the means and

95% CIs, the RAR ratios across 1,000 iterations of each of the 60 scenarios considered (3 non-

normal response distributions × 4 effect sizes × 4 methods of randomization + 1 normal response

distribution × 4 effect sizes × 3 methods of randomization) were collected for each of the 200 par-

ticipants enrolled. The means and variances of these 60 sets of 1,000 RAR ratios were calculated

and 95% CIs were constructed.

The ethical objective of RAR in these trials was to minimize the total expected response value

observed in the trial. Therefore, to construct the plot of the %O-E, group-specific sample means and

sample sizes were calculated after the enrollment of each subject into the trial, and their means

were calculated across all 1,000 trials. Then, using (1.1) from Section 1.3, the observed ethical

objective function was defined as:

Oi = n̂T i µ̂T i + n̂Ci µ̂Ci, (2.32)
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where n̂gi represents the mean observed number of subjects enrolled in group g from the first to

the ith participant, and µ̂gi represents the mean observed sample mean of group g from the first to

the ith participant enrolled into the trial over 1,000 simulated trials. Similarly, the expected ethical

objective function was defined as:

Ei = E(nT i) µT0 + E(nCi) µC0, (2.33)

where E(ngi) represents the mean expected number of subjects enrolled in group g from the first

the first to the ith participant enrolled into the trial over 1,000 simulated trials, where:

E(ngi) =



0.5 i, for i = 1, 2, · · · , L,

0.5 L + ρd (i− L), for i > L and g = T,

0.5 L + (1− ρd) (i− L), for i > L and g = C,

(2.34)

where L represents the lead-in size of the trial. Lead-ins are described in depth in the following

section. When no treatment difference exists, E(ngi) = 0.5 i for i = 1, 2, · · · , 200. With this, the

percent-difference between the observed and expected ethical objective function is defined as:

%O-E = 100 × (Oi − Ei) / Ei. (2.35)

2.2.1 Lead-in Analysis

Figure 2.1 shows that response-adaptive clinical trials require a lead-in period before RAR can

begin. During this lead-in period, a small number of trial participants are equally-randomized into

either the treatment or control group immediately following trial onset. The purpose of this lead-in

period is to accrue enough group-specific response data that the means and SDs that comprise the

RAR ratio can be estimated. Since the focus of the present chapter is the estimation of the means

and SDs that comprise the RAR ratio, particularly in small samples, initiating RAR as early as

possible by minimizing the lead-in period was important to the evaluation of the methods presented
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in this chapter. While Haines and Sadiq [43] evaluated start-up duration, a type of lead-in, no other

suggestions regarding lead-in size calibration exist in the literature. Therefore, an assessment of

possible lead-in lengths was performed in which participants were equally-randomized into the trial

using block randomization, selected because it produces an equal number of subjects in each group.

Other methods of ER may result in unequal group-specific lead-in sizes, equally-randomizing a

greater number of subjects into the trial than desired.

Figure 2.3: Process for selecting lead-in size for simulations used to evaluate the empirical
estimation methods using parametric continuous response data.

A visual depiction of the lead-in analysis is provided in Figure 2.3. To conduct the lead-in

analysis, 1,800 trials for each of the simulation scenarios described previously (§2.2) were performed

for increasing lead-in sizes, beginning with the block randomization of three subjects into each

group, i.e., lead-per-group (LPG) of three (LPG=3) for six subjects total (L=6). Due to the

complexity of the HEFT method of estimation versus PLKM and MLE estimation, LPG sizes were

incremented by one until LPG=20 (L=40) for RAR using the HEFT method of estimation, and

until LPG=10 (L=20) for RAR ratios estimated using either the PLKM method of estimation and

distribution-specific MLEs. If the means or SDs - and, subsequently, the RAR ratio - could not be
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estimated after a participant was enrolled, the simulated trial was stopped. The trial was deemed

successful when RAR ratios were estimated for all 200 subjects enrolled into the trial. The percent

of successful trials out of the 1,800 performed, denoted %success, was reported by LPG for each

simulation scenario.

Reiterating the goal of beginning RAR using the smallest possible lead-in size, a results-driven

sensitivity analysis based on the observed %success, denoted %̂success, was performed for scenarios

where the %̂success was less than 100 for LPG=3. In these scenarios, the LPGs where %̂success was

at least 65, 70, 75, and 80 were of-interest. The minimum %success value of 65 was selected because

it represents a majority of trials and each of the HEFT randomization scenarios for LPG=3 could

be considered in the sensitivity analysis. From 65, the desired %success value was incremented by

five until %success=80, at which point LPGs were too large to be practical.

Table 2.2: Lead-per-group at which at least 65, 70, 75, or 80% of trials were successful when
estimating the RAR ratio using HEFT moment estimation and when estimating the RAR
ratio using mixture distribution MLEs for mixture-distributed response data by effect size.

Desired LPG (%̂ success)
RAR Truth %success δ = 0.0 δ = 0.2 δ = 0.5 δ = 0.8

HEFT Normal 65 3 (68.9) 3 (71.5) 3 (73.2) 3 (75.8)
70 14 (72.3) 3 (71.5) 3 (73.2) 3 (75.8)
75 15 (80.6) 15 (81.5) 14 (77.3) 3 (75.8)
80 15 (80.6) 15 (81.5) 15 (80.4) 11 (80.3)

Gamma 65, 70 3 (71.8) 3 (76.1) 3 (77.0) 3 (77.6)
75 15 (77.1) 3 (76.1) 3 (77.0) 3 (77.6)
80 16 (89.7) 16 (91.6) 14 (83.0) 12 (80.2)

X2U 65, 70, 75, 80 3 (83.1) 3 (82.7) 3 (84.3) 3 (89.6)
NM 65, 70, 75, 80 3 (82.3) 3 (81.6) 3 (82.9) 3 (84.7)

X2U X2U 65, 70 5 (72.7) 5 (72.2) 5 (74.9) 5 (78.5)
75 6 (81.7) 6 (82.5) 6 (84.3) 5 (78.5)
80 6 (81.7) 6 (82.5) 6 (84.3) 6 (85.4)

NM NM 65, 70 7 (76.7) 7 (77.9) 7 (74.6) 7 (77.1)
75 7 (76.7) 7 (77.9) 8 (85.9) 7 (77.1)
80 8 (86.7) 8 (86.3) 8 (85.9) 8 (86.2)

Regardless of the simulated response distribution, all 1,800 trials were successful when subjects

were randomized into the trial by estimating the RAR ratio using the PLKM method and normal
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MLEs for LPG=3. Likewise, all 1,800 trials were successful for LPG=3 when using gamma MLEs

to estimate the RAR ratio for response data simulated to follow the gamma distribution. Results

varied for HEFT randomization and mixture randomization of mixture-distributed response data,

and are provided in Table A.15 in the Appendix. These scenarios were considered in the sensitivity

analysis, and results are provided in Table 2.2.

Specific to HEFT randomization of response data following the normal and gamma distributions,

a large increase in LPG was required to observe at least 75 or 80 versus 65 or 70 %success. This

represents the difference between equally-randomizing six subjects for the 65-70 %success situation

compared to 20-30 for the 75-80 %success situation prior to initiating RAR. Where the present

work seeks to evaluate the behavior of various methods of estimating the RAR ratio with an

emphasis on small-sample estimation, large lead-in sizes such as these may severely hinder the

practicability of the HEFT method and damage the interpretation of its results, particularly when

compared to randomization methods requiring much smaller lead-in sizes. Though randomization

using larger lead-in sizes may have been more well-behaved in some scenarios (e.g., LPG=12 versus

LPG=3 for HEFT randomization of gamma-distributed responses), obtaining empirically-estimated

RAR ratios in small samples was more important to the present work than obtaining albeit better-

behaved estimated RAR ratios that required three-to-four times the number of subjects in the lead-

in period to be estimated. Finally, with respect to mixture randomization of mixture-distributed

response data, randomization results based on the LPG required to obtain 65, 70, and 75 %success

were nearly identical to the randomization results obtained using the LPG required to observe 80

%success.

Whether HEFT randomization of normal or gamma response data or mixture randomization

of mixture-distributed response data, this sensitivity analysis confirmed that overall trial results

will not change when randomization is based on the LPG necessary for 65 versus 80 %success: at
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Figure 2.4: Mean of RAR ratios with 95% CI (A) and percent-difference between the ob-
served and expected ethical objective function (B) over 1,000 simulated trials where normally-
distributed group-specific subject responses reflected a large treatment difference and were
randomized using the HEFT empirical estimation method, for LPG=3, whereby at least 65,
70, and 75 %success was observed, and for LPG=11, whereby at least 80 %success was ob-
served.
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Figure 2.5: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed gamma distributions that reflected a large treatment difference and
were randomized using the HEFT empirical estimation method, for LPG=3, whereby at least
65, 70, and 75 %success was observed, and for LPG=12, whereby at least 80 %success was
observed.
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Figure 2.6: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed X2U distributions that reflected a large treatment difference and
were randomized using RAR ratios estimated using X2U MLEs, for LPG=5, whereby at least
65, 70, and 75 %success was observed, and for LPG=6, whereby at least 80 %success was
observed.
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Figure 2.7: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed NM distributions that reflected a large treatment difference and
were randomized using RAR ratios estimated using NM MLEs, for LPG=7, whereby at least
65, 70, and 75 %success was observed, and for LPG=8, whereby at least 80 %success was
observed.
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most, one or two subjects for every 100 enrolled into the trial may be randomized to the treatment

group opposite from the one intended by the trial design. Such a difference is likely insufficient to

influence the final results of the clinical trial. And, finally, the purpose of employing RAR is to

balance the power of the clinical trial against an ethical objective. When using the LPG required

to observe 65 %success, observed randomization minimized the overall mean response value either

better than or not dissimilarly to trials using LPG required to observe 80 %success because a larger

number of subjects underwent RAR versus ER. For these reasons, lead-in sizes were selected based

upon the LPG required to observe at least 65 %success for each scenario. With the exception of

mixture randomization of mixture-distributed responses, this was LPG=3. Lead-per-group of five

and LPG=7 were used for X2U randomization of X2U response data and NM randomization of

NM response data, respectively. With this, corresponding values of L for the calculation of Ei were

L=6 save for the former, where Ei was based on L=10 and L=14, respectively.

2.3 Randomization Results

Results for simulated RCTs with continuous outcomes are discussed in what follows. All curves

were loess-smoothed using a bandwidth of 0.075. Randomization results for small and moderate

effect sizes followed patterns similar to those discussed in the following sections and are, therefore,

provided in Appendices A.16-A.23.

2.3.1 Normal Response Data Scenarios

In the baseline scenario (δ = 0.0) where group-specific response data were normally-distributed and

reflected no treatment difference (Figure 2.8), randomization behaved as anticipated under RAR:

an approximately equal number of participants were randomized to either treatment group (grey

line at ρd = 0.5; plot A) and any deviations from the intended ethical objective function were less

than 0.2% (plot B). Furthermore, as displayed in Table 2.3, type I error was well-controlled: no
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Figure 2.8: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials when group-specific
subject responses were normally-distributed and reflected no treatment difference.
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Table 2.3: Assessment of type I error by scenario using t-test based on observed mean response
from first 100 trial participants enrolled when no treatment difference existed (δ = 0.0) from
1,000 simulated trials.

Truth RAR Treatment Mean Control Mean t p-value

Normal HEFT 100.09 100.12 -0.498 0.6187
PLKM 100.14 100.18 -0.746 0.4555
Normal 100.16 100.17 0.225 0.8219

Gamma HEFT 10.09 10.12 -0.811 0.4177
PLKM 9.990 10.01 -0.936 0.3494
Normal 10.07 10.10 -0.891 0.3733
Gamma 10.11 10.10 0.447 0.6550

X2U HEFT 25.33 25.22 1.543 0.1229
PLKM 25.30 25.18 1.541 0.1235
Normal 25.30 25.25 0.654 0.5132
X2U 25.32 25.27 1.111 0.2665

NM HEFT 266.01 266.06 -0.145 0.8850
PLKM 265.85 265.96 -0.336 0.7371
Normal 265.80 265.56 0.824 0.4102
NM 265.45 265.44 0.075 0.9402

unsubstantiated treatment differences were detected.

When group-specific subject responses were normally-distributed and a large difference existed

(Figure 2.9), ¯̂ρH (red solid curve) was less biased than ¯̂ρP (blue solid curve) with respect to both

¯̂ρT (black dashed curve) and ρd (grey line at ρd = ρ0 = 0.75) (plot A). Specifically, ¯̂ρP followed the

same overall trend as ¯̂ρH, but with an additional bias of approximately 0.02. As well, any deviations

from the intended ethical objective of the trial were less than three percent, and existed primarily

during the lead-in period (plot B, Figure 2.9).

2.3.2 Non-normal Response Data Scenarios

When response data were not normally-distributed and no treatment difference was observed,

randomization using either PLKM or HEFT produced an approximately equal number of subjects in

each group (Figure 2.10), and %O-E never exceeded two (Figure 2.11). When response data followed

the gamma distribution and a large treatment effect was observed, ¯̂ρH, ¯̂ρP, and ¯̂ρT performed

similarly, but did not converge to ρd (plot A, Figure 2.12). Furthermore, though %O-E was less
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Figure 2.9: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials when group-specific
subject responses were normally-distributed and a large treatment difference existed.
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Figure 2.10: Mean of RAR ratios with 95% CI over 1,000 simulated trials when group-
specific subject responses were not normally-distributed and reflected no treatment dif-
ference.
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Figure 2.11: Percent-difference between the observed and expected ethical objective func-
tion over 1,000 simulated trials when group-specific subject responses were not normally-
distributed and reflected no treatment difference.
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Figure 2.12: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the gamma distribution and reflected a large difference.
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than two for all methods of randomization following the lead-in period, RAR using PLKM deviated

furthest from the intended ethical objective function, followed by randomization under the HEFT

method (plot B, Figure 2.12).

A y-axis ranging from ρd ± 0.05 was required to display the mean randomization results when

group-specific response data followed X2U mixture distributions reflecting a large treatment differ-

ence versus the more restricted range of ρd ± 0.03 (light-grey dashed lines) sufficient for presenting

mean randomization results for all other scenarios (plot A, Figure 2.13). In this scenario, neither

empirical estimation method achieved ρd and ¯̂ρP remained dissimilar to ¯̂ρT for all 200 participants

enrolled into the simulated trials while ¯̂ρH was only marginally similar to ¯̂ρT for the final 125

participants enrolled.

The y-axis of plot B in Figure 2.13 extends to 40 versus the maximum %O-E y-axis value of

18 (light-grey dashed line) sufficient for displaying the %O-E results in all other scenarios. This

suggests that the means obtained using the X2U MLEs during the lead-in period were considerably

different from the intended X2U means in Table 2.1. After the lead-in period, the observed ethical

objective function deviated by approximately four percent when the RAR ratio was estimated

using the PLKM and HEFT methods and declined to roughly two percent as more participants

were enrolled into the trial.

Finally, when response data followed the bimodal mixture of two normal random variables and a

large treatment difference was observed, ¯̂ρP and ¯̂ρH performed similarly but failed to mirror ¯̂ρT from

the 50th participant onward (plot A, Figure 2.14). As well, neither empirical estimation method

converged to ρd. However, all methods of randomization adhered to the ethical objective of RAR

(plot B, Figure 2.14).
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Figure 2.13: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the X2U distribution and reflected a large difference.
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Figure 2.14: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the NM distribution and reflected a large difference.
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2.4 Conclusion

Evidenced by the lead-in analysis, estimation of the moments for the RAR ratio may be contin-

gent upon the lead-in size, particularly for non-exponential family distributions. Therefore, it is

recommended in practice to use the ratio prior to the subject for which the moments cannot be

estimated as that subjects RAR ratio, then continue adding blocks of, for example, two or four.

Where the focus on the evaluation and implementation of the empirical RAR ratios versus the

appropriateness of the lead-in period chosen for the present analysis, the cut-off of a 65% success

rate for LPG=3 was selected. For HEFT lead-in, the estimation of moments was more successful

for more complex response data (i.e., mixture distributions) versus simple response distributions

(i.e., gamma or normal). This may be because HEFT uses a more complex algorithm to select

knots, beginning with three knots placements, which may have been harder to place with simpler

distributions. For example, if using quadratic splines to model the response data with a single

unknown factor, there exists at least seven parameters to estimate, one for each intercept, slope,

and quadratic term on either side of the knot, plus a variance term. Adding in the continuity

restriction of the mean and its derivative, this becomes a numerical challenge in smaller samples.

As anticipated, however, larger effect sizes were more easily detected in smaller samples. [24]

Overall, empirical estimation of the operands of the moments using the HEFT and PLKM

methods recreated true randomization and upheld the ethical objective of the trial, yet HEFT

estimation produced more well-behaved estimates than the PLKM method. For X2U response

data, the normal RAR ratio randomized better than the X2U RAR ratio with respect to achieving

and maintaining 3:1 randomization. Because the X2U RAR ratio never converged to 3:1 ran-

domization, it may be true that the BBZ optimal RAR ratio is not appropriate for such heavily

skewed response data Even though HEFT most closely matched X2U randomization, %O-E showed

about 5% deviation for HEFT and PLKM randomization versus approximately zero deviation for
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normality, suggesting the normality assumption holds. For NM response data, again, HEFT and

PLKM randomization performed well with respect to trial design, but were still outperformed by

the normality assumption.

Overall, HEFT and PLKM randomization produced estimates of the RAR ratio that closely

adhered to those expected by the trial design. That is, resulting randomization ratios fell to

within 0.02 of the intended 3:1 randomization and %O-E ≤ 5 in nearly all scenarios. However,

randomization under the normality assumption best-adhered to the trial design regardless of the

shape of the response data, even in small samples. Therefore, it is suggested to assume normality

in practice.

Of course, though RAR under the normality assumption was comparable in most cases, not

every distribution was considered in the present work. Users of these methods may consider sit-

uations where there is concern about the use of the sample mean under normality or they may

consider alternative methods of approximating the CDF besides HEFT or PLKM, the only two

approaches employed in the present work. Alternative distributional assumptions or methods of

CDF estimation may out-perform normality; further investigation may be required.
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Chapter 3

Robust Randomization of Continuous Response Data

Using the Weighted Average

3.1 The Weighed-Average Framework

In Chapter 2, the operands of the robust RAR ratio were estimated empirically. The methodology

discussed in the present chapter sought to obtain a robust estimator of the RAR ratio directly

by employing a weighted average (WA) framework that automatically adjusted for distributional

uncertainty. [42] That is, where many model selection techniques systematically neglect uncertain-

ty, weighted-averaging characteristically incorporates randomness in order to improve model fit by

selecting or combining a variety of models in a manner conducive to the observed data. [42] Since av-

eraging over competing models offers results that are more robust than those derived from analyses

dependent upon a single selected model, weighted-averaging is an inherently-robust framework. [42]

Fragoso [42] and Hoeting [44] contain pertinent examples of the WA framework. Therefore, in the

present chapter, participants were randomized into the trial using RAR ratios estimated assuming

a set of predetermined continuous distributions, i.e., candidate response distributions (CRD) in

lieu of removing the distributional assumption altogether (as in Chapter 2). The resulting set of

CRD-specific RAR ratios were then weighted by that CRD’s fit to the observed response data, the
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combination of which produced a flexible, inherently robust estimator of the RAR ratio. [42,44]

3.1.1 Methodology

For K CRDs, let dk be the value that represents the kth (k = 1, · · · ,K) CRD fit to the observed

response data based on some measure-of-fit (MOF) where smaller values indicate better fit. Ex-

amples of such MOFs include Akaike information criterion (AIC), Bayesian information criterion,

Kullback-Leibler distance, the Kolmogorov-Smirnov (KS) test statistic, the Cramer von-Mises cri-

terion, or the Kuiper’s test statistic. [45–50] As well, let d0 be a reference MOF value that serves to

scale each of the K MOF values. Letting smaller MOF values indicate a better distributional fit

to the data, the minimum dk value was set as d0. As such, the scaled MOF values were provided

by the difference between each dk and d0, denoted d∗k, i.e.,

d∗k = dk − d0. (3.1)

Inducing a scale in this manner gives meaning to otherwise-meaningless individual MOF values,

allowing direct comparison of the distributional fits produced by each CRD. [45] Since the individual

MOF values are positive, real-valued numbers, scaling also alleviates much of the potential compu-

tational burden engendered by their direct use. [45] The difference given in (3.1) is the cornerstone

of developing the distributional weights for each CRD, denoted wk:

wk =
exp(−1

2 d
∗
k)∑K

k=1 exp(−
1
2 d
∗
k)
, (3.2)

where wk ∈ (0, 1) and
∑K

k=1wk = 1. These distributional weights may be interpreted as the weight

of evidence suggesting that CRD k is the distribution that best-fits the observed response data in

the set of K CRDs under consideration, assuming a best-fitting CRD exists in the considered set. [45]

Under this weighting scheme, more heavily-weighted CRDs, i.e., CRDs with weights closer to one,

were said to better-fit the observed response data than CRDs with wk closer to zero. Explicitly, the
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WA-estimated RAR ratio representing the probability of randomizing subject i+1 to the treatment

group based on response data observed from participants one to i is given by:

ρ̂WA
T ;i+1 =

K∑
k=1

ŵik ρ̂k, (3.3)

where ŵik represents the MOF-estimated distributional weight and each ρ̂k takes the form of 1.18,

where σ̂gi and µ̂gi were estimated using the MLEs specific to each CRD k.

3.2 Simulation Process for Evaluation of Weighted-Average Randomization

A simulation study was performed to determine how well the WA method of RAR accounted for

distributional misspecification of the RAR ratio. The goal of this simulation study was identical

to those discussed in Section 2.2: to evaluate the bias, precision, and ethicality of the method-

produced estimator of the RAR ratio using plots of the mean RAR ratios from 1,000 trials and

their 95% CI along with the %O−E plot. Specifically, the mean WA RAR ratio (ρ̂WA) was compared

ρ̂T and ρd. Since more heavily-weighted CRDs represent larger proportions of the WA-estimated

RAR ratio, the behavior of the CRDs when fit to the observed response data was also of interest,

and was assessed using plots of the means of the CRD-specific weights across the 1,000 simulated

trials for each of the 200 subjects enrolled into the trial. As well, an assessment of type I error was

performed as in Chapter 2, and results were presented by Set (discussed later in this section).

Figure 3.1 provides a visual representation of the WA simulation study. As in Section 2.2,

response data were simulated to follow the normal, gamma, X2U, and NM distributions, character-

ized by the parameters given in Table 2.1. New to the simulation process was the estimation of the

RAR ratios corresponding to each CRD within a predetermined set of CRDs. Overall, six CRDs

were considered: the normal, Laplace, and logistic distributions, selected for their symmetry, and

the gamma, Weibull, and lognormal distributions, selected for their ability to incorporate skewness.

Derivation of the MLEs corresponding to the Laplace, logistic, Weibull and lognormal distributions
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Figure 3.1: Simulation process for evaluation of WA method of RAR using parametric contin-
uous response data.
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are provided in Appendices A.24-A.27, respectively. When the treatment-specific response data

were simulated to follow normal and gamma distributions, these CRDs were arranged into distinct

sets designed to assess the behavior of WA RAR when multiple hypothetically well-fitting and/or

poorly-fitting CRDs were considered within the same set. Specifically, four sets were evaluated:

• Set 1: Truth, two hypothetically well-fitting CRDs, and one hypothetically poorly-fitting

CRD,

• Set 2: Truth, one hypothetically well-fitting CRD, and two hypothetically poorly-fitting

CRDs,

• Set 3: Truth and three hypothetically poorly-fitting CRDs, and,

• Set 4: One hypothetically well-fitting CRD and two hypothetically poorly-fitting CRDs (i.e.,

no truth),

where CRDs were hypothesized to fit the simulated response data well or poorly based on the

symmetrical or skewed nature of the CRD in relation to the shape of the true distribution of the

simulated response data. Because the truth was included in Sets 1-3, it was hypothesized to be the

most heavily-weighted, and, thus, best-fitting CRD in these three sets.

Table 3.1: Candidate response distributions within each simulation set when treatment-specific
response data were simulated to follow the normal (N), gamma (G), X2U, and NM distribu-
tions.

CRDs Set 1 Set 2 Set 3 Set 4
Symmetrical:
Normal N∗ G N∗ G N∗ G G X2U NM∗

Laplace N N G G N∗ G X2U NM
Logistic N G

Skewed:
Gamma N G∗ N G∗ N G∗ N X2U∗ NM
Weibull G N G N N G∗ X2U∗ NM
Lognormal G N
∗Hypothesized to be best-fitting CRD(s) within set for response distribution indicated
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Table 3.1 details which of the six CRDs falls into each set according to the true response

distribution being simulated. Of particular interest was Set 4, designed to illustrate the behavior of

WA randomization when the true response distribution was not considered among the candidates.

In these scenarios, the best-fitting CRD was hypothesized to be the CRD that most closely matches

the known shape of the simulated response data. Best-performing CRDs were indicated in Table

3.1 with an asterisk. Where Sets 1-3 considered scenarios where response data followed only the

exponential families of the normal and gamma distributions, Set 4 was also applied to the more

complex mixture distributions of X2U and NM. These scenarios were included because the RAR

ratio would very likely be misspecified if response data followed distributions such as these in

practice. Such distributions would be unlikely to be considered as candidates if employing the WA

approach. Thus, Set 4 represents weighted-averaging over a set of simpler CRDs may serve to

alleviate the likely misspecification of the RAR ratio that could occur in practice. Table 3.1 shows,

two symmetrical and two skewed CRDs were considered when response data were truly X2U- or

NM-distributed: the normal and Laplace (symmetrical) and the Weibull and gamma (skewed)

distributions. Because the X2U distribution is heavily right-skewed (Figure 2.2), it was anticipated

that either the gamma or Weibull distribution, or both, would out-weigh the symmetrical CRDs.

And, when response data followed bimodal NM distributions, it was hypothesized that the normal

distribution would be the most heavily-weight CRD.

Results from the lead-in analysis discussed in Section 2.2.1 were applied to these simulations

such that all CRDs began RAR after LPG=3 and RAR when response data were simulated to

follow the X2U and NM distributions, performed for comparison purposes, began after LPG=5

and LPG=7, respectively. Furthermore, two MOFs were used to develop the CRD-specific weights:

AIC [45] and the KS test statistic [48]. Finally, simulations were conducted for no treatment difference

(δ = 0.0) and a large treatment difference (δ = 0.8). Small and moderate effect sizes were omitted
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from the present simulation study based on the results observed in Chapter 2.

3.3 Randomization Results

All curves were loess-smoothed using a bandwidth of 0.2. As illustrated in plot B of both Figures 3.2

and 3.3, the KS test statistic poorly distinguished between CRDs, indicated by mean distributional

weights falling within two- and four-thousandths, respectively, of equal weighting (grey horizontal

line at 1/K). Therefore, randomization results with respect to AIC-weighting are discussed in this

section.

3.3.1 Absence of Treatment Difference

When treatment-specific response data were simulated to follow the normal distribution in the

absence of a treatment difference, randomization proceeded as expected for CRD sets containing

normality (Sets 1-3). That is, ρ̂WA, as well as each CRD-specific mean RAR ratio, approximated

ρd = 0.5 (Figure 3.4), and the true response distribution, normality (green curve), was most heavily-

weighted across CRD sets (Figure 3.5). The mean distributional weight for the true response

distribution, ŵT , went to one (i.e., ŵT → 1) almost immediately following the lead-in period for

CRD Set 2 (plot B). This suggests that, in addition to the skewed gamma (blue curve) and Weibull

(red curve) distributions, the Laplace distribution (purple curve) does not fit normally-distributed

response data well either, despite its symmetry. Further evidence to this point is provided in plot

A (CRD Set 1), where the mean distributional weight for the Laplace CRD, ŵLa, went to zero,

ŵT → 0. When all non-truth CRDs were skewed (plot C, CRD Set 3), the mean distributional

weight for the Weibull CRD, ŵW , went to zero (i.e., ŵW → 0) while the mean distributional weights

for the gamma and lognormal CRDs, ŵG and ŵlogN , respectively, approximated equal weighting at

1/K. Finally, all CRDs and WA (black curve) RAR upheld the ethical objective of RAR to within

0.3% (Figure 3.6), despite the %O-E for the Weibull CRD increasing as the number of participants
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Figure 3.2: Mean of RAR ratios with 95% CI (A), mean of KS-based distributional weights
(B), and percent-difference between the observed and expected ethical objective function (C)
over 1,000 simulated trials when treatment-specific participant response data were normally-
distributed and reflected a large treatment difference, and CRDs were the normal, gamma,
Weibull, and Laplace distributions (i.e., CRD Set 2).
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Figure 3.3: Mean of RAR ratios with 95% CI (A), mean of KS-based distributional weights
(B), and percent-difference between the observed and expected ethical objective function (C)
over 1,000 simulated trials when treatment-specific participant response data were simulated
to follow the gamma distribution and reflected a large treatment difference, and CRDs were
the normal, gamma, Weibull, and Laplace distributions (i.e., CRD Set 2).
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Figure 3.4: Mean of CRD-specific and WA RAR ratios with 95% CI over 1,000 simulated
trials when treatment-specific participant responses were normally-distributed and reflected
no treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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Figure 3.5: Mean of AIC-estimated distributional weights from 1,000 simulated trials when
treatment-specific participant responses were normally-distributed and reflected no treatment
difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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Figure 3.6: Percent-difference between the observed and expected ethical objective func-
tion from 1,000 simulated trials when treatment-specific participant responses were normally-
distributed and reflected no treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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enrolled into the trial increased.

When treatment-specific response data were simulated to follow the gamma distributions in

the absence of a treatment difference, neither ρ̂WA nor any of the CRD-specific mean RAR ratios

deviated from ρd = 0.5 for any of the 200 participants enrolled into the trial (Figure 3.7). Further-

more, across CRD sets, the gamma distribution (green curve) was consistently weighted heaviest

(Figure 3.8), as anticipated. The two skewed CRDs, Weibull (red curve) and lognormal (purple

curve), fit the gamma-distributed response data equally well and better than the symmetrical nor-

mal distribution (blue curve) for CRD Set 1 (plot A). Maintaining this trend, the skewed Weibull

distribution better-fit the skewed gamma-distributed response data than the symmetrical CRDs

of normality and the Laplace distribution (purple curve) (plot B, CRD Set 2). Finally, when all

non-truth CRDs were symmetrical, weights quickly went to zero following the lead-in period, while

ŵT → 1 (plot C, CRD Set 3).

Table 3.2: Assessment of type I error for normal or gamma response data
for Sets 1-3 using t-test based on observed mean response from first 100 trial
participants enrolled when no treatment difference existed (δ = 0.0) across
1,000 simulated trials.

Truth Set Treatment Mean Control Mean t p-value

Normal 1 100.14 100.12 0.396 0.6925
2 100.10 100.15 -0.977 0.3288
3 100.09 100.13 -0.774 0.4393

Gamma 1 10.11 10.10 0.052 0.9584
2 10.10 10.09 0.449 0.6537
3 10.15 10.09 1.519 0.1290

As indicated by ŵLa → 0 in plot B and both the mean distributional weight for the logistic

CRD, ŵlo, and ŵLa going to zero in plot C of Figure 3.8, the WA RAR was not heavily influenced

by the Laplace or logistic CRDs, especially after the 50th trial participant was enrolled. Therefore,

without loss of generality, %O-E for the Laplace CRD alone and both the Laplace and logistic CRDs

were omitted from plots B and C, respectively, of Figure 3.9 due to lack of interpretability. Across
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Figure 3.7: Mean of CRD-specific and WA RAR ratios with 95% CI over 1,000 simulated trials
when treatment-specific participant responses were simulated to follow gamma distributions
reflecting no treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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Figure 3.8: Mean of AIC-estimated distributional weights from 1,000 simulated trials when
treatment-specific participant responses were simulated to follow gamma distributions reflect-
ing no treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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Figure 3.9: Percent-difference between the observed and expected ethical objective function
from 1,000 simulated trials when treatment-specific participant responses were simulated to
follow gamma distributions reflecting no treatment difference using CRD Sets 1 (A), 2 (B),
and 3 (C).

61



CRD sets, %O-E never exceeded 1.75, suggesting that all of the CRD-specific and WA (black curve)

RAR ratios successfully adhered to the ethical objective of minimizing the mean response value of

the trial. Finally, no type I errors were committed in the scenarios assessed, as evidenced by Table

3.2.

3.3.2 Large Treatment Difference

When treatment-specific response data were simulated to follow normal distributions reflecting a

large treatment difference, WA RAR (Figure 3.10, black curve) favored the RAR ratio estimated

assuming normality (Figures 3.10 and Figure 3.11, green curve), regardless of the set of CRDs

considered. All other distributional weighting trends observed in Figure 3.11 were identical to

those observed in Figure 3.5. As well, all CRDs randomized participants similarly, regardless of

CRD set, and all mean RAR ratios, both CRD-specific and WA-estimated, nearly converged to

ρd (Figure 3.10). Finally, all of the CRD-specific RAR ratios as well as the WA method of RAR

adhered to the ethical objective of the trial (Figure 3.12). During the lead-in period, all %O-E were

less than or equal to three, then fell to and remained below 0.5%. Though a small difference, the

%O-E for the Weibull CRD shows a pattern dissimilar to the %O-E for other CRDs and for WA

RAR (plots B and C), mirroring the results presented in plots B and C of Figure 3.6.

When treatment-specific response data were simulated to follow gamma distributions reflecting

a large treatment difference, each CRD, as well as WA RAR (black curve), randomized trial par-

ticipants similarly (plots B and C) or nearly identically (plot A), depending on the set of CRDs

considered (Figure 3.13). All mean RAR ratios converged to approximately ρd + 0.05 and over-

randomized to the treatment group for all trial participants following the lead-in period, with one

exception: when all non-truth CRDs were symmetrical (plot C, CRD Set 3), ρ̂La (purple curve)

achieved and maintained ρd (grey horizontal line) from the 50th participant onward. However, as

illustrated by plot C in Figure 3.14, ŵT → 1 (green curve) while all other weights, including the
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Figure 3.10: Mean of CRD-specific and WA RAR ratios with 95% CI over 1,000 simulated
trials when treatment-specific participant responses were normally-distributed and reflected a
large treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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Figure 3.11: Mean of AIC-estimated distributional weights from 1,000 simulated trials when
treatment-specific participant responses were normally-distributed and reflected a large treat-
ment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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Figure 3.12: Percent-difference between the observed and expected ethical objective func-
tion from 1,000 simulated trials when treatment-specific participant responses were normally-
distributed and reflected a large treatment difference using CRD Sets 1 (A), 2 (B), and 3
(C).
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Figure 3.13: Mean of CRD-specific and WA RAR ratios with 95% CI over 1,000 simulated trials
when treatment-specific participant responses were simulated to follow gamma distributions
reflecting a large treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).

66



Figure 3.14: Mean of AIC-estimated distributional weights from 1,000 simulated trials when
treatment-specific participant responses were simulated to follow gamma distributions reflect-
ing a large treatment difference using CRD Sets 1 (A), 2 (B), and 3 (C).
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ŵLa, went to zero. Therefore, despite the Laplace-specific RAR ratio’s ability to randomize par-

ticipants as intended by the trial design in this particular setting, it had negligible influence over

the WA RAR ratio used to enroll participants into the trial. The remaining distributional weight

patterns gleaned in Figure 3.14 were nearly identical to those displayed in the baseline scenario

(Figure 3.8).

Laplace RAR produced substantial deviation from the intended ethical objective function when

included in the CRD set (Figure 3.15, plots B and C), stabilizing between a 7.5-9% discrepancy.

Similarly, RAR assuming the logistic distribution stabilized around a 4.5% deviation between the

observed and intended ethical objective function (plot C, red curve). Echoing the baseline scenario

(Figure 3.9), since ŵLa and ŵlo went to zero, the %O-E results for the Laplace and logistic CRDs

were not considered in the interpretation of these results, though they were maintained on plots

B and C since their inclusion does not compromise or alter the presentation of the meaningful

%O-E results. With this, Figure 3.15 illustrates that %O-E was less than 15 for all CRDs, as well

as for the WA method, during the lead-in period. Subsequently, this deviation diminished to and

remained below 1.75%, consistent with the results obtained from the baseline scenario. Therefrom,

all estimated RAR ratios fulfilled the ethical objective of the trial.

3.3.3 Truth Removed from Candidacy

Of particular emphasis was the behavior of WA RAR when the true response distribution was

not considered within the set of candidates (i.e., Set 4). In the previously-discussed results, the

true response distribution was the CRD favored during randomization. This allowed for straight-

forward results dissemination: overall, CRD-specific RAR and WA RAR behaved similarly and

distributional weights identified the true response distribution as the best-fit CRD. When the true

response distribution was removed from candidacy, however, randomization results were more com-

plex, requiring more careful visualizations. The plots of the mean RAR ratios were divided into and
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Figure 3.15: Percent-difference between the observed and expected ethical objective function
from 1,000 simulated trials when treatment-specific participant responses were simulated to
follow gamma distributions reflecting a large treatment difference using CRD Sets 1 (A), 2
(B), and 3 (C).
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presented using two figures: a plot representing ρ̂WA with respect to the hypothetically-unknown

ρ̂T and ρd (designated plot A-I), and a plot displaying RAR assuming each of the CRDs (designated

plot A-II).

When group-specific response data were simulated to follow normal distributions reflecting

a large treatment difference and the set of CRDs contained the gamma, Weibull, and Laplace

distributions,the resulting WA RAR ratio (dashed green curve) favored normality despite it not

being considered among the candidates (Figure 3.16, plot A-I). Moreover, ρ̂WA ≈ ρd (grey horizontal

line) for the final 100 participants enrolled into the trial. Though all CRDs randomized similarly

(plot A-II), ŵG → 1 while ŵW and ŵLa went to zero, suggesting that the gamma CRD, versus the

hypothesized Laplace CRD, best-fit the normally-distributed response data. Finally, the ethical

objective of RAR was upheld, where, following the lead-in period, %O-E was less than one-half

percent for all RAR ratios (plot C).

When treatment-specific response data were simulated to follow gamma distributions reflecting

a large treatment difference, the WA RAR ratio (black solid curve, plot A-I, Figure 3.17), obtained

from the skewed Weibull (red curve, plot A-II) and symmetrical normal (blue curve, plot A-II) and

Laplace distribution (purple curve, plot A-II) RAR ratios as weighted by AIC, closely mirrored RAR

conducted assuming the true gamma distribution (dashed green curve, plot A-I). As anticipated,

versus the symmetrical normal or Laplace CRDs, the WA RAR ratio was driven by the fit of the

skewed Weibull CRD to the skewed gamma-distributed response data, demonstrated in plot B

where ŵW → 1 and both the mean distributional weight for the normal CRD, ŵN , and ŵLa went

to zero following the lead-in period. Similar to the scenarios where the gamma distribution was

included within the set of CRDs (Figures 3.9 and 3.15), each of the CRD-specific and WA RAR

ratios adhere to the ethical objective of the trial with the exception of the uninterpretable Laplace

CRD (plot C).
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Figure 3.16: Comparison of mean WA RAR ratio against mean true response distribution
(non-candidate) RAR ratio (95% CIs) (A-I), mean RAR ratios (95% CIs) for each CRD (A-
II), mean of AIC-based distributional weights (B), and percent-difference between the observed
and expected ethical objective function (C) over 1,000 simulated trials when treatment-specific
participant responses were simulated to follow normal distributions reflecting a large treatment
difference, and CRDs were the gamma, Weibull, and Laplace distributions (i.e., CRD Set 4).
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Figure 3.16, cont’d.
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Figure 3.17: Comparison of mean WA RAR ratio against mean true response distribution
(non-candidate) RAR ratio (95% CIs) (A-I), mean RAR ratios (95% CIs) for each CRD (A-
II), mean of AIC-based distributional weights (B), and percent-difference between the observed
and expected ethical objective function (C) over 1,000 simulated trials when treatment-specific
participant responses were simulated to follow gamma distributions reflecting a large treatment
difference, and CRDs were the normal, Weibull, and Laplace distributions (i.e., CRD Set 4).
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Figure 3.17, cont’d.
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Figure 3.18: Comparison of mean WA RAR ratio against mean true response distribution
(non-candidate) RAR ratio (95% CIs) (A-I), mean RAR ratios (95% CIs) for each CRD (A-
II), mean of AIC-based distributional weights (B), and percent-difference between the observed
and expected ethical objective function (C) over 1,000 simulated trials when treatment-specific
participant responses were simulated to follow X2U distributions reflecting a large treatment
difference, and CRDs were the normal, gamma, Weibull, and Laplace distributions (i.e., CRD
Set 4).
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Figure 3.18, cont’d.
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When treatment-specific response data were simulated to follow X2U distributions reflecting

a large treatment difference, the WA RAR ratio (black solid curve, plot A-I, Figure 3.18) close-

ly recreated X2U RAR (green dashed line, plot A-I) by averaging over AIC-weighted RAR ratios

assuming the skewed gamma (blue curve, plot A-II) and Weibull (red curve, plot A-II) and symmet-

rical normal (gold curve, plot A-II) and Laplace (purple curve, plot A-II) CRDs. The MLEs for the

Weibull and Laplace CRDs produce estimated moments dissimilar to those of the X2U-distributed

response data, as evidenced by ρ̂W ∈ (0.80, 0.85) and ρ̂La → 0.9 in plot A-II. With this, ŵW and

ŵLa → 0, the latter doing so immediately following the lead-in period, suggesting that the Weibull

and Laplace CRDs poorly-fit the X2U-distributed response data (plot B). As well, following the

lead-in period until the 25th trial participant was enrolled, the normal distribution best-fit the X2U

response data; following the 25th trial participant, however, ŵG → 1, as anticipated. Finally, %O-E

for each of the CRD-specific and WA RAR ratios converged to less than five percent deviation,

though the X2U RAR converged slowest (plot C).

When treatment-specific response data were simulated to follow NM distributions reflecting a

large treatment difference, ρ̂WA (black curve) successfully approximated ρ̂T (green dashed line)

(plot A-I, Figure 3.19). And, as anticipated, the symmetrical normal CRD (gold curve) fit the

bimodal NM response distribution better than the symmetrical Laplace (purple curve) or skewed

gamma (blue curve) or Weibull (red curve) CRDs, indicated by ŵN → 1 and all other distributional

weights going to zero immediately following the lead-in period (plot B). Finally, all RAR ratios

adhered to the ethical objective of the trial (plot C).

3.4 Discussion

Weighted-average RAR performed well in a number of respects. First, the true response distribution

was consistently identified as the best-fit CRD when included in the set of CRDs, and more poorly-

fitting CRDs were given less weight, comprising less of the resulting RAR ratio. The latter was
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Figure 3.19: Comparison of mean WA RAR ratio against mean true response distribution
(non-candidate) RAR ratio (95% CIs) (A-I), mean RAR ratios (95% CIs) for each CRD (A-
II), mean of AIC-based distributional weights (B), and percent-difference between the observed
and expected ethical objective function (C) over 1,000 simulated trials when treatment-specific
participant responses were simulated to follow NM distributions reflecting a large treatment
difference, and CRDs were the normal, gamma, Weibull, and Laplace distributions (i.e., CRD
Set 4).
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Figure 3.19, cont’d.
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demonstrated by the scenario in which response data followed skewed gamma or X2U distributions

and the symmetrical Laplace and logistic distributions were considered in the set of CRDs. These

CRDs produced misspecified RAR ratios as demonstrated by their respective %O-E being markedly

larger than that of the other methods of RAR. Consequently, the distributional weights for these

CRDs appropriately went to zero. Furthermore, when the truth was removed from the CRD set, WA

RAR closely approximated RAR assuming the true response distribution, despite the truth being

unknown in the methodology. Thus, the WA approach successfully incorporated distributional

uncertainty into the RAR process to produce a RAR ratio that was both ethical and powerful. [7,42]

Ideal randomization notwithstanding, additional considerations are advised if using this frame-

work. For example, the scale of the response data needs to be taken into account when selecting

CRDs. Overall, the skewed-versus-symmetrical paradigm of CRD selection produced expected

results for unimodal response distributions, meaning that symmetrical CRDs tended to produce

heavier weights than skewed CRDs when the observed response data was symmetrical, and vice

versa. However, the limiting distribution of a gamma random variable is normality. [24] As such, for

symmetrical response data with larger means, as in the normal response data derived in these sim-

ulations, the gamma distribution outweighed the symmetrical candidates. Another consideration

of this design is the MOF used to produce the distributional weights. Demonstrated by Figures 3.2

and 3.3, weighting based on the KS test statistic failed to markedly discriminate between distri-

butional fits to the observed response data, while AIC did so effectively, showing variability RAR

contingent upon the MOF used.

The X2U and NM scenarios were included because they most closely mimicked reality: the

true response distribution is complex and, thereby, unlikely to be considered in the set of CRDs.

When responses followed X2U distributions, though WA RAR mimicked X2U RAR, the ratios

themselves were considerably larger than those produced for the other response distributions, i.e.,
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normal, gamma, and NM. This may suggest that the optimal RAR procedure described in Section

1.3 may not be the most appropriate method of randomization for heavily-skewed response data.

Moreover, the normal CRD was most heavily-weighted until the 25th trial participant, as well as in

scenarios where response data were bimodal, suggesting that RAR under the common normality

assumption is innately robust against distributional misspecification, particularly in small samples,

and is, therefore, the recommended RAR ratio, overall. If choosing to perform RAR using the WA

method, however, selecting one or two symmetrical and skewed CRDs will result in a RAR ratio

that can mimic randomization under the true response distribution, even when response data are

distributionally complex and the true distribution is unknown, thereby accounting for distributional

misspecification.
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Chapter 4

Robust Randomization of Survival Response Data

4.1 Optimal RAR for Survival Data

Many RCTs use survival outcomes to measure treatment effectiveness and safety, though little

research and application has been conducted in RAR using such outcomes. [25,51,52] Examples of

survival response data include time-to-cancer progression in oncology or time-to-graft failure in

transplantation. [51] Censoring is a distinguishing characteristic of RCTs with survival outcomes.

This occurs when incomplete information regarding survival times exists for some trial participants.

Specifically, right-censoring would occur if a participant left the trial before trial completion in such

a way that the outcome was not observed and they were lost-to-follow-up. Therefore, RCTs using

RAR with right-censored survival outcomes can only rely upon the survival history of patients for

whom response data is available. [25] In the subset of RCTs with survival outcomes where recruitment

lasts long enough to where some patient outcomes may be observed before all patients have been

randomized into the trial, the optimal RAR method can be applied. [25]

Optimal RAR designs for survival outcomes have been developed in the context of interim

analyses, multi-arm, and group-sequential RCTs. [51,52,54] These designs are based on the Zhang

and Rosenberger (ZR) RAR design as it is convention given its simplicity and its ability to fit

neatly into the template proposed by Hu and Rosenberger. [25,53] In this framework, optimality,
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variability, and power are considered essential components of the valid RAR process. [25,53]

In the present work, the ZR RAR design with the importance criterion of minimizing the total

expected hazard of the trial was employed, versus ZR RAR designs targeting alternative importance

criteria. In this framework, survival times were assumed to be parametrically-distributed, following

either the exponential and Weibull distributions, where designs developed under the assumption of

the Weibull distribution were also applicable to other log-location-scale families. [25] Derivations of

the exponential and Weibull ZR RAR ratios are discussed in the following sections.

4.1.1 Optimal ZR RAR for Survival Times Following the Exponential Distribution

Survival times can be approximated by the exponential distribution in many RCTs, leading to

straightforward, closed-form theoretical results. [25] Suppose survival time Y follows an exponential

distribution with parameter θ, i.e., Y ∼ Exp(θ).i It, then, has the density and survival function

respectively given by:

fY (y) = exp(−y/θ)/θ, and, (4.1)

S(y) = exp(−y/θ), (4.2)

for θ > 0 and y > 0, else fY (y) = 0. Under this parameterization, Y has the constant hazard rate

of 1/θ, where θ is the mean survival time.

To derive the optimal RAR ratio, censoring must be incorporated in the modeling of the survival

times. Therefore, suppose that patients have survival times following the exponential distribution

as previously described, but which are also subject to an independent right-censoring scheme. Let

(yi, εi), i = 1, · · · , n, be a random sample from such a distribution, where, for the ith patient, εi = 1

iThe y versus t notation representing survival times introduced in Chapter 2 is maintained throughout the present
chapter, as well.
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when yi is the survival time and εi = 0 when yi is the censor time. Then, the likelihood of θ is:

`(θ|y, ε) =
n∏
i=1

{
1

θ
exp

(
− yi
θ

)}εi
exp

(
− yi
θ

)1−εi

=
n∏
i=1

θ−εiexp(−yi/θ), (4.3)

and the loglikelihood is given by:

log{`(θ|y, ε)} = −log(θ)r − 1

θ
y, (4.4)

where r =
∑n

i=1 εi is the cumulative number of events and y =
∑n

i=1 yi is the sum of the observed

survival times, such that

d

dθ
log{`(θ|y, ε)} = −r

θ
+

y

θ2
. (4.5)

Solving d
dθ log{`(θ|y, ε)} = 0 gives the MLE of θ as θ̂ = y/r. As well, the Fisher information for θ,

i.e., I(θ), is given by:

I(θ) = −E
[
d2

dθ2
log{`(θ|y, ε)}

]
= −E(r)

θ2
+

2E(y)

θ3
.

Since the sum of n exponential random variables having parameter θ is a gamma random variable

with shape parameter n and scale parameter θ, in the absence of censoring, y ∼ Gamma(n, 1/θ).

When there is censoring, however, y ∼ Gamma(r, 1/θ) and E(y) can be approximated by θE(r).

Thus,

I(θ) = E(r)/θ2, (4.6)

and the approximate variance of θ̂ is:

V ar(θ̂) = 1/I(θ) = θ2/E(r). (4.7)
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Response-adaptive randomization is based upon the comparison of the parameters θT and θC ,

corresponding to mean survival times for treatment groups T and C, respectively. To derive the

optimal RAR ratio, consider two independent samples {(ygi, εgi); g ∈ {T,C}; i = 1, · · · , n}, and

assume that ξg = E(εgi) is the same for all i = 1, · · · , ng. Then E(rg) = ngE(εg1) = ngξg. With

this, the optimization process described in Appendix A.5 can be invoked to solve the following

optimization problem to minimize the total expected hazard:

min
nT /nC

{
nT
θT

+
nC
θC

}
(4.8)

subject to:

θ2
T

nT ξT
+

θ2
C

nCξC
= V, (4.9)

to which the solution is:

nT
nC

=
θ

3/2
T ξ

1/2
C

θ
3/2
C ξ

1/2
T

, (4.10)

resulting in the ZR allocation rule given by:

ρE =

√
θ3
T ξC√

θ3
T ξC +

√
θ3
CξT

(4.11)

for survival outcome data with exponentially-distributed survival times. As described in Chapter

1, the parameters used to construct the RAR ratio are supplanted with its corresponding MLE

estimated from the response data obtained from patients who have already completed the trial.

With this, the probability of enrolling patient i + 1 into the treatment group using optimal RAR

is given by:

ρ̂T ;i+1 =

√
θ̂3
T iξ̂Ci√

θ̂3
T iξ̂Ci +

√
θ̂3
Ciξ̂T i

. (4.12)
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4.1.1.1 Exponential Censoring Scheme

Zhang and Rosenberger employed a censoring scheme first introduced by Rosenberger and Seshaiy-

er and later expanded by Liu and Coad. [15,25,54] Given a fixed recruitment period R and trial

duration D, patient arrival times were assumed to follow an independent uniform distribution on

[0, R], i.e., U [0, R], while, independently, patients were subject to a censor time X that followed

a U [0, D] distribution. For a patient randomized to group g (g ∈ {T,C}) having a survival time

Yg following an exponential distribution with parameter θg, let the observed survival outcome be

Qg = min(Yg, X,D − R). Further, define Wg = 1 if Qg = Yg, otherwise Wg = 0. Then, the

probability of an event is:

ξg = E(Wg)

= P (Wg = 1)

= 1− θg
D

+ exp

(
− D

θg

)
θg
DR

{
exp

(
R

θg

)
(2θg −R)− 2θg

}
, (4.13)

the complement of which provides the probability of censoring, denoted ηg, i.e., ηg = 1−ξg. Details

pertaining to the derivation of ξg can be found in the Supplementary Materials of Liu and Coad. [54]

With ξg, the exponential ZR RAR ratio of (4.11) can be obtained. Then, estimation of ξg for

the ZR RAR estimator of (4.12) was obtained using the MLE θ̂gi and the arrival time for patient

i enrolled into group g, denoted Agi. With this, the probability of an event for patient i enrolled

into group g is given by:

ξ̂gi = 1− θ̂gi
D

+ exp

(
− D

θ̂gi

)
θ̂gi
DAgi

{
exp

(
Agi

θ̂gi

)
(2θ̂gi −Agi)− 2θ̂gi

}
. (4.14)
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4.1.2 Optimal ZR RAR for Survival Times Following the Weibull Distribution

Exponential survival times assume a constant hazard, which may be unrealistic in practice. [31,32,51,54]

Other, more flexible, distributions that can account for changing hazards over time may be used

for modeling survival times more accurately. One such distribution is the Weibull distribution, a

log-location-scale family distribution.

Suppose survival time Y follows a Weibull distribution with shape parameter α and scale pa-

rameter β having the density:

fY (y) =
α

β
yα−1exp

(
− yα

β

)
, (4.15)

for α, β > 0 and y > 0, else fY (y) = 0. Then log(Y ) has an extreme value distribution (EVD) with

shape parameter m = log(β) and scale parameter k = 1/α. In this case, where the observed group-

specific survival outcome is Qg = min(Yg, X,D − R), let Sg = log(Qg). Consider the independent

random sample (si, εi), i = 1, · · · , n, where si represents the survival time for patient i when εi = 1

and the censor time when εi = 0. Then, the likelihood function of m and k is:

`(m, k|s, ε) =

n∏
i=1

[
1

k
exp

(
si −m
k

)
exp

{
− exp

(
si −m
k

)}]εi
exp

{
− exp

(
si −m
k

)}1−εi
, (4.16)

and the loglikelihood function is:

log{`(m, k|s, ε)} = −rlog(k) +

n∑
i=1

{εizi − exp(zi)}, (4.17)

where r =
∑n

i=1 εi, as defined previously, and zi = (si −m)/k, following the standard EVD, i.e.,

Z ∼ EVD(0, 1), with density fZ(z) = ezexp(−ez). The MLEs can be obtained numerically by
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solving:

∂

∂m
log{`(m, k|s, ε)} = −1

k

n∑
i=1

{εi − exp(zi)} = 0, and, (4.18)

∂

∂k
log{`(m, k|s, ε)} = − r

k
− 1

k

n∑
i=1

{εi − exp(zi)}zi = 0. (4.19)

The approximate variance of the MLE for m, m̂, which corresponds to the Weibull scale parameter

β, is V ar(m̂) = k2G/n, where

G =
ξi + E(z2

i exp(zi))

ξ2
i + ξiE(z2

i exp(zi))− E(ziexp(zi))2
. (4.20)

Estimation of the probability of an event, ξ, is far more intricate in the case of survival times

following the Weibull versus the exponential distribution. [25,54] Therefore, Zhang and Rosenberger

and others suggest using the simple nonparametric estimator of the group-specific mean number of

events for construction of the RAR ratio.

Allow the average hazard to be expressed as the reciprocal of the mean survival time as in

the exponential case, i.e., 1/E(S), where E(S) = emΓ(1 + k), where Γ(x) represents the gamma

function such that Γ(x) = (x−1)! when x is an integer. Then, the ZR RAR ratio can be constructed

based upon the comparison of treatment groups with respect to their average hazards. Consider

two independent censored random samples from the previously-described survival distribution,

{(sgi, εgi); g ∈ {T,C}; i = 1, · · · , ng}. Then the optimization problem to minimize the total

expected hazard is given by:

min
nT /nC

{
nT

exp(mT )Γ(1 + kT )
+

nC
exp(mC)Γ(1 + kC)

}
(4.21)

subject to:

k2
TGT
nT

+
k2
CGC
nC

= V, (4.22)
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resulting in the ZR RAR ratio given by:

ρW =

kT
√
GT

[
exp(−mC)/Γ(1 + kC)

]1/2

kT
√
GT

[
exp(−mC)/Γ(1 + kC)

]1/2

+ kC
√
GC

[
exp(−mT )/Γ(1 + kT )

]1/2
(4.23)

for survival response data having survival times that follow the Weibull distribution. With this, the

probability of response-adaptively allocating patient i+ 1 to the treatment group based on survival

response obtained from patients one to i is:

ρ̂T ;i+1 =

k̂Ti
√
ĜT i

[
exp(−m̂Ci)/Γ(1 + k̂Ci)

]1/2

k̂T i
√
ĜT i

[
exp(−m̂Ci)/Γ(1 + k̂Ci)

]1/2

+ k̂Ci
√
ĜCi

[
exp(−m̂T i)/Γ(1 + k̂T i)

]1/2
. (4.24)

4.2 Motivation: Limitations of the Conventional ZR Approach

When RAR is performed using the ZR RAR ratio provided in (4.12) and observed survival times

do, in fact, follow the exponential distribution, then the RAR ratio is said to be correctly-specified.

The same is true of observed survival times following the Weibull distribution undergoing RAR

using the ZR RAR ratio provided in (4.24).

Correctly-specified ZR RAR is illustrated in Figure 4.1. Here, 1,000 patients are response-

adaptively randomized into a simulated RCT where patients survival times followed either the

exponential or Weibull distribution, where 20% of patient responses were censored. Response-

adaptive randomization was performed using the corresponding ZR RAR provided in either (4.12)

or (4.24). Each simulated RCT was replicated 1,000 times, and the resulting 1,000 ZR RAR

ratios for each of the 1,000 patients were averaged to create a single mean observed ZR RAR for

that patient. Correctly-specified ZR RAR was evaluated for two effects sizes based on the hazard

ratio (HR) between treatment groups: the null effect size (HR = 1.0) and the large effect size

(HR = 1.5). For a null effect size, the expected RAR ratio was 0.5; and for a large effect size, the

expected RAR ratios were 0.662 and 0.700 when treatment-specific survival times were simulated
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Figure 4.1: Mean of ZR RAR ratios with 95% CI with correctly-specified sur-
vival times for null and large treatment differences.

to follow the exponential and Weibull distributions, respectively. Specific details pertaining to

simulation construction and data generation, including the parameter values used to target each

effect size, are provided later in this chapter. As evidenced by Figure 4.1, when survival times

are correctly-specified, regardless of effect size or response distribution, RAR performed using the

correct ZR RAR ratio produced randomization results matching those intended by the trial design.

Figure 4.2 indicates how well the ZR RAR ratio maintained the ethical objective of the trial

based on the simulated survival outcome response data. Per the ZR construct, the ethical objective

of interest is the minimization of the total expected hazard of the trial. Details pertaining to the

estimation of the observed and expected objective functions are discussed later in this chapter, but

percent-differences closer to zero indicate that randomization is adhering to the ethical design of the

trial, as intended by the trial design. When correctly-specified, ZR RAR appeared to adequately

minimize the total expected hazard of the trial in all cases with percent-differences near zero, though

some deviation (approximately 10%) was observed when survival times followed the exponential
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Figure 4.2: Percent-difference between the observed and expected ethical ob-
jective function of correctly-specified survival times for null and large treatment
differences using ZR RAR.

distribution and a large treatment effect was observed (Figure 4.2).

Although ZR remains the convention for RAR designs for RCTs with survival outcomes, two

flaws to the ZR RAR design were identified in the present work. First, the ZR RAR approach

relies upon the parametric specification of survival times. Clinical data rarely follow a prescribed

distribution. [55] Thus, imposing a parametric definition in practice may induce misspecification

error, leading to bias in the RAR ratio, exemplified when survival times are assumed to follow

the exponential distribution yet observed patient survival times follow another distribution, e.g.,

Weibull, or are nonparametric. Second, the ZR RAR allocation rules for parametrically-distributed

survival outcomes given in 4.12 and 4.24 can be expressed using the group-specific hazard, defined

as the reciprocal of the distribution-specific mean, and the group-specific SDs of the distribution-

specific scale parameter. Selecting the SD of the distribution-specific scale parameter as a proxy

measure of the variability of the hazard may result in randomization results drastically different
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from those intended irrespective of whether or not survival times are correctly specified.

Figure 4.3: Mean of ZR RAR ratios with 95% CI with misspecified survival
times for null and large treatment differences.

Figure 4.4: Percent-difference between the observed and expected ethical ob-
jective function of misspecified survival times for null and large treatment dif-
ferences using ZR RAR.
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Figure 4.3 demonstrates the effects of misspecification on the ZR RAR ratio. Simulated trials

were designed as described previously except misspecification was induced. That is, patient survival

times simulated to follow the exponential distribution were randomized using the ZR RAR for sur-

vival times assumed to follow the Weibull distribution provided in (4.24). Likewise, survival times

simulated to follow the Weibull distribution were randomized assuming an exponential distribution

as in (4.12). When no treatment difference existed between groups, randomization remained equal.

However, in the presence of a large treatment difference, misspecified ZR RAR ratios for survival

times following both the exponential and Weibull distributions under-randomized patients to the

treatment group, converging at 0.582 (vs. 0.662) and 0.668 (vs. 0.700), respectively. Furthermore,

the misspecified ZR RAR ratio did not adhere to the ethical objective of the trial (Figure 4.4) as well

as when it was correctly-specified (Figure 4.2), as evidenced by the approximately 10% difference

in the observed versus expected objective function for nearly all scenarios when misspecified.

Misspecification of the ZR RAR ratio may lead to randomization characteristics different from

those intended by the trial design. Thus, the two potential drivers of misspecification of the ZR

RAR described previously motivated the development of a RAR ratio that (i) does not rely upon the

parametric definition of survival times and (ii) obtains measures of the hazards and the variability

thereof directly, as opposed to using proxy measures.

4.3 Optimal RAR Based on the Cumulative Hazard

The aim of the present chapter was to construct a RAR ratio for survival data based on the cumu-

lative hazard such that survival times need not adhere to any specific parametric assumption and

the measure of the variance of the hazard can be estimated directly. This cumulative hazard-based

RAR ratio, denoted H-RAR, is constructed using the group-specific cumulative hazard estimated

at time ω, denoted Hg(ω), and the variance thereof, denoted V ar(Hg(ω)). With this, adhering to

the optimal RAR framework constructed by ZR as explained in Appendix A.5, the H-RAR method
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of optimal randomization sought to minimize the total cumulative hazard of the trial at a given

time y via the objective function:

min
nT /nC

{
nT HT (ω) + nC HC(ω)

}
, (4.25)

subject to the variance constraint imposed by:

V ar(HT (ω))

nT
+
V ar(HC(ω))

nC
= V. (4.26)

Taking SD(Hg(ω)) = V ar(Hg(ω))1/2, the following allocation rule based on the cumulative hazard

is produced:

ρH =
SD(HC(ω)) HT (ω)1/2

SD(HC(ω)) HT (ω)1/2 + SD(HT (ω)) HC(ω)1/2
. (4.27)

With this, the probability of randomizing patient i + 1 to T based on information obtained from

the first i patients enrolled into the trial is:

ρH;i+1 =
SD(HCi(ω)) HT i(ω)1/2

SD(HCi(ω)) HT i(ω)1/2 + SD(HTi(ω)) HCi(ω)1/2
. (4.28)

Basing this RAR ratio on the cumulative hazard was done so that a parametric definition for

survival times was not required. However, this RAR ratio could be used in the case of survival

times being assumed to follow a specified parametric distribution. In this case, MLEs of the

distribution-specific parameters would be obtained and used to estimate the distribution-specific

Hgi(ω). The variance thereof may be obtained using the delta method. [24] Though the H-RAR is

applicable to either parametric or non-parametric survival times, it was of-interest not to assume

a parametric distribution in the present work. Therefore, Hgi(ω) and the variance thereof were

estimated empirically. It should be noted, however, that if a parametric assumption was made

for the survival times, and this assumption was correct, the resulting variance of the estimated

cumulative hazard would be equal to or smaller than the empirically-estimated value.
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Empirical estimation of the cumulative hazard and its variability can be obtained in many ways,

for example, by HEFT estimation or via transformation of the Kaplan-Meier survivor function. [34,39]

In the present chapter the Nelson-Aalen estimator was employed to demonstrate randomization

using H-RAR, selected for its simplicity versus other methods and its ability to produce an estimate

from a small number of events. [32] The Nelson-Aalen empirical estimator of the cumulative hazard

function, denoted HNA
gi (ω), and its variance, denoted V ar(HNA

gi (ω)) are given by:

HNA
gi (ω) =

∑
ygi≤ω

εgi
γgi

, and (4.29)

V ar(HNA
gi (ω)) =

∑
ygi≤ω

εgi
γ2
gi

, (4.30)

where εgi and γgi respectively represent the group-specific number of events having occurred and

the number of patients still at-risk among the first i patients enrolled into the trial until a specified

time ω. [32] Using these definitions of HNA
gi (ω) and V ar(HNA

gi (ω)), the variance constraint given in

(4.26) was modified slightly in order to maintain the ZR optimal RAR construct. That is, defining

v(HNA
gi (ω)) = ng × V ar(HNA

gi (ω)), then taking V = 1:

V ar(HNA
Ti (ω)) + V ar(HNA

Ci (ω)) = 1 (4.31)

⇔
v(HNA

Ti (ω))

nT
+
v(HNA

Ci (ω))

nC
= 1. (4.32)

Then, letting SD(HNA
gi (ω)) = v(HNA

gi (ω))1/2, the H-RAR ratio given in (4.28) is given as:

ρHNA;i+1 =
SD(HNA

Ci (ω)) HNA
Ti (ω)1/2

SD(HNA
Ci (ω)) HNA

Ti (ω)1/2 + SD(HNA
Ti (ω)) HNA

Ci (ω)1/2
. (4.33)

4.3.1 H-RAR Performance Assessment

Performance of the H-RAR was assessed by comparison to the ZR convention. This was done in

three ways. The first assessment compared the behavior of the H-RAR ratio against that of the

ZR RAR ratio when survival times were correctly-specified. In this case, ideally, trends in H-RAR
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and ZR RAR matched. Second, H-RAR was compared to ZR RAR when the ZR RAR ratio was

misspecified using the well-behaved and -understood exponential and Weibull distributions. Finally,

of-interest was the behavior of the H-RAR ratio compared to the conventional ZR RAR ratio when

the ZR RAR ratio was severely misspecified using the exponential change-point hazard (ECPH)

distribution. Ideally the H-RAR behaved as intended by the trial design.

4.3.1.1 Exponential Change-Point Hazard Distribution

Change-point hazard functions are commonly used in survival analyses due to their simplicity,

flexibility, and ability to model complex time-to-event patterns. [55] Consider the following piecewise

constant hazard function of λ(y) of time y ∈ (0, ζ] with P discrete values such that:

λ(y) = λp, ζp−1 < y ≤ ζp (p = 1, · · · , P ), (4.34)

where 0 = ζ0 < ζ1 < · · · < ζp = ζ specify P time intervals in (0, ζ]. Consider n observations

from this model. For the ith (i = 1, · · · , n) observation, let yi (yi ≤ ζ) denote the survival time

when the event indicator εi = 1 or the censor time when εi = 0. In order to discern the likelihood

of an observed outcome, the data pair (yi, εi) generated by the observed survival time and event

indicator must be segmented into P intervals:

yip =



0, yi ≤ ζp−1

yi − ζp−1, ζp−1 < yi ≤ ζp

ζp − ζp−1, yi > ζp

, and εip = εi 1{ζp−1 < yi ≤ ζp} (4.35)

for p = 1, · · · , P , where 1{·} is the indicator function with the value 1 if the inequality is met and

0 otherwise. The vectors (yi1, · · · , yip)′ and (εi1, · · · , εip)′ are the decompositions of yi and εi into

the P time intervals;in particular,
∑P

p=1 yip = yi and
∑P

p=1 εip = εi. Then the likelihood function
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can be expressed as:

`(λ1, · · · , λP |y, ε) =
n∏
i=1

P∏
p=1

λ
εip
p exp(−λpyip), (4.36)

making the loglikelihood:

log{`(λ1, · · · , λP |y, ε)} =
n∑
i=1

P∑
p=1

{
εiplog(λp)− λpyip

}
, (4.37)

such that the MLE of the interval-specific hazards for p = 1, · · · , P are:

λ̂p =

∑n
i=1 εip∑n
i=1 yip

. (4.38)

with SD λp/
√
εp.

For the present scenarios, survival outcomes having survival times following the ECPH distribu-

tion were segmented into three time intervals, P = 3, such that {ζ0, ζ1, ζ2, ζ3} = {0.0, 0.2, 0.3, D}

for both groups. With this, the cumulative hazard may be expressed as:

H(yi) =



λ1yi, 0 ≤ yi < ζ1

λ1ζ1 + λ2(yi − ζ1), ζ1 ≤ yi < ζ2

λ1ζ1 + λ2(ζ1 − ζ2) + λ3(y − i− ζ2), ζ2 ≤ yi < ζ3

(4.39)

In the present work, λ(yp,g,i) and H(yp,g,i) represent the group-specific (g ∈ {T,C}) hazard and

cumulative hazard, respectively, estimated over time interval p (p = 1, · · · , P ) based on survival

outcomes observed from the first i patients enrolled into the trial. Thus, these estimators (λ(yp,g,i),

H(yp,g,i), and SD(λ(yp,g,i))) were used to construct the RAR ratios for the ECPH distribution based

on the piecewise-hazard function for comparison to the ZR RAR and based on the cumulative hazard

for comparison to H-RAR. Results were used to discern an appropriate tuning value, discussed in

later sections.
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4.3.1.2 Tuning of the Optimal RAR Ratio Based on the Treatment Difference

The optimal ZR design for survival outcomes detailed here does not offer a mechanism for directly

tuning the resulting distribution-specific optimal RAR ratios toward a desired ratio once a desired

treatment effect is observed. Biswas and Bhattacharya modified the ZR RAR ratio for clinical trials

producing continuous response data by including a tuning parameter, τ , as defined in previous

chapters, on the group-specific means in order to target a prespecified randomization ratio, ρ0,

when a desired treatment effect was observed. [6,7] This procedure is detailed in Chapter 1. Prior

to the present work, tuning has not been directly implemented in optimal RAR ratios intended for

use in clinical trials with survival outcomes.

For such RAR ratios, let the treatment difference of interest be the hazard ratio (HR) defined

as:

HR = λC0

/
λT0, (4.40)

where λg0 for g ∈ {T,C} represents the group-specific measure of the hazard, be it the reciprocal

of the mean as in the ZR parametric cases or a function of the cumulative hazard as in the H-RAR

case. Then, using an approach similar to the framework particularized in Section 1.3.1, tuning of

the survival RAR ratio was achieved by raising λg0 to the τ th power. To demonstrate this, consider

a generalization of the survival RAR ratio based on λg0 where SD(λg0) represents the measure of

variability used to construct the ratio, e.g., the SD of the scale parameter in ZR RAR or a function

of the variance of the cumulative hazard when using H-RAR. Then, when tuned, the exponential

and Weibull ZR RAR ratios provided in (4.11) and (4.23), respectively, and the H-RAR ratio in

(4.27) can all be expressed as:

ρ =
SD(λT0) λ

τ/2
C0

SD(λT0) λ
τ/2
C0 + SD(λC0) λ

τ/2
T0

. (4.41)
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As such, τ is defined as:

τ = 2×
log

(
SD(λT0)
SD(λC0)

)
+ log

(
1
ρ0
− 1

)
log

(
λT0

/
λC0

) . (4.42)

In practice, when used to randomize patient i+ 1 into the trial, the estimators of the survival RAR

ratios given in (4.12), (4.24), and (4.33) are expressed explicitly by:

ρ̂T ;i+1 =

θ̂Ti√
ξ̂Ti

(
1
θ̂Ci

)τ/2
θ̂Ti√
ξ̂Ti

(
1
θ̂Ci

)τ/2
+ θ̂Ci√

ξ̂Ci

(
1
θ̂Ti

)τ/2 , (4.43)

ρ̂T ;i+1 =

k̂T i
√
ĜT i

[
exp(−m̂Ci)/Γ(1 + k̂Ci)

]τ/2
k̂T i
√
ĜT i

[
exp(−m̂Ci)/Γ(1 + k̂Ci)

]τ/2
+ k̂Ci

√
ĜCi

[
exp(−m̂T i)/Γ(1 + k̂T i)

]τ/2 , (4.44)

ρ̂T ;i+1 =
ŜD(ĤNA

Ti (ω)) ĤNA
Ci (ω)τ/2

ŜD(ĤNA
Ci (ω)) ĤNA

Ti (ω)τ/2 + ŜD(ĤNA
Ti (ω)) ĤNA

Ci (ω)τ/2
. (4.45)

for exponential ZR RAR, Weibull ZR RAR, and H-RAR, respectively. It was of-interest in the

present work to evaluate and compare the behavior of each of these optimal RAR ratio estimators

when survival times followed various response distributions.

4.4 Evaluation of H-RAR Performance

A simulation study was performed as a means of measuring the bias, precision, and ethicality of

the ZR RAR and empirical H-RAR ratios. For all scenarios, the means and 95% CI of the ZR

or H-RAR ratios averaged over 1,000 simulated trials were plotted with respect to the RAR ratio

intended by the trial design, denoted ρd. When tuned, the intended RAR ratio was 1:1 (ρd = 0.5)

when group-specific survival outcomes were generated to reflect no treatment difference (HR = 1.0)

and 3:1 (ρd = ρ0 = 0.75) when a large treatment difference was generated (HR = 1.5). [32] Means

of the averaged RAR ratios over 1,000 simulated trials were plotted to measure bias such that

smaller distances from ρd represented less bias, and, thereby, suggested that that RAR ratio more
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accurately enrolled patients into the trial according to the trial design. Precision was measured

using the 95% CI about the mean of the averaged RAR ratios such that CI not containing ρd

may suggest that these RAR ratios produce power-versus-ethics dynamics that differ from those

intended by the trial design.

Adherence to the ethical objective of the RAR design was measured using the plot of the

percent-difference between the observed and expected ethical objective function (%O-E). If the

RAR ratio under investigation adhered to the ethical objective of the trial, the observed ethical

objective function should match the intended ethical objective function. With this, RAR ratio

estimators producing smaller absolute %O-E (i.e., closer to zero) performed best according to this

metric. Details pertaining to the calculation of the %O-E per each of the three H-RAR performance

assessments are discussed in the following section. Finally, type I error was evaluated using the

Z-score introduced by Zhang and Rosenberger for each of the exponential or Weibull survival times

based on observed survival responses from the first 500 participants enrolled into the simulated

trials where no treatment effect was generated (HR=1.0).

4.5 Simulation Details

All simulated trials enrolled 1,000 patients. When the RAR ratio under investigation was the ZR

RAR ratio constructed using Weibull parameters, simulated trials were performed over 1,500 repli-

cates. Otherwise, 1,000 replicates were performed. This difference was due to greater complexity

of moment estimation for the Weibull ZR RAR versus the exponential ZR RAR or H-RAR, and

its impact on the size of the lead-in group prior to the initiation of RAR. Additional details are

discussed later in this chapter.

The treatment group was considered superior to the control group when a large treatment

difference existed. As such, survival outcomes observed from the treatment group were generated

to reflect longer survival times, thus corresponding to a lower hazard of experiencing an event.
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Table 4.1: Distribution-specific parameter values for simulation of treatment and control group
survival outcomes by effect size where trial recruitment time R = 85/85 = 1 and trial duration
D = 100/85 ≈ 1.176.

Survival 20% Censoring
Times Parameter Control/Null HR Large HR

Expo- Mean/Scale, θg0 0.189 0.283
nential Hazard, λg0 5.292 3.528

SD of scale, SD(θg0) 0.211 0.339
Intended censoring, ηg0 0.200 0.299
Intended ρd without τ 0.500 0.662
τ for 3:1 using ZR RAR 3.093 3.093
τ for 3:1 using H RAR 3.625 3.625

Weibull Shape, αg0 3.500 2.000
Scale, βg0 0.128 0.195
EVD scale, kg0 0.286 0.500
EVD location, mg0 -2.058 -0.711
Mean, θg0 0.115 0.172
Hazard, λg0 8.700 5.800
Intended censoring, ηg0 0.800 0.700
Gg0

∗ 1.449 1.716
SD Weibull scale, SD(mg0) 0.344 0.655
Intended ρd without τ 0.500 0.700
τ for 3:1 using ZR RAR 2.242 2.242
τ for 3:1 using H RAR 3.700 3.700
∗E(zez)=0.423, E(z2ez)=0.827 ∀ g

Expo- Hazard over (ζ0, ζ1]∗, λ1,g0 7.000 4.667
nential Hazard over (ζ1, ζ2]∗, λ2,g0 30.000 20.000
Change- Hazard over (ζ2, ζ3]∗, λ3,g0 5.000 3.333
Point Intended censoring, ηg0 0.800 0.750
Hazard τ for 3:1 using ZR RAR 11.000 11.000

τ for 3:1 using H RAR 3.963 3.963
∗ζ0=0.0, ζ1=0.2, ζ2=0.3, ζ3=D ∀ g
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Control group survival outcomes where survival times followed an exponential distribution with

mean parameter θC0 were developed as follows. First, the recruitment time and trial duration

parameters were fixed as R and D, respectively, and the desired probability of event, ξC0, taking

the value 0.8 to reflect 20% censoring was used in (4.14) to obtain θC0. The hazard of the control

group, λC0, was obtained by taking the reciprocal of the mean parameter. The resulting SD of the

control group mean, SD(θC0), was obtained using θC0/
√
ξC0. Next, the hazard of the treatment

group, λT0, was obtained by dividing the control group hazard by the desired HR (either 1.0

or 1.5). Then, the treatment group mean, θT0, was found by taking the reciprocal thereof, i.e.,

1/λT0. Fixed R and D and θT0 were used to obtain ξT0 using (4.14) and SD(θT0). With this, all

parameters necessary to derive the exponential survival times reflecting varying treatment difference

and censoring probabilities were calculated. Table 4.1 contains the specific values for each of these

parameters, as well as those for the subsequently-described Weibull and ECPH survival times.

Simulations wherein survival times following the Weibull distribution were derived were more

involved. First, the Weibull shape parameter for the control group, αC0, was selected. Then, a

simulation of 1,000 replicates with 1,000 patients was performed in order to select the Weibull scale

parameter, βC0, that produced the desired ξC0. Because Weibull survival times are log-transformed

for ZR RAR, the EVD parameters corresponding to each Weibull parameter was obtained: the

EVD scale parameter, kC0, was obtained by taking the reciprocal of αC0 and the EVD location

parameter, mC0, was obtained by taking the logarithm of βC0. The mean control group survival

time was defined as θC0 = exp(mC0)Γ(1 + kC0), the reciprocal of which provided the hazard of the

control group, λC0, as defined by Zhang and Rosenberger. To find the variance of these survival

times, the quantities E(ziexp(zi)) and E(z2
i exp(zi)) were obtained in R by numerically integrating

zf(z) and z2f(z), respectively, from 0 to 75. These values were held constant for both the control

and treatment groups, and were used along with ξC0 to obtain GC0. With this, SD(mC0), the SD
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of the control group EVD location parameter (corresponding to βC0 was obtain by kC0 ×
√
GC0.

The hazard of the treatment group, λT0, was obtained by taking the ratio of the λC0 and HR,

and the mean survival time, θT0, was the reciprocal thereof. Upon selecting the Weibull shape

parameter for the treatment group, αT0, the Weibull scale parameter for the treatment group

was obtained using the Weibull expression of the mean such that, βT0 = θT0/Γ(1 + 1/αT0). The

probability of an event occurring in the treatment group, ξT0, was discerned by generating 1,000

iterations of survival outcome data having Weibull survival times with parameters αT0 and βT0 for

1,000 recruited patients. The mean of the sum of events scaled by 1,000 provided the expected ξT0.

The treatment group location and scale parameters for the EVD, mT0 and kT0, respectively, were

obtained, and GT0 was estimated using the previously fixed E(ziexp(zi)), E(z2
i exp(zi)), and ξT0

such that SD(mT0) was obtained.

Finally, change-points and hazards parametrizing survival times following the ECPH distribu-

tion for the control group were selected using the cpsurvsim::exp cdfsim in R. [55] These param-

eters were selected such that the desired censoring probability was observed over 1,000 replicated

datasets enrolling 1,000 patients. Change-points were held constant for both groups so that the

assumption of proportional hazards could be maintained within time intervals. This allowed for the

obtainment of the interval-specific treatment group hazards by dividing the interval-specific control

group hazards by the intended HR. A simulation was performed where 1,000 replicates of 1,000

patients whose survival outcomes consisted of survival times that followed the ECPH distribution

parametrized according to the interval-specific treatment group hazards and their corresponding

change-points. The censoring probability was discerned by taking the complement of the number

of observed events scaled by 1,000, the number of replicated trials.
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4.5.1 Survival Data Generation

It was shown by Zhang and Rosenberger and Hu and Zhang that a moderate delay in censored

survival responses had only a marginal effect on the asymptotic properties of these RAR proce-

dures. [6,8] Therefore, survival responses were artificially treated as immediate during the simulation

process, mimicking the simulation design of others. [8,25,54] It is worth noting that relying on these

asymptotic properties is a reasonable assumption for short-term survival outcomes, but not when

measuring survival in terms of months or years. The immediate measure assumption may no longer

be valid in such scenarios because there would be a high level of censoring at the beginning of the

trial. Without having observed an event, there would not be enough survival information to initiate

RAR estimation, as such, the asymptotic assumptions would fail.

General survival data derivation and the censoring scheme employed in the present simulation

were based on the Rosenberg and Seshaiyer dynamic discussed in Section 4.1.1.1. Trial details were

based loosely on the motivating example of Jones et al., explored in both Zhang and Rosenberger

and Liu and Coad. [15,25,54,56] This was a phase III clinical trial comparing docetaxel and paclitaxel,

two drugs approved for use in patients with metastatic breast cancer, where docetaxel showed more

favorable chemical and biological outcomes than paclitaxel. With this, it would be ideal to allocate

as many patients to the docetaxel group as possible. For this reason, the docetaxel group was

considered the treatment group and the paclitaxel group was the control. As in both Zhang and

Rosenberger and Liu and Coad, though Jones et al. conducted the trial at multiple sites, RAR was

assumed to be centralized in the present simulation.

Where an event was defined as either tumor progression, unacceptable toxicity, or consent with-

drawal, the ideal survival outcome was censoring due to having completed the study having neither

experienced any of the previously-described events nor being censored for any other reason result-

ing in a trial participant being lost-to-follow-up. Therefore, it was hypothesized that the docetaxel
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group would have a larger censoring probability than the paclitaxel group. The recruitment time

of the Jones et al. docetaxel-versus-paclitaxel trial was 84 months and the duration of the trial

was 102 months. For the present simulation, these values were rounded to reflect a recruitment

time of 85 and trial duration of 100. As in Zhang and Rosenberger, since the ZR RAR ratios are

not dependent upon the unit of the parameters of interest, the recruitment time and trial duration

parameters were scaled by the recruitment time, i.e., R = 85/85 = 1 and D = 100/85 ≈ 1.18. [25,54]

The parameter values described in the previous section were scaled similarly.
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The arrival time for a given patient and the trial duration start from the beginning of the study,

whereas the survival time and censor time commence from the arrival of that patient (Part A of

Figure 4.5). At the patient level, a random sample of arrival times following U [0, 1] were generated

for N×2 (N patients in two treatment groups) recruited patients, then sorted into ascending order.

Independently, N × 2 initial censor times were generated using U [0, D]. Observed patient censor

times were then the sum of that patient’s arrival time and initial censor time. [25,54]

To aid in the construction of the lead-in (details in next section), the first pair of arrival and

observed censor times were assigned to the control group, then the second pair to the treatment

group, and so forth following this pattern until N arrival and observed censor times were assigned to

each group. By group, initial survival times were generated and summed with their corresponding

arrival times to produce the observed survival time. [25,54] Finally, the observed survival outcome

times for a given patient was the minimum of that patient’s observed survival time, observed censor

time, and the length of time that that patient was in the study, represented by the difference between

D and that patient’s arrival time. [25,54]

4.5.2 Lead-in Simulation Process

As discussed in previous chapters, lead-ins are necessary in response-adaptive CTs because RAR

assigns patients according to already-observed response data. [3,6,7,25,54] Therefore, the present sim-

ulation followed the work of Liu and Coad by using the permuted-block design to construct the

lead-in from which RAR would begin. [54] A block-size of one (i.e., alternating allocation) was used

to ensure the fewest number of patients were equally-randomized into the trial during the lead-in

period. Part B of Figure 4.5 demonstrates the lead-in process used in the present simulation study.

The ZR RAR ratios are based on the parameters of the assumed survival time distributions.

Therefore, for a more stable start to MLE estimation, the present simulation designated that the

lead-in period consist of at least three observed survival outcomes, meaning either an event or
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Table 4.2: Percent-convergence at three observed survival outcomes per group
and median lead-in sizes per simulated RCT scenario.

20% Censor Exp ZR RAR: Weibull ZR RAR: H-based RAR:
Survival %conv (median) %conv (median) %conv (median)

HR Times Not tuned Tuned Not tuned Tuned Tuned

1.0 Exp 100.0 (72) 100.0 (72) 99.6 (72) 99.7 (72) 100.0 (72)
Weibull 100.0 (134) 100.0 (134) 99.8 (132) 100.0 (136) 100.0 (136)
ECPH 100.0 (64) 97.2 (64) 100.0 (64)

1.5 Exp 100.0 (78) 100.0 (76) 99.0 (78) 99.7 (78) 100.0 (78)
Weibull 100.0 (128) 100.0 (128) 99.8 (128) 99.7 (128) 100.0 (130)
ECPH 100.0 (70) 98.3 (72) 100.0 (70)

%conv: percent of trials with all patients randomized; Exp: Exponential; ECPH: Exponential
change-point hazard

censor time beyond censoring for the reason that the subject was still participating in the study

was observed. At least one of these observed survival outcomes must have been an observed survival

time. Three observed outcomes was selected for the initiation of RAR because this was the smallest

number of observations to begin variance estimation. Table 4.2 demonstrates that, across scenarios,

greater than 98% of simulated trials were successful, where simulated trials were deemed successful

when all 1,000 patients were randomized into the trial following at least three observed survival

outcomes during the lead-in period. The resulting median lead-in sizes per scenario are provided

in Table 4.2, as well. To account for sequentially-increasing arrival times (i.e., staggered entry),

the number of occurrences where the observed survival outcome for patients one to i − 1 were

greater than the arrival time for patient i were counted, beginning with the second patient in each

group. The patient number i at which it first occurs that at least three survival outcomes have

been observed, one of which was an event, was recorded as the lead-in size for each group. Then,

the trial lead-in size, L, was taken as the maximum of the two group-specific lead-in sizes.

4.5.3 RAR for Simulated RCT with Survival Outcomes

Following the generation of data (§4.5.1) and the determination of the lead-in group (§4.5.2), RAR

was initiated via the randomization of patient L+1 (Part C of Figure 4.5). Before MLE estimation
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could begin, two options for patient L+ 1 were considered. These two options were characterized

as the first patient in each group whose arrival time was greater than the arrival time belonging

to the final patient enrolled during the lead-in, or patient L. Thus, two sets of survival data were

created where both were comprised of the arrival and observed survival outcome times collected

during the lead-in period, but where one dataset appended the first applicable record for patient

L + 1 from the control group, and the other from the treatment group. For each group-specific

set of survival data, any lead-in patients’ observed outcome survival times that were greater than

the arrival time for patient L+ 1 (i.e., the maximum arrival time) were reset to be the maximum

arrival time per patient L + 1. With this, MLE estimation at the time of enrollment for subject

L+ 1 could be performed.

Two additional variables were created in order to execute MLE estimation. First was an indi-

cator variable taking the value of one when the observed survival outcome time for a given patient

is that patient’s survival time. Second was information time, the difference between each patient’s

observed survival outcome time and the arrival time for that patient. Maximum likelihood esti-

mation was performed using information time and the event indicator at the patient level. These

estimates were used to construct the RAR ratio under investigation for that simulation. The re-

sulting RAR ratio was compared to a uniform random variate using U(0, 1) such that patient L+1

was randomized to the treatment group if the estimated RAR ratio was greater than the uniform

random variate. If group assignment was treatment, the survival data belonging to patient L + 1

from the treatment group was appended to the lead-in survival data as a part of the overall trial

response data. Put another way, the dataset reflecting the lead-in survival data and the survival

information for patient L+ 1 from the treatment group becomes the set of survival data resulting

from the simulated trial thus far, containing the survival data upon which the randomization of

patient L+ 2 will be based. The same is true of the control group survival data if the RAR ratio
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was less than the uniform random variate. This process was repeated until all N patients were

enrolled into the trial. This particular approach was taken in an effort to mimic staggered entry

into the trial where the arrival time of a given patient i was always greater than the arrival time

of patient i− 1, regardless of group affiliation.

To produce the previously-described plots of the means and 95% CIs, the RAR ratios across

1,000 iterations of each of the ZR RAR vs. H-RAR scenarios considered were collected for each

of the 1,000 patients enrolled. The means and variances of these sets of 1,000 RAR ratios were

calculated and 95% CIs were constructed. The ethical objective of RAR in these trials was to

minimize either the total expected hazard or mean cumulative hazard of patients enrolled into

the trial. Therefore, to construct the plot of the %O-E, group-specific sample sizes and hazards

or cumulative hazards were collected after the enrollment of each patient. Their means were then

calculated across 1,000 trials.

Table 4.3: Observed versus expected hazard or cumulative hazard for estimation of percent-
difference (%O-E) in ethicality of RAR by scenario.

Survival
Scenario Times RAR Observed Expected

1: Correct Exp Exp ZR λ̂gi = 1/θ̂gi λg0 = 1/θg0

Specification Weibull Weibull ZR λ̂gi =
exp(−m̂gi)

Γ(1+k̂gi)
λg0 =

exp(−mg0)
Γ(1+kg0)

2: Misspec- Exp Weibull ZR λ̂gi =
exp(−m̂gi)

Γ(1+k̂gi)
λg0 = 1/θg0

ification Weibull Exp ZR λ̂gi = 1/θ̂gi λg0 =
exp(−mg0)
Γ(1+kg0)

3: H-RAR Using Exp H-RAR ĤNA
gi (y) of (4.29) Exp ĤE

gi(y) = yg/θ̂gi
Nelson-Aalen Weibull H-RAR ĤNA

gi (y) of (4.29) Weibull ĤW
gi (y) = (yg/β̂gi)

α̂gi

The simulation design varied for each of the simulation scenarios, as did the estimation of the

%O-E. Borrowing the general notation introduced in Section 4.3.1.2, the ethical objective functions

can be expressed in a more general form:

min
nT /nC

{
nTλT0 + nCλC0

}
, (4.46)
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With this, the observed, Oi, and expected, Ei, ethical objective functions were defined as:

Oi = n̂T i λ̂Ti + n̂Ci λ̂Ci, and, (4.47)

Ei = E(nT i) λT0 + E(nCi) λC0, (4.48)

where ¯̂ngi and E(ngi) were defined as in Section 2.2, and
¯̂
λgi represents the mean observed hazard

or cumulative hazard of group g from the first to the ith patient enrolled into the trial, averaged

over 1,000 simulated trials. In most cases, λg0, the expected group-specific hazard or cumulative

hazard, was constant, determined by parameter values set at the start of the simulation. However,

when RAR was performed using H-RAR, λg0 was the cumulative hazard estimated for each patient

enrolled into the trial and averaged over 1,000 trials. This is described more fully by scenario in

Table 4.3. With this, the percent-difference between the observed and expected ethical objective

of the trial is defined as in (2.35), i.e., %O-E = 100× (Oi − Ei)/Ei.

4.6 Randomization Results

Results for simulated RCTs with survival outcomes are discussed in what follows. All curves were

loess-smoothed using a bandwidth of 0.15. As discussed in Section 4.3.1, the performance of the

H-RAR was assessed in comparison to ZR RAR when survival times were (a) correctly-specified,

(b) incorrectly-specified, and (c) followed neither the exponential nor Weibull distribution. When

tuned and correctly-specified, randomization using the ZR RAR ratio behaved precisely as intended

by the trial design. That is, mean randomization converges to 3:1 when a large HR is observed and

stays at 0.5 when an HR of 1.0 is observed (Figure 4.6), and the ethical objective of the trial is well-

maintained (Figure 4.7). When misspecified, save for the null case where randomization remains

equal, the previously-described behavior changes. As opposed to converging to the intended 3:1

randomization ratio (Figure 4.8, green curve), patients are over-randomized to treatment (0.808)

when survival times followed the exponential distribution but patients were randomized into the
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Figure 4.6: Mean of ZR RAR ratios with 95% CI with correctly-specified sur-
vival times for null and large treatment differences when tuned to target desired
3:1 ratio.

Figure 4.7: Percent-difference between the observed and expected ethical ob-
jective function of correctly-specified survival times for null and large treatment
differences using ZR RAR when tuned to target desired 3:1 ratio.
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Figure 4.8: Mean of ZR RAR ratios with 95% CI with incorrectly-specified
survival times for null and large treatment differences when tuned to target
desired 3:1 ratio.

Figure 4.9: Percent-difference between the observed and expected ethical objec-
tive function of incorrectly-specified survival times for null and large treatment
differences using ZR RAR when tuned to target desired 3:1 ratio.
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trial using the Weibull ZR RAR ratio (grey curve). By contrast, when the opposite was true

(red curve), patients were under-randomized to treatment (0.618). When survival times followed

the Weibull distribution but were randomized using the exponential ZR RAR ratio, the ethical

objective of the trial was not always maintained (Figure 4.9, red and blue curves).

Figure 4.10: Mean of H-RAR ratios with 95% CI for null and large treatment
differences when tuned to target desired 3:1 ratio.

Table 4.4: Assessment of type I error using the ZR-defined Z-score for exponen-
tial and Weibull survival times based on observed survival information from first
500 participants enrolled into the simulated trial when no treatment difference
existed (HR=1.0) across 1,000 simulated trials.

Truth RAR Z-score (ZR) p-value

Exponential Exponential -0.001 0.9499
Weibull 0.002 0.9952
H-RAR -0.002 0.9105

Weibull Exponential 0.000 0.9771
Weibull 0.002 0.9614
H-RAR 0.002 0.9981

Randomization using the H-RAR method (Figure 4.10) converged to 3:1 randomization, both

behaving in a manner similar to the ZR RAR conventional approach when correctly-specified (Fig-
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Figure 4.11: Percent-difference between the observed and expected ethical ob-
jective function of H-RAR for null and large treatment differences when tuned
to target desired 3:1 ratio.

Figure 4.12: Mean of H-RAR ratios with 95% CI for a large treatment difference
when tuned to target desired 3:1 ratio.
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ure 4.6) and outperforming the same when misspecified (Figure 4.8). When a large treatment

difference was observed and survival times followed the Weibull distribution (red curve), ZR RAR

more closely adhered to the trial design in samples less than approximately 500 patients when

correctly-specified and between approximately 250 and 400 patients when misspecified. Nonethe-

less, H-RAR adhered to the ethical objective of randomization than ZR RAR regardless of distribu-

tional specification (Figure 4.11). Finally, when survival times followed neither the exponential nor

the Weibull distributions and were tuned to target 3:1 randomization (Figure 4.12, brown curve),

H-RAR most closely adhered to randomization desired by the trial design than did either of the

knowingly-misspecified ZR RAR ratios (blue or red curves). Finally, as evidenced by Table 4.4, no

erroneous treatment differences were observed.

4.7 Discussion

Response-adaptive randomization based on the cumulative hazard presents as a viable alternative

to the conventional optimal RAR approach set forth by Zhang and Rosenberger for survival out-

comes. [25] However, when fewer than 500 subjects have been enrolled into the trial, ZR RAR is

suggested for the sake of simplicity if the distribution of the survival times is either exponential or

Weibull and known to be correct. If the ethical goal of randomization is the primary focus of the

trial or the distribution of the survival times cannot be assumed as either exponential or Weibull,

H-RAR may be the most appropriate option overall.

In order to compare the H-RAR and the ZR RAR methods, tuning was required. Tuning relied

upon the proportional hazard assumption at 30 days, the time at which the large effect size was

assumed to be observed. Furthermore, the simulation itself was based on the Jones et al. trial

reconstructed in other works discussing RAR with survival outcomes. There were some flaws to

this design, however. As opposed to considering the trial duration (D) a single unit, the trial

recruitment period (R) was the single unit (R = 85/85 = 1 and D = 100/85 > 1). If R were made
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much closer to zero, a shorter lead-in would have been observed, and RAR would have performed

better because there would have been less of a lag between randomization and the outcome.
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Chapter 5

Conclusion

5.1 Misspecification for Continuous Response Data

When designing a clinical trial with continuous response outcomes, most investigators assume that

subject responses are going to follow the normal distribution. Using this normality assumption, ER

is typically employed. Equal randomization is the most powerful type of randomization, requiring

the fewest number of subjects to be enrolled into the trial to discern a clinically-meaningful differ-

ence between group than any other type of randomization. By the time a drug or intervention has

progressed to a phase III clinical trial, there should be very strong evidence supporting its effective-

ness and efficacy over the active control (e.g., standard of care). Therefore, despite its power, in

the context of a phase III clinical trial, ER is unethical because, by definition, approximately half

of all trial participants will be randomized to an inferior treatment group. Thus, RAR should be

used to maintain the power of the trial and ethical treatment of the subjects in the trial by skewing

randomization toward the better-performing treatment group based on responses obtained from

subjects who have already completed their intervention. Because RAR is based upon the mean

and SD of the response distribution of the observed subject responses, it was speculated that the

normality assumption cannot always be justified in small sample.

Therefore, two methods were developed to obtain a RAR ratio robust against distributional
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misspecification, particularly deviations from normality, when response values were continuous

in nature. The first method estimated the RAR ratio using empirical estimation of the CDF

obtained using either the PLKM or HEFT methodologies (Chapter 2). The second method of

obtaining a RAR ratio that is robust to distributional misspecification employed a weighted-average

approach (Chapter 3). With this, a variety of RAR ratios corresponding to a variety of potential

response distributions (e.g., normal, gamma, logistic) were weighted based on how well that response

distribution fit the observed response data. Weights were obtained two ways, using the AIC or KS

metrics, and summed to one. Once the weights and randomization ratios per each candidate

response distribution were obtained, their products are summed.

It was found that, in general, neither the empirical nor the weight-average randomization meth-

ods outperformed randomization under the normality assumption. Nonetheless, the goal of obtain-

ing estimators of the RAR ratio either independent of any distributional assumption or considering

a variety of response distributions was achieved. These estimators were well-behaved with respect

to adhering to and maintaining randomization as intended by the trial design. With respect to

the empirical estimators, in general, HEFT outperformed PLKM randomization, but at the price

of a substantially larger lead-in period, something that is not always practical in real-world trials.

Nonetheless, the results observed in Chapters 2 and 3 pertain only the scenarios investigated herein.

Results may vary for alternative distributions or methods of estimation. Appendices A.28 and A.29

hold examples of the R codes used to simulate the trials in Chapters 2 and 3, respectively.

5.2 Misspecification for Survival Response Data

Little research with respect to RAR has been done in RCTs with survival outcomes. Zhang and

Rosenberger developed an optimal RAR framework for survival outcomes that is convention, but is

insufficient for robust estimation. The ZR RAR approach relies upon the correct distributional spec-

ification of survival times and obtains measures of the hazards and the variance thereof via proxies.
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Accuracy of the distributional assumption is not guaranteed with real-world data. Therefore, the

ZR RAR framework was used to develop an estimator of the RAR ratio for survival outcomes using

the cumulative hazard, the H-RAR (Chapter 4). The H-RAR was shown to be quite flexible and

robust to distributional misspecification of survival times. That is, H-RAR nearly recreated the

correctly-specified ZR RAR and outperformed the misspecified ZR RAR when survival times fol-

lowed either the well-behaved exponential or Weibull response distributions. When survival times

followed a poorly-behaved response distribution, i.e., the ECPH distribution, H-RAR achieved and

maintained randomization as intended by the trial design more quickly than ZR RAR intended

for survival times following either exponential or Weibull survival times (R code for simulated trial

provided in Appendix A.30). Results thus far utilize the most simplistic estimator of the cumulative

hazard function, the Nelson-Aalen estimator. Future work may focus on moving into more complex

estimation methods and considering alternative motivating data beyond the oft-used Jones et al.

trial.

5.2.1 Advantages and Disadvantages of Optimal RAR

There are a number of advantages and disadvantages to employing RAR. [57,58] Advantages to using

RAR center about its ability to balance ethics and power. Optimal RAR is as powerful as the

commonly-implemented ER, but targets an ethical objective. With this, optimal RAR is able to

discern a better treatmet group while participants are being randomized into the trial, such that,

if neither treatment is proving to be superior, randomization simply remains equal. With this,

ideally, participant enrollment will be higher and attrition will be lower because a larger number

of participants are undergoing the better treatment if one is being evidenced.

Disadvantages of the optimal RAR design include its requirement of a lead-in group to be

equally-randomized into the study prior to the initiation of RAR. In some cases, the lead-in period

may be small (e.g., three participants per group). Other times, the lead-in may be quite large,
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depending on the method of optimal RAR being employed. For this reason, RCTs using RAR may

only be advantageous when many participants can be recruited quickly. In this same vein, RAR

should only be adopted when the period of time between participant enrollment and the obtainment

of response information is small. Otherwise, the lead-in period will inherently be extended: a large

number of participants will be enrolled into the trial under ER while the clinical trialists are

waiting to accrue enough results information from those enrolled to begin RAR. Finally, estimation

of the RAR ratio is performed after each subject enrolled into the trial. Such constant estimation

procedures may be computationally and logistically taxing, requiring complex computing methods

and more personnel training − all of which adds financial expense to the trial design.

5.2.2 Limitations and Future Work

In the present work, unimodal response distributions were evaluated for each method. This as-

sumption may not be appropriate for any of these methods. For example, consider the scenario in

which the habits of the medical professionals providing the trial intervention (e.g., training exercise,

medications, etc.) to patients change over time. This is a likely scenario given human behaviors

change over time, without excepting behaviors pertaining to the progress of the RCT. With this,

greater than one mode may be observed from the first to the ith participant enrolled into the tri-

al. Where this is a moderately common occurrence, the assumption of unimodality collapses. [58]

Furthermore, the present work assumed both the treatment and control groups followed the same

response distribution versus situations where the treatment followed one response distribution and

the control response data followed another. This is another distributional assumption that may

not be appropriate.

In future work, the assumptions of distributional unimodality and between-group similarity may

need to be re-addressed. Other limitations to the present work to be addressed in future iterations

include the incorporation of multi-site context, the consideration of participant drop-out or missing
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information, the incorporation of a lag between trial enrollment and response data obtainment.

And, as alluded to previously, alternative estimation methods and/or distributional assumptions

may need to be considered in an attempt to replicate or clarify the results presented herein.
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Appendix

A.1 Link Function-Based Randomization Designs

Response-adaptive randomized designs estimate a treatment difference based on available data. [3]

This treatment difference plays an integral role in the link function, denoted Λ, a function that

maps an estimated treatment difference to the inclusive unit such that a treatment difference of

zero elicits a randomization probability of one-half and mapping is symmetric. [3] If an estimated

treatment difference, d, yields an allocation probability of ρd, then −d should yield an allocation

probability of 1− ρd.

Any CDF that is symmetric about zero would offer a reasonable link function. The normal

and the logistic CDFs are two convenient examples since both have preexisting, well-defined link

functions (the probit link and the logit link, respectively), both are symmetric, and both may be

symmetric about zero by simple manipulation of their respective location parameters.

Under the link function-based design, subject {i+ 1} is allocated to T with probability Λ(µ̂T i−

µ̂Ci) and to C with probability 1 − Λ(µ̂T i − µ̂Ci) = Λ(µ̂Ci − µ̂T i), where µ̂gi is the mean of the

first {1, 2, · · · , i} subjects that were allocated to treatment g. [3] Then, the treatment with the more

desirable responses is favored during randomization.

A.2 Continuous Adaptation of Binary-Outcome Randomization Designs

The Doubly-adaptive Biased Coin Design (DBCD) is a family of RAR schemes designed to achieve a

desired randomization ratio using two arguments, the current allocation ratio as determined by the

treatment responses from subjects who have already completed the trial, and the target allocation

ratio. [1,3,8,9] Though originally conceived for trials evaluating binary outcomes, the DBCD can be

applied for continuous or time-to-event treatment responses. [10]
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In the same vein, the Continuous Drop-the-Loser (CDL) design developed by Ivanova et al. [11] is

an extension of the urn-based, binary Drop-the-Loser design by Ivanova. [12] Under the CDL design,

entering subjects are randomized according to a process based on draws from an urn containing

(B + 1) balls of either type 0 or type b, where b = 1, · · · , B, where B represents the number of

treatments in the trial. If the response to treatment b for subject i exceeds a predefined threshold,

then the type b ball used to allocate subject i is returned to the urn; otherwise, it is removed. Type

0 balls are returned immediately to the urn if drawn, and B balls are added to the urn. Over time,

randomization is skewed toward the superior treatment.

Yao and Wei [13] developed a similar design for time-to-event outcomes called Randomized Play-

the-Winner (RPW). The RPW scheme was shown to randomize more subjects to the better treat-

ment with small loss of power in simulated RCTs where survival times were dichotomized. [13].

A.3 Designs Using Treatment Effect Mapping

Assuming two treatments, Treatment Effect Mapping (TEM) is defined by letting η(·) be a con-

tinuous function that maps from the real line to the inclusive unit, i.e., R 7→ [0, 1], such that

η(0) = 0.5, η(x) > 0.5 for x > 0, and η(x) < 0.5 for x < 0. [14] If ∆ denotes a measure of the true

treatment effect, where ∆̂j is the observed value of ∆ as determined by the treatment responses

obtained from subjects {1, · · · , j}, then the superiority of treatment over control is evidenced by

∆̂j > 0, i.e., η(∆̂j) > 0.5. If ∆̂j = 0, then the two treatments are deemed equivalent.

With this, Rosenberger [14] proposed a RAR design in which subject j is allocated to the superior

treatment with probability η(∆̂j−1), where ∆ is the normalized linear rank test statistic and the

TEM function is given by η(x) = (1 + x)/2. Under this design, if Yi represents the response from

subject i, i = 1, · · · , n, among j responses, j = i, · · · , n, for n subjects total, then, the rank of

Yi is given by Rij , and the score function for Rij is given by aij . After allocating the first two

subjects according to a fair coin toss, all subsequent subjects are allocated to T with probability
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{
1
2 +

∑i
j=1 aji(δj−

1
2

)

2
∑i

j=1 a
+
ji

}
, where δj = 1 if subject j was allocated to T , and a+

ij = aijI(aij > 0), where

I(·) is the indicator function. The values of a+
ji for δj = 1 will be larger when subjects in T produce

larger responses than subjects in C, resulting in an elevated probability for subject {i + 1} to be

allocated to T , since larger ranks indicate better responses.

Rosenberger and Seshaiyer [15] also developed a TEM design using the log-rank statistic while

focusing attention on TEM for survival times that were assumed to follow an exponential, Weibull,

and lognormal distribution. Hallstrom et al. [16] utilized TEM using a statistic which is relative to

the proportion of uncensored subjects over all subjects regardless of treatment group affiliation.

This method was found to increase ethical gain, but had little effect on power. [16]

A.4 Wilcoxon-Mann-Whitney Adaptive Design

Let the responses to treatments T and C be real-valued random variables such that YT ∼ F (yT )

and YC ∼ G(yC), ε ∈ [0, 1] is the unknown location shift pairing the CDFs F (yT ) and G(yC) with

the relationship G(yC) = F (yT − ε). The Wilcoxon-Mann-Whitney (WMW) test [18,19] evaluates

the hypothesis H0 : ε = 0 against H1 : ε > 0, where ε ∈ [0, 1] is defined as follows. Define

Zi = εiYT i + (1 − εi)YCi, where Ygi represents the response to treatment g for subject i. Then,

define the score function for Zi as φ(Zi, Zj) = 1 if (Zi > Zj) and (εi > εj), and zero otherwise. The

WMW-type test statistic [18,19] is then given by Wi =
∑i

s=1

∑i
j=1 φ(Zs, Zj).

The FW urn design [20–22] process begins with an urn containing 2α balls, α balls for each

treatment T and C. If a T ball is drawn from the urn, it is immediately replaced and β C balls are

added. Thus, after the first two subjects are equally-allocated, the randomization probability to T

for the third subject onward is given by

{
α+βWi

2α+βNTiNCi

}
, where Ngi represents the number of times

subjects currently allocated to treatment g. Allocating according to this process [21,22] skews the

urn in favor of the superior treatment. Bandyopadhyay and Biswas [17] bridged these two concepts
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by incorporating the WMW-type [18,19] test statistic W into the FW urn design [20–22], resulting in

the WAD test statistic, Un = Tn
NTn NCn

.

A.5 Zhang and Rosenberger Derivation of Optimal RAR Ratio

Let ng be the target sample size for treatment group g, where g ∈ {T,C} such that nT + nC =

N , where N represents the total number of subjects enrolled into the trial, indexed by i (i =

1, 2, · · · , N). As well, let Yg be the responses of patients assigned to treatment group g, where

Yg ∼ N(µg, σ
2
g). Assuming smaller response values are more desirable, researchers may wish to

minimize the total expected response value observed from patient data, thus-producing the following

optimization problem of subjecting the objective function of the form:

R∗ =
min

nT /nC

{
E

[ C∑
g=T

ng∑
i=1

Ygi

]}

=
min

nT /nC

{
E

[ nT∑
i=1

YT i +

nC∑
i=1

YCi

]}
=

min
nT /nC

{
nT µT + nC µC

}
, (1)

to a constraint on the variance:

V =
σ2
T

nT
+
σ2
C

nC
, (2)

for some constant V . The solution of which provides the optimal RAR ratio. To solve:

1. Set R = nT /nC and R∗ =
min
R {nTµT + nCµC}.

2. Re-write (1) in terms of R to minimize R∗ with respect to R.

(a) Solve R for nT and nC :
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i. For nT :

R =
nT
nC

RnC = nT

R(N − nT ) = nT

RN = nT (1 +R)

R

1 +R
N = nT (3)

ii. For nC :

R =
nT
nC

nT
R

= nC(
R

1 +R
N

)
1

R
= nC

1

1 +R
N = nC (4)

(b) Update R∗:

R∗ =
min
R

{
R

1 +R
NµT +

1

1 +R
NµC

}
(5)

3. Solve for N by inserting (3) and (4) into (2), then update (5). Biswas and Bhattacharya

suggest taking V = 1 for simplicity and without loss of generality.
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(a) Solve for N :

V =
σ2
T

nT
+
σ2
C

nC

1 = σ2
T

1 +R

RN
+ σ2

C

1 +R

N

=
1 +R

N

(
σ2
T

R
+ σ2

C

)
N = (1 +R)

(
σ2
T

R
+ σ2

C

)
(6)

(b) Update R∗:

R∗ =
min
R

{
R

1 +R
(1 +R)

(
σ2
T

R
+ σ2

C

)
µT +

1

1 +R
(1 +R)

(
σ2
T

R
+ σ2

C

)
µC

}
=
min
R

{(
σ2
T

R
+ σ2

C

)
(RµT + µC)

}
(7)

4. Minimize objective criterion within (7) by taking derivative with respect to R and setting

equal to zero.

(a) Derivative:

∂

∂R

{(
σ2
T

R
+ σ2

C

)
(RµT + µC)

}
= −

µCσ
2
T

R2
+ µTσ

2
C

(b) Set equal to zero:

µCσ
2
T

R2
= µTσ

2
C

R =
σT
√
µC

σC
√
µT

(8)

Since R = nT /nC and the value of R that minimizes the total expected response from all patients

is R =
σT
√
µC

σC
√
µT

, it is plain to see that nT = σT
√
µC and nC = σC

√
µT , i.e.,

R =
nT
nC

=
σT
√
µC

σC
√
µT
⇒


nT = σT

√
µC

nC = σC
√
µT

(9)
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Where ρ is the proportion of patients randomized to the treatment group T , using (9),

ρ =
nT
N

=
nT

nT + nC

=
σT
√
µC

σT
√
µC + σC

√
µT

.

A.6 Jennison and Turnbill Design

Assume two treatment groups T and C, where groups are denoted by g, i.e., g = {T,C}, and

group-specific responses have a mean µg and variance σ2
g . Jennison and Turnbill [23] developed a

constrained optimal RAR framework assuming treatment variances, σ2
g , were known. The goal of

this design was to minimize the expected value of the following objective function:

min
nT /nC

{
nTa

max(µT−µC ,0)/δ + nCa
max(µC−µT ,0)/δ

}
, (10)

where a is a predetermined constant, δ is the treatment difference for which the study was powered,

and ng is the number of subjects allocated to treatment g. Solving this according to the variance

of the estimated treatment difference in (1.2) gives the following optimal randomization ratio to T :

ρJT = R/(1 +R), (11)

where,

R =
σT
σC

√
amax(µC−µT ,0)/δ

amax(µT−µC ,0)/δ
. (12)

Atkinson and Biswas [3] identified that, though this designis straightforward, it is based upon a

poorly-defined importance criterion. As a result, it is unclear what the objective function (10) aims

to minimize, damaging design interpretation.
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A.7 Biswas and Mandal Design

For treatments T and C, Biswas and Mandal [5] assumed treatment-specific responses have a mean

µg and variance σ2
g , where σ2

T and σ2
C are assumed to be unknown and smaller responses more

desirable. Furthermore, Biswas and Mandal [5] sought to minimize the total number of responses

greater than an investigator-defined threshold constant, y0. A large-enough response could be

interpreted as a failure. Therefore, the goal of this design is to minimize the total number of

expected failures. Therefore, subjecting the objective function:

min
nT /nC

[
nT Φ

(
µT − y0

σT

)
+ nC Φ

(
µC − y0

σC

)]
(13)

to the variance constraint of (1.2) produces the optimal randomization rule to T given by:

ρBM =

σT

√
Φ

(
µC−y0
σC

)

σT

√
Φ

(
µC−y0
σC

)
+ σC

√
Φ

(
µT−y0
σT

) . (14)

A.8 Algorithm 1: Trial Generation.

Trial generation:

1. Generate N random variates per group (YT i and YCi, i = {1, · · · , N}).

2. Generate N uniform random variates (ui ∼ U(0, 1), i = {1, · · · , N}).

3. For lead-in period i ∈ {1, · · · , L}, if ui < 0.5, subject response data was YT i, else YCi.

4. For subjects {L+ 1, · · · , N}, obtain estimates for randomization: because smaller responses

are more desirable, if ui < ρ̂, subject responses was YT i, else YCi.

A.9 Algorithm 2: X2U Response Data.

Simulation of X2U response data:
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1. GenerateN random variates per distribution (Xi ∼ χ2(k) and Ui ∼ U(a, b), for i = {1, · · · , N}).

2. Generate N uniform random variates (ui ∼ U(0, 1), for i = {1, · · · , N}).

3. For mixing parameter π, if ui < π, subject response was Xi, else Ui.

A.10 Algorithm 3: NM Response Data.

Simulation of response data following a mixture of two normal random variables, N1 ∼ N(µ1, σ
2
1)

and N2 ∼ N(µ2, σ
2
2), for a treatment difference, δ:

1. Denote control group response data NC such that it is comprised of N1C ∼ N(µ1C , σ
2
1C) and

N2C ∼ N(µ2C , σ
2
2C), and treatment group response data as NT such that it is comprised of

N1T ∼ N(µ1T , σ
2
1T ) and N2T ∼ N(µ2T , σ

2
2T ).

2. Set control group mean parameters, µ1C and µ2C . Set all SD for equal, σ1T = σ2T = σ1C =

σ2C . And, set the mixing parameter π = 0.5.

3. Find control group mean and variance:

E(NC) = π µ1C + (1− π) µ2C ,

E(N2
C) = π (σ2

1C + µ2
1C) + (1− π) (σ2

2C + µ2
2C), and,

V ar(NC) = E(N2
C)− E(NC)2.

4. Set V ar(NT ) = V ar(NC).

5. Solve for E(NT ) using (2.31).

6. Set ε = 0.5× (µ2C − µ1C).

7. Then, µ1T = E(NT ) − ε and µ2T = E(NT ) + ε.
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A.11 Derivation of Normal MLEs

Let Y be normally-distributed with unknown mean µ and variance σ2. The Y has the following

PDF:

fY (y) =
1√
2πσ

exp

[
− 1

2

(
y − µ
σ

)2]
, y ∈ R,

Consider yi, i = 1, · · · , n, an independent random sample from a normal distribution. The loglike-

lihood of µ and σ given the observed data is maximized to obtain the MLEs for µ and σ, ȳ and s,

respectively. [24] The likelihood is given by:

`(µ, σ|y) =
n∏
i=1

1√
2πσ

exp

[
− 1

2

(
yi − µ
σ

)2]
.

Taking the logarithm gives:

log`(µ, σ|y) = −n
2
log(2π)− nlog(σ)− 1

2σ2

n∑
i=1

(yi − µ)2.

Setting ∂
∂µ log`(µ, σ|y) = 0 gives:

µ̂ =

n∑
i=1

yi/n

= ȳ,

and setting ∂
∂σ log`(µ, σ|y) = 0 gives:

σ̂ =

√∑n
i=1(yi − µ)2

n

∣∣∣∣
µ=µ̂

=

√∑n
i=1(yi − ȳ)2

n

= s.
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With this, for observed continuous response data Yg (g = {T,C}), the treatment-specific estimates

of the mean and standard deviation are:

{µ̂g, σ̂g} = {ȳg, sg},

when response data follow the normal distribution.

A.12 Derivation of Gamma MLEs

Let Y follow a gamma distribution with shape parameter α and scale parameter β. The PDF of Y

is:

fY (y) =
yα−1exp(−y/β)

Γ(α)βα
, y ∈ R+, 0 otherwise.

For yi, i = 1, · · · , n, an independent gamma-distributed random sample, the MLEs for α and β,

α̂ and β̂, respectively, are obtained by maximizing the loglikelihood of the parameters given the

observed data. [24] The likelihood of α and β is:

`(α, β|y) =
n∏
i=1

yα−1
i exp(−y/β)

Γ(α)βα
,

and the loglikelihood is:

log`(α, β|y) = n(α− 1)log(y)− n

β
ȳ − nlogΓ(α)− nαlog(β).

Setting ∂
∂β log`(α, β|y) = 0 gives:

β̂ = ȳ/α

∣∣∣∣
α=α̂

,

while ∂
∂α log`(α, β|y) = 0 gives the equation:

0 = log(y)− log(β)− ∂

∂α
logΓ(α)

∣∣∣∣
β=β̂

,
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where α̂ and β̂ are solved numerically. With this, for observed continuous response data Yg (g =

{T,C}), the treatment-specific estimates of the mean and standard deviation are:

{µ̂g, σ̂g} = {α̂gβ̂g, α̂gβ̂2
g},

when response data follow a gamma distribution.

A.13 Derivation of χ2-Uniform Mixture MLEs

Let X ∼ χ2
k and U ∼ U(a, b) (k, a, b ∈ R+) where E(X) = k and V ar(X) = 2k and E(U) = a+b

2 and

V ar(U) = (b−a)2

12 and X ⊥ U . Now take Y = πX + (1− π)U for mixing parameter π (π ∈ (0, 1)).

Then,

E(Y ) = πE(X) + (1− π)E(U)

= πk + (1− π)
a+ b

2
,

and,

V ar(Y ) = π2V ar(X) + (1− π)2V ar(U) + 2π(1− π)Cov(X,U)

= π22k + (1− π)2 (b− a)2

12
, because X ⊥ U

= π2

(
2k +

(b− a)2

12

)
+ (1− 2π)

(b− a)2

12
.

For a random sample yi, (i = 1, · · · , n), estimates of the parameters characterizing the χ2-Uniform

mixture distribution, i.e., θ = (π, k, a, b), given by θ̂, are obtained through the maximization of the

likelihood. Where Y has the PDF:

fY (y) = πfX(x|k) + (1− π)fU (u|a, b), (15)

for x ∈ R+ and u ∈ R (0, otherwise), the corresponding likelihood is given by:

`(k, a, b|y) =
n∏
i=1

[
πfX(xi|k) + (1− π)fU (ui|a, b)

]
(16)
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such that

`(k|y) =
n∏
i=1

[
πfX(xi|k)

]

`(a, b|y) =
n∏
i=1

[
(1− π)fU (ui|a, b)

]
.

With this, the loglikelihood of k is given by:

log`(k|y) =
n∑
i=1

log

(
π
x
k/2−1
i exp(−xi/2)

2k/2Γ(k/2)

)

=

n∑
i=1

[
log(π) +

(
k

2
− 1

)
log(xi)−

xi
2
− k

2
log(2)− log(Γ(k/2))

]

=

n∑
i=1

[
k

2
log(xi)−

k

2
log(2)− log(Γ(k/2))

]
.

Setting

d

dk
log`(k|y) =

1

2

[ n∑
i=1

log(xi)− nlog(2)

]
− n d

dk
log(Γ(k/2))

equal to zero gives

1

2

[
log(x)− log(2)

]
=

d

dk
log(Γ(k/2))

to be solved numerically to determine k̂. Likewise, the loglikelihood of a and b is given by:

log`(a, b|y) =
n∑
i=1

log

(
1− π
b− a

)
1(a≤ui≤b).

Setting

∂

∂a
log`(a, b|y) =

n

b− a
∂

∂b
log`(a, b|y) = − n

b− a
,
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equal to zero gives â = min(ui) and b̂ = max(ui). Finally, for π̂, take p to be a Bernoulli random

variable with probability parameter π such that:

p =


1 with probability π, if yi ∼ χ2

k,

0 with probability 1− π, if yi ∼ U(a, b).

With this, the PDF of Y given by (15) can be re-written as:

fY (y) =

[
πfX(x|k)

]p
+

[
(1− π)fU (u|a, b)

]1−p
,

such that the likelihood given in (16) may take the form:

`(θ|y,p) =
n∏
i=1

[
πfX(xi|k)

]pi
+

n∏
i=1

[
(1− π)fU (ui|a, b)

]1−pi
,

and the loglikelihood is given by:

log`(θ|y,p) =
n∑
i=1

{
pilog(πfX(xi|k)) + (1− pi)log((1− π)fU (ui|a, b))

}
,

such that the loglikelihood of π is given by:

log`(π|y,p) =
n∑
i=1

{
pilog(π) + (1− pi)log(1− π)

}
.

Where q =
∑n

i=1 pi, setting

d

dπ
log`(π|y,p) =

q

π
− n− q

1− π

equal to zero gives π̂ = q/n. From this, group-specific estimates of the mean and standard deviations

of the χ2-Uniform mixture distribution based upon the observed continuous response data Yg (g =

{T,C}) are:

µ̂g = π̂gk̂g + (1− π̂g)
âg + b̂g

2

σ̂g =

{
π̂2
g

(
2k̂g +

(b̂g − âg)2

12

)
+ (1− 2π̂g)

(b̂g − âg)2

12

}1/2

.
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A.14 Derivation of Normal-Mixture MLEs

Let Xj ∼ N(µj , σ
2
j ) for j = 1, 2 where E(Xj) = µj (µj ∈ R) and V ar(Xj) = σ2

j (σj ∈ R+) and

X1 ⊥ X2. Now let Y = αX1 + (1− α)X2 for mixing parameter α (α ∈ (0, 1)). Then,

E(Y ) = αE(X1) + (1− α)E(X2)

= αµ1 + (1− α)µ2,

and,

V ar(Y ) = α2V ar(X1) + (1− α)2V ar(X2) + 2α(1− α)Cov(X1, X2)

= α2σ2
1 + (1− α)2σ2

2, because X1 ⊥ X2

= α2(σ2
1 + σ2

2) + σ2
2(1− 2α).

For a random sample yi, (i = 1, · · · , n), estimates of the parameters characterizing the mixture of

normals distribution, i.e., θ = (α, µ1, µ2, σ
2
1, σ

2
2), given by θ̂, are obtained through the maximization

of the likelihood. Where Y has the PDF:

fY (y) =
α√

2πσ1

exp

[
− 1

2

(
x1 − µ1

σ1

)2]
+

1− α√
2πσ2

exp

[
− 1

2

(
x2 − µ2

σ2

)2]
, xj ∈ R; 0, otherwise,

(17)

loglikelihoods are given by:

log`(µ1, σ
2
1|y) =

n∑
i=1

[
log(α)− 1

2
log(2π)− log(σ1)− 1

2

(
x1i − µ1

σ1

)2]

= −
n∑
i=1

[
log(σ1) +

1

2

(
x1i − µ1

σ1

)2]
, when yi ∼ fX1 , and,

log`(µ2, σ
2
2|y) = −

n∑
i=1

[
log(σ2) +

1

2

(
x2i − µ2

σ2

)2]
, when yi ∼ fX2 .

Setting log`(µ1, σ
2
1|y) and log`(µ2, σ

2
2|y) equal to zero gives the MLEs µ̂j and σ̂2

j derived in Ap-

pendix A.11. For the derivation of α̂, take p to be a Bernoulli random variable with probability
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parameter α, i.e., p ∼ Bern(α), such that:

p =


1 with probability α, if yi ∼ fX1 ,

0 with probability 1− α, if yi ∼ fX2 .

Then re-write the PDF of (17) as:

fY (y) =

[
αfX1(x1)

]p
+

[
(1− α)fX2(x2)

]1−p
,

such that the likelihood may take the form:

`(α|y,p) =

n∏
i=1

[
αfX1(x1i)

]pi
+

n∏
i=1

[
(1− α)fX2(x2i)

]1−pi
,

and the loglikelihood is given by:

log`(α|y,p) =
n∑
i=1

{
pilog(αfX1(x1i)) + (1− pi)log((1− α)fX2(x2i))

}

=
n∑
i=1

{
pilog(α) + (1− pi)log(1− α)

}
.

Then, where

d

dα
log`(α|y,p) =

∑n
i=1 pi
α

−
∑n

i=1(1− pi)
1− α

,

setting equal to zero gives α̂ =
∑n

i=1 pi/n. From this, treatment-specific estimates of the mean

and standard deviation of the NM distribution based upon observed continuous response data

Yg (g = {T,C}) are:

µ̂g = α̂gµ̂1g + (1− α̂g)µ̂2g

σ̂g = {α̂g(σ̂2
1g + σ̂2

2g) + σ̂2
2g(1− 2α̂g)}1/2.
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A.15 Lead-in Analysis Results for Continuous Response Data

Table A.15: Observed percent of successful trials over increasing LPGs for HEFT ran-
domization of Normal and Gamma response data and mixture randomization of mixture-
distributed response data.

%̂success for HEFT RAR %̂success for HEFT RAR
when Truth = Normal when Truth = Gamma

LPG δ = 0.0 δ = 0.2 δ = 0.5 δ = 0.8 δ = 0.0 δ = 0.2 δ = 0.5 δ = 0.8

3 68.9 71.5 73.2 75.8 71.8 76.1 77.0 77.6
4 65.7 65.6 70.0 74.7 69.7 70.8 72.7 77.1
5 63.3 62.7 68.3 72.1 64.6 67.3 70.2 76.0
6 61.0 61.3 67.2 70.9 62.6 67.6 70.3 74.7
7 62.3 66.5 66.8 69.9 69.8 69.4 73.3 74.9
8 64.7 68.5 70.4 75.4 71.9 73.6 74.4 74.7
9 64.0 64.3 68.7 75.7 70.1 72.2 75.9 79.9

10 64.1 65.0 69.9 77.2 69.7 69.6 75.7 79.8
11 61.8 64.7 69.9 80.3 65.7 68.4 72.5 78.3
12 64.5 64.5 71.7 80.4 68.1 65.5 73.8 80.2
13 65.7 67.8 70.9 83.3 64.0 67.7 74.3 82.8
14 72.3 70.3 77.3 83.5 66.3 66.9 83.0 86.4
15 80.6 81.5 80.4 86.1 77.1 76.3 84.9 89.5
16 89.3 89.7 91.3 91.9 89.7 91.6 92.4 91.7
17 88.1 88.7 90.8 89.3 88.7 88.1 89.0 93.8
18 91.5 91.5 93.1 92.5 93.7 93.8 94.5 93.5
19 90.1 90.1 91.1 91.8 93.3 100.0 100.0 100.0
20 90.7 92.4 93.4 92.4 92.5 93.1 93.1 92.0

%̂success for X2U RAR %̂success for NM RAR
when Truth = X2U when Truth = NM

LPG δ = 0.0 δ = 0.2 δ = 0.5 δ = 0.8 δ = 0.0 δ = 0.2 δ = 0.5 δ = 0.8

3 35.4 39.1 41.9 43.9 0.3 1.2 0.9 1.3
4 57.8 60.5 62.5 64.9 16.8 17.3 15.7 15.1
5 72.7 72.2 74.9 78.5 41.4 41.7 40.7 38.0
6 81.7 82.5 84.3 85.4 60.0 62.3 62.4 62.0
7 88.8 88.1 89.1 91.6 76.7 77.9 74.6 77.1
8 94.1 92.5 94.3 95.1 86.7 86.3 85.9 86.2
9 94.5 93.5 96.1 96.1 92.2 93.2 92.1 91.3

10 95.9 95.7 97.2 98.1 96.1 95.4 96.7 96.9
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A.16 Randomization results when Truth=Normal and δ = 0.2

Figure A.16: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials when the normality
assumption was true and a small treatment difference existed.
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A.17 Randomization results when Truth=Normal and δ = 0.5

Figure A.17: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials when the normality
assumption was true and a moderate treatment difference existed.
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A.18 Randomization results when Truth=Gamma and δ = 0.2

Figure A.18: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the gamma distribution and reflected a small difference.
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A.19 Randomization results when Truth=Gamma and δ = 0.5

Figure A.19: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the gamma distribution and reflected a moderate difference.
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A.20 Randomization results when Truth=X2U and δ = 0.2

Figure A.20: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the X2U distribution and reflected a small difference.
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A.21 Randomization results when Truth=X2U and δ = 0.5

Figure A.21: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the X2U distribution and reflected a moderate difference.
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A.22 Randomization results when Truth=NM and δ = 0.2

Figure A.22: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the NM distribution and reflected a small difference.
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A.23 Randomization results when Truth=NM and δ = 0.5

Figure A.23: Mean of RAR ratios with 95% CI (A) and percent-difference between the observed
and expected ethical objective function (B) over 1,000 simulated trials where group-specific
subject responses followed the NM distribution and reflected a moderate difference.
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A.24 Derivation of Laplace MLEs

Let Y follow a Laplace distribution with location parameter a and scale parameter b. The PDF of

Y is:

fY (y) =
1

2b
exp(−|yi − a|/b)

=
1

2b
exp

(
−1/b

[
(a− y)I{y<a} + (y − a)I{y≥a}

])
, y ∈ R, 0 otherwise.

For yi, i = 1, · · · , n, an independent Laplace-distributed random sample, the MLEs for a and b,

â and b̂, respectively, are obtained by maximizing the loglikelihood of the parameters given the

observed data. [24] The likelihood of a and b is:

`(a, b|y) =

n∏
i=1

1

2b
exp

(
−1/b

[
(a− yi)I{yi<a} + (yi − a)I{yi≥a}

])
,

and the loglikelihood is:

log`(a, b|y) = −nlog(2b)− 1/b

n∑
i=1

[
(a− yi)I{yi<a} + (yi − a)I{yi≥a}

]

=


−nlog(2b)− 1/b

∑n
i=1(a− yi), if yi < a,

−nlog(2b)− 1/b
∑n

i=1(yi − a), if yi ≥ a.

Take the partial derivative with respect to a of log`(a, b|y) yields:

∂

∂a
log`(a, b|y) =


−1/b

∑n
i=1(a− yi), if yi < a,

−1/b
∑n

i=1(yi − a), if yi ≥ a.

Setting ∂
∂a log`(a, b|y) = 0 gives:

0 = ∂
∂a

∑n
i=1(a− yi), if yi < a,

0 = ∂
∂a

∑n
i=1(yi − a), if yi ≥ a.
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Therefore, the MLE of a is the median. [24] Now, taking the derivative of log`(a, b|y) with respect

to b gives:

∂

∂b
− nlog(2b)− 1/b

n∑
i=1

|yi − a| =
−n
b

+

∑n
i=1 |yi − a|

b2
.

Setting this equal to zero yields:

b̂ =
n∑
i=1

|yi − a|/n
∣∣∣∣
a=â

,

solved numerically. With this, for observed continuous response data Yg (g = {T,C}) following a

Laplace distribution, the treatment-specific estimates of the mean and standard deviation are:

{µ̂g, σ̂g} = {âg, b̂g
√

2}.

A.25 Derivation of Logistic MLEs

Let Y follow the logistic distribution with location parameter a and scale parameter b, having the

following PDF:

fY (y) =

exp

(
− y−a

b

)
σ

[
1 + exp

(
− y−a

b

)]2 , y ∈ R+, 0 otherwise.

For yi (i = 1, · · · , n), an independent logistic-distributed random sample, the MLEs of a and b,

given as â and b̂, respectively, are obtained my maximizing the loglikelihood of the parameters

given the observed response data. Where the likelihood of a and b is:

`(a, b|y) =

n∏
i=1

exp

(
− yi−a

b

)
b

[
1 + exp

(
− yi−a

b

)]2 ,

the loglikelihood is:

log`(a, b|y) =

n∑
i=1

{
− yi − a

b
− log(b) + 2log

[
1 + exp

(
− yi − a

b

)]}
.
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To find â and b̂, respectively, ∂
∂a log`(a, b|y) and ∂

∂b log`(a, b|y) are:

∂

∂a
log`(a, b|y) =

1

b

n∑
i=1

[
n+ 2

exp(−yi−a
b )

1 + exp(−yi−a
b )

]
, and,

∂

∂b
log`(a, b|y) =

1

b2

n∑
i=1

[
(yi − a)

(
1 + 2

exp(−yi−a
b )

1 + exp(−yi−a
b )

)]
.

Then, setting ∂
∂a log`(a, b|y) and ∂

∂b log`(a, b|y) equal to zero gives the following equations to be

solved numerically to derive â and b̂, respectively:

−n
2

=
n∑
i=1

exp(−yi−a
b )

1 + exp(−yi−a
b )

∣∣∣∣
a=â,b=b̂

, and,

ȳ − a = b− 2

n

[ n∑
i=1

yi
exp(−yi−a

b )

1 + exp(−yi−a
b )
− a

n∑
i=1

exp(−yi−a
b )

1 + exp(−yi−a
b )

]∣∣∣∣
a=â,b=b̂

.

With this, for observed continuous response data Yg (g = {T,C}), the group-specific estimates of

the mean and SD are:

{µ̂g, σ̂g} = {âg, b̂gπ/
√

3},

when responses follow the logistic distribution.

A.26 Derivation of Weibull MLEs (Continuous)

Let Y follow a Weibull distribution with shape parameter α and scale parameter β. The PDF of

Y is:

fY (y) =
α

βα
yα−1exp

[
−
(
y

β

)α]
, y ∈ R+, 0 otherwise.

For yi, i = 1, · · · , n, an independent Weibull-distributed random sample, the MLEs for α and β,

α̂ and β̂, respectively, are obtained by maximizing the loglikelihood of the parameters given the

observed data. [24] The likelihood of α and β is:

`(α, β|y) =

n∏
i=1

α

βα
yα−1
i exp

[
−
(
yi
β

)α]
,
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and the loglikelihood is:

log`(α, β|y) = nlog(α)− nαlog(β) + α
n∑
i=1

log(yi)− log(yi)−
n∑
i=1

yαi
βα

Setting ∂
∂β log`(α, β|y) = 0 gives:

β̂ =

[∑n
i=1(yαi )

n

]1/α∣∣∣∣
α=α̂

,

while ∂
∂α log`(α, β|y) = 0 gives the equation:

0 =
n

α
− nlog(β) + log(yi)−

(
yi
β

)α
log

(
yi
β

)
|α=α̂,β=β̂,

where α̂ and β̂ are solved numerically. With this, for observed continuous response data Yg (g =

{T,C}) following a Weibull distribution, the treatment-specific estimates of the mean and standard

deviation are:

µ̂g = β̂gΓ(1 + 1/α̂g),

σ̂g = β̂g

[
Γ

(
1 +

2

α̂g

)
− Γ

(
1 +

1

α̂g

)2
]1/2

A.27 Derivation of Lognormal MLEs (Continuous)

Let Y follow a lognormal distribution with location parameter a and scale parameter b, having

PDF:

fY (y) =
1√
2π

1

yb
exp

[
− 1

2

(
log(y)− a

b

)2]
, y ∈ R+, 0 otherwise.

For yi, (i = 1, · · · , n), an independent lognormally-distributed random sample, the MLEs of a and

b, given as â and b̂, respectively, are obtained my maximizing the loglikelihood of the parameters

given the observed response data. Where the likelihood of a and b is:

`(a, b|y) =
n∏
i=1

1√
2π

1

yib
exp

[
− 1

2

(
log(yi)− a

b

)2]
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the loglikelihood is:

log`(a, b|y) =
n∑
i=1

[
− 1

2
log(2π)− log(yi)− log(b)− 1

2

(
log(yi)− a

b

)2]

=

n∑
i=1

[
log(b) +

1

2

(
log(yi)− a

b

)2]
.

To find â and b̂, respectively, ∂
∂a log`(a, b|y) and ∂

∂b log`(a, b|y) are:

∂

∂a
log`(a, b|y) =

1

b2

[ n∑
i=1

log(yi)− na
]
, and,

∂

∂b
log`(a, b|y) =

1

b

[
1

b2

n∑
i=1

{log(yi)− a}2 − n
]
.

Then, setting ∂
∂a log`(a, b|y) and ∂

∂b log`(a, b|y) equal to zero gives the following equations:

â = log(y)

b̂ =
1√
n

n∑
i=1

{log(yi)− a}
∣∣∣∣
a=â

=
1√
n

n∑
i=1

{log(yi)− log(y)}.

With this, for observed continuous response data Yg, (g = {T,C}), the group-specific estimates of

the mean and SD are:

âg = exp

(
âg +

b̂2g
2

)
,

b̂g = exp(âg + b̂2g/2)
√
exp(b̂2g)− 1,

when responses follow the lognormal distribution.
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A.28 Chapter 2 Simulated Trial R Code

library(polspline)

library(pracma)

seed <- as.integer(runif(1, 1, 10^7))

set.seed(seed)

type1 <- ’N’

type2 <- ’H’

N <- 500

n.trials <- 1000

del <- 8

delta <- del/10

rho.0 <- 0.75

lpg <- 3

#######################################################################

mu.B0 <- 100

sigma.0 <- 8

mu.A0 <- mu.B0 - 0.8*sigma.0

mu.A1 <- mu.B0 - delta*sigma.0
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tau <- 2 * log(1/rho.0 - 1) / log(mu.A0 / mu.B0)

tt1 <- mu.B0^(tau/2)

tt2 <- mu.A1^(tau/2)

rho.d <- tt1/(tt1+tt2)

#############################################################################

## 1. lead-in function -- block randomization

ld.in <- function(){

A.dat <- rnorm(lpg*2, mean=mu.A1, sd=sigma.0)

B.dat <- rnorm(lpg*2, mean=mu.B0, sd=sigma.0)

resp <- c(A.dat[1:lpg], B.dat[(lpg+1):(lpg*2)])

grp <- c(rep(’A’, lpg), rep(’B’, lpg))

rho.hat <- 0.5

U <- runif(lpg*2) ## just to fill these in bc don’t feel like having ’NA’

df00 <- cbind.data.frame(A.dat, B.dat, U, rho.hat, grp, resp)

lead <- nrow(df00)

xbar.A <- xbar.B <- NULL

for (x in 1:lead){

xbar.A[x] <- mean(df00$A.dat[1:x])

xbar.B[x] <- mean(df00$B.dat[1:x])
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}

s.A <- s.B <- rep(NA, lead)

for (s in 2:lead){

s.A[s] <- sd(df00$A.dat[1:s])

s.B[s] <- sd(df00$B.dat[1:s])

}

n.A <- n.B <- NULL

for (a in 1:lead){

n.A[a] <- sum(df00$grp[1:a]==’A’)

n.B[a] <- sum(df00$grp[1:a]==’B’)

}

df0 <- cbind.data.frame(df00, xbar.A, xbar.B, s.A, s.B, n.A, n.B)

df.NA <- as.data.frame(matrix(NA, nrow=N-lead, ncol=ncol(df0)))

colnames(df.NA) <- colnames(df0)

df <- as.data.frame(rbind(df0, df.NA))

df$A.dat[(lead+1):N] <- rnorm(N-lead, mean=mu.A1, sd=sigma.0)

df$B.dat[(lead+1):N] <- rnorm(N-lead, mean=mu.B0, sd=sigma.0)

df$U[(lead+1):N] <- runif(N-lead)
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return(list(df=df, lead=lead))

}

## 2. randomization process

rand <- function(mean.A, sd.A, mean.B, sd.B, cc=0.01){

psi.A <- mean.A^(tau/2)

psi.B <- mean.B^(tau/2)

rho.obs <- (sd.A * psi.B) / ((sd.A * psi.B) + (sd.B * psi.A))

rho.hat <- ifelse(psi.A > 0 & psi.B > 0 & rho.obs < cc,

cc,

ifelse(psi.A > 0 & psi.B > 0 & cc <= rho.obs & rho.obs <= 1-cc,

rho.obs,

ifelse(psi.A > 0 & psi.B > 0 & rho.obs > 1-cc,

1-cc,

ifelse(psi.A > 0 & psi.B < 0,

cc,

ifelse(psi.A < 0 & psi.B > 0,

1-cc,

ifelse(psi.A < 0 & psi.B < 0

& sd.A/sd.B < sqrt(psi.A/psi.B),
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1-cc,

cc))))))

return(rho.hat)

}

ld <- ld.in()

#dat <- ld$df$resp[which(ld$df$grp==’A’)]

#### 3. HEFT modeling and estimation

HEFT.fn <- function(dat){

hft.fit <- heft(dat)

inf.sub <- 1000

intv <- seq(0, max(dat), length.out = inf.sub)

heft.Ft <- try(pheft(q=intv, fit=hft.fit), silent=T)

if(is(heft.Ft, "try-error")){

ex.heft <- sd.heft <- NA

}

else {

y1 <- 1-heft.Ft

y2 <- intv*y1

area <- area2 <- NULL
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for (i in 1:(inf.sub-1)) {

xt1 <- c(intv[i], intv[i+1])

area[i] <- trapz(x = xt1, y = c(y1[i], y1[i+1]))

area2[i] <- trapz(x = xt1, y = c(y2[i], y2[i+1]))

}

ex.heft <- sum(area)

sd.heft <- sqrt(2*sum(area2) - ex.heft^2)

}

return(list(ex.heft=ex.heft, sd.heft=sd.heft))

}

#############################################################################

#############################################################################

#############################################################################

rh <- Gp <- Obs <- N.A <- N.B <- matrix(NA, ncol=n.trials, nrow=N)

SD.A <- SD.B <- Mean.A <- Mean.B <- matrix(NA, ncol=n.trials, nrow=N)

for (j in 1:n.trials) {

ld <- ld.in()
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## completing the trial data-frame for remaining N-lead subjects

for (i in (ld$lead+1):N) {

A.df <- subset(ld$df, grp=="A")$A.dat

B.df <- subset(ld$df, grp=="B")$B.dat

logA <- capture.output({

A.heft <- HEFT.fn(dat=A.df)

})

logB <- capture.output({

B.heft <- HEFT.fn(dat=B.df)

})

if(is.na(A.heft$ex.heft) | is.na(A.heft$ex.heft)){

break

} else {

ld$df$rho.hat[i] <- rand(mean.A=A.heft$ex.heft, sd.A=A.heft$sd.heft,

mean.B=B.heft$ex.heft, sd.B=B.heft$sd.heft)

ld$df$grp[i] <- with(ld$df, ifelse(U[i] < rho.hat[i], "A", "B"))

ld$df$resp[i] <- with(ld$df, ifelse(grp[i]=="A", A.dat[i], B.dat[i]))

ld$df$n.A[i] <- sum(ld$df$grp[1:i]==’A’, na.rm=T)

ld$df$n.B[i] <- sum(ld$df$grp[1:i]==’B’, na.rm=T)
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ld$df$s.A[i] <- A.heft$sd.heft

ld$df$s.B[i] <- B.heft$sd.heft

ld$df$xbar.A[i] <- A.heft$ex.heft

ld$df$xbar.B[i] <- B.heft$ex.heft

}

}

rh[,j] <- ld$df$rho.hat

Gp[,j] <- ld$df$grp

Obs[,j] <- ld$df$resp

N.A[,j] <- ld$df$n.A

N.B[,j] <- ld$df$n.B

Mean.A[,j] <- ld$df$xbar.A

Mean.B[,j] <- ld$df$xbar.B

SD.A[,j] <- ld$df$s.A

SD.B[,j] <- ld$df$s.B

print(j)

}

160



A.29 Chapter 3 Simulated Trial R Code

library(stats4)

seed <- as.integer(runif(1, 1, 10^7))

set.seed(seed)

true <- ’N’

crd1 <- ’La’

crd2 <- ’Lo’

crd3 <- ’G’

crd4 <- ’N’

MOF <- ’AIC’

K <- 4 # number of candidate response distribns for weighted average

k.mat <- 1:K

del <- 8

delta <- del/10

lpg <- 3

N <- 200

n.trials <- 1100
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rho.0 <- 0.75

##########################################################################################

### 1. normal parameters

mu.B0 <- 100

sigma.0 <- 8

mu.A0 <- mu.B0-0.8*sigma.0#/sqrt(rho.0*(1-rho.0))

mu.A1 <- mu.B0-delta*sigma.0#/sqrt(rho.0*(1-rho.0))

rho.term <- (1-rho.0)/rho.0

mu.term <- mu.A0/mu.B0

sig.term <- sigma.0/sigma.0

tau <- 2*(log(rho.term)+log(sig.term))/log(mu.term); #tau

tt1 <- mu.B0^(tau/2)

tt2 <- mu.A1^(tau/2)

rho.d <- tt1/(tt1+tt2)

##########################################################################################

### 2. gamma parameters

alpha.A1 <- (mu.A1/sigma.0)^2

beta.A1 <- sigma.0^2/mu.A1
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alpha.B0 <- (mu.B0/sigma.0)^2

beta.B0 <- sigma.0^2/mu.B0

###########################################################################################

###########################################################################################

###########################################################################################

## 1. lead-in function true data

ld.in <- function(){

A.dat <- rnorm(lpg*2, mean=mu.A1, sd=sigma.0)

B.dat <- rnorm(lpg*2, mean=mu.B0, sd=sigma.0)

df00 <- cbind.data.frame(A.dat, B.dat)

eval(parse(text=paste0(paste0(’df00$grp.k’, k.mat, sep=’ <- ’, collapse=’’),

"df00$grp.wa <- c(rep(’A’, lpg), rep(’B’, lpg))",

sep=’’, collapse=’’)))

eval(parse(text=paste0(paste0(’df00$resp.k’, k.mat, sep=’ <- ’, collapse=’’),

"df00$resp.wa <- c(A.dat[1:lpg], B.dat[(lpg+1):(lpg*2)])",

sep=’’, collapse=’’)))

eval(parse(text=paste0(’df00$U.k’, k.mat, ’ <- runif(lpg*2)’, sep=’’, collapse=’; ’)))

df00$U.wa <- runif(lpg*2)

lead <- nrow(df00)
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xbar.A <- xbar.B <- NULL

for (x in 1:lead){

xbar.A[x] <- mean(df00$A.dat[1:x])

xbar.B[x] <- mean(df00$B.dat[1:x])

}

s.A <- s.B <- rep(NA, lead)

for (s in 2:lead){

s.A[s] <- sd(df00$A.dat[1:s])

s.B[s] <- sd(df00$B.dat[1:s])

}

n.A <- n.B <- NULL

for (a in 1:lead){

n.A[a] <- sum(df00$grp.wa[1:a]==’A’)

n.B[a] <- sum(df00$grp.wa[1:a]==’B’)

}

eval(parse(text=paste0(’df00$xbar.’, c(’A’, ’B’), ’.wa <- xbar.’, c(’A’, ’B’), sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’df00$s.’, c(’A’, ’B’), ’.wa <- s.’, c(’A’, ’B’), sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’df00$n.’, c(’A’, ’B’), ’.wa <- n.’, c(’A’, ’B’), sep=’’, collapse=’; ’)))

grd2 <- cbind.data.frame(gp=c(rep(’A’, K), rep(’B’, K)), nm=rep(k.mat, 2))
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eval(parse(text=paste0(’df00$xbar.’, grd2$gp, ’.k’, grd2$nm, ’ <- xbar.’, grd2$gp, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’df00$s.’, grd2$gp, ’.k’, grd2$nm, ’ <- s.’, grd2$gp, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’df00$n.’, grd2$gp, ’.k’, grd2$nm, ’ <- n.’, grd2$gp, sep=’’, collapse=’; ’)))

df.NA <- as.data.frame(matrix(NA, nrow=N-lead, ncol=ncol(df00)))

colnames(df.NA) <- colnames(df00)

df <- as.data.frame(rbind(df00, df.NA))

df$A.dat[(lead+1):N] <- rnorm(N-lead, mean=mu.A1, sd=sigma.0)

df$B.dat[(lead+1):N] <- rnorm(N-lead, mean=mu.B0, sd=sigma.0)

df$U.wa[(lead+1):N] <- runif(length((lead+1):N))

eval(parse(text=paste0(’df$U.k’, k.mat, ’[(lead+1):N] <- runif(N-lead)’)))

df$d.0 <- c(rep(0, lead), rep(NA, N-lead))

eval(parse(text=paste0(paste0(’df$rho.hat.k’, k.mat, sep=’’, collapse=’ <- ’),

’ <- c(rep(0.5, lead), rep(NA, N-lead))’)))

eval(parse(text=paste0(paste0(’df$d.k’, k.mat, sep=’’, collapse=’ <- ’), ’ <- ’,

paste0(’df$d.k’, k.mat, ’.star’, sep=’’, collapse=’ <- ’),

’ <- d.0 <- c(rep(0, lead), rep(NA, N-lead))’)))

eval(parse(text=paste0(’df$w.numr.k’, k.mat, ’ <- exp(-0.5*df$d.k’, k.mat, ’.star)’, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’df$w.den <- with(df, ’,

paste0(’w.numr.k’, k.mat, sep=’’, collapse=’ + ’), ’)’)))

eval(parse(text=paste0(’df$w.k’, k.mat, ’ <- with(df, w.numr.k’, k.mat, ’/w.den)’, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’df$rho.hat.wa <- with(df, ’,
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paste0(’rho.hat.k’, k.mat, ’*w.k’, k.mat, sep=’’, collapse=’ + ’), ’)’)))

return(list(df=df, lead=lead))

}

###########################################################################################

## 6. randomization process

rand <- function(mean.A, sd.A, mean.B, sd.B, cc=0.01){

psi.A <- mean.A^(tau/2)

psi.B <- mean.B^(tau/2)

rho.obs <- (sd.A * psi.B) / ((sd.A * psi.B) + (sd.B * psi.A))

rho.hat <- ifelse(psi.A > 0 & psi.B > 0 & rho.obs < cc,

cc,

ifelse(psi.A > 0 & psi.B > 0 & cc <= rho.obs & rho.obs <= 1-cc,

rho.obs,

ifelse(psi.A > 0 & psi.B > 0 & rho.obs > 1-cc,

1-cc,

ifelse(psi.A > 0 & psi.B < 0,

cc,

ifelse(psi.A < 0 & psi.B > 0,

1-cc,
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ifelse(psi.A < 0 & psi.B < 0 &

sd.A/sd.B < sqrt(psi.A/psi.B),

1-cc,

cc))))))

return(rho.hat)

}

#####################################################################################

#### 7. gamma MLE function (k=1)

gam.mle.fn <- function(grp.dat, start.alpha, start.beta){

logL.gam <- function(alpha, beta) {

-sum(suppressWarnings(dgamma(grp.dat, shape=alpha, scale=beta, log=T)))

}

mle.gam1 <- try(mle(minuslogl = logL.gam,

start = list(alpha=start.alpha, beta=start.beta),

method = "L-BFGS-B",

lower = rep(1e-05, 2), upper=rep(10^5, 2)), silent=T); #mle.gam1

if(is(mle.gam1, "try-error")){

mle.gam.mean <- mle.gam.sd <- aic.gam <- NA

}
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else {

aic.gam <- AIC(mle.gam1)

mle.gam <- mle.gam1@coef

mle.gam.mean <- as.numeric(prod(mle.gam))

mle.gam.sd <- as.numeric(sqrt(mle.gam[1]*mle.gam[2]^2))

}

return(list(mle.gam.mean=mle.gam.mean, mle.gam.sd=mle.gam.sd, aic.gam=aic.gam))

}

#####################################################################################

#### 8. normal MLE function (k2)

norm.mle.fn <- function(grp.dat, start.mu, start.sigma) {

logL.norm <- function(mu, sigma){

-sum(dnorm(grp.dat, mean=mu, sd=sigma, log=T))

}

mle.norm <- try(mle(minuslogl = logL.norm,

start = list(mu = start.mu, sigma = start.sigma),

method = "L-BFGS-B",

lower = c(-10^5, 1e-05), upper=c(10^5, 10^5)), silent=T)
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if(is(mle.norm, "try-error")){

mle.norm.mean <- mle.norm.sd <- aic.norm <- NA

}

else {

aic.norm <- AIC(mle.norm)

coef.norm <- as.vector(mle.norm@coef)

mle.norm.mean <- coef.norm[1]

mle.norm.sd <- coef.norm[2]

if(mle.norm.mean<=0 | mle.norm.sd<=0){

mle.norm.mean <- mle.norm.sd <- NA

}

}

return(list(mle.norm.mean=mle.norm.mean, mle.norm.sd=mle.norm.sd, aic.norm=aic.norm))

}

#####################################################################################

#### 9. logistic MLE function (k2)

logis.mle.fn <- function(grp.dat, start.loc, start.sc){

logL.logis <- function(loc, sc){

-sum(suppressWarnings(dlogis(grp.dat, location=loc, scale=sc, log=T)))
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}

mle.logis <- try(mle(minuslogl=logL.logis,

start=list(loc=start.loc, sc=start.sc),

method=’BFGS’), silent=T); #mle.logis

if(is(mle.logis, ’try-error’)){

mle.logis.mean <- mle.logis.sd <- aic.logis <- NA

}

else{

logis.coef <- as.vector(mle.logis@coef)

aic.logis <- AIC(mle.logis)

mle.logis.mean <- logis.coef[1]

mle.logis.sd <- logis.coef[2]*pi/sqrt(3)

}

return(list(mle.logis.mean=mle.logis.mean, mle.logis.sd=mle.logis.sd, aic.logis=aic.logis))

}

strt.scl.logis <- sigma.0*pi/sqrt(3)

#####################################################################################

#### 10. laplace MLE function (k1)

lap.mle.fn <- function(grp.dat){
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mle.lap.mean <- median(grp.dat)

b.hat <- sum(abs(grp.dat-mle.lap.mean))/length(grp.dat)

mle.lap.sd <- sqrt(2) * b.hat

lnlik <- -length(grp.dat)*log(2*b.hat) - sum(abs(grp.dat-mle.lap.mean))/b.hat

aic.lap <- (4-2*lnlik)

return(list(mle.lap.mean=mle.lap.mean, mle.lap.sd=mle.lap.sd, aic.lap=aic.lap))

}

#####################################################################################

#####################################################################################

#####################################################################################

## Running trial:

Rh.wa <- Obs.wa <- Grp.wa <- Unf.wa <- matrix(NA, ncol=n.trials, nrow=N)

Min.MOF <- Wt.denr <- matrix(NA, ncol=n.trials, nrow=N)

N.A.wa <- N.B.wa <- Mean.A.wa <- Mean.B.wa <- SD.A.wa <- SD.B.wa <- matrix(NA, ncol=n.trials, nrow=N)

eval(parse(text=paste0(paste0(’Rh.k’, k.mat,

’ <- MOF.k’, k.mat, ’ <- MOF.star.k’, k.mat,

’ <- Wt.numr.k’, k.mat, ’ <- Weight.k’, k.mat,

’ <- Obs.k’, k.mat, ’ <- Unf.k’, k.mat,
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’ <- N.A.k’, k.mat, ’ <- N.B.k’, k.mat,

’ <- SD.A.k’, k.mat, ’ <- SD.B.k’, k.mat,

’ <- Mean.A.k’, k.mat, ’ <- Mean.B.k’, k.mat,

sep=’’, collapse=’ <- ’),

’ <- matrix(NA, ncol=n.trials, nrow=N)’)))

for (j in 1:n.trials) {

#### normal randomization (k=1)

ld <- ld.in()

for (i in (ld$lead+1):N) {

A.df <- subset(ld$df, grp.wa=="A")$A.dat

B.df <- subset(ld$df, grp.wa=="B")$B.dat

##### for normal rho-hat (k=4) #####

norm.mle.A <- norm.mle.fn(grp.dat=A.df, start.mu=mu.A1, start.sigma=sigma.0)

norm.mle.B <- norm.mle.fn(grp.dat=B.df, start.mu=mu.B0, start.sigma=sigma.0)

if(is.na(norm.mle.A$mle.norm.mean) | is.na(norm.mle.A$mle.norm.sd) |

is.na(norm.mle.B$mle.norm.mean) | is.na(norm.mle.B$mle.norm.sd)) {
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break

} else {

ld$df$rho.hat.k4[i] <- rand(mean.A = norm.mle.A[[1]], sd.A = norm.mle.A[[2]],

mean.B = norm.mle.B[[1]], sd.B = norm.mle.B[[2]])

ld$df$xbar.A.k4[i] <- norm.mle.A[[1]]

ld$df$xbar.B.k4[i] <- norm.mle.B[[1]]

ld$df$s.A.k4[i] <- norm.mle.A[[2]]

ld$df$s.B.k4[i] <- norm.mle.B[[2]]

ld$df$grp.k4[i] <- with(ld$df, ifelse(U.k4[i] < rho.hat.k4[i], "A", "B"))

ld$df$resp.k4[i] <- with(ld$df, ifelse(grp.k4[i]=="A", A.dat[i], B.dat[i]))

ld$df$n.A.k4[i] <- sum(ld$df$grp.k4[1:i]==’A’, na.rm=T)

ld$df$n.B.k4[i] <- sum(ld$df$grp.k4[1:i]==’B’, na.rm=T)

}

ld$df$d.k4[i] <- norm.mle.fn(grp.dat=ld$df$resp.wa[1:(i-1)], start.mu=(mu.A1+mu.B0)/2,

start.sigma=sigma.0)[[3]]

##### for gamma rho-hat (k=3) #####

gam.mle.A <- gam.mle.fn(grp.dat=A.df, start.alpha=alpha.A1, start.beta=beta.A1)
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gam.mle.B <- gam.mle.fn(grp.dat=B.df, start.alpha=alpha.B0, start.beta=beta.B0)

if(is.na(gam.mle.A$mle.gam.mean) | is.na(gam.mle.A$mle.gam.sd) |

is.na(gam.mle.B$mle.gam.mean) | is.na(gam.mle.B$mle.gam.sd)) {

break

} else {

ld$df$rho.hat.k3[i] <- rand(mean.A=gam.mle.A$mle.gam.mean, sd.A=gam.mle.A$mle.gam.sd,

mean.B=gam.mle.B$mle.gam.mean, sd.B=gam.mle.B$mle.gam.sd)

ld$df$xbar.A.k3[i] <- gam.mle.A$mle.gam.mean

ld$df$xbar.B.k3[i] <- gam.mle.B$mle.gam.mean

ld$df$s.A.k3[i] <- gam.mle.A$mle.gam.sd

ld$df$s.B.k3[i] <- gam.mle.B$mle.gam.sd

ld$df$grp.k3[i] <- with(ld$df, ifelse(U.k3[i] < rho.hat.k3[i], "A", "B"))

ld$df$resp.k3[i] <- with(ld$df, ifelse(grp.k3[i]=="A", A.dat[i], B.dat[i]))

ld$df$n.A.k3[i] <- sum(ld$df$grp.k3[1:i]==’A’, na.rm=T)

ld$df$n.B.k3[i] <- sum(ld$df$grp.k3[1:i]==’B’, na.rm=T)

}

ld$df$d.k3[i] <- gam.mle.fn(grp.dat=ld$df$resp.wa[1:(i-1)],

start.alpha=(alpha.A1+alpha.B0)/2,

start.beta=(beta.A1+beta.B0)/2)[[3]]
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##### for logistic rho-hat (k=2) #####

logis.mle.A <- logis.mle.fn(grp.dat=A.df, start.loc=mu.A1, start.sc=strt.scl.logis)

logis.mle.B <- logis.mle.fn(grp.dat=B.df, start.loc=mu.B0, start.sc=strt.scl.logis)

if(is.na(logis.mle.A$mle.logis.mean) | is.na(logis.mle.A$mle.logis.sd) |

is.na(logis.mle.B$mle.logis.mean) | is.na(logis.mle.B$mle.logis.sd)) {

break

} else {

ld$df$rho.hat.k2[i] <- rand(mean.A = logis.mle.A[[1]], sd.A = logis.mle.A[[2]],

mean.B = logis.mle.B[[1]], sd.B = logis.mle.B[[2]])

ld$df$xbar.A.k2[i] <- logis.mle.A[[1]]

ld$df$xbar.B.k2[i] <- logis.mle.B[[1]]

ld$df$s.A.k2[i] <- logis.mle.A[[2]]

ld$df$s.B.k2[i] <- logis.mle.B[[2]]

ld$df$grp.k2[i] <- with(ld$df, ifelse(U.k2[i] < rho.hat.k2[i], "A", "B"))

ld$df$resp.k2[i] <- with(ld$df, ifelse(grp.k2[i]=="A", A.dat[i], B.dat[i]))

ld$df$n.A.k2[i] <- sum(ld$df$grp.k2[1:i]==’A’, na.rm=T)
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ld$df$n.B.k2[i] <- sum(ld$df$grp.k2[1:i]==’B’, na.rm=T)

}

ld$df$d.k2[i] <- logis.mle.fn(grp.dat=ld$df$resp.wa[1:(i-1)],

start.loc=(mu.A1+mu.B0)/2,

start.sc=strt.scl.logis)[[3]]

##### for laplace rho-hat (k=2) #####

lap.mle.A <- lap.mle.fn(grp.dat=A.df)

lap.mle.B <- lap.mle.fn(grp.dat=B.df)

if(is.na(lap.mle.A$mle.lap.mean) | is.na(lap.mle.A$mle.lap.sd) |

is.na(lap.mle.B$mle.lap.mean) | is.na(lap.mle.B$mle.lap.sd)){

break

} else {

ld$df$rho.hat.k1[i] <- rand(mean.A = lap.mle.A[[1]], sd.A = lap.mle.A[[2]],

mean.B = lap.mle.B[[1]], sd.B = lap.mle.B[[2]])

ld$df$xbar.A.k1[i] <- lap.mle.A[[1]]

ld$df$xbar.B.k1[i] <- lap.mle.B[[1]]

ld$df$s.A.k1[i] <- lap.mle.A[[2]]

ld$df$s.B.k1[i] <- lap.mle.B[[2]]
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ld$df$grp.k1[i] <- with(ld$df, ifelse(U.k1[i] < rho.hat.k1[i], "A", "B"))

ld$df$resp.k1[i] <- with(ld$df, ifelse(grp.k1[i]=="A", A.dat[i], B.dat[i]))

ld$df$n.A.k1[i] <- sum(ld$df$grp.k1[1:i]==’A’, na.rm=T)

ld$df$n.B.k1[i] <- sum(ld$df$grp.k1[1:i]==’B’, na.rm=T)

}

ld$df$d.k1[i] <- lap.mle.fn(grp.dat=ld$df$resp.wa[1:(i-1)])[[3]]

##### developing weights #####

eval(parse(text=paste0(’ld$df$d.0[i] <- min(’, paste0(’ld$df$d.k’, k.mat, ’[i]’,

sep=’’, collapse=’, ’), ’, na.rm=T)’)))

eval(parse(text=paste0(’ld$df$d.k’, k.mat, ’.star[i] <- with(ld$df, d.k’, k.mat,

’[i]-d.0[i])’, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’ld$df$w.numr.k’, k.mat, ’[i] <- exp(-0.5*ld$df$d.k’, k.mat,

’.star[i])’, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’ld$df$w.den[i] <- with(ld$df, ’,

paste0(’w.numr.k’, k.mat, ’[i]’, sep=’’, collapse=’ + ’), ’)’)))

eval(parse(text=paste0(’ld$df$w.k’, k.mat, ’[i] <- with(ld$df, w.numr.k’, k.mat,

’[i]/w.den[i])’, sep=’’, collapse=’; ’)))
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##### weighted-average randomization #####

eval(parse(text=paste0(’ld$df$rho.hat.wa[i] <- with(ld$df, ’,

paste0(’rho.hat.k’, k.mat, ’[i]*w.k’, k.mat, ’[i]’,

sep=’’, collapse=’ + ’), ’)’)))

ld$df$xbar.A.wa[i] <- mean(A.df)

ld$df$xbar.B.wa[i] <- mean(B.df)

ld$df$s.A.wa[i] <- sd(A.df)

ld$df$s.B.wa[i] <- sd(B.df)

ld$df$grp.wa[i] <- with(ld$df, ifelse(U.wa[i]<rho.hat.wa[i], ’A’, ’B’))

ld$df$resp.wa[i] <- with(ld$df, ifelse(grp.wa[i]==’A’, A.dat[i], B.dat[i]))

ld$df$n.A.wa[i] <- sum(ld$df$grp.wa[1:i]==’A’, na.rm=T)

ld$df$n.B.wa[i] <- sum(ld$df$grp.wa[1:i]==’B’, na.rm=T)

}

Obs.wa[,j] <- ld$df$resp.wa

Rh.wa[,j] <- ld$df$rho.hat.wa

Grp.wa[,j] <- ld$df$grp.wa

Unf.wa[,j] <- ld$df$U.wa
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Min.MOF[,j] <- ld$df$d.0

Wt.denr[,j] <- ld$df$w.den

N.A.wa[,j] <- ld$df$n.A.wa

N.B.wa[,j] <- ld$df$n.B.wa

Mean.A.wa[,j] <- ld$df$xbar.A.wa

Mean.B.wa[,j] <- ld$df$xbar.B.wa

SD.A.wa[,j] <- ld$df$s.A.wa

SD.B.wa[,j] <- ld$df$s.B.wa

eval(parse(text=paste0(’Rh.k’, k.mat, ’[,j] <- ld$df$rho.hat.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’Unf.k’, k.mat, ’[,j] <- ld$df$U.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’Obs.k’, k.mat, ’[,j] <- ld$df$resp.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’MOF.k’, k.mat, ’[,j] <- ld$df$d.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’MOF.star.k’, k.mat, ’[,j] <- ld$df$d.k’, k.mat, ’.star’, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’Wt.numr.k’, k.mat, ’[,j] <- ld$df$w.numr.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’Weight.k’, k.mat, ’[,j] <- ld$df$w.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’N.A.k’, k.mat, ’[,j] <- ld$df$n.A.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’N.B.k’, k.mat, ’[,j] <- ld$df$n.B.k’, k.mat, sep=’’, collapse=’; ’)))
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eval(parse(text=paste0(’SD.A.k’, k.mat, ’[,j] <- ld$df$s.A.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’SD.B.k’, k.mat, ’[,j] <- ld$df$s.B.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’Mean.A.k’, k.mat, ’[,j] <- ld$df$xbar.A.k’, k.mat, sep=’’, collapse=’; ’)))

eval(parse(text=paste0(’Mean.B.k’, k.mat, ’[,j] <- ld$df$xbar.B.k’, k.mat, sep=’’, collapse=’; ’)))

print(j)

}
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A.30 Chapter 4 Simulated Trial R Code

library(survival)

set.seed(1250)

rho.1 <- 0.75

rho.0 <- 0.5

HR.1 <- 1.5

type1 <- ’E’ ## data: exp

type2 <- ’NA’ ## RAR: nelson-aalen cumulative hazard

hr.sz <- ’L’ ## large HR

pct <- 20 ## heavy censoring

lpg <- 3

N <- 1000

n.trials <- 1000

Ntr <- ’1k’

tauu <- 8.1

#=================================================================================================

rcu.pd <- 85

R <- 85 /rcu.pd ### recruitment period (85 days) / 85
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D <- 100 /rcu.pd ### trial duration (100 days) / 85

days <- 30 /rcu.pd ### interested in 30-day survival / 85

### ^^^ idk if 30/85 is really looking at 30 days

#=================================================================================================

grp.labb <- c(’C’,’T’)

vrrs <- c(’tm.g’, ’ldin’, ’grp’, ’A0’, ’C0’, ’C1’, ’S0’, ’S1’, ’Z0’)

pwr.vrs.df <- c("z.stat", "pval", "rej", "HR.obs.NA", ’HR.obs.exp’)

pwr.vrs.est <- c(’zz.stat’, ’pvalu’, ’rejj’, ’hr.obs.na’, ’hr.obs.exp’)

#=================================================================================================

## 1. censoring function

xi.fn <- function(thta, DD, RR){

1 - thta/DD + exp(-DD/thta) * (thta/(DD*RR)) * (exp(RR/thta) * (2*thta-RR) - 2*thta)

}

#=================================================================================================

### to select control group parameters

tht.vec <- seq(from=15.9, to=16.1, by=0.00001) /rcu.pd

xi.thtv <- xi.fn(tht.vec, D, R)

xi.C.df0 <- data.frame(tht.vec, xi.thtv, bias=xi.thtv-(1-pct/100))
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### setting control group parms

tht.C1.init <- xi.C.df0$tht.vec[which.min(abs(xi.C.df0$bias))]

xi.C1.init <- xi.fn(tht.C1.init, D, R)

haz.C1.init <- 1/tht.C1.init

sd.tht.C1 <- tht.C1.init/sqrt(xi.C1.init)

### treatment group parameters

haz.T1.init <- haz.C1.init/HR.1

tht.T1.init <- 1/haz.T1.init

xi.T1.init <- xi.fn(tht.T1.init, D, R)

sd.tht.T1 <- tht.T1.init/sqrt(xi.T1.init)

##=================================================================================================

##=================================================================================================

## 2. survival randomization process

rand <- function(haz.T, haz.C, sd.tht.T, sd.tht.C, cc=0.01){

psi.T <- haz.T^(tauu/2)

psi.C <- haz.C^(tauu/2)

tt1 <- sd.tht.T*psi.C

tt2 <- sd.tht.C*psi.T
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rho.obs <- tt1 / (tt1 + tt2)

rho.hat <- ifelse(psi.T > 0 & psi.C > 0 & rho.obs < cc,

cc,

ifelse(psi.T > 0 & psi.C > 0 & cc <= rho.obs & rho.obs <= 1-cc,

rho.obs,

ifelse(psi.T > 0 & psi.C > 0 & rho.obs > 1-cc,

1-cc,

ifelse(psi.T > 0 & psi.C < 0,

cc,

ifelse(psi.T < 0 & psi.C > 0,

1-cc,

ifelse(psi.T < 0 & psi.C < 0

& sd.tht.T/sd.tht.C < sqrt(psi.T/psi.C),

1-cc,

cc))))))

return(rho.hat)

}

#=================================================================================================

#=================================================================================================
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## 3. deriving arrival & censoring data for both groups

# step 1: generating arrival and censoring data

# for both groups st arrival times < censor time

# and adding 50/50 C/T group variable for PBD(1) lead-in

ac.dat <- function(){

A0 <- sort(runif(N*2, 0, R)) ## U(0,1) arrival times

C0 <- runif(N*2, 0, D)

C1 <- C0+A0

grp <- rep(grp.labb, N)

df01 <- data.frame(A0, C0, C1, grp)

return(df01)

}

#=================================================================================================

#=================================================================================================

## 4. prepping the Z1/W0/T0 matrices

byt.df <- function(df01.spl, matr, clnm.txt){

dff <- as.data.frame(matr)

clnms <- paste0(’c(’, paste0("’", clnm.txt, ".t", 1:(nrow(df01.spl)-1), "’", sep=’’, collapse=’, ’),

", ’", clnm.txt, ".D’)", sep=’’, collapse=’’)

colnames(dff) <- eval(parse(text=clnms))

col.sums <- colSums(dff, na.rm=T)

return(list(dff=dff, col.sums=col.sums))
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}

#=================================================================================================

#=================================================================================================

## 5. deriving survival times

# step 2: splitting data by group to pull grp-specific survival time

# st survival times > its corresponding arrival time

df.split <- function(df01, grp.lab, grp.tht){

df01.gp <- subset(df01, grp==grp.lab)

df01.gp$S0 <- rexp(nrow(df01.gp), rate=1/grp.tht)

df01.gp$S1 <- with(df01.gp, S0+A0)

df01.gp$Z0 <- with(df01.gp, pmin(S1, C1, D))

df01.spl <- df01.gp #rbind.data.frame(df01.gp, c(D, rep(NA, ncol(df01.gp)-1)))

df01.spl$tm.g <- 1:nrow(df01.spl)

Z1.mat <- W0.mat <- matrix(NA, nrow=nrow(df01.spl)-1, ncol=nrow(df01.spl))

Cnt.mat <- T0.mat <- matrix(NA, nrow=nrow(df01.spl)-1, ncol=nrow(df01.spl))

for(n. in 2:nrow(df01.spl)){

cnt0 <- with(df01.spl, 1*(A0[n.]>=Z0[1:(n.-1)]))

z1 <- with(df01.spl, ifelse(A0[n.]<Z0[1:(n.-1)], A0[n.], Z0[1:(n.-1)]))

w0 <- with(df01.spl, 1*(z1==S1[1:(n.-1)]))

t0 <- with(df01.spl, z1-A0[1:(n.-1)])
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Cnt.mat[,n.] <- c(cnt0, rep(NA, nrow(df01.spl)-n.))

Z1.mat[,n.] <- c(z1, rep(NA, nrow(df01.spl)-n.))

W0.mat[,n.] <- c(w0, rep(NA, nrow(df01.spl)-n.))

T0.mat[,n.] <- c(t0, rep(NA, nrow(df01.spl)-n.))

}

Cnt.mat[1,1] <- Z1.mat[1,1] <- W0.mat[1,1] <- T0.mat[1,1] <- 0

Cntt <- byt.df(df01.spl, Cnt.mat, ’cnt’)

Cnt.df <- Cntt$dff

df01.spl$cnt <- Cntt$col.sums

ZZ1 <- byt.df(df01.spl, Z1.mat, ’Z1’)

Z1.df <- ZZ1$dff

WW0 <- byt.df(df01.spl, W0.mat, ’W0’)

W0.df <- WW0$dff

df01.spl$W0.sums <- WW0$col.sums

TT0 <- byt.df(df01.spl, T0.mat, ’T0’)

T0.df <- TT0$dff

# step 5: creating indicator for number of observed outcomes

# up to lpg-many for lead-in group
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df01.spl$ldin00 <- 0

df01.spl$ldin00[which(df01.spl$cnt<lpg)] <- 1

return(list(df01.spl=df01.spl, Cnt.df=Cnt.df, Z1.df=Z1.df, W0.df=W0.df, T0.df=T0.df))

}

#=================================================================================================

#=================================================================================================

## 6. data derivation, full trial

full.dat <- function(){

df01 <- ac.dat()

repeat{

# step 6: df.split function above to generate full group-specific data

dfspl.C <- df.split(df01, ’C’, tht.C1.init)

dfspl.T <- df.split(df01, ’T’, tht.T1.init)

df01.C <- dfspl.C$df01.spl

df01.T <- dfspl.T$df01.spl

# step 7: ensuring equal-sized lead-in by taking the max lpg from each group (df01.g$ldin)

ld.sz.C <- sum(df01.C$ldin00)

ld.sz.T <- sum(df01.T$ldin00)
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ld.sz.gp <- max(ld.sz.C, ld.sz.T)

# step 8: pulling the group-specific lead-in data (df02.g)

# step 9: ensuring at least one event in each lead-in group (resulting data: df02.chk.g)

# else, re-run until true (hence repeat loop) [shouldn’t be a problem most of the time]

tmp2 <- paste0(’df01.’, grp.labb, ’$ldin <- 0; ’,

’df01.’, grp.labb, ’$ldin[df01.’, grp.labb, ’$tm.g %in% 1:ld.sz.gp] <- 1; ’,

’df02.’, grp.labb, ’ <- df01.’, grp.labb, ’[which(df01.’, grp.labb, ’$ldin==1),]; ’,

’df02.chk.’, grp.labb, ’ <- df02.’, grp.labb, ’[with(df02.’, grp.labb,

’, which(A0[nrow(df02.’, grp.labb, ’)]>=Z0)),]’)

eval(parse(text=tmp2))

if(sum(df02.chk.T$W0.sums)>=1 & sum(df02.chk.C$W0.sums)>=1){

break

}

}

eval(parse(text=paste0(’Cnt.df.’, grp.labb, ’ <- dfspl.’, grp.labb, ’$Cnt.df; ’,

’Z1.df.’, grp.labb, ’ <- dfspl.’, grp.labb, ’$Z1.df; ’,

’W0.df.’, grp.labb, ’ <- dfspl.’, grp.labb, ’$W0.df; ’,

’T0.df.’, grp.labb, ’ <- dfspl.’, grp.labb, ’$T0.df’)))

df01.C$ldin00 <- df01.T$ldin00 <- NULL

df01.C$cnt <- df01.T$cnt <- NULL

df01.C$W0.sums <- df01.T$W0.sums <- NULL
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df02 <- rbind.data.frame(df01.C, df01.T)

df03 <- df02[order(df02$A0),]

df04 <- df03[which(df03$ldin==1),]

df04.NA <- as.data.frame(matrix(NA, nrow=N-nrow(df04), ncol=ncol(df04)))

colnames(df04.NA) <- colnames(df04)

df05 <- rbind.data.frame(df04, df04.NA)

df05b <- df05[vrrs]

df06a <- cbind.data.frame(tm=1:nrow(df05), df05b)

df06a$rho.hat <- ifelse(df06a$ldin==1, 0.5, NA)

df06a$U <- rep(NA, nrow(df06a))

df06a$U[which(is.na(df06a$ldin))] <- runif(nrow(df04.NA))

df06a$ldin[which(is.na(df06a$ldin))] <- 0

tmg.value <- df06a$tm.g[sum(df06a$ldin)]+1

df06a$tm.g[which(df06a$ldin==0)] <- tmg.value:(tmg.value+sum(df06a$ldin==0)-1)

haz.T <- haz.C <- n.T <- n.C <- xii.T <- xii.C <- rep(NA, nrow(df06a))

z.stat <- pval <- rej <- HR.obs.NA <- HR.obs.exp <- rep(NA, nrow(df06a))

tht.T <- tht.C <- sd.tht.T <- sd.tht.C <- rep(NA, nrow(df06a))

z1.sum.C <- w0.sum.C <- t0.sum.C <- z1.sum.T <- w0.sum.T <- t0.sum.T <- rep(NA, nrow(df06a))

Ht.exp.C <- Ht.exp.T <- Ht.NA.C <- Ht.NA.T <- se.Ht.NA.C <- se.Ht.NA.T <- rep(NA, nrow(df06a))
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tmp3 <- data.frame(z1.sum.C, w0.sum.C, t0.sum.C, z1.sum.T, w0.sum.T, t0.sum.T,

tht.T, tht.C, xii.T, xii.C, haz.T, haz.C, sd.tht.T, sd.tht.C,

n.T, n.C, z.stat, pval, rej, HR.obs.NA, HR.obs.exp,

Ht.exp.C, Ht.exp.T, Ht.NA.C, Ht.NA.T, se.Ht.NA.C, se.Ht.NA.T)

df06 <- cbind.data.frame(df06a, tmp3)

return(list(ld.sz.C=ld.sz.C, ld.sz.T=ld.sz.T, ld.sz.gp=ld.sz.gp,

df01.T=df01.T, df01.C=df01.C, df03=df03, df06=df06))

}

##############################################################################################

set.seed(220)

trial.dat <- full.dat()

df03 <- trial.dat$df03

Z1.C <- with(df03, ifelse(A0[nrow(df03)]<Z0[1:(nrow(df03)-1)], A0[nrow(df03)], Z0[1:(nrow(df03)-1)]))

W0.C <- with(df03, 1*(Z1.C==S1[1:(nrow(df03)-1)]))

T0.C <- with(df03, Z1.C-A0[1:(nrow(df03)-1)])

cdf0 <- cbind.data.frame(Z1.C, W0.C, T0.C)

cdf0$da.C <- da.C <- 1*(Z1.C<days)

##############################################################################################

191



set.seed(220)

fitKM.C1 <- survfit(Surv(T0.C, W0.C) ~ 1)

tm.untl1 <- sum(fitKM.C1$time<days)

sum(da.C); sum(tm.untl1)

ht.NA.fit.C1 <- with(fitKM.C1, n.event/n.risk)

Ht.NA.fit.C1 <- cumsum(ht.NA.fit.C1)

var.Ht.NA.fit.C1 <- cumsum(with(fitKM.C1, n.event/n.risk^2))

v.Ht.NA.fit.C1 <- var.Ht.NA.fit.C1*length(T0.C)

se.Ht.NA.fit.C1 <- sqrt(v.Ht.NA.fit.C1)

haz.C.df1 <- data.frame(time=fitKM.C1$time, ht.NA.fit.C1, Ht.NA.fit.C1,

var.Ht.NA.fit.C1, v.Ht.NA.fit.C1, se.Ht.NA.fit.C1)

# tm.untl=1*(fitKM.C1$time<days))

tm.dat.C1 <- haz.C.df1[tm.untl1,]

Ht.NA.C1 <- tm.dat.C1$Ht.NA.fit.C1

se.Ht.NA.C1 <- tm.dat.C1$se.Ht.NA.fit.C1

haz.exp.C.df1 <- data.frame(time=fitKM.C1$time, Ht.exp.C=fitKM.C1$time/tht.C1.init,

tm.untl1=1*(fitKM.C1$time<days))

tm.dat.C1 <- haz.exp.C.df1[tm.untl1,]

Ht.exp.C1 <- tm.dat.C1$Ht.exp.C
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Ht.NA.C1; se.Ht.NA.C1; Ht.exp.C1

##############################################################################################

set.seed(220)

fitKM.C2 <- survfit(Surv(Z1.C, W0.C) ~ 1)

tm.untl2 <- sum(fitKM.C2$time<days)

sum(da.C);

sum(tm.untl2)

ht.NA.fit.C2 <- with(fitKM.C2, n.event/n.risk)

Ht.NA.fit.C2 <- cumsum(ht.NA.fit.C2)

var.Ht.NA.fit.C2 <- cumsum(with(fitKM.C2, n.event/n.risk^2))

v.Ht.NA.fit.C2 <- var.Ht.NA.fit.C2*length(Z1.C)

se.Ht.NA.fit.C2 <- sqrt(v.Ht.NA.fit.C2)

haz.C.df2 <- data.frame(time=fitKM.C2$time, ht.NA.fit.C2, Ht.NA.fit.C2,

var.Ht.NA.fit.C2, v.Ht.NA.fit.C2, se.Ht.NA.fit.C2)

#tm.untl=1*(fitKM.C2$time<days))

tm.dat.C2 <- haz.C.df2[tm.untl2,]

Ht.NA.C2 <- tm.dat.C2$Ht.NA.fit.C2

se.Ht.NA.C2 <- tm.dat.C2$se.Ht.NA.fit.C2
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haz.exp.C.df2 <- data.frame(time=fitKM.C2$time, Ht.exp.C=fitKM.C2$time/tht.C1.init,

tm.untl2=1*(fitKM.C2$time<days))

tm.dat.C2 <- haz.exp.C.df2[tm.untl2,]

Ht.exp.C2 <- tm.dat.C2$Ht.exp.C

Ht.NA.C1; se.Ht.NA.C1; Ht.exp.C1

Ht.NA.C2; se.Ht.NA.C2; Ht.exp.C2

##-------------------------------------------------------------------------------------------------------

##-------------------------------------------------------------------------------------------------------

##-------------------------------------------------------------------------------------------------------

##-------------------------------------------------------------------------------------------------------

Rh <- Gp <- Uf <- Tm.Grp <- matrix(NA, ncol=n.trials, nrow=N)

N.T <- N.C <- Xi.T <- Xi.C <- matrix(NA, ncol=n.trials, nrow=N)

HR.Obs.NA <- HR.Obs.Exp <- matrix(NA, ncol=n.trials, nrow=N)

Z.Stat <- Pval <- Rej <- matrix(NA, ncol=n.trials, nrow=N)
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Haz.T <- Haz.C <- Tht.T <- Tht.C <- SD.Tht.T <- SD.Tht.C <- matrix(NA, ncol=n.trials, nrow=N)

A0.obs <- C0.Obs <- C1.Obs <- S0.Obs <- S1.Obs <- Z0.Obs <- matrix(NA, ncol=n.trials, nrow=N)

Z1.Sums.C <- W0.Sums.C <- T0.Sums.C <- matrix(NA, ncol=n.trials, nrow=N)

Z1.Sums.T <- W0.Sums.T <- T0.Sums.T <- matrix(NA, ncol=n.trials, nrow=N)

lead.vec <- ld.C.vec <- ld.T.vec <- rep(NA, n.trials)

CumHaz.NA.C <- CumHaz.NA.T <- CumHaz.Exp.C <- CumHaz.Exp.T <- matrix(NA, ncol=n.trials, nrow=N)

SE.CumHaz.NA.C <- SE.CumHaz.NA.T <- matrix(NA, ncol=n.trials, nrow=N)

for(j in 1:n.trials){

trial.dat <- full.dat()

ld.sz.T <- trial.dat$ld.sz.T

ld.sz.C <- trial.dat$ld.sz.C

ld.sz.gp <- trial.dat$ld.sz.gp

df03 <- trial.dat$df03

df06 <- trial.dat$df06

lead <- ld.sz.gp*2

remainder <- nrow(df06)-lead
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## initial saving

lead.vec[j] <- lead

ld.C.vec[j] <- ld.sz.C

ld.T.vec[j] <- ld.sz.T

Uf[,j] <- df06$U

Tm.Grp[,j] <- df06$tm.g

for(rem. in 1:remainder){

ii <- lead+rem.

tm.i <- ii

tm.grp <- df06$tm.g[ii]

###### control data and MLE estimation

C.df.06 <- df06[which(df06$grp==’C’), vrrs]

C.df.03 <- df03[with(df03, which(grp==’C’ & tm.g==tm.grp)), vrrs]

C.df.0 <- rbind.data.frame(C.df.06, C.df.03)

Z1.C <- with(C.df.0, ifelse(A0[nrow(C.df.0)]<Z0[1:(nrow(C.df.0)-1)],

A0[nrow(C.df.0)], Z0[1:(nrow(C.df.0)-1)]))
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W0.C <- with(C.df.0, 1*(Z1.C==S1[1:(nrow(C.df.0)-1)]))

T0.C <- with(C.df.0, Z1.C-A0[1:(nrow(C.df.0)-1)])

da.C <- 1*(Z1.C<days)

tht.C <- sum(T0.C)/sum(W0.C)

xii.C <- xi.fn(tht.C, D, R)

haz.C <- 1/tht.C

sd.tht.C <- tht.C/sqrt(xii.C)

fitKM.C <- survfit(Surv(T0.C, W0.C) ~ 1)

tm.untl <- sum(fitKM.C$time<days)

ht.NA.fit.C <- with(fitKM.C, n.event/n.risk)

Ht.NA.fit.C <- cumsum(ht.NA.fit.C)#/length(T0.C)

# var.Ht.NA.fit.C <- cumsum(with(fitKM.C, ((n.risk-n.event)/(n.risk-1))*(n.event/n.risk^2)))

var.Ht.NA.fit.C <- cumsum(with(fitKM.C, n.event/n.risk^2))#/length(T0.C)

v.Ht.NA.fit.C <- var.Ht.NA.fit.C*length(T0.C)

se.Ht.NA.fit.C <- sqrt(v.Ht.NA.fit.C)
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haz.C.df <- data.frame(time=fitKM.C$time, ht.NA.fit.C, Ht.NA.fit.C,

var.Ht.NA.fit.C, v.Ht.NA.fit.C, se.Ht.NA.fit.C,

tm.untl=1*(fitKM.C$time<days))

tm.dat.C <- haz.C.df[tm.untl,]

Ht.NA.C <- tm.dat.C$Ht.NA.fit.C

se.Ht.NA.C <- tm.dat.C$se.Ht.NA.fit.C

haz.exp.C.df <- data.frame(time=fitKM.C$time, Ht.exp.C=fitKM.C$time/tht.C,

tm.untl=1*(fitKM.C$time<days))

tm.dat.C <- haz.exp.C.df[tm.untl,]

Ht.exp.C <- tm.dat.C$Ht.exp.C

# windows(height=5, width=8)

# plot(x=haz.C.df$time, y=haz.C.df$Ht.NA.fit.C, type=’S’)

# abline(v=days, lty=2, col=’darkgrey’)

# abline(h=haz.C.df[tm.untl,3], lty=2, col=’darkgrey’)

###### trt data and MLE estimation

T.df.06 <- df06[which(df06$grp==’T’), vrrs]

T.df.03 <- df03[with(df03, which(grp==’T’ & tm.g==tm.grp)), vrrs]

T.df.0 <- rbind.data.frame(T.df.06, T.df.03)
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Z1.T <- with(T.df.0, ifelse(A0[nrow(T.df.0)]<Z0[1:(nrow(T.df.0)-1)],

A0[nrow(T.df.0)], Z0[1:(nrow(T.df.0)-1)]))

W0.T <- with(T.df.0, 1*(Z1.T==S1[1:(nrow(T.df.0)-1)]))

T0.T <- with(T.df.0, Z1.T-A0[1:(nrow(T.df.0)-1)])

tht.T <- sum(T0.T)/sum(W0.T)

xii.T <- xi.fn(tht.T, D, R)

haz.T <- 1/tht.T

sd.tht.T <- tht.T/sqrt(xii.T)

fitKM.T <- survfit(Surv(T0.T, W0.T) ~ 1)

tm.untl.T <- sum(fitKM.T$time<days)

ht.NA.fit.T <- with(fitKM.T, n.event/n.risk)

Ht.NA.fit.T <- cumsum(ht.NA.fit.T)

var.Ht.NA.fit.T <- cumsum(with(fitKM.T, n.event/n.risk^2))

v.Ht.NA.fit.T <- var.Ht.NA.fit.T*length(T0.T)

se.Ht.NA.fit.T <- sqrt(v.Ht.NA.fit.T)

haz.T.df <- data.frame(time=fitKM.T$time, ht.NA.fit.T, Ht.NA.fit.T,

var.Ht.NA.fit.T, v.Ht.NA.fit.T, se.Ht.NA.fit.T,

tm.untl.T=1*(fitKM.T$time<days))

tm.dat.T <- haz.T.df[tm.untl.T,]

Ht.NA.T <- tm.dat.T$Ht.NA.fit.T
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se.Ht.NA.T <- tm.dat.T$se.Ht.NA.fit.T

haz.exp.T.df <- data.frame(time=fitKM.T$time, Ht.exp.T=fitKM.T$time/tht.T,

tm.untl.T=1*(fitKM.T$time<days))

tm.dat.T <- haz.exp.T.df[tm.untl.T,]

Ht.exp.T <- tm.dat.T$Ht.exp.T

###### putting estimated parms into overall data frame matrix

tmp5 <- paste0(’df06$tht.’, grp.labb, ’[tm.i-1] <- tht.’, grp.labb, ’; ’,

’df06$xii.’, grp.labb, ’[tm.i-1] <- xii.’, grp.labb, ’; ’,

’df06$haz.’, grp.labb, ’[tm.i-1] <- haz.’, grp.labb, ’; ’,

’df06$sd.tht.’, grp.labb, ’[tm.i-1] <- sd.tht.’, grp.labb, ’; ’,

’df06$n.’, grp.labb, ’[tm.i-1] <- nrow(’, grp.labb, ’.df.06); ’,

’df06$z1.sum.’, grp.labb, ’[tm.i-1] <- sum(Z1.’, grp.labb, ’); ’,

’df06$w0.sum.’, grp.labb, ’[tm.i-1] <- sum(W0.’, grp.labb, ’); ’,

’df06$t0.sum.’, grp.labb, ’[tm.i-1] <- sum(T0.’, grp.labb, ’)’)

eval(parse(text=tmp5))

eval(parse(text=paste0(’df06$Ht.NA.’, grp.labb, ’[tm.i-1] <- Ht.NA.’, grp.labb, ’; ’,

’df06$se.Ht.NA.’, grp.labb, ’[tm.i-1] <- se.Ht.NA.’, grp.labb, ’; ’,

’df06$Ht.exp.’, grp.labb, ’[tm.i-1] <- Ht.exp.’, grp.labb)))
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###### randomization

df06$rho.hat[tm.i] <- with(df06[tm.i-1,], rand(Ht.NA.T, Ht.NA.C, se.Ht.NA.T, se.Ht.NA.C))

df06$grp[tm.i] <- with(df06[tm.i,], ifelse(U<rho.hat, ’T’, ’C’))

if(df06$grp[tm.i]==’C’){

df.add <- C.df.03

} else {

df.add <- T.df.03

}

eval(parse(text=paste0(’df06$’, vrrs, ’[tm.i] <- df.add$’, vrrs)))

###### testing for power

zz.stat <- (Ht.NA.C - Ht.NA.T) / sqrt(se.Ht.NA.C^2 + se.Ht.NA.T^2)

pvalu <- 2*pnorm(-abs(zz.stat))

rejj <- 1*(pvalu<0.05)

hr.obs.na <- Ht.NA.C/Ht.NA.T

hr.obs.exp <- haz.C/haz.T

eval(parse(text=paste0(’df06$’, pwr.vrs.df, ’[tm.i] <- ’, pwr.vrs.est)))

}

Rh[,j] <- df06$rho.hat

Gp[,j] <- df06$grp

CumHaz.NA.C[,j] <- df06$Ht.NA.C
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CumHaz.NA.T[,j] <- df06$Ht.NA.T

SE.CumHaz.NA.C[,j] <- df06$se.Ht.NA.C

SE.CumHaz.NA.T[,j] <- df06$se.Ht.NA.T

CumHaz.Exp.C[,j] <- df06$Ht.exp.C

CumHaz.Exp.T[,j] <- df06$Ht.exp.T

N.T[,j] <- df06$n.T

N.C[,j] <- df06$n.C

Xi.T[,j] <- df06$xii.T

Xi.C[,j] <- df06$xii.C

Z.Stat[,j] <- df06$z.stat

Pval[,j] <- df06$pval

Rej[,j] <- df06$rej

HR.Obs.NA[,j] <- df06$HR.obs.NA

HR.Obs.Exp[,j] <- df06$HR.obs.exp

Haz.T[,j] <- df06$haz.T

Haz.C[,j] <- df06$haz.C

Tht.T[,j] <- df06$tht.T

Tht.C[,j] <- df06$tht.C

SD.Tht.T[,j] <- df06$sd.tht.T

SD.Tht.C[,j] <- df06$sd.tht.C
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A0.obs[,j] <- df06$A0

C0.Obs[,j] <- df06$C0

C1.Obs[,j] <- df06$C1

S0.Obs[,j] <- df06$S0

S1.Obs[,j] <- df06$S1

Z0.Obs[,j] <- df06$Z0

Z1.Sums.C[,j] <- df06$z1.sum.C

W0.Sums.C[,j] <- df06$w0.sum.C

T0.Sums.C[,j] <- df06$t0.sum.C

Z1.Sums.T[,j] <- df06$z1.sum.T

W0.Sums.T[,j] <- df06$w0.sum.T

T0.Sums.T[,j] <- df06$t0.sum.T

print(j)

}
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