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Abstract 

Polymer nanoreactors incorporating gold nanoparticle catalysts were self-assembled via Flash 

Nanoprecipitation.  The incorporated gold nanoparticles maintained catalytic activity, which was 

evaluated using reduction of 4-nitrophenol with sodium borohydride as a model reaction.  The diffusion 

coefficient for 4-nitrophenol was determined by NMR and used to calculate the second Damköhler number, 

which indicated that the systems were not diffusion limited.  Despite similar diffusion coefficients, catalytic 

performance was strongly affected by the co-precipitant.  For example, the apparent reaction rate per 

surface area using castor oil was over 8-fold greater than polystyrene.  Thus, we measured the partition 

coefficient of 4-nitrophenol between water and castor oil or toluene (to mimic polystyrene).  The core 

material:water partition coefficient for castor oil was 7.81 ± 0.16 compared to 0.09 ± 0.01 for toluene. 

Including the partition coefficient in the Langmuir-Hinshelwood model, the intrinsic rate constants were 

comparable.  Overall, the increase in apparent catalytic performance could be attributed to differences in 

reactant solubility rather than differences in mass transfer or intrinsic kinetics.  Finally, the polymer 

nanoreactor were applied to the one-pot condensation of benzaldehyde with 4-nitrophenol performed in 

water at ambient conditions.  The product spontaneous precipitated from the reaction mixture; the 

nanoreactors were stable in dispersion whereas citrate-stabilized gold and PEG-coated gold precipitated 

with the product.  The product (analytically pure by NMR) was extracted from the precipitate with acetone 

resulting in a yield of 66%.      Overall, these results demonstrate proof-of-principle that multiple reactions 

can be performed in one-pot and the product can spontaneously phase separate from the nanoreactor 

dispersion. 
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Chapter 1 : Review of Micellar Nanoreactors for Aqueous Catalysis with Metal Nanoparticles 

1.1. Significance 

 The amount of waste and relative cost for the production of fine chemicals and pharmaceuticals 

ranks among the highest within chemical processing industries.  This relative waste can be quantified by 

considering the E-factor, which is the mass of waste generated per the mass of product.  Ideally, the E-

factor would be zero (zero waste).  The E-factor for the production of fine chemicals and pharmaceuticals 

compared to other industries is provided in Table 1.1.  Much of this is due to the processing that takes place 

to produce and isolate the compounds of interest [1].  Organic solvents generally make up the majority of 

this waste, with first generation production of the common pharmaceutical sildenafil reportedly generating 

organic solvent waste around 1700 L kg-1 of product over a nine-step synthesis [1].  Assuming an organic 

solvent density around 1 g/mL that results in an E-factor of 1700.  New technology is needed to shift the 

field away from organic solvents, including their use for reaction solutions and extraction techniques [2].  

Drastic improvement in waste generation is possible, as evidenced by second generation synthetic 

processes for sildenafil production reducing waste to just 7 L kg-1 of product [1].  

Table 1.1:  E-Factors for various chemical industries 

Industry 
Product 

(tons) 

E-factor 

(kg waste/kg product) 

Oil 106 - 108 < 0.1 

Bulk Chemicals 104 - 106 1 - 5 

Fine Chemicals 102 - 104 5 - 50 

Pharmaceutical 10 - 103 25 - 100 
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The use of aqueous reaction mixtures is highly desirable to reduce the harmful waste associated with 

organic solvents.  Micellar structures are known to facilitate traditionally organic phase reactions in a bulk 

aqueous environment due to the stabilization of confined hydrophobic regions which promote the reaction  

[3–8].  This effectively reduces the amount of organic “solvent” necessary to perform a reaction from a 

milliliter or liter scale down to attoliter volumes.  While this quality of micelles is highly beneficial for 

reducing organic solvent dependency, the ability to tailor the nanoreactor reaction environment is a 

significant challenge.   

Further reduction of organic solvent use could be achieved by performing multiple reactions in a “one 

pot” reaction which would eliminate the need to perform extractions to isolate compounds of interest at 

intermediate steps  [9–11].  Given the nature of chemical syntheses, multiple reactions are often required to 

produce the desired compound, with product isolation between each step.  Performing multiple reactions 

within a single reaction solution reduces the need for wasteful organic solvent extractions.  However, this 

often requires the use of multiple catalysts in order to perform each reaction independently [8,12].  Core-

shell polymer nanoparticles and micelles have demonstrated the ability to perform such cascade and 

domino reactions in aqueous solutions, often reducing organic solvent waste by orders of magnitude [13–

15]. 

1.2. Micellar Nanoreactors 

Small molecule amphiphiles have been used to facilitate a wide range of reactions.  For example, 

Lipshutz and co-workers have developed a series of “designer surfactants” for aqueous micellar catalysis.  

Using several generations of PEG based amphiphilic surfactants they have demonstrated nanoreactor 

applicability to a wide range of organic reactions such as cross-couplings [16–18], oxidations [19], 

reductions [20], and peptide synthesis [21] all in bulk aqueous solutions with high yield.   

For aqueous Suzuki-Miyaura cross couplings, Lipshutz employed Pd homogenous catalysts and 

micellar nanoreactors formed using either polyoxyethanyl α-tocopheryl sebacate (PTS) [16], α-tocopheryl  
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poly(ethylene glycol) succinate (TPGS) or  Triton-100 [17], among others [18] in 2% wt/wt aqueous 

solutions.  TPGS and Triton-100 formed roughly 15 nm micelles in solution while PTS formed slightly larger 

25 nm micelles.  PTS micelles showed the most favorable reaction yields for iodoanisole couplings, nearly 

quantitative, and even allowed the coupling of 4-chlorobenzonitrile with 2,4-difluorophenylboronic acid 

in 96% yield [17].  The improvement in yield seen using PTS instead of the similar TPGS was attributed to 

the difference in the length of the lipophilic tails of the amphiphiles, with PTS supporting a larger 

hydrophobic micellar volume providing a hydrophilic lipophilic balance [16].  Drastic improvements in 

Heck couplings were noted with the addition of salt, also resulting in a 4-fold diameter increase for PTS 

micelles [18].  Recycling of the PTS micelles was carried out by extracting the aqueous reaction solution 

with ethyl acetate to remove the reagents/products.  The aqueous reaction solution could then be reused 

with addition of more reagents and catalyst, for up to 10 times without noticeable loss of reagent 

conversion.   

Benzylic alcohol oxidation to the corresponding aldehyde was also accomplished using micellar 

nanoreactors [19].  TPGS-750-M micelles were engineered to form larger micelles than previous studies 

[16–18], around 50 nm in diameter in order to take advantage of previously demonstrated benefits of larger 

micelles for reactions and the reported greater solubility of oxygen in organic solvents than aqueous 

environments [19].  Oxidation of 3-nitrobenzyl alcohol was carried out in a 2 wt% TPGS-750-M solution 

with catalytic amounts of CuBr (5 mol%), TEMPO (5 mol%), 2, 2-bipyridine (5 mol%), and N-

methylimidazole (10 mol%) at room temperature in water.  Complete conversion was achieved after 24 

hours.  Generally, greater than 80% isolated yields were achieved for primary alcohols, while secondary 

alcohols required heating to around 45℃ to achieve similar yields.  Benzylic alcohols were found to 

preferentially oxidize over aliphatic alcohols at room temperature.  Recycling of the micelles was achieved 

with selective product extraction and reuse of the aqueous phase.  Greater than 85% yield was achieved 
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after 5 recycles with a reported E-factor of 2.2.  However, the calculation did not consider excess reagents 

or loss of catalyst.  

Likewise, reductions were also studied using the TPGS-750-M micellar system using Fe/ppm Pd 

nanoparticle catalysts [20].  A variety of nitroarenes were reduced including those with halogen, cyano, 

ester, methylmercapto, hydroxyl, or carboxylic acid substituent groups.  Generally, greater than 85% 

isolated yield was witnessed using sodium borohydride as the reducing agent in aqueous media at room 

temperature.  One-pot tandem reactions were considered with reduction of the nitro- group and Boc 

protection of the resulting amine, resulting in yields greater than 90%.  Another tandem reaction involving 

post-reduction oxidative cyclization was carried at 80℃ using O2 as the oxidant, resulting in the 

benzimidazole product with 94% yield.  Recycling was possible with extraction of the product using ethyl 

acetate, neutralization of the aqueous media with HCl, and addition of sodium borohydride to activate the 

catalyst.  Finally, sequential one-pot reactions were carried out involving reduction of a nitroarene followed 

by amidation with a carboxylic acid.  E-factors were reported around 5-6 when considering only the use of 

the organic solvent.   

Gold catalysts have also been employed in micellar reaction systems [22].  Cyclizations of allenes and 

allenols were catalyzed with gold bromide in either PTS or TPGS-750-M micellar solutions at room 

temperature.  Again, TPGS-750-M solutions are shown to produce greater yields than comparable reactions 

utilizing PTS micelles and this is attributed to the increased size of TPGS-750-M micelles.  Recycling was 

carried out on PTS solutions without loss of yield (~85%) for up to 4 runs, though some decreased activity 

is noted resulting in a longer reaction time.  Catalyst leaching was observed, resulting in loss of 0.29% 

catalyst mass over 4 runs.    
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Figure 1.1: Generations of designer-surfactants for micellar catalysis in water [23]. 

Size and hydrophobicity are central elements when designing surfactants for micellar nanoreactors.  

By designing a surfactant molecule (shown in Figure 1.1) with a longer PEG portion and a shorter carbon 

linker between vitamin E and PEG, the generated micelles were larger and faster reactions were observed 

[23] in various transition metal-catalyzed reactions (e.g. Suzuki-Miyaura, cross metathesis, amination, C-H 

activation, borylation, silylation, etc.).  Theoretically, the larger micelles have more volume to house 

chemical reagents, thereby improving reaction rates [23].   

Changing the hydrophobic portion of the PTS surfactant from vitamin E to β-sitosterol decreased the  

conversion of cross metathesis reactions using Grubbs’ catalyst [23,24].  Compared to TPGS 1000 (another 

Vitamin E based surfactant), the improved reaction conversions were attributed to more lipophilic 

tendencies based on the hydrophobic-lipophilic balance profile.  However, both the β-sitosterol containing 

PSS and TPGS-1000 micelles are notably smaller than the PTS micelles, with diameters of 10-15 nm and 23 

nm, respectively [25].   β-sitosterol based surfactants were found to be superior in transition-metal catalyzed 
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couplings compared to vitamin E based surfactant micelles, even with similar diameters of roughly 45 nm 

[25].   

Surfactants with polar sulfone components within the nonpolar, hydrophobic cores used to facilitate 

peptide synthesis have recently been reported [21].  It is important to note that the design of these systems 

has generally involved syntheses of libraries of new amphiphilic molecules and screening their reactivity 

[21,25].    

Macromolecular amphiphilic nanoreactor systems have also been considered, with improved stability 

compared to self-assembled small molecule amphiphilic systems [26,27].  For example, O’Reilly and co-

workers incorporated 4-(N,N-dimethylamino)pyridine, a nucleophilic catalyst for a number of reactions 

including esterifications, into the hydrophobic block of an amphiphilic block copolymer using reversible-

addition fragmentation chain (RAFT) polymerization which self-assembled into kinetically frozen micelles.   

Kinetically frozen micelles differ from traditional micelles in that the surfactants do not freely 

exchange with surrounding system in a dynamic equilibrium.  This difference is largely due to the 

increased molecular weight of the hydrophobic portion of the amphiphile which presents a significantly 

greater entropy barrier to solubilize in the aqueous solution [8,28,29].  This results in the need for reagents 

to partition into the micelles instead of a guided transport via surfactant exchange and generally prevents 

the exchange of molecules between kinetically trapped micelles (Figure 1.2). 

 

Figure 1.2:  Representative illustration of A) dynamic micelle and B) kinetically-trapped micelle.  Dynamic 

micelles show dynamic exchange of the amphiphile which can guide and transport small molecules while 
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the kinetically-trapped micelle micelle does not undergo dynamic exchange of the amphiphile requiring 

partitioning of small molecules [30]. 

The stable, kinetically-trapped, micellar nanoreactors catalyzed the competitive esterification between 

multiple anhydrides.  More hydrophobic substrates resulted in higher conversions.  Further, the 

hydrophobicity of the substrate could also be used to modify selectivity [26,27].  In other work, L-proline, 

a chiral organocatalyst for the aldol reaction, was incorporated into the hydrophobic block of an 

amphiphilic block copolymer via reversible-addition fragmentation chain (RAFT) polymerization [31].  

Upon self-assembly in water, core-shell micellar nanoreactors with catalytic hydrophobic cores were 

achieved that were significantly more efficient than the unsupported catalyst [31] which was attributed to 

the hydrophobic microenvironment of the micelle core [32].  The catalyst loading and core hydrophobicity 

affected the turnover number but the effects could not be decoupled from micelle swelling.  

1.3. Aqueous Gold Nanoparticle Catalysis 

 A key component of many of the polymer nanoreactors that have been discussed is the use of a 

catalyst to facilitate the desired reaction.  Aqueous catalysis is an important class of reaction for ongoing 

development in green chemistry [1,2].  Many studies have turned towards gold nanoparticles as an 

inexpensive and efficient catalyst for a  wide variety of reactions [33–36].   The reduction of 4-nitrophenol 

has become the standard model reaction for analyzing the performance of new gold nanoparticle catalysts 

in water (Table 1.2) [36]. 
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Table 1.2:  TOF’s of Gold Nanoparticle Systems for Aqueous Reduction of 4-Nitrophenol. 

Entry System 

AuNP 

diameter (nm) 

NaBH4 

(mM) 

4NP 

(mM) 

kapp 

(s-1) 

TOF 

(h-1) 

Reference 

1 NaBH4 3.2 ± 0.8 50 0.5 9.0x10-3 9000 [37] 

2 Citrate 5.6 ± 1.4 13 0.067 5.7x10-3 1794 [34] 

3 

TiO2 supported 

AuNP 

5.8 ± 1.8 13.2 0.067 6.67x10-3 1700 [34] 

4 

PVP stabilized 

Hollow AuNP 

80 13.2 0.01 7.47x10-3 94 [38] 

5 

PVP stabilized 

AuNP 

6 13.2 0.01 3.72x10-3 46 [38] 

6 

TRZ terminated 

MPEG 

6.2 ± 0.5 12 0.15 5.2x10-3 2570* [39] 

7 

N-Substituted 

PEGylated TRZ 

2.7 ± 0.5 48 0.15 1.65x10-2 600* [40] 

8 

TRZ containing 

PEO stabilized Iron 

Nanoparticle 

<2 48 0.15 4.2x10-3 200* [41] 

9 PS@P5 2.77 100 0.1 1.46x10-2 927 [42] 

10 H40-PEI-PEG 6.85 ± 0.82 50 0.1 4.27x10-3 1500* [43] 

11 

Polyanion H40-

COONa and 

8.0 ± 3.9 50 0.1 8.5x10-3 3180 [44] 
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Entry System 

AuNP 

diameter (nm) 

NaBH4 

(mM) 

4NP 

(mM) 

kapp 

(s-1) 

TOF 

(h-1) 

Reference 

polycation PEG-b-

(PCL-g-PEI) 

12 dendritic PEI@PS 8.5 ± 1.8 66 0.06 6.3x10-3 0.72 [45] 

13 

dendronized 

amphiphilic 

copolymer 

2.1 ± 1.5 13.2 0.132 2.8x10-3 26470 [46] 

*Turnover frequency was calculated from the reported reaction methods and kinetic data 

 Gold nanoparticle catalysts are often evaluated for their activity in reducing 4-nitrophenol to 4-

aminophenol using sodium borohydride.  The reaction is considered a model reaction because the kinetics 

are well understood and the reaction does not result in side-products.  A brief variety of systems are 

summarized in Table 1.2 including supported and dispersed gold nanoparticles.  Generally, the activity of 

gold nanoparticles is size dependent [47,48] which can make comparison between studies difficult.  To 

compare across various systems, the turnover frequency can be used as a measure of catalytic performance 

and is calculated as: 

𝑇𝑂𝐹 =  
𝑛4𝑁𝑃

𝑛𝑐𝑎𝑡∗ 𝑡
                                                                        (1.1) 

where 𝑇𝑂𝐹 is the turnover frequency, 𝑛4𝑁𝑃 is the moles of 4-nitrophenol consumed in the reaction, 𝑛𝑐𝑎𝑡 is 

the moles of catalyst used in the reaction, and 𝑡 is the time of reaction duration.  For catalysis via gold 

nanoparticles, the moles of catalyst has generally referred to the moles of gold nanoparticles in the reaction 

solution [46]. 
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1.3.1. Single Gold Nanoparticle Systems 

 

Figure 1.3: Gold nanoparticles stabilized with triazole-terminated MPEG [39]. 

Nanoreactor systems designed around a single gold nanoparticle generally fall into the category of 

ligand-stabilized nanoparticles (Figure 1.3). The baseline for such systems would be gold nanoparticles 

without any stabilizing ligand [49].  These ligand-free gold nanoparticles were synthesized by laser ablation 

of a gold target in an aqueous environment.  Ballauff used these particles as a reference catalyst for other 

gold nanoparticle systems, analyzing the kinetics using the Langmuir-Hinshelwood model. 

Sodium borohydride is commonly used to reduce auric acid and synthesize gold nanoparticles, but it 

can also act as a stabilizing ligand for the generated nanoparticle [37].  Due to the degradation of 

borohydride in aqueous solutions the hydride and/or borohydride ligand is not permanent and 

deteriorates rapidly in acidic solutions.  However, Astruc et al. found that such systems are highly active 

for the reduction of 4-nitrophenol with sodium borohydride, with a reported turnover frequency of 9000 

h-1 (entry 1, Table 1.2) [37]. 

Citrate is another simple ligand which is well known for its ability to stabilize gold nanoparticles.  

Kitchens et al. investigated 5.6 nm citrate-stabilized gold nanoparticles and compared that colloidal system 

(entry 2, Table 1.2) to a supported system consisting of similarly sized gold nanoparticles supported on 

TiO2 (entry 3, Table 1.2) [34].  The citrate-stabilized gold nanoparticles demonstrated slightly faster kinetics 

than the supported system with reported turnover frequencies of 1794 h-1  and 1700 h-1, respectively.       
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Kitchens et al. also demonstrated that ligand packing on the catalyst surface influences catalyst activity 

[50].  While citrate is a weak ligand which can readily dissociate from the catalyst surface, thiol-ligands 

covalently bind to the gold surface resulting in active site blocking which can lead to decreased catalytic 

performance.  Kitchens demonstrated this effect, which ultimately led to complete inhibition of the catalyst 

at 2.5 molecules/nm2 HS-PEG packing density.  The length of the PEG chain was found to influence the 

packing of the ligand on the surface, with longer chains leading to lower packing densities and faster 

reactions.   

Strategic choice of ligand composition and packing densities led to the ability to recycle gold 

nanoparticle catalysts with changes in pH [51].  Thiolated poly(acylicacid) (SPAA) undergoes a 

conformation change in neutral to acidic conditions leading to reversible aggregation and precipitation 

from aqueous solutions.  In previous studies, shorter pH-responsive ligands led to irreversible aggregation 

of the gold nanoparticles after 3 recycles due to desorption of the ligand from harsh reagents such as 

sodium borohydride [52].  However, the longer SPAA ligand was proven to be more stable under reaction 

conditions, allowing the catalyst to be recycled up to 5 times.  Increasing the ligand density on the catalyst 

surface resulted in less activity loss after each recycle, however the rate constants were still nearly 5-fold 

less than the lower ligand density catalysts after 5 recycles.    

Another interesting ligand system consisted of poly(vinyl pyrrolidone) (PVP) stabilized hollow, 

porous gold nanoparticles which were formed through reduction of gold on a silver chloride template in 

the presence of PVP followed by dissolution of the silver chloride with ammonium hydroxide (entry 4, 

Table 1.2).  Despite a nominal diameter of 70 nm, well outside the range of traditionally active solid-gold 

nanoparticles [47], the hollow gold nanoparticle (stabilized by a PVP shell) demonstrated a TOF two-fold 

faster than that of 6 nm solid gold nanoparticle cores stabilized by PVP shells (entry 5, Table 1.2) [38].   

Polyethylene glycol (PEG) with a triazole (TRZ) end groups were studied for stabilizing catalytically 

active gold nanoparticles (Figure 1.3) [39,40].  The ligands were prepared through click-chemistry and the 
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gold nanoparticles were synthesized by reducing a solution of auric acid with sodium borohydride in the 

presence of the different ligands.  TRZ ligands stabilizing roughly 6 nm diameter gold nanoparticles were 

the most active, with a reported turnover frequency of 2570 h-1 (entry 6, Table 1.2) [39].   When TRZ moiety 

was N-substituted with 4-carboxylic phenyl the turnover frequency fell to 600 h-1 (entry 7, Table 1.2) [40].  

1.3.2. Systems Containing Multiple Gold Nanoparticles 

1.3.2.1. Ligand Stabilized Gold Nanoparticles 

Zhao et al. reported an interesting system in which multiple gold nanoparticles were ligand-stabilized 

on the shell of a pre-formed iron oxide nanoparticle (Figure 1.4) [41].  Oleic acid stabilized iron oxide 

nanoparticles (Fe3O4) underwent ligand exchange with triazole ligands, synthesized through click-

chemistry, containing a carboxylic acid and polyethylene oxide fragment at opposing termini (entry 8, 

Table 1.2) [41].  The carboxylic acid ligand coordinated with the iron oxide surface and the poly(ethylene 

oxide) (PEO) stabilized the iron nanoparticles in the aqueous solution.  The resulting structures had an iron 

oxide nanoparticle core surrounded by a PEO shell with TRZ moieties near the surface of the iron 

nanoparticle.  HAuCl4 was then dissolved in the nanoparticle dispersion and reduced by dropwise addition 

of sodium borohydride.  Thus, gold nanoparticles were synthesized in the iron nanoparticle solution near 

stabilizing interactions occurring in both the PEO layer and at the TRZ moieties located at the iron 

nanoparticle surface (Figure 1.4).  The formed gold nanoparticles were less than 2 nm in diameter and were 

dispersed throughout the structure.   The reported turnover frequency of 200 h-1 is notably lower than the 

other TRZ containing polyethylene oxide ligand systems (entries 5 and 7, Table 1.2) [39,40] which reached 

a maximum TOF of 2570 h-1.  Notably, these alternative systems did not utilize an iron nanoparticle system 

but relied solely on the coordination of the triazole ligands to individual gold nanoparticles.   
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Figure 1.4: Magnetically recoverable gold nanoparticle catalyst [41]. 

1.3.2.2. Amphiphilic Systems 

Amphiphilic polymers can be used to form many nanostructures including micelles, vesicles, 

polymersomes, and hyperbranched polymer particles making them a diverse group to study for use in 

gold nanoparticle stabilization and use in catalysis [7,53].  For example, 8-hydroxyquinoline-containing 

thermoresponsive diblock copolymers of poly(N-isopropylacrylamide) (PNIPAm) and polystyrene or 

PNIPAm and polymethacrylate (PMMA) amphiphiles were prepared through RAFT-polymerization.  

Triblock copolymers of PNIPAm-b-(P(MMA-co-MQ)-St were also prepared.  The hydroxyquinoline 

functionalities were dispersed in the hydrophobic, hydrophilic, or interfacial regions through 

copolymerization techniques.  In water, the block copolymers self-assembled into micelles.  Gold precursor 

was reduced with sodium borohydride in the presence of the aqueous block copolymer dispersion.  The 

hydroxyquinoline was used as a coordination site for the gold nanoparticles.  Generally, the amphiphilic 

micelles approached 80 nm hydrodynamic diameter by DLS with 3-4 nm gold nanoparticles distributed in 
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the micelle core.  The hydroxyquinoline moieties were necessary for stabilizing the gold nanoparticles and 

achieving high catalytic activity.  The hydroxyquinoline containing triblock copolymer was found to 

stabilize active gold nanoparticles with a TOF of 927 h-1 (entry 12, Table 1.2) whereas  amphiphilic 

copolymer PS-b-PNIPAm without hydroxyquinoline moieties had a much lower TOF of 156 h-1 (entry 9, 

Table 1.2) [42].   

Hyperbranched amphiphilic polymers (H40-PEI-PEG) were synthesized using commercially available 

hyperbranched aliphatic polyesters after modification of hydroxyl groups with succinic anhydride allowed 

conjugation of PEG chains and azide groups which could then be used to connect poly(ethyleneimine) (PEI) 

through azide-alkyne click-chemistry.  Gold nanoparticles were then synthesized in the aqueous polymer 

solution through reduction of the gold salt with sodium borohydride.  The nitrogen groups of the H40-PEI-

PEG provided coordination sites for the gold atoms, stabilizing the resulting nucleated gold nanoparticles 

within the polymer structure.  Fast turnover frequencies were reported (1500 h-1) for the reduction of 4-

nitrophenol using 7 nm gold nanoparticles core stabilized by a polymer shell (entry 10, Table 1.2) [43].  

Another example of an amphiphilic polymer use for encapsulation of catalytic gold nanoparticles is 

PEG-b-(PCL-g-PEI), which is a polyion complex that self-assembles in water forming micelles with a 

PCL/PEI core and PEG shell (entry 11, Table 1.2). Gold nanoparticles were formed in the micelle core in 

situ by adding chloroauric acid to a dispersion of micelles which interacts with the PEI segment of the 

polymer.  The gold precursor is then reduced with sodium borohydride resulting in gold nanoparticles 

dispersed in the micelles core.  The resulting gold nanoparticles were 8.0 ± 3.9 nm in diameter.   The 

resulting polymer shell-gold nanoparticle shell catalyst was used to facilitate the aqueous reduction of 4-

nitrophenol, with a reported turnover frequency of 3180 h-1 [44].  
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1.3.2.3. Dendrimer Systems 

Dendrimers offer a unique structure similar to a micelle or core-shell nanoparticle except it is 

composed of a single, branched, molecular chain.  One example of dendrimer use for supporting gold 

nanoparticle catalysts prepared the dendritic amphiphile by alkylation of branched poly(ethylenimine) 

with a polystyrene epoxide in chloroform (entry 2, Table 1.2).   Chloroauric acid was then added to the 

dendritic amphiphile solution and allowed to stir for 24 hours in order to allow the tertiary amine groups 

of PEI to reduce the gold ions and form gold nanoparticles.  The gold nanoparticles were situated near the 

PEI core of the dendritic amphiphiles.   Polymer monolith supports were then created with the gold 

nanoparticle-bearing dendritic amphiphiles (Au-DA) by emulsion polymerization in which the role of the 

Au-DA was to stabilize the emulsion.  The high internal phase emulsion (HIPE) polymerization was 

accomplished by dropwise addition of water to a stirring solution of Au-DA, 2,2-azobisisobutyronitrile, 

and divinylbenzene in toluene.    In the emulsion, the Au-DA stabilized the water-oil interface. The 

resulting emulsion was heated at 70°C for 2 days, washed with water and ethanol and dried under vacuum.  

Upon drying, the solvent removal leaves open cells resulting in gold (8.5 ± 1.8 nm) supported on a porous 

polymer monolith.  Similar structures could be created in one-pot with simultaneous in-situ synthesis of 

gold nanoparticles by using chloroauric acid and dendritic amphiphile instead of Au-DA in the HIPE 

solution.  The Au-DA-HIPE structure was able to catalyze the reduction of 4-nitrophenol with a TOF of 

0.72 h-1, and could be recycled up to 7 times.  By Increasing the Au-DA N:Au ratio, smaller gold 

nanoparticles could be achieved, resulting in higher apparent catalytic activities.  For example, monoliths 

with gold nanoparticles that were 4.0 ± 1.5 nm had a turnover frequency of 13.51 h-1 [45]. 

As an alternative to dendrimers, dendrons can also be used as stabilizing ligands for gold 

nanoparticles.  For example, an amphiphilic dendronized diblock copolymer with dendronized ferrocene-

containing hydrophobic segments and hydrophilic triethylene glycol containing amphiphilic segments was 
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prepared by ring-opening metathesis polymerization and self-assembled in water to form a hydrophobic 

core and hydrophilic shell. Gold nanoparticles was produced in situ by adding gold precursor to the self-

assembled polymer structure and reducing the gold. The gold nanoparticles were dispersed throughout 

the hydrophobic core and hydrophilic shell.  The size of the gold nanoparticle was affected by the reducing 

agent used.  The highest turnover frequency was observed was 26470 h-1 (entry 13, Table 1.2) which was 

attributed to the well distributed gold nanoparticles throughout the polymer structure which resulted in 

large amounts of gold surface area.  Further, the stabilization of gold nanoparticles with weakly interacting, 

amphiphilic triazole functionalities, which sterically stabilize the colloidal gold particle without blocking 

active sites on the gold surface, could play a role in the observed turnover frequency [46].   Notably, the 

hydrophobic microenvironment generated by the amphiphiles may also play a role in promoting the 

reaction [46].   

1.4. Kinetics of 4-Nitrophenol Reduction with Gold Nanoparticles 

 The reduction of 4-nitrophenol as a model reaction provides a framework for analyzing the 

performance of novel gold nanoparticle catalysts.  While turnover frequencies are a common metric for 

gold nanoparticle catalytic performance it is a reaction condition specific metric and can be affected by 

catalyst size as well as 4-nitrophenol and sodium borohydride reactant concentrations.     The intrinsic rate 

constant described in the Langmuir-Hinshelwood kinetic model provides an independent measure of 

performance.   

 Ballauff et al. conducted analysis of the 4-nitrophenol reduction under pseudo-first order rate 

kinetics and demonstrated the relationship between sodium borohydride concentration and reaction rate 

constant vary proportionally until pseudo-first order kinetics are reached at which point the reaction rate 

no longer varies with increasing sodium borohydride [54,55].  Ballauff reported that for gold nanoparticle 

decorated dendrimers pseudo-first order kinetics were reached at 10 mM sodium borohydride, a 100-fold 
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excess to 4-nitrophenol.  From Table 1.2 it is clearly seen that there are a variety of reaction conditions used 

with sodium borohydride excess ranging from 10 to 100-fold, indicating the sodium borohydride 

concertation may be an important consideration when evaluating catalytic performance of nanoreactor 

systems.     

 Further, Ballauff demonstrated that the 4-nitrophenol reduction catalyzed by gold nanoparticles 

fits the Langmuir-Hinshelwood kinetic model [54].  Under Langmuir-Hinshelwood kinetics, molecules 

compete for a fixed number of active sites on the catalyst surface.  Molecules adsorb and desorb from the 

surface, or can undergo the desired reaction if the requisite conditions are met.  As such, for reactions 

requiring two or more reagents catalyst active sites can effectively be blocked by one species if a sufficient 

concentration difference exists.  Therefore, the Langmuir-Hinshelwood model takes into consideration the 

concentrations of the different species in the reaction, the adsorption constants for those species and the 

catalyst surface, the catalyst surface area, and finally the intrinsic rate constant.  The intrinsic rate constant 

described by the Langmuir-Hinshelwood model is therefore an unbiased metric of catalyst performance 

because it is independent from reagent concentrations or even catalyst surface area.   

1.5. One-Pot Cascade Reactions 

Colloidal metal nanoparticles are promising nanoreactors for performing multiple reactions in a “one 

pot” reactions.  Such capabilities could significantly reduce organic solvent waste by eliminating the need 

for isolation of the intermediates.  There are multiple approaches to performing “one pot” reactions.  For 

example, cascade, or domino, reactions take place in a single reaction vessel, generally with addition of all 

reagents simultaneously.  This is often difficult due to the need for multiple catalysts or reagents that can 

inhibit each other when used together in bulk [8,12].  Polymer nanoreactors can combat this outcome by 

compartmentalization of different reactions within isolated regions within the structure [56–59].  

Alternatively, tandem reactions are a subset of one-pot reactions where, unlike cascade reactions, reagents 
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are added in a step-wise fashion,  allowing one reaction step to proceed before the addition of reagents for 

the second reaction [60].    

1.5.1. Gold Nanoparticle Catalysts Used in Cascade Reactions 

García-Verdugo et al. utilized polymeric ionic liquids to stabilize gold nanoparticles for aqueous 

cascade reactions. Polymer ionic liquids were formed through RAFT polymerization of p-

chloromethylstyrene followed by further chemical modification [61].  Gold nanoparticles were synthesized 

by reduction with sodium borohydride either before, or after, modification of the polymer with 1-

butylimidazole which formed the polymeric ionic liquid.  These alternate methods produced gold 

nanoparticle composites in which the gold nanoparticles were mainly stabilized by thiol-ligands (before 

modification of the polymer) or stabilized through loose coordination with the ionic liquid units (after 

modification of the polymer).  The gold nanoparticles were roughly 4 nm in diameter.  Analysis of the gold 

nanoparticle-polymeric ionic liquid composites for the reduction for 4-nitrophenol indicated that the thiol-

ligand stabilized composites were half as catalytically active as the coordination stabilized composites, 

likely because of the active site blocking which occurs with thiol-ligand binding [50].  This suggests that 

differences in the microenvironment can influence reaction outcome.  The gold nanoparticle composites 

were used to facilitate a Knoevenagel condensation reaction between p-nitrobenzaldehyde and ethyl 

cyanoacetate followed by reduction of the nitro and C=C double bond.  With 20 equivalents of sodium 

borohydride as reductant and allowing the reaction to progress for 20 hours, 100% yield was achieved with 

the thiol-ligand stabilized gold nanoparticle composite [61].   

AuPd-Fe3O4 nanoparticles were prepared through a hydrothermal procedure using sodium 

borohydride as a reductant and stabilized in a solution with polyvinylpyrillodone [62].  The alloy 

nanoparticles were able to facilitate the cascade reaction of nitrophenyl reduction and reductive amination 

of benzaldehyde.  The cascade reaction was carried out at room temperature under a molecular hydrogen 
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atmosphere in methanol.  Au-Fe3O4 particles lacking the Pd component could not catalyze the reaction, 

unlike Pd-Fe3O4 particles which catalyzed the reaction but produced a variety of side products.  The AuPd-

Fe3O4 particles produced the desired product with 93% yield within 3 hours.  Due to the iron component, 

the particles were easily separable with a magnet.  Therefore, the particles were magnetically recovered 

and recycled with addition of fresh reagents.  The particles were cycled up to 20 times, with no change in 

catalytic activity until the 13th cycle.  The activity decreased until the 16th cycle, at which point the reaction 

was allowed to proceed for 6 hours and the yield recovered to 93% desired product. 

Grande et al. synthesized PS-b-PLA copolymers in order to form porous structures to attach catalytic 

gold nanoparticles [63].  The PS-b-PLA was spin-coated on Si wafers, followed by an acid wash in 

trifluoroacetic acid to cleave the PLA block which was washed away with ethanol.  The porous PS was 

functionalized with a primary amines which served as anchors for gold nanoparticles synthesized in-situ 

via sodium borohydride reduction.  The gold nanoparticle incorporated structure was then placed in an 

ethanol reaction solution containing 3-nitrobenzeneboronic acid and K2CO3.  The homo-coupling reaction 

was carried out at 65 ℃ for 24 hours.  The reaction solution was cooled to room temperature, sodium 

borohydride added, and the reduction of the nitro-group took place over the following 24 hours.  The 

sample was analyzed by NMR to determine purity of the product as evidenced by shifts in the aromatic 

protons.  Recycling was carried out for three cycles with no loss of activity reported, however the yield 

decreased to 90% by the third recycle.   

1.5.2. Reduction Based Cascade Reactions 

Li et al. prepared polymer nanoreactors incorporating palladium nanoparticles in the core and acidic 

catalysts in the shell by a seeded polymerization technique.  Poly(acrylamide) (core) was polymerized first 

in the presence of palladium ions (chloroplatinic acid) followed by the addition of an AMPS (shell) solution.  

The palladium ions coordinated with the amine groups in the core of the nanoreactor so that when the 
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palladium was reduced by sodium borohydride the resulting palladium nanoparticles were synthesized in 

the core of the polymer nanoreactors.  The core-shell architecture, as well as the presence of platinum 

nanoparticles in the core, was confirmed with TEM.  Bis(2,4-dinitrophenyl)oxalate was both hydrolyzed 

and reduced by the bifunctional nanoreactor in PBS solution.  Hydrolysis occurred at the acidic AMPS sites 

in the shell followed by reduction by the palladium nanoparticles in the core (Figure 1.5).  Kinetic tracking 

via UV-vis demonstrated that the hydrolysis and reduction occurred at the different catalytic regions of the 

nanoreactor simultaneously.  Spatio-temporal analysis of the reaction corresponded with theoretical 

models of catalysis in a core-shell nanoreactor following Fickian diffusion thereby demonstrating the 

efficacy of compartmentalization for tandem reaction processes [64].    

 

Figure 1.5: Tandem hydrolysis and reduction by core-shell nanoreactors [64]. 

Li et al. also prepared poly(2-acrylamido-2-methylpropane- sulfonic acid) (PAMPS) polymer 

nanoreactors  through inverse-emulsion polymerization to create the core first, followed by polymerization 

of the shell with incorporation of silver ions.  After complete polymerization, the silver ions were reduced 

with sodium borohydride to produce silver nanoparticles which were distributed throughout the shell of 

the nanoreactors as indicated by TEM.  The overall structure was about 100 nm in diameter with a 13 nm 

thick shell.  Tandem reduction and hydrolysis of bis(2,4-dinitrophenyl)oxalate (DNPO) was accomplished 

in a PBS solution, without mutual engagement of the catalysts as inferred from kinetic tracking via UV-Vis.  
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This “undisturbed” tandem reaction was attributed to the spatiotemporal separation of the catalysts within 

the shell and core regions of the nanoreactor.  Greater than 80% conversion of the DNPO was achieved in 

1 hour of reaction [56].  While the polymer nanoreactors with silver nanoparticles did catalyze the reaction 

faster, conversion was significant in even the control experiments [56].  

Nickel acetate was added to a solution of nanocellulose and reduced with sodium borohydride to form 

nickel nanoparticles [65].  Interaction between the nickel ions and the carboxyl groups of the nanocellulose 

led to nickel boride nanoparticles that were stable in aqueous solution.  The catalyst was found to efficiently 

reduce nitro compounds in the presence of sodium borohydride.  Tandem reactions involving nitro group 

reduction and either BOC protection of the amine or epoxide ring opening to form amino alcohols. The 

complete tandem reaction with BOC protection was generally completed within 4 hours, while amino 

alcohol synthesis took as long as 24 hours.  High yields were achieved in both cases (>95%).  Recyclability 

studies were carried out with reduction nitrobenzoic acid.  The reaction solution was extracted with diethyl 

ether leaving the catalyst in the aqueous phase to be reused.  Five recycles were performed with yields 

exceeding 95%, but longer reaction times were required for each subsequent reaction with an order of 

magnitude increase over the 5 reactions [65].    

1.5.3. Reductive Amination Cascade Reactions 

Integrated yolk shell (IYS) nanoreactors were prepared by nanocasting aminostyrene on preassembled 

crosslinked polystyrene sulfuric acid on silicon oxide microspheres (CLPS-SO3@SiO2) [66].  After 

polymerization of the aminostyrene, the SiO2 was removed via etching, leaving an acid-base bifunctional 

yolk-shell nanoreactor.  Pd nanoparticles were incorporated throughout the nanoreactor.  The roughly 300 

nm nanoreactors were able to catalyze the cascade reaction of 4-nitrobenzaldehyde to 2-(4-aminophenyl)-

1H-benzimidazole through reductive amination with the acid catalyst and catalytic hydrogenation with Pd 

nanoparticles.  Benzimidazole derivatives have antiviral, antiulcer, and anticancer properties making them 
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an attractive intermediate target.  The cascade reaction yielded 97% of the desired product and no 

aggregation of Pd NP was observed after 5 catalytic cycles.    

1.5.4. Coupling based Cascade Reactions 

TPGS-750-M, a PEG based surfactant, is used to form a micellar support on which Fe/Pd nanoparticles 

are stabilized [15].   Reagents were added to a TPGS-750-M solution and partition to the micelles cores at 

higher than bulk concentrations.  This solution is then added to the Fe/Pd NP solution for the reaction to 

progress.   A large variety of Sonogashira coupling reactions are studied, even completing double and triple 

couplings in the same reaction solution.  These reactions are generally heated and span reaction times of 5-

72 hrs.  Multi-step one-pot reactions are effectively completed by protection of an alkyne prior to coupling, 

followed by deprotection and subsequent coupling.  Another cascade route using Sonogashira reactions 

was completed by utilizing bromo- and iodo- moieties to control reactivity.  This allowed the iodo- region 

to be coupled at lower temperatures while protecting the bromo-group for a subsequent reaction.  No 

separation, purification, or additional catalyst was necessary to complete a 5 step one-pot synthesis with 

75% overall yield.  Recycling can be achieved through extraction of the reaction solution with ethyl acetate, 

removing the product while leaving the catalyst in the aqueous solution.  After completing 5 different 

reactions with recycling after each, the E-factor of the process was determined to be 4.1, which was noted 

as an order of magnitude reduction in waste generation from a traditional reaction carried out in organic 

solvent.    

Fe with ppm Pd + Ni NP's were prepared by reduction with methylmagnesium chloride.  The active 

catalyst was formed with addition of NaBH4 to remove the methyl ligands [13].  The metal nanoparticle 

catalysts were then added to a solution of TPGS-750-M micelles.  Rates of nitro group reduction were found 

to improve with the addition of a THF as a co-solvent (10%). A 3-step one-pot domino reaction was 

performed with reduction of a 4-chloronitrobenzene to the aniline compound, SnAR addition to the amine 
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with 2,4,5-trichloropyrimadine, followed by Suzuki-Miyaura coupling.  The coupling reaction took place 

with added Pd(OAc)2 at an elevated temperature of 45C.  Greater than >90% yield was recovered with 

extraction by MTBE.  Recycling studies were conducted with the reduction of 4-chloro-3-

(trifluoromethyl)nitrobenzene, again utilizing extraction with MTBE.  The micellar catalyst aqueous 

solution was recycled 4 times.  To maintain functionality after product extraction from the aqueous phase, 

addition nanoparticles catalysts were added prior to the subsequent reaction.  The overall process had a 

reported E-factor of 3.9.  

1.5.5. Oxidation Based Cascade Reactions 

Polymer incarcerated metal nanoclusters were formed by reducing platinum in the presence of a 

triblock copolymer of polystyrenes with alcohol and epoxy moieties [67].  After metal cluster formation 

hexane was added to the polymer solution to induce precipitation of the polymer incarcerated 

nanoclusters.  The clusters were then heated to induce crosslinking of the alcohol and epoxy groups 

producing an insoluble catalyst.  Those clusters were then introduced to a solution with hollow-center 

spherical carbon black and addition triblock polymer.  The nanoclusters coordinated with the carbon black 

spheres, and the solution was heated to further crosslink polymer around the supported cluster system.   

The secondary carbon black support prevented aggregation of the clusters.  The polymer incarcerated 

carbon black (PICB) particles showed excellent activity for catalyzing a wide range of reaction including 

direct oxidative esterification and oxidative amide and imine formations.  The catalysts were found to be 

recyclable up to four times, but only upon heating the filtered and dried catalyst to 170 ℃ for 5 hours under 

an argon atmosphere.  Without heating, significant loss of activity was noted.  Sequential catalysis of 

aerobic oxidation and Michael addition was then performed with the PICB catalyst in DCM at room 

temperature over 20 hours.  Excellent yields of greater than 95% were reported.   
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1.6. Conclusion 

 Liquid phase chemical processing generates large amounts of organic solvent waste.  This waste is 

associated with use of organic solvent for the reaction as well as large amounts of solvent for isolation of 

the product.  Generally, production of the desired product requires multiple reaction and separation steps.  

Thus, the amount of waste is 10-100 fold times greater than the mass of product.  Metal nanoparticles 

stabilized by polymer structures have been widely studied their ability to conduct traditionally organic 

phase reactions in a bulk aqueous phase.  Proven benefits of conducting aqueous reactions through the use 

of polymer micelles and core-shell structures are increases in reaction rate [31], conversion [18], and 

selectivity [26,27] as well as significantly lower generated waste [3,15,20,68].  They have been broadly 

applied variety of reactions including oxidations, reductions, and couplings.  In a handful of studies, they 

have been used for performing “one pot” cascade and tandem reactions.  While these results are promising, 

systematic studies of nanoreactor design and composition on catalytic performance is limited, largely due 

to the necessity to synthesize specific amphiphiles and surfactants or dendritic polymers which can involve 

laborious synthetic methods [18,25,42,69,70].     
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Chapter 2 : Project Overview 

 

2.1. Project Purpose 

The purpose of this project is to demonstrate the applicability of kinetically-trapped filled polymer 

micelles, self-assembled through Flash Nanoprecipitation, to function as nanoreactors in performing 

multiple reactions steps in one pot using water as the bulk solvent.  Flash Nanoprecipitation offers a rapid, 

tunable, and flexible method to self-assemble kinetically-trapped micelles with controllable size and 

composition [71–73].   Thus, this strategy provides an effective route to systematically study the effect of 

those nanoreactor properties on nanoreactor performance in parallel with achieving multiple reactions 

steps in one pot. 

First, the ability of the Flash Nanoprecipitation method will be investigated for the ability to tailor 

polymer nanoreactor size, composition, and catalyst loading.  The catalytic activity of the nanoreactors will 

be investigated using the 4-nitrophenol reduction as a model reaction.  The Langmuir-Hinshelwood kinetic 

model will be used to describe the intrinsic kinetic parameters of gold nanoparticles incorporated within 

different polymer nanoreactors (Figure 2.1C), while accounting for nanoreactor composition-dependent 

differences in localized reagent concentrations.  The application of the polymer nanoreactors to facilitate 

the oxidation of benzyl alcohol will be discussed.  Finally, the ability of the polymer nanoreactors to 

perform a two-step reaction in one pot with spontaneous precipitation of the product will be presented. 
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Figure 2.1:  Illustrations of structural differences between A) thermodynamically stable micelles, B) 

spherical brush polymers, and C) kinetically-trapped core-shell nanoreactors.  Only kinetically-trapped 

core-shell structures result in gold nanoparticles (yellow circle  ) that are core-localized with modular 

core-material. 

2.2. Background 

Performing catalyzed, organic phase reactions has been achieved by a wide range of colloidal 

dispersions.  For example, aqueously dispersed surfactant micelles support organic, homogenous metal, 

and metal nanoparticle catalysts while providing a shielded hydrophobic environment for a variety of 

reactions (Figure 2.1A) [3–5].  The confinement of the reaction to the hydrophobic microenvironment has 

even lead to improvements in apparent reaction kinetics as well as yield and selectivity when compared to 

traditional organic solvents [5–8].  

Polymer micelles, specifically, are promising for nanoreactor design due to the ability to functionalize 

the amphiphilic polymer molecule with metal nanoparticle catalysts, homogenous catalysts, and various 

acid/base moieties [8,31,32,74].  The variety of amphiphilic block copolymers available is also nearly 

limitless, and the choice of polymer can bestow unique characteristics, such as thermoresponsive 

permeability, onto the formed nanoreactor [69,75].  However, amphiphilic polymers can be expensive and 

often require tedious synthesis and purification.   
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Another class of colloidal dispersions used for catalysis have been core-shell nanoreactors composed 

of dendritic polymers or spherical polyelectrolyte brushes (SPB) used to support catalysts (Figure 2.1B) 

[36,54].  These structures generally require multiple chemical synthetic steps.  For example, in the case of 

SPB’s the polystyrene latex core is produced by emulsion polymerization of styrene and N-

isopropylacrylamide (NIPA) using SDS as a stabilizer.  The latex cores are purified by ultrafiltration using 

10-fold the initial volume of water.  The shell is then grafted onto the polystyrene latex core by seeded 

emulsion polymerization.  These systems generally exhibit improved stability to harsh reaction conditions 

compared to thermodynamically stable micelles due to being composed of a single polymer molecule.  

Interestingly, metal nanoparticle catalysts have been selectively attached to the shell of the SPB nanoreactor, 

in  contrast to the hydrophobic core [54,76,77].  Reaction kinetics were comparable to micellar systems with 

core-localized catalysts.    

While SPB nanoreactors benefit from improved stability, functionalization of the nanoreactor core 

with metal nanoparticle catalysts is very difficult post-polymer synthesis and would require in-situ 

synthesis of the metal nanoparticle catalyst in order to successfully be incorporated throughout the core-

shell structure.  This effectively limits the ability to investigate catalyst reaction environments to the shell 

of the nanoreactor.  Changes to that environment in an attempt to improve reaction kinetics, selectivity, or 

catalyst incorporation would require a completely different polymer, perhaps even a novel polymer 

synthesis.  This drawback is similar to thermodynamically stable micelles, which require different 

amphiphilic polymers in order to change the composition of the nanoreactors core/shell.    

To date, the effect of nanoreactor material on microenvironment characteristics has usually been 

exploited for the development of novel amphiphiles for micellar self-assembly using an ad hoc approach  

[3–5].  With thermodynamically stable micelles and dendritic polymers, this is a necessity as either structure 

is comprised of the single molecular species.  Spherical brush polymers could be modularly produced, 
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however they generally require a polymer bead to begin assembly and often rely on chemically linking the 

stabilizing molecule.   

Alternatively, kinetically trapped micelles can stabilize hydrophobic cores composed of completely 

separate materials from the amphiphilic stabilizer through a bottom up-assembly process (Figure 2.1C).  

Therefore, these systems could allow for fundamental studies of nanoreactor microenvironments without 

the need for complex organic synthesis of amphiphilic polymers.   

2.3. Approach 

A directed self-assembly process known as Flash NanoPrecipitation offers a method to rapidly and 

tunably produce kinetically trapped polymer nanoreactors through directed self-assembly [73,78].  In Flash 

NanoPrecipitation, a water-miscible organic solvent stream solubilizes the nanoparticle materials.  For a 

kinetically trapped micelle these would include an amphiphilic polymer, a hydrophobic co-precipitate, and 

a hydrophobic material of interest such as a catalyst.  The water-miscible organic solvent stream containing 

the nanoparticle materials is then rapidly mixed against water.  Solvent quality degradation resulting from 

the increased volume fraction of water induces precipitation of the hydrophobic materials.  The 

hydrophobic precipitates aggregate to reduce unfavorable interaction with water and the nucleates grow 

in size until growth is arrested by stabilization with the amphiphilic polymer.  This process is unique 

because by tuning the relative time scales of block copolymer self-assembly and core material precipitation, 

the size and relative composition of the nanoreactor can be tuned.   

2.4. Specific Aims 

Therefore, in this work Flash NanoPrecipitation will be used to create polymer nanoreactors 

incorporating gold nanoparticles as a model system.  The size and catalyst loading can be systematically 

tuned.  Furthermore, modular co-precipitate selection will facilitate investigation of the effects of 
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nanoreactor composition on reaction kinetics.   The versatility of the nanoreactors in oxidation and “one 

pot” cascade reactions will be examined.   

The specific aims of this work are to: 

Aim 1:  Use Flash Nanoprecipitation to self-assemble polymer nanoreactors and understand the 

interplay between mass transfer and reaction kinetics within the reaction system.  The reduction of 4-

nitrophenol will be used as a model reaction.  To study potential diffusion limitations, the diffusion 

coefficient of 4-nitrophenol will be measured through Pulsed Field Gradient NMR with a combination of 

scaling analysis.  When appropriate, the Langmuir-Hinshelwood kinetic model can be used to study 

intrinsic kinetics. 

Aim 2:  Through modular selection of the co-precipitate, understand the effect of nanoreactor 

microenvironment on reaction kinetics.  Investigated if the reagent partition coefficients in the nanoreactors 

affecting localized reagent concentrations influence apparent reaction kinetics.  Based on the partition 

coefficients, study the intrinsic kinetics when using nanoreactors with various co-precipitants.   

Aim 3:  Demonstrate the application of polymer nanoreactors by performing a one-pot cascade 

reaction.  Reduction of 4-nitrophenol will be combined with condensation of benzaldehyde with the 

resulting 4-aminophenol as a model reaction. The effect of reducing agent and various one-pot reaction 

strategies will be investigated.  Green chemistry metrics such as E-factor will be evaluated.   

Completion of these aims will demonstrate the novel application of the Flash Nanoprecipitation 

method of self-assembly for producing kinetically-trapped polymer nanoreactors with tunable size, 

composition, and gold loading.  This would allow systematic study of nanoreactor structure with a first-

of-its-kind demonstrable impact on reagent concentrations leading to differences in reaction kinetics.  

Successful application of the polymer nanoreactors to the aqueous one-pot condensation of benzaldehyde 
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with 4-nitrophenol would demonstrate proof-of-concept use toward cutting-edge green chemical 

synthesis.   

2.5. Overview of Dissertation 

The first objective of this study was to use Flash Nanoprecipitation to self-assemble gold 

nanoparticle/polymer nanocomposite nanoreactors with tunable size and gold loading in order to 

understand the mass transfer and intrinsic kinetics within the nanoreactors (Figure 2.2A).   Next, the Flash 

Nanoprecipitation formulation composition was varied to create polymer nanoreactors with different 

hydrophobic core microenvironments in order to study the effects of composition on localized reagent 

solubility and catalytic performance (Figure 2.2B). Finally, we demonstrate the application of the 

nanoreactors to green chemical synthesis by performing an aqueous one-pot cascade reaction (Figure 2.2D).

  

 

Figure 2.2:  Overview of dissertation work.  A)  Self-assembly of polymer nanoreactors with independent 

tuning of size and gold loading.  B)  Accelerated reaction rates within self-assembled polymer nanoreactors 

with tunable hydrophobic microenvironments.  C)  Application of self-assembled polymer nanoreactors 
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towards the oxidation of benzyl alcohol.  D)  Self-assembled polymer nanoreactors for the one-pot 

condensation of benzaldehyde with 4-nitrophenol. 

The first aim was to understand mass transfer, in regards to reagents, and reaction kinetics within the 

nanoreactor system.   For this purpose, nanoreactors were produced using Flash Nanoprecipitation a 

directed self-assembly method.  In the proposed nanoreactor system, the gold nanoparticle catalysts are 

expected to be directed within the core of the nanoreactor through hydrophobic interactions during the 

precipitation event and are kinetically trapped in that arrangement without covalent linkage.  For a 

polystyrene core system this would mean that there are two layers of polymer between the catalyst and the 

bulk solvent (PEG shell and PS core).  In order to achieve this goal of understanding any mass transfer 

implications on a reaction, stable nanoreactors must be formulated with the ability to independently adjust 

the size and catalyst loading of the nanoreactors using polystyrene as a model system.  The diffusion 

component was considered using a combination of NMR experiments to measure the diffusion coefficient 

of the reactant, the apparent reaction rate, and scaling analysis.  When appropriate, the Langmuir-

Hinshelwood kinetic model  was used in order to determine the inherent rate kinetics for comparison to 

other systems from literature.  These results are discussed in Chapter 3.   

Solvents play a critical role in reactions not only in the ability to solubilize reagents but also to 

influence the behavior of the reaction.  Within nanoreactors, the core material acts as the solvent for the 

reaction and can dictate reaction kinetics accordingly [3–8].  Building on the foundation of catalytically 

active nanoreactors, which could provide a reasonable support for organic phase reactions in aqueous 

solutions, we next examined the effect of co-precipitate (acting as the local microenvironment for the 

catalyst/solvent for reaction) on catalytic performance.  Flash Nanoprecipitation was used with modular 

selection of the hydrophobic core material of the nanoreactor and constant size and gold loading in the 

dispersion.  Core materials that interact with gold are beneficial for improving incorporation efficiency of 

the gold nanoparticles into the nanocomposite nanoreactor during self-assembly but decrease catalytic 
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performance.  For the non-interacting core materials, the catalytic performance is strongly affected by the 

hydrophobicity as indicated by the Hansen Solubility Parameters.   Specifically, the apparent reaction rate 

per surface area using castor oil (CO) is over 8-fold greater than polystyrene (750 g/mol, PS 750). The 

increase in apparent catalytic performance can be attributed to differences in reactant solubility rather than 

differences in mass transfer or intrinsic kinetics; higher reactant solubility enhances apparent reaction rates.  

These results are discussed in Chapter 4. 

We next wanted to explore the versatility of the nanoreactors to other classes of reactions.  The 

oxidation of alcohols to aldehydes and ketones is an important class of chemistry used throughout 

industrial chemical syntheses, especially in the pharmaceutical industry.  While these oxidations are 

traditionally performed in organic solvents at high temperature, using gold to catalyze the reaction can 

facilitate the reaction in water to reduce solvent waste.  We examined the use of nanoreactors for oxidation 

of benzyl alcohol. Three oxidants were considered: air, hydrogen peroxide, and sodium hypochlorite. 

Sodium hypochlorite was the only effective oxidant; conversion of 70 ± 9% of benzyl alcohol was observed 

to a combination of benzaldehyde and benzyl benzoate.  However, the reactors were not stable under the 

reaction conditions.  These results are discussed in Chapter 5.  

Finally, we demonstrated ability to perform multiple reactions “one-pot” using the nanoreactors 

building on the reduction of 4-nitrophenol reaction.  Specifically, we examine one-pot, aqueous 

condensation of benzaldehyde with nitroarenes using polymer stabilized gold nanoparticles.  The 

reduction of 4-nitrophenol to 4-aminophenol followed by the condensation with benzaldehyde was used 

as a model reaction.  The reducing agent selection was examined.  One-pot cascade reactions are an 

attractive approach to green chemistry because they negate the need for intermediate compound isolation, 

which generally requires organic solvent extractions.  This would further reduce the amount of organic 

solvent necessary during the use of polymer nanoreactors to perform organic phase reactions, and provide 
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further basis for their use in green chemistry approaches.  Therefore, the E-factor was evaluated.  These 

results are discussed in Chapter 6.    Conclusions and Future work are presented in Chapter 7.   
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Chapter 3 : Rapid Self-Assembly of Metal/Polymer Nanocomposite Particles as Nanoreactors 

and their Kinetic Characterization 

Published in Nanomaterials 2019, 9, 318; doi:10.3390/nano9030318 

Abstract 

Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising 

approach for performing liquid phase reactions using water as a bulk solvent. In this work, we 

demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles 

via Flash NanoPrecipitation. The catalyst loading and size of the particles can be tuned independently. 

Using nanocomposite particles as nanoreactors and reduction of 4-nitrophenol as a model reaction, we 

study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence 

of reagent addition, time between additions, and reagent concentration. Combined, our experiments 

indicate the induction time is most influenced by diffusion of sodium borohydride. Following the 

induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed 

reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable 

to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-

activate or block the catalyst active sites. 

3.1 Introduction 

Self-assembled amphiphilic molecules, both small molecules and macromolecules, that confine 

catalysts to micelle, vesicle, and Janus particle nanoreactor systems have proven to offer an efficient 

approach to perform organic reactions using water as a bulk solvent [26,74,79]. Using Janus particles, 

catalysts can be incorporated into a portion of the nanocomposite particle and the other portion imparts 

stability to the system. Asymmetric catalyst loading can facilitate particle motion driven by a chemical 

reaction [79]. In other nanoreactor systems, surfactant micelles that incorporate organic, metal 



35 

 

(homogeneous), and metal nanoparticle catalysts have been used for a wide range of coupling reactions in 

water [5,68,80]. Confining catalyzed organic reactions to the nanoreactor environment can be leveraged to 

speed up various chemical reactions [6,7]. Improved yield and selectivity when compared to traditional 

organic solvents has been reported [5,8]. 

Core-shell polymer systems have also been considered. Polymeric micelles have been used for several 

reactions, such as asymmetric aldol reactions catalyzed by L-proline [69], acylation [31], 

hydroaminomethylation of octane catalyzed by Ru-based nanoparticles [81], to name a few, with extensive 

reviews available elsewhere [32]. Another approach has been to immobilize gold nanoparticles within 

polyelectrolyte-brushes synthesized on a polystyrene core [55]. The polymer microenvironment of these 

systems can lead to increased local concentrations of reactants, which can accelerate reactions, facilitate 

reactions of otherwise non-reactive species [8,69,82–84], temperature or pH dependent catalytic activity 

[85], and/or provide specificity based on hydrophobicity [82]. 

Generally, these promising approaches have involved design and synthesis of amphiphiles, block 

copolymers, or polyelectrolytes that contain catalyst or ligand for covalent attachment of the catalyst. 

Additionally, nanoreactor properties, such as catalyst loading and nanoreactor size, are related to the 

molecular properties of the synthesized material. Thus, varying the nanoreactor properties would require 

additional syntheses. Approaches to metal nanoparticle catalyst-polymer nanocomposite particle 

fabrication would facilitate (1) modular material (off-the-shelf polymer, catalyst) selection, (2) tunable 

properties (size and catalyst loading), and (3) rapid, scalable production, which would be beneficial to 

expanding their potential application. 

Flash NanoPrecipitation (FNP) is a rapid, scalable method of polymer self-assembly that may be useful 

for producing nanoreactors. In Flash NanoPrecipitation, an amphiphilic block copolymer and hydrophobic 

core material are dissolved in a water miscible organic solvent and rapidly mixed against water using a 

confined impinging jet mixer. Upon mixing, the rapid decrease in solvent quality causes the hydrophobic 
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core material to precipitate and the block copolymer to micellize directing formation of the overall 

nanocomposite particle. This particle assembly ends when the hydrophobic block of the block copolymer 

adsorbs on the precipitating core material preventing further growth, while the hydrophilic block sterically 

stabilizes the nanoparticle. Given the molecular weight of the block copolymer, dynamic exchange of the 

block copolymer does not occur [8,28,29], so the resulting structure is kinetically-trapped. 

Hydrophobic, inorganic nanoparticles have been incorporated into nanocomposite particles by 

dispersing the nanoparticles with the dissolved block copolymer and then mixing. Upon mixing, colloidal 

aggregation and block copolymer self-assembly occurs, due to the decrease in solvent quality. 

Nanocomposite particle assembly is complete when sufficient hydrophobic blocks of the block copolymer 

adsorb to the nanoparticle clusters to prevent further aggregation. For example, Gindy et al. demonstrated 

fabrication of polymer nanostructures containing colloidal gold using Flash NanoPrecipitation [78]. More 

recently, Pinkerton et al. encapsulated iron oxide nanoparticles for medical imaging applications [73]. For 

medical imaging, ~100 nm composite nanostructures with tunable inorganic nanoparticle loading were 

achieved. These studies suggest that Flash NanoPrecipitation is a suitable method for nanoreactor 

fabrication. However, the ability to independently tune inorganic nanoparticle loading and nanocomposite 

particle size has yet to be demonstrated. 

Other important considerations when using the nanocomposite particles as nanoreactors are the 

reaction and diffusion within the system. In small molecule micelle systems that are thermodynamically 

stable, there is constant molecular exchange between the bulk solvent, and the confined hydrophobic 

mesophase facilitates reaction [5,8]. In the kinetically-trapped systems produced by Flash 

Nanoprecipitation, reactants and products reach the catalyst by partitioning from the bulk and diffusing 

through the nanoreactor structure [84]. The potential mass transfer limitations and the effect of 

incorporation into the nanocomposite particle on reactivity of the catalyst need to be established. 
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In this work, we use Flash NanoPrecipitation for rapid and scalable self-assembly of hybrid metal 

nanoparticle catalyst-polymer nanocomposite nanoreactors. Independently tuning the nanoreactor 

properties, namely size and gold loading, is investigated. We focus on fundamental understanding of 

reaction and diffusion using the reduction of 4-nitrophenol as a model reaction. Kinetic and scaling analysis 

following the induction time are also discussed. 

3.2 Materials and Methods 

3.2.1 Materials 

Citrate stabilized 5 nm gold nanoparticles were purchased from Ted Pella. Polystyrene (PS, MW 800-

5000 g/mol) was purchased from Polysciences, Inc. Sodium borohydride and 4-nitrophenol were purchased 

from Sigma Aldrich (St. Louis, MO, USA). Dodecanethiol (DDT) stabilized 5 nm nanoparticles, 

tetrahydrofuran (tetrahydrofuran (THF), HPLC grade), ethanol (ACS reagent grade), and diethyl ether 

(ACS reagent grade) were purchased from Fisher Scientific (Fairmont, NJ, USA). Environmental Grade 

Hydrochloric Acid 30-38% and Environmental Grade Nitric Acid 70% were purchased from GFS Chemicals 

(Columbus, OH, USA). The 1H-NMR solvent D2O with 4,4-dimethyl-4-silapentane-1-sulfonic acid DSS as 

an internal standard was purchased from Cambridge Isotope Lab, Inc (Andover, MA, USA). These 

chemicals and materials were used as received. Polystyrene-b-polyethylene glycol (PS-b-PEG, PSm-b-PEGn 

where m = 1600 g/mol and n = 5000 g/mol) was obtained from Polymer Source (Product No. P13141-SEO). 

Prior to use, PS-b-PEG was dissolved in THF (500 mg/mL) and precipitated in ether (~1:20 v/v THF:ether). 

The PS-b-PEG was recovered by centrifuging, decanting, and drying under vacuum at room temperature 

for 2 days. 
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3.2.2 Nanoreactor Assembly 

For self-assembly, the gold nanoparticles should be dispersed in THF (a water-miscible solvent) with 

molecularly dissolved block copolymer. To disperse the gold nanoparticles in THF, the as-received 

dodecanethiol stabilized gold nanoparticles in toluene (1 mL) were precipitated into ethanol (45 mL) and 

filtered using a Buchner funnel. The filtered nanoparticles from the filter cake were resuspended in THF 

and concentrated via evaporation at room temperature overnight to achieve a nominal concentration of 

around 20 mg/mL. The final concentration was confirmed by inductively coupled plasma optical emission 

spectroscopy using an Agilent 5110 (ICP-OES, Santa Clara, CA, USA). UV spectra collected on an Ocean 

Optics FLAME-S-UV-VIS with a HL-2000-FHSA light source (Largo, FL, USA) were compared before and 

after the solvent switch to confirm processing did not significantly affect gold nanoparticle size. 

For nanoreactor self-assembly, typically, PS-b-PEG (6 mg), dodecanethiol stabilized 5 nm gold 

nanoparticles (0.5 mg), and PS homopolymer (co-precipitate, 5.5 mg) were added to 0.5 mL of 

tetrahydrofuran (THF) and sonicated at 55 °C for 30 minutes. Using a manually operated confined 

impinging jet mixer with dilution (CIJ-D) [71,86] with achievable Reynolds’ numbers > 1,300, the resulting 

THF mixture was rapidly mixed against 0.5 mL of water into a stirring vial of water (4 mL). The resulting 

dispersion (5 mL total) was stored at room temperature for further characterization and analysis without 

purification. The nanocomposite particle properties were tuned by adjusting the total solids concentration 

or the relative amounts of gold nanoparticles and the co-precipitate at a constant total mass or a constant 

total core volume based on the bulk density of gold and co-precipitate. 

3.2.3 Nanoreactor Characterization 

Nanoreactor size was measured after mixing using a Malvern Zetasizer Nano ZS (Westborough, MA, 

USA) with a backscatter detection angle of 173°. Size distributions are reported using the average of four 

measurements of the intensity weight distributed with normal resolution. The reported size is the peak 1 
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mean intensity. The polydispersity index (PDI) is defined from the moment of the cumulant fit of the 

autocorrelation function calculated by the instrument software (appropriate for samples with PDI < 0.3) 

and is reported as a measure of particle size distribution. UV absorbance spectra (300 to 1200 nm) of the 

nanoparticle dispersions were measured at room temperature with an Ocean Optics FLAME-S-UV-VIS 

with a HL-2000-FHSA light source (Largo, FL, USA). For visualization by TEM, samples were submerged 

in a dilute dispersion of nanoreactors (10-fold dilution with water) for one hour and dried at ambient 

conditions overnight. Samples were imaged using a Zeiss Libra 120 TEM (Oberkochen, Germany) using an 

accelerating voltage of 120 kV. To determine the gold nanoparticle concentration, nanoreactor dispersions 

were dissolved in THF and digested in aqua regia (1:3 nitric acid:hydrochloric acid by volume) and diluted 

to 5% v/v aqua regia. Gold concentration of the digested sample was measured using inductively coupled 

plasma optical emission spectroscopy measurements with an Agilent 5110 (Santa Clara, CA, USA). 

3.2.4 Kinetic Analysis 

The catalytic performance of the nanoreactors was evaluated using the reduction of 4-nitrophenol with 

sodium borohydride as a model reaction using well established procedures [25,26]. Briefly, gold 

nanoreactors (AuNR) (150 uL) produced using FNP were diluted with water (2.275 mL) in a quartz cuvette 

with a stir bar. The reaction was monitored under stirring with an Ocean Optics FLAME-S-VIS-NIR-ES 

using an HL-2000-FHSA light source (300-1200 nm), with a CUV-UV cuvette holder (Ocean Optics) placed 

on a stir plate. The spectrometer was blanked to the reaction mixture.  Typically, 4-nitrophenol (25 uL of 

0.01M solution) was added to the reaction mixture, and data collection began. After 1 minute, sodium 

borohydride (50 uL of a 5 M solution) was added to the stirring reaction mixture. Scans were taken every 

millisecond and averaged over 100 scans with data recorded every quarter-second. The reaction was 

tracked by monitoring the change in intensity of 4-nitrophenol peak at 425 nm. Absorbance at 425 nm as a 

function of time was smoothed using a five data point centered moving average to correspond to every 
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second of the experiment. Similar to previous studies [54], the induction time and apparent reaction rate 

were determined from the absorbance as a function of time.  The final reaction mixture contained less than 

0.01 vol% THF.  The values of Kapp and induction time are the averages (± standard deviations) of at least 3 

trials of each experiment.  

3.2.4.1. Induction Time 

Initially, the spectra of the polymer nanoreactor dispersion was recorded as a reference to be 

subtracted from subsequent spectra as background. The 4-nitrophenol was added resulting in an increase 

in absorbance at 425 nm. The increase in absorbance due to the addition of 4-nitrophenol occurs within 30 

seconds. After 1 minute, the sodium borohydride is added, which results in a further increase in absorbance 

at 425 nm due to formation of the 4-nitrophenolate ion. The initiation of the reaction corresponding to the 

start of the induction period was defined as the time at which the absorbance at 425 nm increased to at least 

10% of the maximum absorbance of the preceding plateau.  The induction time is characterized by a slow 

decrease (0.002 Abs/s) in absorbance that is followed by a sharp (> 0.01 Abs/s) decline in absorbance 

indicating beginning of the reduction reaction, which signifies the end of the induction period. Changes in 

the slope of the absorbance vs. time was used to quantitatively determine the induction time.   Specifically, 

the absorbance vs. time during the induction time was presumed to be adequately described by a line 

calculated from fitting the initial ~20% of the induction period.  For example, if the induction period lasted 

roughly 300 seconds based upon visual inspection, the linear fit of the induction time was based on the first 

60 seconds of the induction time. The end of the induction time was determined to be the time at which the 

experimental data deviated from the predicted value for induction time. Specifically, the first occurrence 

of three consecutive experimental absorbance values that were greater than 5% lower than the fitted line 

was classified as the end of the induction period and the beginning of the catalytic reaction. 
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3.2.4.2. Apparent Reaction Rate Constant 

For analysis of the reaction rate, the data was normalized to the absorbance value at the end of the 

induction period.  The natural log of the normalized absorbance over time was plotted and regions of two 

distinct slopes were observed.  The first region has been attributed to formation of an intermediate [54].   In 

order to avoid analysis of the intermediate reaction, the apparent reaction rate was calculated from the 

second region corresponded to when the normalized absorbance fell below 0.67.  Data corresponding to a 

15% conversion was analyzed when determining apparent reaction rate.  The induction time and apparent 

reaction rate are reported as the average ± standard deviation of three experimental trials.   

Because the reaction was carried out with a large excess of sodium borohydride compared to 4-

nitrophenol, the reaction kinetics can be described by pseudo-first-order kinetics.  For heterogeneous 

catalysts, the apparent rate constant is assumed to be proportional to the surface of the catalyst described 

by [47,49]: 

−
𝑑𝑐

𝑑𝑡
= 𝑘𝑎𝑝𝑝𝑐 = 𝑘1𝑆𝑐                                                               (3.1) 

where c is the concentration of 4-nitrophenol at time (t), kapp is the apparent rate constant, k1 is the rate 

constant normalized to surface area of gold nanoparticles per unit volume of the reaction.  Experimentally, 

k1 is determined by the change in 4-nitrophenol concentration after the induction period and the mass of 

gold measured by ICP (surface area calculated assuming 5 nm spherical particles).    

3.2.5 Langmuir-Hinshelwood Kinetics 

For more detailed kinetic analysis, we performed full kinetic analysis considering the two-step 

reaction mechanism previously established [54]. Full kinetic analysis is described by the reaction rate of 

each step and the Langmuir adsorption constants of 4-nitrophenol, borohydride, and the stable 

intermediate. We determined the rate constants for both steps by solving the coupled rate equations using 
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the numerical method previously described and fitting the experimental data (average of three 

experimental trials) [54]. 

The Langmuir Hinshelwood Kinetic Analysis is influenced by the data available at the end of the 

induction time and start of the reaction.  Therefore, we used a more precise method to define the induction 

time.   Prior to the addition of 4-nitrophenol or sodium borohydride, a background spectra of the polymer 

nanoreactors was taken in order to adjust the reaction data.  With the addition of 4-nitrophenol, the 

absorbance at 425 nm could be seen to rise from the initial absorbance of zero.  A plateau in absorbance 

occurs within 30 seconds after the addition of 4-nitrophenol, which is disturbed by the addition of sodium 

borohydride.  The resulting pH change and presence of the 4-nitrophenolate ion spikes the measured 

absorbance 10% over the maximum absorbance of the preceding plateau, which begins the period of 

induction time.  A slow decrease (0.002 Abs/s) in absorbance is then noted over the following induction 

period, after which a sharp decline in absorbance indicates the beginning of the reduction reaction and the 

termination of the induction period.   

The slope of absorbance was calculated over a centered 11-point data range.  Noise in the calculated 

slope was determined to be 10% of the maximum peak absorbance change prior to the beginning of the 

induction time.  The first negative slope change that had a magnitude greater than the defined noise and 

was consistent over the following two data points was considered the beginning of the reduction reaction 

and the termination of the induction time.  All of the data was then normalized to the absorbance value at 

the time point, marking the end of the induction period.  The reaction data immediately following the 

induction period was fit to the Langmuir Hinshelwood model. 

The reduction of 4-nitrophenol catalyzed by metal nanoparticles model is fully described considering 

two intermediates: 4-nitrosophenol and 4-hydroxylaminophenol.  Since 4-hydroxylaminophenol is the first 

stable intermediate, there are three compounds that adsorb and desorb during the reaction cycle (reactant, 

intermediate, and product) and compete for a fixed number of sites on the surface of the nanoparticle 
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catalysts. The surface coverage is modeled as a Langmuir-Freundlich isotherm following previous reports 

[54].  The reaction is modelled using two steps: (A) the reduction of 4-nitrophenol to 4-

hydroxylaminophenol and (B) the reduction of 4-hydroxylaminophenol to 4-aminophenol and step B is 

rate limiting.  The resulting coupled rate equations are solved numerically to fully model the concentration 

of 4-nitrophenol as a function of time to fit experimental data (normalized after the induction time for 

conversions up to 30%) as described previously [54].  

3.2.6 NMR Measurements 

Saturation transfer difference (STD) spectroscopy is commonly used in biological molecular 

interaction studies to analyze ligand-protein interactions [87].  These interactions are probed with and 

without irradiating the sample by utilizing a very selective pulse, typically a Gaussian pulse with a long 

pulse duration, at a frequency identical to the resonance frequency the host molecule that is in close spatial 

proximity to the ligand molecule of interest.  Moreover, due to spin diffusion, the signals from the ligands 

associated with the host molecule will be attenuated as well.  A peak subtraction is pursed between the 

spectra obtained with and without the selective irradiation.  The interacting ligands are then probed from 

the difference spectrum.   

To evaluate effective transport of the 4-nitrophenol, 1H-NMR spectroscopy and pulsed field gradient 

(PFG) NMR were performed using a Bruker Avance II 800 MHz NMR with a 5-mm coil 1H-X-Y TBI solution 

state cryo-NMR probe (Billerica, MA, USA) operating at a narrow-bore and 18.8 T magnet with 50 G/cm 

gradient along the z-direction.  Nanoreactor samples in D2O and 4-nitrophenol were equilibrated for 100 

minutes prior to the PFG-NMR experiment.  The self-diffusion coefficients D were determined from the 

proton spin-echo intensities measured as a function of gradient pulse strength using a standard DOSY 

sequence: 

𝑙𝑛(𝐼/𝐼0) = −𝐷𝛾2𝑔2𝛿2 (𝛥 −
𝛿

3
−

𝜏

2
)                                                    (3.2) 
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where I0 is the signal amplitude after the PFG pulse sequence with minimal gradients applied, 𝛾 the 

gyromagnetic ratio, g the gradient strength applied, 𝛿 is the gradient pulse duration (1 ms), 𝛥 is the 

diffusion time, and D the self-diffusion coefficient of the mobile species. Parameters employed in our 

experiments were: g = 46.99 G/cm; 𝛥 = 0.1 s; 𝛿 = 1 ms; 𝜏 = 514 s. A standard solution (1% H2O/99% D2O, 

doped with 0.1 mg GdCl3) with established diffusion coefficient (1.872 × 10-9 m2/s at 298 K) was used for 

calibration. 

Combined saturation transfer difference (STD) spectroscopy and PFG NMR were used to isolate the 

solute molecules associated with the nanoreactors.  Selective saturation of the reactor was achieved by a 

train of Gaussian-shaped pulses of 30 ms, saturating a bandwidth of about 20 Hz, at 6.88 ppm (where the 

nanoreactor has signals, but the solute does not) for a saturation time of approximately 3 s to ensure full 

saturation of the nanoreactor. A reference spectrum and PFG spectra were obtained by irradiating at 0 ppm 

spectrum. A difference spectra between 0 ppm and 6.8 ppm was obtained (0 ppm spectrum –6. 88 ppm 

spectrum) to analyze the solute molecules that are within the reactor.  Using the PFG spectra, the solute 

peak intensity as a function of gradient strength was plotted and the diffusion coefficient was determined 

from the slope of the linear fit.  Since nanoreactors diffuse in free solution at least 3 orders of magnitude 

slower than molecules, the measured diffusion coefficient was considered the effective diffusion coefficient 

of the solute within the nanoreactor [88–90]. 

3.2.7 Leaching Studies 

To confirm that the observed catalytic activity is associated with the nanoreactors, we compared the 

nanoreactors to the nanoparticles that were added to polystyrene nanoparticles made via FNP under 

rigorous stirring with multiple reuses. For reuse following the reaction, nanoreactors were recovered using 

an Amicon Ultra 2 mL 50K centrifugal filter according to manufacturer’s instructions.  The filtrate was 

collected and the retentate containing nanoreactors was diluted with DI water to the original volume.  The 
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recovered nanoreactors were diluted with water to their initial nominal concentration.   Finally, the 4-

nitrophenol reduction was performed again.  This process was carried out three times.  For analysis of 

catalyst leaching, the cumulative filtrate collected for a single sample over multiple recycling steps was 

dissolved in aqua regia and analyzed with ICP-OES.    

3.3 Results and Discussion 

3.3.1 Nanoreactor Self-Assembly 

To perform Flash NanoPrecipitation, dodecanethiol stabilized 5 nm gold nanoparticles were dispersed 

in THF with the molecular dissolved, PS and PS-b-PEG, and rapidly mixed with water using a hand-

operated confined impinging jet mixer. The entire formation process was accomplished in less than a 

second; further, the process can be performed continuously at large scales [86,91,92]. Due to their 

hydrophobic nature and particle aggregation during assembly, the gold nanoparticles are expected to be 

in the hydrophobic core of the nanoreactor [78,79], forming a nanoparticle-macromolecular system [29,93]. 

Due to the high molecular weight of the polystyrene block, no dynamic exchange of the block copolymer 

is expected [20]. The resulting nanoreactors were ~130 nm indicated by a single Gaussian peak with PDI 

<0.2 on DLS. The dispersions were stable when stored at room temperature for at least 2 months as there 

was no significant change in size or size distribution by DLS (Figure 3.1), and no macroscopic precipitation 

of unencapsulated gold was observed. 
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Figure 3.1:  Nanoreactor stability at room temperature. No significant change in hydrodynamic size or PDI 

was observed by DLS after 8 weeks of storage (red squares) compared to the initial size distribution (black 

circles). Intensity reported is a Malvern reported average of four measurements per sample. 

We further characterized the nanoreactors using UV-Vis spectroscopy. Prior to Flash 

NanoPrecipitation, the dodecanethiol-stabilized nanoparticles dispersed in toluene showed a peak 

absorbance at 495 nm (as received and after switching solvents). The nanoreactors showed a peak 

absorbance of 520 nm (Figure 3.2b). The peak shift could occur due to differences in hydrophobicity of the 

surrounding environment [94]. Since the polystyrene microenvironment should have similar 

hydrophobicity as toluene, we attribute the red-shift to plasmonic coupling due to close proximity of the 

encapsulated gold nanoparticles, which has been previously observed with polymer-gold nanocomposite 

particles [95]. 
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Figure 3.2: Polymer nanoreactors were fabricated via self-directed assembly. (a) DLS confirms the uniform 

size distribution of the ~130 nm self-assembled polymer nanoreactors (black circles) and confirms that the 

size is the same after the reduction of 4-nitrophenol (red squares).  Intensity reported is a Malvern reported 

average of four measurements per sample. (b) UV-vis analysis shows that the absorbance of the gold 

nanoparticle remains unchanged through the solvent switch from toluene (black filled circles) to 

tetrahydrofuran (THF) (red open circles). A red-shift is seen upon encapsulation within polymer 

nanoreactors (blue open diamonds) due to close proximity of the encapsulated gold nanoparticles.  

Absorbance reported is an average of ten measurements per sample. (c) TEM imaging demonstrates that 

multiple gold nanoparticles were encapsulated within the core of the nanoreactors. 

The structure of the nanocomposite particles was visualized using TEM. Based on TEM imaging, 

clustering of the gold nanoparticles during assembly resulted in multiple catalytic gold nanoparticles per 

nanoreactor. The majority of the gold nanoparticles appear to be in the nanoreactor core, although multiple 

polymer layers are not visible on TEM due to low electron density. This result is consistent with previous 

reports of encapsulated gold nanoparticles via FNP [78,96]. Based on TEM, some of the gold may also be 

associated with the PEG-layer of the nanoreactors whereas unassociated gold would be expected to 

precipitate out of the dispersion as well as affect the size distribution measured by DLS. Since we do not 

observe gold precipitate from the dispersion, and the size of the TEM size is consistent with DLS with PDI 

<0.2, we assume all the gold in the dispersion is associated with the nanoreactors. Finally, we confirmed 
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the amount of gold by ICP-OES. We found the polystyrene nanoreactors retained 74% of the gold from the 

THF-gold nanoparticle solution and the loss can be attributed to the hold-up volume during mixing. 

Next, we aim to independently tune the nanoreactor properties, size and gold loading, using 

formulation parameters. Nanoreactor assembly depends on the relative time scales of block copolymer 

micellization, gold nanoparticle clustering, and co-precipitate nucleation and growth. Therefore, the overall 

nanoreactor size can be affected by the ratio of core material to block copolymer, as well as the total 

concentration of components in the organic stream [73]. 

Varying the ratio of block copolymer to core materials has been an effective method for tuning 

nanostructure size via Flash NanoPrecipitation [72,97]. To vary nanoreactor size, the amount of block 

copolymer concentration can be increased (Figure 3.3), but the gold loading is also affected. In order to vary 

the nanoreactor size while holding the gold loading constant, we varied the total solids concentration 

holding the mass ratio of gold to polystyrene co-precipitate constant. As expected, the nanoreactor size 

increased with increasing total solids concentration. This effect has been attributed to an increase in the rate 

of particle core relative to nucleation [72,98]. Using this approach, the nanoreactor size could be tuned 

between 100 and 200 nm with nominal gold loading of 4 wt % (Figure 3.4a). This level of gold loading is 

comparable other polymer nanocomposite systems with low volume additions of inorganic nanoparticles 

that demonstrate enhanced functional performance [93]. 
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Figure 3.3:  Effect of block copolymer concentration on nanoreactor size.  Increasing the block copolymer 

concentration resulted in a decrease in nanoreactor size and gold loading.  Diameters reported are an 

average of four measurements; the error bars represent the standard deviation of four measurements. 

Next, we aimed to vary the gold loading independently of nanoparticle size. Holding the total core 

material mass constant and varying the ratio of gold to polymer resulted in a decrease in nanoparticle size 

with increasing gold concentration. In contrast, with gold nanoparticles and block copolymer without a co-

precipitate, Gindy et al. observed that increasing the gold loading results in an increase in nanocomposite 

particle size that is attributed to the increase in the amount of gold core relative to the block copolymer 

[21]. The difference is our use of a co-precipitate. We attribute the trend observed in this case to the increase 

in the number density of gold nanoparticles that act as nucleating agents that seed particle growth via 

heterogeneous nucleation [36,98]. 

To guide nanoreactor formulation, the Smoluchowski diffusion limited aggregation model has 

previously been used to formulate inorganic nanoparticle-polymer nanocomposite particles via Flash 

NanoPrecipitation [72]. Based on the model, nanoreactor size can be predicted using: 

𝑅 =  (𝐾
𝑘𝐵𝑇𝑐𝑐𝑜𝑟𝑒

5/3

𝜋𝜇𝜌𝑐𝐵𝐶𝑃

)

1/3

 (3.3) 
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where 𝑅 is the aggregate radius, 𝐾 is a constant of proportionality for formation time, kB is Boltzmann’s 

constant, 𝑇 is the absolute temperature, 𝑐𝑐𝑜𝑟𝑒  is the concentration of core material, 𝑐𝐵𝐶𝑃  is the concentration 

of block copolymer, 𝜇 is the solvent viscosity, and 𝜌 is the core material density. This model suggests that 

the nanoreactor size is affected by the volume more than the mass of the core. Thus, as an alternative to 

holding the mass of the core constant, we held the volume of the core constant, according to: 

𝑉𝑐𝑚 =
𝑚𝐴𝑢𝑁𝑃

𝜌𝐴𝑢𝑁𝑃

+
𝑚𝑃𝑆

𝜌𝑃𝑆

 (3.4) 

where 𝑉𝑐𝑚 is the total volume of the core materials, 𝑚𝐴𝑢𝑁𝑃 and 𝑚𝑃𝑆 are the masses of the gold nanoparticles 

and polystyrene core materials, respectively, finally 𝜌𝐴𝑢𝑁𝑃 and 𝜌𝑃𝑆 are the densities of the gold 

nanoparticles and polystyrene core materials, respectively. The core volume was selected from the standard 

formulation, a nominal gold loading of 4% and nanoreactor concentration of 2.4 mg/mL. Using the density 

of bulk gold and polystyrene, which are 19.32 g/mL and 1.04 g/mL, respectively, the core material volume 

was found to be 5.33 µL. Using the approach of constant volume, the gold loading was tuned between 4 

and 50 nominal wt % at a nanoreactor size of ~130 nm (Figure 3.4b). 

Overall, nanoreactors were assembled in a rapid, scalable, single-step method using Flash 

NanoPrecipitation. Nanoreactor size could be tuned independently of gold loading by varying the total 

solids concentration at a constant ratio of gold to polystyrene. Interestingly, the gold loading was tuned 

independently of nanoreactor size by varying the ratio of gold to polystyrene at constant total core volume. 

The constant core volume approach may be useful for formulations of multiple components with disparate 

densities e.g., inorganic particle-polymer nanocomposite particles. 
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Figure 3.4: Hydrodynamic diameter of polystyrene nanoreactors measured by DLS with varying total 

nanoreactor material concentration in the formulation. (a) By varying the total material concentration with 

constant ratio of components tunable nanoreactor size between 100 – 200 nm. (b) By varying the gold to 

polystyrene co-precipitate ratio at a constant nanoreactor core volume (red squares), as opposed to constant 

mass ratio (black circles), the nominal gold loading of polystyrene nanoreactors can be tuned at constant 

nanoreactor size (~130 nm). The standard formulation (4 wt % nominal gold loading, 2.4 mg/mL) is shown 

by the red triangle.  Diameters reported are an average of four measurements; the error bars indicated the 

standard deviation of the four measurements. 

3.3.2 Initial Characterization of Nanoreactor Performance 

To evaluate the catalytic performance of the nanoreactor, the reduction of 4-nitrophenol by sodium 

borohydride was used as a model reaction [99]. First, we confirmed the nanoreactors remained intact 

following the reaction; no significant change in size or polydispersity was observed by DLS (Figure 3.2a). 

Further, no macroscopic precipitation of gold nanoparticles was observed following the reaction. 

In these initial studies, we assume all of the gold nanoparticles included in the formulation are 

associated with the nanoreactor and contribute to the observed catalytic activity. From TEM (Figure 3.2c), 

the gold nanoparticles may be associated with the hydrophobic core or hydrophilic shell or may be 
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unencapsulated. Unencapsulated gold was not observed precipitating from the nanoreactors and would 

not contribute to the observed activity (Table 3.1, DDT supported AuNP). This is likely due to the lack of 

solubility as other hydrophobic inorganic nanoparticles have shown activity in water:solvent reaction 

mixtures [49]. If the dispersions contained trace amounts of unencapsulated gold, the reported values for 

k1 would be slightly underestimated. The conversion of 4-nitrophenol confirmed the gold nanoparticles 

associated with the nanoreactors were catalytically active (Figure 3.5a). The apparent reaction rate constant 

per surface area of gold, k1, for the nanoreactors was 0.414 ± 0.095 L m-2s-1, which is comparable to the 

citrate-stabilized, 5 nm gold particles. 

Table 3.1: Rate constants and induction times for various gold nanoparticles. (n=3)  

Support 

Diameter 

(nm) 

k1 (L m-2 s-1) Induction Time (s) Reference 

PS 5 0.414 ± 0.095 229 ± 21 This Paper 

DDT 5 Undetected N/A This Paper 

Citrate 5 0.173 ± 0.026 5 ± 1 This Paper 

Ligand-Free 7 0.17 N/A [47] 

Comparing the performance of the nanoreactors with other metal nanoparticle-polymer systems using 

the reaction rate considering the amount of gold catalyst (e.g., k1 in Table 3.2), the nanoreactors demonstrate 

over 110-fold better catalytic activity than gold within poly(N-isopropylacrylamide)-block-poly-4-vinyl-

pyridene (PNIPAm-b-P4VP) micelles, despite a larger overall nanoreactor size. This difference may be 

attributed to P4VP-gold interactions that affect availability of active sites. Thus, the use of non-interacting 

co-precipitates and Flash NanoPrecipitation may provide an advantage to other polymer micelle systems 

that rely on gold-polymer interactions for self-assembly. 
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Further, the induction time and kinetics are similar to immobilized gold nanoparticles within 

polyelectrolyte brush shell on polystyrene core particle systems [54]. Specifically, the kinetics of the 

nanoreactors we report with 5 nm gold are comparable to polyelectrolyte brushes with 2.2 nm gold 

nanoparticles at the surface of the core-shell nanostructures, which are expected to have similar activities 

[43]. This result suggests that association of the catalyst with the nanoreactor does not sacrifice reactivity. 

Table 3.2: Rate constants for various metal/polymer nanocomposite nanoreactors. (n=3) 

Support 

AuNP Diameter 

(nm) 

k1 (L m-2 s-1) Reference 

Polystyrene nanoreactors 5 (4.14 ± 0.95) × 10-1 This Paper 

PNIPAM-b-P4VP Micelles 3.3 3.70 × 10-3 [100] 

Polyelectrolyte brush 2.2 2.70 × 10-1 [55] 

 

Leaching studies were also carried out to evaluate the effectiveness of catalyst incorporation within 

the polymer nanoreactor.  Polymer nanoreactors prepared via FNP were compared to polystyrene 

nanoparticles with hydrophobic gold nanoparticles added to the mixture.  In this way the effect of gold 

nanoparticle incorporation via FNP could be addressed.  In both cases, there was an observed decrease in 

Kapp after reuse.  The gold nanoparticles added to the polymer nanoparticles lost all activity after the first 

recycling step (Figure 3.5a).  For the gold nanoparticles added to polymer nanoparticles, no catalytic 

activity was observed after the first recycle whereas the nanoreactors retain activity after three recycles 

(Figure 3.5a), indicating that the retained activity can be attributed to the nanoreactors.  
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Figure 3.5:  Leaching studies of polymer nanoreactors and polystyrene nanoparticles with gold 

nanoparticles added to solution.  (a) The apparent rate constants of polymer nanoreactors (red bars) and 

polystyrene nanoparticles with added gold nanoparticles (green bars) after subsequent recycling steps.  

Reported rate constants are an average of three trials; the error bars represent the standard deviation of 

three trials.  (b)  The gold concentration of the reaction solution at each recycling step for polymer 

nanoreactors.  The gold concentration reported is an average of three trials; the error bars represent the 

standard deviation of three trials.  No activity is seen from the polystyrene nanoparticles with added gold 

nanoparticles after 1 recycling step.     

The decrease in k1 after three recycles (Table 3.3) suggests leaching from the gold nanoreactor does 

occur with multiple reuses.  ICP-OES analysis on the filtrate determined there was ~30% reduction in gold 

content with each recycle step (Figure 3.5b); thus, the loss in activity corresponds to loss of gold.  Since 70% 

retention of nanoparticles has been reported using centrifugal based separations [101], the loss of gold can 

be attributed, in part, to the loss of nanoreactors. 
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Table 3.3:  Reaction rate constant per catalyst surface area after nanoreactor recycling. (n=3) 

Recycle Step k1 (L m-2 s-1) 

0 0.4139 ± 0.0952 

1 0.2246 ± 0.0901 

2 0.4419 ± 0.1266 

3 0.1984 ± 0.0632 

3.3.3  Probing Potential Mass Transfer Limitations 

3.3.3.1. Induction Time 

Notably, the induction time of the encapsulated gold nanoparticles is ~50-fold longer than citrate-

stabilized nanoparticles (Table 3.1). This relatively long induction time has been previously observed with 

gold-nanoparticle-polymer nanoreactor systems. It may be attributed, in part, to slow surface restructuring 

upon encapsulation within the hydrophobic polystyrene microenvironment [55]. Additional factors that 

may increase induction time include: poisoning of the active sites when encapsulated within the 

nanoreactor core, reduction of the dissolved oxygen present in the reaction dispersion, and/or diffusion 

limitations [102,103]. 

To further understand the nature of the induction time in the nanoreactor system, we investigated 

both the sequence of addition and the time between adding the reactants (Figure 3.6). Under standard 

model reaction conditions, 4-nitrophenol was added first and allowed to equilibrate for 1 minute, followed 

by the addition of the sodium borohydride. To probe potential diffusion limitations, we increased the time 

between adding the 4-nitrophenol and sodium borohydride 10-fold, and no significant change in induction 

time was observed. This result suggests that the induction time is not related to diffusion of 4-nitrophenol. 

 



56 

 

 

Figure 3.6: The effect of the sequence of reagent addition on the induction time of the 4-nitrophenol 

reaction. In all experiments, the 4-nitrophenol and sodium borohydride concentration followed standard 

conditions of 0.01 mM and 0.01 M, respectively. The indicated reagent was the first to be added, after which 

the reagent was allowed to equilibrate in the solution for either 1 minute (black striped bars) or 10 minutes 

(red solid bars). The end of the equilibration period was the addition of the second reagent, at which point 

the reaction could progress.  Each reported induction time is an average of three trials; the error bars 

represent the standard deviation of three trials. 

Moreover, switching the sequence to adding sodium borohydride first, followed by 4-nitrophenol 

after 1 minute of equilibration did not significantly affect the induction time (Figure 2.7). Interestingly, 

when the equilibration time was increased in this case, the induction time was reduced by two orders of 

magnitude. This ~5 second induction time is comparable to the value measured for citrate-capped gold 

nanoparticles. This result indicates that long induction times relative to citrate stabilized gold nanoparticles 

may be attributed to diffusion of sodium borohydride. Further examining the effect of equilibration time, 

the induction time decreased from ~100 to 5 seconds when increasing the equilibration time from 1 to 3 

minutes (Figure 3.7). Further increasing the equilibration time beyond 3 minutes did not significantly 

impact the induction time. Thus, it appears that it takes ~3 minutes for sufficient sodium borohydride to 

partition into the nanoreactor for the reaction to progress. This required equilibration time can be reduced 
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by increasing the concentration of the borohydride (constant ratio of borohydride to 4-nitrophenol, Figure 

3.8) which further indicates the relatively long induction time of the nanoreactors relative to citrate 

stabilized gold nanoparticles can be attributed to diffusion of the borohydride. 

 

Figure 3.7: The effect of sodium borohydride equilibration on the induction time of the 4-nitrophenol 

reaction. Standard reagent concentrations of 0.01 mM and 0.01 M were used for 4-nitrophenol and sodium 

borohydride, respectively. Data points marked with an asterisk (*) are significantly different than each 

other (p < 0.1).  Reported induction times are an average of three trials; the error bars represent the standard 

deviation of three trials. 

Figure 3.8:  The effect of 4-nitrophenol interval of addition (reverse addition sequence) on the induction 

time present in the reduction of the 4-nitrophenol at varying concentration of reagent.  As reagent 



58 

 

concentration increases, the length of addition interval necessary to achieve the minimum induction time 

of roughly 5 seconds decreases.  Reported induction times are an average of three trials; the error bars 

represent the standard deviation of three trials.   

3.3.3.2.  Reaction Rate 

Next, we further investigated potential mass transfer limitations on the observed reaction rate 

following the induction time. A useful tool for determination of diffusion limitations is the second 

Damköhler number (DaII), which is a ratio of the reaction rate to the diffusion rate given by: 

𝐷𝑎𝐼𝐼 =  
𝑘𝑎𝑝𝑝𝐶𝑛−1

𝛽𝑎
 (3.5) 

where n is the reaction order, 𝛽 is the mass transport coefficient (which is a quotient of the diffusion 

coefficient and the characteristic length of the system), and a is the interfacial area. To calculate DaII for a 

130 nm diameter particle, the interfacial area (nanoreactor area per unit volume of nanoreactor dispersion) 

was estimated to be 2 × 104 m-1 based on the number of nanoreactors estimated using the aggregation 

number of the block copolymer previously reported [104,105]. The diffusion coefficient for 4-nitrophenol 

in the nanoreactor system was experimentally determined by NMR. Using PFG-NMR in conjunction with 

the STD spectroscopy, the effective diffusion coefficient of the 4-nitrophenol within the nanoreactors was 

determined to be 1.91 ± 0.01 × 10-8 m2/s (Figure 3.9). Using this experimentally determined effective 

diffusion coefficient, the DaII is on the order of 10-6 indicating the reaction is significantly slower than 

diffusion; therefore, the apparent kinetics are reaction limited. 
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Figure 3.9: Results of saturation transfer differentiated PFG-NMR of 4-nitrophenol in a solution of 

polystyrene nanoreactors.  The blue line corresponds to the curve fit.  The difference spectra correspond to 

the signal from the 4-nitrophenol in closest proximity to polystyrene (within the nanoreactors), which we 

interpret as an effective diffusion coefficient of 4-nitrophenol within the nanoreactors of 1.9 x 10-8 m2/s.   

A complementary approach was to consider the theoretical bimolecular reaction between 4-

nitrophenol and nanoparticle catalyst using the Smoluchowski diffusion limited reaction model [106].  For 

a surface catalyzed bimolecular reaction, in the limit of slow diffusion (compared to electron transfer), the 

bimolecular rate constant per gold nanoparticle, kbm, can be approximated as 

𝑘𝑏𝑚 = 4𝜋𝑟𝐷                                                                          (3.6) 

where r is the radius per nanoreactor and D is the diffusion coefficient.  The estimated value of the kbm can 

be compared, after multiplication with Avogadro’s constant, to the experimentally observed rate constant 

k  as an indication of mass transfer limitations.  Specifically, the experimentally observed rate kinetics are 

described as: 

𝑑[4𝑁𝑃]

𝑑𝑡
= 𝑘[4𝑁𝑃][𝐴𝑢] = 𝑘𝑎𝑝𝑝[4𝑁𝑃]                                                        (3.7) 

where [4NP] and [Au] are 4-nitrophenol concentration and gold nanoparticle catalyst concentration 

respectively, k is the 2nd order rate constant and kapp is the pseudo-first-order rate constant and  

𝑘𝑎𝑝𝑝 = 𝑘[𝐴𝑢]                                                                     (3.8) 
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Therefore, the 2nd order rate constant, k, can be determined from measuring the kapp as a function of 

gold catalyst concentration [105,106]. An experimentally determined k value approaching (or greater than) 

kbm would suggest a diffusion limitation.  

We therefore varied the gold concentration by (1) varying the nanoreactor concentration to probe 

potential external diffusion limitations, and (2) varying the gold loading at constant nanoreactor 

concentration to examine potential internal diffusion limitations (Figure 3.10). When the nanoreactor 

concentration or the gold loading was increased, kapp increased; the 2nd order rate constant was on the order 

of 106 M-1s-1. These values are much lower than the kbm ~ 108 M-1s-1, indicating that neither internal nor 

external diffusion from the bulk solution to the nanoreactor limited the apparent reaction kinetics. 

 

Figure 3.10: The effect of gold concentration on the reaction rate kinetics of 4-nitrophenol reduction by 

varying (a) the nanoreactor concentration to probe external mass transfer and (b) varying the nanoreactor 

loading to probe internal mass transfer.   Reported rate constants are an average of three trials; the error 

bars represent the standard deviation of three trials. 

Since there were no indications of diffusion limitations associated with the reaction following the 

induction time, we further characterized the reaction kinetics using Langmuir-Hinshelwood kinetics. Based 

on the previously established two-step reaction model [54], and fitting the measured concentration of 4-

(a) (b) 
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nitrophenol as a function of time (normalized after the induction time for conversions up to 30%) [54], the 

kinetics were comparable to other gold nanoparticle-polymer nanoreactor systems (Table 3.4). 

Interestingly, ka and kb observed for the gold encapsulated within the nanoreactors are comparable to 

ligand-free gold nanoparticles. This result suggests that the reactivity of the gold nanoparticle surface is 

not significantly affected by self-assembly and their incorporation into the nanoreactors. 

Table 3.4: Langmuir-Hinshelwood rate constants obtained from fits to experimental data. (n=3) 

Reactor ka (104 mol/m2 s) kb (105 mol/m2 s) Reference 

Polystyrene Nanoreactors 4.32 ± 0.14 4.3 ± 0.5 This Study 

Ligand-Free 5.8 ± 3.1 5.4 ± 2.0 [49] 

Brush Shell 9.7 ± 2.9 7.8 ± 1.7 [54] 

 

The model and experimental data are plotted in Figure 3.11 with good agreement.  The full fit 

parameters are provided in Table 3.5.   

Figure 3.11:  Langmuir-Hinshelwood model fit of experimental data for polystyrene nanoreactors. The 

black circles correspond to experimental data points and the red line represents the fitted curve.  Reported 
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4-nitrophenol concentrations are an average of three trials; the error bars represent the standard deviation 

of three trials. 

Table 3.5: Langmuir-Hinshelwood Fitting Parameters [54]. 

Knip (L/mol) Kbh (L/mol) Khx (L/mol) S (m2/L) Cbh (mol/L) Cnip (mol/L) n 

4600 62 175000 0.084 0.1 0.0001 0.5 

 

Since the data is well described by the model, the assumptions of first-order rate kinetics, without 

mass transfer limitations, appear valid within the polymer microenvironment.   For fitting, we assume the 

initial concentrations of the reagents are the same as the bulk.  Given the high solubility of borohydride in 

water compared to organic solvents, the concentration of sodium borohydride of local microenvironment 

may be lower than the bulk, which may lead to underestimation of the rate constants.  

Overall, diffusion and partitioning of sodium borohydride into the polymer nanoreactor affect the 

induction time for the reaction. Sufficient equilibration time between adding the sodium borohydride and 

the 4-nitrophenol (~3 minutes) for the borohydride to partition and diffuse minimizes induction time. 

Notably, mass transfer effects are not observed after the induction time and the intrinsic kinetics are 

comparable to ligand-free gold nanoparticles. 

3.4 Conclusions 

Overall, we have presented rapid, scalable self-assembly of hybrid metal nanoparticle catalyst-

polymer composite nanoreactors. The size and gold loading of the nanoreactors can be tuned 

independently, with sizes and nominal loadings ranging from 100-200 nm and 4-50 wt% respectively. 

Using the 4-nitrophenol reduction as a model reaction, the induction time is affected by sequence or reagent 

addition, time between addition, and reagent concentration. Combined, our experiments indicate that the 
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induction time is most influenced by diffusion of sodium borohydride. Scaling analysis and effective 

diffusivity measured using NMR, the observed reaction rate after the induction time are reaction- rather 

than diffusion-limited. Finally, the intrinsic reaction kinetics of gold associated with the polymer was 

comparable to ligand-free particles indicating the self-assembly process and resulting polymer 

microenvironment does not de-activate or block the catalyst active sites. Building on this foundational 

study, practical considerations such as nanoreactor recycling will be considered in future work. 
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Chapter 4 : Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic 

Microenvironments: Effect on 4-Nitrophenol Reduction Rate Kinetics  

Portions of this work published in Polymers 2020, 12(8), 1774; https://doi.org/10.3390/polym12081774 

Abstract  

Confining reactions to hydrophobic microenvironments using self-assembled amphiphilic small molecules 

and macromolecules can facilitate organic phase reactions in a bulk aqueous phase to formulate self-

assembled filled polymer micelle nanoreactors (NR) encapsulating gold nanoparticle catalysts (AuNP) 

within various hydrophobic microenvironments with comparable hydrodynamic nanoreactor size and 

gold concentration in the nanoreactor dispersion.  We systematically vary the properties of the 

hydrophobic microenvironment and determine that core materials that interact with gold are beneficial for 

improving incorporation efficiency of the gold nanoparticles into the nanocomposite nanoreactor during 

self-assembly but decrease catalytic performance.  For the non-interacting core materials, the catalytic 

performance is strongly affected by the hydrophobic microenvironment.  Specifically, the apparent reaction 

rate per surface area using castor oil (CO) is over 8-fold greater than polystyrene (750 g/mol, PS 750).  The 

increase in apparent catalytic performance can be attributed to differences in reactant solubility rather than 

differences in mass transfer or intrinsic kinetics; higher reactant solubility enhances apparent reaction rates.  

While we note a trade-off between stability and apparent kinetics as the PS 750 NRs had the lowest 

apparent reaction rate per surface area with the best stability, full conversion of 4-nitrophenol was achieved 

within 3 minutes for at least 10 sequential reactions demonstrating that the nanoreactors can be used for 

multiple reactions. 

4.1 Introduction 

Confining reactions to hydrophobic microenvironments through the use of self-assembled 

amphiphilic molecules allows traditionally organic phase reactions to be carried out in a bulk aqueous 

phase.  Replacing the organic solvent with these “nanoreactors” may reduce solvent waste.  Furthermore, 
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confining the reactions such small volumes has shown added benefits of improved efficiency and 

selectivity over bulk phase reactions [5,8,107]. 

Small molecule amphiphiles have been used to facilitate a wide range of reactions.  For example, 

Lipshutz and co-workers have developed a series of “designer surfactants” for aqueous micellar catalysis.  

Using several generations of PEG based amphiphilic surfactants they have demonstrated nanoreactor 

applicability to a wide range of organic reactions such as cross-couplings [16–18], oxidations [19], 

reductions [20], and peptide synthesis [21] all in bulk aqueous solutions with high yield.  By designing a 

surfactant molecule with longer PEG portion and a shorter carbon linker between vitamin E and PEG, the 

micelles were larger and faster reactions were observed [23] in various transition metal-catalyzed reactions 

(e.g. Suzuki-Miyaura, cross metathesis, amination, C-H activation, borylation, silylation, etc.).  Changing 

the hydrophobic portion of the surfactant from vitamin E to β-sitosterol improved conversion of cross 

metathesis reactions [23,24].   Surfactants with polar sulfone components within the nonpolar, hydrophobic 

cores used to facilitate peptide synthesis has recently been reported [21].  It is important to note design of 

these systems has generally involved syntheses of libraries of new amphiphilic molecules and screening 

their reactivity [21].    

Macromolecular amphiphilic nanoreactor systems have also been considered, with improved stability 

compared to self-assembled small molecule amphiphilic systems [26,27].  For example, O’Reilly and co-

workers incorporated 4-(N,N-dimethylamino)pyridine, a nucleophilic catalyst for a number of reactions 

including esterifications, into the hydrophobic block of an amphiphilic block copolymer using reversible-

addition fragmentation chain (RAFT) polymerization which self-assembled into kinetically frozen micelles.  

The stable, micellar nanoreactors catalyzed the competitive esterification between multiple anhydrides.  

More hydrophobic substrates resulted in higher conversions.  Further, the hydrophobicity of the substrate 

could also be used to modify selectivity [26,27].  In other work, L-proline, a chiral organocatalyst for the 

aldol reaction, was incorporated into the hydrophobic block of an amphiphilic block copolymer via 
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reversible-addition fragmentation chain (RAFT) polymerization.  Upon self-assembly in water, core-shell 

micellar nanoreactors with catalytic hydrophobic cores were achieved that were significantly more efficient 

than the unsupported catalyst [31] which was attributed to the hydrophobic microenvironment of the 

micelle core.  The catalyst loading and core hydrophobicity affected the turnover number but the effects 

could not be decoupled from micelle swelling.   

Studies of the effect of nanoreactor composition on nanoreactor performance are limited.  With 

micellar (small molecule and macromolecular) nanoreactors, such a study necessitates synthesis of a new 

amphiphilic stabilizer for each nanoreactor.  Micellar nanoreactors of gold nanoparticles stabilized by water 

soluble 1, 2, 3-triazlyl dendronized polymers have also been reported by Liu et al. who observed that the 

catalytic performance is affected by the length and architecture (i.e. linear or branched), as well as the 

composition of the polymer stabilizer.  These results demonstrate that properties of the polymer 

microenvironment influence the catalytic performance.  The dendronized polymer-gold nanoparticle 

composite formed self-assembled micelles in water and was used to catalyze the reduction of 4-nitrophenol 

to 4-aminophenol.  Turnover frequencies (TOF) were reported as high as 7350 h-1.  Varying the properties 

in this case requires synthesis of different types of 1, 2, 3-triazlyl ligands as well as click-compatible polymer 

tails  [108].  As an alternative, Flash Nanoprecipitation offers a simple approach to produce filled polymer 

micellar nanoreactors with comparable hydrodynamic size and catalyst concentration in the nanoreactor 

dispersion but different core materials in order to study the effects of composition of reactor performance.  

Systematic investigations to understand the effect of the hydrophobic microenvironment core material on 

the nanoreactor performance with respect to catalyst performance have yet to be established. 

Therefore, our focus in this work is to investigate the effect of hydrophobic microenvironment core 

material on catalytic performance of self-assembled polymer nanoreactors fabricated via Flash 

NanoPrecipitation.  Specifically, in this work, we formulate self-assembled filled polymer micelle 

nanoreactors encapsulating gold nanoparticle catalysts with various hydrophobic microenvironments. 
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Formation of the nanoreactors is indicated by DLS and TEM.  Since our focus is evaluating the catalytic 

performance of nanoreactors with various hydrophobic materials, we have selected the reduction of 4-

nitrophenol (4NP) with sodium borohydride as a model reaction.  Because this reaction proceeds at room 

temperature without side products and byproducts, it is a well-established model reaction for kinetic 

studies using gold nanoparticles [51,52,54,76,77,109,110].  We also note that reduction of 4-nitrophenol is 

important in waste water treatment [111,112] and the product resulting from the model reaction, 4-

aminophenol, has several applications e.g. a corrosion inhibitor as well as an intermediate in the 

pharmaceutical industry [113].  We evaluate the effect of hydrophobic microenvironment on differences in 

effective diffusion coefficient, localized reagent concentrations through experimentally determined 4-

nitrophenol nanoreactor core:water partition coefficients, as well as inherent rate kinetics using the 

Langmuir Hinshelwood model.  The effect of core material on nanoreactor stability when performing 

sequential reactions is also discussed. 

4.2 Materials and Methods  

4.2.1 Materials 

Polystyrene (PS, Mw 750 g/mol) was purchased from Polymer Source Inc. Sodium borohydride, 4-

nitrophenol, dodecane, dodecanethiol, and potassium chloride were purchased from Sigma Aldrich (St. 

Louis, MO, USA).  Castor oil was purchased from Alfa Aesar (Haverhill, MA, USA).  Dodecylamine was 

purchased from Beantown Chemical Corporation (Hudson, NH, USA).  Dodecanethiol (DDT) stabilized 5 

nm nanoparticles, tetrahydrofuran (tetrahydrofuran (THF), HPLC grade), ethanol (ACS reagent grade), 

and diethyl ether (ACS reagent grade) were purchased from Fisher Scientific (Fairmont, NJ, USA). 

Environmental Grade Hydrochloric Acid 30-38% and Environmental Grade Nitric Acid 70% were 

purchased from GFS Chemicals (Columbus, OH, USA). The 1H-NMR solvent D2O with 4,4-dimethyl-4-

silapentane-1-sulfonic acid DSS as an internal standard was purchased from Cambridge Isotope Lab, Inc 
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(Andover, MA, USA).  These chemicals and materials were used as received. Polystyrene-b-polyethylene 

glycol (PS-b-PEG, PSm-b-PEGn where m = 1600 g/mol and n = 5000 g/mol) was obtained from Polymer 

Source (Product No. P13141-SEO). Prior to use, PS-b-PEG was dissolved in THF (500 mg/mL) and 

precipitated in ether (~1:20 v/v THF:ether). The PS-b-PEG was recovered by centrifuging, decanting, and 

drying under vacuum at room temperature for 2 days as previously described [110]. 

4.2.2 Nanoreactor Assembly 

Initially, the as-received dodecanethiol stabilized gold nanoparticles in toluene (1 mL) were 

precipitated into ethanol (45 mL) and filtered using a Buchner funnel. The filtered nanoparticles were 

resuspended in THF and concentrated via evaporation at room temperature overnight to achieve a nominal 

concentration of around 20 mg/mL for nanoreactor self-assembly. The final concentration was confirmed 

by inductively coupled plasma optical emission spectroscopy using an Agilent 5110 (ICP-OES, Santa Clara, 

CA, USA). UV spectra collected on an Ocean Optics FLAME-S-UV-VIS with a HL-2000-FHSA light source 

(Largo, FL, USA) were compared before and after the solvent switch to confirm processing did not 

significantly affect gold nanoparticle size.   

Nanoreactors were produced via Flash NanoPrecipitation similar to previous reports [110].  Briefly, 

PS-b-PEG (12 mg), dodecanethiol stabilized 5 nm gold nanoparticles (1 mg), and PS homopolymer, MW 750 

g/mol, abbreviated PS 750 (co-precipitate, 11 mg) were added to 1 mL of tetrahydrofuran (THF) and 

sonicated at 55 °C for 30 minutes. Using a manually operated confined impinging jet mixer with dilution 

(CIJ-D) [23,24] and achievable Reynolds’ numbers > 1,300, the resulting THF mixture was rapidly mixed 

against 1 mL of water into a stirring vial of water (8 mL). The resulting dispersion (10 mL total) of 

nanoreactors was stored at room temperature for further characterization and analysis without 

purification.   
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In this work, we formulated nanoreactors encapsulating gold nanoparticle catalysts with various 

hydrophobic microenvironments.  To create nanoreactors with various microenvironments, the PS 

homopolymer co-precipitate was switched for a different co-precipitate to tune the hydrophobic 

microenvironment.  The various microenvironments used in this study were dodecane, dedecylamine, 

dodecanethiol, and castor oil.   

For comparison to nanoreactors prepared via FNP, we added gold nanoparticles to pre-formed 

polymer nanoparticles (NP w AuNP).  Polymer nanoparticles (NP) filled only with PS 750 or CO were 

prepared via FNP.  Following FNP, gold nanoparticles suspended in THF (500 µL, 2 mg/mL) was added 

dropwise to a stirring a 5 mL dispersion of pre-formed polymer nanoparticles over 5 minutes.   

4.2.3 Nanoreactor Characterization 

Nanoreactor size (i.e. hydrodynamic diameter) was measured after mixing using a Malvern Zetasizer 

Nano ZS (Westborough, MA, USA) with a backscatter detection angle of 173°. Intensity weighted size 

distributions are reported using the average of four measurements of the intensity weight distributed with 

normal resolution. The reported size is the peak 1 mean intensity. The polydispersity index (PDI) is defined 

from the moment of the cumulant fit of the autocorrelation function calculated by the instrument software 

(appropriate for samples with PDI < 0.3) and is reported as a measure of particle size distribution [71]. For 

stability analysis, reaction solutions were allowed to sit for at least 24 hours prior to analysis to reduce the 

formation of bubbles within the solution.   

UV absorbance spectra (300 to 1200 nm) of the nanoparticle dispersions were measured at room 

temperature with an Ocean Optics FLAME-S-UV-VIS with a HL-2000-FHSA light source (Largo, FL, USA) 

after formulation.  

For visualization by TEM, samples were prepared by submerging a grid in a diluted nanoreactor 

solution (1:10) for 1 hour.  After submersion, the grids were removed from the solution and dried at ambient 
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conditions overnight.  Samples were imaged using a Zeiss Libra 120 TEM (Oberkochen, Germany) using 

an accelerating voltage of 120 kV.   

To determine the gold concentration in the nanoreactor dispersions, the nanoreactor dispersions were 

dissolved in THF and digested in aqua regia (1:3 nitric acid:hydrochloric acid by volume) for at least 24 

hours.  The samples were then diluted to 5% v/v aqua regia. Gold concentration of the digested sample was 

measured using inductively coupled plasma optical emission spectroscopy measurements with an Agilent 

5110 (Santa Clara, CA, USA).  A matrix modifier, potassium chloride (2 mg/mL) in 5% v/v aqua regia, was 

used to increase the ion concentration which proved beneficial for peak resolution.  The reported 

concentrations are the average of three trials.   

 To determine the incorporation efficiency of the catalytic gold nanoparticles into the 

nanocomposite nanoreactor structure during self-assembly, the nanoreactor dispersions were extracted 

with an equal volume of diethyl ether thrice to remove gold nanoparticles that were unassociated with the 

nanoreactors.  The gold content in the aqueous phases following extraction were analyzed by ICP-OES.  

Incorporation efficiency was calculated according to: 

𝐼𝐸 =  
[𝐴𝑢𝑎𝑞]

[𝐴𝑢𝑖]
                                                                              (4.1) 

where 𝐼𝐸 is the incorporation efficiency, [𝐴𝑢𝑖] is the gold concentration of the original, unextracted solution 

(total gold in the nanoreactor dispersion), and [𝐴𝑢𝑎𝑞] is the gold concentration of the aqueous fraction after 

extraction (gold associated with the nanoreactor after extracted with ether which removes gold 

nanoparticles that are unassociated with the nanoreactors).   

4.2.4 Kinetic Analysis 

The catalytic performance of the nanoreactors was evaluated using the reduction of 4-nitrophenol with 

sodium borohydride as a model reaction using well established procedures [54,77]. Generally, gold 
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nanoreactors (NR) (120 uL, 0.0079 mol% AuNP) produced using FNP were diluted with water (1.527mL) 

in a quartz cuvette with a stir bar.  The nanoreactor solution and sodium borohydride addition solution 

volumes were adjusted such that the final reaction volume was 2 mL and the sodium borohydride solution 

had an initial concentration of 6 M. The reaction was monitored under stirring with an Ocean Optics 

FLAME-S-VIS-NIR-ES (Largo, FL, USA) using an HL-2000-FHSA light source (300-1200 nm), with a CUV-

UV cuvette holder (Ocean Optics) placed on a stir plate. The spectrometer was blanked to the reaction 

mixture.  Typically, 4-nitrophenol (20 uL of 0.01M solution) was added to the reaction mixture, and data 

collection began. After 1 minute, sodium borohydride (333 uL of a 6 M solution) was added to the stirring 

reaction mixture.  Scans were taken every millisecond and averaged over 10 scans with data recorded every 

50 milliseconds. The reaction was tracked by monitoring the change in intensity of 4-nitrophenol peak at 

425 nm. Absorbance at 425 nm was background corrected be subtracting out the time dependent 600 nm 

absorbance intensity from the corresponding data point.  The induction period was fit to a line, and the 

data set was normalized to the maximum data point amongst the first witnessed domain of, at least, five 

consecutive points to fall 1% below the fitted line.  The final reaction mixture contained less than 0.01 vol% 

THF that would have been residual from the self-assembly process. The values of Kapp and induction time 

are the averages (± standard deviations) of at least 3 trials of each experiment.  

4.2.4.1. Induction Time Determination 

Initially, the spectra of the polymer nanoreactor dispersion was recorded as a reference to be 

subtracted from subsequent spectra as background. The 4-nitrophenol was added resulting in an increase 

in absorbance at 425 nm. The increase in absorbance due to the addition of 4-nitrophenol occurs within 30 

seconds. After 1 minute, the sodium borohydride is added, which results in a further increase in absorbance 

at 425 nm due to formation of the 4-nitrophenolate ion. The initiation of reaction conditions corresponding 

to the start of the induction period was defined as the time at which the absorbance at 425 nm increased to 
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at least 10% of the absorbance at 45 seconds.  The induction time itself is characterized by a slow 

decrease (0.002 Abs/s) in absorbance that is followed by a sharp (> 0.01 Abs/s) decline in absorbance 

indicating beginning of the reduction reaction, which signifies the end of the induction period. Changes in 

the slope of the absorbance vs. time was used to quantitatively determine the induction time.   Specifically, 

the absorbance vs. time during the induction time was presumed to be adequately described by a line 

calculated from fitting the initial region of the induction period (no less than 10% of the total approximate 

induction time domain).  For example, if the induction period lasted roughly 300 seconds based upon visual 

inspection, the linear fit of the induction time was based on the first 60 seconds of the induction time.  Next, 

the maximum value within the first five, or more, consecutive data points which were at least 1% less than 

the fitted line was used to normalize the data set.  Importantly, these consecutive data points must occur 

after the start of the induction time period.  The time point designating the end of the induction time was 

then defined as the last occurrence of the normalized data point with a value of 1.   

4.2.4.2. Apparent Reaction Rate Constant 

 For analysis of the reaction rate, the natural log of the normalized absorbance was plotted with 

respect to time and regions of two distinct slopes were observed.  The first region has been attributed to 

formation of an intermediate [54].   In order to avoid analysis of the intermediate reaction, the apparent 

reaction rate was calculated from the second region corresponding to when the normalized absorbance fell 

below 0.67.  Data corresponding to a 15% conversion was analyzed when determining apparent reaction 

rate.  If the 15% conversion domain contained less than 4 data points, one data point above the determined 

region and below the region were included such that no analysis included less than three data points.  The 

induction time and apparent reaction rate are reported as the average ± standard deviation of three 

experimental trials.   
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With a sufficiently large excess of sodium borohydride compared to 4-nitrophenol, the reaction 

kinetics can be described by pseudo-first-order kinetics.  For heterogeneous catalysts, the apparent rate 

constant is assumed to be proportional to the surface of the catalyst described by [54]:  

−
𝑑𝑐

𝑑𝑡
= 𝑘𝑎𝑝𝑝𝑐 = 𝑘1𝑆𝑐                                                                 (4.2) 

where c is the concentration of 4-nitrophenol at time (t), kapp is the apparent rate constant, k1 is the rate 

constant normalized to surface area of gold nanoparticles per unit volume of the reaction (𝑆).  

Experimentally, k1 is determined by the change in 4-nitrophenol concentration after the induction period 

and the mass of gold measured by ICP (surface area calculated assuming 5 nm spherical particles).  Pseudo-

first order rate kinetics are characteristically described by a linear fit when the natural log of the reagent 

concentration is plotted with time.    

4.2.5 Partition Coefficient Determination 

 To better understand the reactant concentration in the hydrophobic microenvironments, our goal 

was to determine the partition coefficient of the 4-nitrophenol between water and the hydrophobic 

microenvironment used as the nanoreactor core which is a ratio of the concentration in the hydrophobic 

microenvironment to the bulk aqueous phase.  To estimate this partition coefficient, an aqueous solution 

of 4-nitrophenol (0.1 mM) was placed in equilibrium with an immiscible organic solvent representing the 

polymer nanoreactor core material.  Toluene was used as a proxy for polystyrene, while castor oil was used 

directly.  After vigorous shaking for 10 minutes, the emulsion was allowed to rest for 1 week prior to 

analysis.  After 1 week, UV-Vis analysis was used to analyze the absorbance of 4-nitrophenol in the original 

solution and the aqueous phase of two phase equilibrium.  According to Beer’s law (concentration is 

proportional to absorbance), the partition coefficient was calculated using the absorbance at 425 nm: 

𝑃4𝑁𝑃 =  
[4𝑁𝑃]ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐

[4𝑁𝑃]𝑎𝑞
=  

1−
𝐴𝑏𝑠4𝑁𝑃𝑎𝑞

𝐴𝑏𝑠4𝑁𝑃𝑖

𝐴𝑏𝑠4𝑁𝑃𝑎𝑞

                                                           (4.3) 
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where 𝑃4𝑁𝑃 is the partition coefficient is the ratio of the  of 4-nitrophenol in the hydrophobic 

microenvironment of the nanoreactor core and water,  𝐴𝑏𝑠4𝑁𝑃𝑎𝑞
 is the absorbance of 4NP in the aqueous 

phase of the equilibrium and 𝐴𝑏𝑠4𝑁𝑃𝑖
 is the absorbance of 4NP in the initial solution of water prior to being 

placed into equilibrium with the organic phase.  The absorbances were averages of three measurements.   

4.2.6  NMR Measurements 

To evaluate effective transport of the 4-nitrophenol, 1H-NMR spectroscopy and pulsed field 

gradient (PFG) NMR, combined with saturated transfer difference (STD) spectroscopy, using a Bruker 800 

MHz cryo-probe (Billerica, MA, USA) was performed in accordance with the methods described previously 

(our paper). Briefly, 4-nitrophenol molecules in close proximity to the nanoreactor core were analyzed 

based on spin diffusion of selectively saturated core material (polystyrene or castor oil), in conjunction with 

an applied magnetic field gradient. Relevant peak intensities were analyzed as a function of gradient 

strength to determine the diffusion coefficient of 4-nitrophenol molecules of interest. Since nanoreactors 

diffuse in free solution at least 3 orders of magnitude slower than molecules, the measured diffusion 

coefficient was considered the effective diffusion coefficient of the solute within the nanoreactor [88,89].  A 

detailed method explanation has been published previously [110]. 

4.2.7 Langmuir-Hinshelwood Kinetics 

For more detailed kinetic analysis, we performed full kinetic analysis considering the two-step 

reaction mechanism previously established [54]. Importantly, to consider the effect of localized reagent 

concentrations, the partition coefficient for 4-nitrophenol was incorporated and the referenced Langmuir-

Hinshelwood mechanistic equations were adapted as follows: 

 

− (
𝑑𝑐𝑛𝑖𝑝

𝑑𝑡
) =  𝑘𝑎𝑆

(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

(𝐾𝐵𝐻4𝑐𝐵𝐻4)

[1+(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

+𝐾𝐻𝑥𝑐𝐻𝑥+𝐾𝐵𝐻4𝑐𝐵𝐻4]
2                                      (4.4) 
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                                (
𝑑𝑐𝐻𝑥

𝑑𝑡
) =  𝑘𝑎𝑆

(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

(𝐾𝐵𝐻4𝑐𝐵𝐻4)

[1+(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

+𝐾𝐻𝑥𝑐𝐻𝑥+𝐾𝐵𝐻4𝑐𝐵𝐻4]
2 

− 𝑘𝑏𝑆
𝐾𝐻𝑥𝑐𝐻𝑥𝐾𝐵𝐻4𝑐𝐵𝐻4

[1+(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

+𝐾𝐻𝑥𝑐𝐻𝑥+𝐾𝐵𝐻4𝑐𝐵𝐻4]
2                    (4.5) 

where 𝑃𝑛𝑖𝑝 is the partition coefficient of 4-nitrophenol.  Full kinetic analysis is described by the reaction rate 

of each step and the Langmuir adsorption constants of 4-nitrophenol, borohydride, and the stable 

intermediate. We determined the rate constants for both steps by solving the coupled rate equations using 

the numerical method previously described and fitting the experimental data (average of three 

experimental trials) [54].    

4.2.8 Sequential Reactions 

 As a measure of nanoreactor stability [58,114], we tested the ability to perform multiple, sequential 

reactions. Following the standard reaction conditions, sequential additions of 4-nitrophenol (20 µL, 0.01 M) 

were carried out after the initial addition of 4-nitrophenol and sodium borohydride (333 µL, 6 M) with 3 

minutes between each subsequent addition.  No additional sodium borohydride was added.  UV-Vis 

absorbance was analyzed continuously over the 35 minute time period in accordance with the previously 

described method.   

Bubbles were manually popped prior to each addition of 4-nitrophenol while carefully avoiding 

contact with the reaction mixture.   Due to the presence of bubbles in bubbles in subsequent reactions, the 

start of subsequent reactions was determined by taking an average of 5-consecutive data points after the 

maximum post-4NP addition absorbance.  The last time point with a value equal to, or greater than, this 

average was defined as the beginning of the reaction.  After determining the start of the reaction, the rest 

of the kinetic analysis follows the procedure described in the Supporting Information.  The apparent rate 

constant of each sequential reaction was determined from the average of three trials.  
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4.3 Results 

4.3.1 Nanoreactor Formulation and Characterization 

To fabricate filled polymer micelle nanoreactors encapsulating gold nanoparticle catalysts with 

various hydrophobic microenvironment, we performed Flash NanoPrecipitation (FNP) with varying co-

precipitates and hydrophobic gold nanoparticles. FNP is a rapid, scalable platform for polymer-directed 

self-assembly of colloidal nanoparticles with versatile materials selection [73,78,110].  To incorporate gold 

nanoparticles, hydrophobic gold nanoparticles are dispersed with a dissolved amphiphilic block 

copolymer and hydrophobic core material in a water miscible organic solvent and rapidly mixed against 

water using a confined impinging jet mixer. Upon mixing, the rapid decrease in solvent quality causes the 

nanoparticles to aggregate, hydrophobic core material to precipitate and the block copolymer to micellize 

directing formation of the overall nanocomposite particle. This nanocomposite particle assembly ends 

when the hydrophobic block of the block copolymer adsorbs on the nanoparticle clusters with precipitating 

core material preventing further growth and colloidal aggregation, while the hydrophilic block sterically 

stabilizes the nanoparticle. Given the molecular weight of the block copolymer, dynamic exchange of the 

block copolymer does not occur [8,28,29], and the resulting structure is kinetically-trapped.  Successful 

polymer nanoreactor assembly results in uniform dispersions with no macroscopic precipitation of the 

hydrophobic components, including the gold nanoparticles.  Further evidence of successful self-assembly 

of dispersed polymer systems is evident by dynamic light scattering (DLS).  Specifically, DLS results 

confirm that the composite nanoparticles are uniform with a single peak in the size intensity distribution 

measured by DLS indicating the hydrodynamic diameter is ~100 nm; representative data for the PS750 

nanoreactors is shown in blue in Figure 4.1A.   

We also examined the structure of the nanoreactors using TEM.  Self-assembled nanoreactors show 

incorporation of the gold nanoparticles throughout the nanoreactor (Figure 4.1B).  Gold nanoparticles 
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appear to be incorporated within the core of the polymer nanoreactor.  The gold also appears to be 

associated with the PEG layer.  Thus, the gold in the core of the polymer nanoreactor appears dark, the 

hydrophobic microenvironment appears light, and the PEG layer with gold associated has a medium 

contrast due to the electron density.   The nanoreactors appear spherical and the size seen in the images is 

comparable to the DLS reported hydrodynamic diameters and generally on the order of 100 nm (Table 4.1) 

with some aggregation of the nanoreactor structures apparent upon drying.  The TEM images suggest there 

are multiple gold nanoparticles per nanoreactor structure, which is possible based on the gold nominal 

loading (4 wt. % (wt. gold/total solids) and the estimated number of polymer nanoreactors formed during 

FNP (calculated based on the aggregation number) [103,104].   

 

Figure 4.1:  A) Representative DLS spectra for PS 750 NR ( ) and pre-formed PS 750 NP with AuNP ( , 

PS 750 NP w AuNP).  A single intensity peak is seen for both PS NR and pre-formed PS 750 NP with 

post-formulation added AuNP.  Reported intensities are a Malvern reported average of four 

measurements. B) Representative TEM image of self-assembled polymer nanoreactors (PS 750 NR). A 

dotted line is used to indicate the nanoreactor core to guide the eye. In the nanoreactors prepared by FNP 

shown in (B), gold nanoparticles appear to be incorporated within the nanoreactor core as well as 

associated with the PEG layer. Thus, the gold in the core of the polymer nanoreactor appears dark the 

hydrophobic PS750 microenvironment appears light, and the PEG layer with gold associated has a 

medium contrast due to the electron density.   
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To evaluate the effect of incorporating the gold nanoparticles into the nanoreactors during FNP, we 

formulated polymer nanoparticles and added gold nanoparticles after formulation.  Specifically, polymer 

nanoparticles of PS 750 and castor oil of comparable hydrodynamic size were formulated (Table 4.1).  

Following FNP, hydrophobic gold nanoparticles dispersed in THF were added to the dispersed polymer 

nanoparticles.   No macroscopic aggregation of the gold nanoparticles in the aqueous phase was observed; 

and were thus loosely associated with the polymer nanoparticle via nonspecific adsorption.  TEM confirms 

that gold is associated with the surface of the pre-formed polymer particles (Figure 4.2). Some 

agglomeration of the gold is evident and further supported by the peak shift witnessed in UV-Vis spectra 

for pre-formed polymer nanoparticles, especially PS 750, with added gold nanoparticles (Figure 4.3A, Table 

4.2).   

 

Figure 4.2:  TEM image of pre-formed PS 750 NP with AuNP.  A dotted line is used to indicate the 

nanoreactor core to guide the eye.  Gold nanoparticles appear to be incorporated along the surface of the 

nanoreactor with some agglomeration of gold nanoparticles.  In this case, the relatively large pre-formed 

particle-core has medium contrast, the aggregated gold particles adsorbed to the surface appear dark, 

and the PEG-layer has light contrast (and is not visible), thus the structures appear smaller than their 

hydrodynamic size measured by DLS and smaller than PS 750 NRs.  These results are consistent with 

previous studies [98,115–117]. 
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Figure 4.3:  UV-Vis spectra from 300 to 900 nm of all A) pre-formed polymer nanoparticles with gold 

nanoparticles compared to polymer nanoparticles (without gold nanoparticles) and B) nanoreactors 

compared to polymer nanoparticles (without gold nanoparticles).  The spectra for polymer nanoparticles 

(without gold nanoparticles) were used as background spectra in order to account for scattering due to 

the polymer structures. Shoulders witnessed in nanoreactor and pre-formed polymer nanoparticles with 

gold nanoparticles around 400-450 nm can be attributed to polymer nanoparticle scattering and slight 

mismatch in nanoparticle concentrations between the sample used for the background spectra and the 

sample.  In A) the peak shift compared to 5-nm gold in toluene (peak at 495 nm) for the gold NPs added 

to pre-formed PS 750 nanoparticles could be attributable to gold nanoparticle agglomeration observed in 

TEM images. In B), the peak shift to ~520 nm is consistent with gold nanoparticles incorporated into 

polymer nanoreactors. In this case, the peak shift compared to 5-nm gold in toluene (peak at 495 nm) may 

be attributed to the hydrophobicity of the nanoreactor or plasmonic coupling due to close proximity of 

the incorporated gold nanoparticles within the nanoreactors.  Reported absorbances are an average of ten 

measurements. 

Comparing the TEM images of the self-assembled nanoreactors (Figure 4.1B) to the gold nanoparticles 

added to pre-formed polymer nanoparticles (Figure 4.2) suggests that there are spatial differences in the 

gold nanoparticle distribution.  Specifically, when gold nanoparticles are added to pre-formed polymer 



80 

 

particles the gold is associated with the surface of the polymer particle.  With FNP, the gold nanoparticles 

are incorporated throughout the nanoreactor structure, i.e. there are gold nanoparticles in the hydrophobic 

microenvironment as well as associated with the PEG layer.  In this study, we are interested in comparing 

the catalytic performance of these systems to determine the effect of the hydrophobic microenvironment.  

Thus, our next goal was to achieve nanoreactors of comparable hydrodynamic size and gold 

concentration in the nanoreactor dispersion with various co-precipitates to tune the hydrophobic 

microenvironment surrounding the catalyst.  To study the effect of catalyst co-precipitate interactions, we 

examined dodecane, dodecylamine, and dodecanethiol.  We also compared co-precipitates that did not 

interact with gold with different solubility parameters, such as castor oil and a low molecular weight 

polystyrene (PS, MW 750 g/mol). The constant core volume approach previously established was used to 

affect the nanoreactor hydrodynamic size and gold concentration in the dispersion while changing the core-

material [110].  Since the densities of the core materials are comparable, using the same co-precipitate 

concentration in the organic stream during FNP (11 mg/mL co-precipitate with 1 mg/mL gold nanoparticles 

and 12 mg/mL block copolymer stabilizer), the hydrodynamic size of the nanoreactors were comparable 

[110].  As shown in Table 4.1, all systems formed nanoreactors around 130 nm with low polydispersity (< 

0.3 PDI) as measured by DLS.  A representative size intensity distribution measured by DLS for the 

nanoreactors and nanoparticles with gold nanoparticles after formulations are shown compared in Figure 

4.1A. All nanoreactors except for dodecane remained stable, in regards to size and polydispersity, over a 

period of at least 1 week at room temperature; they did not undergo a size change from the initial DLS 

measurement of more than 30% and their PDI remained under 0.3 (Table 4.1).  In contrast, after one week, 

dodecane nanoreactors analyzed by DLS were found to have an average size of 195 ± 41 nm and a PDI of 

0.361.  Unlike the initial analysis, after a week multiple size distribution peaks were present in the DLS 

analysis as thus were not considered stable. 
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Table 4.1:  Size and stability of various nanoreactor formulations. (n=4) 

System Size (nm) PDI Stability* 

PS 750 NR 124 ± 6 0.131 ± 0.012 Yes 

PS 750 NP w AuNP 150 ± 27 0.144 ± 0.013 Yes 

CO NR 113 ± 10 0.184 ± 0.011 Yes 

CO NP w AuNP 136 ± 7 0.147 ± 0.006 Yes 

Dodecane NR 168 ± 6 0.108 ± 0.003 No 

Dodecylamine NR 143 ± 23 0.263 ± 0.019 Yes 

Dodecanethiol NR 101 ± 6 0.087 ± 0.028 Yes 

*Stability defined as change in diameter < 30% and a PDI < 0.3 after 1 week of storage at room 

temperature as measured by DLS 

Following FNP, we aimed to determine the amount of gold successfully incorporated into the 

nanoreactor during self-assembly, which we quantify with the incorporation efficiency (IE).  To remove 

any hydrophobic gold nanoparticles in the dispersion that were not incorporated into the nanoreactors, we 

performed an ether extraction to selectively remove unincorporated gold nanoparticles while preventing 

disruption of the nanoreactors (as PEG is insoluble).  To demonstrate that the ether extraction would 

remove unincorporated gold nanoparticles, dodecanethiol-capped gold nanoparticles in water were 

processed and the calculated incorporation efficiency was 5 ± 1% indicating that 95 ± 1% of the gold 
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nanoparticles were recovered (Table 4.2).  This result demonstrates that ether extraction is effective for 

selectively removing unincorporated gold nanoparticles from the nanoreactor dispersions.  

Next, we performed an ether extraction with the nanoreactor dispersions prepared using the various 

co-precipitants to examine the incorporation efficiency for the various co-precipitates.  The incorporation 

efficiency for gold nanoparticles via FNP was greater than 77 ± 5 % for all systems (Table 4.2).   Co-

precipitates that interact with gold had the highest incorporation efficiencies.  Both dodecanethiol and 

dodecylamine had incorporation efficiencies greater than 95% (Table 4.2).    Performing DLS analysis after 

extraction, we confirmed that the nanoreactors remain intact through the extraction process which we 

attribute to the insolubility of the amphiphilic polymer, PS-b-PEG, in diethyl ether.   

We compared the incorporation efficiencies of the nanoreactor systems prepared via FNP to adding 

gold nanoparticles to polymer nanoparticles after formulation.  Interestingly, PS 750 NP w AuNP and CO 

NP w AuNP systems had 89 ± 7% and 94 ± 2% incorporation efficiencies, respectively, which are 

comparable to the formulated nanoreactors (Table 4.2).  This result could be due to affinity of the 

hydrophobic gold nanoparticle and the core-shell interface of the formulated polymer nanoparticle.  Once 

associated with the polymer nanostructure, there is a sufficient barrier to prevent partitioning of the gold 

nanoparticles during extraction.    

Table 4.2: Characterization of gold concentration in the nanoreactor dispersion and incorporation 

efficiency (IE) of the gold nanoparticles into the nanocomposite particles. (n=3) 

System [Au] (µg/mL) IE (%) Absorbance (nm) 

PS 750 NR 137 ± 1 85 ± 2 514 ± 16 

PS 750 NP w AuNP 119 ± 6 89 ± 7 525 ± 8 
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System [Au] (µg/mL) IE (%) Absorbance (nm) 

CO NR 106 ± 1 84 ± 3 526 ± 11 

CO NP w AuNP 118 ± 11 94 ± 2 490 ± 9 

Dodecylamine NR 85 ± 1 98 ± 3 522 ± 17 

Dodecanethiol NR 101 ± 3 97 ± 1 528 ± 13 

Hydrophobic AuNP in 

Water 

71 ± 1 5 ± 1 N/A 

 

 Since the absorbance of gold nanoparticles due to the plasmon resonance is well known to be both 

size and environment dependent [94,95] we compared the effect of incorporating the gold nanoparticles 

into the nanoreactors during FNP to adding gold nanoparticles to pre-formed polymer nanoparticles using 

UV-vis analysis (Figure 4.3).  We have previously reported that the dodecanethiol-stabilized nanoparticles 

dispersed in toluene show a peak absorbance at 495 nm (as received and after switching solvents) [110].  

The peak absorbance of CO NP w AuNP was similar with a peak absorbance at 490 nm.  Interestingly, a 

slight peak shift to 525 nm was observed for gold nanoparticles added to pre-formed PS750 particles.  The 

shift in peak absorbance could also indicate agglomeration of the gold nanoparticles supporting the TEM 

observations (Figure 4.2) [118].  The peak absorbance for the self-assembled nanoreactors were ~520 nm, 

consistent with previous reports [110] Such shifts in peak absorbance to higher wavelengths have been 

previously observed and may be due to the local environment of polymer nanostructure as the peak 

absorbance is sensitive to the refractive index of the solvent medium (compared to toluene) [94,96,119,120].  
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The peak shift could also be attributed to plasmonic coupling due to close proximity of the incorporated 

gold nanoparticles [95,110].   

4.3.2 Kinetic Analysis 

To assess the catalytic performance of the nanoreactor systems prepared by FNP compared to gold 

nanoparticles added to pre-formed polymer nanoparticles, the reduction of 4-nitrophenol by sodium 

borohydride was used as a model reaction [54,77].  For all the nanoreactor systems, we confirmed that the 

nanoreactor size is stable following reaction (Table 4.3). Given the high incorporation efficiency of gold, 

extractions were not performed on samples prior to further analysis.  We note that we have previously 

established that dodecanethiol-capped gold nanoparticles aggregate in water and thus do not catalyze the 

reduction of 4-nitrophenol in water without the presence of a polymer nanoreactor [110]. Therefore, 

observed catalytic activity can be attributed to gold nanoparticles associated with nanoreactor in the case 

of the self-assembled systems or the pre-formed polymer nanoparticles rather than unincorporated 

dodecanethiol-capped gold nanoparticles.  Since the dodecanethiol and dodecylamine reactors did not 

show significant catalytic activity (Table 4.4), we focus on characterization of the other nanoreactor systems, 

namely the PS750 and CO systems, in this report. We note the structures of the castor oil and PS 750 

nanoreactors were comparable (Figure 4.2).    
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Table 4.3:  Nanoreactor Reaction Stability (*Stability defined as change in diameter < 30% and a PDI < 0.3 

as measured by DLS after reaction at 1 M NaBH4, 0.1 mM 4-nitrophenol). (n=4) 

System 

Size (nm) PDI 

Before Rxn After Rxn Before Rxn After Rxn 

PS 750 NR 124 ± 6 144 ± 8 0.131 ± 0.012 0.090 ± 0.013 

PS 750 NP w AuNP 150 ± 27 109 ± 10 0.144 ± 0.013 0.297 ± 0.024 

CO NR 113 ± 10 154 ± 8 0.184 ± 0.011 0.220 ± 0.012 

CO NP w AuNP 136 ± 7 113 ± 6 0.147 ± 0.006 0.111 ± 0.004 

 

To facilitate pseudo-first order rate kinetics, this reaction is generally carried out with a large excess 

of sodium borohydride [54,77].  Thus, we first examined the effect of sodium borohydride concentration 

on reaction kinetics.  For the PS 750 NRs prepared via FNP, we observe the apparent reaction rate per 

surface area of gold (k1) increased with sodium borohydride concentration until it plateaus at a sodium 

borohydride concentration of 1.0 M sodium borohydride (Figure 4.4A).  Interestingly, the witnessed 

plateau in activity occurs at lower sodium borohydride concentrations for CO NR compared to PS 750 NR, 

with maximum reaction rate constants occurring at 0.8 M sodium borohydride concentration.  These results 

are similar to previous reports for gold nanoparticle-polymer nanoparticle systems [54].  This plateau has 

been attributed to active site blocking predicted by Langmuir-Hinshelwood kinetics when one reagent 

predominantly occupies the catalyst surface [54,100,121].  Interestingly, the sodium borohydride 
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concentration required to achieve a plateau for the nanoreactors was a 10-fold increase from previous 

reports [54,121] which could suggest differences in localized reagent concentrations compared to other 

systems i.e. a difference between the bulk sodium borohydride concentration and the concentration at the 

catalyst surface due to partitioning and diffusion.  Thus, the bulk sodium borohydride concentration in the 

reaction medium was 1.0 M to achieve pseudo-first order rate kinetics.   

We also note that increasing the concentration of sodium borohydride decreases the induction time 

(Figure 4.4B) for both CO and PS 750 NR systems.  These results are consistent with the trends in which 

changes in induction time and reaction kinetics were inversely proportional to one another reported by 

Ballauff [54].   The change in induction time that we observe in this case appears to be related to an increase 

in sodium borohydride concentration which has recently been attributed to consumption of oxygen by 

sodium borohydride [122]. 

 

Figure 4.4:  The effect of varying concentration of sodium borohydride in the 4-nitrophenol reduction on 

A) reaction rate constant and B) induction time using PS 750 NR ( ) and CO NR ( ).  The initial 

concentration of 4-nitrophenol in each reaction was 0.1 mM.  A) A plateau in apparent reaction rate constant 

per surface area of gold (k1) is observed for PS 750 NR and CO NR above 1 and 0.8 M NaBH4 concentration 

respectively.  CO NR show a maximum k1 of 5.7 ± 0.7 L m-2 s-1 compared to 0.7 ± 0.1 L m-2 s-1.  B)  The CO 

NR system shows a maximum induction time of 32 ± 2 s compared to 189 ± 82 s for PS 750 NR.  Both systems 

show a decrease in the induction time with increasing sodium borohydride concentration.  Reported rate 
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constants and induction times are averages of three trials; the error bars represent the standard deviation 

of three trials. 

Using 1.0 M sodium borohydride concentration and 0.1 mM 4-nitrophenol concentration to achieve 

pseudo-first order rate kinetics, we next compared to the apparent reaction kinetics of the various 

nanoreactor systems using PS 750 nanoparticles without gold (less than 1 ppm by ICP-OES) as a negative 

control (Table 4.4).  Interacting core materials such as dodecanethiol and dodecylamine did not catalyze 

the 4-nitrophenol reduction, likely due to active site blocking.  While gold-core material interactions are 

beneficial for improving incorporation efficiency, there is a trade off with catalytic performance.  Therefore, 

nanoreactors prepared via FNP, which is driven by hydrophobic interactions, may offer advantages over 

self-assembled systems that rely on gold-polymer interactions [55,100]. 

For the non-interacting core materials, the apparent reaction rate for CO NRs is over 8-fold greater 

than PS 750 NRs with apparent reaction rate constant per surface area of gold of 5.7 ± 0.7 L m-2 s-1  for CO 

NRs compared to 0.7 ± 0.1 L m-2 s-1  for PS 750 NRs (Table 4.4).  We note, the gold nanoparticles added to 

pre-formed PS 750 or CO nanoparticles presented apparent reaction rate constants per surface area that 

were between the nanoreactor systems, with rate constants of 3.5 ± 0.4 and 1.6 ± 0.4 L m-2 s-1  respectively.  

This relatively small difference (less than 2-fold for gold added to pre-formed nanoparticles compared to 

over 8-fold difference between self- assembled systems) may be due to differences in gold nanoparticle 

agglomeration and distribution which are not homogeneous for gold nanoparticles added to pre-formed 

polymer nanoparticles based on TEM (Figure 4.2).  

 

 

 

 

 



88 

 

Table 4.4: Reaction Kinetics of Different Polymer Nanoreactors at 1.0 M NaBH4, 0.1 mM 4-Nitrophenol. 

(n=3) 

Nanoreactor  k1 (L m-2 s-1) 

PS 750 NR   0.7 ± 0.1 

PS 750 NP w AuNP  3.5 ± 0.4 

CO NR  5.7 ± 0.7 

CO NP w AuNP  1.6 ± 0.4  

Dodecylamine NR  < 0.001 ± 0.001 

Dodecanethiol NR  < 0.001 ± 0.001 

PS 750 NP without AuNP  0.001 ± 0.001 

 

In addition to comparing the PS 750 and CO nanoreactor systems to each other, comparisons to 

previously reported nanoparticle-based catalyst systems can also be made.  Notably, at these reaction 

conditions the apparent reaction rate constant per surface area of gold (k1) for both PS 750 NR and CO NR 

are at least 2-fold greater than ligand-free gold nanoparticles [49,121] and approximately 10-fold greater 

than gold nanoparticles functionalized with pH responsive poly(acrylic acid) [51].  The turnover frequency 

(TOF) is related to apparent reaction rate constant, the initial amount of 4-nitrophenol, and the amount of 

gold catalyst and is calculated as follows [123]:  
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𝑇𝑂𝐹 =
𝑘∗𝑛𝑜4𝑁𝑃

𝑛𝐴𝑢
                                                                        (4.6) 

Where 𝑘 is the apparent reaction rate constant, while 𝑛𝐴𝑢 and 𝑛𝑜4𝑁𝑃
 are the molar amounts of gold and 

initial 4-nitrophenol in the reaction solution, respectively. 

Based on the observed reaction rate constants, the TOFs for CO and PS 750 NRs were approximately 

300,000 and 30,000 min-1, respectively (Table 4.5). These TOFs are higher than typically reported for gold-

based catalysts (~1-2 min-1) [124–126].   The TOF of the self-assembled nanoreactors are also higher than 

gold-polymer systems previous reported such as gold nanoparticles coated with poly(glycidyl 

methacrylate) TOF ~ 15,000 min-1 [127] and dendrimer encapsulated gold nanoparticle catalysts TOF ~2,000 

min-1 [128] as well as gold nanoparticles on N-containing polymer nanospheres TOF ~17,000 min-1 [129]. 

These results suggest that self-assembled nanoreactors produced via Flash NanoPrecipitation have 

promising catalytic performance.  Furthermore, these results indicate the catalytic performance is highly 

influenced by the microenvironment of the catalyst.   

Table 4.5:  Turnover Frequencies of Nanoreactor and Nanoparticle Systems. (n=3) 

System TOF (x 10-4 min-1) 

PS 750 NR 3.3 ± 0.2 

CO NR 29.7 ± 3.8 

 

To further understand the effect of the microenvironment on the catalytic performance, we further 

investigated the difference between the PS 750 and CO nanoreactor systems.  Based on the apparent 
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kinetics, we considered potential mass transfer limitations using scaling analysis and the second 

Damkohler number (DaII), i.e. a ratio of the reaction and diffusion rates given by, 

𝐷𝑎𝐼𝐼 =  
𝑘𝑎𝑝𝑝𝐶𝑛−1

𝛽𝑎
                                                                    (4.7) 

where 𝒏 is the reaction order, 𝜷 is the mass transport coefficient (which is a quotient of the diffusion 

coefficient and the characteristic length of the system), and 𝒂 is the interfacial area.  Using a previously 

established NMR method [110], the diffusion coefficient for 4-nitrophenol in CO NR was determined to be 

1.70 ± 0.02 x 10-8 m2 s-1 (Figure 4.5) which is slightly lower than for polystyrene 1.91 ± 0.01 × 10−8 m2/s [110].  

Based on these experimentally determined diffusion coefficients, the second Damkohler number was found 

for all systems to be on the order of 10-4 or smaller, signifying there are no diffusion limitations for either 

the CO NRs or PS 750 NRs.   

 

Figure 4.5:  Results of saturation transfer differentiated PFG-NMR of 4-nitrophenol in a solution of castor 

oil nanoreactors.  The blue line corresponds to the curve fit.  The difference spectra corresponds to signal 

from the 4-nitrophenol in closest proximity to the hydrophobic phase (within the nanoreactors) which we 

interpret as an effective diffusion coefficient of 4-nitrophenol within the nanoreactors of 1.7 x 10-8 m2/s. 
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Table 4.6:  Hansen Solubility Parameters of Various Compounds 

Compound δd (MPa1/2) δp (MPa1/2) δh (MPa1/2) 4NP RA2 

Polystyrene [130] 18.5 4.5 2.9 244 

Toluene [131] 18 1.4 2.0 336 

Castor Oil [132] 15.9 4.6 12 170 

Ethanol [131] 15.8 9.8 19.4 120 

PEO 4000 [131] 21.5 10.9 13.1 13 

Methacrylamide [131] 15.8 12.1 12.8 64 

PMMA 30 [131] 17.2 7.2 3.5 120 

4-nitrophenol [131] 20 14.5 14.2 0 

 

We posited that the difference in apparent catalytic performance may be attributed to differences in 

local reactant concentration and specifically 4-nitrophenol concentration.   Hanson solubility parameters 

suggest that castor oil is a better solvent for 4-nitrophenol than polystyrene (Table 4.6) and the effective 4-

nitrophenol concentration within CO NRs would be higher than PS 750 NRs.   This is demonstrated by the 

HSP Distance, or RA2, which is a measure of how alike two compounds are.  The smaller the RA2 value, the 

more likely they are to be compatible with each other.  The HSP distance is calculated as follows: 

𝑅𝐴2 = 4(𝛿𝑑1
− 𝛿𝑑2

)
2

+ (𝛿𝑝1
− 𝛿𝑝)

2
+ (𝛿ℎ1

− 𝛿ℎ2
)

2
                                              (4.8) 
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Of the hydrophobic core materials chosen, castor oil presents the lowest RA2 value and would likely 

interact with 4-nitrophenol the most favorably.    

In order to confirm this difference in solubility of 4-nitrophenol in different nanoreactor 

microenvironments, we measured the partition coefficient of 4-nitrophenol between water and castor oil 

or toluene (to mimic PS).  As seen in Table 4.7, the core material:water partition coefficient for castor oil is 

7.81 ± 0.16 compared to 0.09 ± 0.01 for toluene. The higher core material:water partition coefficient for castor 

oil compared to toluene suggests that the effective concentration of 4-nitrophenol in the CO NRs would be 

over 80-fold higher than in the PS 750 NRs contributing to enhanced apparent catalytic performance.  

Practically, improving the apparent catalytic performance (i.e. the reduction of 4-nitrophenol) could 

be beneficial for waste water treatment [111,112].  Additionally,  increasing the  production of 4-

aminophenol could be useful for applications e.g. a corrosion inhibitor as well as an intermediate in the 

pharmaceutical industry [113].  Broadly, ability to enhance the apparent catalytic performance through 

selection of the core material (i.e. choosing a core material that the reactant is highly soluble in) is promising 

approach for rational design of nanoreactors.   

Table 4.7:  Core Material:Water Partition Coefficients for 4-nitrophenol (4NP). (n=3) 

Core Material Organic Phase Core material:Water Partition Coefficient of 4NP 

Castor Oil 7.81 ± 0.16 

Toluene 0.09 ± 0.01 
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4.3.3 Langmuir-Hinshelwood Kinetics 

 Next, we examined the intrinsic kinetics of the 4-nitrophenol reduction on the gold nanoparticle 

catalyst surface based on the Langmuir-Hinshelwood mechanism [54,133].  For nanoreactors, the 

concentration in 4-nitrophenol was calculated based on the bulk concentration and the experimentally 

determined core material:water partition coefficient.   For gold nanoparticles added to pre-formed polymer 

nanoparticles, the 4-nitrophenol concentration was taken to be the concentration in the bulk aqueous phase.  

Initially, we used a two-step reaction model involving reduction of 4-nitrophenol to 4-

hydroxylaminophenol and the rate limiting step of 4-hydroxylaminophenol to 4-aminophenol previously 

used for gold-polymer systems [49,54].  The two-step reaction is evident by a change in reaction rate 

typically when the conversion of 4-nitrophenol is above 30% [54].  While we observe a change in reaction 

rate, it generally occurs around 70% conversion of 4-nitrophenol. This difference may be due to partitioning 

of 4-nitrophenol and the product within the nanoreactor. Fitting data up until 70% conversion resulted in 

non-real solutions.  Therefore, all systems’ reaction data were fitted for up to 30% conversion of 4-

nitrophenol.  The resulting rate constants are reported in Table 4.8.  Interestingly, the ka values found for 

polymer nanoreactors exceed the reported ligand-free AuNP by two orders of magnitude.  Systems of 

polymer nanoparticles with post-formulation added AuNP were found to have reaction rate constants that 

were an order of magnitude greater than ligand-free AuNP.   These results suggest that incorporation of 

the gold nanoparticles via FNP does not significantly affect the intrinsic catalytic properties. 
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Table 4.8:  Langmuir-Hinshelwood Fitted Kinetic Parameters. (n=3) 

System ka (mol m-2 s-1) kb (mol m-2 s-1) 

PS 750 NR 0.0164 ± 0.0034 0.0091 ± 0.2168 

PS 750 NP w AuNP 0.0590 ± 0.1489 0.1986 ± 286.6143 

CO NR 0.0148 ± 0.0333 0.0196 ± 2.0271 

CO NP w AuNP 0.0043 ± 0.0003 0.0052 ± 0.0211 

Ligand-Free AuNP [49] 5.8 ± 3.1 x 10-4 5.4 ± 2.0 x 10-5 

 

 To reduce the error associated with the fitted parameters, we used an alternative model.  

Specifically, the data up to 30% conversion was modeled using a single reaction step and no observed 

change in reaction rate based on previous reports of polymer-gold systems [76], according to: 

  

− (
𝑑𝑐𝑛𝑖𝑝

𝑑𝑡
) =  𝑘0𝑆

(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

(𝐾𝐵𝐻4𝑐𝐵𝐻4)

[1+(𝐾𝑛𝑖𝑝𝑃𝑛𝑖𝑝𝑐𝑛𝑖𝑝)
𝑛

+𝐾𝐵𝐻4𝑐𝐵𝐻4]
2                                                  (4.9) 

where 𝑐𝑛𝑖𝑝 is the bulk aqueous phase concentration of 4-nitrophenol, 𝑘0 is the reaction rate constant of the 

single step reaction, 𝑆 is the reaction solution specific catalyst surface area concentration, 𝑃𝑛𝑖𝑝 is the core 

material:water partition coefficient of 4-nitrophenol, 𝑛 is the reaction order, and 𝐾𝑛𝑖𝑝 and 𝐾𝐵𝐻4
 are the 

Langmuir-Hinshelwood adsorption constants of 4-nitrophenol and sodium borohydride, respectively.  For 
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nanoreactors, the 4-nitrophenol concentration was calculated based on the bulk concentration and the 

experimentally determined core material:water partition coefficient (equation 4.3).   For gold nanoparticles 

added to pre-formed polymer nanoparticles, the 4-nitrophenol concentration was taken to be concentration 

in the bulk aqueous phase.    

Using the adsorption parameters previously reported [54], the calculated rate constants are reported 

in Table 4.9.  Notably, the rate constants for all systems studied were comparable.  This result suggests that 

the intrinsic kinetics of the catalysts for all the systems are comparable once the partition coefficient is used 

to estimate the 4-nitrophenol concentration for each microenvironment.  Thus, incorporating the gold 

nanoparticles into the nanoreactors via self-assembly does not appear to adversely impact the intrinsic 

catalytic performance compared to adding gold nanoparticles to pre-formed gold nanoparticles. 

Comparing the rate constants from the Langmuir Hinshelwood model to previous literature, we found 

that the rate constants for the systems prepared by Flash NanoPrecipitation (Table 4.9)  are at least 2-

magnitudes greater than previously reported gold-polymer systems [76].  Their system and their analysis 

were comparable to the gold nanoparticles added to pre-formed polymer particles.  These results further 

indicate that Flash NanoPrecipitation is a promising platform for producing nanoreactors while preserving 

the intrinsic activity of the catalyst.  We note these results suggest the apparent catalytic performance of 

the various nanoreactor systems is affected by solubility of the reactants rather than changes in the intrinsic 

catalytic properties.  Thus, we note Hansen Solubility Parameter Distance (RA2) may be a useful tool for 

future nanoreactor design.   
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Table 4.9:  Langmuir-Hinshelwood Single-Step Fitted Kinetic Parameters. (n=3) 

System k0 (mol m-2 s-1) 

PS 750 NR 0.0166 ± 0.0003 

CO NR 0.0103 ± 0.0015 

CO NP w AuNP 0.0084 ± 0.0001 

SBP* 2.27 ± 0.34 x 10-4 

*spherical brush polymer with AuNP at 25 °C [76] 

4.3.4 Sequential Addition  

Finally, we consider the ability to use the nanoreactors for multiple reactions as an initial step to 

understanding the robustness of these nanoreactor systems.  When performing sequential reactions, a 

decrease in activity is seen when sequentially adding 4-nitrophenol into the reaction mixture under 1 M 

NaBH4 conditions (Figure 3.6).   CO NR undergo an immediate 5-fold decrease in activity from the initial 

4-nitrophenol reduction to the first sequential reaction.  For CO NR, the tenth sequential reaction is 6-fold 

slower than the first sequential reaction and 30-fold slower than the initial reaction, with a final minimum 

activity of 0.18 ± 0.01 L m-2 s-1 (Figure 4.6A).  The results for gold nanoparticles added to pre-formed CO 

nanoparticles were comparable (Figure 4.6A).  In contrast, PS 750 NRs were more stable than gold 

nanoparticles added to preformed PS nanoparticles (Figure 4.6B).   PS 750 NR maintain a stable activity 

through four sequential reactions, after which the activity decreases (Figure 3.7A).  The PS 750 NR activity 
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drops only 3-fold after 10 sequential additions, to a minimum value of 0.12 ± 0.01 L m-2 s-1.  These results 

indicate there is a trade-off between stability and apparent kinetics as the PS 750 NRs had the lowest 

apparent reaction rate per surface area with the best stability.  

 

Figure 4.6:  Sequential addition of 4-nitrophenol to the reaction mixture of A) CO NR ( ) and pre-formed 

CO NP with AuNP ( ) as well as B) PS 750 NR ( ) and pre-formed PS 750 NP with AuNP ( ) under 

reaction conditions of 1 M NaBH4.  The reduction in rate constant is immediate in the case of CO NR but 

delayed for a period of four additions with PS 750 NR.  Both pre-formed CO NP and PS 750 NP with AuNP 

showed immediate reductions in reaction rate constants.  Reported rate constants are averages of three 

trials; the error bars represent the standard deviation of three trials. 

Interestingly, when the sodium borohydride concentration is reduced to 0.1 M the apparent reaction 

rate increases with sequential additions for both PS 750 and CO NRs (Figures 4.7A and 4.7B, respectively).  

For the PS 750 NR system, a plateau in apparent reaction rate constant per surface area is reached after four 

sequential additions; the apparent reaction rate constant is 8-fold greater than the initial reaction rate of 

0.045 ± 0.006 L m-2 s-1.  Similarly, using 0.1 M NaBH4, the apparent reaction rate constant per surface area of 

the CO NRs increases from 0.325 ± 0.081 L m-2 s-1 to 1.14 to ± 0.19 L m-2 s-1; subsequent reactions reduced the 

apparent reaction rate.  These results indicate that high sodium borohydride concentrations can reduce the 

activity.  Similar results have been previously reported and attributed to competitive adsorption on the 
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catalyst surface [134].  Thus, these results suggest that catalyst reuse without loss of activity may be possible 

with proper selection of the reaction conditions, which can be guided by Langmuir-Hinshelwood kinetic 

models.   

 

Figure 4.7:  Sequential additions of 4-nitrophenol into A) PS 750 NR and B) CO NR reaction solutions with 

1 M ( ) and 0.1 M ( ) NaBH4 respectively.   Using 0.1 M NaBH4, we note the time between each addition 

was extended from 3 minutes to 6 minutes to reach full conversion of 4-nitrophenol before the subsequent 

reaction was started.  At 0.1 M NaBH4 an initial increase in activity is witnessed for both NR systems while 

at 1 M NaBH4 the activity decreases over repeated sequential additions.  Reported rate constants are 

averages of three trials; the error bars represent the standard deviation of three trials. 

Importantly, full conversion of the 4-nitrophenol was achieved for both the CO and PS 750 nanoreactor 

systems within 6 minutes using 0.1 M NaBH4 and within 3 minutes using 1 M NaBH4 for at least 10 

sequential reactions.   This indicates that the kinetically trapped polymer nanoreactor systems resist 

irreversible aggregation of catalyst, leading to complete loss of activity [52], though losses in activity might 

be attributed to partial catalyst aggregation.  Decreases in reaction rate constant with multiple reactions is 

consistent with previous reports [51,52]. For example, Kitchens and co-workers have reported similar 

findings of reduced activity after cyclic recovery and subsequent reaction [52].  The loss of activity was 

attributed to aggregation in the presence of sodium borohydride [51].   
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Notably, even after 10 sequential reactions, the remaining catalytic activity exceeds that observed in 

other systems.  For example, the apparent reaction rate constant k1 of CO NR after 10 sequential additions 

is 3-orders of magnitude greater than previously reported gold nanoparticle-polymer brushes systems 

[101] and equivalent to roughly equivalent to ligand free gold nanoparticles [49].  Further, after 10 

sequential additions (despite the 3-fold decrease in activity), the TOF is 23,000 min-1 for the CO nanoreactors 

and 13,000 min-1 for the PS 750 nanoreactors which are higher than typically reported for gold-based 

catalysts (~1-2 min-1) [124–126] and comparable to previously reported gold-polymer based systems 

[127,129].  Further studying reusability of the nanoreactors including the retained catalytic activity after 

additional reactions will be pursued in future work.  

4.4 Conclusions 

We have demonstrated Flash NanoPrecipitation is a versatile platform for formulating self-assembled 

filled polymer micelle nanoreactors encapsulating gold nanoparticle catalysts within various hydrophobic 

microenvironments with comparable hydrodynamic nanoreactor size and gold concentration in the 

nanoreactor dispersion.  Core materials that interact with gold are beneficial for improving incorporation 

efficiency but decrease catalytic performance.  For the non-interacting core materials, the catalytic 

performance is strongly affected by the hydrophobic microenvironment.  For example, the apparent 

reaction rate per surface area for CO NRs is over 8-fold greater than PS 750 NRs.  The difference in apparent 

catalytic performance can be attributed to differences in reactant solubility; higher reactant solubility 

enhances apparent reaction rates.  While we note a trade-off between stability and apparent kinetics as the 

PS 750 NRs had the lowest apparent reaction rate per surface area with the best stability, full conversion 

was achieved within 3 minutes for at least 10 sequential reactions demonstrating that the nanoreactors can 

be used for multiple reactions. Building on these promising results in terms of catalytic performance, 

further structural characterization of the nanoreactors will be considered in future work. 
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Chapter 5 : Aqueous Benzyl Alcohol Oxidation with Self-Assembled Polymer Nanoreactors  

Abstract 

The oxidation of alcohols to aldehydes and ketones is an important class of chemistry used throughout 

industrial chemical syntheses, especially in the pharmaceutical industry.  While these oxidations are 

traditionally performed in organic solvents at high temperature, aqueous phase catalysis offers a promising 

route to more efficiently perform these reactions with less waste.  Incorporation of metal nanoparticles 

catalysts in block-copolymer nanoparticles to form nanoreactors has shown great promise for performing 

traditionally organic phase reactions in a bulk aqueous solution.  Metal nanoparticle/polymer composite 

nanoreactors have been self-assembled through Flash Nanoprecipitation and analyzed for their ability to 

oxidize benzyl alcohol in water at room temperature.  Sodium hypochlorite was found to be the most 

efficient oxidant in this system.  Limited reaction solution stability suggests the need for greater 

stabilization of the polymer nanoreactors (e.g. crosslinking).    

5.1. Introduction 

Carbonyl compounds, which can be achieved via selective oxidation of alcohols, are important 

molecules in society and their formation is imperative for producing pharmaceuticals, dyes, and 

agrochemicals [135–137].  For example, benzaldehyde is commonly found in food additives and perfumes, 

with annual production exceeding 7000 tons [138].  While mainly synthesized from the oxidation of toluene 

at elevated temperature, alternative routes involving the catalytic oxidation of benzyl alcohol have been 

studied [139,140].  Gold nanoparticles have been shown to be an effective catalyst for the oxidation of 

benzyl alcohol, often reporting increased selectivity preventing over-oxidation products using molecular 

oxygen in solvent free, or aqueous conditions [137,139,141].   

Tsukada et al. first demonstrated the size-specific activity of gold nanoparticles stabilized by the 

hydrophilic polymer hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) for the aqueous, aerobic oxidation 

of benzyl alcohol at room temperature in the presence of excess potassium carbonate.  Gold nanoparticles 
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around 1 nm in diameter showed greater activity, by 4-orders of magnitude, than 9 nm particles in that 

study.  Greater than 80% conversion of the benzyl alcohol was witnessed.  However, the yield was 

primarily the over-oxidated benzoic acid product [142]. While using a water-soluble polymer stabilizer for 

the gold nanoparticle catalyst eliminated the need for a co-solvent, selective oxidation to benzaldehyde was 

not achieved. 

Buonerbo et al. incarcerated gold nanoparticles within crosslinked polystyrene microcapsules in 

which the gold nanoarpticles are stabilized by the π electrons of benzene rings of the polystyrene moiety 

to perform aqueous aromatic alcohol oxidation with an oxygen atmosphere with base, water, and co-

solvent [143].  The roughly 6 nm gold nanoparticle catalysts were active towards oxidation of 1-

phenylethanol, facilitating a 30% yield in 24 hours at room temperature.  However, the yield increased to 

over 80% when 9 nm gold nanoparticles were used.  Under a 1:1 mixture of H2O:CHCl3, the 9 nm gold 

nanoparticle catalysts were able to fully oxidize benzyl alcohol to benzaldehyde in 6 hours, at a temperature 

of 35°C.        

In this work, we examine the use of gold stabilized by amphiphilic block copolymers for oxidation of 

benzyl alcohol. Aqueous dispersions of polymer nanoreactors that incorporate pre-synthesized 

nanoparticle catalysts using polystyrene-b-polyethylene oxide were fabricated by polymer-directed self-

assembly through Flash Nanoprecipitation.   Building on our previous work demonstrating that the 

incorporated gold nanoparticles are catalytically active using the reduction of 4-nitrophenol as a model 

reaction catalysts, we look to expand to oxidation of benzyl alcohol.  The effect of the oxidant on conversion 

and selectivity for the production of benzaldehyde was analyzed.  The effect of the reaction on nanoreactor 

stability was also assessed. 
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5.2. Materials and Methods  

5.2.1. Materials 

Polystyrene (PS, 7500 g/mol) was purchased from Polymer Source Inc. Potassium chloride, sodium 

hypochlorite 10-15%, benzyl alcohol, and benzaldehyde were purchased from Sigma Aldrich (St. Louis, 

MO, USA).  Dodecanethiol (DDT) stabilized 5 nm nanoparticles, tetrahydrofuran (tetrahydrofuran (THF), 

HPLC grade), ethanol (ACS reagent grade), and diethyl ether (ACS reagent grade) were purchased from 

Fisher Scientific (Fairmont, NJ, USA). Environmental Grade Hydrochloric Acid 30-38% and Environmental 

Grade Nitric Acid 70% were purchased from GFS Chemicals (Columbus, OH, USA).  Potassium carbonate 

was purchased from Acros Organics (NJ, USA).  Hydrogen peroxide 30% was purchased from Bio Basic 

(NY, USA). (Diacetoxyiodo)benzene was purchased from AmBeed (IL, USA).  These chemicals and 

materials were used as received. Polystyrene-b-polyethylene glycol (PS-b-PEG, PSm-b-PEGn where m = 1600 

g/mol and n = 5000 g/mol) was obtained from Polymer Source (Product No. P13141-SEO). Prior to use, PS-

b-PEG was dissolved in THF (500 mg/mL) and precipitated in ether (~1:20 v/v THF:ether). The PS-b-PEG 

was recovered by centrifuging, decanting, and drying under vacuum at room temperature for 2 days as 

previously described [110].   

5.2.2. Nanoreactor Assembly 

Initially, the as-received dodecanethiol stabilized gold nanoparticles in toluene (1 mL) were 

precipitated into ethanol (45 mL) and filtered using a Buchner funnel. The filtered nanoparticles were 

resuspended in THF and concentrated via evaporation at room temperature overnight to achieve a nominal 

concentration of around 20 mg/mL for nanoreactor self-assembly. The final concentration was confirmed 

by inductively coupled plasma optical emission spectroscopy using an Agilent 5110 (ICP-OES, Santa Clara, 

CA, USA) using potassium chloride as an external matrix modifier. UV spectra collected on an Ocean 
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Optics FLAME-S-UV-VIS with a HL-2000-FHSA light source (Largo, FL, USA) were compared before and 

after the solvent switch to confirm processing did not significantly affect gold nanoparticle size.   

Nanoreactors were produced via Flash NanoPrecipitation similar to previous reports [110].  Briefly, 

PS-b-PEG (12 mg), dodecanethiol stabilized 5 nm gold nanoparticles (1 mg), and PS homopolymer, MW 

7500 g/mol, abbreviated PS 7500 (co-precipitate, 11 mg) were added to 1 mL of tetrahydrofuran (THF) and 

sonicated at 55 °C for 30 minutes. Using a manually operated confined impinging jet mixer with dilution 

(CIJ-D) [23,24] and achievable Reynolds’ numbers > 1,300, the resulting THF mixture was rapidly mixed 

against 1 mL of water into a stirring vial of water (8 mL). The resulting dispersion (10 mL total) of 

nanoreactors was stored at room temperature for further characterization and analysis without 

purification.   

5.2.3. Nanoreactor Characterization    

Nanoreactor size (i.e. hydrodynamic diameter) was measured after mixing using a Malvern Zetasizer 

Nano ZS (Westborough, MA, USA) with a backscatter detection angle of 173°. Intensity weighted size 

distributions are reported using the average of four measurements of the intensity weight distributed with 

normal resolution. The reported size is the peak 1 mean intensity. The polydispersity index (PDI) is defined 

from the moment of the cumulant fit of the autocorrelation function calculated by the instrument software 

(appropriate for samples with PDI < 0.3) and is reported as a measure of particle size distribution [71]. For 

stability analysis, reaction solutions were allowed to sit for at least 24 hours prior to analysis to mimic 

reaction conditions.   

UV absorbance spectra (300 to 1200 nm) of the nanoparticle dispersions were measured at room 

temperature with an Ocean Optics FLAME-S-UV-VIS with a HL-2000-FHSA light source (Largo, FL, USA) 

after formulation.    
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For visualization by TEM, samples were prepared by submerging a grid in a diluted nanoreactor 

solution (1:10) for 1 hour.  After submersion, the grids were removed from the solution and dried at ambient 

conditions overnight.  Samples were imaged using a Zeiss Libra 120 TEM (Oberkochen, Germany) using 

an accelerating voltage of 120 kV.   

To determine the gold concentration in the nanoreactor dispersions, the nanoreactor dispersions were 

dissolved in THF and digested in aqua regia (1:3 nitric acid:hydrochloric acid by volume) for at least 24 

hours.  The samples were then diluted to 5% v/v aqua regia. Gold concentration of the digested sample was 

measured using inductively coupled plasma optical emission spectroscopy measurements with an Agilent 

5110 (Santa Clara, CA, USA).  A matrix modifier, potassium chloride (2 mg/mL) in 5% v/v aqua regia, was 

used to increase the ion concentration which proved beneficial for peak resolution.  The reported 

concentrations are the average of three trials.   

5.2.4. Benzyl Alcohol Oxidation 

 To a 2 mL centrifuge tube equipped with a magnetic stir bar was added 60 µL of the nanoreactor 

solution, 500 µL of an aqueous K2CO3 solution (0.36 M), and 20 µL of benzyl alcohol (0.19 M).  Potassium 

carbonate was chosen based on previous reports of benzyl alcohol oxidation using gold nanoparticles [144].  

The oxidant of choice (H2O2 or bleach) was then added to the reaction solution in the appropriate specified 

amount (1 equivalent).  Water was then added to the reaction solution to attain a total volume of 1 mL and 

the reaction solution was allowed to stir overnight at room temperature.  In the case of atmospheric oxygen 

being the oxidant of study, the centrifuge tube was left uncapped during stirring.  Prior to analysis, 20 uL 

of diglyme was added to the reaction solution as an internal standard. 

5.2.5. GCMS Analysis 

 The reaction solution (1 µL) was analyzed on an HP 6890 GC system equipped with an HP-5MS 

column flowing 1 mL/min Helium.  The inlet operated with a split ratio of 50:1 with a Helium flow of 50 
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mL/min. From the reaction mechanism, the moles of benzaldehyde produced from the reaction is 

equivalent to the moles of benzyl alcohol consumed during the reaction, therefore the conversion of benzyl 

alcohol was calculated according to: 

𝜀𝐵𝐴 =  
𝑚𝑜𝑙𝐵𝐴𝑖

−𝑚𝑜𝑙𝐵𝐴𝑓

𝑚𝑜𝑙𝐵𝐴𝑖

∗ 100% = 1 −
𝑚𝑜𝑙𝐵𝐴𝑓

𝑚𝑜𝑙𝐵𝐴𝑖

∗ 100% = (1 −

𝐴𝐵𝐴𝑓∗𝐴𝑑𝑓

𝐹∗𝑚𝑜𝑙𝑑
𝐴𝐵𝐴𝑖∗𝐴𝑑𝑖

𝐹∗𝑚𝑜𝑙𝑑

) ∗ 100%                                (5.1) 

where 𝜀𝐵𝐴 is the conversion of benzyl alcohol as a percentage, 𝑚𝑜𝑙𝐵𝐴𝑖
, 𝑚𝑜𝑙𝐵𝐴𝑓

, and mold are the initial and 

final moles of benzyl alcohol and the moles of diglyme, respectively. 𝐴𝐵𝐴𝑖
, 𝐴𝐵𝐴𝑓

, Adi, and Adf are the 

chromatograph peak areas of benzyl alcohol initially and after the reaction has completed as well as the 

internal standard diglyme, respectively.  Finally, F is the response factor of benzyl alcohol to the internal 

standard diglyme.  The initial concentration of benzyl alcohol was measured from a sample prepared in a 

similar manner to reaction solutions but without the presence of nanoreactors or base.  The initial and final 

peak areas of both benzyl alcohol as well as diglyme were the averages of three trials.   

 Additionally, yield of benzaldehyde was calculated according to:  

𝛾𝐴𝐿𝐷 =
𝑚𝑜𝑙𝐴𝐿𝐷𝑎

𝑚𝑜𝑙𝐴𝐿𝐷𝑡

∗ 100% =  
𝐴𝐴𝐿𝐷∗𝐴𝑑

𝐹∗𝑚𝑜𝑙𝑑∗𝑚𝑜𝑙𝐴𝐿𝐷𝑡

∗ 100%                                                         (5.2) 

where 𝛾𝐴𝐿𝐷 is the yield of benzaldehyde, molALDa
 and molALDt

 are the actual and theoretical moles of 

benzaldehyde respectively, molDG is the moles of diglyme, 𝐴𝐴𝐿𝐷 and A𝑑 are the chromatograph peak areas 

of benzaldehyde and diglyme respectively, and finally F is the response factor of benzaldehyde to the 

internal standard diglyme.   

5.3. Results and Discussion 

5.3.1. Formulation 

 Polymer nanoreactors containing gold nanoparticle catalysts were prepared through Flash 

Nanoprecipitation. Briefly, dodecanethiol stabilized 5 nm gold nanoparticles were dispersed in THF with 
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the molecularly dissolved, PS and PS-b-PEG, and rapidly mixed with water using a hand-operated 

confined impinging jet mixer. The resulting nanoreactor dispersion was analyzed by DLS for size and 

polydispersity.  The average diameter of the nanoreactor was 125 ± 10 nm with a PDI well below 0.2 ( Figure 

5.1A and Table 5.1), similar to previous studies [110].  UV-vis analysis showed a prominent absorbance at 

520 nm, indicative of the 5 nm gold nanoparticles.  The concentration of gold in the nanoreactor dispersion 

was  95 ± 8 µg/mL by ICP-OES (Table 5.1).  TEM imaging confirms the presence of multiple gold 

nanoparticles incorporated in the polymer nanoreactor structure (Figure 5.1B).  The catalytic ability of the 

gold nanoparticles incorporated in the polymer nanoreactors has been previously confirmed [110].   

 

Figure 5.1:  Representative A) DLS analysis and B) TEM image of PS 7500 NR.  A single peak around 100 

nm is seen by DLS.  Gold nanoparticles (dark circles) can be seen incorporated in the polystyrene core 

(lighter circle) of the polymer nanoreactors.   Reported intensities are a Malvern reported average of four 

measurements. 

Table 5.1: Nanoreactor Characterization. (n=3) 

Nanoreactor Diameter (nm) PDI [Au] (ug/mL) 

Polystyrene 7500 NR 99 ± 2 0.112 ± 0.015 95 ± 8 
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5.3.2. Benzyl Alcohol Oxidation 

 Reports suggest that gold nanoparticles are capable of benzyl alcohol oxidation at room 

temperature using atmospheric oxygen as an oxidant [67].  Both Kobayashi and Rossi demonstrate that 

potassium carbonate is the ideal base to use for this reaction, which has been attributed to the multiple 

oxidation states and buffering abilities [144].  Under these conditions we found that PS nanoreactors with 

incorporated gold nanoparticle catalysts did not facilitate the oxidation (Table 5.2).   No conversion of 

benzyl alcohol was observed after 5 days by GCMS. 

Table 5.2:  Benzyl Alcohol Oxidation with PS 7500 NR. (n=3) 

Oxidant 

Benzyl Alcohol 

(M) 

Oxidant 

(M) 

Yield (%) Conversion (%) 

no NR NR no NR NR 

Air 0.19 - - 0.2 ± 0.1 - -7.4 ± 9.8 

H202 0.19 0.20 6.1 ± 2.0 3.6 ± 0.6 30.7 ± 8.1 11.6 ± 13.1 

Bleach 0.19 0.07 0.3 ± 0.5 10.7 ± 1.9 -2.3 ± 6.6 10.8 ± 4.9 

Bleach 0.19 0.20 5.5 ± 2.1 19.1 ± 7.3 18.3 ± 8.1 69.5 ± 9.4 

   

Previous reports have found that without oxygen (or an oxidant) the reaction cannot progress 

[144].  Therefore, we elected to study a variety of oxidants with greater strength than molecular oxygen.  

Specifically, we studied H2O2 and sodium hypochlorite (bleach), which are established oxidants [139,145].   

Using H2O2 as the oxidant, the conversion was not higher than the auto-oxidation observed under these 

conditions without nanoreactors (no NR, Table 5.2).  As shown in Table 5.2, the only oxidant that resulted 

in significant conversion of benzyl alcohol was NaClO.  Using 1 equivalent, the conversion of benzyl 
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alcohol was 70 ± 9% with a yield to benzaldehyde of 19 ± 7% due to over-oxidation of benzaldehyde to 

benzyl benzoate.  The conversion in the presence of bleach was significantly higher than the auto-oxidation 

observed under these conditions without nanoreactors (no NR) (Table 5.2).  Under these conditions the 

nanoreactors were not stable (Table 5.3), so a reduced amount of bleach was also tested.  Using a 1/3 

equivalent of bleach resulted in significantly less conversion (10.8 ± 4.9%) while still destabilizing the 

nanoreactors (Table 5.3).   

Unfortunately, the nanoreactors were not stable when performing the reaction with an oxidant 

other than air; after reaction the PDI’s > 0.3 as analyzed by DLS in all cases (Table 5.3).  Interestingly, the 

nanoreactor stability appears to be related to the reaction as the nanoreactors remained intact with 

comparable size and PDI’s < 0.3 and polydispersity in the presence of individual reactants and products 

(Table 5.4) over the same time period (24 hours).  Notably, the PDI of the nanoreactor dispersion did 

increase at high concentrations of benzaldehyde (corresponding to 100% conversion of benzyl alcohol to 

benzaldehyde).  This result could be due to increased partitioning of the benzaldehyde into the nanoreactor 

core due to its relatively high hydrophobicity (logPow = 1.5 Sigma Aldrich MSDS) (Table 5.4). Thus, the 

combination of reactants (oxidant and reactants and/or products destabilizes the nanoreactors.  Since the 

nanoreactors were not stable, and the conversions were relatively low, no further oxidation reactions were 

pursued.    

Table 5.3: PS 7500 Nanoreactor Stability during Benzyl Alcohol Oxidation. (n=4) 

Oxidant Diameter (nm) PDI 

Air 158 ± 3 0.105 ± 0.009 

H2O2 900 ± 379 0.682 ± 0.194 
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Oxidant Diameter (nm) PDI 

Bleach (0.07 M) 1969 ± 1311 0.576 ± 0.315 

Bleach (0.2 M) 1400 ± 1449 0.380 ± 0.110 

 

Table 5.4: PS 7500 Nanoreactor Stability in Presence of Reagents. (n=4) 

Reagent Diameter (nm) PDI 

None 99 ± 2 0.112 ± 0.015 

K2CO3 98 ± 3 0.111 ± 0.016 

Bleach 120 ± 3 0.130 ± 0.009 

H2O2 105 ± 7 0.107 ± 0.010 

Benzyl Alcohol 109 ± 6 0.132 ± 0.014 

Diglyme 112 ± 7 0.119 ± 0.006 

Benzaldehyde (0.1% v/v) 108 ± 6 0.121 ± 0.009 

Benzaldehyde (2% v/v) 119 ± 28 0.163 ± 0.007 
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5.4. Conclusions 

 Polymer nanoreactors were self-assembled using Flash Nanoprecipitation with incorporation of 

gold nanoparticle catalysts and studied for their ability to oxidize benzyl alcohol.  Up to 70% conversion of 

benzyl alcohol was seen through the use of bleach as the oxidant, though over-oxidation of the 

benzaldehyde product to benzyl benzoate was witnessed.  Despite nanoreactor stability in all of the 

reagents individually, the reactors were not stable under the reaction conditions.   Future work should 

investigate nanoreactor stability in solutions with combinations of reagents.  Co-precipitate hydrophobicity 

should also be examined for its effect on nanoreactor stability, with the goal of tailoring the product 

solubility in the core to prevent destabilization.    
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Chapter 6 : Self-Assembled Gold Nanoparticle/Polymer Nanocomposites for a One-Pot 

Reaction 

 

Abstract 

Gold nanoparticle/polymer nanocomposites were self-assembled through Flash Nanoprecipitation.  

The polymer nanoreactor were applied to the one-pot condensation of benzaldehyde with 4-nitrophenol 

performed in water at ambient conditions.  The desired 4-benzylideneaminophenol product spontaneously 

precipitated from the reaction mixture.  The nanoreactors were stable in dispersion whereas citrate-

stabilized gold and PEG-coated gold precipitated with the product.  After the product was extracted from 

the precipitate, the result analytically pure by NMR and a 66% isolated yield was achieved.  The E-factor 

for the reaction performed in water was around 25, comparable to previous reports.   

6.1.  Introduction 

Imines are an important class of molecules that are commonly used for the preparation of heterocycles 

[146], anti-inflammatory agents [147], and anti-cancer agents [148].  Traditionally, imines are synthesized 

by reaction of an aldehyde or ketone with aldehyde under reflux and separating the water the water as it 

is formed [149,150]. Thus, elevated temperatures are required to remove the water using distillation 

[151,152].  Imines can also be prepared using homogeneous catalysts.  These reactions also generally require 

high temperatures and tedious work up procedures [149]. Practically, recovery of homogenous catalysts 

can be challenging.  Developing new approaches that facilitate synthesis of imines under mild conditions 

with ease of product isolation and catalyst reuse would be desirable.  

To achieve synthesis of imines at mild conditions, use of nitroarenes, which are inexpensive and 

readily available, as starting materials has been considered with various heterogeneous catalysts.  For 

example, palladium nanoparticles supported on magnetic Fe3O4 core-carbon shell composite nanoparticles 

have been used for one pot reductive amination reactions.  The magnetic support eased catalyst recovery 

and reuse.  Specifically, direct reductive amination of nitrobenzene with benzaldehyde could be performed 
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in water under hydrogen atmosphere.  Elevated temperatures (60-80°C) were required to improve yields 

[153].    

One-pot amination reactions involving reduction of the nitro group to an amine followed by 

condensation with the aldehyde has also been performed with a Ni/SiO2 based catalyst.  High conversion 

and selectivity were achieved from nitrobenzene and a variety of aldehydes using ethanol as the solvent.  

The resulting catalysts were magnetic which facilitated recovery and reuse.  Reaction conditions typically 

involved elevated temperature (105°C) and pressurized H2 (1.4 MPa).  Alternatively, gold-based catalysts 

have been applied.  Small gold nanoparticles supported on titania have been used for selected reduction of 

nitroarenes.  Reactions were carried out under atmospheric CO at room temperature using ethanol as the 

solvent.  Ultimately, the product was isolated by chromatography [149].   

Performing multiple reaction steps in “one-pot “ is promising for reducing solvent waste associated 

with liquid phase chemical processing because isolation of intermediates becomes unnecessary, thereby 

reducing waste by orders of magnitude [1,32].  Overall, these results are promising and demonstrate that 

the reaction can be performed in water or at room temperature.  However, these approaches have not 

enabled a “one pot” reaction in water at room temperature.  Ease of product isolation and catalyst recovery 

and reuse are also important considerations.   

In this work, we investigate the potential of kinetically-trapped polymer nanoreactors to facilitate 

imide synthesis via one-pot condensation in water at ambient conditions with product isolation via 

spontaneous phase separation.  We use reaction of benzaldehyde with 4-nitrophenol as a model reaction.  

As a catalyst, we incorporate gold nanoparticles into polystyrene nanoreactors.  The effect of reducing 

agent is discussed.  The amphiphilic polymer nanoreactors are compared to gold nanoparticles stabilized 

by hydrophilic stabilizers such as citrate and PEG.    
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6.2.  Materials and Methods  

6.2.1.  Materials 

Polystyrene (PS, Mw 7500 g/mol) was purchased from Polymer Source Inc. Sodium borohydride, 4-

nitrophenol, benzaldehyde, formic acid, trisodium citrate, sodium hydroxide, deuterated water, and 

potassium chloride were purchased from Sigma Aldrich (St. Louis, MO, USA).  Dodecanethiol (DDT) 

stabilized 5 nm nanoparticles, tetrahydrofuran (tetrahydrofuran (THF), HPLC grade), ethanol (ACS 

reagent grade), diethyl ether (ACS reagent grade), and PEGylated 5 nm gold nanoparticles were purchased 

from Fisher Scientific (Fairmont, NJ, USA). 4-aminophenol was purchased from Tokyo Chemical Industry 

Co. (Portland, OR, USA).  Environmental Grade Hydrochloric Acid 30-38% and Environmental Grade 

Nitric Acid 70% were purchased from GFS Chemicals (Columbus, OH, USA). The 1H-NMR solvent 

Acetone-D6 with 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) as an internal standard was purchased 

from Cambridge Isotope Lab, Inc (Andover, MA, USA).  Phenylsilane, triethylsilane, and sodium 

cyanoborohydride were acquired from Chem-Impex (Wood Dale, IL, USA).  Citrate stabilized 5 nm gold 

nanoparticles were purchased from Ted Pella (Redding, CA, USA).  These chemicals and materials were 

used as received. Polystyrene-b-polyethylene glycol (PS-b-PEG, PSm-b-PEGn where m = 1600 g/mol and n 

= 5000 g/mol) was obtained from Polymer Source (Product No. P13141-SEO). Prior to use, PS-b-PEG was 

dissolved in THF (500 mg/mL) and precipitated in ether (~1:20 v/v THF:ether). The PS-b-PEG was recovered 

by centrifuging, decanting, and drying under vacuum at room temperature for 2 days as previously 

described [110].   

6.2.2.  Nanoreactor Assembly 

Initially, the as-received dodecanethiol stabilized gold nanoparticles in toluene (1 mL) were 

precipitated into ethanol (45 mL) and filtered using a Buchner funnel. The filtered nanoparticles were 

resuspended in THF and concentrated via evaporation at room temperature overnight to achieve a nominal 



114 

 

concentration of around 20 mg/mL for nanoreactor self-assembly. The final concentration was confirmed 

by inductively coupled plasma optical emission spectroscopy using an Agilent 5110 (ICP-OES, Santa Clara, 

CA, USA). UV-vis spectra collected on an Ocean Optics FLAME-S-UV-VIS with a HL-2000-FHSA light 

source (Largo, FL, USA) were compared before and after the solvent switch to confirm processing did not 

significantly affect gold nanoparticle size.   

Nanoreactors were produced via Flash NanoPrecipitation similar to previous reports [110].  Briefly, 

PS-b-PEG (12 mg), dodecanethiol stabilized 5 nm gold nanoparticles (1 mg), and PS homopolymer, MW 

7500 g/mol, abbreviated PS 7500 (co-precipitate, 11 mg) were added to 1 mL of tetrahydrofuran (THF) and 

sonicated at 55 °C for 30 minutes. Using a manually operated confined impinging jet mixer with dilution 

(CIJ-D) [23,24] and achievable Reynolds’ numbers > 1,300, the resulting THF mixture was rapidly mixed 

against 1 mL of water into a stirring vial of water (8 mL). The resulting dispersion (10 mL total) of 

nanoreactors was centrifuged at 14000 rpm for 20 minutes, the supernatant separated from the pellet and 

reconstituted to the original volume with DI water.  The supernatant solutions were stored at room 

temperature for further characterization and analysis.   

For comparison to nanoreactors prepared via FNP, we analyzed as-received 5 nm PEGylated gold 

nanoparticles and 5 nm citrate stabilized gold nanoparticles for kinetic ability in similar manner to the 

nanoreactors.   

6.2.3. Nanoreactor Characterization 

Nanoreactor size (i.e. hydrodynamic diameter) was measured using a Malvern Zetasizer Nano ZS 

(Westborough, MA, USA) with a backscatter detection angle of 173°. Intensity weighted size distributions 

are reported using the average of four measurements of the intensity weight distributed with normal 

resolution. Unless otherwise noted, the reported size is the peak 1 mean intensity. The polydispersity index 

(PDI) is defined from the moment of the cumulant fit of the autocorrelation function calculated by the 
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instrument software (appropriate for samples with PDI < 0.3) and is reported as a measure of particle size 

distribution [71]. For stability analysis following the 4-nitrophenol reduction, reaction solutions were 

allowed to sit for at least 24 hours prior to analysis to reduce the formation of bubbles within the solution.   

UV absorbance spectra (300 to 1200 nm) of the nanoparticle dispersions were measured at room 

temperature in a quartz cuvette with an Ocean Optics FLAME-S-UV-VIS with a HL-2000-FHSA light source 

(Largo, FL, USA) after formulation.  

To determine the gold concentration in the nanoreactor dispersions, the nanoreactor dispersions were 

dissolved in THF and digested in aqua regia (1:3 nitric acid:hydrochloric acid by volume) for at least 24 

hours.  The samples were then diluted to 5% v/v aqua regia. Gold concentration of the digested sample was 

measured using inductively coupled plasma optical emission spectroscopy measurements with an Agilent 

5110 (Santa Clara, CA, USA).  A matrix modifier, potassium chloride (2 mg/mL) in 5% v/v aqua regia, was 

used to increase the ion concentration which proved beneficial for peak resolution.   

Polymer nanoreactor concentration was measured with thermogravimetric analysis (TGA) using a 

Perkin Elmer Pyris 1 TGA (Waltham, MA, USA).  First, the polymer nanoreactor solution was concentrated 

using Amicon Ultra 2 mL Ultracel 50k centrifugal filters (50,000 NMWL Burlington, MA, USA)  and 

spinning 1 mL of solution at 4000 rpm for 20 minutes; 20 uL of retentate was used for the TGA 

measurement.  The sample was held for 5 minutes at 28 ℃, then the temperature was ramped up to 110 ℃ 

at 10 ℃/min.  Finally, the sample was held at 110 ℃ for 30 minutes.  The final weight of the sample was 

calculated from an average of 10 data points taken immediately after 40 minutes from the beginning of the 

TGA method [154]. 

The actual gold loading of the polymer nanoreactors was determined through ICP-OES and TGA 

according to: 

𝐴𝑢𝑙𝑜𝑎𝑑 =
[𝐴𝑢]

[𝑃𝑆𝑏𝑃𝐸𝐺]+[𝑃𝑆]+[𝐴𝑢]
=  

[𝐴𝑢]

[𝑡𝑜𝑡𝑠𝑜𝑙]
                                                         (6.1) 
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where 𝐴𝑢𝑙𝑜𝑎𝑑  is the actual gold loading of the nanoreactors, [𝐴𝑢], [𝑃𝑆𝑏𝑃𝐸𝐺], and [𝑃𝑆] are the concentrations 

of gold, PS-b-PEG, and PS 7500 respectively, and [𝑡𝑜𝑡𝑠𝑜𝑙] is the total solids concentration.  The gold and 

total solids concentrations were determined from ICP-OES and TGA respectively.   

6.2.4.  4-Nitrophenol Reduction with Sodium Borohydride Analysis 

The ability of the nanoreactors to reduce 4-nitrophenol was evaluated using sodium borohydride 

following well established procedures [54,77].  Unless otherwise noted, to the nanoreactors (0.0079 mol% 

AuNP) were added 4-nitrophenol (20 µL, 0.01 M, abbreviated 4NP) followed by aqueous sodium 

borohydride (within 5 minutes of preparation, abbreviated NaBH4) to form a 2 mL reaction solution.  The 

nanoreactor solution and sodium borohydride solution (initially 6 M)volumes added to the nanoreactor 

dispersion were adjusted such that the final reaction volume was 2 mL. The reduction of 4-nitrophenol was 

monitored using UV spectroscopy (Ocean Optics FLAME-S-VIS-NIR-ES, Largo, FL, USA, with a HL-2000-

FHSA light source (300-1200 nm) with a CUV-UV cuvette holder placed on a stir plate. The final reaction 

mixture contained less than 0.01 vol% THF that would have been residual from the self-assembly process. 

The induction time and apparent reaction rate (Kapp) were determined from tracking the absorbance at 425 

nm as a function of time. The values of Kapp and induction time are the averages (± standard deviations) of 

at least 3 trials of each experiment.  The catalyst surface area normalized reaction rate constant (k1) was then 

determined according to equation 4.2. 

6.2.5. 4-Nitrophenol Reduction with Alternative Reducing Agents 

The ability of the nanoreactors to reduce 4-nitrophenol was evaluated using either phenyl silane, 

triethylsilane, or trisodium citrate.  Unless otherwise noted, to the nanoreactors (0.0079 mol% AuNP) were 

added 4-nitrophenol (20 µL, 0.01 M) followed by the chosen reducing agent (0.1 M) to form a 2 mL reaction 

solution.  Phenylsilane and triethylsilane reactions were carried out using deuterated water instead of 

deionized water.  For trisodium citrate, the reduction of 4-nitrophenol was monitored using UV 
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spectroscopy (Ocean Optics FLAME-S-VIS-NIR-ES, Largo, FL, USA, with a HL-2000-FHSA light source 

(300-1200 nm) with a CUV-UV cuvette holder placed on a stir plate. The phenylsilane and triethylsilane 

reducing agent reactions were analyzed after 24 hours by NMR for the presence of 4-aminophenol.  The 

final reaction mixture contained less than 0.01 vol% THF that would have been residual from the self-

assembly process. For the trisodium citrate reaction, the induction time and apparent reaction rate (Kapp) 

were determined from tracking the absorbance at 425 nm as a function of time. The values of Kapp and 

induction time are the averages (± standard deviations) of at least 3 trials of each experiment.   

6.2.6. Condensation of Benzaldehyde with 4-Aminophenol 

For the condensation reaction benzaldehyde (20 µmol) and 4-aminophenol (18 µmol) were placed in 

2 mL of water.  The reaction solution was allowed to sit overnight and the solution was analyzed by GCMS 

(HP 6890 GC with HP 5973 MSD) with a 5% Phenyl Methyl Siloxane column.  If a precipitate was present, 

the solution was then filtered through a syringe filter to remove the precipitate.  The filter was washed with 

acetone d-6 (1 ml) and the solution analyzed by NMR to confirm the presence of the desired reaction 

product.  The pH was adjusted using the appropriate amounts of formic acid and NaOH (10 M). 

6.2.7.  Cascade Reaction 

  The cascade reaction was carried out in a 10 mL conical tube.  Unless otherwise noted, polymer 

nanoreactors (500 µL) were added to 960 µL of water followed by the addition of 4-nitrophenol (500 µL, 4 

mg/mL).  A fresh solution of sodium borohydride (40 µL, 3.78 mg/mL) was then added to the reaction 

solution.  Once the solution turned colorless, formic acid (20 µL) was added in order to degrade the 

remaining sodium borohydride.  After bubbling in the reaction solution had subsided, benzaldehyde (20 

µmol) was added followed by sodium hydroxide solution (10 M, 30 µL).  The reaction solution was allowed 

to sit overnight, after which the solution was centrifuged at 4000 rpm for 20 minutes and the supernatant 

separated from the pellet.  The pellet was dried at room temperature overnight.  Then, the pellet was 
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dissolved in acetone d-6 and analyzed by GCMS (HP 6890 GC with HP 5973 MSD) and NMR (Bruker 400 

MHz).  The GCMS was equipped with a 5% Phenyl Methyl Siloxane column.  After analysis, the acetone 

was evaporated and the resulting solid was weighed to determine an isolated yield of desired product as 

calculated from: 

𝛾𝐵𝐴𝑃 =
𝑚𝑜𝑙𝐵𝐴𝑃𝑎

𝑚𝑜𝑙𝐵𝐴𝑃𝑡

∗ 100% =  
𝑚𝐵𝐴𝑃𝑎

𝑚𝐵𝐴𝑃𝑡

∗ 100%                                              (6.2) 

Where γBAP is the isolated yield of 4-benzylideneaminophenol, molBAPa
 and molBAPt

 are the actual and 

theoretical (based on 100% conversion of 4-nitrophenol) moles of 4-benzylideneaminophenol, and finally 

mBAPa
 and mBAPt

 are actual and theoretical isolated masses of 4-benzylideneaminophenol.  The isolated 

yield of the product was an average of three trials.  Any solid that was insoluble in the acetone-d6 extraction 

was also weighed.  The other solid precipitate mass was reported as an average of three trials.  Finally, the 

pellet was digested with 667 µL of aqua regia for 24 hours, diluted to 5% v/v aqua regia, and analyzed by 

ICP-OES for gold content.  A matrix modifier, potassium chloride (2 mg/mL) in 5% v/v aqua regia, was 

used to increase the ion concentration which proved beneficial for peak resolution.   

6.3.  Results 

6.3.1.  Nanoreactor Characterization 

 In similar manner to previously reported methods [110,155] polymer nanoreactors were self-

assembled through Flash Nanoprecipitation.  This method of kinetically-trapped self-assembly relies upon 

rapid mixing of an organic solvent, containing at least a hydrophobic core material and an amphiphilic 

polymer, against a miscible anti-solvent, such as water, which precipitates those components from the 

solution.  To fabricate the nanoreactors, PS-b-PEG and PS 7500 were dissolved in THF and sonicated for 30 

minutes at 55℃.  After cooling, dodecanethiol-stabilized gold nanoparticles were dispersed in the THF 

solution, thereby comprising the organic stream.  This organic stream was rapidly mixed against water, 
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which decreases the solvent quality of the mixture resulting in the precipitation of the hydrophobic 

materials in the organic stream.  The precipitates grow until sufficient block copolymer adsorbs via 

hydrophobic interactions between precipitate core and the hydrophobic block of the PS-b-PEG 

amphiphiles.  The nanoreactor is sterically stabilized in the aqueous dispersion by the PEG block of the 

block copolymer.   After formulation, the polymer nanoreactors exhibited an average diameter of 91 ± 5 nm 

and PDI of 0.163 ± 0.018 by DLS.   

 

Figure 6.1:  Representative A) DLS and B) UV-Vis of PS 7500 nanoreactors.  Scattering by the polymer 

nanoreactors is seen around 400 nm while the absorbance around 520 nm is characteristic of gold 

nanoparticles.  Reported intensities and absorbances are averages of four and ten measurements 

respectively. 

 UV-Vis analysis (Figure 6.1B) shows absorbance peaks around 400 nm and 520 nm.  The absorbance 

peak around 520 nm is indicative of gold nanoparticles [47,96].  The plasmon resonance absorbance 

wavelength can be impacted by environment, size, and proximity to other gold nanoparticles.  5 nm gold 

nanoparticles dispersed in water typically show an absorbance around 520 nm [110].  The absorbance peak 

witnessed at 400 nm can be attributed to scattering from the nanoparticles. 

ICP-OES analysis confirms the presence of gold in the polymer nanoreactor dispersion with a 

measured gold concentration of 21.6 ± 0.3 µg/mL.  The gold concentration in the dispersion was much lower 

than the expected value of 100 µg/mL based on the formulation.  Loss of gold may have occurred during 



120 

 

the solvent switch from toluene to THF, the nanoreactor formation step, as well as during the centrifuging 

of the nanoreactors.   

Next, we examined the gold loading in the resulting nanoreactors (wt. gold/wt. nanoreactors).   

Thermogravimetric analysis (TGA) was used to determine the total solids concentration.  The total solid 

mass in the nanoreactor dispersion was 1.95 ± 0.01 mg/mL, compared to a nominal concentration of 2.4 

mg/mL.  The differences between the two values is mainly attributed to losses in the centrifugal filtration 

[156].  Actual gold loading of the nanoreactors was determined from the experimentally confirmed gold 

and polymer concentrations in the nanoreactor solutions to be 1.1 ± 0.01% while the nominal gold loading 

was 4.3%.  The lower than expected gold loading can be attributed to the lower than expected amount of 

gold in the dispersion.   

6.3.2. Confirmation of Catalyst System Activity 

 Initially, we confirmed the gold nanoparticles incorporated in the nanoreactors were catalytically 

active and compared their activity to citrate-stabilized gold nanoparticles and PEG-coated gold 

nanoparticles using the reduction of 4-nitrophenol with sodium borohydride.  The 4-nitrophenol 

reduction is a well known model reaction for studying the activity of gold nanoparticle catalysts [34,49–

52,54].  We have previously demonstrated that kinetically-trapped polymer nanoreactors are active 

catalysts for the reduction of 4-nitrophenol [110,155].  The polymer nanoreactors used in this study were 

also subjected to the same reaction to demonstrate activity.  The catalyst surface area normalized reaction 

rate constants (k1) compared to PEG AuNP, and citrate AuNP at the same conditions are reported in 

Table 6.1.  At a sodium borohydride concentration of 0.1 M the polymer nanoreactors demonstrated 2-

fold greater activity than citrate AuNP and statistically equivalent activity with PEG AuNP.  This 

demonstrates the effectiveness of incorporating gold nanoparticle catalysts in a kinetically trapped filled 

polymer micelle.  These results also demonstrate that polymer stabilizers can enhance apparent catalytic 
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activity.   The difference in reaction kinetics between the systems could be attributed to reagent solubility 

differences in the localized reaction environments [32], which might suggest that the gold nanoparticle 

catalysts are dispersed throughout the core and shell of the polymer nanoreactors, given the similarity in 

activity to the PEG AuNP catalyst. 

Table 6.1:  4-Nitrophenol Reduction Rate Constants of Polymer Nanoreactors and Gold Colloids at Various 

Reagent Concentrations. (n=3) 

Catalyst [4NP] (mM) [NaBH4] (M) k1 (L m-2 s-1) 

No Catalyst 

0.1 0.1 N/A 

7.2 0.2 N/A 

PS 7500 NR 

0.1 0.1 0.41 ± 0.03 

7.2 0.2 0.07 ± 0.01 

PEG AuNP 

0.1 0.1 0.41 ± 0.03 

7.2 0.2 0.10 ± 0.01 

Citrate AuNP 

0.1 0.1 0.20 ± 0.04 

7.2 0.2 0.03 ± 0.01 

 

After demonstrating that the nanoreactors could reduce 4-nitrophenol to 4-aminophenol and that 

gold was required for the reaction to proceed, increased reagent concentrations were examined.  For 

these reactions, the 4-nitrophenol reagent concentration was increased by 70 fold compared to the 4-

nitrophenol reduction conditions, giving a reaction solution concentration of 7 mM, in order to make 
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analysis possible by NMR.  As the 4-nitrophenol reduction has previously been shown to follow 

Langmuir-Hinshelwood kinetics [49,54,110,155], there is a danger in saturating the surface of the gold 

nanoparticles with 4-nitrophenol effectively blocking hydride from active sites and stalling the reaction.  

Therefore, the nanoreactor concentration was increased 4-fold in order to increase the availability of 

catalyst surface area and the sodium borohyride concentration was increased 2-fold.  Under these 

conditions the PS 7500 NR outperformed the citrate AuNP by 2-fold (Table 6.1).  However, the PEG 

AuNP demonstrated a slightly greater activity for the high concentration reduction than the PS 7500 NR, 

with a catalyst surface area normalized reaction rate constants of 0.10 ± 0.01 and 0.07 ± 0.01 L m-2 s-1 

respectively. 

When we attempted a one-pot cascade reaction adding all the reactants (4-nitrophenol, sodium 

borohydride, and benzaldehyde) at the same time, the desired cascade reaction of reduction of 4-

nitrophenol to 4-aminophenol followed by reaction with benzaldehyde was not achieved.  Instead, 

analysis by GCMS showed that under these circumstances the benzaldehyde is reduced to benzyl alcohol 

by the sodium borohydride.  This is consistent with previous studies involving the reductive amination of 

benzaldehyde with sodium borohydride [157]. 

Alternative reducing agents were therefore investigated for the ability to selectively reduce 4-

nitrophenol without reducing the benzaldehyde.  Because the ability to reduce the 4-nitrophenol is 

paramount to the success of the cascade, that reaction was further investigated with the use of either 

sodium cyanoborohydride (CNBH4), triethylsilane (TES), phenyl silane (PhSi), or trisodium citrate as the 

reducing agent (Table 6.2).  For cyanoborohydride and trisodium citrate reactions, no color change was 

observed after 24 hours, therefore it was concluded that no reaction took place.  The reactions with 

triethylsilane and phenylsilane were performed in D2O and were analyzed by 1H-NMR after 24 hours 

because of the lack of ability to track the 4-nitrophenolate ion via UV-Vis [55].  After 24 hours, no 
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evidence of 4-aminophenol was evident by 1H-NMR.  None of the alternative reducing agents studied 

were able to facilitate the reduction of 4-nitrophenol, either with or without a catalyst, and in the case of 

TES and PhSi a second phase was present.  Notably, the only reducing agent that produced a color 

change indicative of the 4-nitrophenol reduction, was sodium borohydride, (Table 6.2). 

Table 6.2:  Application of Various Reducing Agents to the Reduction of 4-Nitrophenol 

Reducing Agent Reducing Agent Conc. (M) Conversion of 4NP after 24 hrs* (%) 

NaBH4 0.1 100 

CNBH4 0.1 < 5 

TES 0.1 < 5 

PhSi 0.1 < 5 

Citrate 0.1 < 5 

*Conversion of 4-nitrophenol identified by UV-Vis analysis. 

From these results we determined that sodium borohydride was necessary for the reduction of 4-

nitrophenol, but caused an unwanted side reaction in the presence of benzaldehyde.  Therefore, it was 

necessary to neutralize the sodium borohydride prior to the addition of benzaldehyde.  Thus, our approach 

to performing these reactions in “one pot” was to neutralize the sodium borohydride with formic acid 

following reducing of 4-nitrophenol indicated by the color change from yellow to colorless and then titrate 

the pH of the reaction as necessary (Figure 6.2).   
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Figure 6.2:  Schematic of the one-pot condensation of benzaldehyde with 4-nitrophenol.  4-nitrophenol is 

reduced in an aqueous dispersion of polymer nanoreactors upon addition of sodium borohydride.  After 

reduction, addition of formic acid degrades the remaining sodium borohydride.  Finally, addition of 

benzaldehyde followed by sodium hydroxide allows the condensation of benzaldehyde to occur.  

To determine the appropriate titration steps, we examined the effect of pH on the desired reaction 

between 4-aminophenol and benzaldehyde.  Experiments in the condensation of benzaldehyde with 4-

aminophenol without nanoreactors showed that the pH of the reaction solution strongly influences the 

reaction outcome (Figure 6.3).  At pH 4, no desired reaction product is witnessed and the reaction solution 

remains colorless with no precipitate formed.   In contrast, at neutral or basic pH’s either precipitates are 

formed or the solution color changes respectively.   
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Figure 6.3:  The effect of pH on the aqueous condensation of benzaldehyde with 4-aminophenol.  A) 

Reaction solution pH of 4 with no color change or precipitate observed.  B) Reaction solution pH of 7 with 

a precipitate observed.  C)  Reaction solution pH of 10 with a brown color changed observed and no 

precipitate.   

Specifically, at neutral pH, there is a color change to a light brown and a precipitate forms.  

Representative NMR of the precipitate in acetone d-6 is shown in Figure 6.4.  The aromatic region shows 

two sets of doublets 6.9 and 7.2 ppm, consistent with the aromatic protons on the phenol group.  A doublet 

of doublets is seen further downfield consistent with the aromatic protons in the benzyl group.  Lastly, the 

singlet located at 8 ppm which integrates for 1 proton compared to the doublet peaks at 6.9 ppm is 

consistent with the benzylidene proton.    The precipitate formed at neutral pH is consistent by NMR to 

the desired product 4-benzylideneaminophenol.   
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Figure 6.4:   Representative image of 1H-NMR spectra for the imine formation product 4-

benzylideneaminophenol.  The singlet peak at 8.6 ppm integrates for 1 proton relative to the doublet peaks 

at 6.9 ppm confirming the presence of 4-benzylideneaminophenol.   

At basic pH, the solution turns a dark brown (Figure 6.3).  However, the desired product is not seen by 

either GCMS or NMR.  The unknown compound may be attributed to oxidation induced polymerization 

of 4-aminophenol [158].   

Given these results, it is clear that after sodium borohydride neutralization the reaction solution must 

be adjusted to at least pH of 7.  Two approaches to adjust the pH following the 4-nitrophenol reduction 

reaction were investigated: (1) dropwise addition of sodium hydroxide and (2) rapid addition of sodium 

hydroxide. 

With the dropwise addition of sodium hydroxide, more precise control of the pH was expected.  

However, the titration of the solution to pH 7 was a time consuming endeavor.  In the time that it took to 
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achieve a pH 7 with high precision, we observed the unwanted color change to dark brown associated 

with the unknown product happening shortly after neutral pH conditions were reached.   

Based on the titration, approximately 20 uL of 10 M NaOH was required to achieve a pH 7 or greater.  

Therefore, we switched to a rapid addition of sodium hydroxide following formic acid to reduce the 

amount of time the 4-aminophenol is sitting in the solution and possibility of polymerization.  

Benzaldehyde was added to the acidic reaction solution followed by the addition of a standard 20 uL of 10 

M NaOH (Figure 6.2).  In this case, there was a color change to light brown associated with the desired 

reaction as well as a precipitate.  The precipitate was characteristic of the condensation of benzaldehyde 

with 4-aminophenol at neutral pH.  The result of solution color change and formation of precipitate was 

similar to the slow titration results, but the characteristics were more consistent, likely due to the more 

repeatable method.  Due the importance of the pH, consistent time between addition of sodium 

borohydride and neutralization steps is an important factor.  

 After the reaction solution was allowed to sit overnight, the solution was centrifuged to pellet the 

precipitate and the supernatant was subsequently removed, dried and weighed.  The desired product was 

extracted from the dried pellet to separate it from an  insoluble solid.  NMR analysis of the acetone showed 

analytically pure 4-benzylideneaminophenol.   After drying the acetone, the mass of product was 

measured and the yield (based on the molar amounts of 4-nitrophenol and benzaldehyde), the isolated 

yield was 65%.  Importantly, these results demonstrate that multiple reactions could be achieved in “one 

pot” using water as the bulk solvent at ambient temperature and pressure.  Since the desired product is 

hydrophobic, it spontaneously phase separated from the reaction mixture.   

After analysis by NMR and yield calculations, the precipitate pellet was treated with 667 uL of aqua 

regia for 24 hrs, diluted to 10 mL and analyzed by ICP-OES for the presence of gold.  No gold was indicated 
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in the precipitate by ICP-OES indicating that the gold nanoparticles did not precipitate during the reaction, 

suggesting that the nanoreactors were stable during the reaction.  

Table 6.3:  DLS Measurements of Nanoreactor Reaction Solution During Cascade Reaction. (n=4) 

Cascade Step Peak 1 (nm) Peak 2 (nm) PDI 

Before Rxn 91 ± 5 
 

0.163 ± 0.018 

After 4NP Reduction 98 ± 6 
 

0.133 ± 0.014 

After Neutralization 114 ± 25 
 

0.177 ± 0.001 

After Imine Formation 461 ± 198 47 ± 8 0.660 ± 0.235 

After Centrifuge 104 ± 6 
 

0.139 ± 0.012 

 

We further analyzed the effect of the cascade reaction steps on the stability of the polymer nanoreactors.  

Stability was defined as maintaining a hydrodynamic diameter and PDI within 25% of the initial DLS 

measurement, as long as the PDI remained below a maximum value of 0.400.  As can be seen in Table 6.3, 

the nanoreactors were stable until after the imine formation step which showed an increase in the PDI and 

multiple peaks by DLS.  This increase in PDI may occur due to precipitation of the reaction product.  After 

centrifugation of the solution however, there is only one peak by DLS with corresponds to a diameter 

around the initial size of the nanoreactors and the PDI again falls below 0.400.  This indicates that the 

precipitate in the solution was leading to the polydispersity of the DLS measurement and that the 

nanoreactors are stable throughout the reaction.  Since the product spontaneously phase separates from 

the nanoreactors, this is a promising approach to ease reuse of the catalyst. 
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Table 6.4:  Cascade Reaction Yields. (n=3) 

Catalyst* 
Isolated Product 

(mg) 

Other Solid 

(mg) 

Gold in Precipitate 

(mg) 

NR Stability** 

(y/n) 

none 0 ± 0.0 0 ± 0.0 N/A NA 

PS 7500 NR 1.8 ± 0.1 2.4 ± 1.0 0.2 ± 0.7 Y 

PEG AuNP 1.5 ± 0.5 4.9 ± 1.7 3.6 ± 0.2 N 

Citrate AuNP 1.4 ± 0.3 5.3 ± 1.9 4.3 ± 0.4 N 

*Approximately 10 µg of Au in each catalyzed reaction 

**Catalyst stability was determined by DLS and ICP-OES.  Catalyst stability was defined as changes 

in hydrodynamic diameter less than 25% of the original size and a PDI below 0.400 without the 

precipitation of the gold catalyst. 

Finally, we compared the results using the nanoreactors to the PEG-coated gold nanoparticles and the 

citrate-stabilized gold nanoparticles.  Throughout the cascade reaction, no significant changes in the size 

or polydispersity of the dispersions were observed although both polydisperse initially and maintained 

that polydispersity throughout the reaction sequence; no precipitation of gold was observed. Both PEG 

AuNP and citrate AuNP yielded ~1.5 mg of product which is comparable to the polymer nanoreactors 

(Table 6.4).  However, both yielded more of the undesired product than the polymer nanoreactors with 4.9 

± 1.7 mg and 5.3 ± 1.9  mg for the PEG AuNP and the citrate AuNP respectively (statistically significant 

with 90% confidence).  Also, ICP-OES analysis of the precipitate pellets of PEG AuNP and citrate AuNP 

reactions found gold content of 3.6 ± 0.2 and 4.3 ± 0.4 ug/mL respectively (Table 6.4).  This suggests that 

the ligand-stabilized gold nanoparticles were less stable than the polymer nanoreactors which did not have 

any measurable gold content in the precipitate pellets.  This could be due to removal of the stabilizing 

ligands by sodium borohydride [50] which resulted in colloidal instability.  However, it is possible that the 
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kinetic barrier present in the kinetically-trapped polymer nanoreactor system prevents loss of the gold 

nanoparticle catalyst due to ligand loss.   While PEG AuNP and citrate AuNP yielded comparable amounts 

of product as the nanoreactor, there was significant gold in the precipitate as measured by ICP-OES 

indicated that these systems are not stable during the cascade reaction and precipitate with the product.  

This would complicate both isolation of the product as well as reuse of the catalyst.  Since the product 

spontaneously phase separates from the nanoreactors without contamination by the catalyst, the block 

copolymer stabilized structures are a promising approach to ease reuse of the catalyst.   

Evaluating Green Chemistry metrics, we examined the E-factor.  Since we use water as the bulk solvent 

the E-factor for the reaction itself is relatively low ~25 and comparable to previous studies (Table 6.5).  Since 

the amount of product using all three gold nanoparticle systems were comparable, the E-factors were also 

similar. However, since the product is extracted with acetone isolate it from the other precipitated side 

products, the E-factor is ~400.  As evident by this calculation, isolation of the desired reaction product with 

solvent contributes significantly to the E-factor.   Therefore, performing multiple reaction steps in “one-

pot” to avoid product isolation of intermediate steps would be beneficial for reducing waste associated 

with liquid phase chemical processing.   The use of an alternative reducing agent that facilitates the 

reduction of 4-nitrophenol without spontaneously reducing benzyl alcohol could improve the E-factor by 

5 to 10-fold.  If, by using a non-basic reducing agent, the unwanted side-reaction is also diminished, the 

need for extraction of the product with acetone becomes unnecessary and the overall E-factor could be 

reduced by two orders of magnitude.  Similarly, a much smaller amount of acetone could be used for 

purification of the product which would reduce the E-factor by around 10-fold.   
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Table 6.5:  E-Factors of Condensation and Reductive-Amination Reactions with Product Purification 

System Reaction Medium Temp. (℃) E-factor Ref 

PS 7500 NR  

(reaction) 

Water rt 25 This Work 

PS 7500 NR  

(w/ extraction) 

Water rt 400 This Work 

Pd NP Zeolite Water rt 40 [159] 

Supported AuPd NP Water 50 54 [160] 

Supported AuNP Toluene 120 27* [161] 

Fe/citric acid/K10 Water rt 52** [162] 

Pd/Fe3O4 on carbon Water 60 41 [153] 

*Purification of product was not specified.  It was assumed that during the separation of the catalyst 

equivalent reaction volumes were used during the washing procedure. 

**Purification of product was not specified.  A theoretical extraction procedure utilizing twice the 

reaction volume of organic solvent was used for the estimation of the E-factor. 

6.4. Conclusions 

 We used gold-loaded polymer nanoreactors to perform the one-pot imine formation involving 

reduction of the nitro group to an amine followed by condensation with the aldehyde using the reaction of 

benzaldehyde with 4-nitrophenol as a model reaction.  The polymer nanoreactors first facilitated the 
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reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride.  After the reduction was 

completed, the sodium borohydride was neutralized with formic acid.  Control of the reaction solution pH 

during the imine formation was also found to be critical, otherwise unwanted side reaction occurred.  

Specifically, the reaction solution was adjusted to slightly alkaline to promote the amination of 

benzaldehyde.  The resulting precipitate was dried and weighed, then extracted with to determine the 

amount of product.  We determined there was a 66% isolated yield of that was analytically pure by NMR. 

While PEG AuNP and citrate AuNP yielded comparable amounts of product as the nanoreactor, there was 

significant gold in the precipitate as measured by ICP-OES indicated that these systems are not stable 

during the cascade reaction and precipitate with the product.  This would complicated both isolation of the 

product as well as reuse of the catalyst.  Since the product spontaneously phase separates from the 

nanoreactors, the block copolymer stabilized structures are a promising approach to ease reuse of the 

catalyst.  Evaluating Green Chemistry metrics, we examined the E-factor.  Since we use water as the bulk 

solvent the E-factor for the reaction itself is relatively low ~25 and comparable to previous studies.  

However, since the product is extracted with acetone isolate it from the other precipitated side products, 

the E-factor is ~400.  As evident by this calculation, isolation of the desired reaction product with solvent 

contributes significantly to the E-factor.   Therefore, performing multiple reaction steps in “one-pot” to 

avoid product isolation of intermediate steps would be beneficial for reducing waste associated with liquid 

phase chemical processing.    
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Chapter 7 : Conclusions and Future Work 

 

Summary and Conclusions 

 

The overall goal of this work was to reduce solvent waste associated with liquid phase chemical 

processing.  Our approach was to use polymer nanoreactors that incorporate metal nanoparticle catalysts 

in an amphiphilic polymer microenvironment.  The rationale for this approach was that performing 

reactions in the presence of self-assembled amphiphilic macromolecules can accelerate reactions while 

using water as the bulk solvent due to the hydrophobic effect.  Systematic investigations to understand the 

effect of the hydrophobic microenvironment, determined by the hydrophobic portion of the core material, 

on the nanoreactor performance with respect to catalyst performance have yet to be established.  Such 

studies would require synthesis of a new amphiphilic stabilizer for each nanoreactor.  As an alternative to 

systems that require unique synthesis of amphiphilic molecules to vary the properties of the hydrophobic 

compartment, Flash Nanoprecipitation offers a simple approach to produce filled polymer micellar 

nanoreactors with different core materials.   

Therefore, the aims of this work were to formulate nanoreactors with comparable size and metal 

nanoparticle catalyst loading while varying the hydrophobic core material in order to in order to study the 

effects of composition of reactor performance.  We also sought to fundamentally understand the interplay 

between mass transfer and reaction kinetics within the nanoreactor by combining experiment with scaling 

analysis and the Langmuir-Hinshelwood kinetic model to study intrinsic kinetics.  Finally, we studied the 

use of these nanoreactors (dispersed in water) in oxidation reactions as well as a two-step imine formation 

performed in one-pot. 

Using polystyrene as a model system, we demonstrated that Flash NanoPrecipitation is a rapid, 

scalable self-assembly method useful for production of hybrid metal nanoparticle catalyst-polymer 

composite nanoreactors. The size and gold loading of the nanoreactors can be tuned independently, with 

sizes and nominal loadings ranging from 100-200 nm and 4-50 wt% respectively. Nanoreactor size could 
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be tuned independently of gold loading by varying the total solids concentration at a constant ratio of gold 

to polystyrene.   To vary the gold loading independently of nanoparticle size, we developed a constant core 

volume approach guided by the Smoluchowski diffusion limited aggregation model. Thus, the gold 

loading was tuned independently of nanoreactor size by varying the ratio of gold to polystyrene at constant 

total core volume. The constant core volume approach may be useful for formulations of multiple 

components with disparate densities e.g., inorganic particle-polymer nanocomposite particles.   

Since Flash NanoPrecipitation is a versatile platform in terms of materials selection, we prepared a 

number of other nanoreactor systems with various hydrophobic co-precipitants. We examined dodecane, 

dodecylamine, and dodecanethiol.  In the cases of dodecylamine and dodecanethiol, gold-core material 

interactions may affect both nanoreactor self-assembly as well as catalytic performance.  For self-

assembling systems that only involved non-covalent, hydrophobic interactions, we studied dodecane and 

polystyrene (MW 750 g/mol PS 750) in addition to castor oil.  Using these various hydrophobic co-

precipitants, nanoreactors with comparable hydrodynamic size and gold loading were achieved using the 

constant core volume approach. 

To fundamentally understand the interplay between mass transfer and reaction kinetics within the 

polystyrene nanoreactor system, we first examined reduction of 4-nitrophenol with sodium borohydride 

as a model reaction.   We observed that the induction time is affected by sequence of reagent addition, time 

between reagent addition, and reagent concentration. Combined, our experiments indicate that the 

induction time is most influenced by diffusion of sodium borohydride. Scaling analysis and effective 

diffusivity measured using NMR, the observed reaction rate after the induction time are reaction- rather 

than diffusion-limited. Finally, the intrinsic reaction kinetics of gold associated with the polymer was 

comparable to ligand-free particles indicating the self-assembly process and resulting polymer 

microenvironment does not de-activate or block the catalyst active sites.  
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Next, we examined the effect of co-precipitant on self-assembly and catalytic performance.  We 

determined that core materials that interact with gold are beneficial for improving incorporation efficiency 

of the gold nanoparticles into the nanocomposite nanoreactor during self-assembly but decreased catalytic 

performance.  Non-interacting core materials could enhance catalytic performance.  For example, we 

observed that the reaction rate normalized per surface area per gold (k1) for the gold nanoparticles added 

to the pre-formed castor oil nanoparticles were comparable to the PEG-coated gold nanoparticles and 

citrate-stabilized gold nanoparticles.  Notably, the k1 of the castor oil nanoreactors was over 2.7-fold faster 

than these other systems.  These results suggest that the hierarchical, amphiphilic structure of the 

nanoreactors achieved by self-assembly with the amphiphilic polymer, castor oil and gold nanoparticles is 

beneficial for catalytic performance compared to gold nanoparticles with hydrophilic stabilizers.   

Rate acceleration in self-assembled amphiphilic systems has been attributed to increased local 

concentrations of the reactants.  To quantify this difference in concentration, we measured the partition 

coefficient of 4-nitrophenol between water and castor oil to be 7.81 ± 0.16 indicating an increased local 

concentration within the nanoreactor was possible.  We used this information to examine the intrinsic 

kinetics of the 4-nitrophenol reduction on the gold nanoparticle catalyst surface based on the Langmuir-

Hinshelwood mechanism.  Notably, the rate constants for castor oil nanoreactors and castor oil added to 

preformed castor oil nanoparticles were comparable.  Further, the measured intrinsic kinetic parameters 

were comparable to PEG-coated gold nanoparticles and citrate-stabilized gold nanoparticles.  These results 

suggest that the intrinsic kinetics of the catalysts for all the systems are comparable once the partition 

coefficient has been used to estimate the 4-nitrophenol concentration for each microenvironment.  Thus, 

incorporating the gold nanoparticles into the nanoreactors via self-assembly does not adversely impact the 

intrinsic catalytic performance compared to adding gold nanoparticles to pre-formed gold nanoparticles.  

Therefore, the difference in apparent catalytic performance can be attributed to an increase in local reactant 

concentration.  Notably, the castor oil nanoreactors demonstrated high catalytic activity compared to 
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previously reported nanoparticle-based catalyst systems as quantified by the turnover frequency.   Based 

on the observed reaction rate constants, the TOFs for castor oil nanoreactors were approximately 300,000 

min-1.  These TOFs were higher than typically reported for gold-based catalysts (~1-2 min-1) and gold-

polymer based systems ~15,000 min-1.    

Catalytic performance was strongly affected by the co-precipitant that formed the hydrophobic 

microenvironment for reaction.  For example, the apparent reaction rate per surface area using castor oil 

(CO) was over 8-fold greater than polystyrene (750 g/mol, PS 750).  We further investigated the difference 

between the PS 750 and CO nanoreactor systems.  Diffusion coefficients for 4-nitrophenol within the 

polymer nanoreactor structures was determined by PFG-NMR for nanoreactors with both polystyrene and 

castor oil cores to evaluate potential differences in diffusion limitations.  Based on the apparent kinetics, 

the second Damkohler number (DaII), i.e. a ratio of the reaction and diffusion rates was found for all 

systems to be on the order of 10-4 or smaller, signifying there were no diffusion limitations for either the 

CO NRs or PS 750 NRs.  Based on our results, we posited that the difference in apparent catalytic 

performance may be attributed to differences in local reactant concentration and specifically 4-nitrophenol 

concentration.   Hanson solubility parameters suggest that castor oil is a better solvent for 4-nitrophenol 

than polystyrene and the effective 4-nitrophenol concentration within CO NRs would be higher than PS 

750 NRs.  In order to confirm this difference in solubility of 4-nitrophenol in different nanoreactor 

microenvironments, we measured the partition coefficient of 4-nitrophenol between water and castor oil 

or toluene (to mimic PS).  The core material:water partition coefficient for castor oil was 7.81 ± 0.16 

compared to 0.09 ± 0.01 for toluene which suggests that the effective concentration of 4-nitrophenol in the 

CO NRs would be higher than a PS NR contributing to enhanced apparent catalytic performance.  Overall, 

the increase in apparent catalytic performance could be attributed to differences in reactant solubility rather 

than differences in mass transfer or intrinsic kinetics.  Overall, higher reactant solubility enhances apparent 

reaction rates and may be a useful design parameter for material selection in future nanoreactor studies. 
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Next, our goal was to examine the applicability of the nanoreactor dispersions in various reactions.  

First, we examined the possibility of using the gold-loaded polystyrene nanoreactors to perform aqueous, 

aerobic oxidations of benzyl alcohol at ambient conditions.  Various oxidants were studied.  No conversion 

(greater than auto-oxidation) was observed using air or hydrogen peroxide as the oxidant.  Using a stronger 

oxidant, such as NaClO, increased the conversion of benzyl alcohol.  Up to 70% conversion of benzyl 

alcohol was achieved with a benzaldehyde yield of 32 ± 15% due to over-oxidation of benzaldehyde to 

benzyl benzoate.  Under these conditions the nanoreactors were not stable (Table 3), so a reduced amount 

of bleach was also tested.  Using a 1/3 equivalent of bleach resulted in significantly less conversion (10.8 ± 

4.9%) while still destabilizing the nanoreactors (Table 3).  Unfortunately, the nanoreactors were not stable 

when performing the reaction with any oxidant other than air; after reaction the PDI’s > 0.3 as analyzed by 

DLS in all cases.  Interestingly, the nanoreactor stability appears to be related to the reaction as the 

nanoreactors remained intact, with comparable size and polydispersity, in the presence of individual 

reactants and products over the same time period (24 hours).  Notably, the PDI of the nanoreactor 

dispersion did increase at high concentrations of benzaldehyde (corresponding to 100% conversion of 

benzyl alcohol to benzyaldehdyde).  This result could be due to increased partitioning of the benzaldehyde 

into the nanoreactor core due to its relatively high hydrophobicity (logPow = 1.5 Sigma Aldrich MSDS). 

Thus, the combination of reactants, oxidant, and/or products destabilizes the nanoreactors.  Future work 

should investigate nanoreactor stability in solutions with combinations of reagents.  Co-precipitate 

hydrophobicity should also be examined for its effect on nanoreactor stability, with the goal of tailoring the 

product solubility in the core to prevent destabilization.    

Finally, we attempted a one-pot cascade reaction with the gold-loaded polystyrene nanoreactors.  

Building on our initial work with the reduction of 4-nitrophenol to 4-aminophenol, we were interested in 

performing the one-pot imine formation involving reduction of the nitro group to an amine followed by 

condensation with an aldehyde using the reaction of benzaldehyde with 4-nitrophenol as a model reaction.    
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To perform two reactions in one pot, the polymer nanoreactors first facilitated the reduction of 4-

nitrophenol to 4-aminophenol with sodium borohydride.  After the reduction was completed, the sodium 

borohydride was neutralized with formic acid.  Control of the reaction solution pH during the imine 

formation was also found to be critical, otherwise an unwanted side reaction occurred.  Specifically, the 

reaction solution was adjusted to slightly alkaline to promote the amination of benzaldehyde.  We 

determined there was a 66% isolated yield of 4-benzylideneaminophenol was analytically pure by NMR.  

The polymer nanoreactors were stable in dispersion and did not precipitate with the desired product. While 

PEG AuNP and citrate AuNP yielded comparable amounts of product as the nanoreactor, there was 

significant gold in the precipitate as measured by ICP-OES which indicated that these systems are not stable 

during the cascade reaction and precipitate with the product.  This precipitation with the product would 

complicate both isolation of the product as well as reuse of the catalyst.  Since the product spontaneously 

phase separates from the nanoreactors, the block copolymer stabilized structures are a promising approach 

to ease reuse of the catalyst.  Evaluating Green Chemistry metrics, we examined the E-factor.  Since we use 

water as the bulk solvent the E-factor for the reaction itself is relatively low ~25 and comparable to previous 

studies.  However, since the product is extracted with acetone in order to isolate it from the other 

precipitated side products, the E-factor is ~400.  As evident by this calculation, isolation of the desired 

reaction product with solvent contributes significantly to the E-factor.   Therefore, performing multiple 

reaction steps in “one-pot” to avoid product isolation of intermediate steps would be beneficial for reducing 

waste associated with liquid phase chemical processing.    

Overall, we have demonstrated that Flash NanoPrecipitation is a versatile platform for scalable 

production of polymer nanoreactor with tunable properties (size, catalyst loading) and modular materials 

selection.  Incorporating the metal nanoparticle catalyst does not adversely affect the intrinsic kinetics or 

introduce mass transfer limitations.  Apparent rate enhancement is possible and can be attributed to 

increased local concentration of the reactants.  Thus, solubility parameters may be a useful design 
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parameter for material selection in future nanoreactor studies.  Finally, we demonstrate the nanoreactors 

can be used for a two-step reaction performed in one-pot (in water at ambient conditions).  Performing the 

reactions in water reduces solvent waste.  Furthermore, performing multiple reactions in one pot eliminates 

the need to isolate the product at intermediate steps which could significantly reduce solvent waste 

associated with liquid phase chemical processing.  

Future Work 

In this work, the focus was proof-of-principle demonstrating that multiple reactions in “one-pot” was 

possible and that the product spontaneously phase separately from the nanoreactor dispersion.  Building 

upon this work, improvements in the one-pot imine formation may be possible using an alternative 

reducing agent to sodium borohydride that would be capable of selectively reducing 4-nitrophenol without 

reacting with benzaldehyde.  Such a reducing agent would eliminate the need to neutralize the reaction 

solution with formic acid and potentially reduce the formation of undesirable side products by allowing 

the 4-aminophenol intermediate to directly react with benzaldehyde. This selective reduction of 4-

nitrophenol may be achieved with an alternative reagent such as hydrazine. The reducing agents screened 

could also be evaluated at additional concentrations, and reaction conditions.  Another approach would be 

to investigate additional derivatives of 4-nitrophenol whose amino- analog is not expected to undergo 

spontaneous degradation in solution, as was noted with 4-aminophenol.  Performing the reactions on larger 

scales may also improve the E-factor as well as demonstrate scalability.  

Furthermore, we have demonstrated that Flash NanoPrecipitation is a versatile platform for scalable 

production of polymer nanoreactor with tunable properties (size, catalyst loading) and modular materials 

selection.  Ability to tune nanoreactor size and catalyst loading independently is unique to the self-

assembled structures achieved via Flash NanoPrecipitation.  Therefore, studying the effect of these 

variables on reaction kinetics using the reduction of 4-nitrophenol as a model reaction would be valuable.  

Such a study may provide further fundamental understanding of how the polymer microenvironment 
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affects catalyst and nanoreactor performance.  Additional structural characterization of the nanoreactors 

would be useful for understanding the distribution of gold throughout the nanoreactor structure (i.e. the 

hydrophobic and hydrophilic compartments) as well as potential aggregation of the catalysts before and 

after self-assembly, reaction, and/or reuse.  For example, small angle x-ray scattering may prove to be a 

promising technique to determine if the metal nanoparticles are located within either the hydrophobic core 

or the hydrophilic PEG shell of the nanoreactors or if aggregation of the gold nanoparticles within the 

nanoreactors has occurred.    

To broaden the impact of this work, it would be possible to leverage the modular materials selection 

of Flash NanoPrecipitation.  A future direction of research could involve nanoreactor design for specific 

reactions though selection of the core material.  Specifically, the designing the nanoreactor around product 

solubility within the nanoreactor core would be an interesting approach based on further understanding 

on the effect of the nanoreactor microenvironment on reaction kinetics.  Given that incorporating gold 

nanoparticles within the nanoreactors enhances apparent reaction kinetics, use of alternative metal 

nanoparticle catalysts could be investigated.  The application of additional catalysts could facilitate 

additional classes of reactions as well as improve performance of the nanoreactors in oxidation reactions.  
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