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reservoir of water at ambient conditions. The left graphs are obtained in the absence and the right 

ones in the presence of electric field of strength Dz=0.0266 C m-2. Individual contributions from 

oxygen and hydrogen atoms greatly exceed the total densities. Charge densities are calculated by 

placing entire charges at charge site positions (bottom) or by explicitly accounting for the correct 

Gaussian charge distributions in the BK3 model (top). The former method shows small differences 

between the two models, whereas the actual densities due to the Gaussian charges in the BK3 

model feature smoother profiles with reduced amplitudes and a considerable shift of the extrema 

relative to the distributions of point-charges. ............................................................................... 75 

Figure 27. Left: The average charge density profiles due to BK3 (black lines) or SPC/E (blue 

lines) water molecules and polarizable NaCl ions in BK3 water (black circles) or JC ions in SPC/E 
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concentration of ~2 mol kg-1. Right: comparison between the profiles for BK3-AH solutions from 

the top graph (black lines and symbols) and the results obtained in the same system when explicitly 

accounting for the Gaussian charge distributions of the BK3-AH system. Overlapping Gaussian 

distributions reduce the density amplitudes of water and visibly shift the extrema of water 

contribution. A slight smoothing of the salt charge distribution is present. ................................. 76 
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comparison between the profiles for BK3-AH solutions from the top graph (black lines and 

symbols) and the results obtained in the BK3-AH system (blue) when explicitly accounting for the 

Gaussian charge distributions of mobile charges (blue). .............................................................. 77 
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Abstract 

 The main purpose of my study was to work towards better understanding the behavior of 

salt solutions in nanoconfinements and its causes. To this end I have developed an in-house C++ 

code that can perform notoriously challenging open ensemble Monte Carlo molecular simulations, 

calculate relevant thermodynamic and extract structural information about each system. I use this 

code in my first project which deals with the intrusion/extrusion of aqueous NaCl into a nanopore 

open to a pressurized bulk environment. For my second project, I study the effect of explicitly 

accounting for intramolecular polarization and accompanying multi-body interactions on the 

uptake, structure, and thermodynamics of water and electrolyte in nanoconfinement. 

High Pressure Simulation of Aqueous Electrolyte Uptake into a Hydrophobic Nanopore. 

Pressure-driven permeation of water in a poorly wettable material results in a conversion of 

mechanical work into surface free energy representing a new form of energy storage, or energy 

absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of 

a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can 

also reduce the hysteresis of the infiltration/expulsion cycle. Our molecular simulations provide a 

theoretical perspective into the mechanisms involved in the process, and underlying structures and 

interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in 

planar confinements of widths of 1.0 nm and 1.64 nm and pressures of up to 3 kbar. Open ensemble 

Monte Carlo simulations utilizing fractional exchanges of molecules for efficient 

additions/removal of ions have been utilized in conjunction with pressure-dependent chemical 

potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, 

aqueous electrolyte phases show the intrusion can be reversed at narrow pore sizes, consistent with 
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experiment, however, a strong hysteresis is observed at both pore sizes. The addition of salt results 

in significant increases in the solid/liquid interfacial tension in narrower pores and associated 

infiltration and expulsion pressures. These changes are consistent with strong desalination effects 

at the lower pore size, observed irrespective of external pressure and initial concentration. 

Molecular Polarizability in Open Ensemble Simulations of Aqueous Nanoconfinements 

Under Electric Field. Molecular polarization in liquid water involves fast degrees of freedom that 

are often averaged-out in atomistic-modeling approaches. The resulting effective interactions 

depend on specific environment, making explicit account of molecular polarizability particularly 

important in solutions with pronounced anisotropic perturbations, including solid/liquid interfaces 

and external fields. Our work concerns polarizability effects in nanoscale confinements under 

electric field, open to unperturbed bulk environment. We model aqueous molecules and ions in 

hydrophobic pores using the gaussian-charge-on-spring BK3-AH representation. This involves 

nontrivial methodology developments in Expanded Ensemble Monte Carlo simulations for open 

systems with long-ranged multi-body interactions and necessitates further improvements for 

efficient modeling of polarizable ions. Structural differences between fixed-charge and polarizable 

models were captured in Molecular Dynamics simulations for a set of closed systems. Our open 

ensemble results with BK3 model in neat-aqueous systems capture the ~10% reduction of 

molecular dipoles within the surface layer near the hydrophobic pore walls in analogy to reported 

quantum mechanical calculations at water/vapor interfaces. The polarizability affects the 

interfacial dielectric behavior and weakens the electric-field dependence of water absorption at 

pragmatically relevant porosities. We observe moderate changes in thermodynamic properties and 

atom and charged-site spatial distributions, the Gaussian distribution of mobile charges on water 

and ions in the polarizable model shifts the density amplitudes and blurs the charge-layering effects 
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associated with increased ion absorption. The use of polarizable force field indicates an enhanced 

response of interfacial ion distributions to applied electric field, a feature potentially important for 

in silico modelling of electric double layer capacitors. 

 Introduction 

1.1 Basics for Running Open Ensemble Simulations 

My primary objective during my research was to develop a working scientific code from 

scratch in order to be able to study confined system open to a bulk electrolyte solution. This 

involved learning and implementing nontrivial C++ code that can be run on multiple processors (a 

parallel implementation) which is briefly described in Appendix 1 along with a sample input script. 

Traditionally, open systems have been simulated using Monte Carlo (MC) techniques2, 3 since they 

have a large computational advantage over molecular dynamics (MD) simulations in this 

ensemble.4, 5  Because of extremely high hydration free energies6-10, aqueous electrolyte solutions 

have, in the past, been especially difficult to simulate in the Grand Canonical, open, ensemble due 

to prohibitively low acceptance rates of ion exchanges. Adopting techniques developed by Moučka 

et al.11, we have been able to study open electrolyte systems in our lab and expand the scope of 

the code to include high pressures for select systems. Over the next few sections I will be detailing 

the basics of Monte Carlo simulations, and atypical way we calculate pressure. This will then lead 

into an introduction of the projects I have studied which involve confinement simulations that 

focus on energy storage where we subject the implicit bulk solution to high pressures, and the 

effects accounting polarizability has in anisotropic systems. 
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1.1.1 Monte Carlo Simulations 

In this section, we will be describing the requirements for running a Monte Carlo (MC) 

simulation in the NVT ensemble using bulk conditions for both water and aqueous NaCl 

electrolytes. Electrolytes can be conditionally changed via user inputs, though our results will 

focus only on NaCl. The possible molecular movements described in this section are translations 

and rotations. Ions do not rotate in these simulations since they are spherical. Currently, only 

randomly chosen single molecule displacements are allowed with a maximum distance, in any 

x,y,z-direction, of 0.15 Ǻ and a maximum random rotation of ±10°. Values for displacement and 

rotation are chosen randomly with an even distribution. Rotations of the rigid water molecules are 

done using quaternion parameters.  This allows for a reasonable acceptance of moves, ~30%-45%, 

but could be modified in the future by allowing the maximum displacement or rotation value of a 

single step to fluctuate. Once a molecule moves, the energy of the new configuration is calculated, 

and the move is either accepted or rejected. The procedure follows the Metropolis method12 and 

ensures that moves are in accordance with the Boltzmann distribution, 

  n o( ( ) ( )
acc(o n) min(1, )

U r U r
e

− −
→ =    (1) 

where, β is 1/kbT, kb is the Boltzmann constant, rn and ro are positions for new, n, and old, o, 

configurations, respectively, and U is the potential energy corresponding to a particular 

configuration given by the sum of nonelectrostatic and electrostatic interactions.2, 3  To calculate 

the nonelectrostatic interactions, LJU , we utilize the 12-6 Lennard Jones (LJ) potential. The LJ 

potential is as follows: 
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where, ij  is the well-depth or strength of the interaction between two molecules at distance ijr , i 

and j, and  is the diameter of a molecule. The LJ potential is used across all of our simulations 

with the only exception being detailed in section 3.2.1.  

For our in-house code the electrostatic contribution to the potential energy is calculated 

using Ewald summation with point-charges.2, 3, 13 While this may be slower than particle mesh 

Ewald approaches, we can justify the use of point-charge Ewald sums by our small system sizes 

and requirement for more accurate energy calculations. Therefore, the electrostatic contribution to 

the potential can be described by 
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and the 4 different components of Equation (3), in order, represent the reciprocal space 

contribution, the real space contribution, the self-interacting energy term, and the intramolecular 

term, which only applies to water molecules. For Equations (4)-(7),  is the width of the 

compensating charge surrounding a charged species represented as a Gaussian of inverse width 

0.09 Å-1 (approximately 
1

cutr
),  k is the length of the integer vector k , and  

 ( )
1

.i

N
r

i

i

q e − 

=

=
k

k  (8) 

Since Ewald sums comprise the most expensive portion of the code, it is desirable to minimize the 

number of vectors employed in the calculation. We set maximum integer values for the 

components of k , where max max 7x y= =k k and max 9z =k . This results in a total of 15 k-vector 

integer values for the xy-components and 19 values for the z-components. A k is also set at 100 

with an additional condition of using at most 2000 total vectors.  

 For both the LJU and realU we use a spherical cutoff, cutr , of 9.8 Å with an additional linear 

smoothing parameter for LJU , which removes the created discontinuity. Because of the anisotropic 

slab geometry and nonuniform states during the liquid intrusion or expulsion, tail correction to 

LJU   is not used in these simulations.  

1.1.2 Pressure Calculations  

Most conventional molecular dynamics simulations using pairwise interactions employ 

what is known as the virial equation to calculate pressure14. This requires the calculation of 

directional forces which is not strictly required in Monte Carlo simulations. In an effort to improve 

computational speed we apply the volume perturbation method15, 16 for calculating pressure. The 
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volume perturbation method relies on small, transient changes in the volume of the simulation box 

to determine pressure which limits the current code to constant volume simulations only.  Pressure 

can be calculated from volume increases, P+, volume decreases, P-, or a combination, PCD, of the 

two. These expressions are as follows 

 ( )+ 1
ln 1

N UP e
V

 


+− = +      (9) 

 ( )- 1
ln 1

N UP e
V

 


−− = − −  (10) 

 ( )CD + -1

2
P P P = +  (11) 

where,
V

V



 , and ( ) ( )U U V V U V =   −  is the change in potential energy associated with 

the volume change. In our case, we use PCD effectively replacing the linear fit by a quadratic one 

and the concomitant numerical error of O(𝜉2) by O(𝜉3). The value of  must be sufficiently small, 

O(10-4), to ensure rapid and accurate convergence. Directional pressure tensors are calculated via 

this method.  

1.1.3 Standard Exchanges 

The grand canonical ensemble, µVT, is utilized in the case where the composition of the 

system is not known beforehand. In particular, we handle addition and removal of molecules based 

on the Expanded Ensemble approach defined by Moučka et al.11 They mainly describe how to 

handle interaction with ions, but this affects how we define our interactions. Namely, the 

acceptance criteria for adding/removing a molecule, be it a water molecule or ion, becomes 
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where V is the volume of the simulation box, P0 is the standard pressure taken to be 1 bar, ΔU is 

the change in potential energy corresponding to a configurational change, Ni is the number 

molecules of species, i, and  
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is the driving force, where µi and 
0

i  are the total chemical potential and standard chemical 

potential, respectively, for species i. This comes into play again in section 1.1.4, where I discuss 

how fractional insertion/removal of molecules are handled. 

1.1.4 Fractional Exchanges  

An essential feature of our approach is the exchange of solvent and salt molecules with an 

implicit bulk solution in a stepwise or fractional fashion. During the exchange process fractional 

molecules can move and interact with the entire system, but a scaling term is applied. This is done 

by following the work of Moučka et al.11, 17, 18 and involves ions going through the following steps: 

 
0 1 1

0 1 2 2( 0) . .( ) . .( )... ( 1)

P P P
MG G G

Minitial state fract part fract part final state   
+  

+= =   (14) 

where λ represents a fractional state with λ = M+2 being a fully realized molecule with full 

interactions with the system and λ = 0 being a noninteracting molecule. Equation (13) is now 

broken down from each λ state according to the following, 
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where j corresponds to the current lambda state. The following steps describe the procedure for 

the gradual insertion/deletion of a molecule (ions are exchanged in pairs) with 15 fractional states 

for ions and 5 fractional states for water.    

1) At equal probabilities (50%), a molecule (or ion pair) is chosen for deletion from molecules 

currently in solution, λM+2, or a new molecule is selected to be randomly inserted, λ0. 

2) The second step involves the transition from λ0 to λ1, for insertions, or λM+2 to λM+1, for 

deletions. This step does not change the interaction of the selected particle with the system, 

but simply places the molecule(s) in a fractional state.  

3) Intermediate steps involve attempting to increase or decrease (at equal probability) the 

lambda state until the molecule is removed or accepted. 

4) The final step can be either addition, λM+1 to λM+2, which involves converting a fractional 

state molecule(s), λ =1, to a full molecule(s), λ =1, or a fractional molecule(s), λ1, is 

removed completely, λ0. 

5) Once a molecule is chosen, it must be fully removed or inserted by traversing all sub-

processes before a new ion pair or a water molecule can be chosen. 

In addition to gradual insertion/deletion the interaction between fractional molecules and other 

molecules is also scaled. The scaled interactions apply only to the short-ranged potential energy 

terms, while the fractional charges are sufficient scaling for the long-ranged electrostatic 

interactions. A new potential energy, U(r*), at the scaled distance r* is calculated  
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*( , ) ( )U r U r =   (16)

 * 2 2( (1 ) )sr r R = + −  . (17) 

In this scaling method λ denotes the product, λ = λi λj, of the two interacting states of two molecules. 

Lastly, biasing weights were added to Equation (15) in accordance to the Wang-Landau 

approach.19, 20 These biasing weights take the form, 

 1 1( )P P

j j j j jG w w G − − = − + −    (18) 

where the weights for a particular λ-state, j, are termed wj and the last term ensures that PG  is 

evenly distributed throughout all λ-states.11  
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Sample results from a simulation using this scaling procedure is displayed in Figure 1. This 

simulation was performed for an expected molality of 3.83 mol kg-1 of NaCl. Simulation details 

include a box with volume 7711 Ǻ, an average ion pair count of 15.97, and average water molecule 

count of 241.92. This is calculated based a simulation with a total of 1.0 x109 MC steps. An MC 

step in this case consists of a translation/rotation of a full molecule (69% chance), 

translation/rotation of a fractional molecule(20% chance),  an iteration in fractional state (10% 

chance), or a simultaneous translation of the walls (1%).21 When compared with the results from 

Figure 1. Top Left: Displays the biasing weight function, w, as a function of the individual λ 

stages for a 3.83 mol/kg electrolyte solution of NaCl. For the initial and final stages, the same 

w value is applied. Top Right: Displays a ratio of how often each λ stage is visited. Bottom 

Left: Represents how the Wang-Landau parameter, Δw, is changed as the simulation 

progresses. Below the red-dashed, the parameter is transformed to 0. Bottom Right: The 

acceptance ratios for the changing of the λ parameter in the forward and backward directions.   
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Moučka et al,11 Figure 1 displays similar results; however, there are some notable differences. 

Namely, the well-depth in Figure 1(a) is slightly larger, but can be explained by the fact that I am 

using 15 fractional ion states as opposed to 20 used by Moučka et al. We find the acceptance ratios 

of traversing λ values to be similar to Moučka, albeit somewhat lower, but still within acceptable 

margins. There are a couple notable differences that can influence acceptance ratios. Moučka et 

al. use the osmotic ensemble where the number of water molecules is held fixed, but the volume 

of the box is allowed to fluctuate as well as the number of ion pairs in order to obtain the proper 

density and concentration. In our simulation we strictly use the Grand Canonical ensemble both 

type of molecules can fluctuate, but the volume is fixed. Further, our reduced number of fractional 

states can also reduce the rate of acceptance of a λ change with the added computational benefit of 

having fewer states maneuver. Overall, our implementation of the expanded ensemble Grand 

Canonical Monte Carlo runs very similarly to its original implementation. 

 

1.2 High Pressure Energy Storage  

Compression of water in strongly hydrophobic nanopores has been established as a viable 

mechanism of energy storage underlying the function of liquid springs and shock absorbers.22 

According to conventional continuum estimates, the stored energy density can be approximated 

by the product of specific area and the wetting free energy, Δ𝛾. In an ideal case, this energy equals 

the work Pin∆𝑉recovered upon expulsion, where Pin is the intrusion pressure 𝑃in~ 
2∆𝛾

𝑑𝑧
, dz ∝ 𝑎−1 is 

the effective pore diameter and a is specific area. Nanoporous hydrophobic materials such as 

zeolites, typically composed of alumina and silica, have long been studied as suitable media for 
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the storage of surface energy. An experimental23 example of this material can be found in Figure 

2. 

      

The attainable density of stored energy has been shown to increase  when water is replaced by 

electrolyte solution but the gain also depends on the type of zeolite.23-30 Saline-filled zeolites with 

experimental pore sizes of 1.0 nm or lower have been shown to have high energy density 

capabilities that are in the range of 0.1-1.0 J g-1  which is comparable to supercapacitors.23, 29, 31 

Future use of metal-organic-frameworks (MOF) holds promise for further improvement.32-36 The 

conversion between mechanical work delivered upon compression and surface free energy is, 

however, not always reversible. The expulsion of solution following a release of the pressure can 

Figure 2. An experimental example23 of a high porous zeolite composed of alumina and silica. 

Samples on the left are of H-BEA-150 and DaY, respectively, before an intrusion/extrusion 

cycle, while B and D, right, show the same samples after the intrusion/extrusion experiments.   
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follow three distinct behaviors: full energy recovery (liquid spring), partial energy recovery 

(shock-absorber), or no energy recovery (bumper).29, 37 In addition to the properties of the selected 

porous material, the outcome can depend on the composition/concentration of the electrolyte 

solution. Increasing the concentration of the solution, or ion type can, in some cases, shift the 

system from bumper to shock-absorber or liquid spring behavior. An example of a MOF with 

demonstrated properties of a high energy-density liquid spring is shown in Figure 3. While tested 

in neat water,35 this system’s performance has yet to be characterized in electrolyte solution. 

 

Molecular mechanisms behind the observed salt effects are only partly understood and have so far 

not been accessible to experiment. In this study, we strive to uncover generic features of 

nanoconfined electrolytes and their response to pressure variation using molecular simulations. To 

this end, we study the mechanisms, structural changes, and thermodynamic driving forces 

controlling water and electrolyte intrusion/extrusion into/from a nanopore. We use the Grand 

Figure 3. A metal-organic-framework using neat water which can act as a liquid spring. 

Image adapted from ref. 35. 
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Canonical Monte Carlo (GCMC)  simulation which is typically better suited for studies of 

equilibrium properties in open system than Molecular Dynamics (MD) simulations.2 

1.3 Dependence of Polarization in Anisotropic Systems 

Avoiding the complexities associated with computational treatments of multi-body effects, 

aqueous solutions are often modelled using effective, pairwise-additive solute and solvent 

interactions. At this level of approximation, molecular polarizability is accounted for only 

implicitly through model parameterization. While often enabling a reasonable description of liquid 

and solution properties38, 39, the additivity approximation becomes less accurate in the presence of 

spatial anisotropies, e.g. at interfaces40, as well as upon addition of ionic species17 or  external 

electric fields4, 41-45. Confined electrolytes, in or out of applied electric fields, play an essential role 

in biophysics and numerous technologies including energy applications. The need for better 

understanding and control of confined electrolytes, and their equilibrium with the environment, 

motivate developments of advanced models and pertinent sampling algorithms. Incorporation of 

molecular polarizabilities is among main potential improvements; however, it represents 

considerable challenges in open systems with fluctuating density or composition. Grand Canonical 

(GC) Ensemble sampling, which provides a natural route to equilibrium properties of open 

systems, typically relies on Monte Carlo (MC) techniques whose adaptations to multi-body 

interactions are more complex than in Molecular Dynamics simulations.4, 5 Only a limited number 

of open (Grand Canonical Monte Carlo (GCMC or Gibbs Ensemble) studies have so far addressed 

aqueous systems with polarizable molecular potentials, typically in bulk systems.5, 46-52 In the 

present article, we describe an application of the multiple-particle-move (MPM) implementation53-

56 of GCMC simulations to study the behavior of water in nanoconfinement equilibrated with a 

bulk phase reservoir. 
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  High Pressure Simulation of Aqueous Electrolyte Uptake into a 

Hydrophobic Nanopore 

2.1 Introduction 

The focus of this study is on the processes of intrusion/extrusion of concentrated NaCl solution 

into nanopores of size 1.0 nm and 1.64 nm. Alternative choices of electrolyte, such as LiCl favored 

in recent experiments because of its extreme solubility, are at this time not feasible because of 

scarce experimental data for the chemical potential, the drive to mix in a GCMC simulation.57 

Experimental bulk phase studies conducted by Adams1 considered the entire range of accessible 

NaCl concentrations from ambient conditions to extreme pressures to determine partial molar 

volumes for each species. In turn, a chemical potential over a range of pressures can be calculated 

as described in more detail in section 2.3.1 of this work. Our study covers the experimentally 

relevant pressure range from 1 bar to 3000 bar for bulk electrolyte concentrations 5.70 mol kg-1, 

4.28 mol kg-1, 3.02 mol kg-1, and 0 (neat water).  

Consistent with previous works17, 21, 58, 59, our results show that only the narrow pore size can 

secure the reversal of pore infiltration. Moreover, we observe strong hysteresis in all cases. 

Simulation results establish an enhanced energy storage capacity with decreasing pore size and 

higher salt concentration as narrower pores act increasingly more hydrophobic. The salt 

contribution to this increase proves much more pronounced in narrow pores. This is consistent 

with significantly stronger, although incomplete, desalination in the narrower pore. The salt 

exclusion is not ameliorated with increased pressures and can be expected to play an even more 

important role with highly soluble salts like LiCl. All the more prominent salt effects leading to 

improved reversibility of the infiltration/expulsion cycle observed in some experiments, can be 
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rationalized in terms of near-complete ion defiltration60 due to the narrowed window size of pore 

cages, a medium-specific feature to be addressed in a separate study.   

2.2 Methodology 

2.2.1 Models 

The water model chosen for this work is SPC/E61 and the ions follow the Joung-Cheatham10 

forcefield parameters. Table 1 shows the complete list of LJ parameters, including those for ions. 

In addition, Table 1 also displays the charges of each atom which are used in the Ewald sum. Cross 

terms for molecules i and j are computed via the Lorentz-Berthelot mixing rules: 
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Table 1. Potential Energy Parameters.10, 17, 61-63  

LJ interaction 
bk


 σ q(e) 

O 78.20 3.166 -0.8476 

H 0.0 - 0.4238 

Na+ 177.4754 2.15938 1.0 

Cl- 6.433703 4.830453 -1.0 

The SPC/E model for water was chosen for its robustness, computational efficiency, and to 

preserve connection with preceding works.4, 17, 59, 64-73 It reasonably reproduces experimental 

values such as enthalpy of vaporization, critical behavior, pair-correlation, and surface tension.74-

76 The accuracy of model predictions can often be improved, even more so in confinement, by 
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explicitly calculating the intramolecular polarization of each water molecule. While we recognize 

that this would be the ideal simulation condition77, for the moment we must rely on point-charge 

calculations due to challenges with computational efficiency. Joung-Cheatham ion forcefield 

parameters were originally developed to work well in conjunction with SPC/E water.78 For this 

reason and their reasonable solubilities as well as ion mobility, we chose this ion model for our 

study. Of significant importance are well-documented chemical potentials available over the entire 

range of concentrations of ambient NaCl solutions, for the above force fields.4, 11, 17, 18, 79  

2.2.2 Confinement and Surface Free Energy 

Confinement simulations in my code use only perfectly smooth, parallel-plate walls based 

on the integrated 9-3 LJ potential. The change to incorporate atomistic walls17, 77 should not require 

much effort since a template is in place to allow for user code modifications. The uniform-wall 

representation is, however, advantageous as it secures rigorous validity80 of the area-scaling 

approach64, 81 in interfacial tension calculations. The smooth wall interaction is described by the 

following equation 

 

9 3

( ) iw iw
i i i

i w i w

U r A B
z z z z

    
= −      − −   

  (21) 

where 
3 4 / 45i w iw iwA   = Ai = 4/45πρwσiwεiw, Bi = 15Ai/2,  ρw is uniform density of the interacting 

sites on the carbon wall, σiw and εiw are the mixed LJ parameters of water-carbon wall using the 

Lorentz-Berthelot mixing rules, and zi is the z-position of molecule i and zw = dz or zw = 0 and dz 

is the distance between the 2 walls.17 Values were originally chosen to fit a hydrocarbon wall and 

are ρw = 0.333 Ǻ-3, εw = 0.6483 kJ mol-1, and σw = 3.742 Ǻ. Since Equation (21) describes 
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interactions with semi-infinite walls, periodic boundary conditions are not necessary in describing 

wall/solution interactions. 

 In addition, 3D Ewald is still applied, but with a modification. The images in the z-direction 

now have 100 Ǻ of space between them. This still allows for some electrostatic interaction between 

images which influences the orientation of water molecules. To alleviate the effect, we employ the 

Yeh-Berkowitz correction82 which adds an energy term, Uc of the form: 

 22π
c zU M

V
=   (22) 

 where V is the volume of the simulation box including the added empty space and Mz is the z 

component of the total dipole moment of water within the confined region. Mz is calculated in full 

once at the beginning of the simulation and then changed based on the movement of molecules.  

 Surface free energy, σ, here defined as the change of the grand potential, Ω(𝜇, 𝑉, 𝑇), per 

unit area of wetted walls, is calculated from the resulting pressure that is parallel to the plates. The 

method for finding this pressure is described in section 1.1.2. The surface, or interfacial, free 

energy is useful in describing how much energy it would take to form a surface.  This term follows 

the equation 

 
||

1

2
dP =−  (23) 

where, d is the distance between two plates and ||P is the parallel pressure64. A positive value of 

sigma signifies resistance to surface wetting at specified  𝜇𝑉𝑇 conditions. 
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2.3 Results and Discussion 

2.3.1 Chemical Potentials at High Pressure 

All simulations are run using the open ensemble, µVT. As such the pressure can vary within 

our simulation box; however, we wish to simulate conditions where the implicit bulk solution with 

which we are exchanging the molecules is under elevated pressure. Essentially, this requires a 

precise chemical potential, µ, to guide our exchanges. There are a few methods for obtaining the 

required chemical potentials: from previous simulations4, 83, directly from experiment1, 57, or by 

thermodynamic integration in which you systematically grow the desired species into the media 

with desired concentrations. Each of these methods has flaws, but the most technically correct way 

to obtain chemical potential would be through thermodynamic integration because this inherently 

accounts for biases in any given model. This would require running our Monte Carlo simulation 

at every pressure and concentration over the desired ranges and would be very costly 

computationally.  

 

Figure 4. Input chemical potential values for water, left, and NaCl, right. Each value corresponds 

to a user determined pressure. Three concentrations are used in these simulations: 5.70 mol kg-1 

(black), 4.28 mol kg-1 (red), 3.02 mol kg-1 (green), and neat H2O (blue). 
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Using results from previous studies is the next best solution. Since there are no computational 

studies that use chemical potentials for concentrated solutions over a large range of pressures and 

it is difficult to experimentally measure the exact chemical potential, we combine pressure-induced 

increments of chemical potentials from volumetric experiment1 with reference (ambient pressure) 

chemical potentials from the simulation4, 17. Volumetric experiments monitor the change in volume 

due a perturbation to the system, in this case increased pressure. By utilizing reported partial molar 

volumes as functions of pressure for a set of molalities1, m, we calculate chemical potentials of 

water and salt at different pressures Pbulk according to the relation 

 ( ) ( ) ( )
2

1

2 1, , , , , ,

P

i i i

P

T P m T P m V T P m dP = +   (24) 

where, temperature, T, is fixed at 298.15 K, ( )2, ,i T P m is the chemical potential at given 

pressure, P2, ( )1, ,i T P m  is the chemical potential at the reference pressure P1 = 1 bar and iV (P) 

is the partial molar volume of species i specified as a function of the instantaneous pressure P 

during the integration. The integral term iV dP pertains to the molar volume in the bulk liquid phase 

as the externally applied pressure, P, varies from P1 = 1 bar to P2=Pbulk. Figure 4 presents calculated 

values of µ(T,Pbulk) for a range of input pressures and concentrations.  

To offset the omission of explicit Lennard-Jones tail corrections in predicting molecular 

exchanges, we adjust the input chemical potentials by the magnitude of individual tail corrections 

Δ𝜇𝑖
𝑡𝑎𝑖𝑙, which will, on the average, result in the differences Δ𝑈 − Δ𝐺𝑃 (Equation (12)) close to the 

values for nontruncated potentials. Since these differences control the exchange acceptances, the 

adjusted chemical potentials combined with the omission of the Lennard-Jones tail correction in 
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the energy calculations accurately reproduce the composition in bulk simulations with SPC/E 

water and JC ions, however, the confinement pressures we report in Section 2.3.3 are somewhat 

exaggerated as they correspond to the truncated pair potentials.   

2.3.2 Intrusion/Extrusion from a Nanopore  

The main portion of this project is devoted to studies of the intrusion and extrusion of 

aqueous electrolytes from hydrophobic pores of preselected widths dz = 1.0 nm and 1.64 nm to 

determine compositions and relevant thermodynamic properties in equilibrated systems. The 

narrower pores are considered because of their compelling energy storage properties, and we chose 

the wider pore size where there would be an obvious difference in intrusion/extrusion properties. 

To study extrusion, simulations pores were first filled by increasing the pressure to 3000 bar. 

Subsequently, the system was allowed to relax to the desired input pressure. Once these 

simulations reached equilibrium, a restart configuration was chosen for use in the intrusion 

simulations. For intrusion calculations, the volume of the box was doubled by extending the box 

length along one of the two lateral dimensions with the pore diameter dz being unchanged. The 

newly created volume contained no solvent molecules or salt ions to resemble the solution 

infiltration process in real systems. Figure 5 illustrates initial configurations in periodic Monte 

Carlo boxes of both types. 
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The procedure removes the free-energy barrier that would have been required for the liquid 

nucleation in a completely empty pore, a process that is not representative of experiments where 

the liquid phase resides at the opening. Conversely, the barrier to vapor nucleation cannot be 

avoided in the reverse process of solution expulsion upon lowering Pbulk, explaining the 

pronounced hysteresis of the cycle. Resulting intrusion/extrusion plots for the narrow pore are 

shown in Figure 6 and the results for the wider pore are shown in Figure 7. Due to the difficult 

nature of adding and removing an ion pair in solution, and slow convergence when sampling a 

comparatively small number of molecules, average numbers of ion pairs are associated with larger 

uncertainty than with water. The statistical error in the pore composition in the intrusion branch 

can be reduced with longer simulations, but this becomes too costly and the added accuracy would 

not alter the central result, i.e. the intrusion pressure for given system. Since each of these 

calculations begins with a partially empty pore, impractical computation times (9-12 processor 

 

Figure 5. Snapshots of the elementary Monte Carlo boxes used in the simulation of confined NaCl 

solution inside the 1 nm pore during pressure relaxation (bottom), and the half-empty double size 

box generated by expanding the original (bottom) box for use in attempted infiltration runs (see 

main text). The dark background spans the solvent-accessible width between soft pore walls 

placed at zw=0 and dz= 1 nm (Equation (21)). 
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months for the wider, 1.64 nm pore) would be needed to secure converged equilibration of pore 

composition. The main information provided by the intrusion curves is hence the estimation of the 

intrusion pressures whereas pore concentrations deviate from the equilibrated ones shown in the 

extrusion branch of each cycle. Interestingly, the calculated compositions along the intrusion 

branches suggest the pore salt molality can pass through a maximum in the early stages of the 

infiltration.  

 

Figure 6. Intrusion (solid lines) and extrusion (dashed lines) of water, left, and NaCl, right, in 

a 1.0 nm pore for 3 bulk concentrations: 5.70 mol kg-1 (black), 4.28 mol kg-1 (red), 3.02 mol kg-

1(green) and neat water (blue). NaCl is reported in terms of pore molality, while waters are 

counted by their total number. A surprising outcome is a disproportionate  exclusion of the salt 

at low bulk concentration. Lines are to guide the eyes only. 
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The intrusion pressures Pin required to force water and NaCl into a hydrophobic pore are 

within the range observed in experiments.23, 37, 84, 85 Consistent with the macroscopic prediction21 

𝑃𝑖𝑛 ≈
2𝛾𝑐𝑜𝑠𝜃

𝑑𝑧
𝑒𝑓𝑓 ,  Pin increases with decreasing pore width  𝑑𝑧

𝑒𝑓𝑓
 but the change is steeper than expected 

with given difference between the two widths we use. This is a clear indication of a simultaneous 

increase of the effective hydrophobicity of the walls as the liquid is forcefully compressed against 

them. We will return to this point in coming paragraphs where we analyze the pressure effect on 

wetting energetics. In doing so, we will only be assessing pure confinement effects between 

idealized unchanging walls without considering specific contributions indicated in zeolite 

experiments with changing extents of hydrophilic wall defects23, and frequently detected 

deformations after the first intrusion step.29 Our observations are consistent with previous findings 

Figure 7. Intrusion (solid lines) and extrusion (dashed lines) of water, left, and NaCl, right, in a 1.64 

nm pore for 3 bulk concentrations: 5.70 mol kg-1 (black), 4.28 mol kg-1 (red), 3.02 mol kg-1(green) 

and neat water (blue). NaCl is reported by pore concentration, while water is counted by its total 

number. There is a proportionate increase of pore concentration with increasing bulk electrolyte 

concentration. Lines are to guide the eyes only. Longer runs would be necessary to improve the 

accuracy in intrusion simulations containing salt solutions. Inset (left): Compressibility for water in 

a 1 nm pore, blue shaded circles, in a 1.64 nm pore, blue open circles, and in the bulk, dashed magenta 

line. The magenta dashed line shows bulk water compressibilities from  experiment.1 
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that the 1.64 nm pores do not empty upon releasing the pressure while the 1.0 nm pores empty 

near 500 bar for salt solutions and 150 bar for neat water.  

The inset in Figure 7 presents the results for compressibility of confined water, 𝜅 =

(
𝜕𝑙𝑛𝑁

𝜕𝑃𝑏𝑢𝑙𝑘
)𝑉.𝑇 at elevated pressures. 𝑁 is the number of liquid molecules in the confinement. Results  

in Figure 7 represent finite difference estimates for the slope of calculated lnN vs. Pbulk. In the 

narrower pore, where the composition (molality) shows no detectable dependence on Pbulk (Figure 

6), the same relation provides an estimate of the compressibility of the solution. In analogy with 

pure water21, 58, 86-88 solution compressibility is increased inside a hydrophobic confinement, 

although less than for pure solvent, the compressibility of 5.7 mol kg-1 solution at dz=1 nm and 

Pbulk near 5.102 bar being close to ½ of that for confined water. Increased pressure results in lower 

interfacial compressibilities21, an effect akin to increasing the hydrophilicity of the confinement. 

The increased compressibility in the confinement is primarily due to the pressure-induced buildup 

of the first hydration layer (see Section 2.3.1). Because of a higher fraction of water at the 

interfacial region, the compressibility rise is more pronounced inside the narrower pore but the 

difference gradually disappears with increasing pressure. Compression also reduces the deviation 

from bulk water compressibility1; however, for pressures considered here, the confinement values 

never descend to those found in the bulk.  

 The qualitative differences under released pressure separate the energy storage 

mechanisms of the 2 pore sizes with the larger pore displaying a bumper behavior, for all 

concentrations, and the smaller pore being the shock-absorber type, which allows for partial 

regeneration of input mechanical energy. At intermediate pressures, the liquid remains trapped in 

a metastable state21, 58 because of considerable kinetic barrier ΔΩ∗to evaporation.89-95 In the narrow 
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pore, the barrier is eventually overcome at sufficiently low pressures. However, ΔΩ∗increases 

dramatically with pore widths (ΔΩ∗ ∝ 𝑑𝑧
2)93 preventing expulsion from the wider pores across the 

entire pressure range and pragmatically relevant times. It then becomes desirable to explore what 

thermodynamic and/or configurational changes drive these two behaviors. 

2.3.3 Thermodynamics 

While pressure tensors inside the pore are strongly anisotropic, all tensor components show 

a similar increase with the pressure applied in bulk solution. Figure 8 illustrates an almost linear 

relationship between the applied pressure, Pbulk, and the parallel pressure components (P||=Pxx=Pyy) 

inside the pore. The same trend is followed by the normal pressure, PN. At both pore sizes, the 

individual components increase by approximately the same amount as the input bulk value over 

the entire range of Pbulk. As already observed in the preceding work17, the normal component of 

the pressure tensor in the confinement (Figure 8) exceeds the bulk value and the difference depends 

on the salt concentration.  The reduction of the components parallel to the plates, P||, reflects the 

strongly hydrophobic character of our model walls. While Figure 8 captures qualitative trends, it 

should be noted the simulation results are plotted against the input experimental bulk pressures, 

Pbulk. Alternatively, these pressures could be plotted against the model bulk pressures with no tail 

contribution, consistent with the calculation in the confinement. The adjustment of Pbulk would 

entail subtracting the (negative) tail correction ( )210tail

tail i iP O  =  = − bar. Here, i  denotes 

the number densities of solution components i. Given the broad range of pressures considered, 

such a modification would lead to a comparatively minor shift along the Pbulk axis and would not 

affect the conclusions of the study.  
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Despite the similarities between the two pore sizes, a more careful inspection  of Figure 8 

reveals smaller slopes in the narrower pore. Since the composition of the pore changes only slightly 

with increasing pressure, we attribute the slope change primarily to the differences in the strength 

of molecular interactions. Figure 10 shows the net energies, normalized by the number of 

molecules, are generally bigger in the wider pores characterized by a higher molecular 

coordination. The negative slopes of net energy vs Pbulk, observed in the narrower pores, reflect 

the higher compressibility and the resulting pressure-induced increase in the population of 

Figure 8. Dependences of the normal (left) and parallel (right) pressure components, PN and 

P||, on the bulk pressure, Pbulk, in 1.0 nm (top) and 1.64 nm pore (bottom). Values below 150 

bar, in the 1.0 nm pore, are not shown because of liquid expulsion. Normal pressures show 

only the trend for neat water as a reference, and parallel pressures include the trend line for 

all concentrations. 
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interacting neighbor molecules in these systems. Average potential energies of the pores of both 

sizes rapidly decrease with increasing ion concentration and the reduction is bigger in the wider 

pore characterized by much stronger uptake of the ions. The noise in the energy curves (Figure 10 

and Figure 11) is due the very slow convergence of ion content in the pores; this is also suggested 

by the apparent correlations among adjacent points that can be traced down to common ancestor 

configurations. 

  Figure 6 and Figure 7 show that the pore concentrations in the larger pore are 

approximately 85% of the bulk concentration with virtually no variation. On the other hand, the 

1.0 nm pore has 23%, 32% and 42% of the following input bulk concentrations: 3.02 mol kg-1, 

4.28 mol kg-1, and 5.70 mol kg-1, respectively (Figure 9). This implies a higher relative desalination 

when the concentration is lower, and the size of the pore is small enough. The results in Figure 5 

indicate 1.0 nm porosity to enable a rather effective filtering capacity in reverse osmosis 

desalination. This capacity is shown to improve at reduced concentrations with extrapolation to 

sea water concentration suggesting almost complete separation.  

The role the ions play in nanopore absorption can be partially explained by monitoring 

distinct contributions to the net intermolecular interaction inside the pore (Figure 11). Lennard-

Jones energies represent a minor term in ion-ion interactions and the normalized values (energies 

per ion) show a very weak dependence on the salt concentration. This interaction alone does not 

tell much on its own, but combined with the structure within the pore, (next Section), we observe 

an increased structure for water with ions residing solely in the center of the pore physically 

separated from each other by hydrating waters. Electrostatic interactions for specified component 

pairs show moderate changes with pressure, however, a clear trend is hard to separate from the noise 

associated with slow equilibration and convergence of ion content. The decrease in ion charge 
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interactions seen with smaller concentrations is due to the disproportionately smaller pore 

concentrations. Inclusion of ions reduces water-water electrostatic interactions favoring instead 

water-ion interactions.  

 

 

Figure 9. Average concentration within a nanopore, m, shown against the bulk concentration, 

mbulk. The blue dashed line represents a situation where the pore concentration is equal to the 

bulk concentration. The 1.0 nm pore (red), shows a much larger salt depletion than observed in 

the 1.64 nm pore (black). Furthermore, the relative desalination is more pronounced when the 

concentration is lower, but only in the narrower pore. 

Figure 10. Total potential energy, Utotal, for pores of size 1.0 nm (left) and 1.64 nm (right). 

The energy calculation includes the interaction with the walls and is normalized by dividing 

by the total number of molecules, the gas constant, and the temperature. The data for the 

narrower pore are limited to pressures that can sustain a stable or metastable liquid phase in 

the pore. 
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Figure 11. Lennard Jones (left) and electrostatic (right) pairwise interactions for H2O and 

NaCl in a 1.0 nm pore. Values are normalized by dividing by N times thermal energy RT. 

When water is interacting with water, N stands for the total number of water molecules; 

otherwise, N is the number of ion pairs. Input bulk concentrations are as follows: Top 5.70 

mol kg-1, middle 4.28 mol kg -1, bottom 3.02 mol kg-1. The fluctuations in the energies are 

associated with slow equilibration of pore compositions used in subsequent calculations 

of distinct energy contributions in NVT simulations. In cases where lines overlap various 

dashed styles have been used for clarity.  
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 Figure 12 presents the results for the interfacial free energy, σ, (the change of the free 

energy per unit area of wetted surface), a key property quantifying the surface wettability. The 

method of calculation of σ can be found in Equation (23). The more negative σ is, the greater the 

tendency to wet becomes. We, therefore, can approximately predict at what bulk pressure intrusion 

will occur by pinpointing when σ switch signs and we find a direct agreement with Figure 6 and 

Figure 7. In the wider pore, the σ values appear relatively insensitive to salt concentration, 

consistent with the weak effect of ions on the tendency for the pore to be filled. A bigger separation 

of σ values for different concentrations in the 1.0 nm pore is associated a stronger influence of the 

salt on intrusion pressures (Figure 7). 

 In Figure 13 we also present the ‘pure’ wetting free energy, σ’, estimated by excluding the 

area derivative of the work -PbulkdV against external pressure Pbulk during liquid intrusion. Since 

the volume occupied by the liquid varies in proportion to wetted area, dV≈
1

2
𝑑𝑧

𝑒𝑓𝑓
𝑑𝐴𝑤 , σ’ can be 

obtained from the relation  

  

 
bulk

1
'

2

eff

zd P  + . (25) 

   

Results for σ’ in Figure 13 quantify the actual surface resistance to wetting, showing that the walls 

appear increasingly more hydrophobic with increasing pressure and with the concentration of ions. 

Both effects are stronger in 1.0 nm pore. A deficit in the concentration can be found in 

confinement, but especially for the narrow pore (Figure 9). The observed trends can be explained 

in terms of the Gibbs adsorption isotherm 
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 which relates surface adsorption to the changes in interfacial tension.4, 96 Above, 𝛤(𝜇𝑖, 𝑃bulk) 

represents the surface excesses of species i with the specified chemical potential and bulk pressure. 

Large surface deficits of ions in the narrow pore, i.e. strongly negative 𝛤(𝜇𝑖, 𝑃bulk) imply a 

significant increase of σ upon increasing the bulk salinity. Conversely, the milder salt depletion in 

the wider pores result in only a weak dependence of σ on the bulk salt concentration.

 

Figure 12. Surface free energy versus the input bulk pressure is calculated from extrusion 

simulations and is displayed for a 1.0 nm pore (left) and 1.64 nm pore (right) for 3 

concentrations: 5.70 mol kg-1, 4.28 mol kg-1, and 3.02 mol kg-1. The tendency to wet increases 

with increasing pressure. Values for the 1.0 nm pore at low Pbulk values are not shown as the 

liquid does not persist in the pore. 
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2.3.4 Structure 

To further explain the effects of ions within a nanopore we explore the structural features of each 

configuration. Density profiles shown in Figure 14 help explain the increase of wall 

hydrophobicity accompanying the increased packing in the pore. Because of steric restraints, the 

majority of water molecules in the narrower pore populate distinct hydration layers next to the 

walls. This configuration results in a stronger deprivation of hydrogen bonds97 than is the case in 

the wider pore, where the interfacial layers are separated by bulklike water, accounting for ~9 mN 

m-1 difference in the pure wetting free energies for the two pore sizes observed even in the absence 

of salt. Because of the ions’ tendency to preserve their hydration shells, they avoid direct contact 

with the walls. In the narrower pore, this trend confines the ions to a diffuse monolayer centered 

at the midplane of the pore. Nonetheless, cations and anions remain physically separated by water 

Figure 13. Pure’ wetting free energy, σ’, is calculated from extrusion-branch simulations by 

excluding the contribution of external pressure, Pbulk, as the driving force for liquid infiltration 

(eq 4). Results for a 1.0 nm pore (left) and 1.64 nm pore (right), for neat water and 3 salt 

concentrations: 5.70 mol kg-1, 4.28 mol kg-1, and 3.02 mol kg-1 show the walls appear more 

hydrophobic as solution is compressed into the pore. Values for the 1.0 nm pore at below 300 bar 

are not shown as the liquid does not persist in the pore. 
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molecules and interact with each other only electrostatically (Figure 11). The additional space 

available in the wider pore allows the anions to spread out to their preferred location closer to the 

interface17,77 while the density of the smaller and more strongly hydrated cations still peaks at the 

center of the pore, with secondary cation density peaks coinciding with the maxima of the anion 

distribution. The spatial separation of ions and concomitant oscillations in the charge densities due 

to the ions are matched by the opposite charge density contributions from the partially charged 

atoms of water. We illustrate charge distributions in Figure 15. In the 1.0 nm pore, the charges 

from the ions almost completely cancel each other out, while water charge distributions reflect an 

enhanced structure imposed by the more restrictive confinement. In the wider pore, the 

orientational polarization of water is facilitated further by matching the charge layering due to the 

ions. Our earlier work4, 17 showed this feature to facilitate the solution uptake and reduce the 

apparent hydrophobicity of the pore. Present results confirm the same mechanism continues to 

operate across the entire range of pressures, with density amplitudes gradually intensified with 

compression. Additional features, best manifested in the charge density profiles for the highest 

pressure (1500 bar) in Figure 15, are seen to develop in the highly compressed water in the wider 

pore. The increased structure gleaned from the high-pressure results in Figure 14 and Figure 15 

imply an entropy reduction that can rationalize the moderate increases in the pure wetting free 

energies, σ’ (Figure 13) with increasing Pbulk even when the opposite trend is suggested from the 

decreasing energies observed in the narrower pore (Figure 10). Additional structural results for the 

lower concentrations can be found in Appendix 2. Notable features are similar to those found for 

the 5.70 mol kg-1 with a reduction in relevant peaks. 
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Figure 14. Number density profile of water, top, and NaCl ions, bottom, in confinement 

between a 1.0 nm pore, left, and a 1.64 nm pore, right. The location on the x-axis of one wall 

is always placed on 0. Of ions, Na+ is shown by solid lines and Cl- has dotted lines, while the 

color coding matches for pressure inputs matches that for waters. These figures were created 

from extrusion simulations with bulk ion concentrations of 5.70 mol kg-1. 

Figure 15. Charge density of molecules in confinement between a 1.0 nm pore, left, and a 1.64 

nm pore, right. The location on the x-axis of one wall is always placed on 0. These figures were 

created from extrusion simulations with bulk ion concentrations of 5.70 mol kg-1. A clear 

distinction in the packing of water molecules is observed for higher pressures. This increase in 

structure implies a requirement for water to reorient in order to compensate for the increased 

number density. 
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2.3.5 Conclusion  

 Through open ensemble simulations, we gain an insight into the mechanisms of the uptake 

of water and aqueous NaCl solutions in a wetting-resistant nanoporous medium over a large range 

of external pressures. By using pressure-dependent chemical potentials, derived from volumetric 

experiments, we are able to study confined systems open to pressurized bulk solutions. Our 

confinement model places the solution between perfectly smooth, hydrocarbon-like plates with 

separations of 1.0 nm and 1.64 nm to monitor the intrusion/extrusion cycle of solutions.  

 We find reversibility in our simulations to be consistent with literature, namely the 

infiltration of the narrower pore is reversible while wetting of the larger pore is irreversible. 

Reversibility creates a pathway for partial energy recovery characteristic of a shock-absorber 

material. The prominent hysteresis can be alleviated when pure water is replaced by aqueous 

electrolytes; NaCl was considered because of available volumetric data. The reduction in 

hysteresis is attributed to the increase of the pore/solution interfacial tension with increasing salt 

concentration. Based on the comparison between the two pore sizes we considered, only a slight 

reduction of the nano-sized pore width should suffice to remove the hysteresis, leading to liquid 

spring behavior. Additionally, the narrow pore presents a strong desalination effect which is even 

more prominent for lower bulk concentrations of NaCl. For both pore sizes, a large increase in the 

solution compressibility compared to the bulk phase is observed at ambient bulk conditions. While 

compressibilities corresponding to the two pore sizes eventually coincide at extremely high 

pressures, they never descend to that of the bulk phase. 

 As one would expect, a more structured confined system is observed with increasing 

pressure which produces stronger steric restraints on solvating waters especially in the narrow 

pore. This effect, along with the surface depletion of salt ions, accounts for the differences 
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observed in pure wetting free energies which tell that walls get more hydrophobic as solution is 

compressed into the pore. The observed features listed above can be potentially enhanced by 

changing the system in future work. Namely, a considerably higher intrusion pressure would be 

expected if the salt solution were changed to LiCl since its solubility is near three times higher 

than for NaCl. It would also be of interest to consider molecular walls that have a narrow window 

through which solution can flow into a larger space. This process, amenable to Molecular 

Dynamics or diffusive Monte Carlo, would create a situation where a higher desalination effect 

could likely be observed, changing the mechanism and amount of possible energy storage. 

 Molecular Polarizability in Open Ensemble Simulations of Aqueous 

Nanoconfinements Under Electric Field 

3.1 Introduction 

We present a comparison between a conventional nonpolarizable and a polarizable model 

representation for field-free aqueous confinements as well as confinements spanned by electric 

field. In both scenarios, the confined fluid maintains equilibrium with a field-free bulk 

environment. We determine the uptake of model water molecules in the pores, the liquid structure 

in the confinement, and key thermodynamic properties, pressure and interfacial free energies. To 

assess the differences in the dielectric response of the two models, we monitor dipole changes of 

interfacial molecules in the polarizable representation and compare the average dielectric constants 

of the two models inside the confined liquid water film at different strengths of applied fields. We 

also implemented the multi-particle move EE-GCMC method to address confinement/bulk NaCl 

solution equilibria. Simultaneous accounts of multi-body polarizability effects and 

computationally demanding fractional exchanges of ions, however, render the method very 
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compute-intense. Because of nonuniform spatial distributions, the convergence is considerably 

slower than in the uniform-bulk-phase simulations. Systematic calculations for polarizable-model 

confined electrolyte systems open to particle exchange will therefore require further code 

optimization. These developments will be considered in a separate study. In the present work, we 

provide a glimpse into molecular polarizability effects in a confined electrolyte by focusing on 

structural differences between the two types of force fields at fixed compositions. The 

concentration of the confined solution used is consistent with bulk NaCl concentration of 2 mol 

kg-1 in nonpolarizable force field simulations. While the differences introduced with molecular 

polarizability appear moderate, a number of quantities, including the increased wetting free energy 

inside the pore, the reduced hydration pressure between the pore walls, and comparatively lower 

interfacial permittivity, can likely be associated with  notable reduction of the mean molecular 

dipole of interfacial water in the polarizable representation.  

3.2 Methodology 

3.2.1 Models 

For this study we use the polarizable BK3-AH98-101 and nonpolarizable SPC/E-JC10, 61 water and 

ion models. In both models, water is considered as a rigid molecule. For more details on SPC/E 

water see section 2.2.1. The structure of BK3 water is almost identical to that of TIP4P water and 

can be seen in Figure 16.98, 99 Nonelectrostatic interaction are handled using the Buckingham 

potential, 
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where 
ijr is the distance between oxygen molecules i and j, and the interatomic parameters A, B 

and C  can be found in Table 2. This potential is chosen over the widely used Lennard-Jones 

potential, see section 1.1.1, because the term 12

ijr− is often associated with an overly structured first 

interacting shell for water. According to Kiss et al.99 the replacement exponential term provides 

better fits of the radial distribution function closer to that of experimental water.102 

 The electrostatic interactions utilize the Gaussian charge-on-a-spring method where the 

charges are tethered to each corresponding atom, with the exception of the oxygen charge which 

is tethered to a noninteracting Drude particle located along the dipole of the molecule (Figure 16). 

The strength of each spring was calculated on the basis of the gas phase polarization of water 

which is nearly isotropic with an overall value of 1.44 Å3.  In addition, the average molecular 

dipole for water is ~2.64 D. These parameters produce a quality water model with a higher 

computation efficiency than other models,100 which is why we picked this model for our 

simulation. Ions are handled similarly to water and parameter values can be found in Table 2.  

 

 
Figure 16. BK3 water model.98  
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Table 2. Values for the parameterization of the BK3-AH model.98, 99, 101 Atoms with subscript ‘m’ 

symbolize the charges on a spring, whereas its absence is the physical position of the atom. The 

polarization term, spring strength, is listed on the movable charge. 

 A 

(kJ mol-1) 

B 

(Å-1) 

C 

(kJ Å6 mol-1) 

Charge 

(e) 

Polarization 

(Å3) 

O 322000 3.56 3320 0.0 0.0 

H 0.0 0.0 0.0 0.0 0.0 

Om 0.0 0.0 0.0 -1.168 0.36 

Hm 0.0 0.0 0.0 0.584 0.36 

Na 128.5 10  15.0 550 11 0.0 

Nam 0.0 0.0 0.0 -10 0.157 

Cl 59.4 10  3.1 8000 -11 0.0 

Clm 0.0 0.0 0.0 10 3.50 

  

Simulations were conducted under confined conditions and a static electric field was 

applied along the z-direction (normal to the walls). Two types of confinements were used: 

atomistic and smooth wall (SW). Features of the SW confinement type can be found in section 

2.2.2. Butylated graphane was chosen as the composition for the atomistic wall simulations (Figure 

17).  Butyl groups are chosen as the result from a previous study103 which shows that you can 

regain a hydrophobic contact angle using graphane with substituent chain lengths of 4 or greater. 

Like in previous studies17, 103, the surface density of alkyl groups is ~4 nm-2, close to  typical 
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density in self-assembled monolayers.104 This gives us two wall types with similar contact angles 

that have only nonelectrostatic interactions. 

Interactions with the walls of the planar nanopores are described by previous studies4, 17 

for the SPC/E61-Joung-Chetham10 force field (FF)38-40.  When the polarizable models is used, 

however, the interactions with the smooth wall must be changed to maintain the same 

hydrophobicity, contact angle, since intermolecular interactions in solution are different. We do 

this by adjusting parameters from Equation (21). The oxygen-wall potential in the BK3 is modified 

by setting ɛw = 1.09 kJ mol-1 which results in a contact angle of 130 ± 2°. This value was obtained 

by interpolation from a separate set of simulations using small droplets composed of 2028 BK3 

molecules on a single smooth wall with different values of εw ranging from 0.6 to 2.4 kJ/mol.  

 Molecular wall (MW) interactions use a coarse grained approach to mimic the structure 

and properties of butylated graphane.103 Unlike graphene, its saturated, pure sp3 derivative, 

graphane105, 106 is an insulator with negligible polarizability which retains its planar structure upon 

functionalization. Interactions of the MW with the solution are of Lennard-Jones type, with 

parametrization adopted from Jorgensen et al.107, σCH3 = 3.905 Å, σCH2 = 3.905 Å, εCH2 = 0.7866 kJ 

mol-1, σCH = 3.85 Å, εCH = 0.3347 kJ mol-1, σC = 3.8 Å, εC = 0.2092 kJ mol-1, and where we used 

εCH3 = 0.3347 kJ mol-1 resulting in contact angle ∼130 ± 2° in our previous study of the SPC/E FF. 

In the BK3 system, εCH3 has been adjusted by an identical factor (1.09/0.6483) as in the SW 

approach, i.e., we used εCH3 = 0.5628 kJ/mol for the BK3-wall interaction in the EEGCMC 

simulations. This value reproduces the contact angle of the SPC/E system. The separation between 

molecular walls was adjusted to produce the thickness of the liquid film essentially identical to 

that observed in the SW model. The structure and other details of the MW model are found in 

refs.17, 103 
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 In confinement simulations a slab-correction term82 needs to be applied to the Ewald 

summation. The general scheme for Ewald sums can be found in section 1.1.1 and slab-correction 

can be found in section 2.2.2. A change to the procedure listed for Ewald summation is the 

increasing of max zk to 22, up from 9. This is to account for the charge polarization which requires 

greater accuracy. The simulations employ an cutr of 9.8 Å for fixed-charge models and 10.0 Å for 

polarizable models. A tail correction to the energy is applied for the open ensemble simulation in 

accordance to a previous work.17 

Figure 17. Snapshot of confined BK3 water film between alkyl-coated graphene 

plates subject to perpendicular electric field. Field Ef spanning the aqueous film 

(average strength ~ 0.08 V nm-1) supports occasional penetrations of water 

molecules into the alkyl brush. Of note is a strong asymmetry of the water density 

distribution in the field. 
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 An external electric field is applied in the direction normal to the parallel plates. This is 

accomplished by using a fixed displacement electric field, Dz, of strengths 0.00885 C m−2, 0.0177 

C m−2, or 0.0266 C m−2, which correspond to unscreened (vacuum) field strengths ranging from 1 

V nm−1 to 3 V nm−1. These fields can be compared to those found in ion channels and are about an 

order of magnitude weaker than those found in ionic colloids,108, 109 membranes,16 reverse 

micelles,110 or polyelectrolytes.111 As such, a field-dependent polarizability term98 is not required 

and we are safely operating under conditions where water will not dissociate. Noteworthy, they 

also fall below the strengths that warrant the use of field-dependent polarizability correction in 

applications of the BK3 model of water.98 

3.2.2 Open Ensemble Simulation 

The main body of this project relies on the work by Filip Moučka who developed the 

Expanded Ensemble Grand Canonical Monte Carlo (EEGCMC). The expanded ensemble builds 

upon previous methodologies4, 11, 17 with significant modifications necessary to address molecular 

polarization. Because multi-body interactions among polarizable molecules simultaneously affect 

all particles, the traditional Monte Carlo one-particle moves are no longer advantageous and 

multiple-particle MC moves (MPM) become superior.54, 56, 112, 113 In the MPM scheme all 

simulated particles undergo translations and rotations simultaneously. This allows for a more 

efficient parallel coding scheme with computational speeds increasing by an order of magnitude 

when compared to the efficiency of traditional MC moves in a system with multi-body interactions. 

Nonetheless, the computational demands are greatly increased compared to systems with pairwise-

additive forces and we remain limited in what we are able to study. Only neat water systems 

converge in practical simulation times in EEGCMC simulations when polarization is included. 

Alternatively, one can use molecular dynamics (MD) subject to the limitation to closed systems. 
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The polarizable model introduces additional energetic contributions, which must be treated 

correctly in the expanded ensemble. Conveniently, the scaling scheme introduced in our previous 

work11, 17 can be used without any changes. The original scheme scales a general interaction 

potential and can be found in section 1.1.4. We note that this scheme applies solely to the 

intermolecular interactions and has no impact on intramolecular contributions (e.g. the potential 

energy of Drude springs).5 We also note that long range electrostatics10, 101 is not affected by the 

second term in the argument of U in Equation (21), which means that long ranged Ewald 

summation contributions are only scaled by the product of pertinent 𝜆 values, equivalent to simply 

scaling magnitudes of the interacting charges.5 

Our computations are performed in confinement which maintains an equilibrium with an 

implicit bulk solution under conditions of T = 298 K and Pbulk = 1 bar. The input chemical potential, 

2H O = – 237.2 kJ mol-1, is obtained from previous work5 and includes the ideal gas contribution, 

2

o

H O  = –228.582 kJ mol-1, which is taken from the NIST-JANAF Thermochemical Tables.114   

3.2.3 Molecular Dynamics 

Molecular Dynamics (MD) simulations for electrolyte systems with polarizable force fields 

were performed, by me, to compare structural and thermodynamic effects between point-charge 

and polarizable systems. Point-charge, MD simulations were performed using GROMACS 2018.3 

and simulations including polarization were run using the MACSIMUS package written and 

maintained by Jiri Kolafa115. We chose to use MACSIMUS for our polarizable force field because 

there was a software incompatibility issue in GROMACS when the system was confined. 

 A set of simulation conditions consisting of compositions obtained from point-charge 

EEGCMC simulations, with bulk electrolyte composition of 2.0 mol kg-1, were selected to gain a 
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better understanding of structure in a nanopore over longer periods of time. All MD simulations 

were run under confinement using smooth walls, see section 2.2.2 for details, with 1.64 nm 

separation. Cutoff values, Rcut, were 0.98 nm and 1.00 nm for point-charge and polarizable 

forcefields, respectively. Long range electrostatic interactions were handled by classical Ewald 

summation for point-charge systems and fast smooth particle-mesh Ewald summation116 for 

polarizable systems. Both models employ the appropriate correction82 to account for the 2-D 

periodicity in the slab geometry. The timestep in the MD simulation was 2 fs. Nose-Hoover 

thermostat was used to keep the temperature at 298 K.  

3.3 Results and Discussion 

3.3.1 Thermodynamics 

Thermodynamic properties and water absorption presented as functions of the average 

electric field, E
f

, spanning the width of the water film df (the width of the region with nonzero 

average charge density from the H2O atoms), are shown in Figure 18. The  averaged electric fields 

E
f

 correspond to imposed electric displacement fields Dz listed along with the corresponding 

E
f

values in Table 3. Somewhat stronger E
f

 values are shown in the case of molecular walls 

where df includes a low-water-density region associated with slight penetration of water between 

the hydrophobic chains of the walls. In the SW system, the field dependence of water uptake inside 

the pores is weaker for BK3 than for SPC/E water but the total absorption is higher for BK3 water. 

When molecular walls are used, the dependence on the electric field appears to be similar for both 

water models; however, larger error bars associated with compute-intense BK3 runs prevent a 

definitive statement for this model. As shown in detail in forthcoming Figure 19-Figure 25, the 
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structure of confined water shows subtle differences between the two models with the polarizable 

model providing a more realistic picture in the presence or absence of an electric field.  

 

A larger pressure normal to the walls is observed for SPC/E water with a tendency to 

increase with increasing field strength for both models. The trend of increasing pressure, associated 

with increased uptake of water in the pore upon increasing field strength, holds true for both wall 

types. Significant difference between wetting free energies are present between the two wall types. 

In addition, SPC/E has a lower wetting free energy using molecular walls but smaller differences 

are present between the two water models for SW. Results for the polarizable model, however, are 

still consistent with the wetting behavior noted in our previous papers based on the nonpolarizable 

representation.4, 17, 64 

Figure 18. The dependence of the average numbers of water molecules (top), normal pressure 

(middle) and interfacial tension σ (bottom) on the strength of the average electric field across the 

aqueous slab in BK3 (black) or SPC/E (blue symbols) molecules between smooth (left) or butyl-

coated walls (right) in GCMC simulations maintaining equilibrium between the pore and a bulk 

reservoir of water at ambient conditions. 
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Table 3. EE-GCMC results for the actual voltage <U> across open pores of width dz (1.64 nm for 

smooth walls and 2.82 nm for alkyl-coated walls) equilibrated with a field-free bulk phase. The 

pores are spanned by electric displacements fields Dz, corresponding to the vacuum (unscreened) 

voltages Uo, and <U> is the actual voltage. <U> reflects the screening inside the film with nonzero 

charge density arising from partial charges on water molecules. The width of the film df is between 

1.45 and 1.66 Å. <Uf> is the potential difference across the film, <Ef> the mean electric field, and 

e f =  <
1

e^ (z)
>
d f

-1  the effective dielectric constant along the pore normal, averaged over the film 

width df. Black: smooth walls, blue: alkyl-coated walls, bold: polarizable (BK3) force field. 

 

System: 
m
bulk

mol kg-1
 -2Cm

zD
 

nm

zd
 

nm

fd
 

V

oU
 

V

U 
 

V

fU 
 

1V nm

fE
−

 
 f  

SPC/E - 0.00885 1.64 1.45 1.64 0.230 0.040 0.028 36 

SPC/E - 0.0177 1.64 1.45 3.28 0.473 0.093 0.064 31 

SPC/E - 0.0266 1.64 1.45 4.92 0.720 0.150 0.103 29 

SPC/E-

JC 

1.0 0.0177 1.64 1.45 3.28 0.464 0.084 0.058 35 

SPC/E-

JC 

2.0 0.0177 1.64 1.45 3.28 0.455 0.075 0.052 39 

BK3 - 0.00885 1.64 1.45 1.64 0.236 0.046 0.032 32 

BK3 - 0.0177 1.64 1.45 3.28 0.487 0.107 0.074 27 

BK3 - 0.0266 1.64 1.45 4.92 0.790 0.22 0.152 20 

SPC/E - 0.0177 2.82 1.65 5.64 2.45 0.117 0.071 28 

SPC/E-

JC 

1.0 0.0177 2.82 1.65 5.64 2.43 0.097 0.059 34 

SPC/E-

JC 

4.0 0.0177 2.82 1.65 5.64 2.44 0.110 0.076 31 

BK3 - 0.00885 2.82 1.57 2.82 1.30 0.054 0.034 29 

BK3 - 0.0177 2.82 1.59 5.64 2.58 0.128 0.081 25 

BK3 - 0.0266 2.82 1.66 8.45 3.68 0.211 0.127 24 

 

3.3.2 Structure 

 While the properties of unperturbed bulk water may be properly described regardless of 

whether the molecular polarization is taken into account, the effects of molecular polarizability on 
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structural properties become more important once water is placed in a confinement and especially 

when subjected to an external electric field. In the left column of Figure 18, we compare the 

difference in water uptake into a SW system with wall separation of 1.64 nm between SPC/E and 

BK3 water models. There is a noticeable increase in the number of water molecules absorbed into 

the pore when using the polarizable model, Figure 18, which in turn leads to a more pronounced 

structure at the interface, Figure 19. In both cases the ordering of water molecules persists 

throughout the pore as one would expect from previous works.4, 17, 64 The enhanced peaks near the 

interface for BK3 water are likely a crowding effect due to the increase in the overall density within 

the pore. In addition, there is a marked difference between the two models once an external field 

is applied. SPC/E water shows a much stronger polarity dependence on the field, which is 

evidenced by the strongly depleted peak near the right wall, where the field is pointing toward the 

wall. The presence of Gaussian charges on springs reduces the polarity dependence because the 

more flexible charge distribution is well suited to accommodate both the orientational water-wall 

preferences and the dipole alignment with the field. 

 The inherent weakness of fixed charge models is the reduced ability of their charge 

distribution to respond to physical changes in a system. Our results shown in Figure 20 reveal a 

notable difference in the average molecular dipole moments between the bulk phase water and 

water near the interface both with or without the presence of an electric field. While average dipole 

moments of both SPC/E, 2.35 D, and BK3, 2.64 D, water are lower than the experimental value, 

3.0 D, a reduction in the average dipole moment of over 10% near the interface is observed in the 

polarizable BK3 water, which is consistent with previous first principles studies.63, 99, 117-119 In the 

case of the molecular walls, water is able to somewhat penetrate into the gaps between butyl-chains 

overcoming the weak steric hindrance. This effect, illustrated in Figure 17, is enhanced in the 
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presence of an electric field and leads to somewhat different reductions of the dipole moment of 

BK3 molecules at the SW and MW interfaces.  

 

 

Figure 19. Density distributions of BK3 (black) or SPC/E (dashed blue) molecules across the 

nanopore between a pair of smooth walls at separation 1.64 nm in equilibrium with the bulk 

phase at ambient conditions in the absence (bottom), or presence of perpendicular fields 

(directed from the left to the right wall) of strengths (from bottom to top) =0.0, 0.00885, 

0.0177 and 0.0266 C m-2. Statistical uncertainties are of the order of 1%. 
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While water orientations are biased, as expected120, 121, next to confining walls, there is a 

significant difference in the extent of spontaneous orientation of interfacial molecules when using 

a nonpolarizable model and a polarizable model. In Figure 21 we display water’s orientation in 

terms of cosine of the angle formed between the dipole of water and the direction of the electric 

field, which is normal to the plates. In both cases water orients similarly in the intermediate region 

between the plates; however, the region of interest is near the interface. Under zero field it is 

evident that water orientation-bias near the interface is more dramatic for the fixed-charge model, 

than for the polarizable model. It is possible that for this reason water exhibits the behavior seen 

in Figure 19 which shows the tendency toward the right-hand-side (field pointing toward the wall) 

peak depletion is much more prominent in the fixed charge model. Lastly, the structure near the 

interface for the polarizable model persists at a slightly longer distance as evidenced by the slight 

shift in first and last peak locations and the requirement of a stronger field to elicit a similar 

response in dipole orientation to that of the SPC/E water. Additionally, even at higher field 

strengths the orientation between the two models differs. Notable charge oscillations as a result of 

the difference in the atom densities associated with the orientations of water molecules are present 

for both models studied, analogous with previous works.4, 17, 120 We use two distinct metrics of 

charge distribution in BK3 water: in one, we ascribe entire atomic charges to the charge site 

positions and in the other we explicitly account for the Gaussian distribution of the charges. When 

comparing the charge densities between the two models based on only point-charges in Figure 22, 

we can observe peaks near the walls to be similar in both height and location for no electric field. 

Peaks in the middle of the system are slightly shifted and with reduced peak amplitude for SPC/E 

water, which is a trend that persists when we apply an electric field. In addition, a greater difference 

between the peaks near the interfaces is observed, with increasing electric field strengths, for 
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SPC/E water than for BK3 water. This reduced effect on BK3 water is especially noticeable when 

we explicitly account for the Gaussian distributions. Large shifts in the peak locations and 

amplitudes occur once the Gaussian distributions are accounted for, which results in a slightly 

more smoothed out distribution with smaller oscillations. These peak shifts effectively switch the 

profiles when relating charge distributions for BK3 water and SPC/E water. The rightmost peaks 

are enhanced under an electric field for the point-charge calculations, while the Gaussian density 

distribution shows enhancement of the leftmost peak, which corresponds more directly to the 

changes in the density profile shown in Figure 19. Furthermore, positive values for the Gaussian 

distribution are in similar positions as oxygen in Figure 19, which is not the case for point-charge 

densities. 

 

Figure 20. The average magnitude of the molecular dipoles of BK3 (solid curves) 

molecules as functions of the position inside the pore in the absence (black) or presence 

of electric displacement field of strength 0.0266 C m-2 (grey) between smooth (bottom) or 

molecular (butyl-coated) walls (top) in GCMC simulations maintaining equilibrium 

between the pore and a bulk reservoir of water at ambient conditions. Horizontal lines 

correspond to bulk values of the dipoles of BK3 (black long dashed) and SPC/E (blue 

short-dashed) molecules. 
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Similar trends to the simulation using SW can be observed when utilizing molecular walls 

at separation of 2.81 nm, which results in a pore size of approximately 1.64 nm (Figure 23). 

However, water molecules can somewhat penetrate and reside between the butyl groups that coat 

the graphane surface. The residence time the molecules remain trapped inside the brush increases 

upon applying an electric field. For molecular walls, there is more room for water to orient near 

the butyl groups which results in a much smoother drop in the density profile. In addition, the 

enhancement of the left-most peak and subsequent depletion of the right-most peak corresponding 

to water near the left wall and right wall, respectively, more closely resembles the density profile 

of BK3 water on SW. That is, the depletion of the right peak is not as profound as observed with 

the SPC/E model. This is due to the maximal orientation bias when the wall is smooth and the 

molecules feature a rigid distribution of atom charges. A rough wall renders many orientations 

acceptable at parts of the surface. The overall results for molecular walls are consistent with our 

previous work.4, 17 
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We now turn to the comparison between molecular orientations at the two wall types (SW 

and MW). The differences in average molecular orientations, both with and without electric field, 

observed near the interface may derive from the softer interaction with the butyl groups.  However, 

the differences in average orientation with respect to the electric field are not as profound as those 

Figure 21. The average orientation of molecular dipoles of BK3 (black curves) or SPC/E 

molecules (dashed blue) measured in terms of the angle θ between the dipole and the direction of 

the field (normal to the walls) as functions of the position inside the pore at electric displacement 

fields =0.0, 0.00885, 0.0177 and 0.0266 C m-2 (from bottom to top) between smooth walls in 

GCMC simulations maintaining equilibrium between the pore and a bulk reservoir of water at 

ambient conditions. 
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found in the density profiles of Figure 19. This in combination with the overall difference in dipole 

orientations near the interface confirm that the ability to polarize in response to a field is crucial to 

get a sense of both dynamic and structural properties in confined water. Penetration into the alkyl 

brush can also be observed when looking at the average charge density profiles in Figure 25 as 

observed elsewhere.4 In both SPC/E and BK3 models this penetration is present; however, a more 

ordered structure becomes evident for BK3 water when an electric field is applied. This order 

extends even into the butyl groups and is present when Gaussian charges are explicitly considered. 

In this case, the asymmetry of the charge density distribution seems to be greater for the SPC/E 

model with an extra peak present near the right wall which is smoothed over for the Gaussian 

charge calculation. Shifts in peak positions and amplitudes persist as was the case in the SW 

implementation; however, the profiles are not swapped. Meaning, the enhanced peaks remain near 

the same wall for both charge density calculation methods. Because of more effective balancing 

of positive and negative contributions from smeared gaussian charges, the nonzero charge density 

between the butylated walls spans a wider region with the SPC/E model notwithstanding similar 

oxygen atom distributions.  
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Charge density contributions for H and O atoms have been individually calculated in Figure 

26 for comparison to the average local charge densities. For BK3 water, calculations were 

performed both by placing point-charges on molecular sites and by explicitly accounting for 

Figure 22. The average charge density profiles of BK3 (black curves) or SPC/E (dashed blue) 

molecules (dashed blue curves) as functions of the position inside the pore at fields =0.0, 

0.00885, 0.0177 and 0.0266 C m-2 (from bottom to top) between smooth walls in GCMC 

simulations maintaining equilibrium between the pore and a bulk reservoir of water at ambient 

conditions. Charge densities are calculated by placing entire charges at charge site centers (left) or 

by explicitly accounting for the Gaussian charge distributions in the BK3 model (right). 
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Gaussian distributions of charge. Only point-charge calculations can be performed for SPC/E 

water. Comparison between point-charge calculation yield little difference between the models, 

with only slightly sharper peaks for BK3 water. This peak pronunciation is greatly lessened, 

however, when observing the slit charge density profiles due to the Gaussian charges, which results 

in overall smaller density amplitudes and peak shifts compared to SPC/E water. The origin of the 

essentially flipped charge density profile, discussed in Figure 22, for Gaussian charges becomes a 

bit clearer with the smoothing of the larger negative charge build up for the point-charge model 

near the wall. 

 

Figure 23. Density distributions of BK3 (black) or SPC/E (dashed blue) molecules across 

the nanopore between a pair of butyl-coated graphane walls at separation 2.81 nm in 

equilibrium with the bulk phase at ambient conditions in the absence (bottom), or presence 

of perpendicular field (directed from the left to the right wall) of strength Dz=0 (bottom) 

or 0.0266 C m-2 (top). Statistical uncertainties are of   the order of 1%. 
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It is of interest to note the polarizability-induced changes in atom density profiles (Figure 

19 and Figure 23) are much milder than the changes in the corresponding charge-density 

distributions. The main reason for the relative insensitivity of the actual liquid structure is the fact 

that steric forces keep charged atoms at separations well above the width of the Gaussian charges, 

thus the difference between the interactions among point charges and those of the Gaussian form 

is much smaller than could be inferred from the charge-density profiles along a single coordinate 

while averaged over the remaining (lateral) directions. 

 

Figure 24. The average orientation of molecular dipoles of BK3 (black curves) or SPC/E 

molecules (dashed blue) measured in terms of the angle θ between the dipole and the 

direction of the field (normal to the walls) as functions of the position inside the pore at 

fields = 0.0 C m-2 (bottom) and = 0.0266 C m-2 (top) between butyl-coated walls in 

GCMC simulations maintaining equilibrium between the pore and a bulk reservoir of water 

at ambient conditions. 
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The knowledge about the charge density profiles such as those illustrated in Figure 25 can 

be used in the characterization of the dielectric response of the confined polar liquid. For this 

purpose, we monitor the effective width of the water slab between the walls, df, defined as the 

width with nonvanishing density of charges from hydrogen and oxygen atoms. The values of df 

observed in our simulated systems are collected in Table 3. Using the test-charge method, <ref. 4>, 

we also sampled the average voltage drop <U> between the opposite wall positions separated by 

the distance dz. In our model system, any dielectric screening occurs within the slab layer of width 

df.  The difference between the actual voltage <U> and the expected voltage in vacuum, 

 

 

Figure 25. The average charge density profiles of BK3 (black curves) or SPC/E (dashed blue) 

molecules (dashed blue curves) as functions of the position inside the pore at fields Dz=0 

(bottom) or 0.0266 C m-2 (top) between butyl-coated walls in GCMC simulations maintaining 

equilibrium between the pore and a bulk reservoir of water at ambient conditions. Charge 

densities are calculated by placing entire charges at charge site positions (left) or by explicitly 

accounting for the Gaussian charge distributions in the BK3 model (right). 
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 Uo=Dzdz/𝜀o alows us to estimate the effective dielectric constant along the direction normal to the 
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both averaged over the thickness of the aqueous slab df. Table 3 collects the simulated voltages, 

effective dielectric constants, and average electric fields Ef exerted on water molecules in the 

confinement. Despite statistical uncertainties of the above estimates, our data consistently show a 

reduction in the permittivity of confined polarizable water below that of the nonpolarizable model. 

The opposite holds true for dielectric constants of the two models in the bulk phase, where 𝜀BK3 

> 𝜀SPC/E. The reversal is explained by two effects: a) the  reduction of the dipole moment of 

interfacial BK3 molecules relative to the bulk value (See Figure 20), causing a decrease of  𝜀f  in 

narrow confinements where a significant fraction of the molecules is affected, and b) the blurred 

amplitudes of the BK3 charge density profiles (Figure 25 and Figure 28) along the wall normal z, 

q(z), due to the considerable overlapping of gaussian charges projected on z axis. The true (3-D) 

overlap between these charges is, of course, minimal due to steric exclusion, as charges with 

centers at similar positions z remain well separated in the lateral (x, y) directions.  

 Comparisons between the results for 𝜀f between smooth and molecular walls also 

indicate an additional reduction of the dielectric constant when water is confined between 

molecular (alkyl-coated) walls (MW). This reduction, consistently observed with both polarizable 

and nonpolarizable models of water, reflects the ability of water molecules to sporadically 

penetrate between the molecular chains on the walls. Rare penetration events increase the apparent 

film thickness df resulting in lower average 𝜀f while the dielectric properties inside the rest of the 

film remain unaffected. 
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The Expanded Ensemble Grand Canonical Monte Carlo (EEGCMC) simulations of 

electrolyte solutions have proven too costly for systematic studies of bulk-confinement equilibria 

of salt solutions using the polarizable force field. To assess the importance of molecular 

polarizabilities on the structure of confined electrolytes, we performed Molecular dynamics 

simulations in closed (NVT) systems with selected compositions suggested from previous 

EEGCMC simulations. In BK3-AH simulations described in Figure 27, we use initial 

Figure 26. The H (long-dashed) and O (dotted) contributions to local charge density q(z) for 

BK3 (black) and SPC/E (blue) water models, and total charge-density profiles of BK3 (solid 

black curves) or SPC/E molecules (short dashed blue curves) as functions of the position 

inside the pore between smooth walls in GCMC simulations maintaining equilibrium between 

the pore and a bulk reservoir of water at ambient conditions. The left graphs are obtained in 

the absence and the right ones in the presence of electric field of strength Dz=0.0266 C m-2. 

Individual contributions from oxygen and hydrogen atoms greatly exceed the total densities. 

Charge densities are calculated by placing entire charges at charge site positions (bottom) or 

by explicitly accounting for the correct Gaussian charge distributions in the BK3 model (top). 

The former method shows small differences between the two models, whereas the actual 

densities due to the Gaussian charges in the BK3 model feature smoother profiles with 

reduced amplitudes and a considerable shift of the extrema relative to the distributions of 

point-charges. 
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configurations obtained from MD runs employing the SPC/E-JC model with a bulk equilibrium 

reservoir concentration of ~2 mol kg-1 and a pore with smooth walls under no electric field. Charge 

density distributions are calculated using both the point-charges and using explicitly calculated 

Gaussian distributions. Ions tend to reside in the center of the pore as was found in previous 

works.4, 122 Ions are slightly more structured for the BK3-AH model with little change in charge 

distribution when Gaussian charges are taken into account. Charge distribution for water remains 

virtually the same for both models near the surface, but the same small shift, as in Figure 22, in 

density can be observed for the inner peaks. A reduction of density amplitudes and shifts, similar 

to those noted with Figure 25 and Figure 28, can be observed when accounting for the Gaussian 

distributions of atom charges. 

 

 

Figure 27. Left: The average charge density profiles due to BK3 (black lines) or SPC/E (blue 

lines) water molecules and polarizable NaCl ions in BK3 water (black circles) or JC ions in 

SPC/E (blue circles) solvent in a field-free nanopore with smooth walls and equilibrium 

reservoir concentration of ~2 mol kg-1. Right: comparison between the profiles for BK3-AH 

solutions from the top graph (black lines and symbols) and the results obtained in the same 

system when explicitly accounting for the Gaussian charge distributions of the BK3-AH 

system. Overlapping Gaussian distributions reduce the density amplitudes of water and visibly 

shift the extrema of water contribution. A slight smoothing of the salt charge distribution is 

present. 
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The system described in Figure 28 was subjected to a field, Dz, of 0.0177 C m-2. The 

asymmetric response to the electric field is analogous to that in pure water4. Despite a noticeable 

redistribution of the ions, their tendency to reside in the center of the pore is unchanged. Notably, 

the ion response to the field is more pronounced in the polarizable model, suggesting this 

representation can be superior in studies of electric double layer, especially at the quantitative 

level. Overall, the structured AH ion profile is similar as in the absence of the field, but the 

smoothing of the charge distribution resulting from explicitly calculating Gaussian charge 

densities is more evident. Water peak enhancement due to the field follows a similar trend as in 

Figure 25 and Figure 28, showing flipped enhancements between the charge density profiles 

resulting from the point-charge model and the Gaussian charge model, with the latter being 

relevant for the overall dielectric response in confined polarizable liquid. 

 

Figure 28. Top: The average charge density profiles due to BK3 (black lines) or SPC/E (blue 

lines) water molecules and polarizable NaCl ions in BK3 water (black circles) or JC ions in 

SPC/E (blue circles) solvent nanopore with smooth walls under electric displacement field, Dz 

=0.0177 C m-2, corresponding to a field-free reservoir with NaCl concentration of ~2 mol kg-1. 

Bottom: comparison between the profiles for BK3-AH solutions from the top graph (black lines 

and symbols) and the results obtained in the BK3-AH system (blue) when explicitly accounting 

for the Gaussian charge distributions of mobile charges (blue). 
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3.4 Conclusions 

Neglect of molecular polarizability can be a serious simplification in modeling aqueous 

interfaces under the influence of electric fields from ions or an external source. To assess the 

importance of the effect, we performed molecular simulations of a nanoporous model system 

permeated by water or salt solution modeled by two distinct force fields. We used the 

nonpolarizable extended simple point charge model (SPC/E) along with Joung-Cheatham model 

for ions, and the polarizable BK3-AH model, which treats partial charges as Gaussian charge 

clouds attached to atoms by harmonic springs. Our model liquid was placed between a pair of 

hydrocarbon-like plates with weak wetting propensity to monitor the field-induced changes of 

water uptake from the bulk environment. We also monitored the variation of confinement pressure 

and interfacial tension, as well as atom and charge density distributions in the pores.  

            Regardless of the external field, we find the mean dipoles of interfacial water molecules 

are about 10% lower than in the bulk phase when using the polarizable model. The observed 

reduction is in good agreement with the prediction from the first principles calculations for 

water/vapor interfaces. The smeared atomic charges of the polarizable model, intended to mimic 

the electronic distribution in real molecules, result in shifted extrema and lowered amplitudes of 

charge density profiles across the nanopores, weakening the liquid dielectric response. In pure 

water, the above confinement effects result in reduction of the permittivity of polarizable-model 

water relative to the nonpolarizable one. Although the permittivity of the polarizable BK3 model 

in the bulk phase is over 10% higher than that of the nonpolarizable (SPC/E) one, the order is 

reversed in the confinement where the average permittivity of the polarizable water falls around 
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20% below the value for the nonpolarizable model. Conversely, in the presence of dissolved salt, 

molecular and ion polarizabilities enhance the electric double layer response to the field.      

The pronounced changes in the charge density distributions, averraged over the cross-

section of the pores, are not accompanied by comparable changes in the intermolecular potentials 

since interatomic steric exclusion  prevents any significant overlap between the gaussian charges 

on adjacent atoms. As a result, we observe only moderate changes of selected thermodynamic 

properties and the liquid density profiles across the pore. Open ensemble simulations of the pore-

bulk phase equilibrium reveal a stronger pore absorption of polarizable water in the absence of the 

applied electric field, whereas the field-induced enhancement of water uptake is bigger in the 

nonpolarizable model. The strong effects of field direction, previously revealed in a nonpolarizable 

system, are weaker with the polarizable model, which is better suited to reconcile the competing 

trends of spontaneous and field-induced orientations in interfacial water. The above differences 

warrant the consideration of polarizable force fields for studies of confined water and solutions. 

Methodological improvements will be required to extend the present open ensemble (Expanded 

Ensemble Grand Canonical) simulations of pore-environment equilibria in neat water to 

systematically study open electrolyte systems in polarizable representation.  

 Summary and Outlook 

Electrolyte nanoconfinements underlie many applications in the fields of filtration, energy 

storage, and ionic channels to name a few. Our specific aim was to study the mechanism of solution 

exchange between the confinement and bulk environment and to characterize structural and 

thermodynamic properties controlling the process. This was achieved by both developing our own 

in-house code and through outside collaboration. Electrolyte Solutions open to exchange of 
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molecules have historically posed computational challenges because of extremely low insertion 

and deletion acceptances of ions in the condensed phase. For this reason, we use EEGCMC 

simulations to study the properties of confined electrolytes when 1) a high pressure is applied to 

the bulk phase and 2) when polarization of molecules is explicitly accounted for. 

Because of high energy storage capabilities exhibited by the forcible filling of extremely 

small nanopores, in my first project we discuss the intrusion/extrusion of NaCl electrolyte 

solutions of varying concentrations into a nanopore open to exchange with pressurized, implicit 

bulk solution.  This was done by modifying the chemical potential, which drives mixing, by using 

experimental information about molar volumes throughout a large pressure range. Wall 

separations considered in this study include 1.0 nm pore, where a shock-absorber behavior is 

observed, and a 1.64 nm pore which exhibits bumper behavior. This is confirmed by the presence 

of a strong hysteresis in the permeated volume with for both wall sizes where depletion of fully 

filled pores only occurs in the narrow pore. We discover that the 1.0 nm pore strongly desalinates 

electrolyte solutions, with the relative depletion being stronger at lower bulk ionic concentration. 

This is consistent with our observation of concentration dependent increases of solid/liquid 

interfacial tension with increasing bulk concentration. 

Spatial anisotropies such as those found in confinement or in systems subjected to electric 

fields often require the explicit calculation of molecular polarizabilities. In conventional point-

charge, atomistic models for liquid water polarization is often averaged out which provide good 

results for unperturbed bulk solutions but are less accurate in more complicated systems. For this 

reason, we compare a newly implemented polarizable BK3 water to the point-charge SPC/E water 

using EEGCMC simulations. Because of long computational times, comparisons between 

polarizable BK3-AH and point-charge SPC/E-JC ion solutions are studied using molecular 
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dynamics. Confinements considered in this study are molecular walls of butylated graphane and 

perfectly smooth walls, where the solution accessible pore width is about 1.64 nm in both cases. 

We observed a 10% reduction of the dipole moment near the interface which is consistent with 

quantum mechanical studies. Further, the polarizable model shows a stronger absorption of water 

into the nanopore with a smaller dependence on electric field strength than the point-charge model 

and moderate overall thermodynamic and structural changes. 

Furthering this work in future studies presents many opportunities which are all dependent 

on code optimization. A single EEGCMC simulation of confined electrolyte solutions takes 3 cpu 

months at minimum for systems of only a couple hundred molecules. Faster simulations combined 

with code expansion in terms of types of walls and types molecules, including polymers, opens 

the floor to other interesting energy storage devices, e.g. MOFs. We strive to develop more 

efficient simulations techniques and codes including considering the promising field of machine 

learning to study aqueous solutions in confinement under various external stimuli.   

 

 

Appendices  

Appendix 1. 

Data sharing is done in large part through the lab GITHUB website. The site contains full 

downloadable code including all header files. Instructions for how to compile is also included 

along with an executable script that will need to be modified on a per-person basis. One can go 

beyond the sample to create a general makefile, but this is not required. Additional information 

provided includes a user input file, init.txt, which is where all user specifications for the system go 
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before a simulation is begun. A sample of the init.txt file used to run a confinement simulation is 

given: 

Ran_seed 

134518 

 

MC_type 

1 

 

Ions 

1 

 

Restart 

0 

 

Read_Positions_box1 

generate 

 

 

Wall 

1 

 

Box_nums 

1 

 

Pressure_type 

high 

 

Pressure 

1500 

 

X_Size_box1 

25.0 

 

Y_Size_box1 

25.0 

 

Z_Size_box1 

16.4 

 

Cutoff 

9.8 

 

Waters_box1 
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221 

 

Cations_box1 

20 

 

Anions_box1 

20 

 

Exchange_molality 

5.70356 

 

Equil_passes 

10000000 

 

Production_passes 

10000000000 

 

Print_freq 

100000 

 

This is not a comprehensive list of possible inputs, but rather an example input used to run a single 

confinement simulation with a bulk concentration of electrolytes of 5.70356 mol kg-1 with a bulk 

pressure of 1500 bar. The text in the file must be written as presented followed by the user 

specifications. There are currently no commands that can be input once the simulation has been 

started except for the terminal kill commands, i.e. ctrl-C. Generally, the init.txt file is the only file 

required and it can be empty because the code has default values but should be changed for specific 

simulations. Since the parallel implementation of this code was written using openMP libraries a 

shared memory system is required (i.e. you cannot the run same simulation on multiple nodes). 

Command lines arguments work to run this code in parallel, but I recommend the use of a script 

as follows (angle brackets indicate the user should change the name accordingly): 

export OMP_DISPLAY_ENV=true 

export OMP_SCHEDULE=static 

export OMP_NESTED=true** 

export OMP_THREAD_LIMIT=3** 

export OMP_WAIT_POLICY=active 
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export OMP_NUM_THREADS=3** 

./<Monte_Carlo_executable_parallel>** 

 

 

The only lines that are required in this script for the simulation to run as intended are denoted by 

** and the rest either provide useful information or are beneficial. Nested parallel loops are written 

into the code, but at the moment they do not help simulation efficiency which is likely because the 

overhead created upon spawning threads is comparable to duration of the computation.  Additional 

input files, whose names can be chosen by the user after the program has finished running, can be 

used to restart simulations. Simulation choices are not saved between simulations, so it is up to the 

user to keep the files straight. This is so one can seamlessly go between different simulation 

ensembles, temperatures, and other values. The sample init.txt includes all user options.  

Appendix 2. 

 

Figure A1. Additional number density profiles of water, top, and NaCl ions, bottom, in 

confinement between a 1.0 nm pore, left, and a 1.64 nm pore, right. The location on the x-axis of 

one wall is always placed on 0. Of ions, Na+ is shown by solid lines and Cl- has dotted lines, while 

the color coding matches for pressure inputs matches that for waters. These figures were created 

from extrusion simulations with bulk ion concentrations of 5.70 mol kg-1 and contain all a more 

comprehensive list of pressures used in the simulations.  
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Figure A2. Additional number density profiles of water, top, and NaCl ions, bottom, in 

confinement between a 1.0 nm pore, left, and a 1.64 nm pore, right. The location on the x-axis of 

one wall is always placed on 0. Of ions, Na+ is shown by solid lines and Cl- has dotted lines, while 

the color coding matches for pressure inputs matches that for waters. These figures were created 

from extrusion simulations with bulk ion concentrations of 4.28 mol kg-1 and contain all a more 

comprehensive list of pressures used in the simulations.  

 

Figure A3. Additional number density profiles of water, top, and NaCl ions, bottom, in 

confinement between a 1.0 nm pore, left, and a 1.64 nm pore, right. The location on the x-axis of 

one wall is always placed on 0. Of ions, Na+ is shown by solid lines and Cl- has dotted lines, while 

the color coding matches for pressure inputs matches that for waters. These figures were created 

from extrusion simulations with bulk ion concentrations of 3.02 mol kg-1 and contain all a more 

comprehensive list of pressures used in the simulations.  
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Figure A4. Additional charge density of molecules in confinement between a 1.0 nm pore, left, 

and a 1.64 nm pore, right. The location on the x-axis of one wall is always placed on 0. These 

figures were created from extrusion simulations with bulk ion concentrations of 4.28 mol kg-1, top, 

and 3.02 mol kg-1, bottom. A clear distinction in the packing of water molecules is observed for 

higher pressures. This increase in structure implies a requirement for water to reorient in order to 

compensate for the increased number density. A lower minimum pressure is chosen for the wider 

pore to show give an idea of structure at atmospheric pressure. 
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