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Radiation oncology is the field of medicine that deals with treating cancer pa-

tients through ionizing radiation. The clinical modality or technique used to treat the

cancer patients in the radiation oncology domain is referred to as radiation therapy.

Radiation therapy aims to deliver precisely measured dose irradiation to a defined

tumor volume (target) with as minimal damage as possible to surrounding healthy

tissue (organs-at-risk), resulting in eradication of the tumor, high quality of life, and

prolongation of survival. A typical radiotherapy process requires the use of different

clinical systems at various stages of the workflow. The data generated in these differ-

ent stages of workflow is stored in an unstructured and non-standard format, which

hinders interoperability and interconnectivity of data, thereby making it difficult to

translate all of these datasets into knowledge that supports decision-making in routine

clinical practice. In this dissertation, we present an enterprise-level informatics plat-

form that can automatically extract and efficiently store clinical, treatment, imaging,
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and genomics data from radiation oncology patients. Additionally, we propose data

science methods for data standardization, safety, and treatment quality analysis in ra-

diation oncology. We demonstrate that our data standardization methods using word

embeddings and machine learning are robust and highly generalizable on real-word

clinical datasets collected from the nationwide radiation therapy centers administered

by the US Veterans’ Health Administration. We also present different heterogeneous

data integration approaches to enhance the data standardization process. For patient

safety, we analyze the radiation oncology incident reports and propose an integrated

natural language processing and machine learning based pipeline to automate the in-

cident triage and prioritization process. We demonstrate that a deep learning based

transfer learning approach helps in the automated incident triage process. Finally, we

address the issue of treatment quality in terms of automated treatment planning in

clinical decision support systems. We show that supervised machine learning methods

can efficiently generate clinical hypotheses from radiation oncology treatment plans

and demonstrate our framework’s data analytics capability.
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CHAPTER 1

INTRODUCTION

In the domain of radiation oncology, large amounts of data are captured routinely

across several clinical systems over the course of patients’ treatment. The electronic

health record (EHR) systems are used to document clinical data, which are often

stored in free text and unstructured format, wherein key data fields become difficult

to abstract for any subsequent data mining efforts. For each patient treated by the

radiation oncology department, clinical documentation in the EHR includes the fol-

lowing: (1) a detailed initial consultation note; (2) a simulation note describing the

treatment simulation procedure; (3) a treatment planning note documenting the pre-

scription and proposed treatment plan; (4) a weekly On Treatment Visit (OTV) note

from the staff physician review of patient’s treatment progress and documenting acute

side effects; (5) a treatment summary or survivorship care plan for the patient and

referring provider at completion of therapy; and (6) routine follow-up notes tracking

disease outcomes and any late toxicities. These clinical notes are usually dictated on

the telephone, transcribed and imported into the EHR as preliminary documents, and

edited by the dictation provider before finalization. There is a wealth of information

in these clinical notes for big data applications but the challenge is to capture this

data in a discrete format as part of the standard clinical workflow.

The dosimetry data from the treatment planning systems (TPS) which includes

the treatment plan, images, dose, structure set, and dose-volume information are

stored in structured formats by following the DICOM-RT standard and TG-263

nomenclature [1]. Additionally, the radiotherapy treatment management system
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(RTMS) contains information regarding the Radiotherapy (RT) dose delivery, frac-

tions, visits. Each of these clinical systems store data for different purposes, in dif-

ferent formats and in different databases and also employ different mechanisms for

sharing these data. For example, the radiation oncologist must access the two software

systems mentioned above to clinically manage patients. Moreover, most RT product

vendors have no incentive in accommodating each other’s data or translate their data

format into a standardized nomenclature. The lack of inter-connectivity and inter-

operability of RT software systems have made the process of data sharing and/or

transfer cumbersome and difficult. Hence, valuable clinical and radiation treatment

data unfortunately remain trapped behind such proprietary software systems.

The second challenge is that if RT data are manually aggregated and stored

in one database, it becomes extremely difficult to clean, parse, collate and scale the

data intelligibly. This prevents the ability to create a coherent picture of the patient’s

comprehensive clinical and treatment record into a single format capable of further

utilities and data analytics. This is largely because physician’s clinical assessments

and diagnoses are often stored as free-text notes, making it extremely difficult to

extract critical information with enough accuracy on an automated level. Owing to

such challenges, many research and operational tasks that deal with the optimization

of quality of care, research-based analysis of RT treatments, diagnosis-based research

and development of computer-aided diagnostic tools at infrastructural level are dif-

ficult to perform. To this end, the National Radiation Oncology Program (NROP)

office at the US Veterans’ Health Administration (VHA) designed an initiative to de-

velop an integrated enterprise-wide data curation, storage and analytics portal, called

HINGE (Health Information Gateway and Exchange). HINGE is electronically con-

nected to the EHR, TMS and TPS with a specific goal of enabling big data analytics

in radiation oncology. It is an automatic data aggregator that collates data from dif-
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ferent radiotherapy clinical systems/IT applications. It processes the treatment data

for quality assessment, predictive analytics and other enterprise-driven clinical infor-

matics solutions within a single online data portal. Additionally, HINGE’s design and

infrastructure caters to the imminent need for a research-based practice environment

and is cognizant of the role of advanced modern computational strategies involving

big-data predictive analytics and clinical informatics.

In this dissertation, we present an agile and scalable software architecture of

the HINGE system and different data science approaches to solve the issues related

to data standardization, patient safety, and treatment quality assurance in radiation

oncology.

In Chapter 2, we present the details of the different clinical systems that were used

in data collection along with a workflow of the radiation therapy treatment process

to motivate a high-level software architecture for the enterprise-level HINGE system.

We also present an outline of the data science methods and relevant evaluation metrics

that were employed in this dissertation.

In Chapter 3 and 4, we present the different approaches to standardize the ra-

diotherapy structure names. Specific contributions of Chapter 3 are as follows.

1. We present a machine learning approach to standardize the radiotherapy struc-

ture names that can automatically convert the arbitrary physician-given struc-

ture names to the domain wide TG-263 based nomenclature.

2. We demonstrate that a relatively small amount of data from each treatment

center is enough to build a generalizable machine learning model, which a simple

text mapping cannot achieve.

3. We establish that our proposed approach is disease site agnostic, i.e., it can be

used on multiple disease sites.
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4. We also demonstrate that physician-given names hold enough information about

the structures that can be utilized to predict the standard names in TG-263.

5. Finally, we create a scalable approach that requires little to no preprocessing.

In Chapter 4, we address the limitations of structure name standardization using

solely physician-given names and present an approach that utilizes the geometric

information of structures for standardization. Specific contributions of this chapter

are as follows.

1. We demonstrate that the use of bony anatomy information along with structures

helps in the standardization process using geometric information.

2. We show that even target structure can be identified along with the Organs at

Risk (OARs) with the physician-given names.

3. We demonstrate that it is still challenging to predict the standard name with

just geometric information in real-world clinical datasets.

4. We finally demonstrate that integrating physician-given structure names with

geometric information of structures improves the overall structure name stan-

dardization process.

In Chapter 5, we focus on the safety aspects of radiation oncology. We specifically

looked at the triage process in incident learning system. In this chapter, we present

machine learning approaches to automatically identify incident severity with an over-

arching goal of automating the incident triage and prioritization process. Specific

contribution of this chapter are as follows.

1. We present an approach to automatically identify the severity of the radiation

oncology incidents using the textual incident description.
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2. We demonstrate that identifying the severity is a challenging problem when it

comes to classifying the incidents into the four possible categories using just the

incident description. However, merging severity types into two categories (High

and Low severities) results in much better classification accuracy considering

the incident report data from multiple VHA radiation oncology centers as well

as the VCU medical center datasets.

3. We next demonstrate that transfer learning does help in the severity prediction

process specifically considering multi-institution data that may each follow a

different protocol for recording the incident reports.

4. We show that incident reports are correlated with institutional practices and

there is a need for standardized incident reporting guidelines to reduce the

subjective incident analysis practices.

Finally, in Chapter 6, we consider the treatment quality component of the radi-

ation therapy process.

1. We present feature engineering methods to analyze the treatment selection prac-

tices for High or Intermediate risk prostate cancer patients across 34 different

VHA radiation therapy centers.

2. We demonstrate that there is an inherent bias in the treatment selection process

at the VHA treatment centers. The selected treatments deviate from the NCCN

guidelines and there is little to no correlation for this deviation with specific

treatment center attributes such as, number of radiation oncologists, radiation

therapists, other staff or treatment resources.

Figure 1 shows the dissertation outline. Chapters 3 and 4 use material from four
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different publications [2, 3, 4, 5]. Chapter 5, uses material from [6, 7]. Chapter 6 uses

the material from [8, 9].

Fig 1: Thesis contribution flow chart. Contributions are done in three domains in

radiation oncology: standardization, safety, and quality assurance.
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CHAPTER 2

BACKGROUND

2.1 Radiation Therapy Process

It is imperative to understand the layout and structure of RT clinical workflow

while building solutions for the issues involved. The RT clinical workflow can be

divided into four steps. Figure 2 shows the RT clinical workflow. The steps involved

in the RT workflow are mentioned below.

• Consultation: In this step, patients meet with a radiation oncologist and they

both go through the available treatment options. The radiation oncologist asks

a series of questions to determine the best possible treatment options.

• Treatment Planning: The radiation oncologist scans the patients using CT

or MRI and simulates the radiation treatment to determine the best course

of treatment. Simulation involves the identification of the target (tumor) and

neighboring anatomical structures to ensure minimal radiation exposure to the

healthy tissues.

• Treatment Delivery: In this step, the actual treatment is delivered. It in-

volves keeping a record of the treatment delivered and scanning to enable mod-

ifications to the treatment according to the patient’s response to the treatment.

• Follow-up: Once the treatment is complete, radiation oncologists set up a

series of follow up meetings with the patients to keep track of the disease. It also

helps the patients in providing details on their quality of life, post-treatment,
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and receive appropriate care to improve it.

Fig 2: Typical radiotherapy clinical workflow. Four major steps in RT process are

shown and type of data generated in each step is shown on the right.

Each patient encounter or a set of encounters is documented in different clinical

systems within the department as the patient progresses through the sequential ra-

diotherapy (RT) workflow. Figure 3 shows the clinical workflow and the respective

clinical system used in each step of the RT process.

Electronic Health Records (EHRs) are a digital version of a patient’s paper chart.

EHRs are real-time, patient-centered records that make information available in-

stantly and securely to authorized users. On the other hand, treatment planning

systems (TPS) contain information about a prescribed radiation therapy treatment

plan by physicians and dosimetrists. Treatment management systems (TMS) use

plans generated by the TPS as input and deliver the radiation to the patient. These

individual systems often comprise of proprietary software that records and documents
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Fig 3: Encounters between physicians and patients during the entire treatment. The

information is recorded in different clinical IT systems: EHR, TPS and TMS.

this information. Besides these clinical systems, most of the radiation oncology de-

partments make use of incident learning systems (ILS). This system is used to report

incidents that occur at all stages of the RT workflow. A major quality enhancement

criteria for the ILS system is to be able to automatically classify incident reports into

different severity categories as addressed in this dissertation. This is needed to opti-

mize the operations and resources allocated to attend to incidents of varying severity

and improve the overall quality of care.

These independent clinical systems have their own interfaces, proprietary data

format and databases which are not interoperable with each other. Data from all

these systems need to be extracted which in itself is a giant institutional task since

it involves integrating research-based modules (i.e., algorithms, machine learning and

natural language processing) with clinical systems (i.e., data). Such a transition from

concepts to applications needs a new layered software infrastructure, as shown in

Figure 4 [2].

Treatment data of patients has to be routinely accessed from the clinical tier,
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Fig 4: Overview of an informatics-driven clinical infrastructure. Data exchange hap-

pens across several tiers which are modularized for specific services.

parsed through the aggregation tier and made available through data sharing in-

terfaces to act as endpoints for the research-based algorithms/applications. In ad-

dition to the data acquisition challenges, other important parameters such as, per-

missions/rights regarding the surrounding architecture, data type, data structures,

data rules/restrictions, privacy and compliance, institutional review board (IRB)

approvals, data security, etc. have to be resolved too. Building an informatics-

driven clinical infrastructure embedded with artificial intelligence (AL) and/or ma-

chine learning (ML) tools, requires investment and participation from all the stake-

holders and policy makers of the clinical institution.
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Fig 5: Radiation oncology data curation, standardization, and analytics platform

(EMR, TPS, TMS, and RO-ILS).

2.2 Naming Standards

The present lack of radiotherapy structure name standardization in practice not

be associated with the actual inexistence of standards. Multiple standards have been

proposed, and the widespread attention of the clinical world to the need for naming

standards is increasing [10]. In this section, we discuss the one such standard used in

RT medical practices.

Ontologies

Ontologies provide a rich framework for defining concepts and inter-relationships

among them. The BioPortal [11] is a website that is maintained by the National

Center for Biomedical Ontology contains a wide variety of medical ontologies that

are publicly accessible. Ontologies are helpful to represent essential components in

interoperability and integration into healthcare informatics.
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American Association of Physicists in Medicine’s Task Group-263

The American Association of Physicists in Medicine (AAPM) is a scientific and

professional organization. One of the primary goals of AAPM is to identify and

implement improvements in patient safety for the medical use of radiation in imaging

and radiation therapy.

In 2018, AAPM released the final report of its task group numbered 263 (TG-

263) [12], with a focus on identifying a comprehensive nomenclature standard for RT,

which could be efficiently and proficiently used in every medical institution in the

United States. Task group developed a comprehensive nomenclature system of all

the concepts after reviewing the already available medical ontologies and the recent

development in standards for nomenclature in RT [13, 14]. Special consideration was

given to practical limitations (like characters supported by vendors’ solutions) and

the utilization of names to minimize the chance of communication errors. Essential

RT concepts that were not covered in other medical ontologies are covered in detail.

TG-263 is not an ontology but can be considered as a set of simple naming guidelines

and conventions. As a result, TG-263 names are short but easy to understand and

interpret, even without a strong anatomy background. When possible, it provides

the most closely matching Foundational Model of Anatomy (FMA) identifier of the

structure, thus providing the direct linking between the FMA and TG-263. An ac-

curately standardized TG-263 clinical dataset is more useful for medical purposes.

Also, it will make it easier to use semantic web technologies, thanks to the integra-

tion with the FMA ontology. The standard structure names continuously updated

and made publicly accessible [1]. With the easy to follow guidelines and tremendous

adoption of medical practices, a new challenge has emerged in the radiation oncology

domain, updating retrospective DICOM datasets with standardized structure names
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compliant with the TG-263 standard.

2.3 Machine Learning Algorithms

Here, we will briefly describe the supervised machine learning algorithms that

have been used in this dissertation.

In a supervised machine learning approach, algorithms know the correct labels

of the data it is trying to learn. We have used supervised classification algorithms

that try to learn a patterns to categorize the data points into two or more categories.

Below are some of the classification algorithms used in this dissertation.

Logistic Regression (LR)

Logistic regression is a simple linear classification algorithm that takes in a vector

and converts it to the probability ranging between 0 and 1. It uses a sigmoid function

to convert the value. For binary classification, a cutoff value is used to decide the class

label. It is easy to interpret due to its linear nature. Even though it is predominantly

used for binary classification, it can also be used for multi-class classification.

Support Vector Machines (SVM)

Support vector machines make use of a hyperplane or a set of hyperplanes to

distinctively classify the data points. Linear SVM makes use of maximum-margin

hyperplanes to classify the linearly separable datapoints [15]. Alternatively, non-linear

SVM uses the function to map the input vector to a high-dimensional or infinite-

dimensional vector space and determines the hyperplane in the new space to classify

the data points [16]. It has been previously observed that SVMs have consistently

outperformed many other classifiers in text categorization problems, and they are less

susceptible to imbalanced datasets [17].
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k-Nearest Neighbors (kNN)

(kNN) [18] is a simple but powerful machine learning algorithm that can be used

for both supervised and unsupervised learning. This algorithm finds the k -nearest

neighbors in a dataset (with n samples) when compared to a new example. The

distances between examples are calculated on each feature with a distance metric

such as Euclidean, Manhattan, or Mahalanobis. The only parameter for kNN is the

value k itself. According to [19], choosing k to be
√
n is a good option, although other

values may be better depending on the properties of the dataset and application.

Unlike many machine learning algorithms, the traditional kNN algorithm does

not require a training phase as the queries are simply compared against the examples

in the existing dataset. Although the brute force kNN will produce the true k -nearest

neighbors, it will also have poor computational performance as the number of example

queries or the underlying dataset becomes large.

Random Forests (RF)

Random Forests consists of multiple decision trees, but each tree can only be

split based on the randomly selected subset of features from the randomly selected

samples. For each tree, different subset of samples and subset of features are selected

randomly. For classification, majority voted label is considered as the predicted label

[20].

2.4 Machine Learning Model Training Process

Training a machine learning model involves a lot of experimentation, such as

selecting different algorithms and selecting appropriate hyperparameters. The final

selected model needs to be optimized by choosing a different set of hyperparameters.
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Each set of hyperparameters with training data leads to a different model. Since

we are interested in selecting the best performing model from this set, we need to

compare their performance. The dataset is divided into the following three sets to

train and select the best machine learning model.

• Training Set: This contains the instances and labels used for training the

model.

• Validation Set: This is used to calculate the performance of the model and

hyper-parameter selection.

• Testing Set: This set is used to test the predictive performance of the final

selected model. Test set samples are never seen by the model either at training

or validation, thus mimicking the real-world data.

To correctly estimate the model performance, we assume that training, vali-

dation, and test sets are coming from the same distribution. In classification, to

maintain a similar distribution across each set, data is split in such a way that an

equal percentage of instances from each class are in each set, which is also known as

a stratified split.

2.5 Evaluation Metrics

The performance of a model is evaluated by comparing the model’s prediction

against the actual (true) class. In classification, a confusion matrix is used to describe

the model’s predictions.

Figure 6 shows the confusion matrix for a binary classification task. In binary

classification, data points are divided into two classes; Positive (P) and Negative (N)

class. Model predictions are categorized into the following components:
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True Positive (TP): This is when the model predicted a positive class and the

actual class is also positive.

False Positive (FP): The model predicted a positive, but the actual class is

negative.

False Negative (FN): This is when the model predicted a negative, but the

actual class is positive.

True Negative (TN): The model predicted a negative and the actual class is

also negative.

Using the confusion matrix components, different types of classification metrics

are calculated. The mathematical expressions of each of these metrics are shown

below.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1 − Score = 2 · Precision ·Recall

Precision + Recall
(2.3)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.4)

For multi-class classification, an overall model’s performance can be calculated

using these metrics. A macro-averaged metric computes results for each class inde-

pendently and then takes the average of all the classes to calculate the overall average

metric. In contrast, a micro-average aggregates the contributions of all classes to com-

pute the overall metric. We note that in classification tasks such as ours, in which

each structure name is mapped to precisely one label (as in the structure name stan-

17



dardization problem), accuracy is the same as the micro-averaged F1-Score. A micro-

averaged F1-Score and overall accuracy metric do not disproportionately penalize a

classifier for performing poorly on the less frequent classes, whereas macro-averaged

F1-Score is heavily influenced by how well the classifier performs on the less frequent

classes. Hence the performance of a rare class and a more frequent class are equally

important.

Accuracy measures how well a classifier performs overall, whereas macro-averaged

precision, recall, and F1-Scores better capture how well a classifier can identify cases

that it does not often see, which is extremely important in real-world settings.
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CHAPTER 3

RADIOTHERAPY STRUCTURE NAME STANDARDIZATION

USING PHYSICIAN-GIVEN NAMES

Fig 7: Thesis contribution, Chapter 3 contributions are highlighted.

3.1 Introduction

Radiation therapy is a type of cancer treatment that uses high intensity energy

beams to kill cancer cells and shrink the tumor. In order to treat cancer, the radiation

oncologist delineates the tumorous region or target volume on a computed tomogra-

phy (CT) or magnetic resonance imaging (MRI) dataset. Additionally, the normal

organs, known as organs-at-risk (OAR) volumes are delineated to spare and estimate

radiation doses and reduce possible side effects. These delineated volumes are known
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as structures. Radiation oncology team members, such as radiation physicists and

dosimetrists, delineate other types of structures termed as “planning organs at risk

volume” (PRV). These structures are used strictly in the treatment planning process

and take into account the mobility of the organs at risk, and therefore, a surrounding

margin is added to these structures to compensate for geometric uncertainties. All

delineated structures are given names that are usually written in free text as identi-

fiers, but the lack of standardized nomenclature has created inconsistencies in naming

the structures. Figure 8 shows a representative CT image overlaid with its defined

structures. The left side of the figure shows the physician-transcribed names of the

structures delineated on the right side.

The use of standard nomenclature is an essential step for the construction and

use of informatics-based tools to automatically extract pertinent data from electronic

medical records in support of clinical trials, data-pooling initiatives, and clinical prac-

tice improvement. It also provides a foundation for the development of software tools

to automate data extraction, analysis, data submission, exchange, and quality assur-

ance (QA) [21, 22].

To address these issues, the American Association of Physicists in Medicine

(AAPM) has released a Task Group 263 (TG-263) report with the standardized

nomenclature for structures names [12]. This report was developed in collabora-

tion with stakeholders from both multi-institutional and multi-vendor organizations.

The American Society for Radiation Oncology (ASTRO) and AAPM have identified

the following as the main challenges in RT structure name standardization [12]:

• Vendor-based challenges that originate from the inter-vendor variation on soft-

ware architecture. Each vendor has a particular character set for naming the

structures; limited allowable character sets, however, hinder the interoperability.
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Fig 8: A representative CT image overlaid with its defined structures. The left side

of the figure shows the physician-transcribed names of the structures delineated on

the right side. The physician-transcribed names and structures delineated can be

matched by the color.

• Multi-institutional-based challenges that may arise from the lack of participa-

tion, oversight, and guidelines in creating a standardized nomenclature.

• Single institutional challenges include data governance issues, costs, and dif-

ficulties in implementing new nomenclatures, making them compatible with

existing treatment modalities, and training the institutional staff to follow the

standards.

• Clinical staff challenges may encompass the lack of guidelines or a detailed
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schema to follow.

Strict adherence to a standardized nomenclature will help to achieve future stan-

dardization, but it cannot address retrospective data standardization. Manually rela-

beling inconsistent names with the corresponding standardized TG-263 names is one

way to correct retrospective data; however, generating such mappings for multi-center

data is slow, time consuming, inefficient, hard to generalize, and challenging to scale.

This sets the stage for machine learning (ML) based methods that may be able to

overcome some of these limitations. To address each of the issues mentioned above,

we propose a methodology to retrospectively standardize the radiotherapy structure

names using a combination of ML and natural language processing (NLP) techniques.

The main contributions of this chapter are:

• Proposing a novel automated machine learning approach to standardize the

physician-given structure names to the domain wide utilized TG-263 standard

names.

• Demonstrating that a relatively small amount of data from each center is enough

to build a generalizable machine learning model, which a simple text mapping

cannot achieve.

• Establishing that the approach is disease site agnostic; it can be used on multiple

disease sites.

• Demonstrating that physician-given names hold enough information about the

structures that can be utilized to predict the standard name.

• Creating a scalable approach that requires little to no preprocessing.

3.2 Related Work

The existing techniques for structure name standardization can be broadly classi-
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fied into three categories: expert-based, ontology-based, and machine learning based.

Previous works in the RT community to retrospectively standardize structure

names mostly use the physician provided names (free-text labels) or geometric infor-

mation such as volume, area, and location of the structures. The recently published

works to standardize structure names using physician-given names are illustrated as

below.

A research team in Australia recently proposed an expert-based approach to stan-

dardize radiotherapy structure names as per the TG-263 standard recommendations

[23]. In this study, a panel of experts developed a mapping and structure synonym

set for 36 structures from their clinical database. With their method, they were able

to map 99% of the relevant structures and relabel the names correctly. However,

the major limitation of this approach are scalability and generalizability; data used

in this project were from a single academically focused institution that could enforce

the local standards, and the mappings were dependent on inputs provided by experts.

This method is also center specific; mappings from one institute may not be useful

to the other institute.

A different team in the Netherlands has proposed an ontology-based RESTful

web service to standardize the structure names [24]. However, this approach was more

focused on building a linked data than a technique for structure name standardization.

The authors used the mappings provided by the institutions to generate centralized

mappings, thereby creating a common terminology for linked data.

There are few works that have proposed machine learning based approaches to

structure name standardization. Unlike expert-based and ontology-based methods,

machine learning based methods use either free text labels or geometric information to

build learning models for standardization. One such work made use of multiple string

similarity measures to generate feature vectors, and these feature vectors were used
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as input for the classification algorithm to predict the labels [25]. This paper used

neural-network-based methods but lacked the pertinent details for reproducibility of

the results. Two other papers proposed methods using geometrical information for

structure name standardization [26, 27]. Both of these papers have used a machine

learning approach with neural networks to standardize the structure names of the

head and neck region. Even though they both showed a high accuracy for identifying

the standard names, the major limitation of these works was that they considered

only limited OAR structures to build the ML model and Non OARs were discarded.

Removing Non OAR structures makes it difficult to apply these two approaches in

the real-world datasets which contain a mixture of both OARs and Non OARs.

Expert-based methods have high accuracy but require manual effort from expe-

rienced clinicians, which makes scalability and generalizability challenging to achieve.

Although ontology-based techniques can help in automating the labeling task, there

is a paucity of domain-specific comprehensive ontologies in the radiation oncology

domain. Machine learning based methods are well suited for retrospective struc-

ture name relabeling but are seldom used in this domain. Additionally, the TG-263

standardization was only completed in 2018 [12], and hence applications of machine

learning based methods for structure name prediction are still in their infancy.

3.3 Methods and Materials

3.3.1 Annotation Process

As part of VA-ROQS, teams of domain experts visited each of the 40 VA facilities

that performed radiotherapy in-house and extracted patient data from the local EMR

and TPS. The original treatment planning data was reloaded in the TPS software, and

the associated imaging, dose and structure set information was reviewed. Using the
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full treatment planning information, the domain experts then built a data table that

mapped original structure set labels to the preferred TG-263 labels. The structure

label standardization was originally performed so that dose-related Quality Measures

could be compared across all VA facilities; the resulting information was also used as

the true labels for the predictive models in our pipeline. The same annotation process

was performed on the VCU data with a local expert.

3.3.2 Dataset

Across the United States, the Veterans Health Administration (VA) has 40 cen-

ters treating veterans with in-house radiation therapy services. The VA has put

together the Radiation Oncology Quality Surveillance Program (VA-ROQS), and as

part of this program the treatment quality is assessed from all VA centers [28]. As

part of the initial pilot study, data from all 40 centers were manually abstracted from

clinical charts, imaging databases, and radiation oncology specific systems, such as

treatment planning systems and treatment management systems. Data from up to

20 prostate and 20 lung cancer patients were manually abstracted from each center,

resulting in a total of 794 and 754 patients respectively. The collected data included

the DICOM (Digital Imaging and Communication in Medicine) structure set files

representing anatomical structures of interest and the corresponding DICOM CT im-

age datasets for each patient. For this project, ten lung and nine prostate OAR

structures were identified. These structures were manually labeled to their TG-263

standard names, and all other structures, including target and PRVs, were labeled as

Non OAR. The dataset will be further referred to as the VA-ROQS dataset.

We also collected data from the Department of Radiation Oncology at Virginia

Commonwealth University (VCU) as an external test dataset, which included DI-

COM structure set data from 50 randomly selected patients with prostate cancer
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and another 50 patients with lung cancer. The same procedure that was used in the

VA-ROQS data preparation was also used to label the structures in this dataset with

a local expert, which will be referred to as the VCU dataset.

The structure label standardization was originally performed so that dose related

Quality Measures could be compared across all VA facilities; the resulting information

was also used as the true labels for the predictive models in our pipeline. Assigning

standard labels to DICOM structures was a very time consuming process and has

motivated us to find a more automated or semi-automated solution for structure

label standardization. This automated solution can additionally help in reducing

possible human errors in the manual annotation process.

The following prostate and lung OAR structures were considered in this work:

Prostate organs-at-risk structures: Bladder, Rectum, LargeBowel, SmallBowel,

Femur L, Femur R, SeminalVesicles, PenileBulb, and External.

Lung organs-at-risk structures: Heart, Esophagus, Lungs, Lung R, Lung L, Spin-

calCord, BrachialPlexus, BrachialPlexus L, BrachialPlexus R, and External.

Table 1 shows the distributions of lung structures for the VA-ROQS and VCU

datasets, while Table 2 shows the distributions of the prostate structures in these two

datasets. In both cases, the Non OAR structures present an overwhelming majority;

these Non OARs include all the structures contoured as a part of treatment planning

and delivery and the dose evaluation structures. We also observed similar class im-

balances across all VA-ROQS centers’ data (see Figures 40 and 41 in Appendix B).

Table 3 shows the examples of physician-given names compared to the standard OAR

structures, which highlights the variability in the physician-given names. Table 1 also

shows the number of unique names found in each Lung structure in the VA-ROQS

and VCU datasets, and Table 2 shows physician-given unique names for the prostate

structures in VA-ROQS and VCU datasets.
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VA-ROQS VCU

Non Standard Name Non Standard Name

Standard Name Total Count Unique Count Total Count Unique Count

Brachial Plexus 44 11 0 0

Brachial Plexus L 59 14 4 5

Brachial Plexus R 69 23 5 3

Carina 497 7 33 2

Esophagus 636 28 46 4

Heart 693 21 47 2

Lung L 553 46 28 10

Lung R 563 46 27 10

Lungs 439 39 41 10

Non OAR 8800 3701 577 259

SpinalCord 689 37 50 7

Total 13,044 3973 858 309

Table 1: Lung structure type distribution in VA-ROQS and VCU datasets.

3.3.3 Data Preprocessing

Structure names are short and have a limited character set to use, and the

available character set is vendor dependent. As shown in Table 3, even though there

is high variability in physician-given structure names for most of the structure types,

the character set used is limited. Preprocessing methods need to be selected to ensure

that critical information is retained; losing the information might negatively affect

the ability to standardize the structure names with high fidelity. Hence, we decided

to keep the preprocessing of physician-given names to a minimum by just converting
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VA-ROQS VCU

Non Standard Name Non Standard Name

Standard Name Total Count Unique Count Total Count Unique Count

SmallBowel 250 40 47 7

LargeBowel 341 33 6 2

Femur R 717 62 31 14

Femur L 711 59 32 16

Rectum 742 14 50 3

Bladder 738 10 50 3

External 597 5 50 1

SeminalVesicles 510 50 28 8

PenileBulb 590 33 47 12

Non OAR 9869 2886 813 425

Total 15,065 3195 1154 491

Table 2: Prostate structure type distribution in VA-ROQS and VCU datasets.

them to lower case.

3.3.4 Model Selection

After preprocessing the data, the next step is to select the appropriate ma-

chine learning method. We experimented with different types of methods to map the

physician-given structure names to the TG-263 standardized names. The datasets

presented have some unique characteristics that impacted the choices and perfor-

mances of our algorithms. Structure names are very short in size (varying between 4

and 20 characters), which limits the use of complex machine learning algorithms [29].
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TG-263 Standard Name Physician-Given Names in Dataset

Colon Sigmoid, BOWEL LARGE, Bowel, sigmoid

colon, Bowel LG, SIGMOID COLON, colon, Sigmoid

OAR, Bowel NOS, large bowl, Sigmoid AZ, large bowel,

Large Bowel Lg bowel, LG BOWEL, COLON partial, LargeBowel,

Sigmoid-AZ, Bowel Large, Rectosigmoid, Sigmoid

Colon, LARGE BOWEL, SIGMOID08JUN16

FEMORAL LT, Femur L, LFH, Femur LT, Femoral

Head Lt, Femoral Head Lt,Lt Fem Head, FEMUR L,

left femhead, Femur L, L FEM HEAD, Lt Femur, Fe-

mur Head L, Hip Left, Femur-Lt, Hip Left, Femur-Lt,

Femur L Lt Femoral Head, Fem hd neck Lt, Lt Hip, lt fem head,

Femoral Lt, Femoral Head L, FEM HEAD LT, L Fem

Hd,Femur Left, Femur l. , lt femoral hd, Left Femoral

head JPC,

Table 3: Examples of physician-given RT structure names in VA-ROQS dataset.

Standard names on the left and physician-given names on the right.

For better applicability of the machine learning algorithms, we identified the features

from the structure names to build the feature vectors, which are necessary for any

machine learning algorithm.

Since machine learning algorithms work on numerical data, we converted the text

data into numerical features. Numericalization of text data involves two steps [30]:

(1) tokenization or feature set generation and (2) vectorizing the features with feature

weight calculation techniques. We tried multiple feature generation and feature weight
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calculation methods, as discussed next.

We tested the following list of techniques for feature set generation.

1. Bag-of-words (BoW): In this model, text (such as a sentence or a document) is

represented as the bag (multiset) of its words, disregarding grammar and even

word order but keeping multiplicity [31]. The bag-of-words model has also been

used extensively in the NLP domain. For example, bag-of-words features for

the physician-given name “emoral head left” are “femoral”, “head”, and “left”.

2. Word NGram: An NGram is a contiguous sequence of n words from a given

sequence of text. Given a sentence, we can construct a list of NGrams from it

by finding pairs of words that occur next to each other. For example, with a

physician-given name, “femoral head left”, we can construct bi-grams (NGram

of length 2) by finding consecutive pairs of words; “femoral head” and “head

left” are bi-grams.

3. Character NGram: In this model, instead of considering a full token or a term,

a set of continuously occurring characters is used to build the feature set. These

character sets are considered to form NGram features. For example: with the

physician-given name “bladder”, character tri-gram features are “bla”, “lad”,

“add”, “dde”, “der”.

Assigning appropriate weights to individual features as per their relevance in a

given dataset is known as feature weighting. It is generally thought of as a gener-

alization of feature selection, where the presence of a feature serves as the criterion

for its extraction. We used various feature weighting methods to build the feature

vectors, as shown below.

1. Term presence (tp): In this method the presence or absence of a term in the
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given document is encoded as 1 or 0.

2. Term count (tc): This method is an extension of the tp method. Here, term

occurrence is considered as the weight; it denotes the number of times a given

term appears in a document.

3. Term frequency (tf): In this method, the term occurrence is usually normalized

to prevent a bias towards longer documents (which may have a higher term

count regardless of the actual importance of that term in the document) from

giving a measure of the importance of the term t within the particular document

d. Thus we have the term frequency, defined as follows [32, 33].

tft,d = 1 + log tft,d (3.1)

4. Term frequency-inverse document frequency (tf-idf): tf-idf is a numerical statis-

tic that reflects how important a word is to a document in a collection or corpus

[34]. It involves two parts: First is tf, which is defined as in Equation (3.1).

Second is inverse document frequency (idf)), which is a measure of the general

importance of the term (obtained by dividing the total number of documents by

the number of documents containing the term, and then taking the logarithm

of that quotient).

idft = log
N

dft
(3.2)

tf-idft,d = tft,d · idft (3.3)

In Equations (3.1)–(3.3), tf is term frequency, df is document frequency, t is

term, d is document, df t is number of documents a term (t) appears in, and N

is the total number of documents.

5. Word embeddings: Words or phrases from the vocabulary are mapped to vectors
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of real numbers. Conceptually, it involves a mathematical embedding from a

space with many dimensions per word to a continuous vector space with a much

lower dimension; word2vec [35], Glove [36], and fastText [37] are some of the

word embedding techniques.

Feature Weighting Example

Here we show the examples of each of these weighting methods. Consider four

physician-given names: (1) large bowel, (2) sigmoid colon, (3) bowel, and (4) bowel

lg . If we consider the bag-of-words model for feature set generation, our feature

set will consist of unique tokens from the above mentioned four names, which are

{ large, bowel, sigmoid, colon, lg }. The total number of documents is four (N =

4) (physician-given names). Below are feature vectors with each of the weighting

methods for physician-given name ”large bowel” as below.

feature Set =

[
large bowel sigmoid colon lg

]
tp =

[
1 1 0 0 0

]
tc =

[
1 1 0 0 0

]
tf =

[
0.5 0.5 0 0 0

]
tf − idf =

[
1.301 0.087 0 0 0

]

We used six different classification algorithms—SVM-linear [15], SVM-RBF [16],

k-nearest neighbors (KNN) [18], logistic regression [38], random forest [20], and fast-

Text [37]—for initial model selection. All models were built by using scikit-learn

machine learning library in python [39]. The best model was selected based on their
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performance on the VA-ROQS dataset. Tables 4 and 5 show the performances of

these models for the different feature vector methods. One of the objectives of this

work was to understand the impact of feature weighting techniques on model perfor-

mance. A thorough comparison of feature weighting techniques and their effects on

structure name standardization is beyond the scope of this study. Nevertheless, we

report the observations we made during the initial model selection as below.

Tables 4 and 5 show the machine learning model performance with different

feature weighting methods. We observed that the tp, tc, and tf with all combinations

of ML algorithms produced the same results. We observed that these three feature

weighting techniques produced the same feature vectors, where tp and tc produce the

same vector, and tf is a normalized version of the tc. We believe this is because of the

unique characteristics of our dataset. Instances (physician-given names) are short,

and words within the names are not repeated. The examples shown above indicate

the same. As we know from Equation (3.3), the tf-idf feature weighting technique

takes the global picture of words into account in the calculations, which changes the

weights of the features when compared to other methods. Interestingly, tf-idf did not

perform well when compared to the other weighting methods for both prostate and

lung disease datasets. In comparison with all weighting methods, the word vector

based fastText algorithm consistently outperformed all other algorithms; hence we

selected it to build our final model.

3.3.5 Model Evaluation

An essential part of building a machine learning system is to demonstrate its

quantifiable generalizability. For example, the critical goal of a machine learning

classification algorithm is to create a learning model that accurately predicts the

class labels of unseen data samples. Hence the machine learning model should work
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Features Algorithm Accuracy Precision Recall F1-Score

SVM RBF 0.99 0.96 0.97 0.97

SVM Linear 0.99 0.96 0.97 0.97

tp Random Forest 0.98 0.96 0.97 0.96

Logistic Regression 0.99 0.97 0.97 0.97

KNeighbors 0.97 0.94 0.96 0.95

SVM RBF 0.99 0.96 0.97 0.97

SVM Linear 0.99 0.96 0.97 0.97

tc Random Forest 0.98 0.96 0.97 0.96

Logistic Regression 0.99 0.97 0.97 0.97

KNeighbors 0.98 0.94 0.97 0.95

SVM RBF 0.99 0.96 0.97 0.97

SVM Linear 0.99 0.96 0.97 0.97

tf Random Forest 0.98 0.96 0.97 0.96

Logistic Regression 0.99 0.97 0.97 0.97

KNeighbors 0.98 0.94 0.97 0.95

SVM RBF 0.99 0.97 0.96 0.97

SVM Linear 0.99 0.97 0.97 0.97

tf-idf Random Forest 0.99 0.96 0.97 0.97

Logistic Regression 0.98 0.97 0.96 0.96

KNeighbors 0.98 0.95 0.97 0.96

Word-vectors fastText 0.99 0.97 0.97 0.97

Table 4: Initial Model Selection Results for VA-ROQS Prostate datasets.

34



Features Algorithm Accuracy Precision Recall F1-Score

SVM RBF 0.99 0.95 0.92 0.93

SVM Linear 0.99 0.98 1.00 0.99

tp Random Forest 0.99 0.96 0.97 0.96

Logistic Regression 0.99 0.97 0.97 0.97

KNeighbors 0.97 0.88 0.93 0.89

SVM RBF 0.99 0.95 0.92 0.93

SVM Linear 0.99 0.98 1.00 0.99

tc Random Forest 0.99 0.96 0.97 0.96

Logistic Regression 0.99 0.97 0.97 0.97

KNeighbors 0.97 0.88 0.93 0.89

SVM RBF 0.99 0.95 0.92 0.93

SVM Linear 0.99 0.98 1.00 0.99

tf Random Forest 0.99 0.96 0.97 0.96

Logistic Regression 0.99 0.98 0.98 0.98

KNeighbors 0.97 0.88 0.93 0.89

SVM RBF 0.99 0.94 0.94 0.94

SVM Linear 0.99 0.93 0.93 0.92

tf-idf Random Forest 0.99 0.96 0.97 0.96

Logistic Regression 0.99 0.94 0.90 0.92

KNeighbors 0.98 0.89 0.92 0.90

Word-vectors fastText 1.00 1.00 0.99 0.99

Table 5: Initial Model Selection Results for VA-ROQS Lung datasets.
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well for classifying future data.

Model validation is an important step in the machine learning process. Evalu-

ation of a model on the training dataset would result in a biased score. Therefore

the model is evaluated on the held-out set to give an unbiased estimate of model

performance. Just a hold-out set validation is not enough to test the robustness and

finalize the model. It is recommended to validate the model on the entire dataset [40,

41]. One such technique is k-fold cross-validation. To that effect, we validated our

models in three different ways on the VA-ROQS dataset and tested it on the VCU

dataset (external dataset).

Model Validation

1. 70:30: The VA-ROQS dataset was divided into a 70:30 ratio as the training

and validation sets. The split was stratified by TG-263 standard names, which

ensured that an equal percentage of data was taken from each standard name for

training, validation, and testing, thereby avoiding center-based bias in modeling.

2. K -fold: The VA dataset was divided into K -folds in such a way that each

fold was stratified by standard name. The K -1 fold of the data was used for

training, and the remaining fold was for validation. This was repeated until all

folds were validated. We performed 5-fold and 10-fold cross-validation to better

capture the variance in data folds.

3. Center-based: The VA-ROQS dataset came from 40 (n = 40) different treat-

ment centers. Data from 39 (n-1) centers were used for training, and one center’s

data was used for testing. We repeated this process until all centers were tested

based on the model trained on the remaining n-1 centers.
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Model Testing

Once the model is thoroughly validated and finalized, we need to test it on

entirely new data (unseen by the model during training). We built a final model on

the VA-ROQS dataset and tested it on the VCU dataset. One of the reasons we

choose VA-ROQS for training and VCU for testing was to avoid any overlap of data

between the training and test sets.

3.3.6 Evaluation Metrics

The performance of a model can be measured with different evaluation metrics.

However, these metrics need to consider the class (structure labels) distribution to

evaluate the model accurately. The dataset presented has a high level of class im-

balance, as shown in Tables 1 and 2. Hence we evaluated the performance of each

model using four distinct metrics—overall accuracy, macro-averaged precision, recall,

and F1-Score. Overall accuracy simply measures the percentage of OARs in the val-

idation set classified correctly. These evaluation metrics were described in Section

2.5.

3.3.7 fastText Classification Algorithm

The fastText text classification algorithm [37] is an extension of the word2vec

method, which includes three major steps. First, is generating the word vectors;

fastText learns the vector representation of words from subwords (character NGram)

[42]. For example, the word “Bladder” with a character NGram of 3 will have fastText

representations such as “<bl, bla, lad, add, dde, der, er>” wherein < and > are added

to indicate the beginning and end of the word. The technique of breaking the word

into character NGram makes it work well with rare words. This helps to find the
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vector representation of a word, even if it is not seen in training, and this is done

by breaking down the word into character NGrams to get the word embedding. A

subword size can be selected with range minn and maxn, indicating the minimum

and maximum length of the subwords to generate. Along with these, fastText also

considers wordNgrams (word NGram) to build the vector representation. Vector

size is selected by setting the dim parameter. In Section 3.3.8, we explained the

hyperparameter tuning process.

In the second step, word vectors are averaged to form a document vector, and in

our method, it represents the vector representation of the complete RT structure. In

the third and final step, it passes the averaged vectors through a shallow neural net-

work with one hidden layer and uses the softmax function to generate the probability

of a structure is one of the standard RT structures. Figure 9 shows the architecture

of the fastText supervised classification algorithm.

Fig 9: Pictorial representation of fastText supervised classification algorithm.
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3.3.8 fastText Hyperparameter Tuning

After the initial selection of models, we chose fastText for further analysis, as it

performed better than all other models. To further improve the model’s performance,

selecting appropriate hyperparameter values is important. The fastText algorithm has

many hyperparameters, and we chose eight parameters to optimize, which have an

impact on the data dictionary and model training. Out of eight hyperparameters

selected for model tuning, two hyperparameters minn and wordNgrams were kept at

fixed values. wordNgrams selects the number of consecutive individual words while

building a data dictionary. Physician-given names are most likely to have less than

three distinct words; to avoid considering the complete given name as a token, we

set wordNgrams to 2. On the other hand, minn provides the minimum number of

consecutive characters to consider as a token. We set minn to 2 to capture the more

meaningful tokens rather than selecting every character as a token. Table 6 shows

the hyperparameters and values tested.

A total of 15,360 combinations of hyperparameters was generated; each combi-

nation of hyperparameters was used to build a separate model for each disease type,

and so considering the two disease types, overall we created 30,720 models. Models

were evaluated with metrics described in Section 3.3.6 on the validation dataset and

were recorded separately for each of the diseases types. Figures 10 and 11 show the

impact of each hyperparameter on model performance. Boxplots are used to show

the distribution of model performance (F1-Score) for each value of the hyperparame-

ter; the value with the smallest inter-quartile range and highest median was selected.

The hyperparameter value was selected based on its performance on both disease type

data (prostate and lung). The best values for selected hyperparamters are shown in

Table 6 with brief descriptions.
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(a) (b)

(c) (d)

(e) (f)

Fig 10: Hyperaparameter Tuning of fasttext for VA-ROQS Prostate cancer dataset.

(a) dim: size of vector (b) epoch: number of times a model see’s the all of the data

while training, (c) loss, (d) ws: context window size (e) maxn: maximum length of

character ngram (f) lr: learning rate.
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(a) (b)

(c) (d)

(e) (f)

Fig 11: Hyperaparameter Tuning of fasttext for VA-ROQS Lung cancer dataset. (a)

dim: size of vector (b) epoch: number of times a model see’s the all of the data while

training, (c) loss, (d)ws: context window size (e) maxn: maximum length of character

ngram (f) lr: learning rate.
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3.4 Results

In this section, we present the results of our models for both the VA and VCU

datasets. We built models with combinations of feature sets, feature weighting meth-

ods, and machine learning algorithms. We observed that among all models, the fast-

Text model performed consistently well on our data. Hence we present the detailed

descriptions of results from only the fastText models. Results from the remaining

models are shown in the Appendix B. The macro-averaged precision, recall, F1-Score,

and overall accuracy for both prostate and lung datasets for all the validation types

are shown in Table 7. Individual class level results are shown in Tables 28, 30, 31,

and 29 for prostate and Tables Tables 32, 33, 34, and 35 for lung in the Appendix B.

After fastText was selected as a final model, we tested the robustness of this

method with four different validation types. Each of the validation types tested a

different aspect of our model performance. Below we describe the results for each of

these validation types.

3.4.1 Validation Results

70:30 validation: This validation type was chosen to test the model general-

izability when data was split into 70% for training and 30% for testing. We split

the data such that 70% of the patients from each center were under the training set

and the rest of the patients from each center were under the testing set. We ob-

served that our method was able to generalize well, and our model achieved overall

macro-averaged F1-Scores of 0.97 and 1.0 for prostate and lung datasets respectively.

That indicates that our model was able to predict each label correctly. We also ob-

served that our results were consistent across all classes regardless of class imbalance.

Figures 12a and 13a show the class-wise results for prostate and lung data.
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Evaluation Disease Validation Precision Recall F1-Score ACC
Type Type

70:30 0.97 0.97 0.97 0.99

5-fold 0.96 0.96 0.96 0.98

Prostate 10-fold 0.96 0.97 0.96 0.98

Validation VA Center 0.94 0.94 0.94 0.97

(VA-ROQS) 70:30 1.00 0.99 0.99 1.00

5-fold 0.98 0.98 0.98 0.99

Lung 10-fold 0.99 0.99 0.99 0.99

VA Center 0.93 0.93 0.93 0.99

Test Prostate - 0.94 0.99 0.96 0.98

(VCU) Lung - 0.83 0.89 0.86 0.96

Table 7: Disease specific macro-averaged precision, recall, F1-Score, and overall ac-

curacy for validation and test sets.

K -fold validation: With this validation type we checked the performance on

the complete dataset. Here, we split the data into K-folds using a K value of 5. We

observed that the 5-fold cross-validation achieved overall macro-averaged F1-Scores

of 0.96 and 0.98 for prostate and lung datasets respectively. Excellent results from

5-fold validation indicates that our model was able to generalize the overall data and

not just on some random split of the data. We also repeated the same process for 10-

fold cross-validation and observed that the model achieved similar results with 0.96

and 0.99 macro-averaged F1-Scores for prostate and lung respectively. We chose to

present the 5-fold results here, and the 10-fold cross validation results are presented

in the Table 31 for the prostate and Figure 35 in Appendix B for the lung. It is

important to see the consistent performance of each label in all folds. Figure 12b

for the prostate and Figure 13b for the lung shows that our model has performed

consistently well across all folds for each class and provided consistent performance.
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Center-based validation: VA has 40 radiation therapy centers. Even though

they all are under one VA management, we believe that there are some differences in

their practices. Each center operates as an individual institution at the practice level.

In order to test this hypothesis, we trained the model on the data from 39 centers

and tested it on one center and repeated this process until all the centers had been

tested. We observed that the model achieved 0.94 and 0.93 overall macro-average

F1-Scores for the prostate and lung respectively. Although the model performed

well, the performance dropped by 2% for the prostate and around 6% for the lung.

This indicates that our model has high performance, but the inherent variance in

structure naming practices at the different VA centers caused the model to make

some mistakes, which lead to a decrease in performance when compared to the first

two validation types.

3.4.2 Test Results

Once the model is finalized after thorough validation methods, it is imperative

to check the model’s performance on the unseen dataset. Here, the VCU dataset

was used as a test set, which was never used in algorithm selection, model training,

or validation. The final model was built with hyperparameters selected (see Section

3.3.8) on the entire VA-ROQS dataset. By using the VCU dataset as a test set, we

were able to assess two aspects of our model. First, we checked the model’s ability to

generalize on the unseen data. Second, we checked the generalizability on a dataset

from a different source. We observed that our model was able to predict the correct

labels with high macro-averaged F1-Scores of 0.96 and 0.86 for prostate and lung

datasets, respectively as shown in Table 7. However, model performance dropped

when compared to the model validation results, which indicates that although the

model is robust, it is still affected by the change in the data source. We observed
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(a)

(b)

(c)

Fig 12: VA-ROQS prostate dataset—cross-validation results: (a) VA-ROQS 70:30

split cross-validation, (b) VA-ROQS 5-fold cross-validation, (c) VA-ROQS center

based validation.
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(a)

(b)

(c)

Fig 13: VA-ROQS lung dataset—cross-validation results: (a) VA-ROQS 70:30 split

cross-validation (b) VA-ROQS 5-fold cross-validation (c) VA-ROQS center based val-

idation.
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(a) (b)

(c) (d)

(e) (f)

Fig 14: Validation set (VA-ROQS) confusion matrices of different validation types

for both prostate and lung. (a) Prostate 70:30 split validation. (b) Lung 70:30 split

validation. (c) Prostate 5-fold cross-validation. (d) Lung 5-fold cross-validation. (e)

Prostate VA Center cross-validation. (f) Lung VA center cross-validation. Lighter

color indicates better prediction. Diagonal indicates the correctly predicted labels.
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a drop in overall macro-average F1-Score due to the one OAR label BrachialPlexus ;

VCU dataset did not have any OARs labeled BrachialPlexus but our model predicted

the BrachialPlexus L as BrachialPlexus. Even if the number of samples is very few,

macro-averaged metrics give equal importance to all labels and penalize the overall

score regardless of the number of instances of labels in the dataset. Table 8 and Table

9 shows the class-wise results for prostate and lung data. We suspect that it is because

VCU is an academic medical center, unlike the VA, and hence the structure-naming

practices at VCU differ to accommodate the needs of academic hospitals.

(a) (b)

Fig 15: Test set (VCU) confusion matrices. (a) Prostate. (b) Lung. Lighter color

indicates better prediction. Diagonal indicates the correctly predicted labels.

3.5 Discussion

The proposed radiotherapy structure name standardization methodology is sys-

tem agnostic. Each of the validation types we presented on the VA-ROQS data

demonstrates that our model is robust and works well to identify the correct TG-263

standardized names. We also tested our model with data from outside of the VA
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Structure Name Precision Recall F1-Score Support

Bladder 1.00 1.00 1.00 50
External 1.00 1.00 1.00 50
Femur L 1.00 1.00 1.00 32
Femur R 1.00 1.00 1.00 31
LargeBowel 0.83 1.00 0.91 5
Non OAR 1.00 0.97 0.98 833
PenileBulb 1.00 0.96 0.98 49
Rectum 1.00 1.00 1.00 50
SeminalVesicles 1.00 1.00 1.00 28
SmallBowel 0.53 0.96 0.68 26

accuracy 0.98 0.98 0.98 1154

macro avg 0.94 0.99 0.96 1154

weighted avg 0.99 0.98 0.98 1154

Table 8: VCU Test Set results of Prostate structures.

Structure Name Precision Recall F1-Score Support

BrachialPlexus 0.00 0.00 0.00 7
BrachialPlexus L 0.75 1.00 0.86 3
BrachialPlexus R 1.00 1.00 1.00 5
Carina 1.00 1.00 1.00 33
Esophagus 1.00 0.98 0.99 47
Heart 0.98 1.00 0.99 46
Lung L 0.82 0.92 0.87 25
Lung R 0.74 1.00 0.85 20
Lungs 0.85 0.95 0.90 37
Non OAR 0.98 0.97 0.98 586
SpinalCord 0.96 0.98 0.97 49

accuracy 0.96 0.96 0.96 858

macro avg 0.83 0.89 0.85 858

weighted avg 0.96 0.96 0.96 858

Table 9: VCU Test Set results of Lung structures.

system (VCU dataset) which shows that our method works well for data from other

institutions.

For the prostate RT structures, we observed that the majority of mistakes made

by the model were in classifying SmallBowel and LargeBowel. This confusion is
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attributed to the fact that the same name can be used for both anatomical structures.

In Table 10, we can see that “bowel” is used to label both SmallBowel and LargeBowel.

In the VCU Lung dataset validation, accuracy and macro-average F1-Score dropped

when compared to the 70:30 split validation. This drop was caused by the misclassi-

fication of the lung and brachial plexus related structures, as shown in Table 11.

3.5.1 Error Analysis

Confusion matrices for all validation types on validation dataset (VA-ROQS)

are shown in Figure 15 and for test dataset (VCU) in Figure 14. We performed

an error analysis on the test set to understand our model’s ability to generalize on

unseen data. Error analysis provides insights into the reasoning behind the failure

of the model prediction. In this work, a false positive is more expensive than a false

negative. Although, this is a multiclass classification problem, wrongly predicted

OAR is more expensive than a wrongly predicted Non OAR. To this end, we divided

classification errors into three main categories.

• Type I: When the structure was OAR but predicted as Non OAR.

• Type II: When the structure was OAR but predicted as the wrong OAR.

• Type III: When the structure was Non OAR but predicted as OAR.

Type II and III errors are expensive when compared to the type I error, as

they produce false-positive OAR. Looking at the predicted and standard labels for

physician-given names, we can infer that there is a pattern to errors for a few struc-

tures. Table 10 shows the errors made on VCU Prostate dataset. We observe that

the majority of the errors come from Type I. The major error was due to the lack of

signal in the text label. Just looking at the structure name “bowel” and inferring the

“SmallBowel” or “LargeBowel” structures is difficult even for experts.
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Error Type Physician TG-263 Predicted Count
Given Name Standard Name Name

Type I bowel LargeBowel Non OAR 1

bowel SmallBowel Non OAR 22

Type II nonptvpenilebulb Non OAR PenileBulb 2

small bowel Non OAR SmallBowel 1

Table 10: Error analysis of VCU dataset prostate structure.

Error Type Physician TG-263 Predicted Count
Given Name Standard Name Name

bilatlungs Lungs Non OAR 5
ptv Lungs Non OAR 1

lung-l Lung L Non OAR 1
lung l1 Lung L Non OAR 4

Type I lung-r Lung R Non OAR 2
lung r1 Lung R Non OAR 4

spinal column SpinalCord Non OAR 1
spine SpinalCord Non OAR 1

brachial plexus BrachialPlexus L BrachialPlexus 1

Type II esophagus Heart Esophagus 1

lung Lung R Lungs 1

ipsi lung Non OAR Lung L 1
left lung Non OAR Lung L 1

brachial plexus Non OAR BrachialPlexus 1
Type III brachial plexus Non OAR BrachialPlexus 2

lung Non OAR Lungs 1

plexus Non OAR BrachialPlexus 3

t7 cord Non OAR SpinalCord 1

Table 11: Error analysis of VCU dataset lung structure names.

In case of Lung, we see that there are many more Type II an III errors made by

the model. Table 11 shows all the errors made on the VCU Lung dataset. We can see

that majority of the errors were made while predicting the structures related to the

lungs (Lung L, Lung R, or Lungs) and brachial plexus. For lung-related structures
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we see that names containing numerical characters are most likely to be predicted as

Non OARs, as it is common for Non OAR structures to contain numerical characters.

For brachial plexus related structures, we can see that names containing “Plexus” are

predicted as BrachialPlexus if there is no other information found to determine it

as left or right BrachialPlexus. This also indicates the model errors due to the lack

of signal in the input data. We also looked at the errors made by the model from

holdout set (70:30 split) validation results. Tables 12 and 13 show the errors made on

VA validation set for prostate and lung datasets respectively. We observed a similar

pattern of errors for the prostate; the major confusion is between “SmallBowel” and

“LargeBowel”.

3.5.2 Comparison with Previous Works

Our work differs in many ways when compared to the most recent proposed

approaches in the research community. Schuler et al. reported that their approach

resulted in a 99% relabel rate [23], but it requires the mappings from the domain

expert from the same institute where data are collected. In contrast, our method

provides the same success rate with the added advantage of working on arbitrary

physician-given names from multiple institutes. Our work is scalable and general-

izable to the external dataset. Two other works proposed machine learning based

structure name standardization using geometric information [26, 27]; both of those

projects reported high accuracy. However, both of them did not use all the structures;

instead they used only OARs. Our approach takes all possible structures into account

and hence will work on real-world clinical datasets. However, due to the aforemen-

tioned limitations of the related work, it is not possible to perform a direct comparison

between the accuracies from our approach and those from related work. It should

also be noted that our proposed approach is the very first text mining based method
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to automatically standardize arbitrary structure names from the DICOM dataset.

Error Type Physician TG-263 Predicted Count
Given Name Standard Name Name

bowel LargeBowel Non OAR 5
bowel large LargeBowel Non OAR 1
bowel, large LargeBowel Non OAR 1

bowel SmallBowel Non OAR 6
bowel (partial) SmallBowel Non OAR 1

Type-I bowel-ptv sigm SmallBowel Non OAR 1

fem hd neck l Femur L Non OAR 1

p bulb control PenileBulb Non OAR 1

rectum om Rectum Non OAR 1
rectum wm Rectum Non OAR 1

bladder min Bladder Non OAR 1

Type-II sigmoid SmallBowel LargeBowel 1

sigmoid Non OAR LargeBowel 5
large bowel Non OAR LargeBowel 1
colon Non OAR LargeBowel 1

small bowel Non OAR SmallBowel 4
sm bowel Non OAR SmallBowel 3

whole rectum Non OAR Rectum 1

bladder, nos Non OAR Bladder 3
Type-III bladder1 Non OAR Bladder 1

femoral head r Non OAR Femur R 1
femur r Non OAR Femur R 1

vesicle bed Non OAR SeminalVesicles 1

Table 12: Error analysis of VA-ROQS prostate structure names with 70:30 validation.

3.5.3 Limitations

Our proposed model has three limitations. Firstly, we are only predicting the

identities of the OARs and labeling them with standard names. However, the target
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Error Type Physician TG-263 Predicted Count
Given Name Standard Name Name

total lung Lungs Non OAR 2

Type I spinalcanal SpinalCord Non OAR 2
cord 0 SpinalCord Non OAR 1

esophagus-kl Esophagus Non OAR 1

es Non OAR Esophagus 1

cord Non OAR SpinalCord 1
Type III cord3 Non OAR SpinalCord 2

l lung lymph Non OAR Lung L 1

heart2 Non OAR Heart 1

Table 13: Error analysis of VA-ROQS Lung structure names with 70:30 validation.

(tumors) and PRVs are important structures and identifying and labeling them is

also crucial for treatment delivery quality assessment. Secondly, we demonstrated

that we can train on data from one institution and predict data from another. Our

model is also language dependent, as it was trained only on structure names written

in English. We believe the model pipeline will work for any language, but inter

language models are only possible if they are trained on a mixture of languages.

Thirdly, the ML pipeline from data preprocessing to prediction works as a standalone

system. In the future, we plan to create a seamless enterprise informatics platform

that can automatically collect data from the treatment planning systems and perform

automatic structure name standardization on retrospective data.

3.6 Conclusion

In this chapter, we presented an ML approach to standardize the radiother-

apy structure names using physician-given names. We observed that the fastText

algorithm works best when compared to other feature weighting and classification

algorithms. Our method was evaluated with the data from 40 VA radiotherapy cen-
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ters and tested on an external dataset from VCU. We demonstrated that our method

works well on multiple disease sites and is also generalizable. To the best of our knowl-

edge, this is the first and the only model using the physician-given name to predict

the TG-263 standard names using NLP and ML based methods. We also observed

that our approach fails in certain conditions, when enough information is not available

for the model to infer the correct label. Our approach can be augmented with other

available information, such as geometric information of structures. We believe that

the proposed structure names standardization methods can help with big data ana-

lytics in the radiation therapy domain using population-derived datasets, including

standardization of the treatment planning process, clinical decision support systems,

treatment quality improvement programs, and hypothesis-driven clinical research.

Contribution summary: In this chapter, we presented a text mining based ap-

proach for structure name standardization using physician-given names. Specific con-

tributions of this chapter are as follows.

1. We present a machine learning approach to standardize the radiotherapy struc-

ture names that can automatically convert the arbitrary physician-given struc-

ture names to the domain wide TG-263 based nomenclature.

2. We demonstrate that a relatively small amount of data from each treatment

center is enough to build a generalizable machine learning model, which a simple

text mapping cannot achieve.

3. We establish that our proposed approach is disease site agnostic, i.e., it can be

used on multiple disease sites.

4. We also demonstrate that physician-given names hold enough information about

the structures that can be utilized to predict the standard names in TG-263.
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5. Finally, we create a scalable approach that requires little to no preprocessing.
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CHAPTER 4

MULTI-VIEW DATA INTEGRATION METHODS FOR

RADIOTHERAPY STRUCTURE NAME STANDARDIZATION

Fig 16: Thesis contribution chart, Chapter 4 contributions are highlighted.

4.1 Introduction

In Chapter 3, we presented structure name standardization using fastText doc-

ument embeddings. Although our model had performed well, it made some wrong

predictions. Our analysis showed that it is because of the use of the same labels

for different structures. For example, some radiation oncologists used Bowel to label

SmallBowel, and some had used it to label LargeBowel, which creates confusion when

data from all patients is used to build the model. The use of the same name for
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different structures may be because of the difference in naming practices at different

VHA centers. To address such issues, we investigated the use of geometric infor-

mation of structures for automatically identifying the standard structure names. It

was evident from the results shown here that just geometric information may not be

enough; hence we also investigated different approaches to integrate the textual labels

and geometric information of structures. Such geometric information of structures

provides a different view of the structures, which additionally helps in differentiating

structures when physician-given names are the same. Since our datasets (views) are

heterogeneous, we integrated the approaches at the intermediate and last stages of

the machine learning pipeline.

4.2 Methods and Materials

4.2.1 Dataset

Dataset used in this chapter is the same as in Chapter 3 with the following

two differences. First, Chapter 3’s objective was to identify OARs when arbitrary

structure names were given. In this chapter our objective is to identify “PTV” (target

structure) along with OARs. Hence, the following prostate and lung structures were

considered in this chapter:

Prostate Structures: Rectum, Bladder, Femur L, Femur R, LargerBowel, Small-

Bowel, PTV

Lung structures: Esophagus, Heart, SpinalCord, Brachial Plexus, PTV

VA-ROQS Dataset: We have utilized the same VA-ROQS data used in Chap-

ter 3, however we considered only structures required for the VA-ROQS project.

VCU Dataset: A new 50 set of patients for each prostate and lung cancer were
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selected from VCU databases. These were entirely new patients with no overlap com-

pared to the patients considered for VCU in “Structure Name Standardization using

Physician-given names” ( Chapter 3). The annotation process explained in Section

3.3.1 is followed to annotate the new dataset. Table 14 shows the distribution of lung

and prostate structures for the VA-ROQS and VCU datasets.

4.2.2 Creation of Structure Set

Once a patient has been diagnosed with cancer and radiotherapy is prescribed

as part of the treatment, a patient model needs to be created to determine the radia-

tion dose to the target volume, OARs, and the coverage volume. To accomplish this

purpose, imaging datasets are acquired. The most commonly used imaging dataset

is Computed Tomography (CT), which provides tissue density information and the

patient model information by rendering the patient’s anatomy. A clinician will delin-

eate the target/tumor region, OARs, and any other structures deemed necessary for

the current case on this acquired dataset. This delineation is usually done within the

TPS software, which will allow for the creation of the dose delivery treatment plan.

Figure 17 shows the axial, coronal and sagital cut sections of a prostate cancer

CT, overlaid with several delineated structures. The imaging and structure set infor-

mation is in the Digital Imaging and Communications in Medicine (DICOM) format

which is the industry standard for the storage and transmission of medical imaging

data. This data is traditionally stored as slices on the axial axis but can be rendered

on any axis. A clinician will delineate any necessary structures using the delineation

tool-sets in the TPS software; often by adding individual points or by using a free-

hand drawing tool to create a closed polygon. For a given structure, this process is

performed on each imaging slice until the delineation is complete.
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VA-ROQS VCU

Non Standard Name Non Standard Name

Standard Name Structure Count Unique Count Structure Count Unique Count

Brachial Plexus 108 44 4 4

Esophagus 613 26 47 3

Heart 670 20 45 2

Other (Lung) 10,292 3,639 775 317

SpinalCord 681 37 48 6

PTV (Lung) 680 286 36 4

Lung Total 13,044 4,052 955 336

Bladder 609 10 50 3

Femur R 700 62 29 14

Femur L 694 59 29 13

Rectum 719 14 50 3

SmallBowel 250 40 49 10

LargeBowel 341 34 0 0

Other (Prostate) 11,038 2,799 980 434

PTV (Prostate) 714 236 38 16

Prostate Total 15,065 3,254 1,225 493

Grand Totals 28,109 7,306 2,180 829

Table 14: Lung structure type distribution in VA-ROQS and VCU dataset.

For the same patient, Figure 18 shows the planning target volume (PTV) (green)

and multiple planning related structures (red). The PTV represents the region that

will be receiving the prescribed radiation dose. It is also common to have other

structures that are very similar to the PTV as presented here, and may include

a clinical target volume (CTV), gross tumor volume (GTV), or expansions of the
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Fig 17: Planning CT from a prostate cancer patient with the following delineated

structures: Bladder (yellow), Rectum (blue), Left and Right Femurs (orange), Small

Bowel (aqua), PTV (green).

PTV. Also presented in this figure are rings, used for helping to guide the TPS dose

optimization process, and implanted marker seeds.
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Fig 18: The PTV (green) and multiple other planning related structures (red) delin-

eated on a planning image. These planning structures include rings, implanted seeds,

and several interpretations of the tumor volume.

4.2.3 Data Preprocessing

Textual Data Preparation

Structure names are short and have a limited character set to use, and the

available character set is vendor dependent. As shown in Table 3, even though there

is high variability in physician-given structure names for most of the structure types,

the character set used is limited. Preprocessing methods need to be selected to ensure

that critical information is retained; losing the information might negatively affect

the ability to standardize the structure names with high fidelity. Hence, we decided

to keep the preprocessing of physician-given names to a minimum by just converting

them to lower case.
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(a) A transverse slice of the origi-
nal planning image with the blad-
der structure shown in yellow.

(b) Polygon points from the DI-
COM bladder structure set delin-
eation. These individual points
are interpolated on to the stan-
dardized bitmap volume.

(c) Each sequential point is con-
nected to form a close polygon.

(d) The close polygon is flood
filled to create a solid structure.

(e) A density threshold is applied
to the planning image such that
only voxels that belonged to bony
anatomy remain.

(f) Structure set (white) and
bony anatomy (grey) data shown
together with the same frame of
reference.

Fig 19: Workflow for creating structure set and bony anatomy bitmaps for feature

vector creation.
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Geometric Data Preparation

The following process, shown in Figure 19, takes the DICOM structure set and

imaging data and converts it into features vectors to be used as input for the clas-

sification algorithms. Figure 19a shows an original DICOM planning image and its

associated structure set. The bladder structure delineation is shown in yellow.

Since the planning images available in our dataset did not have consistent voxel

count, voxel resolution or origins, a standard grid was needed so that all structure sets

could be stored in a consistent manner. The standard grid chosen for this purpose

was 96 x 96 x 48 voxels and with a voxel resolution of 2mm x 2mm x 3mm. These

parameters were chosen by manually inspecting a number of bitmap examples from

each structure type to verify that the bounding box was large enough to cover the

structures of interest. It should be noted that this manual step is needed only once as

all structure volumes will be interpolated in the same bounding box. Future work is

required to determine if such a one-size-fits-all based solution is sufficient, especially

considering large structures like the entire lungs. Each original planning image and

structure set was programmatically shifted such that the geometric center of the given

structure was aligned to the geometric center of this standardized grid.

The automated workflow for creating feature vectors from the imaging and struc-

ture set data is demonstrated using one prostate patient as shown in Figure 19a. For

each individual structure in the dataset, an empty three-dimensional bitmap object

was created with the standard grid dimensions as defined above. Each polygon point

in the DICOM structure set is mapped to its corresponding voxel in the new bitmap

with a value of 1 as shown in Figure 19b. Then for each transverse slice of the bitmap,

the sequential points were connected with new line segments which results in one or

more closed polygons per slice as shown in Figure 19c. A flood fill algorithm [43]
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was then run on each closed polygon to set all interior values to 1 resulting in a solid

bitmap structure shown in Figure 19d. Voxels belonging to the structure in question

would then have the value of 1 and all other voxels would remain as 0. The proce-

dure used for generating these bitmaps was derived from the Research Computing

Framework package [44].

In addition to the structure set data, imaging data was also used to add spatial

context to the location of each structure in the human anatomy. A density threshold

was applied to each planning image such that voxels with Hounsfield units (HU) above

1,300 were set to 1 and all others set to 0, leaving only the bony anatomy. While

bone density starts around 1,050 HU [45], we have chosen a slightly higher value to

focus on the gross skeletal structure and reduce noise from borderline tissue. The

resulting bony image was then interpolated to the same standardized grid used by

the structures so that both data types were properly aligned. Figure 19e shows just

the bony anatomy and Figure 19f shows the bony anatomy and structure set data

combined.

To create feature vectors, the 96 x 96 x 48 bitmap object was stretched out into

a 442,368 x 1 vector by simply creating an array of each voxel value with increasing

x, y, z axis indices. From this bitmap creation process, two datasets per disease site

were created: Without Bones and With Bones.

• Without Bones: The feature vectors were created with only structure set

data as shown in Figure 19d. The total length of the feature vector is 442,368.

• With Bones: The feature were created by appending the No Bones feature

vectors with the bony anatomy data as shown in Figure 19f. The total length

of the feature vector is 884,736.

Very long feature vectors make the model training phase slow and susceptible
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to the Curse of Dimensionality [46]. One popular solution to this problem is to per-

form feature reduction by either removing features that are not strongly influencing

predictions or condensing multiple features in such a way that still preserves impor-

tance. We have chosen to use truncated singular value decomposition (SVD) as it

uses much smaller matrix multiplications when compared to methods like principal

component analysis (PCA) or standard SVD [47]. This approach can approximate

the input m×n matrix as [m×k]× [k×n] where k is the numerical rank [48]. When

testing both methods, the truncated SVD ran faster and required less memory while

still producing an explained variance within 0.1% of the result from PCA.

Figure 20 shows the explained variance of the disease sites for the Without Bones

and With Bones datasets. All cases show a similar pattern and the cumulative vari-

ance curves start to flatten out around 100 features. For that reason, we have chosen

100 as the number of SVD features to use in our experiments as increasing the ex-

plained variance by more than a few percent would require at least doubling the total

number of features. Initial tests using up to 1,000 SVD features did not improve

classifier accuracies (data not shown). The anonymized patient identifier, physician

specified label, and the TG-263 standardized label for each structure were added as

features, not for model training, but for patient filtering and assessing the model

accuracy.

This pipeline can be fully automated allowing for the processing of large Radi-

ation Oncology datasets. While the disease specific bounding boxes should be set

manually, it only needs to be done once while all the other modules are done pro-

grammatically.
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Fig 20: Cumulative explained variance from the number of features created by the

SVD process. We have chosen the top 100 features in all models.

4.2.4 Model Selection

4.2.4.1 Single-View

Dataset used in this work is heterogeneous in nature. To properly compare the

advantages of utilizing the multi-view heterogeneous data, we built the best possible

model with single-view separately. In our previous work, we have thoroughly inves-

tigated the different algorithms for standardizing radiotherapy structure names with

physician-given names [3] and geometric information [4]. Single-view model selection

details are as below.

• Text data (Physician-Given Structure Names): We built structure name stan-

dardization models using the combinations of different feature extraction tech-

niques, feature-weighting, and ML-algorithms. We tested NGram (uni-gram,
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bi-gram, and tri-grams), character NGrams, and word embedding techniques

for feature extraction. For feature weighting, we tried with term presence (tp),

term count (tc), term frequency (tf), and term frequency-inverse document fre-

quency (tf-idf) techniques. Finally we compared the six different ML classifica-

tion algorithms —SVM-linear [15], SVM-RBF [16], k-nearest neighbors (KNN)

[18], logistic regression [38], random forest [20], and fastText [37]—for initial

model selection. All models were built by using scikit-learn machine learning

library in python [39]. Finally, we selected the fastText algorithm for automati-

cally identifying the standard structure names using the physician-given names

because it had highest F1-Score in comparison with other algorithms.

• Image data (3D geometric information of structures): In our prior work, we

have also investigated the radiotherapy structure name standardization using

geometric information. In order to extract geometric information, we converted

the geometric information into binary vectors and selected top 100 components

with SVD algorithm. After thoroughly evaluating different algorithms, we used

the RF classification algorithm to build our final model because it provided the

best F1-Score.

4.2.4.2 Intermediate Integration

Intermediate Integration involves transforming the all view data into similar

feature space and combining them (concatenating) into one. We utilized different

techniques to transform them into a similar feature space as discussed below.

• Image Data Transformation: We used truncated singular value decomposition

(SVD) as it uses much smaller matrix multiplications when compared to meth-

ods like principal component analysis (PCA) or standard SVD [47]. When
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testing both methods, the truncated SVD ran faster and required less memory

while still producing an explained variance within 0.1% of the result from PCA.

We used the first 50 features from this feature set.

• Text Data Transformation: We used fastText algorithm to generate the embed-

dings (numerical representation) of size 200 for each physician-given structure

name.

Thus, a final vector of size 250 is generated by concatenating feature vectors

from each view (image and text). This vector is fed into the ML algorithm. We chose

SVM with linear kernel to build the final classification model. Figure 21 shows the

pictorial representation of our proposed intermediate integration method.

Fig 21: Intermediate stage integration method for structure name standardization.
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4.2.4.3 Late Integration

In late integration, each view is analyzed separately and the results are then

integrated to generate the final result. It is also known as model based integration.

Integrating at a late stage has an advantage over other types of integration; the best

algorithm can be selected to build a model based on the data type and each model

can be run in parallel. In this work, we used different algorithms to build the models

for each view. A prediction probability vector is generated for each sample from each

model instead of a class prediction. The size of the prediction probability vector is

equal to the number of classes in the dataset; in this scenario, it is eight classes for

prostate and six classes for the lung dataset. The result vector from each view is then

combined to generate the final prediction probabilities. These prediction probabilities

are used for the final class prediction.

We used two techniques to combine the prediction probabilities from each view.

• Average (AVG): We created the final prediction probability vector by adding

element-wise from each view and dividing it by the number of views. The final

class is selected whose AVG probability is the highest.

• Maximum (MAX): In this technique, we selected the maximum probability from

each view such that the resulting vector contains the maximum for each class

from all the views. The final class is predicted by selecting the class from this

resultant vector with the highest probability.

4.2.5 Model Evaluation

An essential part of building a machine learning system is to demonstrate its

quantifiable generalizability. For example, the critical goal of a machine learning

classification algorithm is to create a learning model that accurately predicts the
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Fig 22: Late integration method for structure name standardization.

class labels of unseen data samples; this ensures that the machine learning model

should work well for classifying future data.

Model validation is another important step in the machine learning process as

explained before and we again used k-fold cross-validation. We divided the VA-ROQS

dataset into training and testing datasets. We randomly selected data from 30 centers

for training and remaining 10 centers data are for testing. We further divided the VA-

ROQS dataset into 70:30 ratio as training and validation sets. Along with VA-ROQS

testing dataset, we tested with the VCU dataset as an external validation dataset as

before.
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Model Validation

• Hold-out set validation: The VA-ROQS dataset was divided into a 70:30

ratio as the Training and Validation sets. The split is stratified by TG-263

standard names, which ensures that an equal percent of data is taken from each

standard name for training, validation, and testing, thus avoiding center-based

bias in modeling.

• VA Center Based Cross-validation: The data from randomly selected 30

VA-ROQS centers is used to validate the data from each center separately. Data

from 29 (n-1) centers were used for training, and the remaining one center data

for validation. We repeated this process until all centers are validated.

Model Testing

Once the model is thoroughly validated and finalized, we need to test it on

entirely new data (unseen by the model during training). We built a final model on

the data from 30 VA-ROQS centers and we tested it with two datasets: VA-ROQS

test set (data from 10 centers) and the VCU dataset.

• VA Center Based Test: The data from randomly selected 30 VA centers is

used for training and 10 centers for testing. We tested each center separately

and results are reported to show the generalizability of model across multiple

centers. We used the data from 10 VA centers as a test set to show that our

model is able to predict the labels correctly from multiple centers.

• VCU Test: We used data from 30 VA centers for training the model and tested

it on the VCU dataset. This model testing with VCU dataset shows the our

model’s ability to generalize on a completely external dataset.
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4.3 Results

In this section, we present the results of our experiments. The results are divided

into three subsections: Singe-view, Intermediate Integration, and Late Integration

results.

4.3.1 Single-View

In the single-view approach, we built two separate models with physician-given

structure names and geometric information of structures. We observed that the model

utilizing the structure names consistently out performed the models built utilizing

geometric information. Table 15 and 16 shows the model performance for the VCU

and VA-ROQS datasets. We observed that the text based model has precision of

0.778 for VCU prostate dataset and 0.855 for VCU lung dataset. Figures 23 and

24 shows the confusion matrix for both VCU and VA-ROQS dataset. VCU prostate

dataset has no instances of “large bowel” structures in dataset, but model predicted

the “large bowel” for three structures. A macro-averaged metric penalizes equally

regardless of number of samples in each individual class. In the VCU lung dataset

there are only four “BrachialPlexus” structures but our model predicted the 9 false

positives.

4.3.2 Intermediate Integration

In this method, we transformed the structure names and geometric information

into similar feature space. We applied truncated SVD and selected top 50 components,

and structure name word embedding of size 200 using fastText algorithm. These two

features space from different view are then concatenated for training and testing. We

trained the SVM with linear kernel to build a classifier with this combined dataset.
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(a) (b)

(c) (d)

Fig 23: Single View Results: (a) VA-ROQS Prostate Text Based featuress (b) VA-

ROQS Lung Text features. (c) VCU Prostate Image feature (d) VCU Lung Image

features. Darker color indicates better prediction. Diagonal indicates the correctly

predicted labels.

Table 15 shows the macro-averaged precision, recall, and F1-Score for intermediate

integration. We observed that our intermediate integration method performs better
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(a) (b)

(c) (d)

Fig 24: Single View Results: (a) VCU Prostate Text Based features (b) VA-ROQS

Lung Text features. (c) VCU Prostate Image feature (d) VCU Lung Image features.

Darker color indicates better prediction. Diagonal indicates the correctly predicted

labels.

on VA-ROQS and VCU datasets. Precision is higher than the single view models for

three out of four datasets; the overall F1-Score is also higher for the VCU prostate
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and lung datasets. Increase in precision indicates that the model can predict fewer

number of false positives for OAR and target structures. Figure 27 shows the confu-

sion matrices for prostate and lung structures in VA-ROQS and VCU datasets. We

can observe that the Intermediate integration method consistently reduces the false

positives for all OAR and target structures and increased the false positives in the

other structures.

4.3.3 Late Integration

Table 16 shows the macro-averaged precision, recall, and F1-Score for the pro-

posed late integration method. We noticed that in the late integration method with

MAX probability selection, the precision is better than the single view models for

both prostate and lung VCU dataset. However, the recall and F1-Score dropped. We

also observed that using the MAX scores on the VA-ROQS prostate dataset, precision

is increased by 0.07 but recall and F1-Score are negatively affected. Overall, the late

integration with MAX scores exhibited a negative affect on the VA-ROQS dataset.

Figure 26 and 27 shows the confusion matrices for the lung and prostate datasets

respectively.

4.4 Discussion

4.4.1 Strengths and Limitations

In this chapter, we proposed novel approaches to standardize the radiotherapy

structure names using the heterogeneous prostate and lung radiotherapy structures.

We demonstrated that our multi-view integration approach improves the standardiza-

tion process. Structure delineation generates significantly imbalanced datasets, but

our approach can overcome the data imbalance issues thereby demonstrating that
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Datasete Disease Data Type Precision Recall F1-Score Acc

MLB 0.110 0.140 0.130 0.800

Text 0.778 0.730 0.740 0.927

Prostate Image 0.710 0.476 0.519 0.870

Test combined 0.778 0.792 0.782 0.941

MLB 0.140 0.170 0.150 0.810

(VCU) Text 0.830 0.981 0.873 0.969

Lung Image 0.610 0.565 0.585 0.918

combined 0.855 0.895 0.873 0.971

MLB 0.09 0.120 0.110 0.730

Text 0.890 0.866 0.872 0.930

Prostate Image 0.758 0.579 0.619 0.856

Test combined 0.848 0.897 0.864 0.932

MLB 0.130 0.170 0.150 0.780

(VA-ROQS) Text 0.921 0.874 0.893 0.950

Lung Image 0.825 0.694 0.708 0.916

combined 0.939 0.741 0.778 0.943

Table 15: Intermediate Integration - Disease specific macro-averaged Precision, Re-

call, F1-Score, and Overall Accuracy. MLB: Majority Label Baseline.

the proposed approaches can work on real-world datasets. However, our proposed

approach has a few limitations, which are divided into clinical and methodological

limitations.
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(a) (b)

(c) (d)

Fig 25: Intermediate Integration for VA-ROQS and VCU Lung Dataset Confusion

Matrix. (a) Text Based features (b) Image features. (c) AVG of predictions. (d)

MAX of two prediction. Darker color indicates better prediction. Diagonal indicates

the correctly predicted labels.

Clinical Limitation

• So far, we were able to identify only OARs and Target (PTV) structures. Al-

though these are critical structures, radiotherapy treatment involves other types
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(a) (b)

(c) (d)

Fig 26: Late Integration Confusion Matrix for VA-ROQS and VCU Lung Datasets:

(a) VA-ROQS Lung AVG Integration.(b) VA-ROQS Lung MAX Integration. (c) VCU

Lung AVG Integration. (d) VCU Lung MAX Integration. Darker color indicates

better prediction. Diagonal indicates the correctly predicted labels.

of structures, such as PRV and derived structures. To fully standardize the data,

we need to standardize all structures, and not just the OARs and PTV.
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(a) (b)

(c) (d)

Fig 27: Late Integration Confusion Matrix for VA-ROQS and VCU Prostate Datasets:

(a) VA-ROQS Prostate AVG Integration. (b) VA-ROQS Prostate MAX Integration.

(c) VCU Prostate AVG Integration. (d) VCU Prostate MAX Integration. Darker

color indicates better prediction. Diagonal indicates the correctly predicted labels.

• The OARs were selected based on the requirements of the VA-ROQS project

whose primary focus was treatment quality assessment based on the specific
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Dataset Disease DataType Precision Recall F1-Score Acc

MLB 0.110 0.140 0.130 0.800

Text 0.778 0.730 0.740 0.927

Image 0.710 0.476 0.519 0.870

Prostate Avg 0.802 0.685 0.719 0.929

Test Max 0.801 0.708 0.739 0.936

MLB 0.140 0.170 0.150 0.810

(VCU) Text 0.830 0.981 0.873 0.969

Image 0.610 0.565 0.585 0.918

Lung Avg 0.858 0.807 0.811 0.964

Max 0.849 0.810 0.806 0.963

MLB 0.090 0.120 0.110 0.730

Text 0.890 0.866 0.872 0.930

Image 0.758 0.579 0.619 0.856

Prostate Avg 0.897 0.836 0.856 0.930

Test Max 0.897 0.848 0.864 0.930

MLB 0.130 0.170 0.150 0.780

(VA-ROQS) Text 0.921 0.874 0.893 0.950

Image 0.825 0.694 0.708 0.916

Lung Avg 0.918 0.840 0.868 0.964

Max 0.916 0.840 0.867 0.945

Table 16: Late Integration - Disease specific macro-averaged Precision, Recall, F1-

Score, and Overall Accuracy. MLB: Majority Label Baseline.
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quality metrics; analysis of our datasets have shown that radiation oncologists

have delineated many other OAR structures e.g., Kidney and Liver structure

in prostate cancer. To truly build the generalized system that can identify

all possible structures, the dataset needs to identify all correctly labeled OAR

structures, and not just the significant OAR structures.

Methodological limitations

• Extraction of 3D volumes of structures requires selecting the bounding box size

to make sure it covers the biggest possible structure in any given disease. Al-

though, it is a one time step needed at the beginning of the dataset preparation,

it does add an overhead in the complete automation of the pipeline.

• In recent years, deep learning algorithms such as Convolutional Neural Networks

(CNN) have worked best for image based data classification. We plan to extend

our pipeline to integrate CNN based image classification methods in the multi-

view integration approach.

• It is difficult to capture the image semantics by turning images into a single

vector and taking the top 50 components from it.

• We have extracted the structures fitted inside the bounding boxes. Using just

structures information and discarding the other surrounding structures and

anatomical information negatively affects the model performance.

• In late integration, we have tested only AVG and MAX for combining the data.

This gives equal importance to both the Text and Geometric data. As we have

seen from the single-view results, the geometric information model performed

poorly when compared to the text based single view model. Hence we surmise
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that a weighted average technique to integrate the results from the different

views might produce better results.

4.5 Conclusion

In this chapter, we presented two types of multi-view integration methods: inter-

mediate and late integration methods for structure name standardization. We utilized

the physician-given names and geometric information of structures. We observed that

the intermediate integration methods improves the overall performance of the models

while late integraiton helps in reducing the false negatives. We tested our approach

by training it on data from 30 VA RT centers and testing it on 10 VA RT centers and

the VCU dataset. We demonstrated that our method works well on multiple disease

sites and is also generalizable. We believe that the multi-view integration methods are

best suited for structure name standardization, as they make the best use of different

information to avoid the confusion. High VA-ROQS test set performance indicates

that our approach was able to generalize very well within the VA system. Whereas

excellent performance on VCU dataset suggests the model’s ability to generalize well

on the data from outside the VA systems

Contribution summary: In this chapter we address the limitations of structure

name standardization using solely physician-given names and present an approach to

combine the physician-given names with the geometric information of structures for

structure name standardization. Specific contributions of this chapter are as follows.

1. We demonstrate that the use of bony anatomy information along with structures

helps in the standardization process using geometric information.

2. We show that even target structure can be identified along with the Organs-at-

Risk (OARs) with the physician-given names.
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3. We demonstrate that it is still challenging to predict the standard name with

just geometric information in real-world clinical datasets.

4. We finally demonstrate that integrating physician-given structure names with

geometric information of structures improves the overall structure name stan-

dardization process.
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CHAPTER 5

AUTOMATIC INCIDENT TRIAGE IN RADIATION ONCOLOGY -

INCIDENT LEARNING SYSTEM

Fig 28: Thesis contribution, Chapter 5 contribution are highlighted.

5.1 Introduction

The radiation therapy (RT) cancer treatment speciality involves coordinated in-

teractions between various clinical staff such as, dosimetrists, physicists, radiation

therapists, nurses, and physicians. However, misadministration of RT can lead to po-

tentially severe consequences [49, 50]. High-risk industries, such as the aviation and

nuclear power industries [51], have demonstrated that the incident learning system

can prevent such errors. The American Society for Radiation Oncology (ASTRO)
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and American Association of Physicist in Medicine (AAPM) are professional soci-

eties that oversee the accuracy, safety, and quality of RT treatments. In March 2014,

these societies started the Radiation Oncology Incident Learning System (RO-ILS)

to enable documentation and analyses of incident reports in the radiation oncology

domain.

In the wake of RO-ILS, the Veterans Health Administration (VHA) has deployed

the Radiotherapy Incident Reporting and Analysis System (RIRAS). The system is

being used by the 40 VHA radiation therapy centers as well as the Virginia Common-

wealth University (VCU) Health center. RIRAS is a web-based Incident Learning

System (ILS) developed by TSG Innovations Inc. and is accessible via the intranet,

where any member within the department can submit incident/good catch reports.

The taxonomy, data dictionary, and radiotherapy process of care incorporated in the

design of RIRAS are based on the AAPM report on “Error Reporting” [52]. Further-

more, RIRAS is fully compliant with the Patient Safety and Quality Improvement

Final Rule [53]. RIRAS is built to report all types of workflow events, that includes

even minor errors in documentation and processes; such errors may decrease the

efficiency of treatments and cause delays besides having other downstream effects.

Figure 29 shows the typical schematic representation of the RIRAS system. All

events reported are reviewed by the ILS committee on a call or face to face interac-

tion; typically such ILS team comprises of medical physicists, dosimetrists, therapists,

nurses and physicians. The ILS team completes the analysis form section where event

summary titles, error type, causes based on a standard dictionary and safety barriers

or quality control measures affecting the event are entered. The event is reported to

the chief of the appropriate clinical group if the severity is determined to be high or

the ILS team determines that further review is necessary. Otherwise, the ILS commit-

tee reviews and codes the events by consensus at their weekly review meeting. Severe
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incidents require immediate action and root cause analysis (RCA). Understanding

the cause of severe incidents helps in preparing an appropriate plan of action. Even

the less severe incidents are further analyzed and tracked to avoid similar events. An

appropriate action plan and feedback is sent to the incident reporter and professional

group so that policy and process can be improved.

Natural language processing (NLP) is a popular technique for analyzing large

quantities of clinical texts, notably in medical specialties such as radiation oncology

and radiology [54, 55]). According to Meystre and Pons [55], the five major cate-

gories of application of NLP in radiation oncology are (1) diagnostic surveillance, (2)

cohort building for epidemiological studies, (3) query-based case retrieval, (4) quality

assessment of radiologic practice, and (5) clinical support services. In this chapter, we

introduce a sixth category for the application of NLP in radiation oncology: analysis

of radiotherapy incident reports. Specifically, we present the use of NLP to automate

the prediction of severity from the incident description. As shown in Figure 29, the

bottleneck step in the RIRAS system is triaging. We propose a machine learning

method to automate the triage process which can thereby reduce the manual efforts

needed by the subject matter expert (SME) to determine the severity; providing an

initial prediction of low and high severity with confidence also helps to augment the

incident analysis process.

The rest of the chapter is structured as follows. In Section 5.3, we present the

methods used and details of the dataset. Section 5.4 describes the results and in

Section 5.5, we present the discussion and conclusion. In the final section, we present

the limitations in our approach that can motivate future work.
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Fig 29: Schematic Representation of Radiation Oncology - Incident Learning System

(RIRAS).

5.2 Background

Healthcare incident reports, including the radiotherapy incidents submitted into

the RIRAS software, are similar to the safety reports of various industrial environ-

ments in that their narratives are reported in an unstructured free-text format. Free

text, while convenient for the reporter, presents a challenge for data aggregation and

requires suitably-qualified personnel to read and analyze. However, due to the lack

of dedicated incident-analysis personnel, minor incident reports in healthcare often

accumulate, as resources are used to deal with front-line issues that are typically

considered more urgent.

To the best of our knowledge, there is no work reported in the field of radiotherapy

to identify the severity of the incidents reported using incident description. However

there have been well reported research in other industries such as aviation, and nuclear
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[56, 57, 58, 59, 60] to classify the incidents reported in the respective fields. In

healthcare there has been successful work done in classifying the verbal autopsies

[61]. A team in Canada has done a study on identifying the incident types from

Canadian medication incident report [62]. Another team in Australia performed

more extensive study predicting the two types of patient safety incidents: incorrect

patient identification and inadequate clinical handover [63]. Hence, there is an urgent

need for creating an actionable learning-based incident reporting system in healthcare

[64].

5.3 Methods and Materials

5.3.1 Dataset

RIRAS is a web-based ILS deployed on the VHA radiation oncology centers in-

tranet and VCU intranet in early 2014. It was designed to collect good catch data

and adverse events, besides analyzing their causes and contributing factors, and fi-

nally, to prevent possible occurrences in the future. This system provided a platform

to report the adverse events across 40 VHA radiotherapy treatment centers. We col-

lected data from both sources, which consisted of incidents that were triaged into four

levels of severity, namely, A through D, where A is most severe, and D is least. From

here on, the dataset collected from VHA centers and VCU radiotherapy center will

be referred to as VHA data and VCU data, respectively. Table 17 shows the sam-

ple examples of incident descriptions reported and their respective severities assigned.

VHA Dataset: The VHA clinical reporters entered incidents into RIRAS since

2014. For the time period between 2005 and 2014, the incident reports were collected

for only high severity (level: A) incidents. These reports were collected by mostly
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emailing the VHA’s National Health Physics Program office who logged the reports

in excel spreadsheets. These reports (46 reports) were entered into RIRAS in 2015.

For the purposes of this analysis we used the data collected till 2017. A total of

530 incidents were reported across the VHA centers at the time when this data was

collected, in which 345 incidents were analyzed by the subject matter experts and the

incident analysis reports were assigned severities. The incidents distributed based

on the severity in VHA dataset is as shown in Figure 30a, where the incidents are

distributed as A (62), B (52), C (162), and D (67). A total of 185 incidents were not

analyzed and hence were missing the severities; such non-analyzed incidents cannot

be used in our classification task.

VCU Dataset: The incidents collected at VCU were between 2014 to 2019.

A total of of 540 incidents were reported, among which 7 were not analyzed by the

subject matter experts. The incidents were distributed based on their severity as

shown in Figure 30d, where the incidents were distributed as A (9), B (40), C (165),

and D (318). A total of 7 incidents were missing severities.

5.3.2 Incident Severity Types

The AAPM (professional society of Medical Physicist in the US) formed a work-

ing group on Prevention of Errors in Radiation Oncology where a panel of experts

developed consensus recommendations considering five key areas: data elements, def-

initions, severity scales, process maps, and causality taxonomy [52]. RIRAS was

implemented following these recommendations. Following are the important termi-

nologies related to ILS:

• Incident: refers to events that are unintended or unexpected in the realm of
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Incident Description Severity

The patient on the EMR screen was not the patient

called for treatment. During set up the radiation ther-

apist noticed that the patient on the table is not the

patient selected on EMR. Introduced new policy of dou-

ble checking the patient ID by therapists.

High (A or B)

Spinal cord and Brainstem max doses were incorrectly

recorded in dose summary spreadsheet and in paper

chart and Aria printouts. Aria dose recording paper

chart and Aria PDF were corrected.

Low (C or D)

Table 17: Examples of Incident description and respective Severity assigned by Sub-

ject Matter Experts.

standard clinical operations. Such events may cause adverse effects on equip-

ment, healthcare providers or patients.

• Near Miss or Good Catch: refers to unplanned events that could potentially

cause a damage, illness or injury, but did not actually do so. However, such near

misses were only averted due to good fortune. Such events are mostly labeled

by ”human error”, while faulty systems or processes may exaggerate the harm,

and needs to be studied better. Other terms used for such are ”close call”, and

for moving objects, ”near collision”.

• Unsafe Condition: refers to hazardous work environments, circumstances, or

physical conditions that increase the probability of an incident.

In the VHA, the National Radiation Oncology Program (NROP) consists of 40
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(a) (b)

(c) (d)

Fig 30: Dataset Distributions: (a) Severity Distribution in VHA dataset. (b) Severity

Distribution in VCU dataset. (c) Word Distribution in VHA dataset. (d) Word

Distribution in VCU dataset.

facilities treating over 12,000 patients annually within the system, and an additional

14,000 outside of the system. As the rate of errors has been estimated to occur as

frequently as 1 per 600 patients [65], the utilization of ILS can provide a means of

gathering and analyzing incident data so that patient safety and workflow process

improvements can be implemented and the effects of such changes tracked over time.

For multi-institutional programs such as the NROP, aggregating incident reports
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from all facilities into a single database increases the effectiveness of incident learning

and allows for the assessment of systematic errors and trends as well as national

standardization of policies and procedures. Based on the recommendation of AAPM,

NROP defined the reasoning behind the severity categorization and explained what

constitutes of low to high severity. Reports were subsequently categorized based on

four levels of severity: A through D. Explanations for these incident severity categories

are shown below:

• Level A: It is a significant event or near miss with a potential for a medical

event or serious patient injury, as well as a repeat of a Level B event. The

problem has an urgent need for correction and may impact multiple patients

or Radiation Oncology processes. Level A incidents require a full Root Cause

Analysis. The Lead Responder for a level A incident will typically be a medical

physicist. Very few (< 2%) incidents should fall into this category.

Example: A patient is treated at the wrong site. The Lead Responder would

be a medical physicist appointed by the Director of Clinical Physics.

• Level B: It is a significant event or near miss that did or could result in a dose

deviation > 5%, a significantly larger than intended dose outside the treatment

field, a treatment delay of greater than one day, or a similar scenario that

is neither a Medical Event nor poses a risk of serious patient/staff injury. The

problem should be confined to a single process step and could likely be promptly

addressed with an Apparent Cause Analysis. The Lead Responder for a level

B incident will either be a medical physicist or a department lead. Few (< 5%)

incidents will fall into this category.

Example: A case is planned and treated for five fractions (out of 20) with

an improperly expanded contour that is 5 mm larger than intended by the
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physician. The Lead Responder would be the Director of Dosimetry.

• Level C: A minor incident, near miss, or condition that warrants an appropriate

response from a department lead, who is typically the Lead Responder. The

level of the response will be up to the department lead, but the response must

be reported back to the Quality Assurance (QA) committee. Many incidents

will fall into this category.

Example: A case is planned and prepared for treatment assuming 5 mm bo-

lus. The physician opts not to use the bolus, and only the monitor units are

not recalculated before treatment approval. The Lead Responder could be the

Director of Clinical Physics.

• Level D: A very minor incident, near miss, or condition that warrants awareness

by the department lead. The level of the response will be up to the department

lead, and there is no mandate for them to report back to the QA committee.

The incident will be logged within RIRAS for trend tracking purposes.

Example: A field is mislabeled in a plan. The Director of Dosimetry is informed.

5.3.3 Model Selection

In this section, we describe the model selection techniques using traditional ma-

chine learning and deep learning approaches with model fine tuning and transfer

learning.

5.3.4 Traditional Machine Learning

We first pre-processed the textual data from the incident reports. Next, we iden-

tified the features from the text to build the corresponding feature vectors necessary

for any supervised machine learning model. The next step was to select the appro-
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priate machine learning algorithm for which we tested different types of algorithms

to predict the severity of the incidents.

Since machine learning algorithms require numerical data, we next converted the

textual data into numerical features. This involves the following major steps [30]: 1)

tokenization, 2) feature set generation, and 3) vectorizing the features with different

feature weight calculation techniques. To this end, we applied the following steps in

developing the proposed traditional machine learning pipeline (as shown in Figure

31).

Fig 31: Triage Process: Pictorial representation of the traditional machine learning

severity classification pipeline.

5.3.4.1 Data Splits:

As before we built a model by splitting the data into three sets: the training set,

validation set and test set. Using the separate data for evaluation not seen during

training lets us test if the trained model is not over trained. Once the final model is

prepared, the test dataset is used to test the model with unseen data (not seen during

training and not used as validation).
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5.3.4.2 Data Preprocessing

All incident descriptions were first processed using NLTK (python library for

text processing) [66]. The following procedures were applied:

• Data Cleaning: Removing the unnecessary parts of text. In our dataset, we

removed the characters “&amp;quot”, “&amp;&amp;”, which were added to

the text when collecting the data from XML files.

• Tokenization: It is the process of splitting the long string of text (sentences)

into tokens (words). These tokens are used as features. We used NGram tok-

enization to produce uni-gram, bi-grams, and tri-grams [67]. Uni-grams are also

known as bag-of-words representing individual terms that occur in a document

(e.g., “surgery”, “prostate”, “dosimetry”). bi-grams and tri-grams represent

the consecutively occurring two or three terms in a document (e.g., patient

scheduled, patient rescanned, patient planned radiation therapy), which help

capture the semantics of text; one such example is negation (e.g., no pain).

• Text Normalization: It is the process of converting terms occurring in text

into one form. We used lower case normalization to ensure that all the words

occurring in different forms are represented as one (e.g. Patient, PATIENT,

patient, and pAtient are converted to “patient”) [68].

• Stopword Removal: It is the process of identifying and removing more fre-

quently occurring words from the text. We considered removing commonly

occurring English language words (e.g. a, the, it, what, why, she, etc.), which

hold no classification value [67]. We used general English language stop words

provided in the NLTK Package. This technique is commonly used in informa-

tion retrieval and NLP document classification implementations [68].
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• Term frequency filtering : It is the process of identifying the infrequently

appearing words in the corpus [69], which helps with reducing the feature vector

size. We have used a minimum term frequency of 5 as cutoff.

• Feature Weighting Techniques: We used three types of feature weighting

methods as shown below. Term presence (tp), Term Frequency (tf), and Term

Frequency-Inverse Document Frequency (tf-idf). We have explained each of

these weighting techniques in Section 3.3.4

• Vectorization – It involves using the above steps to extract features and

weights to generate uniform vector representations of each report. Each feature

weighting technique (shown above) was used to create three types of feature

vectors. One such feature weighting technique is tf-idf ; tf-idf assigns the weight

to the term based on its frequency in a document, and its appearance in all

documents in the corpus. The assigned weight indicates the relevancy of that

term to the document when classifying the documents into different classes [68,

70, 71]. The higher value of the term indicates its higher importance. The term

frequencies are normalized so that longer documents do not skew the results

[72].

5.3.4.3 Classification Algorithms

We next tested the classification algorithms explained in Section 2.3 to select the

best algorithm for the traditional machine learning pipeline.

5.3.4.4 Evaluation Metrics

To evaluate our model we considered macro-averaged precision, recall, and F1-

Score that can better capture how well a classifier can identify cases that it does not
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see often as explained before. Results are also presented using a confusion matrix

which shows the number of correct and incorrect predictions as summarized with

prediction counts between each class. It provides insight not only into the errors

being made by the classifier but more importantly, the types of errors that are being

made.

5.3.4.5 Initial Model Selection

The extracted incident reports were used to train machine learning classifiers

with Python’s scikit-learn (version 0.21.3) [39]. The labeled incident report corpus

was stratified as 80:20 as training and test split. A total of 276 (80%) incident reports

were used for model training and 69 (20%) for model testing to characterize the model

performance.

In our initial work, to test the viability of predicting all four severities, we built

four different models by combining severities as below [7]:

• Model-1: We considered incidents with severities A and C.

• Model-2: We combined A&B as high and C&D as low severities.

• Model-3: We considered only B and D severity.

• Model-4: All 4 severities, A, B, C, and D are considered as separate.

These models provide insight into our methods’ ability to find patterns when

incidents with different severities are considered. We built above mentioned four

models with SVM-linear classification algorithms, and NGram features with tf-idf

feature weights. Table 18 shows the results of these four models. We observed that

Model-1 and Model-3 achieved an F1-Score of 0.87 and 0.78 respectively; we can infer

that incidents A & C (Model-1) and B & D (Model-3) have better patterns to classify
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incidents. The poor performance of Model-4 indicates that there is a lot of similarities

between the A & B and C & D severities in the confusion matrix. Model-2 achieves

the F1-Score of 0.81. It is clear from the results that predicting all the four categories

is difficult based on our current datasets. However, categorizing incidents into high

(A&B) and low (C&D) severity (Model-2) is viable.

Models Severities Precision Recall F1-Score

Model-1 A and C 0.86 0.87 0.87

Model-2 A&B and C&D 0.83 0.80 0.81

Model-3 B and D 0.80 0.77 0.78

Model-4 A, B, C, and D 0.53 0.56 0.53

Table 18: Results from the severity categorization model for different combinations

of severities. Results reported are macro-averaged precision, recall and F1-Score for

SVM with linear kernel model.

Hence, we used Model-2 for building the automated triage system. To select the

best classification algorithm to build the final model, we applied the above explained

steps to build the severity prediction model. Figure 31 shows the pictorial represen-

tation of the classification pipeline. Five different classification algorithms were used:

k -Nearest Neighbors (KNN) [18], SVM-Linear [15], SVM-RBF [16], Random Forests

[20], and Logistic Regression [38] with feature extraction and weighting methods.

Standard macro-averaged precision, recall, and F1-Score are used as evaluation met-

rics for discrimination on the training and test sets. Table 19 and 20 shows the initial

model selection results for VHA and VCU datasets. We observed that SVM with

linear kernel consistently performed well with all feature vector generation methods.
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In all combinations of algorithms and features, SVM with linear kernel algorithm and

tf-idf features performed the best with an F1-Score of 0.808. With this observation,

we chose the tf-idf and SVM-linear to build our final model.

Dataset Features Algorithm Precision Recall F1-Score

Weights

SVM RBF 0.809 0.519 0.418

SVM Linear 0.792 0.698 0.705

tp Random Forest 0.856 0.685 0.686

Logistic Regression 0.792 0.698 0.705

KNeighbors 0.304 0.500 0.378

SVM RBF 0.797 0.655 0.649

SVM Linear 0.815 0.735 0.747

VHA tf Random Forest 0.837 0.729 0.740

Logistic Regression 0.815 0.735 0.747

KNeighbors 0.813 0.537 0.454

SVM RBF 0.720 0.562 0.512

SVM Linear 0.835 0.798 0.808

tf-idf Random Forest 0.818 0.692 0.696

Logistic Regression 0.759 0.599 0.571

KNeighbors 0.680 0.664 0.668

Table 19: Model-2 selection results for severity categorization for VHA dataset. Re-

sults reported are macro-averaged.
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Dataset Features Algorithm Precision Recall F1-Score

Weights

SVM RBF 0.458 0.500 0.478

SVM Linear 0.458 0.500 0.478

tp Random Forest 0.458 0.500 0.478

Logistic Regression 0.458 0.500 0.478

KNeighbors 0.458 0.500 0.478

SVM RBF 0.458 0.500 0.478

SVM Linear 0.460 0.500 0.475

VCU tf Random Forest 0.458 0.478 0.478

Logistic Regression 0.460 0.490 0.473

KNeighbors 0.458 0.500 0.478

SVM RBF 0.458 0.500 0.478

SVM Linear 0.460 0.495 0.475

tf-idf Random Forest 0.458 0.500 0.478

Logistic Regression 0.458 0.500 0.478

KNeighbors 0.457 0.490 0.473

Table 20: Model-2 selection results for severity categorization for VCU dataset. Re-

sults reported are macro-averaged.

5.3.5 Traditional Machine Learning Vs. Transfer Learning:

Traditional machine learning refers to training a model on a particular task (say,

text classification) from one domain and expecting it to perform well on unseen data

from the same domain. Whereas, transfer learning refers to the use of a model
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that has been trained to solve one task (e.g., language modeling: predict next word

in a sentence) as the basis to solve some other or somewhat similar problem (text

classification) [73]. It also refers to the training of a model with a large-scale dataset

and next using this pre-trained model for the same task with different dataset and

labels. The computer vision domain popularized transfer learning with the ImageNet

dataset [74].

Fig 32: (A) Traditional machine learning system (B) Transfer Learning system.

Figure 32 (A) shows the traditional machine learning setup. This method is

isolated and performs single-task learning. It is not possible to use the knowledge

from one task to learn the new task. Traditional machine learning also needs a lot

of data to learn the given task. Whereas, Figure 32 (B) shows the transfer learning

setup. This setup utilizes the knowledge learned from one task to learn a new task;

because of the knowledge transfer, it requires less data and computation time to learn

a new task.

5.3.6 Transfer Learning

Transfer learning is the process of training a model on a large-scale dataset

and then using the pre-trained model to conduct learning for another downstream
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task. One such simple transfer learning technique is to use the word2vec embeddings,

which uses a single layer of weights from the trained model. However, full neural

networks in practice contain many layers, and using transfer learning for a single

layer is only scratching the surface of what is possible. From the immediate past, one

such technique that fine-tunes the full network for transfer learning on textual data

is the universal language model fine-tuning (ULMFiT) [75].

Universal Language Modeling and Fine Tuning

The ULMFiT is one of the revolutionary algorithms in the field of NLP for

knowledge transfer used for text classification. It uses all the layers of a neural

network for transfer learning. Figure 33 shows the high-level pictorial representation

of ULMFiT.

Fig 33: Pictorial representation of high level Universal Language Model Fine-tuning

(ULMFiT) approach used for incident triage.

The ULMFiT has three main steps.

1. General Domain Language Modeling: In the first step, an unsupervised lan-

guage model is trained on a large corpus to generate a general-domain language

model. For this, a pre-trained general-domain English language model was

used [75], which is trained with language model ASGD Weight-Dropped Long

104



Short-Term Memory (AWD-LSTM) on Wikitext-103 [76].

2. Target Task Language Model Fine Tuning: In the second step, the general

domain language model is fine-tuned with the domain/target specific dataset.

A pre-trained general-domain language model allows the target task language

model to converge faster and results in a robust language model even for small

target datasets. A pre-training provides a robust representation for uncommon

words in the target training dataset.

3. Target Classifier Fine Tuning: In the third and final step, it adds two additional

linear blocks to the pre-trained language model. The first linear layer takes the

pooled last layer of the language model as input on which it applies ReLU

activation. The last layer is a fully connected layer having softmax activation

that provides the target classes’ prediction probability.

5.4 Results

In this research, our goal was to augment the triage process in RIRAS by predict-

ing the severity of the incident using the textual description of the incidents reported.

We used two different approaches to predict the severity of the reported incidents:

a traditional ML and transfer learning approach with the more advanced algorithm

called ULMFiT. Below we describe the results from each of these approaches.

Traditional ML Results

From the initial model selection results, we observed that SVM-linear performed

best in comparison with others. Hence, we used the SVM-linear to build the final

model. We built separate models for VHA and VCU datasets. Table 21 shows the

traditional ML results. We compared the results with the majority label baseline

105



(MLB Baseline) model. In the MLB baseline, all the predictions are done as a label

that occurs the majority of the time. The metrics are calculated based on the majority

label. In a balanced binary classification model, the random probability of predicting

a correct class is 50%, but both the datasets used in this work are imbalanced. Hence,

we compared the results with the Random and MLB baseline. The VHA dataset

model achieved 0.80, 0.77, and 0.78 of precision, recall, and F1-Score, respectively.

When compared to the MLB baseline, it achieved much better results. Whereas

for VCU, we noticed that SVM-Linear results are the same as the MLB baseline,

indicating that the model was not able to learn the classification patterns from the

training data. Figure 34 shows the confusion matrix of traditional ML results for

both VHA and VCU. We noticed that for the VCU dataset, the ML model assigned

the Low severity (majority label in the training set) to all test set instances.

Models DataSource Precision Recall F1-Score

Random − 0.50 0.50 0.50

MLB Baseline VHA 0.33 0.50 0.40

VCU 0.458 0.500 0.478

SVM-linear VHA 0.80 0.77 0.78

VCU 0.458 0.500 0.478

Table 21: Traditional Machine Learning Results for Model-2. Reported results are

macro averaged precision, recall, and F1-Score for SVM with linear model. MLB:

majority label baseline.
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Fig 34: Traditional ML Results Confusion Matrix. Left confusion matrix is for VHA

test set and right is for VCU test set. Diagonal indicates the correctly predicted class

count.

Transfer Learning Results

Table 22 shows the results for different models built with ULMFiT. As explained

in Section 5.3.6, transfer learning is a way to utilize the knowledge learned from one

task into another task. In this research, we used ULMFiT to build the transfer learn-

ing based approach to predict the severity of incident reports in radiation oncology.

ULMFiT involves building the language model (LM) and use it in the classification

model.

In order to test the effects of data source on the models’ ability to predict the

severity of the incident reported using the descriptions, we built three different LM

models based on the data source: VHA, VCU, VHA VCU; the VHA VCU dataset

combines both the VHA and VCU datasets. Next, we trained the separate classifica-

tion models with VHA and VCU datasets by taking knowledge from the LM models.

This provided us with (3 X LM model) X (2 X Classifiers) = 6 pipelines to test for
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LM Train Test Precision Recall F1-Score Support

VHA VHA VHA 0.77 0.78 0.78 69

VHA VCU VHA 0.68 0.61 0.61 69

VCU VHA VHA 0.80 0.83 0.81 69

VCU VCU VHA 0.33 0.49 0.39 69

VHA VCU VHA VHA 0.76 0.79 0.75 69

VHA VCU VCU VHA 0.54 0.51 0.46 69

VHA VHA VCU 0.56 0.68 0.48 106

VHA VCU VCU 0.67 0.69 0.68 106

VCU VHA VCU 0.55 0.64 0.53 106

VCU VCU VCU 0.46 0.49 0.47 106

VHA VCU VHA VCU 0.55 0.61 0.54 106

VHA VCU VCU VCU 0.59 0.54 0.55 106

Table 22: Transfer Learning Results for Model-2. First six rows for VHA test set

models and last six rows are for VCU test set. Results reported are macro-averaged.

Support indicates the total number of samples in test sets. LM: Language Model.

each data source, and a total of 12 models for VHA and VCU. Table 22 shows the

transfer learning results. The results reported are macro-averaged precision, recall,

and F1-Score.

We observed that transfer learning results are comparably better than traditional

ML learning results. For the VHA test set, we noticed that the pipeline with VCU
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Fig 35: Transfer Learning Results: Confusion Matrix for each model in test dataset.

Title in each confusion matrix indicates the respective model. Top two rows (six

models) is for VHA test set and bottom two rows (six models) for VCU test set.

Diagonal indicates the correctly predicted class count.
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LM model and classification model trained with VHA achieved the best results. LM

models trained separately with VHA, VCU, and VHA VCU performed similarly for

the VHA test set. It is clear from the results that the classification model needs to

be trained with VHA data to predict the VHA test set. Transfer learning models

performed well for the VCU dataset with precision 0.67, recall 0.69, and F1-Score of

0.68 compared to the traditional ML model. Figure 34 shows the confusion matrices

for all the models. The model with LM trained on VHA data and classifier trained

on VCU data performed better on the VCU test set.

5.5 Discussion

In this chapter, we presented an approach to predict the severity of the radiation

oncology incidents. The purpose of this work is not to replace the manual triage

process, but rather, augment it by predicting the severity of the incident with reported

description and provide the recommendation to the subject matter experts on the

likelihood of an incident being of low or high severity. To do that, we used NLP

techniques and ML algorithms to build the automated triage pipeline. We used

traditional ML and transfer learning approaches.

The datasets used in this work come from two different sources; they are similar,

yet have different characteristics. We noticed that the distribution of incidents based

on the severity type is different in VHA and VCU datasets; there are fewer High

severity incidents in the VCU dataset compared to the VHA dataset even though

the total number of incidents in VCU are higher than VHA. We noticed that the

descriptions of the incidents reported in the VHA dataset are longer on average com-

pared to the incident descriptions reported in the VCU dataset. The length of the

incidents also correlates with the severity of the incidents. The High severity (A & B)

incidents, on average, have long descriptions compared to the Low severity (C & D)
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incidents. It does not mean that the length of the description of the incident indicates

the severity of the incidents. However, we believe it may be because the incident re-

porters tend to describe incidents in detail if they deem the incident is severe. The

difference in length of descriptions may be due to the institution type and practice at

those institutes. VHA incidents are coming from 40 VHA treatment centers, whereas

VCU is a single institute. NLP makes use of the words in the description to find the

patterns of the specific severity. Hence, a well-explained description is always better

than a short one. Talking to SMEs, we have learned that some times just incident

description provided is not enough to infer the severity; they always reach out to inci-

dent reporters for more information before analyzing the incident and assign severity.

Thus, we believe that there is a need and opportunity to build guidelines on reporting

practices. All the staff who use the RIRAS system to report incidents needs to be

aware of guidelines and follow the instructions while reporting an incident.

Comparison with previous work

While ML and NLP based methods have been widely used to analyze incident

reports from other domains, such as aviation [77], they have only been scarcely used

in the healthcare domain before [63]. Straightforward comparison of our work with

others is not possible because of the following two reasons. First, there has been no

prior work related to the radiation oncology incident severity prediction using ML and

NLP. Second, related work in healthcare incident analysis is more focused on other

types of incident reports, where such incidents were recorded as free text. For exam-

ple, Wong and Akiyama [62] analyzed 227 medication incident reports using a logistic

regression based classifier to categorize the incident types based on adverse drug ef-

fects. Similarly, Wang et al. [78] used an integrated ML and NLP based pipeline to

categorize incident reports related to patient safety; however, their method performed

111



poorly in properly classifying the severity levels. Finally, another related work in the

healthcare domain considered verbal autopsies for text-based classification [61] with

good accuracy; such autopsies bear some resemblance to incidence reports. However,

none of these works are directly comparable to our proposed method which considers

incident reports from the radiation oncology domain for automatic classification of

severity levels and hence precludes any direct comparison with prior work.

Limitations

The work presented in this chapter for automatic incident triage in radiation

oncology - incident learning system has the following limitations.

First, the method proposed was only able to predict the severity into only High

or Low categories, not four as required in the incident learning system.

Second, with this approach, we are unable to type incident, which is significant

for making an effective change in the ILS system.

5.6 Conclusion

Incident reports in the radiation oncology domain provide very useful informa-

tion to analysts and subject matter experts to decide on the right course of action

for incidents. With the current trends in digitization of medical data (such as, in-

cident reports) and automation of operations and logistics (such as our proposed

automated incident triage and prioritization module), artificial intelligence related

methods have become a necessity. In this chapter, we presented a deep learning

based ULMFiT model that can effectively identify the incidents based on the initial

report and narrative. We demonstrated that this transfer learning based approach

outperforms standard supervised machine learning based approaches for classifying

narratives. Our work provides encouraging results towards the end goal of a fully
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automated incident triage and prioritization system in the future. Additional data

from the national safety registry RO-ILS should help to improve the accuracy of our

proposed model and provide human-level fidelity and performance. Our models can

also work on retrospective data on incident reports to automatically classify the in-

cident severity and provide rapid summarization of past events for subsequent data

driven research studies in the future.

Contribution summary: In this chapter we focused on the safety aspects of ra-

diation oncology. We specifically looked at the triage process in incident learning

system. Specific contributions of this chapter are as follows.

1. We present an approach to automatically identify the severity of the radiation

oncology incidents using the textual incident description.

2. We demonstrate that identifying the severity is a challenging problem when it

comes to classifying the incidents into the four possible categories using just the

incident description. However, merging severity types into two categories (High

and Low severities) results in much better classification results considering the

incident report data from multiple VHA radiation oncology centers as well as

the VCU medical center datasets.

3. We next demonstrated that transfer learning does help in the severity prediction

process specifically considering multi-institution data that may each follow a

different protocol for recording the incident reports.

4. We show that incident reports are correlated with institutional practices and

there is a need for standardized incident reporting guidelines to reduce the

subjective incident analysis practices.
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CHAPTER 6

ANALYSIS OF TREATMENT SELECTION PRACTICES FOR

INTERMEDIATE OR HIGH RISK PROSTATE CANCER

Fig 36: Thesis contribution, Chapter 6 contributions are highlighted.

6.1 Introduction

Prostate cancer (PCa) is the most commonly diagnosed type of cancer after

breast and lung cancer. In 2018 alone, over 160,000 new prostate cancer cases and

over 29,000 prostate cancer-related deaths were estimated in the United States [79].

PCa is also one of the most heterogeneous type of cancer specifically with respect to

intermediate or high-risk PCa [80]. The non-invasive prostate-specific antigen (PSA)

test that has led to an increase in early detection of PCa leading to more localized
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PCa diagnosis in recent years [81].

The National Comprehensive Cancer Network (NCCN) provides clinical prac-

tice guidelines that are created by physicians to determine the best way of treating

PCa patients (besides other types of cancers), depending on their diagnosis, disease

stage, age and other factors. PCa is also treated with monotherapy or polytherapy.

Physicians select the treatment modality based on four major criteria - age, race,

life expectancy, and NCCN Risk. Factors such as patient preferences, survivorship

goals along with tumor biology also play a crucial role in optimizing the treatment

modality.

A major consideration during the treatment options for PCa is to check whether

the cancer is contained within the prostate gland (localized), or has spread outside the

prostate (locally advanced) or has spread to other parts of the body (metastasized).

Radical prostatectomy (RP), external beam radiotherapy (EBRT) and brachyther-

apy (BT) are the common primary treatment options for localized PCa. Hormonal

therapeutics such as androgen deprivation therapy (ADT) is also used as neoadju-

vant/adjuvant therapy. However, ADT as monotherapy is not recommended for inter-

mediate and high-risk cancer patients by NCCN. Ideally, a treatment option recom-

mendation would be based on the randomized controlled trials (RCT) that compare

efficacy and morbidity of alternative treatment methods. There are no randomized

trials showing that one treatment is better than the other for the above-mentioned

treatment options. Hence, physicians use their personal experience and expertise to

predict the outcome of these treatment methods. Physicians also tend to have diffi-

culty weighing the relative importance of each of these factors and inherently possess

biases when predicting the treatment outcomes.

Based on the aforementioned considerations, determining an optimal treatment

plan for the patient can be a challenging task for the physician. In order to assist
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the physicians with more accurate prognosis, subsequent treatment outcome predic-

tion, and to make informed decisions, numerous predictive tools have been devel-

oped [82]. These include probabilistic models, lookup and propensity scoring tables,

risk-stratification tools, classification, and regression tree analysis, nomograms, and

artificial neural networks[83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. However, to the best

of our knowledge, no models have been reported that can identify why a prescribed

(or administered) treatment plan do not adhere to NCCN guidelines.

The predictive models for treatment plan (or outcome) prediction have a ma-

jor disadvantage. Such models do not consider the impact of non-clinical factors

associated with the treatment center. The factors associated with the treatment cen-

ter have shown to play a determining role in the physicians’ treatment prescription

practices. Non-clinical factors can be patient-related, physician-related or practice-

related. These factors include patient’s preference/availability, patients’ adherence,

physician’s availability, cost, geographical proximity, treatment centers’ equipment

condition/availability, treatment centers’ cultural aspects, type of practice (private

vs. public), availability of health resources, etc.[93, 94, 95, 96]. However, there have

not been many studies which have investigated the extent of the contribution of these

factors in the treatment selection process itself. Thus the motivation of this study is

two-fold:

1. To use both clinical and non-clinical features for localized and locally advanced

PCa patients from multiple Veterans Health Administration (VHA) centers and

use machine learning methods to predict the treatment prescribed; such meth-

ods provide a statistical approach for calculating the weight (impact) of these

clinical/non-clinical features from an empirical and retrospective point-of-view.

2. To perform quality assurance assessments across the different centers and verify
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if the prescribed treatments were in concordance with NCCN guidelines.

This study presents a comparative analysis of treatment prescription consistency

across multiple VHA centers.

6.2 Materials and Methods

6.2.1 Dataset

The VHA has 40 centers treating cancer patients with radiation therapy (RT)

across the US. But for this study, a maximum of 20 patients from 34 VHA RT centers

are selected based on the whose treatment was completed below criteria.

• Patients should have been treated between 2010 to 2017.

• Patients must have been treated for intermediate or high-risk PCa.

• Patients must not have previous malignancy, M1 disease, or lymph node in-

volvement.

A total of 552 patients from the 34 centers were selected. Subject matter expert

(radiation oncology nurse) gone through all health records to manually extract the

related clinical information. Hence, we consider this dataset as a gold dataset. Table

24 show the dataset details.

The dataset was split 80 : 20 ratio into training and test sets. One hot encoding

technique was used to binarize the categorical features, this technique simply creates

additional features based on the number of unique values in the categorical feature.

Every unique value in the category will be added as a feature. Continuous features

were scaled to a min-max scale (for normalization). We used random forest algorithm

for building predictive models. Models are evaluated with macro-average precision,

recall, and F1-Score.
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6.2.2 Definitions of Variables

Definitions of variables used in our study are as follows.

Clinical variables: We considered pre-treatment PSA count, Gleason score

(GS) [primary grade, secondary grade], Gleason Grade, Tumor staging [TNM-stage],

NCCN risk group, performance status, and quality of life (QoL) measures. The values

for these clinical variables were manually extracted from the consult notes. :

Non-Clinical Variable: We defined Center-ID as a non-clinical variable. It

designates a unique ID to identify the VA radiation treatment center.

ADT Duration: NCCN guidelines define ADT duration as short term (ST)

or long term (LT). ST duration is 4-6 months, and LT duration is 2-3 years. We

further differentiated ADT duration based on intended and administered duration.

The intended duration signifies whether it was mentioned in consult notes during

treatment planning, whereas ADT administered duration is calculated based on the

dates of ADT injection. Table 23 shows the ADT injection type and their effective

period in months depending on the dose. Table 25 shows the distribution of ADT

intended and administered duration. A third category of not otherwise specified

(NOS) was used to indicate cases where ADT duration was not mentioned in consult

as a treatment plan.

Treatment Prescribed: During the consultation, the radiation oncologist dis-

cusses with the patient all possible treatment by explaining the side effects of each of

the treatment plan. The decision is taken with the patient, and this intended treat-

ment is recorded in consult notes. Hence, we call this treatment intended at the time

of consult as treatment prescribed.

Treatment Administered: At the end of the treatment, radiation oncologists

make a note of treatment details. We call this treatment as treatment administered.
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We have used two different terminologies because, for some patients, there is a change

in from intended to administration treatment. This change in treatment was mainly

observed in the ADT duration.

NCCN Concordance: We defined the treatment prescribed or administered is

concordant with NCCN guidelines if they were as per the NCCN guidelines [97].

ADT Injection Dose Effective Period

3.75 mg 1 month

7.50 mg 1 month

Leuprolide 22.50 mg 3 months

30.00 mg 4 month

45.00 mg 6 months

3.60 mg 1 month

Goserelin/Zoladex 10.80 mg 3 months

Table 23: ADT Injection Effective period based on the injection type and dose.

6.2.3 Model Selection

In this section we present the details of feature-set selection, predictive models,

machine learning algorithms, and model evaluation metrics.

We used machine learning algorithms as a statistical tool to find the association

between the treatments and clinical and non-clinical features. We used a supervised

machine learning algorithm called random forests (RF) [20], to find these associations.

The RF algorithm takes the features (clinical and non-clinical variables) and target

(treatments) to builds multiple decision trees and merges them together to get a

more accurate and stable prediction. It also provides the significance of features in
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Data Element Count Percentage

Total Patients 552 -

Centers 34 -

Gleason Score
Primary + Secondary 549 99.50
3 + 3 17 3.00
3 + 4 219 39.67
4 + 3 128 23.18
3 + 5 18 3.26
4 + 4 79 14.31
5 + 3 2 0.36
4 + 5 61 11.05
5 + 4 19 3.44
5 + 5 3 0.54
NOS + NOS 2 0.36

PSA 549 99.50

T Stage 549 99.50
T1a - T2a 457 82.79
T2b - T2c 64 11.59
T3a -T3b 20 3.63
TX 1 0.18
NOS 7 1.26

Risk 545 98.73
Intermediate 304 55.60
High 241 44.40

Performance Status 523 94.75

Quality of Life 400 72.46

Treatment Prescribed 552 100.0
BT 24 3.07
BT-ADT 1 0.13
EBRT 132 20.23
EBRT-ADT 382 59.28
EBRT-BT 2 0.27
EBRT-BT-ADT 11 2.00

Table 24: Details of the clinical factors in the VHA ROPA dataset and their distri-

bution, NOS: Not Otherwise Specified.

classifying the targets. The significance of all features sums to 1, where higher the

significance of a feature stronger is its association with the target class, and lower

significance indicates the weaker or no association.
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NCCN Risk Treatment ADT Intended Administered Concordance

Duration with NCCN

ADT-BT NS 1 - No

LT - 1 Yes

BT 24 24 Yes

EBRT 115 115 Yes

Intermediate LT 8 15 No

EBRT-ADT NS 11 - No

ST 142 146 Yes

EBRT-ADT-BT ST 1 1 Yes

EBRT-BT 2 2 Yes

EBRT 17 17 No

EBRT-ADT-BT LT 9 4 Yes

ST 1 6 Yes

High LT 185 145 Yes

EBRT-ADT NS 18 - No

ST 12 70 No

Table 25: Treatment concordance with NCCN guidelines. ST :Short Term, LT: Long

Term, and NS: Not Specified.

6.2.3.1 Features and Labels

We created two feature sets using the clinical and non-clinical features to high-

light the contribution of non-clinical features. The feature sets (FS) are as below

1. FS-1: Clinical features only. ( PSA, Risk, Total GS, Primary GS, Secondary

GS, T Stage )

2. FS-2: Clinical and Non-clinical (Center-ID) features. (PSA, Risk, Total GS,
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Primary GS, Secondary GS, T Stage, Center-ID )

Above two feature sets used in two models with target labels as below:

1. Model-1 Labels: EBRT-ADT, ADT

2. Model-1 Labels: EBRT-ADT-ST, EBRT-ADT-LT

In below section we explain the two models we have built with combinations of

feature sets nd labels.

6.2.3.2 Statistical Models

VA-ROPA dataset has patients treated with six different treatment methods

(Table 24): BT, BT-ADT, EBRT, EBRT-ADT, EBRT-BT, and EBRT-BT-ADT.

Based on the available treatment plans, we built the following two models.

1. Model-1: Initial Treatment (EBRT-ADT vs EBRT ): This model predicts whether

the patients will be treated with EBRT and ADT (EBRT-ADT), or EBRT alone.

A total of 514 patients were treated with these two techniques, among which

382 patients were treated with EBRT-ADT, and 132 patients were treated with

EBRT alone.

2. Model-2: ADT Duration (EBRT-ADT-ST vs EBRT-ADT-LT): This model pre-

dicts whether the ADT duration is short term or long term. Model-2 is further

divided into 2A and 2B. Where 2A is EBRT with ADT intended duration and

2B is EBRT with ADT administered duration. 382 patients were treated with

EBRT and ADT. Table 25 shows the treatment with intended and administered

ADT duration.

These models use machine learning techniques to serve the dual purpose of (i) creating

a predictive model of initial treatment selection or ADT duration based on the clinical
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and non-clinical features and (ii) showing the statistical correlation of the individual

features in terms of impacting the treatment selection or ADT duration process.

6.3 Results

In this section, we present our results. Table 26 shows the Precision, Recall,

F1-Score for model-1 (EBRT-ADT vs EBRT). The goal in this model was to classify

patients with treatment intent being either EBRT or a combination of EBRT and

ADT (EBRT-ADT). Model 1 with FS-2 performed better in all metrics when com-

pared to FS-1. We observed that model-1 has F1-Score of 74% with FS-1 and 82%

with FS-2. These results clearly demonstrate the significance of non-clinical feature

(Center-ID) in improving the overall classification performance.

Model ADT F-Set Precision Recall F1-Score

Duration

Model 1 - FS-1 0.75 0.73 0.74

FS-2 0.82 0.82 0.82

Model 2A Intended FS-1 0.95 0.94 0.94

FS-2 0.92 0.92 0.92

Model 2B Administered FS-1 0.74 0.73 0.73

FS-2 0.72 0.71 0.71

Table 26: Macro-averaged Precision, Recall, F1-Score, for Model-1:(EBRT-ADT vs

EBRT), Model-2: (EBRT-ADT-ST vs EBRT-ADT-LT) 2A:ADT Intended Duration,

2B:ADT Administered Duration.

Table 26 also shows the results of model-2 (EBRT-ADT-ST vs EBRT-ADT-LT).

Interestingly, in this case, FS-1 and FS-2 perform quite similarly with 94% F1-Score
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FS Features Model 1 Model 2A Model 2B

ADT Intent ADT Administered

PSA 0.52 0.14 0.39

Risk 0.25 0.79 0.30

FS-1 Total GS 0.03 0.04 0.14

T stage 0.09 0.02 0.07

Primary GS 0.06 0.01 0.05

Secondary GS 0.05 0.01 0.05

PSA 0.23 0.08 0.24

Risk 0.28 0.79 0.27

Total GS 0.02 0.03 0.19

FS-2 T stage 0.07 0.02 0.05

Primary GS 0.13 0.02 0.04

Secondary GS 0.04 0.02 0.04

Center ID 0.29 0.06 0.17

Table 27: Feature importance in each model. Model 1:EBRT-ADT vs EBRT, Model

2A: ADT course intended, Model 2B: ADT course Administered. FS:Feature Set.

for models with ADT intent labels (with FS-1), while F1-Score is decreased when the

ADT administered labels were used. This may mean that some external factors (not

considered in our feature sets) play a role for causing the alteration from treatment

from the prescribed to administered. Also, non-clinical feature (Center-ID) found to

have no affect on predicting the ADT duration type as opposed to Model-1 (EBRT-

ADT vs EBRT). Based on these observations, we hypothesize that while centers do

play a role in determining whether to prescribe ADT or not, they do not impact the
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actual ADT duration, in case it was administered; in other words, all centers follow

similar practice in administering ADT for localized intermediate or high-risk PCa

treatment.

We next evaluated the individual significance (i.e., contributions) of each of the

features from FS-1 and FS-2 in our models; the feature significance were generated

using the RF algorithm. Table 27 shows the feature importance of all features in all

models. For both FS-1 and FS-2, PSA and Risk consistently ranked as significant

features in all the models. Specifically, for FS-1, PSA was ranked as the top feature

for Models 1, 2B . For Model-2A (ADT duration intended), Risk was ranked as the

top feature. This suggests that decisions on ST or LT ADT duration depend primarily

on the Risk with PSA being a secondary feature of importance; these two features

are primarily responsible in deciding the ADT course at the initial treatment level;

however, decisions in altering the treatment intent (as captured in Model-2B with

treatment administered) are impacted by the PSA and Total Gleason score (which

is the third ranked feature in this model). For Model-1, PSA was ranked as the top

feature with Risk as the secondary feature and T stage as the third significant feature

suggesting that decisions on treating the patients with EBRT alone or a combination

of EBRT and ADT depend primarily on the Risk, PSA, and T stage values.

When we considered FS-2, PSA and Risk show similar significance. In this

case however, Center-ID plays a crucial role and shows up specifically as the top

ranked feature in Model-1 (EBRT-ADT vs EBRT); this reconfirms our earlier hy-

pothesis that nonclinical factors like the center play a significant role in determining

whether patients undergo ADT treatment or not. However, it’s significance is much

lower in Model-2A (EBRT-ADT-ST vs EBRT-ADT-LT) with ADT intended dura-

tion. Center-ID also shows up as the fourth ranked feature in Model-2B (EBRT-ADT-

ST vs EBRT-ADT-LT) for ADT duration administered; thus we can hypothesize that
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(A) (B)

Fig 37: Treatments in concordance with NCCN when all treatments are considered

at each center. Blue: treatments in concordance, Orange: not in concordance. (A):

Treatments prescribed at each center when ADT intent course is considered along

with all other treatments; (B): Treatments administered at each center when ADT

administered course is considered along with all other treatments.

nonclinical factors may have a role to play in altering the treatment intent.

We observed that treatment non-concordance with NCCN guidelines can be due

to the following two reasons:

• Firstly, overall treatment may not be in concordance with NCCN guidelines.

For example, high-risk cancer patients treated with EBRT alone are not in

concordance with NCCN. Figure 37 (A) & (B) shows the center wise all non-

concordant treatment counts based on ADT intended duration (i.e., prescribed

ADT) and ADT administered duration treatments respectively.

• Secondly, overall treatment is in concordance with NCCN however the treatment

guidelines may be partially not followed. For example, a high-risk cancer patient

is treated with EBRT and ADT, but ADT duration is for short-term instead
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(A) (B)

Fig 38: Patients treated with EBRT and ADT (Short Term or Long Term). Blue:

number of patients whose treatments are in concordance with NCCN, Orange: num-

ber of patients whose treatments are partially not in concordance with NCCN (A):

Treatments prescribed at each center when ADT intent course is considered (B):

Treatments administered at each center when ADT administered course is consid-

ered.

of long-term. Figure 38 (A) & (B) shows the partially non-concordant patient

count of each center when patients are treated with EBRT and ADT; the counts

are again based on the ADT intended and administered duration respectively.

6.4 Discussion

In this study, we present an exploratory analysis of localized or locally advanced

PCa patients from 34 different VHA treatment centers. We compared the treatments

prescribed against the NCCN guideline recommendations and observed that most of

the treatment plans (prescribed or administered) matched with the NCCN guidelines.

We built machine learning based models to predict the treatment plans for patients

and also the likelihood of NCCN concordance of their treatment plans. We observed
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that PSA and Risk were the top-ranked features in determining the treatment plans

for PCa patients.

Center-ID improved the performance of the model’s that predicts if the selected

treatment plan has ADT or not; however, it did not impact the models that predict

if the prescribed ADT duration was ST or LT. We also observed some variability in

ADT treatments prescribed versus actual ADT treatments administered; the Center-

ID, however, had a negligible role to play in such alterations and instead PSA and

total Gleason score had significant roles to play in such decisions. We also noticed

that the performance status measure had a negative effect on model predictability

and hence we dropped it from our feature set. We feel that performance status will

be a critical feature in treatment outcome predictions in the future, currently which

is outside the scope of this work. Additionally, Risk showed up as the primary feature

in predicting ST vs. LT ADT duration. We also observed that the primary reason for

treatment plans to be non-concordant with NCCN is due to the ADT course duration

not following the guidelines.

To better understand the impact of non-clinical features like Center-ID in predict-

ing whether the treatment plans were concordant with NCCN guidelines or not, we

computed the Pearson correlation between center-specific details (such as staffing de-

tails) and the number of non-concordant patients undergoing EBRT-ADT or EBRT-

only treatments (either prescribed or administered). Figure 39 shows a small negative

correlation between staff details and non-concordance; specifically fewer number of

radiation oncologists or radiation therapists led to higher number of non-concordant

patients in all cases; while the number of radiation physicists or other staff mem-

bers did not show any worthwhile correlation. This can be potentially attributed to

higher workloads and scheduling conflicts for radiation oncologists/therapists leading

to non-adherence to ADT treatment duration requirements from NCCN.
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Figure 39 also shows the impact of Center-ID in predicting whether a patient

will undergo EBRT-only or EBRT-ADT treatment. We can observe a strong posi-

tive correlation between EBRT-only treatment selection and the number of radiation

therapists and a less pronounced positive correlation between EBRT-ADT treatment

selection and the number of radiation oncologists. While this positive correlation was

expected as more radiation oncologists or therapists will lead to more patients being

treated with EBRT-ADT or EBRT-only respectively, it is however not clear why the

number of radiation physicists or other staff members correlates poorly with these

treatment types. It can arise from the bias of the selected patient cohort.

Our findings corroborate previous studies showing the impact of non-clinical fac-

tors on prostate cancer treatment patterns. For example, a recent study done on

SEERs data reported that prostate cancer treatment patterns were not strictly in-

fluenced by outcomes data and varied significantly by patient age, insurance status,

financial model, regional bias and socioeconomic factors [98]. An earlier survey on

factors influencing treatment selection for localized prostate cancer suggests that rec-

ognizing the beliefs that patients hold about their cancer and its treatment could

guide the counseling of patients about the treatments available to them and ulti-

mately, help patients make more informed decisions about both their treatments and

subsequent adjustments [99]. Prior work on NCCN non-concordance was conducted

on elderly patients with high-risk prostate cancer from SEERs was reported that

NCCN concordance in elderly patients with aggressive prostate cancer is low [100].

These findings underline the importance of non-clinical factors in treatment deci-

sions, however, reported results were based on single center data; hence they could

not identify the center-specific bias. However, such non-clinical factors can vary ap-

preciably between multiple centers and result in the bias; our future work will include

such non-clinical features from the VHA centers to identify the proper reasons behind
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such center-specific bias.

Fig 39: Pearson correlation between center details (Number of radiation oncolo-

gists, radiation physicists, radiation therapists and Other staff), and (i) treatment

non-concordance (number of non-concordant patients considering all treatments pre-

scribed, all treatments administered, EBRT-ADT prescribed, and EBRT-ADT ad-

ministered), and (ii) treatment selections (number of patients treated with EBRT-

only or with EBRT-ADT).
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Limitations

This work has following limitations. First, in data collected for this work includes

patients treated with EBRT only or EBRT with ADT. There are other modalities

such as Brachytherapy and Surgery. Patients treated with all modalities will provide a

better understanding treatment selection practices. Second, we have analyzed overall

treatment selected not the sequence of treatment given in multi-modality treatments.

Third, maximum of only 20 patients were considered from each of 34 RT treatment

centers, which is small number of patients as representative for analysis of treatment

selection practices.

6.5 Conclusion

The VHA ROPA dataset was extracted from recently treated patients having

very little to no follow-up data for oncological outcome analysis. Similar predictive

models will be built in the future for treatment outcome analysis considering a patient

cohort that was treated at earlier dates. Additionally, the ADT duration is generally

dependent on the type of drugs used. In this study, we calculated ADT administered

duration based on the ADT injection dates; the calculated ADT duration may slightly

change considering the ADT injection types. Finally, our study depicts the impor-

tance of non-clinical factors, such as Center-ID, in predictive models for treatment

selection or concordance to NCCN guidelines. In the future, we will investigate the

effects of other types of non-clinical factors (not limited to staffing) pertinent to the

specific VHA centers considered here.

Contribution summary: In this chapter, we considered the treatment quality

component of the radiation therapy process and our specific contributions are as

below.
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1. We present feature engineering methods to analyze the treatment selection prac-

tices for High or Intermediate risk prostate cancer patients across 34 different

VHA radiation therapy centers.

2. We demonstrate that there is an inherent bias in the treatment selection process

at the VHA treatment centers. The selected treatments deviate from the NCCN

guidelines and there is little to no correlation for this deviation with specific

treatment center attributes such as, number of radiation oncologists, radiation

therapists, other staff or treatment resources.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, we have investigated different data science approaches for

standardization, safety, and quality assurance in radiation oncology.

For data standardization, in Chapters 3 and 4, we have presented a novel multi-

view machine learning approach to standardize the radiotherapy structure names. We

considered two views of RT structure data individually, namely, the physician-given

structure names and the imaging based geometric features. For the text classification

problem, we observed that considering only the fastText algorithm works best when

compared to other feature weighting and classification algorithms. Our method was

evaluated with the data from 40 VA radiotherapy centers and tested on an external

dataset from VCU. We demonstrated that our text classification method works well

on multiple disease sites and is also generalizable. To the best of our knowledge,

this is the first and the only model using the physician-given name to predict the

TG-263 standard name using NLP and ML based methods. We also observed that

our approach fails in certain conditions, when enough information is not available

for the model to infer the correct label. This text-classification approach was next

augmented with imaging information, such as geometric information of structures

to build a multi-view pipeline for structure name standardization which improved

the overall accuracy of our methods. We believe that the proposed structure names

standardization methods can help with big data analytics in the radiation therapy

domain using population-derived datasets, including standardization of the treatment
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planning process, clinical decision support systems, treatment quality improvement

programs, and hypothesis-driven clinical research.

For patient safety, in Chapter 5, we analyzed the incident reports from the ra-

diation oncology domain that provide beneficial information to analysts and subject

matter experts to decide on the right course of action. The current trends in digitiza-

tion health care (such as incident reports) and automation of operations and logistics

(such as our proposed automated incident triage and prioritization module), machine

learning methods have become necessary. In this chapter, we compared the tradi-

tional machine learning and transfer learning approaches to automatically identify

the severity of the RT incident based on the incident description. We demonstrated

that this transfer learning using the ULMFiT algorithm outperforms a standard su-

pervised machine learning-based approach. With the limited data, our approach pro-

vided encouraging results towards the end goal of a fully automated incident triage

and prioritization system in the future. Additional data from the national safety

registry RO-ILS should help improve our proposed model’s performance. Our mod-

els can also work on retrospective data on incident reports to automatically classify

the incident severity and provide rapid summarization of past events for subsequent

data-driven research studies. There are no specific guidelines on incident reporting

practices, specifically the structure of the incident description. Hence, the length of

the incident descriptions varied depending on the severity types and across institu-

tions (VCU and VHA). Thus, we believe there is a need and opportunity to build

guidelines on incident reporting practices.

For quality assurance, in Chapter 6, we presented a machine learning pipeline to

assess the treatment quality for prostate cancer patients considering clinical datasets

from both VHA and VCU. The goal of this work was to build a predictive model for

assessing whether radiation therapy treatment plans adhere to the NCCN guidelines
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or not. We additionally observed that non-adherence to NCCN standards did not

exhibit any correlation with the radiation therapy center-specific features, such as

the number of radiation oncologists, therapists, physicists, and other staff. However,

the treatment plan prediction models exhibited a center-specific bias demonstrating

that individual RT-centers exercise their own preference in choosing the treatment

plans. However, the identification of exact features that affect these preferences is

part of our future work.

7.2 Future Work

In Chapter 3, we presented the structure name standardization pipeline while in

Chapter 4, we presented different methods to integrate the heterogeneous radiother-

apy structure data for structure name standardization. We next outline the following

future works for the structure name standardization problem.

• In the Late integration approach, we have used the top 100 SVD features with

an RF classification algorithm. However, there are more suitable algorithms for

image data such as 2D CNN algorithm, ResNet [101], and VoxNet and a 3D

CNN supervised classification algorithm [102]. The radiotherapy structure set

is 3D in nature, making it more suitable to solve using 3D algorithms.

• Our structure name standardization ML pipeline, from data preprocessing to

prediction, works as a standalone system. We plan to create a seamless enter-

prise informatics platform that automatically collects data from the treatment

planning systems and performs automatic structure name standardization on

retrospective data and stores the standardized names back in databases.

• The current list of OARs identified for both lung and prostate datasets is per

the VA-ROQS project requirement, which has selected these OARs in consensus
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with a team expert. Radiation oncologists also delineate other types of OARs

for each patient, such as Kidney (left and right) and Liver, in prostate cancer

patients. Although these are not critical OARs in prostate cancer treatment, we

believe building a system to identify and standardize all structures delineated

according to the TG-263 guideline provides the radiation therapy healthcare

institutes with an opportunity to produce a robust dataset for downstream

analysis projects.

• Other future works using the standardized structure sets include dose outlier

detection, toxicity prediction, treatment outcome analysis, treatment planning,

automated structure delineations.

In Chapter 5, we presented an approach to automatically identify the severity

of the radiotherapy incident reports based on the textual description provided in the

radiotherapy incident reporting and analysis system (RIRAS). For Chapter 5, we

outline the following future work.

• We have used ULMFiT in our current work for the transfer learning method.

Ther are other contextual word embedding algorithms, ELMo [103], OpenAI

GPT [104], and BERT [105]. In the biomedical domain, researchers have fine-

tuned BERT LM models (SciBERT, clinicalBERT [106], and BioBERT [107])

and reported better performance on downstream tasks over the standard BERT

model. We can integrate similar approaches into the transfer learning model.

Although there are pre-trained biomedical domain-specific BERT based lan-

guage models, which are closely related to radiation oncology, we still believe

that training a radiation oncology-specific BERT model is needed. The na-

tional registry of the radiation oncology incident - learning system (RO-ILS)

collects the incidents and analysis reports submitted from radiation oncology
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institutes across the USA. We believe that fine-tuning the SciBERT, bioBERT,

clinicalBERT, and BERT-base separately, and comparing the performance of

downstream tasks provide the understanding of the model’s dependency on do-

main knowledge.

• Incident analysis involves many other steps along with the severity assessment,

such as identifying the incident process step and providing the short and ap-

propriate title to the analyzed report. The title of the analysis report needs to

represent the issue reported. We believe that a fine-tuned BERT model will give

better results for this task. Another vital work will be to identify similar reports

in the incident database and recommend the solution based on the previously

analyzed reports.

• Understanding why incidents occur may be more critical for effecting change

than understanding what events have occurred. Further studies exploring NLP’s

ability to classify incident reports by contributory factors could offer more learn-

ing opportunities. We believe contextual topic modeling would be beneficial for

determining the contributory factors.

• In the current RIRAS dataset, one SME assigns severity to the incident reported

based on the incident description. Incident analysis is a highly subjective task;

to reduce the subjectiveness and make it more objective, we believe each report

must be analyzed by two or more SMEs independently. The inter-annotator

agreement score needs to be calculated to understand the subjective biases in

reviewers. Addressing these biases will generate more consistent incident anal-

ysis reports and offer more appropriate severity labels for automated severity

assignment models.
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Finally, we discuss the future work for Chapter 6.

• We explored the multi-center treatment selection practices. In current work,

we have analyzed the treatment selection practices. However, the treatments

selected were multi-modality treatments. A plausible future work is to analyze

the treatment selection paths and their association with patient pre-treatment

attributes and outcome analysis based on the treatment path selection.
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Appendix A

ABBREVIATIONS

AAPM Association of Physicists in Medicine

AJCC American Joint Committee on Cancer API Application Programing Interface

ASTRO American Society for Radiation Oncology

DICOM Digital Imaging and Communications in Medicine

ESTRO European Society for Therapeutic Radiation Oncology

EHR Electronic Health Record

HIPAA Health Insurance Portability and Accountability Act

JSON JavaScript Object Notation

NCCN National Comprehensive Cancer Network

PACS Picture Archive and Communication Systems

RIRAS Radiotherapy Incident Reporting and Analysis System

RCT Randomized Controlled Trial

RO-ILS Radiation Oncology Incident Learning System

RT Radiation Therapy

TPS Treatment Planning System
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Appendix B

STRUCTURE NAME STANDARDIZATION WITH

PHYSICIAN-GIVEN NAMES

Fig 40: Radiotherapy Structure name distribution per center for Prostate cancer

patients in the VA-ROQS dataset.
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Fig 41: Radiotherapy Structure names distribution per center for Lung cancer pa-

tients in the VA-ROQS dataset.
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Fig 42: VA-ROQS Prostate 10 fold cross-validation results

Fig 43: VA-ROQS Lung 10 fold cross-validation results.
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Structure Name Precision Recall F1-Score Support

Bladder 0.99 0.97 0.98 152
External 1.0 1.0 1.0 119
Femur L 0.99 1.0 1.0 141
Femur R 1.0 0.99 0.99 145
LargeBowel 0.9 0.87 0.88 70
Non OAR 0.99 0.99 0.99 1970
PenileBulb 0.99 1.0 1.0 117
Rectum 0.99 0.99 0.99 148
SeminalVesicles 1.0 0.99 1.0 103
SmallBowel 0.82 0.85 0.84 48

accuracy 0.99 0.99 0.99 3013

macro avg 0.97 0.97 0.97 3013

weighted avg 0.99 0.99 0.99 3013

Table 28: VA-ROQS Prostate 70:30 validation results.

Structure Name Precision Recall F1-Score Support

Bladder 0.96 0.99 0.98 738
External 1.0 1.0 1.0 597
Femur L 0.95 0.98 0.97 711
Femur R 0.95 0.95 0.95 717
LargeBowel 0.86 0.89 0.87 341
Non OAR 0.98 0.98 0.98 9869
PenileBulb 1.0 1.0 1.0 590
Rectum 0.97 0.99 0.98 742
SeminalVesicles 1.0 1.0 1.0 510
SmallBowel 0.77 0.64 0.7 250

accuracy 0.97 0.97 0.97 15065

macro avg 0.94 0.94 0.94 15065

weighted avg 0.97 0.97 0.97 15065

Table 29: VA-ROQS Prostate Center validation results.
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Structure Name Precision Recall F1-Score Support

Bladder 0.99 0.99 0.99 738
External 1.0 1.0 1.0 597
Femur L 0.97 1.0 0.99 711
Femur R 0.98 0.99 0.98 717
LargeBowel 0.87 0.93 0.9 341
Non OAR 0.99 0.99 0.99 9869
PenileBulb 1.0 1.0 1.0 590
Rectum 0.99 0.99 0.99 742
SeminalVesicles 1.0 1.0 1.0 510
SmallBowel 0.85 0.73 0.79 250

accuracy 0.98 0.98 0.98 15065

macro avg 0.96 0.96 0.96 15065

weighted avg 0.98 0.98 0.98 15065

Table 30: VA-ROQS Prostate dataset 5 fold validation results.

Structure Name Precision Recall F1-Score Support

Bladder 0.99 0.99 0.99 738
External 1.0 1.0 1.0 597
Femur L 0.97 1.0 0.99 711
Femur R 0.98 0.99 0.98 717
LargeBowel 0.87 0.93 0.9 341
Non OAR 0.99 0.99 0.99 9869
PenileBulb 1.0 1.0 1.0 590
Rectum 0.99 0.99 0.99 742
SeminalVesicles 1.0 1.0 1.0 510
SmallBowel 0.81 0.76 0.79 250

accuracy 0.98 0.98 0.98 15065

macro avg 0.96 0.97 0.96 15065

weighted avg 0.98 0.98 0.98 15065

Table 31: VA-ROQS Prostate dataset 10 fold validation results.



145

FIGURE Page

Structure Name Precision Recall F1-Score Support

BrachialPlexus 1.0 1.0 1.0 9
BrachialPlexus L 1.0 1.0 1.0 12
BrachialPlexus R 1.0 1.0 1.0 14
Carina 1.0 1.0 1.0 99
Esophagus 1.0 0.99 1.0 128
Heart 1.0 0.99 0.99 141
Lung L 0.99 1.0 1.0 110
Lung R 1.0 0.99 1.0 113
Lungs 1.0 0.96 0.98 92
Non OAR 0.99 1.0 1.0 1750
SpinalCord 0.99 0.97 0.98 141

accuracy 1.0 1.0 1.0 2609

macro avg 1.0 0.99 0.99 2609

weighted avg 1.0 1.0 0.99 2609

Table 32: VA-ROQS Lung dataset 70:30 validation results.

Structure Name Precision Recall F1-Score Support

BrachialPlexus 0.57 0.86 0.68 44
BrachialPlexus L 0.97 0.56 0.71 59
BrachialPlexus R 0.9 0.94 0.92 69
Carina 1.0 1.0 1.0 497
Esophagus 0.98 0.99 0.99 636
Heart 0.98 0.99 0.99 693
Lung L 0.99 0.97 0.98 555
Lung R 0.98 0.98 0.98 563
Lungs 0.97 0.98 0.97 439
Non OAR 0.99 0.99 0.99 8800
SpinalCord 0.96 0.97 0.96 689

accuracy 0.99 0.99 0.99 13044

macro avg 0.94 0.93 0.93 13044

weighted avg 0.99 0.99 0.99 13044

Table 33: VA-ROQS Lung dataset Center validation results.
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Structure Name Precision Recall F1-Score Support

BrachialPlexus 0.98 0.91 0.94 44
BrachialPlexus L 0.92 0.98 0.95 59
BrachialPlexus R 0.99 0.99 0.99 69
Carina 1.0 1.0 1.0 497
Esophagus 0.99 1.0 0.99 636
Heart 0.99 1.0 1.0 693
Lung L 0.99 0.99 0.99 555
Lung R 0.99 1.0 1.0 563
Lungs 0.98 0.99 0.99 439
Non OAR 1.0 0.99 1.0 8800
SpinalCord 0.97 0.98 0.98 689

accuracy 0.99 0.99 0.99 13044

macro avg 0.98 0.98 0.98 13044

weighted avg 0.99 0.99 0.99 13044

Table 34: VA-ROQS Lung dataset 5 fold validation results.

Structure Name Precision Recall F1-Score Support

BrachialPlexus 0.98 1.0 0.99 44
BrachialPlexus L 0.98 0.98 0.98 59
BrachialPlexus R 0.99 0.99 0.99 69
Carina 1.0 1.0 1.0 497
Esophagus 0.99 0.99 0.99 636
Heart 0.99 1.0 0.99 693
Lung L 0.99 0.99 0.99 555
Lung R 1.0 1.0 1.0 563
Lungs 0.98 0.99 0.99 439
Non OAR 1.0 0.99 1.0 8800
SpinalCord 0.97 0.98 0.98 689

accuracy 0.99 0.99 0.99 13044

macro avg 0.99 0.99 0.99 13044

weighted avg 0.99 0.99 0.99 13044

Table 35: VA-ROQS Lung dataset 10 fold Validation results.
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