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Abstract 

A DENSITY FUNCTIONAL THEORY STUDY OF PALLADIUM 

NANOPARTICLES ON GRAPHENE AND RELATED WORK  

Nanoparticles exhibit characteristics that are different from bulk materials as well as from atoms 

resulting in their application in numerous fields of applied material science. In particular, small 

palladium nanoparticles supported on graphene have been found to be outstanding catalysts for the 

Suzuki cross-coupling reaction. One explanation as to why these supported nanoparticles are such 

outstanding catalysts is because they may act as both electron donors and acceptors. Charge 

donating ligands are known to lower the ionization energy of clusters, making the clusters better 

donors. In this project, it is hypothesized  that graphene supports may also act like charge donating 

ligands, lowering the ionization energy and making the supported catalyst a better charge donor. 

To understand his hypothesis we investigate the structure, and energetics of small Palladium (Pd) 

clusters of 1-7 and 13 atoms as free clusters, and on different graphene-based supports using 

gradient-corrected density functional theory. Graphene is found to increases the stability of the 

supported clusters and we find that graphene also significantly reduces the ionization energy of 

the palladium clusters, which is consistent with the hypothesis that graphene is a good support for 

catalytic processes in part because it makes the cluster a better charge donor.  

 

By Billie Ann Radcliffe, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2020. 

Advisor: Dr. Shiv N. Khanna 
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Chapter 1. Background & Motivation 

1.1 Objective 

The understanding of the behavior of particles at the nanometer scale has proved to be an 

important advancement in many fields of material sciences, and especially catalysis1,2. Many 

particles, specifically metals display unique chemical and physical characteristics as they move 

away from bulk crystalline phases and into the nanometer scale. This size dependence can be 

quite extreme at the subnanometer scale, where every atom counts, and the addition or the 

removal of a single atom change significantly change a particles’ properties.3–9 This unique 

behavior can be especially useful for fields where metals and metal-oxides are placed upon a 

surface support, where the unique properties of the nanoparticles can be stabilized and used for 

catalysis.10–13 At these sizes chemical properties are extremely sensitive to changes in both the 

environment and morphology of the particles adhered on the surface6,10,14–16.  

 

Figure 1. Wacker catalytic process17, an early example of palladium catalysts in use.  

 

Palladium (Pd) nanoparticles are used in multiple well-defined catalytic processes18. For 

example, Wacker oxidation19, as well as Buckwald-Hartwig coupling 20 shown in Fig. 1, and 

Suzuki reactions18 generally rely on Pd particles Each of these reactions can be optimized by fine 
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tuning the particles parameters for a specific reaction. One challenge in understanding the 

activity of nanoparticles for catalysis is their redox properties. For a single palladium atom, the 

palladium will have a well-defined oxidation state, and by cycling through different oxidation 

states, the palladium atom may act as an electron donor, or an electron acceptor. In the case of a 

nanoparticle, once the particle has lost an electron, the electron-hole is delocalized over the 

particle, so the oxidation state is not well-defined. For this reason, the redox properties of 

supported clusters are of great interest in order to understand how the support effects the 

catalysts’ ability to donate or accept charge.  

For the Suzuki cross-coupling reactions, palladium supported on microwaved graphene has been 

shown to be an outstanding heterogeneous catalyst.10,11,16,20–22 Our hypothesis for the high 

activity of palladium supported on graphene is that the graphene serves as a reservoir of charge 

that allows the cluster to act as a superior charge donor. The initial oxidative addition step for a 

Suzuki reaction requires that the cluster donate charge to the reactants. Previous research in the 

Khanna and Gupton groups found that the graphene dramatically lowered the activation energy 

for this reaction, and that this was driven by the enhanced charge donating ability of the clusters 

supported on graphene. The graphene also allowed the supported cluster to act as an effective 

charge acceptor, revealing that the metallic behavior of the graphene played a critical role in the 

activity of the supported clusters.10,16 For this reason, a quantitative theoretical study was 

performedon the effect of the graphene support on the redox properties of the supported 

palladium clusters.  

In order to better understand the redox properties of palladium clusters supported on graphene 

supports, we investigated the characteristics of Palladium (Pd) particles ranging in size from a 

single atom, to an atomic cluster of 13 atoms Pdn, n=1-7,13. We investigated free palladium 

clusters, as well as clusters supported on various defects associated with a graphene model 

surface. In particular, we are interested in the ionization energy of these clusters and would like 

to know the effect of the support on the ionization energy.  It is known that by attaching charge 

donating ligands to Pd  allows the clusters to become a better charge donors.23–28 Our hypothesis 

is that graphene based supports can act much like a charge donating ligand and that it will reduce 

the ionization energy of the supported palladium cluster, confirming  that the support makes the 

cluster a better charge donor and eases the change in charge states as needed for catalytic 
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applications. .22,27,29,30 In addition, the binding energies of the Pd clusters n = 1 − 7, 13 were 

caluated using DFT at neutral charge as well as in the +1, and +2 state. Based upon previous 

work, the ionization energies were computed for clusters in those sizes. Pristine graphene and 

single and double vacancy graphene were chosen to study this relationship. By placing optimized 

Pd clusters onto a graphene support and calculating the ground-state energies of these clusters, 

binding energies, and ionization energies, we hoped to gain knowledge about the support’s role 

on the redox properties of Pd supported particles.  

1.2 Computational Approach  

Ground state structures of the Pd clusters were obtained using the Amsterdam Density 

Functional (ADF) simulation packages. The ADF31 program is unique because it uses basis sets 

that are built from Slater-type orbital (STO) functions. These functions are given by,   

 Υ𝑙𝑚(Ω)𝑟𝑛𝑒−𝛼𝑟 = 𝑓(𝑟) 1 

where Υ𝑙𝑚, is a spherical harmonic with a decay factor of 𝛼. This decay factor greatly improves 

the number of basis sets needed to reach chemical accuracy. Additionally, the ADF package has 

capabilities of calculating ground state energies using a symmetrical approach or one without a 

symmetry restriction31. This was crucial in our understanding of the cluster sizes we investigated 

because it allowed us to manually manipulate the spacing between atoms which was of note for 

clusters in the tetrahedral and pyramidal geometry.  

ADF also utilizes a frozen core, which treats the deeper atomic orbitals as fixed, which cuts 

down on computational time and increase accuracy. When molecules, or for our case, clusters, 

change bonding states, the center orbitals change very little and do not contribute to bond 

formation as much as the outer orbitals, therefore it is sound reasoning to leave them out of the 

calculation. The Zero-Order Regular Approximation (ZORA)32 is used to account for the scalar-

relativistic effect, which ignores spin-orbit interactions. The self-consistent field (SCF)31 

procedure is used to solve the Kohn-Sham equations as expressed in the previous chapter and 

ADF employs direct inversion if iterative subspace (DIIS) to obtain convergence of the SCF to 

reach results.  
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Chapter II Introduction 

2.1 Density Functional Theory 

Developments in quantum mechanical sciences have allowed researchers to predict the behavior 

of atomic clusters and other solid-state materials, which are useful for various applications33. 

Catalysis, technology, and energy storage all rely on the optimal performance of such materials, 

and thus, by gaining knowledge about certain classes, we can make advancements in developing 

novel substances, which help to make these processes more efficient and/or cost effective1,33. Since 

the early 1900s, quantum mechanical theory has been making great strides towards a complete 

understanding in material science behavior, and the development of Density Functional Theory 

has revolutionized the ease at which we can calculate many ground-state properties such as binding 

energy, band diagrams, and molecular orbitals34.   

Starting with the discovery of the de Broglie wavelength and the Heisenberg’s Uncertainty 

Principle, the foundations of quantum mechanics were born. We understand from Heisenberg that 

the act of measurement blocks us from describing the exact position and momentum of a particle 

within a system. Thus, the tactic of making approximations and simplifications in a system 

becomes a large part of the mathematical development that leads to the eventual discovery of 

modern-day molecular dynamics. Based on the theory of particle-wave duality, all a system’s 

characteristics can be defined by the solution of its wave function, Ψ35. Edward Schrödinger 

defined this wavefunction as,  

 𝐻̂𝛹 = 𝐸𝛹 2 

where 𝐻̂ is defined as the Hamiltonian Operator, the sum of the system’s kinetic and potential 

energies35,36. When expanded, the Schrödinger Equation becomes,  

 −
ℏ

2𝑚
𝛻2𝛹(𝑟) + 𝑉(𝑟) 𝛹(𝑟) = 𝐸𝛹(𝑟) 3 

This equation (2) describes any system as a sum of its constituent energetic parts. The simplest 

explanation of this equation can be described using the Hydrogen atom, or Hydrogen-like systems, 

as an example.  
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The mass term in equation (2) represents the total mass of the system, and so we must define this 

further in the case of the Hydrogen atom to be the mass at the center of gravity. This becomes,  

 m = 
𝑚𝑀

𝑚+𝑀
= 𝜇 4 

where, M is the mass of the nucleus and m is the mass of the electron. 

Additionally, we must define the potential energy term. This can be comprehensively expressed 

by a Coulombic term as,  

 

𝑉(𝑟) = −
𝑍𝑒2

4𝜋𝜖0𝑟
 

5 

where Ze is the charge of the nucleus, e is the charge of the electron, and 𝜖0 is the permittivity of 

vacuum. Expanding the original equation (2) for the above points we have,  

 
−

ℏ

2𝜇
𝛻2 −

𝑍𝑒2

4𝜋𝜖0𝑟
= 𝐸𝛹(𝑟) 

6 

which is the full representation of the Schrödinger equation for the Hydrogen atom. When (5) is 

further expanded into polar coordinates,  

 −
ℏ

2𝜇
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝜓

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2𝜓

𝜕𝜙2]- 
𝑍𝑒2

4𝜋𝜖0𝑟
𝛹 = 𝐸𝛹 7 

it can be solved using separation of variables to receive a solution such as,  

 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝛩(𝜃)𝛷(𝜙) = 𝑁𝑅𝑛.𝑙(𝑟)𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙 8 

which has defined 3 quantum numbers, n, l, and m. These numbers define the probability density 

of the system which they are derived37 of therefore, if we can find a solution to the Schrödinger 

equation for any given system, we will have a great deal of understanding regarding its ground-

state characteristics. This leads to an understanding of what the molecular orbitals will look like, 

as well as a picture of how the system will create chemical bonds, excited states, and so on.  

However, there exists a many-body problem.  
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In practice, a discrete solution to the Schrödinger Equation becomes increasingly difficult as you 

add more degrees of freedom, i.e. particles, into a system therefore we must make some 

approximation in order to make calculation easier. The Born-Oppenheimer Approximation states 

that the motion of the nucleus can be treated as fixed35 due to its mass being many orders of 

magnitude larger than the electron cloud within the system. The solution to the system’s 

wavefunction depends on the position of the nucleus in relation to the electrons, but not on the 

motion of the nucleus itself. The Schrodinger equation can now be written as,  

 

[∑ −

𝑁

𝑖=1

1

2
𝛻2 + ∑ 𝑉𝑒𝑥(𝑟𝑖)

𝑀

𝑗=1

+ ∑ ∑ 𝑉𝑒𝑒(𝑟𝑖, 𝑟𝑗)

𝑀

𝑗<1

]

𝑁

𝑖=1

𝛹 = 𝐸𝛹 

9 

where the first term represents the kinetic energy, the second term the external potential applied 

from the nucleus, and the third term is the electron-electron interactions within the system.  

The solutions to equation (8) begin the development of modern-day Density Functional Theory 

starting with the Hohenburg-Kohn theorem.  

2.2 Hohenburg – Kohn 

This theorem has two distinct parts. The first states that the external potential (𝑉𝑒𝑥) and the total 

energy E is a unique function of the electron density38, (𝜌𝑟). This is expressed as, 

 𝐸(𝜌(𝑟)) = ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹(𝜌(𝑟)) 10 

where 𝐹(𝜌(𝑟)) is a function of the electron density. This can also be expressed in terms of the 

Hamiltonian similar to the Schrodinger Equation as,  

 𝐸(𝜌(𝑟)) =  < 𝛹𝐻̂𝛹 > 11 

and expanding this it becomes, 

 𝐸(𝜌(𝑟)) = 𝑇(𝜌) + 𝑉𝑒𝑒(𝜌) + ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 12 

Equation (11) points to the second part of the Hohenburg-Kohn Theorem, the density that 

minimizes the total energy is the exact ground-state energy. This states that if a certain density 

𝜌(𝑟) satisfies the conditions,  
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 𝑁 = ∫ 𝜌(𝑟)𝑑𝑟 13 

and 

 𝜌(𝑟)𝑑𝑟  ≤ 0 14 

then the energy of the system should be satisfied by, 

 𝐸𝑜 ≤ 𝐸𝑉(𝜌) 15 

where 𝐸𝑉(𝜌) is a functional of equation (11). These two theorems together make up the bulk of 

Density Functional Theory and allow for the solution to the Schrodinger equation to be calculated.  

2.3 Kohn-Sham 

While Hohenburg-Kohn (H.K.) set up the solution to the ground state electron density, Kohn-Sham 

Theory helps us facilitate that calculation by creating a system that is non-interacting, reducing the 

degrees of freedom in the calculation38. Let us return to the H.K. Hamiltonian expression in 

equation (10). In early quantum theory, the kinetic energy of a many body system could not be 

calculated discretely, so where H.K. theorem creates a self-satisfying variational problem with the 

electron energy conserved, this leads to,  

 𝛿[𝐹(𝜌(𝑟))] + ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 − 𝜇(∫ 𝑛(𝑟)𝑑𝑟 − 𝑁)] = 0 16 

where the new term µ is a Lagrange multiplier in reference to the conserved electrons N. This is 

given by, 

 
𝜇 =

𝛿𝐹(𝜌(𝑟))

𝛿𝜌(𝑟)
+ 𝑉𝑒𝑥(𝑟) 

17 

We can now define a new ground-state wavefunction Ψ𝐾𝑆 for this non-interacting system. In this 

wave function the function of the electron density, 𝐹(𝜌(𝑟)), can be expanded to contain three 

distinct energetic terms accounting for the kinetic energy of a Homogeneous Electron Gas (HEG), 

the Hartree electrostatic energy of electrons, and a new term defined as the Exchange Correlation 

Energy (XC). 

 [𝐹(𝜌(𝑟))] = 𝐾𝐻𝐸𝐺(𝜌(𝑟)) + 𝐸𝐻(𝜌(𝑟)) + 𝐸𝑋𝐶(𝜌(𝑟)) 18 
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This term, 𝐸𝑋𝐶(𝜌(𝑟)), accounts for the different between non-interacted kinetic energy and the 

nuclear contribution of those electron-electron interactions within the system. This gives way to,  

 
𝜇 =

𝛿𝐾𝐻𝐸𝐺(𝜌(𝑟))

𝛿𝜌(𝑟)
+ 𝑉𝐾𝑆(𝑟) 

19 

where 𝑉𝐾𝑆(𝑟) is the Kohn-Sham potential. This can be further expanded in terms of the extract 

potential by,  

 𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑥(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟) 20 

and,  

 
𝑉𝑋𝐶(𝑟) =

𝛿𝐸𝑋𝐶(𝜌(𝑟))

𝛿𝜌(𝑟)
 . 

21 

This gives a way of solving for the exact ground-state density which can then be calculated by 

solving the Schrodinger Equation for a system of N electrons. Putting equation (2) in terms of the 

K.S. potential,  

 [−
1

2
𝛻2𝛹(𝑟) + 𝑉𝐾𝑆(𝑟)] 𝜓(𝑟) = 𝜖𝑖𝜓𝑖(𝑟) 22 

where 𝜖𝑖 is a Lagrange multiplier of N and 𝜓𝑖(𝑟) corresponds to the single particle electron orbital. 

The density can be related to a sum of the N orbitals as,  

 

𝜌(𝑟) = ∑ 𝜓𝑖(𝑟)2

𝑁

𝑖=1

 
23 

To have a complete understanding of this relation it is necessary to expand the kinetic energy of 

the HEG as, 

 

𝐾𝐻𝐸𝐺(𝑟) = −
1

2
∑ 𝜓𝑖 ∗ (𝑟)𝛻2𝜓𝑖(𝑟)𝑑𝑟

𝑁

𝑖=1

 
24 

Defining the last Kohn-Sham equation for the XC Energy we have,  

 𝐸𝑋𝐶(𝑟) = 𝐾(𝜌(𝑟)) + 𝐾𝐻𝐸𝐺(𝜌(𝑟)) + 𝐸𝑒𝑒(𝜌(𝑟)) − 𝐸𝐻(𝜌(𝑟)). 25 
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The main advantage of the Kohn-Sham approach is that it creates an expression which minimizes 

the unknown non-interacting energy through the Exchange Correlation energy. Equations (24), 

(23), and (20) make up the mathematical self-consistent solutions for the ground-state energy and 

potential.  

2.4 Applications  

Computational methods have emerged as one of the most versatile options for computing various 

chemical properties of bulk solids, nanoparticles, as well as other types of materials33,34. Density 

functional theory has become by far the most popular method for electronic structure 

calculations due to the ability to calculate many-electron systems with reasonable accuracy. Its 

success is largely due to its simplicity and ease of formulation for a wide array of systems as well 

as the numerous interfacing options for the end user. Put simply, you do not have to be an expert 

in quantum mechanics to obtain sensible results.  

 

Figure 2. Jacob's Ladder of DFT.  

The applications of Density Functional Theory are wide and those in the fields of organic 

chemistry, physical chemistry, physics and beyond can find a scheme useful for their respective 

Si
m

p
lic

it
y 
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research. The field of DFT studies has changed over the years and the functionals keep getting 

better, but that does not come without some cost – both literally and figuratively. Figure 1. shows 

a favorite version of Jacob’s Ladder for DFT. As we climb the ladder toward more chemically 

accurate packages (“heaven”), we lose some of the reliability of our calculations based on the 

increasing number of approximations being taken. For example, the first rung of the ladder is 

local density approximation (LDA) which was the leading method for solids in the early 

1980’s39. This functional within density functional theory finds the exchange-correlation energy 

as a function of the charge density. Due to its simplicity, and low status on the ladder, while it 

was easy and quick, it’s results often did not match accurately with experimental data40.  

After LDA came generalized gradient approximations (GGA) which increased the accuracy of 

many calculations especially for chemical systems41. GGA functionals find the exchange-

correlation energy using both the charge density and the derivative of the charge density. This 

method was further enhanced to the second derivative of the charge density which is known  

with inputs from the kinetic energy term as meta-GGA34. Further, hybrid-DFT was developed in 

which exchange correlation functionals and Hartree-Fock methods were combined to provide an 

even more accurate method for calculating ground state densities for solids, clusters, surfaces, 

and other classes of materials not suitable for the earlier approximations. However, not even this 

approximation could accurately calculate ground state properties of certain materials such as 

highly localized systems such as transition metal oxides and struggled to find the correct band-

gap energies of semiconductors. This is due to delocalization error and the difficulty in 

accurately calculating the energy of virtual states in complex materials.  

DFT is not without its limitations42. Current approximations are still too complex to accurately 

calculate electronic or quantum characteristics of fluids, due to inaccuracies in Van der Waals 

interactions40. Delocalization error is a significant source of error that lowers accuracy in 

transition metal oxides, and in processes such as bond disassociation. Also, as systems get larger, 

DFT tends to provide results which take a long time to compute and are not always reliable 

based on the ever-present issue self-interacting particles. Density Functional theory is still a 

widely used approach to investigating novel systems and materials and most likely will stick 

around as well develop new methods to increase accuracy and as technology allows us to 

compute these results faster and more accurately.  
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 Chapter III. Palladium Cluster Properties 

3.1 Palladium Clusters n=1-7,13  

In the present work, palladium clusters were examined with a systematic approach for ground-

state binding energies and geometric arrangements. The foundation of this work sets up the 

background knowledge necessary to understand how these clusters interact with the graphene 

support.  

Figure 3. shows the most stable geometric arrangements of the 𝑃𝑑𝑛 cluster sizes of neutral 

charge and their binding energy per atom. As is expected, binding energy per atom increases 

with increasing cluster size. The large jump in B.E. of 0.405eV between 𝑃𝑑3 and 𝑃𝑑4 can be 

accounted for based on the change from a 2-dimensional arrangement to a 3-dimensional 

arrangement.  

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

Ground-state Palladium Clusters 

Cluster 

Size 
Structure 

Binding Energy 

(eV) 
Spin State 

2 

 

0.543 2 

3 

 

1.097 2 

4 

 

1.502 2 

5 

 

1.615 2 

6 

 

1.747 2 

7 

 

1.877 2 

13-o 

 

2.087 6 

13-ico 

 

2.079 6 

 

Figure 3. Ground-state Palladium Cluster Geometry and Binding Energy. 

2.675 Å 

2.675 Å 

2.611 Å 

2.677 Å 

2.539 Å 

2.543 Å 

2.691 Å 

2.508 Å 
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The 𝑃𝑑13 cluster is unique in that is has two separate ground-state geometrical arrangements 

which are both very close in both binding energy and shortest bond length. Due to this we 

investigate both of these clusters and treat them as two separate particles, 𝑃𝑑13.  𝑖𝑐𝑜 & 𝑃𝑑13.  𝑜 as 

seen in Figure 4.  

Clusters were given a charge state of +1, and +2 as is seen in previous literature for Pd species43. 

The results found in table 1 were interesting because in the +1-state binding energy tends to be 

significantly less per atom than in the ground state. This can be explained due to the electronic 

configuration of the Pd atom – 𝐾𝑟[4𝑑10]. Since the valence shell of Palladium is completely 

occupied, removing one electron is not a very energetically favorable process and so the binding 

energies of the atoms within the cluster decrease due to this forced instability44,45.  

 

 

 

 

 

 

𝑷𝒅𝟏𝟑,𝒊𝒄𝒐 𝑷𝒅𝟏𝟑,𝒐 

Figure 4. Geometry of both ground state structure of 𝑃𝑑13. 
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Table 1. Energy levels and bond length for clusters at the +1 and +2 state.  

 

As Table 1. shows there is a significant B.E. increase at both the Pd4 and Pd13 cluster size for 

both the +1 and +2 state. This can be attributed to Jahn-Teller Distortions44,46 occurring at that 

size. Due to the molecular arrangement of  Pd4 as pyramidal and Pd13 as icosahedral, they are 

effected by the electronic configuration with 𝑑9 arrangement46.  

3.2 Palladium Clusters Ionization Energy 

It is worth noting that the first ionization energy of the Palladium atom is well defined 

experimentally and theoretically. From the literature we know that this value is 8.337 eV44. Our 

system using ADF as well as Vienna ab initio Simulation Package (VASP) gives us a I.E. of 

8.973 eV, slightly higher. The error present in the calculated value may be due to the parameters 

set within the simulated system and it is not so egregious such that we should abandon the data.  

As the cluster sizes increase as seen in Table 1. the ionization energy decreases. Geometrically 

our clusters begin to become more tightly packed with increasing cluster side as shown by 

fluctuating bond length. As these clusters grow, the energy required to remove one electron 

decreases because the clusters grow outward from the center point in the geometry where the 

orbitals are the most concentrated and thus the forces are the strongest. These characteristics are 

most often discussed when reviewing atoms or ionic solids, but metallic clusters also have been 

seen to express similar behavior47.   

Binding Energies for Ionized Clusters 

N Cluster GS Coh. E./at +1 B.E./atom +1 D (Å) +2 B.E/atom 

2 Pd2 0.543 1.208 2.656 5.433 

3 Pd3 1.097 0.705 2.508 0.169 

4 Pd4 1.502 0.910 2.601 0.959 

5 Pd5 1.615 0.444 2.664 0.645 

6 Pd6 1.747 0.441 2.683 0.582 

7 Pd7 1.877 0.389 2.630 0.431 

13 Pd13 2.079 1.079 6.650 1.173 
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Table 2. Ionization Energies for Clusters 

 

As with the first ionization energy, our calculated value is very close to the value found in 

literature through experimental work. Our value for the Pd atom was 20.462 eV where the 

accepted second I.E. value is typically 19.433 eV. This is a difference of around 1eV similar to 

the error seen in the +1 state. Additionally, the trend for the second ionization energy is the same 

as in the first where the energy decreases with increasing cluster size.  

3.3 Conclusions 

The overall  trends in cluster geometry formation are similar to those found in previous studies, 

and offers a starting point for the structures found on support.46,48 The ionization energy of the 

clusters are found to decrease with increasing size. Pd4 is found to be more stable than 

surrounding sizes, suggesting that it may be a “magic” cluster. In the field of catalysis many 

conventional palladium particles are grown at the nanometer scale and above. Much research has 

been completed on the nucleation and growth behaviors of palladium particles49 and such studies 

point to scheme of growth following with the Magic-Number theory46. In our methodology if we 

understand the behavior and electronic properties of small clusters, we can use these as a guide 

Ionization Energies of Pd Clusters  

n Cluster +1 I.E. (eV) +2 I.E. (eV) 

1 Pd atom 8.973 20.462 

2 Pd2 7.642 12.012 

3 Pd3 7.734 13.618 

4 Pd4 6.810 13.420 

5 Pd5 6.654 12.415 

6 Pd6 6.419 11.564 

7 Pd7 6.358 11.265 

13 Pd13 6.326 10.044 



16 

 

to how larger clusters will interact with the environment. This can lead to predictions regarding 

catalyst behavior in a reaction mechanism and beyond.  

Chapter 4. Palladium Clusters on Graphene 

4.1 Graphene Model background  

A single plane of carbon atoms bonded in a complete symmetrical hexagonal lattice – graphene. 

This simple yet elegant substance was once thought to be the greatest development for material 

science, energy storage, and even physical chemistry and its discovery paved the way for carbon 

nanotubes, fullerenes and many more carbon allotropes16,50. It’s excellent status as both a 

conductor of electricity16, and heat coupled with its high surface area to mass ratio only increase 

its allure to scientists2. These are some of the reasons graphene and graphene oxide (G.O.) have 

been used more frequently as supports for various chemical reactions and is the reason we chose 

it as the theoretical support for our study.  

On the scale of our clusters, one cluster placed on a sheet of graphene would seem to create an 

infinite sea of carbon atoms spread in all directions in relation to the bonding site. This posed a 

challenge with our calculations in that we had to be extremely diligent to find a graphene sheet 

size that would give us similar results to those constructed from periodic boundary conditions, 

but would also be small enough to converge calculations in a reasonable amount of time.  

 

Figure 5. Graphene Unit Cell  

As seen in Figure 5. the unit cell of a graphene sheet can be reproduced as many, or as little 

times as needed for a DFT calculation using cartesian space. Our methodology was to find the 
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binding energy of an infinite sheet of graphene calculated using VASP and compare that to 

various sheet sizes calculated using ADF.  

Graphene Sheet Size Optimization 

C - C binding Energy from VASP: C98, 8.032 eV 

Graphene 

Sheet Size 

Carbon Binding 

Energy (eV) 

HOMO/LUMO 

Gap (eV) 
Support Images 

C30 9.047 1.33 

 

C42 9.317 1.63 

 

C48 9.191 0.64 

 

C96 8.637 0.13 
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As seen in Table 3. the ADF values for the graphene sheet vary with sheet size. While the largest 

sheet C112 does not exactly match the value calculated from VASP, it was the closest value that 

also would allow for the smallest computational time. The bond angles of all graphene sheets 

were also investigated and no significant change in bond lengths or angles was found to change 

with changing sheet size51. On the discrete sheet sizes with terminating hydrogens around the 

edges, as seen in Figure 6. The sheet was seen to decompose from the original 2-D expected 

plane. This is due to there being less electric effects on the edges of the sheet and was not seen to 

cause issues with both convergence or binding energy values.  

 

 

Figure 6. Inset of image of bond lengths of C112 sheet.  

 

C112 8.570 0.91 

 

Table 3: Graphene Model Support Sizes and Binding Energy. 

D (1->2): 1.415 Å 

D (1->3): 1.409 Å 
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On average, the calculation of C112 took just over 48 hours to converge with no added defects. 

When adding the Pd clusters to the sheet, we saw convergence time increase with increasing 

cluster size. This led us to believe that the C112 sheet would be the best option for use in our 

methodology that produced the most accurate results while keeping with reasonable 

computational effort.  

4.2 Defective Graphene Optimization  

The methodology presented here was to model how Pd clusters bonded to the graphene sheet 

explained in section 4.1. As keeping with current trends in applied catalysis, we have shown these 

Pd clusters bonding to the sheet in a created defect site21,52. This site was created by removing one, 

and two, carbon atoms respectively and bonding the cluster at that location. The optimized 

structures of defective graphene can be seen in Figure 7.  

The carbon atoms when converged create a larger ring of carbon to compensate for the removal of 

one atom. While the single defect site is interesting in itself, it does not represent what is seen most 

commonly in defective graphene available on the market as a support for nanoparticles. Most 

defect sites are a few nanometers in length53 which account for the removal of many carbon atoms 

and a sheet reconstruction. Although our study does examine both defect site and the effects on 

B.E. and I.E. of for the Pdn clusters we believe this model can point to how clusters of various 

sizes will interact with larger defective sites.  

 

Figure 7. Images of optimized defective Pd Sheets of C112.  
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4.3 Pd Clusters on Defective Graphene   

When Palladium clusters are bound to the graphene sheet results show that binding energy 

increases by an average of 3 eV from the ground-state energy calculations. These results would 

point to graphene being an excellent support for Pd nanoparticles because if the binding energy 

is stronger than an unbound particle it should increase the stability, and reduce sintering and 

agglomeration of the Pd particles.  

 

Cluster Structures on Graphene 

Cluster 

Size 
Single Defect Double Defect 

1 

 

 

2 

  

3 
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4 

 

 

5 

 

 

6 

 

 

7 
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13 

 

 

 

Table 4. Structures of Palladium Clusters on Defective Graphene 

 

 

 

 

Pd Cluster Effects on Defective Graphene  

 Ground-State Cluster Single Defect Site Double Defect Site 
N Coh. E. /atom (eV) Pd Cohesive B.E. (eV) Pd Cohesive B.E. (eV) 

1 - 4.846 2.302 

2 0.543 3.487 2.197 

3 1.097 3.041 2.413 

4 1.502 2.907 1.809 

5 1.615 2.815 2.200 

6 1.747 2.510 2.519 

7 1.877 2.790 3.852 

13 2.087 2.735 2.459 

Table 5. Binding Energies and ionization energies for clusters on defective graphene.  
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As seen in Table 4. The binding energy of Pd clusters on the single defect site decrease with 

increasing cluster size, similarly to the ground-state energy. The single Pd atom shows the largest 

binding energy of the bound species due to its direct replacement in the graphene lattice shown 

in Figure 8. Although the Pd atom is larger than a carbon atom by 0.067 nm it fits into the lattice 

by increasing the bond length on the sides around it also seen in Figure 8.  

 

As our clusters get larger, the geometry of the clusters begin to breakdown as they bind to the 

graphene sheet. In numerous cases, Pd3, and Pd4, one of the lower Pd atoms binds into the sheet 

similarly to the Pd atom while the other atoms remain unbound on top if that Pd atom. The 

cluster essentially is anchored by the bottom Pd atom into the defect site. However, this is not 

always true. With Pd7 the bottom atom is indeed anchored, but the outer “ring” of atoms is also 

bound to the sheet, seen as the increase in binding energy between Pd6 and Pd7 for the single 

defect.  

The double defect does not show as nice of a trend as the single defect although it does have 

some of the same geometrical characteristics. Most of the bottom Pd atoms anchor further into 

the sheet and in the case of the single atom, it is bound by one double bond and 3 single bonds on 

each side. It seems as though this would create a stronger binding energy than compared to the 

D (Pd-> C) 1.969 Å 

Figure 9. Pd atom on single defect site graphene.  

Figure 8. Pd atom on single defect site graphene. 
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single defect site but that is not what our model shows. This could potentially be due to the 

increase in the size of the defect site where the Pd atom is not as closely bonded to each of the 

anchoring carbon atoms. In this instance, the bond length between the Pd atom and the three 

single bound C atoms is more than 2.0 Å and is easier to break than the tighter bonds in the 

single defect.   

As clusters grown on the double defect a “cage” bonding effect begins to occur. The 

geometrically lowest atoms in the cluster bonds within the sheet and those in the plane above the 

sheet bind as well. This is clearly displayed in Figure 9. with the Pd5 cluster. Although this effect 

is seen in the converged structure, the binding energies do not seem to support that this makes 

the clusters bond more strongly to the sheet. In fact, it seems that the opposite is true because the 

binding energies in the double defect are less than the single defect but larger than the ground-

state clusters.  

 

Figure9. Pd6 with “cage effect” bonds surrounding.  

Ionization Effects  

As a part of the study we sought to understand the effect of ionization on each of the clusters 

when bound to the defective graphene. Table 5. shows results of the +1 state on all Pd clusters. 

As seen the ionization energy has decreased from the unbound clusters. This decrease in I.E. 

would be favorable for many catalytic processes that rely on Pd particles being ionized within 

the cycle. Previous research has shown that graphene promotes the exchange of electrons 

throughout the surface2,16. Our study further back-up this thought with the evidence of the energy 

needed to remove and electron being easier when the Pd is bound than the free cluster. 

Geometrically the structures of the ionized clusters on the graphene sheets do not change a 

notable amount from the neutral clusters.  
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Clusters on Graphene Ionization Energies (eV) +1 

 Unbound Cluster Single Defect Site Double Defect Site 

N I.E. I.E. I.E. 

1 8.973 5.191 5.408 

2 7.642 5.210 5.262 

3 7.734 5.194 5.272 

4 6.810 5.186 3.930 

5 6.654 5.155 5.293 

6 6.419 3.241 5.273 

7 6.358 5.208 5.342 

13 6.323 5.466 5.329 

Table 6. Ionization energies of clusters on defective graphene.  

 

One remarkable result from this study is that the Pd4 on a double defect is found to have an 

extremely low ionization energy of 3.93 eV, putting it in the range of ionization energies for an 

alkali metal. As seen in Figure 10. The ionization energies decrease as the cluster is placed onto 

the defective graphene. In previous studies, Pd4 on a double defect was found to a particularly 

good cluster for the Suzuki cross-coupling reaction.22 This result seems to suggest that this 

particular size is an unusually good electron donor, meaning that it would be a better catalyst 

than other sizes. Pd6 on a single defect is also seen to have an usually low ionization energy, 

suggesting that this might also be an unusually good cluster for cross-coupling and other 

reactions that require the catalyst to act as a charge donor. In general, the defective support 

lowers the ionization energy from 1-2 eV, supporting our hypothesis that the graphene acts as a 

charge donating ligand that lowers the ionization of the cluster, and makes the cluster a more 

effective charge donor. 
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Figure 10. Graph of Ionization Energy change as 𝑃𝑑4 cluster is placed onto graphene support.  

Chapter 5. Conclusions  

In this work we sought to investigate fully the effects that graphene has on Pd nanoparticles or 

clusters of a few atoms. When unbound, the DFT calculations performed found that clusters exhibit 

characteristics of binding energy and ionization energy that are in agreement with previous studies. 

As cluster size increases, binding energy increases due to increased bonding between the atoms. 

We found that when bound to a defective graphene sheet, ionization energy decreases as compared 

to the free cluster state, and decreases with increasing cluster size. This helps to explain why 

graphene activates the supported cluster, as the cluster becomes a significantly better charge donor 

when it is embedded in graphene. The graphene support acts as a charge donor that allows for the 

transfer of the charge through the sheet16 and onto the cluster itself which would allow the particles 

to reach a charged state more easily than an unbound cluster or nanoparticle. This improved charge 

donation is crucial in the field of catalysis and our study provides further support that adding a 

substrate can alter the performance of small clusters of transition metal nanoparticles, and further 
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supports the hypothesis that the high activity of palladium particles supported on microwaved 

graphene is in part an electronic effect. 

Chapter 6. Future Directions  

Options for further work on this topic are very wide reaching. Additional studies could be 

completed to elucidate information on how other transition metal species would interaction with a 

graphene support at similar cluster sizes. Specifically, Platinum, although more costly than 

Palladium, would be our first choice due to its similarity in both electronic structure and use in 

various applications. Interesting work could be performed regarding further charge states, specific 

binding sites on the graphene sheet, or adding functional groups to the graphene surface.  
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