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Abstract

In recent years, the multi-label classification task has gained the attention of the

scientific community given its ability to solve real-world problems where each in-

stance of the dataset may be associated with several class labels simultaneously.

For example, in medical problems each patient may be affected by several diseases

at the same time, and in multimedia categorization problems, each item might be

relatedwith different tags or topics. Thus, given the nature of these problems, deal-

ing with them as traditional classification problems where just one class label is

assigned to each instance, would lead to a lose of information. However, the fact of

having more than one label associated with each instance leads to new classifica-

tion challenges that should be addressed, such as modeling the compound depen-

dencies among labels, the imbalance of the label space, and the high dimensionality

of the output space.

A large number of methods for multi-label classification has been proposed in

the literature, including several ensemble-based methods. Ensemble learning is a

technique which is based on combining the outputs of many diverse base models,

in order to outperform each of the separate members. In multi-label classification,

ensemble methods are those that combine the predictions of several multi-label

classifiers, and these methods have shown to outperform simpler multi-label clas-

sifiers. Therefore, given its great performance, we focused our research on the

study of ensemble-based methods for multi-label classification.

The first objective of this dissertation is to perform an thorough review of the

state-of-the-art ensembles of multi-label classifiers. Its aim is twofold: I) study dif-

ferent ensembles of multi-label classifiers proposed in the literature, and catego-

rize them according to their characteristics proposing a novel taxonomy; and II)

perform an experimental study to find the method or family of methods that per-

forms better depending on the characteristics of the data, as well as provide then

some guidelines to select the bestmethod according to the characteristics of a given

problem.

Since most of the ensemble methods for multi-label classification are based on
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creating diverse members by randomly selecting instances, input features, or la-

bels, our second and main objective is to propose novel ensemble methods for

multi-label classification where the characteristics of the data are taken into ac-

count. For this purpose, we first propose an evolutionary algorithm able to build

an ensemble of multi-label classifiers, where each of the individuals of the popula-

tion is an entire ensemble. This approach is able to model the relationships among

the labels with a relative low complexity and imbalance of the output space, also

considering these characteristics to guide the learning process. Furthermore, it

looks for an optimal structure of the ensemble not only considering its predictive

performance, but also the number of times that each label appears in it. In this

way, all labels are expected to appear a similar number of times in the ensemble,

not neglecting any of them regardless of their frequency.

Then, we develop a second evolutionary algorithm able to build ensembles of

multi-label classifiers, but in this case each individual of the population is a hypo-

thetical member of the ensemble, and not the entire ensemble. The fact of evolv-

ingmembers of the ensemble separatelymakes the algorithm less computationally

complex and able to determine the quality of each member separately. However,

a method to select the ensemble members needs to be defined. This process selects

those classifiers that are both accurate but also diverse among them to form the

ensemble, also controlling that all labels appear a similar number of times in the

final ensemble.

In all experimental studies, the methods are compared using rigorous exper-

imental setups and statistical tests over many evaluation metrics and reference

datasets in multi-label classification. The experiments confirm that the proposed

methods obtain significantly better andmore consistent performance than the state-

of-the-art methods in multi-label classification. Furthermore, the second proposal

is proven to bemore efficient than the first one, given the use of separate classifiers

as individuals.
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Resumen

En los últimos años, el paradigma de clasificación multi-etiqueta ha ganado aten-

ción en la comunidad científica, dada su habilidad para resolver problemas reales

donde cada instancia del conjunto de datos puede estar asociada con varias etique-

tas de clase simultáneamente. Por ejemplo, en problemas médicos cada paciente

puede estar afectado por varias enfermedades a la vez, o en problemas de cate-

gorización multimedia, cada ítem podría estar relacionado con varias etiquetas o

temas. Dada la naturaleza de estos problemas, tratarlos como problemas de clasi-

ficación tradicional donde cada instancia puede tener asociada únicamente una

etiqueta de clase, conllevaría una pérdida de información. Sin embargo, el hecho

de tener más de una etiqueta asociada con cada instancia conlleva la aparición de

nuevos retos que deben ser abordados, como modelar las dependencias entre eti-

quetas, el desbalanceo de etiquetas, y la alta dimensionalidad del espacio de salida.

En la literatura se han propuesto un gran número demétodos para clasificación

multi-etiqueta, incluyendo varios basados en ensembles. El aprendizaje basado en

ensembles combina las salidas de variosmodelosmás simples y diversos entre sí, de

cara a conseguir unmejor rendimiento que cadamiembro por separado. En clasifi-

caciónmulti-etiqueta, se consideran ensembles aquellosmétodos que combinan las

predicciones de varios clasificadoresmulti-etiqueta, y estosmétodos hanmostrado

conseguir unmejor rendimiento que los clasificadoresmulti-etiqueta sencillos. Por

tanto, dado su buen rendimiento, centramos nuestra investigación en el estudio de

métodos basados en ensembles para clasificación multi-etiqueta.

El primer objetivo de esta tesis el realizar una revisión a fondo del estado del

arte en ensembles de clasificadores multi-etiqueta. El objetivo de este estudio es

doble: I) estudiar diferentes ensembles de clasificadores multi-etiqueta propuestos

en la literatura, y categorizarlos de acuerdo a sus características proponiendo una

nueva taxonomía; y II) realizar un estudio experimental para encontrar el método

o familia demétodos que obtienemejores resultados dependiendode las caracterís-

ticas de los datos, así como ofrecer posteriormente algunas guías para seleccionar

el mejor método de acuerdo a las características de un problema dado.

xv



Dado que la mayoría de ensembles para clasificación multi-etiqueta están basa-

dos en la creación de miembros diversos seleccionando aleatoriamente instancias,

atributos, o etiquetas; nuestro segundo y principal objetivo es proponer nuevos

modelos de ensemble para clasificación multi-etiqueta donde se tengan en cuenta

las características de los datos. Para ello, primero proponemos un algoritmo evo-

lutivo capaz de generar un ensemble de clasificadores multi-etiqueta, donde cada

uno de los individuos de la población es un ensemble completo. Este enfoque es ca-

paz de modelar las relaciones entre etiquetas con una complejidad y desbalanceo

de etiquetas relativamente bajos, considerando también estas características para

guiar el proceso de aprendizaje. Además, busca una estructura óptima para el en-

semble, no solo considerando su capacidad predictiva, pero también teniendo en

cuenta el número de veces que aparece cada etiqueta en él. De este modo, se es-

pera que todas las etiquetas aparezcan un número de veces similar en el ensemble,

sin despreciar ninguna de ellas independientemente de su frecuencia.

Posteriormente, desarrollamos un segundo algoritmo evolutivo capaz de con-

struir ensembles de clasificadores multi-etiqueta, pero donde cada individuo de la

población es un hipotético miembro del ensemble, en lugar del ensemble completo.

El hecho de evolucionar los miembros del ensemble por separado hace que el algo-

ritmo sea menos complejo y capaz de determinar la calidad de cada miembro por

separado. Sin embargo, también es necesario definir un método para seleccionar

los miembros que formarán el ensemble. Este proceso selecciona aquellos clasifi-

cadores que sean tanto precisos como diversos entre ellos, también controlando

que todas las etiquetas aparezcan un número similar de veces en el ensemble final.

En todos los estudios experimentales realizados, losmétodos han sido compara-

dos utilizando rigurosas configuraciones experimentales y test estadísticos, involu-

crando varias métricas de evaluación y conjuntos de datos de referencia en clasi-

ficación multi-etiqueta. Los experimentos confirman que los métodos propuestos

obtienen un rendimiento significativamentemejor ymás consistente que losméto-

dos en el estado del arte. Además, se demuestra que el segundo algoritmo prop-

uesto es más eficiente que el primero, dado el uso de individuos representando

clasificadores por separado.
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Preface

The Spanish legislation for Ph.D. studies, RD 99/2011, published on January 28th,

2011 (BOE-A-2011-2541), grants each Spanish University competencies to establish

the necessary supervision and evaluation procedures to guarantee the quality of

Ph.D. theses.

Accordingly, the University of Córdoba has a specific regulation for Ph.D. stud-

ies, approved on December 21st, 2011. This regulation establishes two different

modalities to elaborate the dissertation that the student has to present at the end of

the doctorate studies. This Ph.D. thesis follows themodality described in the article

no. 24 of the aforementioned regulation, referred as Ph.D. thesis as a compendium

of publications. According to that article, the Ph.D. thesis can be presented as a com-

pendium of, at least, three research articles published (or accepted for publication)

in research journals of high quality, i.e. appearing in the first three quartiles of the

Journal Citation Reports (JCR). If such a requirement is fulfilled, the manuscript

has to include: an introduction to justify the thematic cohesion of the Ph.D. Thesis;

the hypotheses and objectives to be achieved, and how they are associated to the

publications; full copy of the publications; and conclusions.

Following these guidelines, this Ph.D. thesis is organized as follows. First, Chap-

ter 1 introduces the dissertation, including background and state-of-the-art work in

topics relatedwith the thesis. Next, the objectives andmotivations are presented in

Chapter 2, indicating which of the journal papers associated with the thesis fulfill

each of the objectives. Later, Chapters 3 to 5 present the main contributions of the

thesis. In order to enhance the cohesion of the document, each of these chapters

is divided in two parts: first, a brief introduction of the objectives, methodology,

and conclusions of the corresponding study are presented; and then, the journal

paper is directly included. Chapter 6 discusses the conclusions obtained thorough

the dissertation as well as presents some lines and future work. Finally, in Chap-

ter 7, other publications associated with this Ph.D. thesis are included. At the end

of the document, the Vita of the Ph.D. candidate is also provided.
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Chapter 1

Introduction

In this chapter we provide an introduction to the research topics on which this

Ph.D. thesis is based. First, we provide a description of the ensemble learning

framework, including main approaches to build ensembles (Section 1.1). Then,

the Multi-Label Classification (MLC) paradigm is comprehensively explained (Sec-

tion 1.2), including a formal definition, state-of-the-art methods, characterization

metrics, benchmark datasets, evaluation metrics to asses the performance of the

methods, and an introduction to different multi-label libraries and tools . Finally,

Evolutionary Algorithms (EAs), which are later used in our methodology, are de-

scribed (Section 1.3).

1.1 Ensemble learning

When making crucial decisions, the tendency of humans is to gather information

and opinions from different sources, then combining them into a final decision

which is supposed to be better andmore consistent than considering just one opin-

ion [1]. Based on this reasoning, ensemble learning is a machine learning tech-

nique which combines predictions of individual learners from heterogeneous or

homogeneous modeling to obtain a combined learner that improves the overall

generalization ability and reduces the overfitting of each [2, 3].

Nowadays, ensemble methods are considered as the state-of-the-art to solve a

wide range of machine learning problems, such as classification [4], regression [5],

and clustering [6] problems. They have been successfully applied in fields such as

finance [7], bioinformatics [8], medicine [9], and image retrieval [10].

1
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There are three main reasons why an ensemble learner use to perform better

than single learners [11]. First, when picking only one single learner we run the

risk of selecting one out of several learners that get same performance on training

data, but whichmay perform different over unseen data; therefore, selecting some

of these learners and combining their outputs, the optimal one, i.e., this which per-

forms better on unseen data, would be easily reached. In Figure 1.1a, the search

spaceH of models is indicated with the outer line, while the inner line denotes the

set of learners that get the same performance in training, and h∗ denotes the op-

timal learner. Second, many learning algorithms use local search to find a model

and they may not find the optimal learner, so running several times the learning

algorithm and combining the obtained models may result in a better approxima-

tion to the optimal learner than any single one (Figure 1.1b). Third, since in most

machine learning problems the optimal function might not be found, the optimal

learner may be approximated by combining several feasible learners (Figure 1.1c).

(a) (b) (c)

Figure 1.1: Reasons why ensemble methods outperform single learners. (a) Com-
bining several learners that perform similar on training data, the optimal one
would be better reached. (b) Combining several learners obtained by local search
could better reach the optimal learner. (c) Combining several feasible learners, the
non-reachable optimal one could be better approximated.

1.1.1 Building phase

Although ensemblemodels tend to improve the generalization ability of base learn-

ers, those learners to be combined into an ensemble should be carefully chosen.

Using accurate learners seems to be an obvious approach; however, an ensemble

including learners that are very similar to each other could not perform as well
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as expected, and it may perform even worse than individual ones. Therefore, di-

verse learners are usually preferred to be combined, although formal proof of this

dependency does not exist [12, 13].

The main approaches that have been proposed to build ensembles of diverse

learners could be categorized in the following groups [1]:

Input manipulation Each base model is built over a slightly different subset of

the original training dataset (sampled with or without replacement). Thus,

learners are diverse among them since each is focused on different input data.

Manipulated learning algorithm The way in which the learning algorithm per-

forms is modified. Usually, different hyperparameters are used for each en-

semble member, such as using neural networks with different learning rates

or number of layers, or support vectormachineswith different regularization

parameters or kernels.

Partitioning The original dataset is divided in several mutually exclusive subsets,

and each of them is used to train a different base learner. The original data

can be split following two different approaches: a) horizontal partitioning,

where each subset is composed of different instances (being non-overlapping

subsets, unlike in inputmanipulation); andb) vertical partitioning, where each

member is built over all instances but each of them considering a different

subset of the input attributes.

Output manipulation The output attribute (or attributes) is manipulated at each

of the members of the ensemble. Depending on the problem, the output at-

tributes would be categorical classes, real-valued targets, etc.

Hybridization Usually, instead of just using one approach, two or even more ap-

proaches are hybridized in order to obtain far more diverse learners, aiming

to improve the overall predictive performance of the ensemble learner.
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1.1.2 Prediction phase

Given an ensemblemodel e composed by n base learners, the final decision ismade

by combining individual predictions from each member ej , being j ∈ [1, n]. Several

approaches have been proposed in order to combine or integrate these predictions

into the final one.

Weightingmethods are themost usual techniques to combinepredictions. These

methods give a weight to each individual prediction, and then they are combined

in any way. In particular, majority voting is the simplest and widely used weight-

ing method, where the final prediction is the output with more votes among the

base learners, or the average of predictions in real-valued outputs [5]. However,

more complex approaches exist, such as giving a weight to each base learner based

on their individual performance [14]; thus, the final prediction is biased by more

accurate base learners while still considering all predictions.

On the other hand, instead of directly combining the predictions of individual

learners, meta-learningmethods build an ensemble in two-stages. In the first stage,

several base learners are built and their predictions are gathered. Then, in a second

phase, predictions of individual learners are used to build a meta-model, which

may either extend the original input spacewith the predictions of previous stage, or

just use these predictions as input attributes for the meta-model. Then, the output

of the meta-model is used as the final ensemble prediction [15]. While weighting

methods are better applicable in cases where the performance of base learners is

similar, meta-learning methods are able to detect if certain base methods perform

poorly in some subspaces.

1.2 Multi-label classification

Classification is one of the most popular and widely studied tasks in data mining.

Traditional classification is a supervised learning task whose aim is to learn from

data and their attributes to build a model that predicts the corresponding class for

each of the instances. Whether binary (two classes) or multi-class (several classes),

the main characteristic of traditional classification problems is that each of the in-
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stances or examples is associated with one and only one class of the available ones.

For example, as seen in Figure 1.2, each iris flower could belong to only one of

their species, either setosa, virginica, or versicolor, so the model predicts one of

these classes given the characteristics of the flower [16].

Figure 1.2: Example of traditional classification.

However, there exist a large number of classification tasks where each exam-

ple may have not only one but several classes or labels associated with it simul-

taneously. For example, in multimedia annotation or text categorization prob-

lems, each item could be categorized using several labels or topics [17, 18]; in rec-

ommender systems, the user may receive more than one recommendation at a

time [19]; in medical problems, patients may be affected by more than one dis-

ease [20]; and in biology, genes could be annotated with more than one function

simultaneously [21]. MLC aims to build models to predict all the associated labels

with each instance of the problem, and it has gained a lot of attention in the last

decade [22].

In Figure 1.3, the image can be annotated with several from previously defined

labels, such as animal, raccoon, andwood. As it can be observed, labels may be also

related among them: if raccoon label is present, the animal label is very likely to

be present too (although it does not need to be true in the other direction, i.e., the

appearance of the animal label may not imply that the raccoon label is present),

but it is very unlikely to the snow label to be relevant. Dealing with this image as

a traditional classification problem (a.k.a. single-label classification), it would lead

to a lose of information, since only one of the labels could be present.
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Figure 1.3: Example of multi-label classification.

The MLC framework has been successfully applied to a large number of real-

world problems, such as text categorization [23], multimedia annotation [24, 25,

26, 27], bioinformatics [8, 9, 28, 29], and social networks mining [30]. Therefore,

the utility of the MLC paradigm in real-world problems have turned it into one of

the hottest topics in data mining in the last years.

1.2.1 Formal definition of MLC

Let D be a multi-label dataset composed by a set of m instances, and defined as

D = {(xi, Yi)|1 ≤ i ≤ m}. Let X = X1 × · · · × Xd be the d-dimensional input space,

and Y = {λ1, λ2, . . . , λq} the output space composed by q > 1 labels. Eachmulti-label

instance is composed by an input vector xi and a set of relevant labels associated

with it Yi ⊆ Y . Note that each different Y is also called labelset [22]. In Table 1.1,

an example of multi-label dataset is shown. As seen, each example is labeled with

one or more than one labels simultaneously.

Table 1.1: Example of multi-label dataset.

Instance Features Labels
λ1 λ2 λ3 . . . λq

#1 x1 0 1 0 . . . 0
#2 x2 1 0 1 . . . 1
#3 x3 0 1 0 . . . 1
#4 x4 0 1 0 . . . 0
#5 x5 0 1 1 . . . 0
. . . . . . . . .
#m xm 1 0 1 . . . 1



1.2. Multi-label classification 7

The goal of MLC is to construct a predictive model h : X → 2Y which provides a

set of relevant labels for an unknown instance. Thus, for each x ∈ X , a bipartition

b̂ =
(
Ŷ , Ŷ

)
of the label space Y is provided, where Ŷ = h(x) is the set of relevant

labels and Ŷ the set of irrelevant ones. This bipartition could be also given as a

binary vector b̂ = {0, 1}q, indicating if each label is relevant (1) or not (0).

Furthermore, lets define an Ensemble of Multi-Label Classifiers (EMLC) as a

set of n multi-label classifiers. Each of the base classifiers hj provides prediction

b̂j = {b̂j1, b̂j2, . . . , b̂jq} for all (or part of) the labels, each bj being either 1 if the label

is relevant and 0 otherwise. The final prediction of the ensemble is usually calcu-

lated given the average value of the predictions for each label v̂ = {v̂1, v̂2, . . . , v̂q},

where the v̂l for each label λl is calculated as v̂l = 1
n

∑n
j=1 b̂jl. However, many other

methods instead of simple voting could be used in order to combine predictions in

the ensemble [31].

1.2.2 Main challenges to address in multi-label data

Given the fact that each instance of the data may have more than one label associ-

ated, poses new challenges that need to be addressed, such as modeling the com-

pound relationships among labels, the high dimensionality of the output space, and

the imbalance of the output space.

Relationship among labels

As seen in Figure 1.3, output labels are not usually independent but they tend to

be related to each other; e.g., a label may appear more frequently with some labels

than with others. Thus, if the model is able to learn from these dependencies, its

predictive performancewould be improved. Consider that for a given instance, the

learning method initially predicts just raccoon and wood labels as relevant ones.

If the method models the relationship among labels, and it has learn that with a

very high probability when the raccoon label appears, the animal label appears

too, it would be able to amend its prediction and finally predict the animal label

too. However, not learning these dependencies would lead to a poorer predictive

performance.
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Considering the way in which the MLC methods address this problem, they are

usually categorized as: I) first-order strategies, where labels are modeled com-

pletely independent, and therefore the dependencies among labels are not learned;

II) second-order strategies, where the dependencies among pairs of labels are taken

into account; and III) high-order strategies, which model the dependencies among

groups of more of two labels jointly [32].

Label imbalance

It is intrinsic to many problems that labels do not appear with the same frequency

in the dataset. For example, in the dataset containing the image in Figure 1.3,

maybe most of the instances have associated the animal label, but less have the

raccoon one, and just a very small percentage of images are assigned the snow la-

bel. Thus, if the snow label barely appear in the dataset and the learning algorithm

does not control this imbalance, it may be despised and the final method could not

be able to predict it correctly.

The fact of having a lot of information for some labels but very little information

of some others, leads to the difficulty of learning the infrequent ones. The task

of learning from imbalanced datasets has been widely tackled in the literature;

however, inmulti-label scenarios, it should be addressed differently due to the high

number of output labels.

Dimensionality of the output space

In multi-label scenarios, the dimensionality of the dataset is not only related to the

number of instances and/or attributes as in many machine learning tasks, but also

to the number of output labels. Problems with a low number of labels are easier

to tackle, but in cases with a complex output space, the problem becomes far more

difficult to be solved.

For example, it is much easier to learn the dependencies among labels if there

are just six labels rather than a hundred labels. So, the dimensionality of the output

space should be carefully considered in order to not to have extremely complex

models.
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1.2.3 Multi-label classification algorithms

In this sectionwe introduce state-of-the-artmethods inMLC, which are categorized

into three main groups: problem transformation (PT), algorithm adaptation (AA),

and EMLCs [22, 33]. Note that not all methods are able to deal with each of the

problems or characteristics of multi-labeled data (such as imbalance, relationship

among labels, and high dimensionality of the output space); for example, some are

not able to learn from the dependencies among labels in any way to enhance the

final prediction. Furthermore, several of those that are able to deal with any char-

acteristic, still do not consider it in their building phase, e.g., using the relationships

among labels to lead the learning process, towards combinations of related labels

for example. In Table 1.2 a summary of the methods is provided, indicating for

each of them if they are able to deal with (D) and/or consider these characteristics

in the building phase (B).

Problem transformation methods

Problem transformation methods transform amulti-label problem into one or sev-

eral single-label problems, then solving each new problem using traditional single-

label algorithms. For ease of understanding, and considering themulti-label dataset

in Table 1.1, schemes of main transformations are presented.

One of the most popular methods is Binary Relevance (BR) [34] which decom-

poses the multi-label learning problem into q independent binary classification

problems, one for each label, as presented in Figure 1.4. The final multi-label pre-

diction is obtained by combining the predictions of each single-label classifier. The

fact that BR treats each label separately makes it simple, highly parallelizable, and

resistant to overfitting label combinations, but it does not take into account label

combinations somakes it unable tomodel possible dependencies among the labels.

Thus, BR does not deal with any of the previously described problems in MLC.

Label specIfic FeaTures for multi-label learning (LIFT) [35] is based on the idea

of modeling each label just considering their related input features, i.e., their label-

specific features, thus avoiding the noise provided by features that are not cor-
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Table 1.2: Summary of state-of-the-art MLC methods. It is indicated with a ‘D’ if
the method is able to deal with the corresponding problem (imbalance, relation-
ships among labels, and high dimensionality of the output space), and with a ‘B’ if
it considers this characteristic at building phase.

Imbalance Relationships Output Dim.

PT
s

BR - - -
CC - D -
GACC - D, B -
LIFT D, B - -
LP - D -
PS D, B D D, B
ChiDep D D, B D, B

A
A
s

PCT - D, B -
ML-kNN - D, B -
IBLR-ML - D, B -
BP-MLL - D, B -

EM
LC

s

EBR - - -
ECC - D -
MLS - D -
HOMER D D, B D, B
AdaBoost.MH - - -
D3C - - -
EPS D, B D D, B
RAkEL D D D, B
TREMLC D D D, B
CDE D D, B D, B
RF-PCT - D, B -
CBMLC D D D
EMLS D, B D -

Figure 1.4: BR transformation.
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related with them. For this purpose, LIFT uses clustering of the feature space to

select a subset of features that best discriminate each label independently, and

then builds a binary model for each of the labels. Figure 1.5 presents this trans-

formation, where each binary classifier is also built over different subset of input

features (xλl). In this process, LIFT considers the imbalance of the labels, being

also able to deal with it; however, given the construction of independent models,

it does not manage to deal neither with the relationship among labels nor the high

dimensionality of the output space.

Figure 1.5: LIFT transformation.

In order to overcome the label independence assumption of BR, Classifier Chain

(CC) [36] generates q binary classifiers but linked in such a way that each binary

classifier also includes the label predictions of previous classifiers in the chain as

additional input features (Figure 1.6). In this way and unlike BR, CC is able tomodel

the relationships among the labelswithout introducingmore complexity. However,

although it deals with the relationship among labels, it does not consider them, or

any other characteristics of the data, at any moment of the building phase, such as

to select the chain (which is randomly selected).
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Figure 1.6: CC transformation.
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Since the order of the chain has a determinant effect on its performance, other

approaches have been proposed to select the best chain ordering, as Genetic Al-

gorithm for ordering Classifier Chains (GACC) [37]. GACC uses a genetic algorithm

to select the most appropriate chain for CC. Each individual in GACC represents a

label permutation, i.e., a chain for CC, and they are evaluated using a linear com-

bination of three evaluation metrics. In this way, while GACC looks for an optimal

chain ordering, it also considers the relationship among labels to build the model.

Label Powerset (LP) [26] transforms the multi-label problem into a multi-class

problem, creating one single-label dataset where each distinct labelset is consid-

ered as a different class, as seen in Figure 1.7. Then, LP uses any multi-class clas-

sification method to train a model with the new data, and the final prediction is

obtained by transforming the predicted class to its corresponding labelset. LP con-

siders all label correlations but its complexity is exponential with the number of

labels. Furthermore, it is not able to predict a labelset that does not appear in the

training dataset and, since many labelsets are usually associated with only few ex-

amples, it may lead to a highly imbalanced dataset which would make the learning

process more difficult and less accurate. Therefore, LP is able to deal with the rela-

tionship among labels, but it increases the imbalance and the dimensionality of the

output space, while it does not consider any of the characteristics when building

the model.

Figure 1.7: LP transformation.

Pruned Sets (PS) [38] tries to reduce the complexity of LP, focusing on most im-

portant combinations of labels by pruning instanceswith less frequent labelsets. To

compensate for this loss of information, it then reintroduces the pruned instances

with a more frequent subset of labels. Thus, PS considers the imbalance of LP’s
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output space in its building phase to reduce its high dimensionality and complex-

ity, although it might be still very complex in certain cases. Note that in Figure 1.8,

labelsets appearing less than 2 times (as for instance #3) are pruned and reintro-

duced with a more frequent subsets.

Figure 1.8: PS transformation.

ChiDep [39] (a.k.a. LPBR) creates groups of dependent labels based on the χ2 test

for labels dependencies identification [40]. For each group of dependent labels it

builds a LP classifier, while for each single label which is not in any group it builds

a binary classifier. In the example in Figure 1.9, since labels λ1 and λq are cor-

related they are modeled together with LP approach, while label λ2 for example

is modeled independently. ChiDep tries to reduce the disadvantages of the inde-

pendence assumption of the binary methods and allows for simpler LP methods.

Besides, ChiDep considers the relationship among group of labels and the dimen-

sionality of the output space in building phase, therefore being able to reduce the

imbalance in each model if the groups are small.

Figure 1.9: ChiDep transformation.
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Algorithm adaptation methods

Algorithm adaptation methods utilized almost all single-label classification tech-

niques to directly handle multi-label data. Therefore, it is not necessary to trans-

form the dataset.

Predictive Clustering Trees (PCTs) [41] are decision trees that can be viewed as

a hierarchy of clusters; the root node of the PCT tree contains all data, and it is re-

cursively partitioned into smaller clusters in children nodes. These trees are able

to deal with multi-label data since the distance between two instances for the clus-

tering algorithm is defined as the sum of Gini Indexes [42] of all labels; therefore

it not only is able to model the relationship among labels but it also consider them

in the building phase.

The well-known instance-based k-Nearest Neighbors (kNN) method has been

also adapted to MLC. Multi-Label k-Nearest Neighbors (ML-kNN) [43] deals with

multi-label data by finding the k nearest neighbors of a given instance, counting the

number of neighbors belonging to each label, and using themaximum a posteriori

principle to predict the labels for the given instance. As ML-kNN considers all label

assignments of the k-nearest neighbors to label a new instance, it implicitly con-

siders the relationship among labels to build the model. Besides, Instance-Based

learning by Logistic Regression for Multi-Label classification (IBLR-ML) [44] is an-

other example of adaptation of instance-based algorithms to MLC. It uses the la-

bels of neighbor instances as extra input attributes in a logistic regression scheme.

Therefore, it considers the relationships among labels at its building phase.

Neural networks have been also adapted to MLC. Back-Propagation for Multi-

Label Learning (BP-MLL) [29] defines a new error function taking into account

the predicted ranking of labels. The ranking of labels also imply the relationship

among labels, so BP-MLL considers them in the building phase. Other learning al-

gorithms have been also proposed recently for deep neural networks inmulti-label

classification, such as the studies in [45] and [46].

A thorough description of MLC algorithm adaptation methods can be found

in [22].



1.2. Multi-label classification 15

Ensembles of Multi-Label Classifiers

The third group of methods consists of the EMLCs. Although some methods such

as BR or CC combine the predictions of several classifiers, only those that combine

the predictions of several multi-label classifiers are considered as EMLCs.

Ensemble of BR classifiers (EBR) [36] builds an ensemble of nBR classifiers, each

trained with a sample of the training dataset. The final prediction is obtained by

combining the predictions (either bipartitions or confidences) of each of the mem-

bers for each label independently. Generating an ensemble of BRs each with a ran-

dom selection of instances provides diversity to the ensemble, therefore improving

the performance of BR. However, EBR still does not take into account the relation-

ship between labels.

Ensemble of Classifier Chains (ECC) [36] builds an ensemble of n CCs, each of

them with a random chaining of labels and a random sample of m instances with

replacement of the training set. Then, the final prediction is obtained by averag-

ing the confidence values for each label. Finally, a threshold function is used to

create a bipartition between relevant and irrelevant labels. The diversity in ECC

is generated by selecting different random subsets of the instances in each CC, as

well as selecting different random chains of labels. The selection of several dif-

ferent chains reduces the risk of selecting a bad chain which could lead to a bad

performance, however, they are all created randomly and not based on any of the

characteristics of the data.

Multi-Label Stacking (MLS) [47], also called 2BR, involves applying BR twice.

MLS first trains q independent binary classifiers, one for each label. Then, it learns

a second (or meta) level of binary models, taking as additional inputs the outputs

of all the first level binary models. Thanks to the stacked predictions of previous

BR classifiers, MLS is able to deal with the relationships among labels, but it does

not consider the rest of characteristics, while the diversity is achieved by using

different feature space in each classifier.

Hierarchy Of Multi-label classifiERs (HOMER) [48] is a method designed for do-

mains with large number of labels. It transforms a multi-label classification prob-
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lem into a tree-shaped hierarchy of simpler multi-label problems. At each node

with more than one label, c children are created by distributing the labels among

themwith the balanced k-means method [48], making labels belonging to the same

subset as similar as possible. Therefore, HOMER considers the relationship among

labels to build the model, making it able to handle with smaller subsets of labels in

eachnode, so that the dimensionality of the output space in each of them is reduced,

also reducing the imbalance depending on the internal multi-label classifier used.

The diversity in HOMER is generated by selecting a subset of the labels and also by

filtering the instances in each classifier, keeping only those which are annotated

with at least one label.

AdaBoost.MH [49] is an extension tomulti-label learning of the extensively stud-

ied AdaBoost algorithm [50]. AdaBoost.MH not onlymaintains a set of weights over

the instances as AdaBoost does, but also over the labels. Thus, training instances

and their corresponding labels that are hard to predict, get incrementally higher

weights in following classifiers, while instances and labels that are easier to classify

get lower weights. The diversity in AdaBoost.MH is generated by using different

weights for both instances and labels. However, it is not able to deal with any of

the main problems of MLC.

Dynamic selection and Circulating Combination-based Clustering

(D3C) [51] uses a dynamic ensemble method, where several single-label classifiers

of different type are built for each label independently, and then uses clustering

and dynamic selection to select a subset of accurate and diverse base methods for

each of the labels. As it builds a set of binary classifiers, it does not deal with any

of the main multi-label problems.

Ensemble of Pruned Sets (EPS) [52] builds an ensemble of n PSs where each

classifier is trained with a sample of the training set without replacement. The pre-

dictions of each classifier are combined into a final prediction by a voting scheme

using a prediction threshold t. The use of many PSs with different data subsets

avoids overfitting effects of pruning instances, but as PS, in datasets with a high

number of labels the complexity can be still very high. The diversity in EPS is cre-

ated by the random selection of instances in each base classifier.
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RAndom k-labELsets (RAkEL) [53] breaks the full set of labels into random small

subsets of k labels (a.k.a. k-labelsets), then training a LP for each of the k-labelsets

as base classifiers. Eachmodel provides binary predictions for each label in its cor-

responding k-labelset, and these outputs are combined for a multi-label prediction

following a majority voting process for each label. RAkEL is much simpler than

LP since it only considers a small subset of labels at once, and also overcomes the

problem of LP of not being able to predict a labelset that does not appear in the

training dataset by means of voting.

In thisway, RAkELhandleswith the threemain problems of theMLC: it is able to

detect the compound dependencies among labels, it reduces the dimensionality of

the output space by selecting small subsets of labels, and also the imbalance of each

of the basemodels is not usually high since the reduced number of labels in each of

them. However, it does not consider neither the relationship among labels nor the

imbalance of the label space to select the k-labelsets, but it selects the k-labelsets

just randomly, and does not guarantee neither that all labels are considered nor

the number of times that each label appears in the ensemble.

Triple Random Ensemble for Multi-Label Classification (TREMLC) [54] is based

on the random selection of features, labels and instances in each classifier of the

ensemble. Then, a LP is built over each randomly selected data. The final predic-

tion of TREMLC is obtained bymajority voting. Therefore, TREMLC uses threeways

to generate diversity in the ensemble, while dealing with main MLC problems in

the same way than RAkEL does.

Ensemble of ChiDep classifiers (CDE) [39] is based on ChiDep. CDE first ran-

domly generates a large number (e.g. 10,000) of possible label sets partitions. Then,

a score for each partition is computed based on the χ2 score for all label pairs in

the partition. Finally, CDE selects the n distinct top scored partitions, generating a

ChiDepmodel with each partition. For the classification of a new instance, a voting

process with a threshold t is used to calculate the final prediction. CDE is able to

deal with all three problems in MLC, as well as it considers the relationship among

labels and the dimensionality of the output space when building the model. The

diversity in CDE is generated by selecting a different partition on each classifier.
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Random Forest of Predictive Clustering Trees (RF-PCT) [55] generates an ensem-

ble which uses PCTs as base classifiers. As random forest [56], each base classifier

of RF-PCT uses a different set of instances sampled with replacement, and also se-

lects at eachnode of the tree the best feature froma randomsubset of the attributes.

This double random selection over the instances and the features provides diver-

sity to the base classifiers of the ensemble. For the prediction of a new instance,

it averages the confidence values of all base classifiers for each label, and uses a

threshold t to determine if the label is relevant or not.

Clustering-Based method for Multi-Label Classification (CBMLC) [57] involves

two steps. In the first step, CBMLC groups the training data into c clusters only

considering the features (not the labels). In the second step, it uses a multi-label

algorithm to build a classifier over the data of each cluster, producing cmulti-label

classifiers. For the classification of an unknown instance, CBMLC first finds the

closest cluster to the instance and then uses the corresponding classifier to clas-

sify it. By generating smaller problems, CBMLC is able to deal with the imbalance

and the high dimensionality of the output space. Furthermore, it would be able to

deal with the relationship among labels if a multi-label base method that models

these relationships is used. On the other hand, CBMLC does not consider the labels

when selecting the clusters, so it does not consider any of the characteristics of the

data when building the model. Finally, CBMLC obtains diverse classifiers by the

selection of instances and also labels in each cluster.

Ensemble of Multi-Label Sampling (EMLS) [58] builds an ensemble where each

member is built over a randomsample of the data usingMulti-Label SyntheticOver-

sampling based on the Local distribution (MLSOL), which aims to deal with the im-

balance of the data. Therefore, EMLS is able to deal with relationship among labels

and it also deals with and considers the imbalance of the data in its building phase.

Given the advantages that ensemble methods have over individual ones in a

wide range ofmachine learning tasks [1], including inmulti-label classification [36,

53, 38], and also given the successful application of EMLCs to real-world prob-

lems [59, 60], we focused our research around EMLCs. A more comprehensive and

detailed study of state-of-the-art EMLCs is further performed in Chapter 3.
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1.2.4 Datasets characterization metrics

The fact that instances in multi-label datasets are associated with several labels si-

multaneously, leads to the need of defining new metrics to characterize the multi-

label datasets that did not exist in traditional classification. The characterization of

the data should be the first step to make before performing any machine learning

technique. It is essential since help us to know what kind of data we are dealing

with, therefore enabling to correctly preprocess the data or contributing to the se-

lection of the method that best fits to it. In this section, we provide a summary of

the most important metrics to characterize multi-label datasets, being those that

we extensively use in this document. However, a wider study including a greater

number of metrics is presented in [J2].

Let us remember that m, d, and q are the number of instances, features, and

labels of the dataset. Unlike in single-label datasets, where the dimensionality of

the data is usually related to the number of instances and/or input attributes, the

dimensionality (Dim) of amulti-label datasetD is defined as the product of the num-

ber of instances, features, and labels (Equation 1.1) [61]. The greater the value, the

more complex the dataset.

Dim(D) = m× d× q (1.1)

The cardinality (Card), defined in Equation 1.2, measures the mean number of

labels associated to each instance [62]. High cardinality values mean that an in-

stance is expected to have a greater number of labels associated; while lower values

of cardinality means that each instance is associated with few labels.

Card(D) =
1

m

m∑
i=1

|Yi| (1.2)

While cardinality measures the average number of labels associated with each

instance, it does not consider the total number of labels in the problem. For exam-

ple, it should be interpreted differently to have a cardinality of 2 in problems with

5 labels than in problems with 100 labels. Therefore, density (Dens) is defined as
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the cardinality divided by the total number of labels (Equation 1.3) [62]. Higher

values of density means that a greater ratio of the possible labels are related with

each instance.

Dens(D) =
Card(D)

q
(1.3)

The diversity (Div), which defined in Equation 1.4, represents the ratio of la-

belsets appearing in the dataset divided by the number of possible labelsets [62].

The possible number of labelsets in a dataset D usually is 2q; however, if the num-

ber of instances m is lower than 2q, the maximum number of possible labelsets

in the dataset is m. The greater the value of diversity, the greater the number of

combinations of labels with respect to the number of labels; so datasets with high

diversity could be difficult to model with some approaches such as LP.

Div(D) =
#Labelsets(D)

max(2q,m)
(1.4)

Given the imbalance problem in multi-label data, where some labels could be

very frequent and other labels be barely present in the dataset, metrics to evaluate

the imbalance of amulti-label dataset are defined. The average imbalance ratio (av-

gIR) measures how imbalanced are the labels in average for the whole dataset [63].

As seen in Equation 1.5, the IR is calculated for each label as the frequency of the

most frequent label divided by the frequency of the current label.

avgIR(D) =
1

q

q∑
l=1

arg max
λ′∈Y

(fλ′)

fl
(1.5)

Finally, as labels could be related to each other, metrics to evaluate the degree

of relationship of the labels of the dataset are proposed. Coefficients Chi (χ2) [40]

and Phi (ϕ) [64] are usually used to identify the unconditionally relation between

pairs of labels, and both are related (one of them could be calculated given the

value of the other one). If value of χ2 for a pair of labels is greater than 6.635,

labels are considered dependent at 99% confidence [40]. On this basis, the ratio
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of dependent label pairs by Chi-square test (rDep) is defined as the proportion of

pairs of labels dependent at 99% confidence [65]. Equation 1.6 defines rDepmetric,

first calculating the number of dependent labels, and then averaging by the total

number of label pairs.

rDep(D) =

q−1∑
l=1

q∑
j=l+1

Jχ2(λl, λj) > 6.635K
×

(
q(q − 1)

2

)−1

(1.6)

1.2.5 Multi-label datasets

A great deal of benchmark datasets to assesmulti-label classificationmethods have

emerged in the last years. We have created a publicly available repository of multi-

label datasets1, which have been gathered frommore than 30 sources. In Table 1.3

the multi-label datasets used in this document are presented, including their char-

acteristics and references, and sorted in alphabetic order.

In each of the experiments performed in the present document, the datasets

were selected according to their characteristics, in order to have a set of diverse

datasets. Furthermore, in each of the experiments, the requirements in terms of

characteristics of the datasets would be different to other. Finally, in some experi-

ments, very complex datasets could not be used due to the high complexity ofmeth-

ods. As a consequence, only a subset of the datasets available in the repository are

included in Table 1.3. Furthermore, note that datasetsMediamill∗, Nus-Wide BoW∗,

and Tmc2007-500∗ were obtained by randomly selecting 5%, 1%, and 10% of the in-

stances of the original dataset respectively.

1.2.6 Evaluation metrics

In multi-label classification, given that each instance is associated with several la-

bels simultaneously, the predictions can be regarded as totally correct (all the pre-

dictions for all labels are correct), totally wrong (all the predictions are wrong),

or partially correct, (only some of the relevant labels are predicted as relevant).

As a consequence, many metrics have been proposed in the literature to evalu-

1https://www.uco.es/kdis/mllresources/

https://www.uco.es/kdis/mllresources/
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Table 1.3: Datasets and their characteristics, such as instances (m), attributes (d), labels (q), cardinality (Card), density (Dens),
diversity (Div), average imbalance ratio (agvIR), ratio of dependent label pairs (rDep), and dimensionality (Dim).

Dataset Domain m d q Card Dens Div avgIR rDep Dim Ref

20NG Text 19300 1006 20 1.029 0.051 0.003 1.007 0.984 3.88E+08 [17]
3sources_bbc1000 Text 352 1000 6 1.125 0.188 0.234 1.718 0.733 2.11E+06 [67]
3sources_guardian1000 Text 302 1000 6 1.126 0.188 0.219 1.773 0.667 1.81E+06 [67]
3sources_inter3000 Text 169 3000 6 1.142 0.190 0.172 1.766 0.400 3.04E+06 [67]
3sources_reuters1000 Text 294 1000 6 1.126 0.188 0.219 1.789 0.667 1.76E+06 [67]
Birds Audio 645 260 19 1.014 0.053 0.206 5.407 0.123 3.19E+06 [18]
CAL500 Music 502 68 174 26.044 0.150 1.000 20.578 0.192 5.94E+06 [68]
CHD_49 Medicine 555 49 6 2.580 0.430 0.531 5.766 0.267 1.63E+05 [69]
Emotions Music 593 72 6 1.868 0.311 0.422 1.478 0.933 2.56E+05 [48]
Enron Text 1702 1001 53 3.378 0.064 0.442 73.953 0.141 9.03E+07 [52]
EukaryotePseAAC Biology 7766 440 22 1.146 0.052 0.014 45.012 0.281 7.52E+07 [70]
Flags Image 194 19 7 3.392 0.485 0.422 2.255 0.381 2.58E+04 [37]
Genbase Biology 662 1186 27 1.252 0.046 0.048 37.315 0.157 2.12E+07 [71]
GnegativePseAAC Biology 1392 440 8 1.046 0.131 0.074 18.448 0.536 4.90E+06 [70]
HumanPseAAC Biology 3106 440 14 1.185 0.085 0.027 15.289 0.418 1.91E+07 [70]
Langlog Text 1460 1004 75 1.180 0.016 0.208 39.267 0.035 1.10E+08 [61]
Mediamill Video 43910 120 101 4.376 0.043 0.149 256.405 0.342 5.32E+08 [72]
Mediamill∗ Video 2195 120 101 4.430 0.044 0.393 294.599 0.116 2.80E+07 [72]
Medical Text 978 1449 45 1.245 0.028 0.096 89.501 0.039 6.38E+07 [20]
Nus-Wide BoW∗ Image 2696 501 81 1.863 0.023 0.302 89.130 0.087 2.80E+07 [73]
PlantGO Biology 978 3091 12 1.079 0.090 0.033 6.690 0.318 3.63E+07 [70]
PlantPseAAC Biology 978 440 12 1.079 0.090 0.033 6.690 0.318 5.16E+06 [70]
Scene Image 2407 294 6 1.074 0.179 0.234 1.254 0.933 4.25E+06 [26]
Slashdot Text 3782 1079 22 1.181 0.054 0.041 19.462 0.273 8.98E+07 [61]
Stackex_coffee Text 225 1763 123 1.987 0.016 0.773 27.241 0.017 4.88E+07 [74]
Tmc2007-500∗ Text 2860 500 22 2.230 0.101 0.136 17.225 0.364 3.15E+07 [75]
Water-quality Chemistry 1060 16 14 5.073 0.362 0.778 1.767 0.473 2.37E+05 [76]
Yeast Biology 2417 103 14 4.237 0.303 0.082 7.197 0.670 3.49E+06 [21]
Yelp Text 10810 671 5 1.638 0.328 1.000 2.876 0.700 3.63E+07 [77]
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ate multi-label predictions. These metrics are categorized into example-based and

label-based metrics [66].

Example-based metrics

Example-basedmetrics calculate themetric for each instance of the data, and then,

they average their value by the number of instances. They give the same weight to

all instances, so they are not biased by the imbalance of the labels, which is one of

the main problems in MLC.

Most of the example-based metrics (except Hamming loss) are considered as

non-decomposablemetrics [78]. Thenon-decomposablemetrics evaluate themulti-

label prediction as awhole, unlike others that evaluate the prediction for each label

separately. So, non-decomposable metrics better capture the inherently relation-

ship among labels when evaluating the predictions, instead of considering them

independently.

Hamming loss (HL) computes the average number of times that each label is

incorrectly predicted, including both prediction errors (an irrelevant labels was

predicted as relevant) and omission errors (a relevant label was not predicted). As

it measures the error in prediction, HL is to beminimized. Hereafter, it is indicated

with ↓ if a metric is minimized and with ↑ if it is maximized. HL is defined in Equa-

tion 1.7,∆ being the symmetric difference between two binary sets. This is an often

used evaluation metric in multi-label problems; however, in datasets with a high-

dimensional output space and a low number of labels associated to each instance,

HL tends to be zero in most cases. Therefore, in some problems, this metric should

be cautiously used.

↓ HL =
1

m

m∑
i=1

1

q
|Yi∆Ŷi| (1.7)

Subset accuracy (SA) is a strictmetric thatmeasures the ratio of instanceswhose

prediction is totally correct, including the correct predictions of all relevant and

irrelevant labels. It is defined in Equation 1.8, where JπK returns 1 if predicate π is

true and 0 otherwise. As HL, SA must be cautiously used. It is a very useful metric,
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but, in problems where the output space is very large, the correct prediction of all

labels could be very difficult and therefore, the fact of not considering partially

correct predictions would lead to a non-accurate assessment of the methods.

↑ SA =
1

m

m∑
i=1

JYi = ŶiK (1.8)

On the other hand, evaluation metrics from traditional classification have been

adapted as example-basedmetrics forMLC. Precision (ExP), defined inEquation 1.9,

measures the ratio of correctly predicted labels from the total number of predicted

labels. Recall (ExR), defined in Equation 1.10, measures the ratio of correctly pre-

dicted labels from all true labels. FMeasure (ExF), defined in Equation 1.11, com-

putes the harmonic mean between precision and recall for each instance, thus

considering both false positives (irrelevant labels predicted) and false negatives

(non-predicted relevant labels) in its calculation. Specificity (ExS), defined in Equa-

tion 1.12, measures the ratio of irrelevant labels correctly predicted from the true

set of irrelevant labels. Finally, Accuracy (ExAcc), defined in Equation 1.13, mea-

sures the ratio of correctly predicted labels to the total number of labels of the given

instance, including true and predicted labels.

↑ ExP =
1

m

m∑
i=1

∣∣∣Yi ∩ Ŷi

∣∣∣∣∣∣Ŷi∣∣∣ (1.9)

↑ ExR =
1

m

m∑
i=1

∣∣∣Yi ∩ Ŷi

∣∣∣
|Yi|

(1.10)

↑ ExF =
1

m

m∑
i=1

2×
∣∣∣Yi ∩ Ŷi

∣∣∣
|Yi|+

∣∣∣Ŷi∣∣∣ (1.11)

↑ ExS =
1

m

m∑
i=1

∣∣∣Yi ∩ Ŷi

∣∣∣∣∣Yi∣∣ (1.12)

↑ ExAcc =
1

m

m∑
i=1

∣∣∣Yi ∩ Ŷi

∣∣∣∣∣∣Yi ∪ Ŷi

∣∣∣ (1.13)
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Label-based metrics

Label-based evaluation metrics, different from example-based, are calculated ac-

cording to the labels instead of instances. Any evaluation metric for single-label

classification can be calculated in multi-label scenarios as label-based metric.

Label-based metrics, in turn, can be calculated by following two different ap-

proaches: micro-averaged and macro-averaged approaches. Let B be an evalua-

tionmetric for binary classification calculated based on the true positives (tp), false

positives (fp), false negatives (fn), and true negatives (tn) of the confusion matrix

(see Table 1.4). Micro-averagedmetrics first join the confusionmatrices of all labels

and then calculate the metric (Equation 1.14), while macro-averaged calculate the

metric for each label and then average their values for all labels (Equation 1.15). As

a consequence, the former are more biased by more frequent labels, while the lat-

ter give the same importance to all labels in their calculation. Therefore, we have

to cautiously select if micro or macro-averaged metrics are used depending on the

problem at hand.

Table 1.4: Confusion matrix.

True
Relevant Irrelevant

Pr
ed Relevant tp fp

Irrelevant fn tn

MiB = B

(
q∑

l=1

tpl,

q∑
l=1

fpl,

q∑
l=1

fnl,

q∑
l=1

tnl

)
(1.14)

MaB =
1

q

q∑
l=1

B(tpl, fpl, fnl, tnl) (1.15)

Following, precision, recall, FMeasure, specificity and accuracy metrics are de-

fined in Equations 1.16 to 1.20 as micro-averaged metrics, and in Equations 1.21

to 1.25 as macro-averaged metrics, respectively.

↑ MiP =

∑q
l=1 tpl∑q

l=1 tpl +
∑q

l=1 fpl
(1.16)
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↑ MiR =

∑q
l=1 tpl∑q

l=1 tpl +
∑q

l=1 fnl
(1.17)

↑ MiF = 2× MiP×MiR
MiP+MiR

(1.18)

↑ MiS =

∑q
l=1 tnl∑q

l=1 tnl +
∑q

l=1 fpl
(1.19)

↑ MiAcc =

∑q
l=1 tpl +

∑q
l=1 tnl∑q

l=1 tpl +
∑q

l=1 tnl +
∑q

l=1 fpl +
∑q

l=1 fnl
(1.20)

↑ MaP =
1

q

q∑
l=1

tpl
tpl + fpl

(1.21)

↑ MaR =
1

q

q∑
l=1

tpl
tpl + fnl

(1.22)

↑ MaF = 2× MaP×MaR
MaP+MaR

(1.23)

↑ MaS =
1

q

q∑
l=1

tnl

tnl + fpl
(1.24)

↑ MaAcc =
1

q

q∑
l=1

tpl + tnl

tpl + tnl + fpl + fnl
(1.25)

Pereira et al. carried out a study of correlation among evaluation metrics in

MLC [79], in order to select a subset of metric to assess the performance of MLC

algorithms that are independent among them. Based on this study, we conclude

that HL, SA, MaP, and MaR are an interesting subset of evaluation metrics, almost

independent of each other, to evaluate MLC methods in overall. Using, in addition

other evaluation metrics such as MaF could be redundant, since it is a combina-

tion of MaP andMaR, which are already considered. In addition, usually the labels

that are most important, interesting or difficult to predict are the minority labels,
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so macro-averaged approach, which gives the same importance to all labels is pre-

ferred over micro-averaged approach. The study in [79] did not consider the MaS

metric; however, we consider that measuring the ratio of correctly predicted irrel-

evant labels whould be also interesting.

1.2.7 Software tools for multi-labeled data

Due to the incremental interest in solving multi-label problems in the last decade,

some software tools have been proposed in order to deal with multi-label data.

Here, we distinguish among two types of software tools: tools for learning from

multi-label data and tools for characterizingmulti-label datasets. Usually, first type

of tools also include somemetrics to characterize the datasets, but it is not their real

purpose and therefore they are not as complete as the others.

With regard to the software tools for learning frommulti-label data, we mainly

introduce three: Mulan, Meka, and Scikit-multilearn.

Mulan [80] is probably the most used multi-label learning library. It is devel-

oped in Java, built on top of the widely known data mining library Weka [81], and

publicly available2 under the GNU General Public License (GPL). Mulan includes a

wide variety of methods that are not available in any other library. Furthermore,

Mulan uses .arff dataset format, but also needs a .xml file to differentiate the la-

bels3.

Meka [82] is a GPL licensed Java library4 aiming to expandWeka for multi-label

learning. Unlike Mulan, Meka does not only provide a Java API but also a graphic

interface, so users canbuildmulti-labelmethodswithout the need of programming.

However, the variety of methods in Meka is lower than in Mulan, but in includes

a wrapper to execute Mulan’s methods if necessary. The data format in Meka is

slightly different to the one ofMulan; Meka only needs an .arff file in which header

it includes the attributes that are labels.

Scikit-multilearn [83] is a library formulti-label learning built in top of Python’s

2http://mulan.sourceforge.net/
3More information at https://www.uco.es/kdis/mllresources/#DatasetFormat
4https://waikato.github.io/meka/

http://mulan.sourceforge.net/
https://www.uco.es/kdis/mllresources/#DatasetFormat
https://waikato.github.io/meka/
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scikit-learn library, and it is available under BSD license5. Scikit-multilearn is spe-

cialized on graphmethods such as neural networks and deep learningmethods for

multi-label learning; however, it includes a low variety for the rest of types ofmeth-

ods. As for the data format, scikit-multilearn uses a self-defined format instead of

classical .arff files.

On the other hand, we highlight twomain tools for the characterization ofmulti-

label datasets: mldr and MLDA.

Mldr [74] is a R package to analyze multi-label data, distributed under GPL li-

cense6. It includes the calculation of main characterization metrics and graphics

for these characteristics, as well as the application of several data transformation,

such as BR and LP. The mldr package not only includes an API in R but also pro-

vides a graphic interface to help any user to characterize its data independently of

its knowledge of R programming language.

Finally, we also developed a tool built in Java that provides both an API and a

user interface to characterize multi-label datasets, called MLDA [J2]. MLDA does

not only include the characterization metrics that mldr provides, but also it in-

cludes a wider number of metrics. In addition, MLDA provides techniques to pre-

process and partition the data, that were very useful in the development of this

work. MLDA is also publicly available under GPL license7. More information about

this tool is provided in Section 7.1.

1.3 Evolutionary algorithms

EAs are biology-inspired search algorithms that are commonly used in problems

which are difficult to tackle with any other analytical methods [84]. EAs are very

flexible methods that has been applied to many machine learning tasks, such as

clustering [85], pattern mining [84], and feature selection [86]. Note that although

suitable and very useful for a wide range of problems, EAs are stochastic proce-

dures that cannot guarantee that the global optima is reached [87].

5http://scikit.ml
6https://github.com/fcharte/mldr
7https://github.com/i02momuj/MLDA

http://scikit.ml
https://github.com/fcharte/mldr
https://github.com/i02momuj/MLDA
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In EAs, there usually exist a population of individuals, where each of the individ-

uals represents a full or partial candidate solution to the problem. Furthermore,

each individual have a fitness value associated, meaning how well this solution

solves the problem, and thus leading the evolution of the population towards fit-

ter or more adapted individuals, aiming to obtain an optimal solution (or set of

solutions).

Although a wide range of variations of EAs have been defined thorough the

years, they usually rely on the same structure [88]:

Population The population is a set of individuals of (usually) fixed size, where

each represents a full or partial candidate solution to the problem. The in-

dividuals in the population evolve, and those that provide a better solution to

the problem usually have a higher chance to remain in the population. How-

ever, individuals in the population not only need to be fitted to the problem,

but they also need to be somewhere different among them, thus representing

different locations in the search space, and avoiding to stuck in local optima.

Fitness The fitness function represents the requirements that individuals should

met. In other words, it is a procedure that assigns a quality value to each

individual, depending on how well they solve the problem. It is used to lead

the evolution towards optimal solutions.

Parents selection The role of parents selection operator is to select those individ-

uals that will later produce offspring (i.e., new individuals). Usually, the se-

lection of parents is made in a probabilistic way, where fitter individuals are

more probable to be selected, thus aiming to improve the quality of new so-

lutions. However, low-quality solutions usually also have a small chance to

be selected, in order to maintain diversity in the population and not get stuck

soon in a local optima.

Genetic operators Individuals interact with each other and are modified to gen-

erate offspring by means of genetic operators. Widely used genetic operators

are crossover andmutation. Crossover operator combines geneticmaterial of

several individuals (usually two) in order to create new individuals that are
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similar to each parent. On the other hand, mutation operator modify a single

individual and it is usually more disruptive than crossover, since it is able to

discover new genetic material that was no previously present in the popula-

tion. Both types of operators are stochastic, i.e., are based on random choices

to create offspring.

Population update At the end of each generation of the EA, the size of the popula-

tion should remain the same. Therefore, the population is updated consider-

ing individuals from both the parents and offspring sets. Common techniques

are to replace the whole parents set by the offspring, to maintain the best par-

ent in the following population, to combine both sets and select most suitable

or diverse individuals, etc. Togetherwith the parents selection, these two pro-

cedures lead the population to improve in quality.

Stop criterion In order to stop the execution of the EA, one or several stop criteria

must be used. Commonly used stop criteria are the number of generations in

the evolution, themaximumnumber of evaluations of individuals, maximum

number of generations in which the population has not improved, etc.

The basic steps of EAs are those presented in Figure 1.10. First, a population p

of popSize individuals is generated, usually randomly or following any heuristic.

Then, individuals in p are evaluated using the fitness function. Later, until the stop

criteria is reached, parents are selected, usually based on their fitness value, where

fitter individuals have more chance to be selected; genetic operators are applied to

the selected individuals; offspring individuals in s are evaluated; and the popula-

tion is updated considering individuals in both p and s sets. Finally, the population

is usually returned.

In Figure 1.11 the operation of EAs is shown with a simple example of maxi-

mization of a one-dimensional function. In the figures, the x-axis represents the

different positions in the search space, while the y-axis represents the fitness of

each individual (i.e., the value of the function to maximize). As observed, at the

beginning of the evolution, individuals are usually randomly created, so they are

distributed throughout the search space (Figure 1.11a). After some generations,
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Figure 1.10: Main steps of EAs.

given the selection and use of genetic operators, individuals in regions with lower

value of fitness tend to disappear, while they start to climb the hills in pursuit of

more promising zones (Figure 1.11b). Finally, over the end of the EA, individuals

would be gathered around optimal zones (Figure 1.11c). These individuals may be

spread over several hills, but they could also be concentrated in a suboptimal zone,

thus not reaching the global optimum. For this reason, it is essential to have both

exploration (creating individuals in newzones of the search space) and exploitation

(concentration and improvement of individuals in promising zones) mechanisms

in the EA. Nevertheless, it should be fine-tuned the trade-off between exploration

and exploitation in order to not to lead to a premature convergence, i.e., getting

trapped in a local optimum.
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Based on this structure, a wide range of different evolutionary techniques have

been proposed so far, such as Genetic Algorithms (GAs) [89], Genetic Programming

(GP) [90], Gene Expression Programming (GEP) [91], Cooperative CoEvolutionary

Algorithms (CCEAs) [92], or Particle Swarm Optimization (PSO) [93], among a large

list of different frameworks.

In order to implement the EAs for our research, we have used the JCLEC li-

brary [94]. JCLEC is a software system for evolutionary computation, developed

in Java, and publicly available8 under GPL License. It provides a high-level soft-

ware framework to do any kind of EA, and gives support for several predefined

algorithms such as GAs and GP.

8http://jclec.sourceforge.net/

http://jclec.sourceforge.net/


Chapter 2

Motivation and objectives

In this chapter, we present the motivation andmain objectives of this Ph.D. the-

sis. Furthermore, each published research paper associated to the thesis is related

to the objectives that fulfill.

A large number of EMLCs have been proposed in the literature, and they have

been proven to significantly outperform simpler methods [36, 53, 38]. However,

as presented in Section 1.2.3, despite their promising performance most of them

base the generation of diversity in the ensemble by randomly selecting subsets of

features, instances, or labels. Furthermore, the characteristics of the data such as

the relationship among label, the imbalance, and the high dimensionality of the

output space are not considered, while these characteristics could provide useful

tips in the building phase of the ensemble.

Thus, we consider that there is a need of proposing novel EMLC methods that

take into account these characteristics, aiming to improve the state-of-the-art MLC

methods proposed up to date. Besides that, the process of building an EMLC is de-

fined as a search problem, where the aim is to obtain an optimal configuration for

the EMLC. For this purpose EAs provide an optimal framework given the complex

nature of the problem.

Following, the main objectives (O1 - O5) of this Ph.D. thesis are presented. Fur-

thermore, Table 2.1 provides a summary of the objectives and which of the three

main research papers associated with this thesis satisfies the objectives. Full refer-

ences of these papers are provided in Vita chapter.
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Table 2.1: Objectives of the Ph.D. thesis and research papers that satisfy them.

O1 O2 O3 O4 O5

[J4] × ×
[J5] × × × ×
[J6] × × × ×

O1. Thorough MLC experimental review. We first aim to conduct a experimen-

tal review on MLCmethods, with a special focus on EMLCs. The study of MLC

methods has several sub-objectives associated with it: I) obtain a broad back-

ground onmulti-label classification and ensemblemethods, necessary to con-

duct the rest of our research; II) categorize existing EMLCs according to their

characteristics, such as the multi-label classifier in which they are based and

the way they generate diversity in the ensemble; III) perform an experimen-

tal study to conclude what method or family of methods perform better de-

pending on the characteristics of the data (such as the degree of relationship

among labels, the imbalance of the output space, or its dimensionality); and

IV) give some tips to select the best EMLC for a given problem according to the

characteristics of the data.

As a result of this study, we have published a journal paper [J4], which is pre-

sented in Chapter 3.

O2. Propose novel methods to build EMLCs. Given the lack of methods to build

EMLCs considering the characteristics of the multi-labeled data, we aim to

develop some algorithms, based on EAs, to build EMLCs while considering

these characteristics. EAs have been widely used in optimization problems,

so we use them with the goal of obtaining an optimal structure for the EMLC.

First, we propose an algorithm, called EME [J5], which is presented in Chap-

ter 4. In EME, each individual in the EA represents an entire EMLC, where

each of its members is a multi-label classifier focused on small subsets of the

labels. Furthermore, we propose to use a multi-label method that strongly

considers the relationship among labels (such as LP), so each member of the
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ensemble is able to model these relationships but with relative low complex-

ity. The fitness function is defined as a combination of the ExF and a coverage

metric which ensures that all labels are equally present in the ensemble. We

also propose a novel mutation operator that looks for combinations of more

related labels, trying to improve the performance of multi-label classifiers.

Then, we propose a second evolutionary approach to build EMLCs, called

EAGLET [J6], and presented in Chapter 5. Given the promising results of EME

we developed a new approach, where each individual is a multi-label classi-

fier based on subsets of the labels, instead of being the entire ensemble. One of

the aims of EAGLET is to obtain amore efficientmethod than EME by evolving

simpler individuals. On the other hand, EAGLET also aims to lead the evolu-

tion around highly accurate individuals that are then combined into an en-

semble. However, not only accurate but also diverse individuals are needed

to build a promising ensemble, so a process to ensure that diverse individu-

als are considered in the population is introduced, also ensuring to cover all

labels in the population. Furthermore, as individuals are not ensembles but

possible members of an ensemble, in each iteration the more promising indi-

viduals are used to generate an ensemble. For that, the individual with better

predictive performance is first selected, and then, individuals that maximize

both its predictive performance and the diversity of the current ensemble are

selected to contribute to the ensemble, thus leading to select diverse individ-

uals with promising predictive performance.

Finally, a preliminary version of other evolutionary approaches have been de-

veloped, such as a CCEA tobuild EMLCs [C13] (see Section 7.2), and aGrammar-

Guided Genetic Programming (G3P)method to build tree-shaped EMLCs [C14]

(see Section 7.3). Both have been accepted in international conferences.

O3. Comparison of proposedmethodswith the state-of-the-art. Weaim to com-

pare our evolutionary approaches with other state-of-the-art algorithms to

build EMLCs, thus demonstrating their promising performance. The exper-

imental studies carried out demonstrate, based on statistical tests, that both
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EME and EAGLET significantly outperform other state-of-the-art MLC meth-

ods, including widely used EMLCs. Furthermore, EAGLET demonstrates to be

far more efficient than EME, as expected.

O4. Application of developed models to real-world benchmarks. The devel-

oped models have been tested in up to sixteen real-world datasets covering a

wide range of domains, such as multimedia annotation (both audio and im-

ages), biology (as yeast gene annotation, and predicting subcellular locations

of proteins sequences in humans, plants, and bacterias), chemistry (as pre-

dicting the quality of water in rivers), and text categorization (including texts

related to news, clinical free text reports, and forums).

O5. Integration of the proposed methods in relevant software platforms for

distribution. In order to not only facilitate the reproducibility of the experi-

mental results, but also to enrich the contribution to the scientific community,

the proposed methods and other useful tools are integrated in software plat-

forms (such in a GitHub repository) under the GPLv3 License1. In this way,

any researcher interested in using our proposal, is able to use and/or to mod-

ify it. Following, the list of repositories associated with this thesis is provided.

ExecuteMulan. Library implemented to execute Mulan methods from com-

mand line. It has been used to carry out all the experiments in this thesis.

URL: https://github.com/kdis-lab/ExecuteMulan

EME. Repository including the code of the first evolutionary approach to build

EMLCs, EME. It is written in Java, and developed usingMulan, Weka, and

JCLEC libraries.

URL: https://github.com/kdis-lab/EME

EAGLET. Repository including the code of the second evolutionary approach

to build EMLCs, EAGLET. It is written in Java, and developed usingMulan,

Weka, and JCLEC libraries.

URL: https://github.com/kdis-lab/EAGLET

1The GNU General Public License (GPL) is a free, copyleft license for software and other kinds of
works.

https://github.com/kdis-lab/ExecuteMulan
https://github.com/kdis-lab/EME
https://github.com/kdis-lab/EAGLET
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The rest of the document is organized as follows. Chapter 3 presents the liter-

ature review, categorization, and experimental comparison of EMLCs. Chapters 4

and 5 propose the two evolutionary approaches to build EMLCs, EME and EAGLET,

respectively. Chapter 6 discusses the results obtained throughout the thesis, as well

as concludes and presents lines of future work. Chapter 7 presents other publica-

tions associated with this Ph.D. thesis. Finally, full list of references and Vita of

Ph.D. candidate are included.
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Chapter 3

Experimental review and
categorization of EMLCs

Given themain topic of this Ph.D. thesis, i.e., the development of ensemblemeth-

ods for MLC, we aim to present in this chapter a wide background in EMLCs. This

background will provide both a deep knowledge in previous work, as well as a

starting point for developing new models.

In the literature, two studies have beenperformed carrying out an experimental

comparison of MLCmethods [33, 95]. However, none of them included the state-of-

the-art EMLCs. Therefore, given the absence of studies comparing the performance

of state-of-the-art EMLCs, in this chapterwe aim to provide a thorough definition of

state-of-the-art EMLCs as well as a comparison and analysis of their performance.

While overviewing the state-of-the-art EMLCs, we found some common points

by which EMLCs could be grouped or categorized. As no taxonomies were previ-

ously proposed in the literature to specifically categorize EMLCs, in this chapter

we propose a novel taxonomy, which categorizes EMLCs according to two differ-

ent criteria. First, the EMLCs are categorized depending on which multi-label clas-

sifier they are based, such as BR, LP, PCT, or maybe independent of the classifier.

On the other hand, methods are also categorized regarding how they create a di-

verse ensemble, e.g., by dealing with different classifiers (or using different hyper-

parameters of the same classifier), different subsets of labels, different subsets of

the input attributes, or different subsets of instances in each of the base classifiers.

This second criterion is based on the taxonomy proposed in [96]. Note that in the
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first criterion, each EMLC can only be categorized into one of the groups; however,

groups in the second criterion are not mutually exclusive, so an ensemble could

appear in several groups simultaneously.

Once categorized within the taxonomy, we also perform an experimental study

to compare the EMLCs, using twentymulti-label datasets and seven evaluationmet-

rics in total. We divide the study into four different experiments. First, we evalu-

ate the performance of the EMLCs depending on the imbalance of the datasets. For

this purpose, we divide the datasets into little, moderately, and very imbalanced

datasets, according to their avgIR. They are evaluated using MiF and MaF metrics,

which compute the FMeasure fromdifferent points of view: the former givingmore

weight tomore frequent labels, and the latter giving the sameweight to all of them,

regardless of their frequency.

Second, we evaluate the performance of the EMLCs depending on the relation-

ship among labels. In this case, we divide the datasets into low,medium, and highly

dependent, according to their rDep. In this experiment the EMLCs are evaluated

using ExF and ExAcc, since they are non-decomposable metrics and evaluate the

multi-label prediction as awhole, thus being able to capture the relationship among

labels in the evaluation.

Third, we carry out a study on the efficiency of the EMLCs, forwhichwe split the

datasets according to their dimensionality, into small, medium, and large datasets.

Their runtime in both training and testing phases is evaluated. In addition to the

runtime, in this experiment we also use the HL to asses the predictive performance

of EMLCs, thus being able to monitor these methods that are very fast but their

performance is poor.

And fourth, we evaluate the EMLCs in general, using all twenty datasets together

and the seven evaluation metrics used so far. Thus, we aim to provide a general

view of how the different EMLCs perform regardless of the characteristics of the

problem, and to give a ranking of methods based on their overall performance.

Finally, and as a consequence of previous study, we also provide some tips to

select the best EMLC according to the characteristics of the data. In this way, we

aim to provide useful knowledge to further researcher inmulti-label classification,
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helping them to select the method (or group of methods) that could perform best

in their specific problem.

The experimental study proves that in scenarios with moderately and high la-

bels imbalance, RAkEL is the most suitable method, since it builds base classifiers

over lower imbalanced datawhile still considering the dependencies among labels.

Furthermore, both RAkEL and ECC perform well when the labels are not much de-

pendent among them; however, the Ensemble of Label Powersets (ELP) performs

better when labels are more correlated among them, since it is able to model these

dependencies in a stronger way. As for the efficiency, methods such as CBMLC are

very efficient, while its performance is poor; on the other hand, CDE is so computa-

tionally complex that it did not finish its execution in some cases, and ECC, although

obtaining a great predictive performance, is the second more complex method. Fi-

nally, ECC is the EMLC that achieves a better overall performance (without consid-

ering runtime), followed by RAkEL, and it is worthmentioning EPS, which is a great

combination of both good performance and fast algorithm. Tables with full results

of all the experimental studies are available to facilitate further comparisons1.

Following, we present the journal paper associated with this chapter of the the-

sis [J4].

1https://www.uco.es/kdis/emlcreview/

https://www.uco.es/kdis/emlcreview/
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A R T I C L E I N F O
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A B S T R A C T

The great attention given by the scientific community to multi-label learning in recent years has led to the
development of a large number of methods, many of them based on ensembles. A comparison of the state-of-the-
art in ensembles of multi-label classifiers over a wide set of 20 datasets have been carried out in this paper,
evaluating their performance based on the characteristics of the datasets such as imbalance, dependence among
labels and dimensionality. In each case, suggestions are given to choose the algorithm that fits best. Further,
given the absence of taxonomies of ensembles of multi-label classifiers, a novel taxonomy for these methods is
proposed.

1. Introduction

Ensemble learning combine individual learners from heterogeneous
or homogeneous modeling in order to obtain a combined learner that
improves the generalization ability and reduces the overfitting risk of
each one of them [1,2]. In [3], Dietterich specified three reasons why
an ensemble classifier is better than a single classifier. First, when
picking only one single classifier, we run the risk of choosing a bad one.
Second, many learning algorithms use local search and may not find the
optimal classifier, so running several times the learning algorithm and
combining the obtained models may result in a better approximation to
the optimal classifier than any single one. Third, since in most machine
learning problems the optimal function cannot be found, the optimal
classifier may be reached by combining several classifiers. Ensemble
methods have been successfully applied in many fields such as finance
[4], bioinformatics [5], medicine [6], image retrieval [7] and re-
commender systems [8].

The development of ensemble models has been used in a large
number of machine learning tasks, such as in Multi-Label Learning
(MLL) and more specifically in Multi-Label Classification (MLC), where
each object may have multiple labels associated with it [9,10]. Despite
the fact that in MLC many algorithms are based on combining several
classifiers, only those whose combine several classification methods
that are able to deal with multi-label data are considered as Ensembles

of Multi-Label Classifiers (EMLCs) [11]. EMLCs have been successfully
applied in image retrieval [12] and predicting drug resistance [13].

Given the advantages of ensemble methods over simple methods, it
is interesting to perform an experimental study of the state-of-the-art
EMLCs. In [11] and [14] two experimental studies of MLC algorithms
were performed. However, none of them includes the state-of-the-art
EMLCs. Given the absence of experimental studies contemplating the
state-of-the-art and the special characteristics of the EMLCs, the ob-
jective of this paper is to perform an experimental comparison and
analysis of the state-of-the-art EMLCs over a range of datasets and
evaluation metrics. This study is performed taking into account the
characteristics of the data, such as imbalance, relationship among labels
or dimensionality, indicating which EMLC achieves better performance
in each case and giving some guidelines to select the best algorithm
according to the characteristics of the dataset.

The rest of the paper is organized as follows: Section 2 presents
background in MLC, Section 3 describes different EMLC methods and
categorizes them into a novel taxonomy, Section 4 shows the experi-
mental design, Section 5 describes and discusses the results of the ex-
periments and also gives some guidelines to select the best EMLC ac-
cording to the characteristics of the dataset and finally Section 6
presents conclusions of this work.
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Received 19 November 2017; Received in revised form 13 December 2017; Accepted 16 December 2017

⁎ Corresponding author.
E-mail address: sventura@uco.es (S. Ventura).

Information Fusion 44 (2018) 33–45

Available online 18 December 2017
1566-2535/ © 2017 Elsevier B.V. All rights reserved.

T



2. Background

In this section the formal definition of MLC and the main categor-
ization of MLC methods are presented.

2.1. Formal definition of multi-label classification

Given a d-dimensional input space = × ⋯×X Xd1X and an output
space of q labels = … >λ λ λ q{ , , , }, 1,q1 2Y being the cardinality of each
label =λ 2,i a multi-label example can be defined as a pair (x, Y)
where = ⋯ ∈x xx ( , , )d1 X and ⊆Y Y is called labelset.

= ≤ ≤Y i mx{( , ) 1 }i iD is a multi-label dataset composed of a set of m
instances [15].

The goal of multi-label classification is to construct a predictive
model →h: 2X Y which would provide a set of relevant labels for an
unknown instance. Each instance may have several labels associated
with it from the previously defined set of labels. So, for each ∈x ,X we
have a bipartition Y Y( , ) of the label space ,Y where =Y h x( ) is the set
of relevant labels and Y the set of irrelevant ones.

2.2. Multi-label classification algorithms

MLC algorithms are categorized into three main groups: problem
transformation, algorithm adaptation and EMLCs [11]. Problem trans-
formation methods transform a multi-label problem into one or several
single-label problems, as Binary Relevance (BR) [16] that decomposes
the multi-label learning problem into q independent binary classifica-
tion problems, and Label Powerset (LP) [17], which generates a single-
label dataset where each distinct labelset is considered as a different
class. A more extensive list of problem transformation methods can be
found in [15].

Algorithm adaptation methods adapted almost all classification
techniques for multi-label learning, such as decision trees [18,19],
support vector machines [20,21], neural networks [22,23] and in-
stance-based algorithms [24,25].

Finally, the third group of MLC methods includes the EMLCs. There
are many algorithms in multi-label classification, such as BR, that in-
volve combination of several classifiers instead of a single classifier.
However, in MLC only are considered as EMLCs those ensembles that
involve the combination of several classification methods which are
able to deal with multi-label data, so algorithms such as BR are not
considered as EMLC since they combine several single-label methods.
EMLCs are the object of this work and are described in detail in
Section 3.

3. Ensembles of MLC

In this section a total of 16 state-of-the-art ensemble methods for
MLC are described. They are first categorized depending on the method
they are based. Once the methods have been described, they are then
categorized based on a proposed taxonomy.

3.1. Ensembles based on Binary Relevance (BR)

BR combines predictions of several binary classifiers, one for each
label in the multi-label dataset [16]. BR is simple, intuitive and resistant
to overfitting label combinations because it does not take into account
predefined combinations of labels. Thus, it can handle irregular la-
beling and is able to predict combinations of labels that did not appear
in the original training set. However, BR’s weakness is the fact that it
does not take into account the relationship among the labels, assuming
that the labels are independent while in most cases they are not. Several
ensemble methods, which are defined below, were developed to over-
come BR’s problem.

3.1.1. Ensemble of Binary Relevance classifiers (EBR)
The Ensemble of Binary Relevance classifiers (EBR) [26] is gener-

ated using bagging [27] for each BR classifier. Generating an ensemble
of BRs each with a random selection of instances improve performance
of BR due to the diversity among base classifiers. However, EBR still
does not take into account the relationship between labels.

3.1.2. Ensemble of Classifier Chains (ECC)
Classifier Chains (CC) [28] generate a chain of q binary datasets,

where the feature space of each classifier is augmented with the label
predictions of previous classifiers. The order of the selected chain has a
direct impact on performance of the classifier, due to the error propa-
gation along the chain at classification time when some of the classifiers
in the chain predict poorly. To overcome this problem, Ensemble of
Classifier Chains (ECC) [26] trains n CC, each one with a random chain
built over a random selection of m training instances sampled with
replacement. Then, the final prediction is obtained by averaging the
confidence values for each label. Finally, a threshold function is used to
create a bipartition of relevant and irrelevant labels.

Both CC and ECC pass label information among binary classifiers, so
they take into account correlations among labels and overcome the
problem of BR, which ignores such correlations. Also, using ECC re-
duces the risk of selecting a bad chain ordering which can lead to a bad
prediction performance of the classifier. The diversity in ECC is gen-
erated by using different chains and by selecting random subsets of
instances.

3.1.3. Multi-Label Stacking (MLS)
Multi-Label Stacking (MLS) [29], also called 2BR, involves applying

BR twice. MLS first trains q independent binary classifiers, one for each
label. Then, it learns a second (or meta) level of binary models, taking
as additional inputs the outputs of all the first level binary models, thus
taking into account the relationship among labels in the meta-level.

There exist several approaches of MLS depending on the way they
gather the predictions in the base-level. MLStrain uses the full training
set for both base and meta levels, but this can lead to biased meta-level
training data. MLScv partitions the data into F disjoints parts, generating
each base-level classifier F times, each using −F 1 partitions for
training and the remaining for gathering the predictions. In this way it
obtains a non-biased meta-level training set. However, this method is
much slower than MLStrain. Another one, MLSϕ tries to not introduce
irrelevant information into the meta-level. If a label is completely un-
correlated with the one being modeled, including its predicted value in
the meta-level classifier introduces non interesting information and
noise, which could lead to a worse performance. For that, MLSϕ uses the
ϕ correlation coefficient [30] to determine if two labels are correlated
or not, pruning labels that are not correlated with the one being
modeled in each meta-level classifier.

In all MLS variants, the diversity of the ensemble is achieved by
using different feature space in each classifier.

3.1.4. Hierarchy Of Multi-label classifiERs (HOMER)
Hierarchy Of Multi-label classifiERs (HOMER) [31] is a method

designed for domains with large number of labels. It transform a multi-
label classification problem into a tree-shaped hierarchy of simpler
multi-label problems. At each node with more than one label, c children
are created by distributing the labels among them with the balanced k-
means method [31], making labels belonging to the same subset as
similar as possible. To classify a new instance, HOMER starts with the
root classifier and passes the instance to each child only if the parent
predicted any of its labels. The union of the predicted labels by the
leaves generates output for the given instance.

HOMER is based on BR since in each node a binary classifier is used,
which predicts if any or none of the labels in the node are associated
with the instance. The diversity in HOMER is generated by selecting a
subset of the labels and also by filtering the instances in each classifier,

J.M. Moyano et al. Information Fusion 44 (2018) 33–45
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keeping only those which are annotated with at least one label.

3.1.5. AdaBoost.MH
AdaBoost algorithm [32] was extensively studied and used in sev-

eral machine learning tasks [33–35]. The AdaBoost.MH [36] method
not only maintains a set of weights over the instances as AdaBoost does,
but also over the labels. Thus, training instances and their corre-
sponding labels that are hard to predict, get incrementally higher
weights in following classifiers while instances and labels that are easy
to classify get lower weights. The diversity in AdaBoost.MH is gener-
ated by using different weights for both instances and labels.

AdaBoost.MH is based on BR since each instance is passed to q
binary classifiers, so it is the same as applying AdaBoost to q binary
classifiers [36].

3.2. Ensembles based on Label Powerset (LP)

LP generates a single-label dataset with a different class for each
different combination of labels. In this way, LP takes into account label
correlations but its complexity is exponential with the number of labels
and it is not able to predict a labelset which does not appear in the
training dataset. Besides, many labelsets are usually associated with
only few examples, which may lead to an imbalanced dataset and make
the learning process more difficult. Many multi-label ensemble classi-
fiers, described below, have been proposed to overcome these dis-
advantages of LP.

3.2.1. Ensemble of Label Powerset classifiers (ELP)
Ensemble of Label Powerset (ELP) classifiers is proposed in this

paper to compare it as a baseline with other LP-based methods. It uses
bagging to generate diversity of classifiers and then combines the pre-
dictions of the base classifiers by majority voting. As it combines several
LP predictions, ELP is able to predict a labelset that does not appear in
the original training set. However, its complexity is not reduced with
respect to LP as well as the problem of imbalance is not solved.

3.2.2. Ensemble of Pruned Sets (EPS)
Pruned Sets (PS) [37] is similar to LP but it focuses on the most

important relationships of labels by pruning the infrequently occurring
labelsets, reducing the complexity of the algorithm.

Ensemble of Pruned Sets (EPS) was proposed in [37] to prevent
from overfitting effects of pruning and to allow predicting labelsets that
do not appear in train data. EPS trains n PS models, each over a subset
without replacement of the instances of the original training set. The
predictions of each classifier are combined into a final prediction by a
voting scheme using a prediction threshold t. The diversity in EPS is
created by the random data selected for each base classifier.

3.2.3. RAndom k-labELsets (RAkEL)
RAndom k-labELsets (RAkEL) [38] randomly breaks the set of labels

into several small-sized labelsets. RAkEL selects n random k-labelsets
and learns n LP classifiers, each one focusing on its own k-labelset. Each
model provides binary predictions for each label in its corresponding k-
labelset. These outputs are combined for a multi-label prediction fol-
lowing a majority voting process for each label.

RAkEL has several advantages over LP. First, the LP tasks of each
classifier are much simpler since they only consider a small subset of
the labels. Also, the base classifiers include a much more balanced
distribution of classes than using LP with the full set of labels. Further,
RAkEL allows to predict a labelset that does not appear in the original
training set.

A variation of RAkEL, called RAkEL++ [39], uses the confidence
values of each classifier instead of bipartitions in order to generate the
final prediction for each label. Another variation, called RAkELd [38],
generates disjoint subsets of k labels, taking into account each label
exactly once and reducing the complexity of other RAkEL variants

The diversity in all the variants of RAkEL is generated by different
selection of labels in each classifier.

3.2.4. Triple Random Ensemble for Multi-Label Classification (TREMLC)
Triple Random Ensemble for Multi-Label Classification (TREMLC)

[40] is based on the random selection of features, labels and instances
in each classifier of the ensemble. In this way, TREMLC uses three ways
to obtain diversity of base classifiers. Then, a LP is built over each
randomly selected data. The final prediction of TREMLC is obtained by
majority voting.

3.2.5. Chi-Dep Ensemble (CDE)
Chi-Dep [41] groups dependent labels by χ2 score [42], building a

LP classifier for each group of dependent labels and a binary classifier
for each independent label. In this way, it achieves an optimal trade-off
between simple (single-label) and complex (LP) models respectively,
reducing the disadvantages of both approaches.

Based on the Chi-Dep algorithm, an Ensemble of Chi-Dep classifiers
(CDE) was proposed in [43]. CDE first randomly generates a large
number (e.g., 10000) of possible label sets partitions. Then, a score for
each partition is computed based on the χ2 score for all label pairs in
the partition. Finally, CDE selects the n distinct top scored partitions,
generating a Chi-Dep algorithm with each partition. For the classifica-
tion of a new instance, a voting process with a threshold t is used to
calculate the final prediction.

The diversity in CDE is generated by selecting a different partition
on each classifier.

3.3. Ensembles based on Predictive Clustering Trees: Random Forest of
Predictive Clustering Trees (RF-PCT)

Predictive Clustering Trees (PCTs) [19] are decision trees that can
be viewed as a hierarchy of clusters in such a way that the intra-cluster
variation is minimized. The root node of PCT contains all data, and it is
recursively partitioned into smaller clusters in children nodes. In order
to construct a PCT in MLC, the distance between two instances is
usually computed as the sum of Gini Indices [44] of the labels.

The Random Forest of Predictive Clustering Trees (RF-PCT) [45]
generates an ensemble which uses PCTs as base classifiers. As random
forest [46], each base classifier of RF-PCT uses a different set of in-
stances sampled by bagging, and also selects at each node of the tree the
best feature from a random subset of the attributes. This double random
selection over the instances and the features provides diversity to the
base classifiers of the ensemble.

For the prediction of a new instance, it averages the confidence
values of all base classifiers for each label, and uses a threshold t to
determine if the label is relevant or not.

3.4. Ensembles independent of base classifiers: Clustering-Based for Multi-
Label Classification (CBMLC)

The previously described EMLCs were designed based on a specific
multi-label method. However, there also exist EMLCs which are com-
pletely independent of the multi-label classifier used.

Clustering-Based method for Multi-Label Classification (CBMLC)
[47] has two steps. In the first step, CBMLC groups the training data
into c clusters using a clustering algorithm and only considers the
features (not the labels). It is expected that similar objects are asso-
ciated with similar labels, which results in a reduced label space in each
of the classifiers. This may improve the predictive performance of each
classifier, as well as to reduce the training and testing time. In the
second step, it uses the multi-label algorithm to build a classifier over
the data of each cluster, producing c multi-label classifiers. For the
classification of an unknown instance, CBMLC first finds the cluster
closest to the instance and then uses the corresponding classifier to
classify it. LP was used as multi-label classifier and k-means [48] was

J.M. Moyano et al. Information Fusion 44 (2018) 33–45

35



used as clustering algorithm.
CBMLC obtains diverse classifiers by the selection of instances and

also labels in each cluster.

3.5. Taxonomy of EMLCs

While overviewing state-of-the-art EMLCs we found some points by
which to group or categorize them. As no taxonomy in the literature
covers the characteristics of the EMLCs, we propose the following tax-
onomy for EMLCs, as shown in Table 1. First, the EMLCs can be cate-
gorized based on the multi-label method they are based, such as BR, LP,
PCT or independent. Second, each EMLC can be categorized based on
the way it generates diversity in the ensemble. Based on the taxonomy
proposed in [49], we identified four ways or levels to generate diversity
in EMLCs:

• Classifier level: at this level, different algorithms are used in the
ensemble. The difference among classifiers can be given in several
ways such as the use of different algorithms or the use of different
parameters in the same algorithm. ECC and CDE are categorized at
this level.

• Label level: at this level, each classifier of the ensemble is built over
a different subset of labels. It usually implies a reduction in com-
plexity of each classifier and also increase the diversity of classifiers
in the ensemble. HOMER, AdaBoost.MH, RAkEL, TREMLC and
CBMLC are categorized at this level.

• Feature level: at this level, each classifier of the ensemble uses a
different subset of the features of the original training set, either
disjoint or overlapping. This make each classifier focus on a subset
of the input features, increasing the diversity and accuracy of the
ensemble. MLS, TREMLC and RF-PCT are categorized at this level.

• Data level: at this level, each classifier is built over a different subset
of the training dataset, either with or without replacement. It is a
simple, effective and widely used method to generate a diverse en-
semble [46]. EBR, ECC, HOMER, AdaBoost.MH, ELP, EPS, TREMLC,
RF-PCT and CBMLC are categorized at this level.

These levels are not mutually exclusive, so each one of the EMLCs may
appear in several groups simultaneously, i.e., an EMLC could be created
by training each classifier of the ensemble over a subset of the labels
and also over a subset of the features, belonging to both label and feature
levels.

4. Experimental design

As mentioned in Section 1, the objective of this study is to perform
an experimental comparison and analysis of the state-of-the-art EMLCs.
In this section, first the chosen evaluation metrics and datasets are
shown, then the default parameters of the EMLCs are presented and,
finally, the experimental setup is explained.

4.1. Evaluation metrics

Evaluation metrics for multi-label classification are commonly dis-
tinguished in two groups: example-based metrics such as Hamming loss,
accuracy or FMeasureex which are calculated for each instance, and
label-based metrics such as FMeasuremac and FMeasuremic which are
calculated with respect to labels. The formulation of the metrics used in
this study are shown in Table 2, being Y the true labels, Z the predicted
labels, mtest the number of instances of the test dataset and Δ computes
the symmetric difference between two sets. In addition, tp, fp and fn
refer to true positives, false positives and false negative of the con-
tingency table respectively. A wider description of these evaluation
metrics can be found in [9].

4.2. Datasets

Multi-label datasets have special characteristics that can be mea-
sured and identified by different characterization metrics. Density and
diversity measure distribution of labels [50]. The density (dens) is de-
fined as the mean number of relevant labels for each example divided
by the total number of labels, and diversity (div) as the ratio of labelsets
that appear in the dataset of the total of possible number of distinct
labelsets. The avgIR measures the imbalance of the dataset by averaging
the imbalance ratio of each label [51]. The greater the avgIR value, the
greater the imbalance ratio of the labels of the dataset. Finally, the ratio
of unconditionally dependent labels pairs by chi-square test (rDep)

Table 1
EMLC methods. State-of-the-art ensemble of MLC methods are categorized depending on
the method they are based (BR, LP, PCT or independent) and the way the diversity of the
ensemble is obtained as A (classifier level), B (label level), C (feature level) or D (data level).

Abbreviation Method name Level Reference Year

A B C D

Ensembles based on BR
EBR Ensemble of Binary Relevance

classifiers (bagging)
• [26] 2011

ECC Ensemble of Classifier Chains • • [26] 2011
MLStrain Multi-Label Stacking using

train data for meta-level
• [29] 2009

MLScv Multi-Label Stacking using cv
for meta-level

• [29] 2009

MLSϕ Multi-Label Stacking pruning
meta-level

• [29] 2009

HOMER Hierarchy Of Multi-label
classifiERs

• • [31] 2008

AdaBoost.MH AdaBoost.MH • • [36] 2000

Ensembles based on LP
ELP Ensemble of Label Powerset

classifiers (bagging)
• – –

EPS Ensemble of Pruned Sets • [37] 2008
RAkEL Random k-labELsets • [38] 2011
RAkEL++ Random k-labELsets using

confidences
• [39] 2014

RAkELd Random k-labELsets with
disjoint labelsets

• [38] 2011

TREMLC Triple Random Ensemble for
MLC

• • • [40] 2010

CDE Chi-Dep Ensemble • [43] 2010

Ensembles based on PCT
RF-PCT Random Forest of Predictive

Clustering Trees
• • [45] 2007

Ensembles independent of the multi-label classifier
CBMLC Clustering-Based for Multi-

Label Classification
• • [47] 2009

Table 2
Multi-label evaluation metrics used in this study.
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measures the relationship among labels. The rDep is defined as the
number of pairs of labels which are dependent at 99% confidence level
by chi-square test divided by the total number of label pairs [52]. The
greater rDep, the greater the relationship between the labels.

A set of 20 datasets from 8 different domains and with different
characteristics is used in this study. The datasets range from 194 to
43910 instances, from 16 to 1449 features, and from 5 to 101 labels.
Half of the datasets have on average less than 10% of the labels asso-
ciated with an instance, but there are also several that have up to 40%.
The diversity ranges from 0.003 (only the 0.3% of the possible labelsets
appear in the dataset) to 1 (which means that all the possible labelsets
appears in the dataset). The avgIR ranges from values near to 1 to values
of more than 250, showing a great variety in the imbalance of the da-
tasets. Finally, there is also a great variety in the degree of relationship
among labels, with values of rDep ranging from near to zero (non re-
lated datasets) to near to 1 (highly related datasets). Table 3 shows the
datasets including their domain and the values of the previously de-
fined characterization metrics; the datasets are ordered by dimension-
ality, defined as m× d× q according to [53].

All datasets were downloaded from a new repository of multi-label
datasets1. Furthermore, the characterization of the datasets was per-
formed using the MLDA tool [66].

4.3. Methods and configurations

All the methods described in Section 3, and listed in Table 4, were
run using the default parameters proposed by their authors. For RAkEL
and RAkEL++, two different configurations were used, according to
the recommendations of their authors. Unless otherwise specified, all
the methods used =n 10 classifiers in the ensemble, a threshold value
of =t 0.5 and the C4.5 decision tree (Weka’s J48 [67]) as a single-label
base classifier. It has been shown that ensemble learning works well
when decision trees are used as the base classifier [46]. Although some
EMLCs use other base classifiers in addition to C4.5 in their original
papers, it has been used as base classifier in almost all the studied
EMLCs to obtain a greater consistency in the results.

4.4. Experimental setup

All the experiments were implemented using Meka [68] and Mulan
[69] frameworks. Meka and Mulan are open-source Java frameworks

for learning from multi-label datasets, which include a wide variety of
state-of-the-art algorithms and provide an API to use their functional-
ities in Java code. In addition, CLUS library [19] was used to execute
the RF-PCT algorithm. In order to ensure that all metrics are calculated
in the same way, all the algorithms were executed by Meka. For that,
the Meka’s wrapper for Mulan algorithms and the Mulan’s wrapper for
CLUS algorithms have been used.

All the algorithms were executed over a stratified 5-folds cross-va-
lidation partitioning of the full dataset, using the Iterative Stratification
method [70] to guarantee the distribution of labels in the partitions is
as similar as possible. For algorithms which use random numbers (such
as EBR, ECC, ELP, EPS, RAkEL, RAkEL++, RAkELd, TREMLC, CDE, RF-
PCT and CBMLC) 10 different seeds were used.

Since three versions of MLS and five versions of RAkEL are avail-
able, first comparisons among MLS and RAkEL methods are performed
separately to determine which version of each algorithm is the best.
Then, the best variants of MLS and RAkEL are used in the complete
study.

Next, several experiments to compare different EMLCs based on
their characteristics are performed. First, the performance of the EMLCs
is evaluated given their imbalance ratio. Second, the EMLCs are

Table 3
Multi-label datasets.

Domain m d q dens div avgIR rDep Ref

Flags Image 194 19 7 0.485 0.422 2.255 0.381 [54]
CHD_49 Medicine 555 49 6 0.430 0.531 5.766 0.267 [55]
Water-quality Chemistry 1060 16 14 0.362 0.778 1.767 0.473 [56]
Emotions Music 593 72 6 0.311 0.422 1.478 0.933 [31]
3s_reuters1000 Text 294 1000 6 0.188 0.219 1.789 0.667 [57]
3s_guardian1000 Text 302 1000 6 0.188 0.219 1.773 0.667 [57]
3s_bbc1000 Text 352 1000 6 0.188 0.234 1.718 0.733 [57]
Birds Audio 645 260 19 0.053 0.206 5.407 0.123 [58]
Yeast Biology 2417 103 14 0.303 0.082 7.197 0.670 [59]
Scene Image 2407 294 6 0.179 0.234 1.254 0.933 [17]
PlantPseAAC Biology 978 440 12 0.090 0.033 6.690 0.318 [60]
HumanPseAAC Biology 3106 440 14 0.085 0.027 15.289 0.418 [60]
Genbase Biology 662 1186 27 0.046 0.048 37.315 0.157 [61]
Yelp Text 10810 671 5 0.328 1.000 2.876 0.700 [62]
Medical Text 978 1449 45 0.028 0.096 89.501 0.039 [63]
Slashdot Text 3782 1079 22 0.054 0.041 19.462 0.273 [53]
Enron Text 1702 1001 53 0.064 0.442 73.953 0.141 [37]
Langlog Text 1460 1004 75 0.016 0.208 39.267 0.035 [53]
20NG Text 19300 1006 20 0.051 0.003 1.007 0.984 [64]
Mediamill Video 43910 120 101 0.043 0.149 256.405 0.342 [65]

Table 4
Algorithms and default parameters proposed by their authors.

Algorithm Parameters

EBR =bagSizePercent 100
ECC =bagSizePercent 100
MLStrain –
MLScv =numFolds 10
MLSϕ =numFolds 10, =phiThreshold 0.15
HOMER = −clusteringAlgorithm balancedk means, =c 3
AdaBoost.MH =baseLearner DecisionStump
ELP =bagSizePercent 100
EPS =bagSizePercent 67, =strategy A, =p 1, =b 1
RAkEL1 =k q/2, =n 10
RAkEL2 =k 3, =n q2
RAkEL++1 =k q/2, =n 10
RAkEL++2 =k 3, =n q2
RAkELd =k 3
TREMLC =k 3, =n q2 , =bagSizePercent 70, =featurePercentage 51
CDE =randomPartitions 10000
RF-PCT =bagSizePercent 100
CBMLC = −clusteringAlgorithm k means, =c 5

1 http://www.uco.es/kdis/mllresources/.
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evaluated taking into account the degree of dependency among labels.
Then, the EMLCs are evaluated in terms of efficiency. Finally, an overall
comparison of all EMLCs over all evaluation metrics is performed.

In order to compare the performance of different EMLCs, the
Skillings-Mack’s test [71,72] was performed for each metric. Skillings-
Mack’s test is similar to Friedman’s test [73] but it can be used with
missing values. The cases marked as DNF in the results are treated as
missing values for the tests, except for training and testing times, where
they are assigned the worst ranking value. In cases where the Skillings-
Mack’s test indicates that there exist significant differences in the per-
formance of the algorithms, the Shaffer’s post-hoc test [74] was used to
perform multiple comparisons among all the methods. The use of
Shaffer’s test was proposed in [75], to the detriment of other tests, such
as Nemenyi’s [76]. Furthermore, the adjusted p-values [77] were con-
sidered in the analysis. The adjusted p-values provide more statistical
information since they take into account the fact that multiple com-
parisons can be directly performed with any significance level. In this
work, a significance level of =α 0.05 was used.

5. Results and discussion

In this section the experimental results of the EMLCs are presented
and discussed. First, results of the comparisons among variants of MLS
and RAkEL are presented. Then, the results of each of the experiments
are presented and discussed, including some tips how to select the best
EMLC according to the characteristics of the dataset.

Datasets and detailed results for all experiments are fully described
and publicly available to facilitate the replicability of the experiments
and future comparisons at the KDIS Research Group website.2 For the
largest datasets, some algorithms did not finish the execution of a single
fold within a day using the available resources.3 These cases are marked
as DNF (Did Not Finish) in the result tables.

5.1. Comparison among MLS and RAkEL variants

As previously mentioned, there are three variants of MLS and five
variants of RAkEL. In order to simplify further study, first a comparison
among those method is performed. The results in Table 5 show the
Skillings-Mack test value, adjusted p-value and average ranking of each
MLS variant and metric over all datasets. The best algorithm for each
metric is marked in bold. Although there are no significant differences
among MLS variants, MLStrain is the best algorithm in four of the five
metrics.

Table 6 shows the results of the Skillings-Mack and Shaffer tests of
each RAkEL variant. For each metric, the best algorithm is marked in
bold and those algorithms which have significant differences with the
best algorithm are marked with •. As seen, RAkEL2 is the best algorithm
in four metrics, also being the only one that is not significantly different
from the best algorithm in any case.

Based on these results, in further experiments only MLStrain and
RAkEL2 are used.

5.2. Experiment 1: results depending on the imbalance of the datasets

In multi-label classification, one of the main problems is to deal with
the imbalance of the data. Usually, some labels are very frequent while
other are barely present in the dataset. This feature can have direct
impact on performance of the algorithms, so we studied the perfor-
mance of the EMLCs according to the imbalance of the dataset. Sorting
the datasets by avgIR, we separate them into little, moderately, and very
imbalanced datasets. Little imbalanced datasets are those with a

avgIR<2, moderately imbalanced are those with 2≤ avgIR<20 and,
any dataset with avgIR≥ 20 is considered as very imbalanced.

FMeasuremic and FMeasuremac measure the performance of the al-
gorithms over imbalanced data from two different points of view. While
the former is biased by the frequency of occurrence of each label, the
latter does not, giving equal importance to all labels independently of
their frequency. FMeasuremac is more useful than FMeasuremic if in-
frequent or more imbalanced labels are present in evaluation of the
classifier. Tables 7 and 8 show the datasets ordered by avgIR along with
their results for FMeasuremac and FMeasuremic, respectively. Further,
these tables include the average rankings of each algorithm for little,
moderately and very imbalanced datasets calculated as the Skillings-
Mack’s test.

As seen for FMeasuremac, ELP is the best algorithm, on average, in
little imbalanced datasets, CDE is the best on average for moderately
imbalanced datasets and RAkEL2 is the best on average for very im-
balanced datasets. The fact that both CDE and RAkEL2 split the output
space into smaller labelsets for each base classifier causes that in cases
of high degree of imbalance each base classifier has a more even dis-
tribution of labels than if all labels are taken into account at the same
time, as in ELP. For very imbalanced datasets CDE is the best in the only
two datasets where it finished, but due to its high complexity its
average ranking deteriorates. The results for FMeasuremic are similar to
those of FMeasuremac but in this case, for moderately imbalanced da-
tasets ECC is the algorithm that performs better. Since FMeasuremic

assigns more importance in the evaluation to more frequent labels if
ECC predicts well these frequent labels; the performance according to
this metric is higher. However it is common to try to predict correctly
rare labels. Therefore, for a little imbalanced dataset, ELP is the best
option, while for moderately and very imbalanced datasets RAkEL2 is
the best one if all labels are considered to be equally important. If the
high complexity of CDE does not matter, it also achieves good results
for moderately and very imbalanced datasets.

5.3. Experiment 2: results depending on the relationship among labels

Another main challenge in multi-label classification is how to deal
with the relationship among labels. The labels might be more or less
correlated, and taking into account these correlations when learning a
model could improve the performance. Sorting the datasets by rDep, we
separated them into three groups. Those with rDep<0.3 are considered
as low dependent datasets, those with 0.3≤ rDep<0.7 are considered
as medium dependent datasets and those with rDep≥ 0.7 are con-
sidered as highly dependent datasets.

FMeasureex and Accuracy measure the multi-label prediction of
each instance as a whole, which makes it useful for measuring the
performance based on the relationship between labels. Tables 9 and 10
show the datasets ordered by rDep and their FMeasureex and Accuracy
results, respectively. The tables also include the average rankings for
low, medium and highly dependent datasets.

For FMeasureex, ECC is the best algorithm on average, while for
Accuracy RAkEL2 is the best in both low and medium dependent da-
tasets. In both metrics ECC, RAkEL2 and CDE are the top three algo-
rithms for low and medium datasets. These three methods take into

Table 5
Skillings-Mack test results for the comparison among MLS variants.

Metric Statistic p-value Rankings

MLStrain MLScv MLSϕ

Hamming loss 0.925 0.630 1.93 2.18 1.90
Accuracy 1.900 0.387 1.75 2.15 2.10
FMeasureex 1.875 0.392 1.75 2.13 2.13
FMeasuremac 2.800 0.247 1.80 1.90 2.30
FMeasuremic 1.575 0.455 1.78 2.08 2.15

2 http://www.uco.es/kdis/emlcreview/.
3 The experiments have been performed on a machine with Debian 8, two Intel Core i7

CPUs at 2.67 GHz and 16GB of RAM.
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account the relationship among labels but in a softer way than other LP-
based algorithms as ELP, so in cases where the dependency among la-
bels is not very high, ECC and RAkEL2 are the best options. However,
for highly dependent datasets ELP is the best algorithm on average. ELP
considers all labels at a time, so the relationship among labels can be
exploited more exhaustively than if labels are treated more in-
dependently.

5.4. Experiment 3: efficiency

Several EMLCs are computationally demanding, to the point that
many of them did not build a single model within one day of com-
puting. Thus, the efficiency of the EMLCs is a factor to be taken into
account.

Sorting the datasets by dimensionality (defined as m× q× d), we
separate them into three groups: small, medium and large datasets. We
considere as small datasets those with dimensionality<1E6, as medium
datasets those with dimensionality ∈ [1E6, 1E8), and as large datasets
those with dimensionality≥ 1E8. In Tables 11 and 12 are shown the
train and test times, respectively, for all the EMLCs and all the datasets.
There are algorithms that are very fast but whose performance is bad,
so not only the execution times but also the Hamming loss is shown in
Table 13.

CBMLC generates several classifiers with a subset of similar in-
stances and therefore possibly also with a subset of similar labels, which
leads to less complex classifiers, being the fastest algorithm for small
datasets and the second for medium and large datasets in both training
and test times. However, CBMLC is one of the worst algorithms in terms
of Hamming loss, regardless of the dimensionality of the dataset, being
a fast algorithm but with a very low performance. Also for small da-
tasets EPS is one of the fastest algorithms, getting also a good perfor-
mance in terms of Hamming loss, so it is the best option for small da-
tasets. On the other hand, for medium and large datasets, RF-PCT is the
most efficient algorithm in both train and test. For larger datasets, RF-
PCT, which reduces considerably the selection of the attributes in each
node of the tree, has a lower complexity than other EMLCs and there-
fore higher efficiency. In terms of Hamming loss, RF-PCT results are not
bad, so it is a great option for medium and large datasets if a very fast
but not best in prediction algorithm is needed. Also for medium datasets
EPS is one of the best algorithms in Hamming loss, being the best for
large datasets. This fact, coupled with acceptable execution time, makes
EPS the best option considering both execution time and performance,
regardless of the dimensionality of the dataset. CDE did not finish with
any of the large datasets, so it has not been assigned any average
ranking value.

Table 6
Skillings-Mack test results for the comparison among RAkEL variants.

Metric Statistic p-value Rankings

RAkEL1 RAkEL2 RAkEL++1 RAkEL++2 RAkELd

Hamming loss 37.510 1.41E−07 • 3.05 2.55 • 3.08 1.68 • 4.65
Accuracy 24.090 7.66E−05 2.30 1.88 • 3.73 • 3.30 • 3.80
FMeasureex 23.930 8.25E−05 2.20 1.93 • 3.75 • 3.58 • 3.55
FMeasuremac 21.830 2.17E−04 2.38 1.98 • 3.85 • 3.75 3.05
FMeasuremic 29.510 6.16E−06 2.30 1.70 • 3.83 • 3.33 • 3.85

Table 7
Results for FMeasuremac ↑ for all the EMLCs and datasets ordered by avgIR, including the average ranking ↓ of each algorithm for little, moderately and very imbalanced datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

20NG 0.650 0.671 0.622 0.609 0.000 0.686 0.686 0.656 0.574 DNF 0.399 0.328
Scene 0.706 0.729 0.647 0.586 0.000 0.704 0.703 0.701 0.700 0.720 0.711 0.598
Emotions 0.633 0.650 0.592 0.564 0.059 0.642 0.637 0.633 0.616 0.637 0.653 0.547
3s_bbc1000 0.083 0.123 0.158 0.230 0.000 0.204 0.174 0.195 0.150 0.200 0.051 0.281
Water-quality 0.501 0.525 0.465 0.520 0.082 0.466 0.278 0.523 0.508 0.508 0.546 0.484
3s_guardian1000 0.061 0.096 0.193 0.212 0.000 0.160 0.150 0.167 0.130 0.144 0.045 0.294
3s_reuters1000 0.076 0.104 0.160 0.196 0.000 0.170 0.148 0.185 0.131 0.164 0.058 0.247

7.50 5.00 7.14 5.43 11.86 4.36 6.00 4.64 7.64 4.86 6.71 6.00

Flags 0.663 0.683 0.620 0.630 0.562 0.674 0.655 0.684 0.608 0.689 0.685 0.597
Yelp 0.710 0.721 0.683 0.675 0.000 0.706 0.706 0.724 0.647 0.724 0.614 0.600
Birds 0.230 0.239 0.234 0.270 0.000 0.250 0.207 0.251 0.191 0.260 0.230 0.179
CHD_49 0.497 0.524 0.464 0.492 0.270 0.511 0.511 0.517 0.505 0.516 0.520 0.505
PlantPseAAC 0.081 0.097 0.160 0.143 0.000 0.063 0.065 0.117 0.107 0.130 0.059 0.156
Yeast 0.387 0.401 0.395 0.403 0.122 0.380 0.375 0.409 0.389 0.410 0.396 0.396
HumanPseAAC 0.091 0.107 0.150 0.129 0.000 0.082 0.080 0.133 0.112 0.133 0.073 0.143
Slashdot 0.235 0.248 0.242 0.253 0.000 0.301 0.296 0.249 0.154 DNF 0.178 0.150

7.31 4.50 6.00 5.13 11.88 6.25 7.38 3.13 8.19 2.88 7.13 7.50

Genbase 0.738 0.743 0.747 0.744 0.000 0.721 0.676 0.744 0.619 0.747 0.001 0.725
Langlog 0.032 0.039 0.051 0.056 0.000 0.017 0.025 0.045 0.031 DNF 0.005 0.037
Enron 0.153 0.158 0.152 0.186 0.013 0.121 0.116 0.164 0.131 DNF 0.111 0.104
Medical 0.352 0.360 0.371 0.343 0.000 0.338 0.327 0.372 0.274 0.372 0.026 0.178
Mediamill 0.187 0.179 0.211 0.175 0.009 DNF 0.164 0.233 0.033 DNF 0.200 0.074

5.00 4.20 2.70 3.50 11.20 7.30 8.00 2.20 8.20 4.10 8.80 8.00
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5.5. Experiment 4: general results

Once the results of the EMLCs have been studied depending on the
characteristics of the datasets, we also studied them in terms of overall
performance, taking into account all the evaluation metrics.

The statistic values and adjusted p-values obtained from the

Skillings-Mack’s test are shown in Table 14. As Skillings-Mack’s test
rejects the null hypothesis for all metrics at 95% confidence level, the
Shaffer’s post-hoc test was also performed. Significant differences
among EMLC methods for all performance metrics at 95% confidence
level are shown for example-based metrics in Fig. 1, for label-based
metrics in Fig. 2, and for efficiency metrics in Fig. 3.

Table 8
Results for FMeasuremic ↑ for all the EMLCs and datasets ordered by avgIR, including the average ranking ↓ of each algorithm for little, moderately and very imbalanced datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

20NG 0.663 0.681 0.630 0.610 0.000 0.692 0.692 0.664 0.592 DNF 0.424 0.330
Scene 0.702 0.722 0.638 0.576 0.000 0.697 0.696 0.693 0.692 0.714 0.702 0.591
Emotions 0.653 0.666 0.599 0.572 0.105 0.660 0.654 0.648 0.628 0.652 0.671 0.557
3s_bbc1000 0.112 0.169 0.192 0.246 0.000 0.233 0.208 0.230 0.192 0.238 0.075 0.294
Water-quality 0.563 0.582 0.516 0.568 0.249 0.535 0.413 0.573 0.565 0.575 0.595 0.491
3s_guardian1000 0.094 0.144 0.240 0.226 0.000 0.213 0.203 0.211 0.179 0.181 0.076 0.309
3s_reuters1000 0.112 0.156 0.198 0.213 0.000 0.218 0.193 0.222 0.177 0.200 0.099 0.264

7.21 5.00 6.93 6.00 11.86 4.07 5.93 4.86 7.64 4.57 6.79 6.29

Flags 0.753 0.760 0.720 0.736 0.711 0.749 0.745 0.761 0.745 0.765 0.771 0.651
Yelp 0.749 0.759 0.721 0.708 0.000 0.739 0.739 0.754 0.672 0.759 0.684 0.631
Birds 0.418 0.440 0.375 0.391 0.000 0.433 0.413 0.422 0.360 0.432 0.410 0.201
CHD_49 0.654 0.677 0.604 0.644 0.598 0.667 0.668 0.665 0.665 0.665 0.676 0.590
PlantPseAAC 0.161 0.205 0.239 0.203 0.000 0.148 0.148 0.218 0.200 0.220 0.160 0.204
Yeast 0.626 0.637 0.548 0.585 0.480 0.626 0.625 0.621 0.609 0.631 0.636 0.493
HumanPseAAC 0.246 0.292 0.300 0.270 0.000 0.243 0.240 0.316 0.266 0.312 0.248 0.206
Slashdot 0.464 0.476 0.473 0.457 0.000 0.508 0.513 0.480 0.349 DNF 0.394 0.179

6.06 2.56 6.88 7.63 11.63 5.44 6.19 3.75 7.94 3.19 5.63 10.38

Genbase 0.989 0.988 0.989 0.987 0.000 0.979 0.977 0.989 0.903 0.989 0.000 0.978
Langlog 0.163 0.189 0.192 0.150 0.000 0.101 0.140 0.190 0.147 DNF 0.029 0.040
Enron 0.573 0.587 0.522 0.526 0.245 0.512 0.507 0.574 0.558 DNF 0.526 0.126
Medical 0.813 0.816 0.812 0.793 0.000 0.785 0.783 0.813 0.724 0.815 0.180 0.323
Mediamill 0.617 0.616 0.555 0.549 0.287 DNF 0.600 0.618 0.300 DNF 0.621 0.110

3.20 2.80 4.30 5.90 10.70 8.30 7.60 2.40 7.40 4.40 7.80 9.60

Table 9
Results for FMeasureex ↑ for all the EMLCs and datasets ordered by rDep, including the average ranking ↓ of each algorithm for low, medium and high dependent datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

Langlog 0.098 0.117 0.130 0.108 0.000 0.059 0.083 0.123 0.088 DNF 0.016 0.089
Medical 0.782 0.795 0.787 0.775 0.000 0.780 0.777 0.788 0.659 0.792 0.110 0.714
Birds 0.069 0.119 0.139 0.205 0.000 0.171 0.153 0.174 0.135 0.176 0.046 0.283
Enron 0.553 0.581 0.496 0.528 0.231 0.505 0.499 0.556 0.539 DNF 0.511 0.266
Genbase 0.172 0.222 0.268 0.224 0.000 0.170 0.168 0.254 0.201 0.245 0.174 0.259
CHD_49 0.623 0.650 0.565 0.615 0.580 0.640 0.642 0.640 0.638 0.639 0.650 0.561
Slashdot 0.363 0.391 0.375 0.392 0.000 0.447 0.452 0.378 0.251 DNF 0.289 0.430

6.86 3.79 5.71 5.29 11.29 6.21 6.29 3.50 7.57 4.71 8.07 6.14

PlantPseAAC 0.522 0.544 0.513 0.506 0.000 0.514 0.514 0.539 0.455 0.532 0.662 0.499
Mediamill 0.587 0.588 0.529 0.527 0.297 DNF 0.574 0.589 0.282 DNF 0.594 0.319
Flags 0.722 0.734 0.685 0.713 0.660 0.721 0.717 0.734 0.728 0.741 0.754 0.633
HumanPseAAC 0.102 0.145 0.204 0.153 0.000 0.096 0.095 0.163 0.144 0.159 0.106 0.240
Water-quality 0.531 0.553 0.481 0.539 0.232 0.507 0.397 0.543 0.534 0.547 0.568 0.458
3s_guardian1000 0.597 0.613 0.524 0.559 0.456 0.600 0.599 0.599 0.586 0.606 0.616 0.496
3s_reuters1000 0.170 0.182 0.159 0.182 0.000 0.170 0.166 0.179 0.147 0.184 0.160 0.158
Yeast 0.057 0.098 0.187 0.190 0.000 0.154 0.145 0.156 0.126 0.124 0.047 0.291

6.69 3.75 7.13 6.06 11.50 6.44 7.50 3.63 8.13 3.81 4.00 7.88

Yelp 0.991 0.990 0.991 0.988 0.000 0.986 0.985 0.991 0.830 0.991 0.000 0.986
3s_bbc1000 0.616 0.675 0.595 0.524 0.000 0.650 0.649 0.646 0.637 0.663 0.655 0.616
Scene 0.068 0.107 0.154 0.169 0.000 0.159 0.140 0.172 0.122 0.135 0.060 0.226
Emotions 0.594 0.621 0.554 0.523 0.061 0.615 0.609 0.608 0.583 0.606 0.634 0.539
20NG 0.540 0.580 0.521 0.547 0.000 0.627 0.627 0.556 0.451 DNF 0.277 0.587

7.00 4.20 6.90 7.40 11.70 4.00 5.10 4.10 8.40 4.70 7.30 6.00
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Regarding the example-based metrics (Fig. 1) we see that EBR
performed best for Hamming loss but it is the 6th for accuracy and the
9th for FMeasureex. ECC had best average ranking for accuracy and
second for both Hamming loss and FMeasureex. Finally, RAkEL2 is the
best for FMeasureex, second for accuracy but the 7th for Hamming loss,
having significant differences with EBR at 95% confidence level.

For the label-based metrics (Fig. 2), RAkEL2 is the best for FMea-
suremac and the second for FMeasuremic, while ECC is the best in
FMeasuremic and third for FMeasuremac. That means that when all labels
are considered to be equal, RAkEL2 performs better, but if the eva-
luation is biased by the frequency of the labels, ECC is the best choice.
Anyhow, these two methods perform better on imbalanced problems

Table 10
Results for Accuracy ↑ for all the EMLCs and datasets ordered by rDep, including the average ranking ↓ of each algorithm for low, medium and high dependent datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

Langlog 0.232 0.249 0.256 0.233 0.142 0.198 0.220 0.252 0.222 DNF 0.157 0.219
Medical 0.752 0.765 0.756 0.745 0.000 0.756 0.753 0.757 0.627 0.761 0.101 0.692
Birds 0.065 0.113 0.126 0.175 0.000 0.162 0.146 0.160 0.126 0.165 0.045 0.245
Enron 0.442 0.471 0.390 0.411 0.150 0.399 0.397 0.443 0.429 DNF 0.405 0.209
Genbase 0.163 0.209 0.234 0.189 0.000 0.160 0.158 0.231 0.185 0.224 0.162 0.228
CHD_49 0.513 0.540 0.457 0.495 0.464 0.529 0.530 0.527 0.523 0.529 0.535 0.440
Slashdot 0.348 0.375 0.359 0.370 0.000 0.431 0.436 0.362 0.243 DNF 0.281 0.404

7.00 3.43 5.86 5.57 11.29 5.86 6.00 3.71 7.36 4.50 8.29 6.57

PlantPseAAC 0.725 0.739 0.694 0.684 0.250 0.723 0.723 0.737 0.636 0.737 0.577 0.659
Mediamill 0.489 0.489 0.424 0.419 0.192 DNF 0.476 0.486 0.183 DNF 0.489 0.267
Flags 0.615 0.631 0.575 0.598 0.541 0.617 0.615 0.633 0.617 0.637 0.644 0.521
HumanPseAAC 0.099 0.142 0.180 0.129 0.000 0.094 0.094 0.153 0.136 0.150 0.104 0.221
Water-quality 0.392 0.411 0.347 0.394 0.151 0.369 0.281 0.401 0.392 0.405 0.424 0.320
3s_guardian1000 0.486 0.506 0.407 0.439 0.335 0.493 0.492 0.482 0.469 0.495 0.505 0.386
3s_reuters1000 0.596 0.603 0.544 0.555 0.456 0.594 0.589 0.586 0.563 0.591 0.579 0.501
Yeast 0.054 0.091 0.168 0.168 0.000 0.144 0.137 0.142 0.116 0.111 0.045 0.248

5.88 3.13 7.06 7.06 11.50 5.75 6.94 4.31 7.63 4.00 5.38 7.88

Yelp 0.987 0.986 0.988 0.984 0.000 0.982 0.980 0.987 0.822 0.987 0.000 0.982
3s_bbc1000 0.600 0.660 0.562 0.489 0.000 0.636 0.636 0.624 0.617 0.641 0.639 0.599
Scene 0.062 0.098 0.139 0.144 0.000 0.149 0.132 0.157 0.112 0.120 0.057 0.189
Emotions 0.513 0.539 0.461 0.426 0.045 0.536 0.529 0.520 0.499 0.522 0.548 0.455
20NG 0.529 0.570 0.506 0.522 0.000 0.623 0.623 0.541 0.443 DNF 0.276 0.579

6.80 4.20 6.60 7.80 11.70 3.90 5.00 4.40 8.40 4.60 7.30 6.10

Table 11
Results for training time ↓ for all the EMLCs and datasets ordered by dimensionality, including the average ranking ↓ of each algorithm for small, medium and large datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

Flags 5.20E-01 5.27E-01 5.57E-01 4.47E-01 3.70E-01 2.92E-01 4.10E-01 5.57E-01 5.16E-01 2.62E+00 6.79E-01 4.01E-01
CHD_49 1.10E+00 1.07E+00 1.31E+00 8.25E-01 6.94E-01 7.02E-01 7.38E-01 1.06E+00 8.75E-01 9.61E+00 8.64E-01 6.39E-01
Water-quality 2.19E+00 2.29E+00 2.07E+00 1.36E+00 1.18E+00 1.28E+00 7.97E-01 1.74E+00 1.38E+00 4.93E+01 1.67E+00 7.25E-01
Emotions 1.54E+00 1.46E+00 1.60E+00 9.50E-01 1.00E+00 1.11E+00 9.46E-01 1.40E+00 1.18E+00 2.06E+01 1.03E+00 7.43E-01

9.25 9.25 10.13 4.50 2.75 3.50 3.00 8.38 6.50 12.00 7.25 1.50

3s_reuters1000 6.97E+00 7.07E+00 4.68E+00 3.39E+00 4.04E+00 7.67E+00 7.35E+00 1.01E+01 3.38E+00 1.04E+02 1.09E+00 3.41E+00
3s_guardian1000 7.18E+00 7.32E+00 4.72E+00 3.31E+00 4.14E+00 7.87E+00 7.60E+00 1.06E+01 3.63E+00 1.06E+02 1.12E+00 3.37E+00
3s_bbc1000 9.52E+00 8.58E+00 6.08E+00 4.09E+00 4.39E+00 1.07E+01 9.82E+00 1.35E+01 4.27E+00 2.06E+02 1.17E+00 4.53E+00
Birds 5.67E+00 5.90E+00 4.68E+00 1.84E+00 3.60E+00 2.20E+00 1.63E+00 7.67E+00 3.83E+00 4.15E+02 1.77E+00 1.27E+00
Yeast 2.85E+01 1.85E+01 1.46E+01 4.19E+00 5.06E+00 9.49E+00 7.39E+00 1.99E+01 8.62E+00 6.96E+02 5.19E+00 2.74E+00
Scene 1.96E+01 1.85E+01 1.52E+01 4.53E+00 6.61E+00 1.00E+01 9.31E+00 1.37E+01 7.01E+00 3.14E+02 3.46E+00 3.39E+00
PlantPseAAC 3.89E+01 4.26E+01 3.24E+01 7.27E+00 2.07E+01 1.54E+01 1.67E+01 3.40E+01 1.44E+01 9.24E+02 2.16E+00 4.82E+00
HumanPseAAC 3.64E+02 3.94E+02 1.80E+02 4.70E+01 1.12E+02 5.53E+01 8.72E+01 2.57E+02 7.41E+01 6.59E+03 5.71E+00 2.31E+01
Genbase 9.25E+00 5.05E+00 4.69E+00 3.14E+00 8.05E+00 2.16E+00 1.94E+00 6.12E+00 3.39E+00 1.84E+03 1.61E+00 3.09E+00
Yelp 9.02E+02 7.78E+02 4.46E+02 1.78E+02 5.48E+01 2.53E+02 2.53E+02 4.93E+02 1.34E+02 8.57E+03 7.15E+00 4.84E+01
Medical 2.79E+01 3.45E+01 4.11E+01 8.02E+00 3.92E+01 1.60E+01 7.62E+00 3.32E+01 2.51E+01 2.88E+03 2.34E+00 2.75E+00
Slashdot 1.66E+03 1.77E+03 1.15E+03 1.11E+02 3.22E+02 8.14E+02 1.12E+03 1.13E+03 2.26E+02 DNF 7.33E+00 2.62E+02
Enron 7.99E+02 1.07E+03 6.07E+02 1.03E+02 4.89E+02 1.11E+02 1.19E+02 8.36E+02 2.25E+02 DNF 4.67E+00 1.83E+01

9.31 9.46 7.85 3.15 5.85 6.35 5.81 9.54 4.69 12.00 1.46 2.54

Langlog 5.54E+02 7.56E+02 4.13E+02 5.21E+01 6.97E+02 6.05E+01 6.45E+01 5.48E+02 1.41E+02 DNF 4.86E+00 1.62E+01
20NG 2.13E+04 2.67E+04 1.22E+04 1.94E+03 2.16E+03 3.39E+03 3.33E+03 1.42E+04 3.49E+03 DNF 2.80E+01 5.64E+02
Mediamill 9.21E+03 1.38E+04 9.47E+03 4.03E+02 1.02E+03 DNF 2.61E+03 5.41E+03 1.27E+03 DNF 5.95E+02 4.67E+02

9.00 10.67 8.00 2.33 6.00 7.17 5.33 8.00 6.00 11.83 1.67 2.00
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than other methods which make the problem even more imbalanced,
such as ELP. Also CDE achieves good results in both metrics being the
second for FMeasuremac and the third for FMeasuremic. It is noted that
CDE even though there are cases where it does not finish the execution,
obtains competitive results.

AdaBoost.MH is the algorithm with the worst performance in four of
the five metrics. This is given because despite combining several
Decision Stump classifiers will improve the use of a single of these
classifiers, it does not achieve good results against other EMLCs using a
more powerful base classifier such as C4.5. CBMLC and TREMLC are

Table 12
Results for test time ↓ for all the EMLCs and datasets ordered by dimensionality, including the average ranking ↓ of each algorithm for small, medium and large datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

Flags 1.85E-01 2.24E-01 1.60E-01 1.08E-01 8.74E-02 8.30E-02 1.24E-01 1.69E-01 2.40E-01 1.43E+00 2.91E-01 9.98E-02
CHD_49 4.85E-01 5.86E-01 5.26E-01 2.62E-01 2.90E-01 2.70E-01 2.83E-01 3.75E-01 5.59E-01 6.78E+00 3.36E-01 2.09E-01
Water-quality 1.66E+00 1.89E+00 1.16E+00 5.31E-01 3.87E-01 9.13E-01 3.94E-01 1.03E+00 1.60E+00 4.55E+01 6.66E-01 3.60E-01
Emotions 9.98E-01 1.02E+00 7.56E-01 3.43E-01 4.51E-01 5.61E-01 4.40E-01 7.67E-01 7.23E-01 1.69E+01 3.33E-01 3.04E-01

9.00 10.50 7.75 3.25 3.50 4.00 4.00 7.50 9.00 12.00 6.00 1.50

3s_reuters1000 5.70E+00 5.70E+00 3.76E+00 1.60E+00 3.23E+00 5.57E+00 5.64E+00 8.21E+00 2.72E+00 8.79E+01 2.81E-01 2.03E+00
3s_guardian1000 5.87E+00 5.85E+00 3.46E+00 1.65E+00 3.32E+00 5.88E+00 5.56E+00 8.19E+00 2.95E+00 9.29E+01 2.86E-01 2.22E+00
3s_bbc1000 7.98E+00 7.26E+00 4.85E+00 2.29E+00 3.87E+00 8.62E+00 7.57E+00 1.13E+01 3.60E+00 2.61E+02 2.83E-01 2.92E+00
Birds 5.16E+00 5.41E+00 3.76E+00 1.00E+00 2.28E+00 1.71E+00 1.09E+00 6.92E+00 3.97E+00 3.98E+02 6.91E-01 6.37E-01
Yeast 2.77E+01 1.78E+01 1.35E+01 3.17E+00 3.67E+00 8.63E+00 6.77E+00 1.83E+01 1.36E+01 6.55E+02 1.01E+00 1.95E+00
Scene 1.83E+01 1.77E+01 1.34E+01 3.15E+00 5.11E+00 8.90E+00 8.43E+00 1.24E+01 8.77E+00 2.76E+02 5.35E-01 2.14E+00
PlantPseAAC 3.84E+01 4.18E+01 3.13E+01 6.25E+00 1.92E+01 1.48E+01 1.54E+01 3.22E+01 1.50E+01 8.58E+02 5.86E-01 3.78E+00
HumanPseAAC 3.64E+02 3.91E+02 1.78E+02 4.37E+01 1.11E+02 5.46E+01 8.48E+01 2.55E+02 8.71E+01 6.24E+03 1.20E+00 2.05E+01
Genbase 9.09E+00 4.91E+00 3.95E+00 2.02E+00 6.00E+00 1.47E+00 1.31E+00 4.58E+00 6.82E+00 1.83E+03 1.11E+00 1.58E+00
Yelp 9.02E+02 7.75E+02 4.46E+02 1.78E+02 5.38E+01 2.55E+02 2.54E+02 5.02E+02 2.60E+02 7.08E+03 1.39E+00 4.66E+01
Medical 2.73E+01 3.34E+01 4.11E+01 6.29E+00 4.29E+01 1.51E+01 7.23E+00 3.20E+01 3.88E+01 2.80E+03 2.91E+00 1.92E+00
Slashdot 1.66E+03 1.78E+03 1.10E+03 1.09E+02 3.19E+02 8.10E+02 1.12E+03 1.13E+03 2.67E+02 DNF 2.75E+00 2.59E+02
Enron 8.00E+02 1.08E+03 6.00E+02 1.01E+02 4.85E+02 1.12E+02 1.18E+02 8.35E+02 2.48E+02 DNF 5.62E+00 1.72E+01

9.65 9.50 7.38 2.92 6.00 5.92 5.54 9.38 6.23 12.00 1.15 2.31

Langlog 5.57E+02 7.63E+02 4.14E+02 5.09E+01 7.01E+02 6.01E+01 6.38E+01 5.49E+02 1.68E+02 DNF 8.13E+00 1.51E+01
20NG 2.13E+04 2.67E+04 1.22E+04 1.96E+03 2.19E+03 3.39E+03 3.34E+03 1.42E+04 7.25E+03 DNF 7.97E+00 6.01E+02
Mediamill 9.47E+03 1.41E+04 9.38E+03 3.86E+02 1.00E+03 DNF 2.68E+03 5.44E+03 1.28E+03 DNF 3.09E+02 4.86E+02

9.33 10.67 7.67 2.67 6.00 7.17 5.33 8.00 6.00 11.83 1.00 2.33

Table 13
Results for Hamming loss ↓ for all the EMLCs and datasets ordered by dimensionality, including the average ranking ↓ of each algorithm for small, medium and large datasets.

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLC CDE RF-PCT CBMLC

Flags 0.244 0.244 0.265 0.273 0.277 0.253 0.253 0.243 0.253 0.237 0.241 0.393
CHD_49 0.301 0.295 0.336 0.325 0.307 0.303 0.302 0.305 0.304 0.306 0.312 0.418
Water-quality 0.292 0.298 0.333 0.343 0.340 0.319 0.306 0.311 0.315 0.295 0.315 0.572
Emotions 0.202 0.204 0.249 0.269 0.302 0.208 0.210 0.221 0.226 0.214 0.209 0.315

2.13 2.63 9.50 10.25 10.00 5.50 4.75 5.25 6.63 4.00 5.38 12.00

3s_reuters1000 0.210 0.222 0.251 0.301 0.188 0.219 0.218 0.238 0.225 0.219 0.201 0.405
3s_guardian1000 0.205 0.219 0.244 0.295 0.188 0.219 0.216 0.232 0.230 0.225 0.202 0.385
3s_bbc1000 0.202 0.215 0.246 0.293 0.188 0.213 0.214 0.227 0.217 0.215 0.199 0.380
Birds 0.043 0.043 0.055 0.061 0.053 0.044 0.044 0.049 0.049 0.047 0.045 0.277
Yeast 0.206 0.211 0.284 0.259 0.232 0.214 0.213 0.226 0.228 0.216 0.220 0.393
Scene 0.093 0.092 0.130 0.151 0.179 0.100 0.100 0.104 0.102 0.097 0.099 0.157
PlantPseAAC 0.093 0.098 0.137 0.143 0.090 0.094 0.094 0.109 0.107 0.105 0.097 0.270
HumanPseAAC 0.085 0.088 0.119 0.126 0.085 0.087 0.087 0.097 0.094 0.095 0.090 0.290
Genbase 0.001 0.001 0.001 0.001 0.046 0.002 0.002 0.001 0.008 0.001 0.046 0.002
Yelp 0.085 0.084 0.098 0.105 0.182 0.088 0.088 0.086 0.108 0.082 0.163 0.148
Medical 0.010 0.010 0.010 0.011 0.028 0.011 0.012 0.010 0.014 0.010 0.026 0.089
Slashdot 0.042 0.043 0.043 0.049 0.054 0.043 0.042 0.042 0.046 DNF 0.043 0.319
Enron 0.047 0.048 0.053 0.061 0.062 0.052 0.051 0.048 0.048 DNF 0.050 0.644

2.27 3.96 8.23 9.38 6.92 5.19 4.73 6.38 7.73 6.12 5.77 11.31

Langlog 0.016 0.016 0.019 0.026 0.016 0.016 0.015 0.018 0.016 DNF 0.016 0.463
20NG 0.029 0.029 0.033 0.039 0.051 0.029 0.029 0.030 0.033 DNF 0.039 0.144
Mediamill 0.027 0.028 0.037 0.038 0.038 DNF 0.029 0.029 0.065 DNF 0.029 0.477

2.67 3.00 7.17 8.67 7.33 4.17 2.50 5.67 6.67 – 5.67 10.67
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also two algorithms that usually are in the last positions of the rankings.
Both algorithms reduce significantly the data in each classifier (CBMLC
split the data into five different groups and TREMLC uses 70% of the
instances and 51% of the features in each classifier), creating weaker
models that finally do not achieve good results.

In order to evaluate the efficiency of the algorithms, those that did
not finish the execution were assigned a considerably high execution
time so that they get the worst ranking in those cases. In terms of ef-
ficiency (Fig. 3), CBMLC was the fastest algorithm in training, including
significant differences with algorithms such as RAkEL2, EBR and ECC.
The high efficiency of CBMLC is due to the decomposition of the data
into several groups of similar data, building models over a dataset with
a reduced number of instances and also possibly over a reduced set of
labels, which leads to much simpler base classifiers. However, despite
its speed, CBMLC does not have a good performance as previously de-
monstrated. On the other hand, RF-PCT was the algorithm with a
shorter average test time since it builds the trees making decisions in
small random subsets of features, including significant differences with
RAkEL2, EBR and ECC among others. In training and testing times, CDE
was the slowest algorithm, to the point that it did not finish running on
five datasets.

Finally, average rankings for each EMLC and for all performance
metrics (not including training and testing times) are shown in
Table 15. In order to calculate the average ranking for each algorithm,
the ranking values for each metric and all datasets have been averaged.
Finally, a meta-ranking was also calculated for each algorithm as the
average value of the rankings of all metrics, obtaining a unique value
for each algorithm. As shown, ECC achieves the best performance
overall for all metrics and datasets, followed by RAkEL2 and CDE. It
was also shown that ECC is always among the top three algorithms for
all evaluation metrics (not considering times), which further
strengthens its overall good performance. However, it is one of the
worst in both training and test times. On the other hand, CDE, despite

being the third best algorithm, has an extremely high complexity which
causes sometimes not finished running.

5.6. Guidelines to choose the best EMLC based on the characteristics of the
data

In this section we summarize the tips and guidelines presented in
the discussion of the different experiments to choose the EMLC that best
fits to the dataset.

With respect to the imbalance level of the dataset, the results
showed that ELP, which deal with all labels at once is the algorithm
with best average performance for datasets with small imbalance
(avgIR<2), while RAkEL2, which considers the labels in small subsets
obtaining a much more balanced output space, is the best algorithm on
average for moderately and very imbalanced datasets (avgIR≥ 2).

Regarding the relationship among labels, the results indicate that
both RAkEL2 and ECC, which take into account the relationships be-
tween labels to a lesser extent, are good options for low and medium
dependent datasets (rDep<0.7). However, for highly dependent da-
tasets (rDep≥ 0.7) ELP is the best algorithm. Since ELP considers all
possible relationships among labels, it can exploit the relationship
among labels more exhaustively and therefore it achieves a better
performance in highly dependent datasets.

In terms of efficiency, CBMLC was the fastest algorithm in training
and test times for small datasets (complexity<1E6), however, it does
not achieve a good performance. On the other hand, RF-PCT was the
fastest in both training and test times for medium and large datasets
(complexity≥ 1E6), also getting an acceptable performance. It is worth
mentioning EPS, a combination of good performance and fast algo-
rithm, which is a good option if a fast but also accurate classifier is
needed.

Finally, the results of the experimental comparison with all metrics,
showed that ECC, followed by RAkEL, was the algorithm with best
overall performance for all the metrics used.

6. Conclusions

In this paper, we presented an experimental review of the state-of-
the-art EMLC methods, comparing a total of 18 methods over 20 da-
tasets from different domains and with different characteristics. As a
result of the study and the fact that no taxonomy for EMLCs was
available in the literature, a novel categorization of the EMLC methods
was also proposed. EMLC methods have been categorized based on
which multi-label method they use, such as BR, LP, PCT or independent
of the multi-label classifier. In addition, they have been categorized
based on the way the ensemble is built, including the classifier level,

Table 14
Skillings-Mack’s test statistic values and p-values for all the evaluation metrics. The null
hypothesis is rejected for all the metrics.

Statistic p-value

Hamming loss 118.78 .000000
Accuracy 78.50 .000000
FMeasureex 77.99 .000000
FMeasuremac 91.36 .000000
FMeasuremic 93.00 .000000
Training time 162.26 .000000
Test time 170.37 .000000

Fig. 1. Critical diagrams for the example-based me-
trics: results of the Shaffer’s test at 95% confidence
for (a) Hamming loss, (b) accuracy and (c)
FMeasureex .
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label level, feature level and data level.
The performance of the EMLCs was evaluated from different points

of view and taking into account the characteristics of the datasets such
as the imbalance, relationship, and dimensionality. Some guidelines
were also given in order to choose the EMLC that best fits to the data in
each case.
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Chapter 4

Evolutionary approach to evolve
a whole EMLC: EME

In spite of the wide range of EMLCs already proposed in the literature, many

of them do not consider some characteristics of the data when building the mod-

els. For instance, the performance of ECC directly relies on the chain ordering,

but it selects the chains randomly, not considering any of the characteristics of the

data. Similarly, RAkEL selects subsets of labels to build each member, but they are

randomly created without considering for example the relationship among these

labels. On the other hand, some of the EMLCs are still not able to deal with these

special characteristics of the multi-labeled data, as EBR, which is not able to model

the dependencies among labels.

Aiming to improve the predictive performance of state-of-the-art EMLCs, we

propose an evolutionary approach for the automatic generation of EMLCs, called

EME, where the characteristics of the data are taken into account in the building

phase. The EMLC generated by EME is based on the same idea as RAkEL, i.e., each

base classifier is focused onmodeling a small subset of k labels. In thisway, it is able

tomodel the relationship among groups of labels, but drastically reducing the com-

plexity of each of them in scenarios with a high dimensionality of the output space.

However, while RAkEL selects those k-labelsets just randomly, and thus it does not

ensure that all labels are being considered or the number of times that each of them

appears in the ensemble, in EME the k-labelsets are selected by looking for an op-

timal structure of the ensemble, and also ensuring that all labels appear a similar
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number of times.

In EME, each individual of the population in the EA represents an EMLC. These

individuals are initially randomly created, but as the generations go by, they evolve

towardsmore promising combinations of classifiers into the ensemble. Individuals

are evaluated not only by considering their predictive performance, but also taking

into account the number of times that each label appears in the ensemble. In this

way, we look for EMLCs that are not only accurate but that also that do not neglect

some labels regardless of their frequency or ability to be predicted, thus trying to

improve their generalization ability.

On the other hand, we propose a mutation operator for the EA where the re-

lationships among labels are considered. For this purpose, for a given classifier

inside the ensemble, labels that are more related with labels already appearing in

the classifier havemore chance tomutate and therefore to be included in the classi-

fier than those that are not related with them. However, all labels still have a small

chance to mutate, but we bias the evolution to the achievement of EMLCs dealing

with subsets of labels that are related among them.

So, both RAkEL and EME deal with all themain problems of MLC: I) they reduce

the dimensionality of the output space in each base classifier, II) thus leading to a

reduction of the label imbalance, and III) being able tomodel the label relationships

in each base classifier. Nonetheless, while RAkEL does not consider neither the

relationship among labels nor the imbalance in its building phase, EME does.

EME is based upon a generational elitist algorithm, so it ensures that the best

individual in the last generation is also the best individual so far in the EA process.

Therefore, as each individual represents an entire ensemble, the best individual is

returned at the end of the evolution.

In the experimental study, we first conduct a preliminary study to select the best

parameters for the evolutionary algorithm, involving four datasets that are then

not used in the comparison with state-of-the-art methods (in order to not to bias

the final results). Later, we compare EME not only to other standard MLCmethods

but also to state-of-the-art EMLCs. Compared to EMLCs, it is demonstrated that EME

has a better and more consistent performance in overall, being the best method in
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onemetric and also being the onlymethod that did not perform significantly worse

than the best method in any case. Tables with full results are available online1.

Furthermore, EME has a better overall performance than RAkEL in four out of

five evaluationmetrics, and it also performs significantly better than RAkEL in two

of the metrics. That proves that the fact of evolving the k-labelsets towards more

promising combinations of labels instead of just selecting them randomly lead EME

to achieve a better predictive performance.

Following, we present the paper associated with this chapter of the thesis [J5].

1https://www.uco.es/kdis/eme/

https://www.uco.es/kdis/eme/
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a b s t r a c t 

In recent years, the multi-label classification task has gained the attention of the scientific community given its 

ability to solve problems where each of the instances of the dataset may be associated with several class labels at 

the same time instead of just one. The main problems to deal with in multi-label classification are the imbalance, 

the relationships among the labels, and the high complexity of the output space. A large number of methods 

for multi-label classification has been proposed, but although they aimed to deal with one or many of these 

problems, most of them did not take into account these characteristics of the data in their building phase. In 

this paper we present an evolutionary algorithm for automatic generation of ensembles of multi-label classifiers 

by tackling the three previously mentioned problems, called Evolutionary Multi-label Ensemble (EME). Each 

multi-label classifier is focused on a small subset of the labels, still considering the relationships among them 

but avoiding the high complexity of the output space. Further, the algorithm automatically designs the ensemble 

evaluating both its predictive performance and the number of times that each label appears in the ensemble, 

so that in imbalanced datasets infrequent labels are not ignored. For this purpose, we also proposed a novel 

mutation operator that considers the relationship among labels, looking for individuals where the labels are 

more related. EME was compared to other state-of-the-art algorithms for multi-label classification over a set of 

fourteen multi-label datasets and using five evaluation measures. The experimental study was carried out in two 

parts, first comparing EME to classic multi-label classification methods, and second comparing EME to other 

ensemble-based methods in multi-label classification. EME performed significantly better than the rest of classic 

methods in three out of five evaluation measures. On the other hand, EME performed the best in one measure in 

the second experiment and it was the only one that did not perform significantly worse than the control algorithm 

in any measure. These results showed that EME achieved a better and more consistent performance than the rest 

of the state-of-the-art methods in MLC. 

1. Introduction 

In recent years, the Multi-Label Classification (MLC) task has gained 

the attention of the scientific community given its ability to solve prob- 

lems where each of the instances may be associated to several class la- 

bels at the same time, instead of just one. Let be  = { 𝜆1 , 𝜆2 , … , 𝜆𝑞 } the 

set of q different binary labels (with q > 2), and  the set of m instances, 

each composed by d input features; let us define the multi-label classi- 

fication task as learning a mapping from an example 𝒙 𝑖 ∈  to a set of 

labels 𝒚 𝑖 ⊆  . Labels in the set y i are called relevant labels, and the rest 

( 𝒚 𝑖 ) are called irrelevant. A great deal of real-world problems have been 

successfully solved thanks to the application of MLC, such as social net- 

works mining, where each user could be subscribed to several groups of 

interest [1] ; multimedia annotation, where each image or multimedia 

item could be associated to several class labels [2] ; and text catego- 

∗ Corresponding author. 

E-mail address: sventura@uco.es (S. Ventura). 

rization, where each document could be categorized in several topics 

simultaneously [3] ; among others. 

The most challenging problems in MLC are dealing with the imbal- 

ance of the data [4] , modeling compound dependencies among the la- 

bels [5] , and the possible high dimensionality of the output space [6] . 

In many problems the labels do not appear with the same frequency in 

the dataset, with some labels appearing in most of the instances and 

other that are barely present, appearing in a few instances. This might 

lead to an imbalanced dataset where the frequent labels could be much 

better predicted than the infrequent ones, as there is very little infor- 

mation about the infrequent labels. Besides, labels are not usually inde- 

pendent but tend to be related to each other, where a label may appear 

more frequently with some labels than with others. The fact of mod- 

eling, or lack of, compound dependencies among labels has a decisive 

effect not only on the predictive performance of the model but also on its 
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complexity. The complexity of the model is also usually related to the 

size of the output space. The greater the number of labels, the higher 

the complexity of the model, which can make the problem intractable. 

In order to try to overcome these problems, several methodologies 

have been proposed in the literature. For example, Pruned Sets (PS) 

[7] was proposed in order to reduce the imbalance in the final problem. 

Besides, to overcome the problem of modelling the compound depen- 

dencies among labels, Classifier Chains (CC) [5] considered the relation- 

ship among different binary methods that originally did not take into 

account. For the output dimensionality problem, RAndom k -labELsets 

(RA k EL) [8] divided the label space into smaller subsets, resulting in 

less complex output spaces. Furthermore, the continuous stream of in- 

put data is a growing problem in many data mining tasks, and it has 

been also successfully addressed in MLC [9,10] . Many of these proposed 

methods were based on the combination of several classifiers. However, 

in MLC only those methods that combine several classifiers which are 

able to deal with multi-label data are considered as Ensembles of Multi- 

Label Classifiers (EMLCs) [11] . On the other hand, besides tackling the 

aforementioned problems, ensembles usually perform better than single 

classifiers. One of the ways to obtain an ensemble that outperform each 

of the individuals classifiers is to combine a set of diverse classifiers 

[12,13] . Despite this fact, many of the proposed ensemble methods in 

the literature generate diversity only by random sampling of attributes, 

instances, or labels for each classifier, but not ensuring that the entire 

ensemble is diverse enough. 

In this paper, we propose an evolutionary approach for the automatic 

generation of ensembles of diverse and competitive multi-label classi- 

fiers. The algorithm, called Evolutionary Multi-Label Ensemble (EME), 

takes into account characteristics of the multi-label data such as the 

relationships among the labels, imbalance of the data, and complexity 

of the output space. The ensemble is based on projections of the label 

space, considering in this way the relationships among the labels but 

also reducing the computational cost in cases where the output space is 

complex. These subsets of labels are not only randomly selected but also 

they evolve with the generations of the evolutionary algorithm, looking 

for the combinations that perform the best. Also, a novel mutation op- 

erator is proposed, so that it considers the relationship among labels 

favouring more related combinations of labels. Further, EME takes into 

account all the labels approximately the same number of times in the 

ensemble, regardless of their frequency or its ease to be predicted; so 

that the imbalance of the data is considered and the infrequent labels 

are not ignored. For that, the fitness function takes into account both 

the predictive performance of the model and the number of times that 

each label is considered in the ensemble. Finally, the diversity of the 

ensemble is not taken into account explicitly, but the ensembles evolve 

selecting their classifiers based on their overall performance. 

The experimental study carried out over fourteen multi-label 

datasets compared EME with classic state-of-the-art methods in MLC 

and also other EMLCs using five evaluation measures. The first exper- 

iment determined that EME performed significantly better than classic 

MLC methods in three of the five evaluation measures. In the second ex- 

periment, EME achieved the best performance in only one measure, but 

it was the only algorithm that did not perform significantly worse than 

any of the control algorithm for any evaluation measures. These results 

showed that EME achieved a better and more consistent performance 

than the rest of the state-of-the-art methods in MLC. 

The rest of the article is organized as follows: Section 2 includes re- 

lated work in multi-label classification, Section 3 describes the proposed 

evolutionary algorithm, Section 4 presents the experimental study and 

Section 5 presents and discusses the results. Finally, Section 6 ends with 

conclusions. 

2. Related work 

The traditional single-label classification task aims to predict the 

class or group associated to each of the instances described by a set or 

input features. Each of the instances is classified in just one class from a 

previously defined set of classes. However, in MLC, each instance may be 

labeled with more than one of the q class labels simultaneously. Given 

a set of q predefined labels  = { 𝜆1 , 𝜆2 , … , 𝜆𝑞 } , the subset of relevant 

labels associated with each of the instances can be viewed as a binary 

vector 𝒚 = {0 , 1} 𝑞 where each element is 1 if the label is relevant and 

0 otherwise. In this way, the goal of MLC is to predict, for an unseen 

instance, a bipartition including its sets of relevant ( ̂𝒚 ) and irrelevant 

labels ( ̂𝒚 ). 

Several methods for MLC have been proposed in the literature, aim- 

ing to handle with the three main problems in MLC, such as the imbal- 

ance of the output space, the relationship among labels and the high 

dimensionality of the output space. These methods are categorized into 

three main groups: problem transformation, algorithm adaptation, and 

EMLCs [14,15] . 

Problem transformation methods transform the multi-label prob- 

lem into one or more single-label problems. These problems are then 

solved by using traditional single-label classification methods. For ease 

of understanding, schemes of the main transformations are presented in 

Fig. 1 . Binary Relevance (BR) [16] decomposes the multi-label problem 

into q independent binary single-label problems, then building q inde- 

pendent binary classifiers, one for each label. BR is simple and intuitive, 

Fig. 1. Main problem transformations in MLC. For PS, labelsets appearing less 

than 2 times are pruned and reintroduced with most frequent subsets. 
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but the fact of considering the labels independently makes it unable to 

model the compound dependencies among the labels. BR do not deal 

with any of the previously described problems in MLC. In order to over- 

come the label independence assumption of BR, Classifier Chain (CC) 

[5] generates q binary classifiers but linked in such a way that each bi- 

nary classifier also includes the label predictions of previous classifiers 

in the chain as additional input features. In this way and unlike BR, CC 

is able to model the relationships among the labels without introduc- 

ing more complexity. However, although it deal with the relationship 

among labels, it does not consider them, or any other characteristics of 

the data to select the chain. Since the order of the chain has a determi- 

nant effect on its performance, other approaches have been proposed to 

select the best chain ordering [17,18] . 

Label Powerset (LP) [19] transforms the multi-label problem into a 

multi-class problem, creating a new class for each distinct combination 

of labels, called labelset, that appears in the dataset. This method is able 

to strongly model the relationships among the labels, but its complex- 

ity grows exponentially with the number of labels; it is also not able 

to predict a labelset that does not appear in the training set. There- 

fore, although it is able to handle with the relationship among labels, 

LP greatly increases the dimensionality of the output space, as well as 

its imbalance. Pruned Sets (PS) [7] tries to reduce the complexity of LP, 

focusing on most important combinations of labels by pruning instances 

with less frequent labelsets. To compensate for this loss of information, 

it reintroduces the pruned instances with a more frequent subset of la- 

bels. Thus, PS considers the imbalance of LP’s output space to reduce its 

dimensionality and complexity. ChiDep [20] creates groups of depen- 

dent labels based on the 𝜒2 test for labels dependencies identification. 

For each group of dependent labels it builds a LP classifier, while for 

each single label which is not in any group it builds a binary classifier. 

ChiDep tries to reduce the disadvantages of the independence assump- 

tion of the binary methods and allows for simpler LP methods. Besides, 

ChiDep considers the relationship among group of labels and the dimen- 

sionality of the output space in building phase, therefore being able to 

reduce the imbalance in each model if the groups are small. 

The methods in the algorithm adaptation group adapt or extend ex- 

isting machine learning methods to directly handle multi-label data. Pre- 

dictive Clustering Trees (PCTs) [21] are decision trees where the data 

is partitioned in each node using a clustering algorithm. In order to 

adapt them to MLC, the distance between two instances for the clus- 

tering algorithm is calculated as the sum of the Gini Indices [22] of all 

labels, so it considers the relationship among labels when building the 

model. Instance-based algorithms have been also adapted for MLC, such 

as Multi-Label k -Nearest Neighbors (ML- k NN) [23] . For each unknown 

instance, first the k nearest neighbors are found, then the number of 

neighbors belonging to each label are counted, and finally the maximum 

a posteriori principle is used to identify the labels for the given instance. 

As ML- k NN considers all label assignments of k -nearest neighbors to la- 

bel a new instance, it implicitly consider the relationship among labels to 

build the model. On the other hand, the traditional feed-forward neural 

network have been also adapted in the Back-Propagation for Multi-Label 

Learning (BP-MLL) [24] . In this way, an error function for multi-label 

scenarios was proposed, which takes into account the predicted ranking 

of labels. The ranking of labels also imply the relationship among la- 

bels, so BP-MLL considers it in the building phase. A wider description 

of algorithm adaptation methods in MLC can be found in [14] . 

The third group of methods includes the EMLCs. Although many of 

the MLC algorithms are based on the combination of several classifiers, 

only are considered as EMLCs those that combine several classifiers 

which are able to deal with multi-label data [11] . Thus, although BR 

combines several classifiers it is not an EMLC since it combines single- 

label but not multi-label classifiers. Ensemble of BR classifiers (EBR) 

[5] builds an ensemble of n BR classifiers where each is trained with a 

sample from the training dataset, being n the number of desired multi- 

label classifiers in the ensemble. The selection of instances in each BR 

provides diversity to the ensemble, but as BR, it still does not consider 

any of the characteristics of the data to build the model. Ensemble of 

Classifier Chains (ECC) [5] builds an ensemble of n CCs, each with a 

random chain and a random sample with replacement from the train- 

ing dataset. The selection of several different chains reduces the risk of 

selecting a bad chain which could lead to a bad performance, however, 

they are all created randomly and not based on any of the character- 

istics of the data. Multi-Label Stacking (MLS) [25] is composed of two 

phases. In the first phase, q BR classifiers are learned, one for each la- 

bel; while in the second phase, the input feature set is augmented with 

the predictions of each binary classifier from the first phase, training q 

new binary classifiers using the desired outputs as targets. MLS is able to 

model the relationship among labels thanks to the use of the predictions 

in the first phase to predict the labels in the second phase. Ensemble of 

Pruned Sets (EPS) [7] makes an ensemble of n PSs where each classifier 

is trained with a sample of the training set without replacement. The 

use of many PSs with different data subsets avoids overfitting effects of 

pruning instances, but as PS, in datasets with a high number of labels 

the complexity can be still very high. 

Hierarchy Of Multi-label classifiERs (HOMER) [6] generates a tree 

of multi-label classifiers, where the root contains all labels and each leaf 

represents one label. At each node, the labels are split with a clustering 

algorithm, grouping similar labels into a meta-label. HOMER considers 

the relationship among labels to build the model, making it able to han- 

dle with smaller subsets of labels in each node, so that the dimension- 

ality of the output space in each of them is reduced, also reducing the 

imbalance depending on the internal multi-label classifier used. Random 

Forest of Predictive Clustering Trees (RF-PCT) [26] builds an ensemble 

of n PCTs by selecting a random subset of the instances in each model. 

Further, each PCT selects at each node of the tree the best feature from 

a random subset of the original ones. As PCT, it considers the relation- 

ship among labels in the building phase. Finally, RAndom k -labELsets 

(RA k EL) [8] builds an ensemble of LP classifiers, where each is built 

over a random projection of the output space. In this way, RA k EL deals 

with the relationship among labels as LP does but in a much simpler 

way. RA k EL handles with the three main problems of the MLC: it is 

able to detect the compound dependencies among labels, it reduces the 

dimensionality of the output space by selecting small subsets of labels 

(a.k.a. k -labelsets), and also the imbalance of each of the methods is not 

usually high since the reduced number of labels in each of them. How- 

ever, RA k EL selects the k -labelsets randomly, without considering any 

the characteristics of the data, which could lead to a poor performance. 

A summary of the previously defined method is available in Table 1 . 

This table indicates if each method deals with (D) and/or considers each 

Table 1 

Summary of state-of-the-art MLC methods. It is indi- 

cated with a ‘D’ if the method is able to deal with 

the corresponding problem (imbalance, relationships 

among labels, and high dimensionality of the output 

space), and with a ‘B’ if it considers this characteristic 

at building phase. 

Imbalance Relationships Output Dim. 

BR 

CC D 

LP D 

PS D, B D D, B 

ChiDep D D, B D, B 

PCT D, B 

MLkNN D, B 

BP-MLL D, B 

EBR 

ECC D 

MLS D 

EPS D, B D D, B 

HOMER D D, B D, B 

RF-PCT D, B 

RA k EL D D D, B 
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of the characteristics of the data at building phase (B). Note that there 

are methods that are able to deal with any of the problems, but they do 

not consider the corresponding characteristics when building the model. 

For example RA k EL is able to model the relationship among labels, but 

it does not consider neither these relationships nor other of the charac- 

teristics of the data to select the k -labelsets, it simply creates them ran- 

domly. On the other hand, HOMER considers the relationship among 

labels when building the model, since it split the labelsets into smaller 

ones considering the relationship among the labels. 

3. Evolutionary multi-label ensemble 

In this section the evolutionary algorithm is presented, focusing on 

the encoding scheme, the fitness function, and the genetic operators. 

Then, the time complexity of EME is also presented. 

3.1. Evolutionary algorithm 

The evolutionary algorithm is based on a generational elitist algo- 

rithm [27,28] , that is, it ensures that the best individual in the last gen- 

eration is the best individual of the evolution. Each individual of the 

evolutionary algorithm represents a full multi-label ensemble consist- 

ing of n multi-label classifiers, each of them modeling a k -labelset. 

Fig. 2 presents a flowchart of the evolutionary algorithm. At the be- 

ginning, the population p of popSize individuals is randomly created, 

considering the size of the k -labelsets and the number of classifiers in 

each individual ( Section 3.2 ). Then, the initial population is evaluated 

using the multi-label dataset ( Section 3.3 ). In each generation, popSize 

individuals are selected by tournament selection and stored in s . Each 

individual in s is considered for crossover and mutation based on their 

respective probabilities ( Section 3.4 ). Once the genetic operators are 

applied, these new individuals are evaluated. To maintain elitism, the 

population in each generation keeps all new individuals, unless the best 

parent is better than all the children; in this case, the parent replaces the 

worst child. The best(set) and worst(set) methods return the best and the 

worst individual of a set respectively. At the end of the generations, the 

best individual in the last generation is returned as the best ensemble. 

Fig. 2. Flowchart of the evolutionary process. 

Fig. 3. Genotype and phenotype of an individual. 

3.2. Individuals 

The individuals, which are codified as binary arrays of n × q ele- 

ments, represent a full multi-label ensemble formed by n multi-label 

classifiers and q labels. Each classifier of the ensemble is based on pro- 

jections of the output space, built over a small subset of k labels. The 

parameter k is the same for all classifiers, so the number of labels in each 

classifier is fixed. Each fragment of size q in the individual represents 

the k -labelset of each classifier in the ensemble. 

EME is implemented with the ability to use any multi-label classifier. 

However, LP is proposed as base classifier. Since EME has been designed 

to consider the dependencies among labels avoiding a high complexity, 

using a base classifier which does not consider the relationship among 

labels, such BR, makes no sense. Further, the use of LP has many ad- 

vantages over other methods that also consider the relationship among 

labels, as for example CC. If k is small, as proposed, LP builds an unique 

model for each k -labelset able to model the dependencies among all la- 

bels at a time with a low complexity due to the reduced output space. On 

the other hand, CC needs to build k different binary models, and not all 

dependencies are considered in each model; for example the first label 

in the chain is modeled without considering the dependencies with the 

rest, the second is modeled considering the dependency with only the 

previous one, and so on. Besides, the use of CC would introduce a higher 

computational cost due to the increase in the number of different possi- 

ble individuals by the different chains. The performance of EME, as well 

as that of the vast majority of multi-label methods, is biased by the per- 

formance of the single-label method used. Many ensemble methods in 

MLC have used decision trees as base classifier [5,8,29] with promising 

results, so the C4.5 decision tree (Weka’s J48 [30] ) is used as a single- 

label classifier. For the parameters of C4.5, we used a minimum number 

of objects per leaf of 2, and a pruning confidence of 0.25. Although we 

used these parameters, optimizing them for each specific problem would 

lead to a better performance, both in EME and in any other method that 

used C4.5. 

The individuals in the initial population are generated by randomly 

choosing k bits to a value of 1 for each fragment representing a multi- 

label classifier. Then, with the evolutionary algorithm the individuals 

are crossed and mutated, evolving towards a more promising combina- 

tion of multi-label classifiers, instead of being mere random selections. 

Fig. 3 shows the genotype (represented as a one-dimensional array and 

as a matrix) and the phenotype of an individual. For example, the first, 

represented by [0, 1, 1, 0, 1, 0] indicates that labels 𝜆2 , 𝜆3 and 𝜆5 are 

included in the first classifier of the ensemble. 

At the time of evaluating each individual, first the corresponding 

multi-label ensemble must be generated. For each fragment of size q in 

the individual, the full training dataset is filtered keeping only the labels 

in its k -labelset, and the corresponding multi-label classifier is built over 

the filtered dataset. Then, for an unknown instance, each classifier of 
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Fig. 4. Example of the voting process of the ensemble ( prediction threshold = 
0 . 5 ). 

the ensemble provides prediction for the labels on its own k -labelset, as 

shown in Fig. 4 . In the example in Fig. 3 , the first classifier included 

labels 𝜆2 , 𝜆3 and 𝜆5 , so in Fig. 4 the first classifier gives a prediction for 

only those labels. Finally, the ratio of positive predictions for each label 

is calculated. If this ratio is greater than or equal to a given threshold (in 

the example, threshold = 0 . 5 ), the final prediction is 1 (relevant label) 

and 0 (irrelevant) otherwise. As seen in Fig. 4 for a certain example, 

label 𝜆5 obtains one of four possible votes, so the final prediction is 0, 

while for label 𝜆6 , which obtains four of five positive votes, the final 

prediction is 1. 

3.3. Fitness function 

The fitness function measures both the performance of the classifier 

and the number of times that each label appears in the ensemble, thus 

leading the evolution towards high-performing individuals that also con- 

sider all labels the same number of times regardless of their frequency. 

Many evaluation measures for MLC have been proposed in the lit- 

erature, some of them identified as non-decomposable measures [31] . 

The non-decomposable measures evaluate the multi-label prediction as 

a whole, unlike others that evaluate the prediction for each label sep- 

arately. As one of the objectives of EME is to consider the relationship 

among the labels in the ensemble, a evaluation measures which also 

considers this fact is used. The Example-based FMeasure (ExF) is an ap- 

proach to calculate the widely used FMeasure for MLC, and it is defined 

in Eq. (1) . The ExF is calculated for each instance, and then, the value 

is averaged among all the instances. ExF is defined in the range [0, 1]; 

the higher the value the better the performance of the algorithm. In the 

following, ↓ and ↑ indicate if the measures are minimized or maximized 

respectively. 

↑ ExF = 

1 
𝑚 

𝑚 ∑
𝑖 =1 

2 |𝑌 𝑖 ∩ 𝑌 𝑖 |
|𝑌 𝑖 | ∪ |𝑌 𝑖 |

(1) 

Further, a coverage ratio measure ( c r ), which evaluates the number 

of times that each label appears in the ensemble, has been defined. This 

measure is shown in Eq. (2) , being v the vector of votes, i.e. a vector 

storing the number of times that each label appears in the ensemble, v w 
a vector of votes in the worst case, and stdv ( v ) the standard deviation of 

the vector v . The worst case is the one where the vector of votes is as 

imbalanced as possible, i.e., some labels appearing in all classifiers and 

the rest not being present at all. In the case where all labels appears the 

same number of times in the ensemble, the vector of votes is homoge- 

neous and the standard deviation is 0. Therefore, c r is to be minimized. 

The coverage ratio is divided by the worst case in order to have a mea- 

sure in the range [0, 1]. If c r were not taken into account in the fitness, 

labels that are easier to predict would tend to appear more frequently 

in the individuals, causing others barely appearing. 

↓ 𝑐 𝑟 = 

𝑠𝑡𝑑𝑣 ( 𝑣 ) 
𝑠𝑡𝑑𝑣 ( 𝑣 𝑤 ) 

(2) 

Fig. 5. Uniform crossover operator. 

As an example, c r for the case in Fig. 4 is shown in Eq. (3) : 

𝑐 𝑟 = 

𝑠𝑡𝑑𝑣 (4 , 4 , 4 , 3 , 4 , 5) 
𝑠𝑡𝑑𝑣 (8 , 8 , 8 , 0 , 0 , 0) 

= 0 . 1443 (3) 

Since both measures are in the range [0, 1], but ExF is maximized and 

c r is minimized, the fitness function is defined as the linear combination 

of them, as shown in Eq. (4) . 

↑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 

ExF + (1 − 𝑐 𝑟 ) 
2 

(4) 

As all the multi-label ensembles of the population must be gener- 

ated to calculate their fitness, evaluation is the process that consumes 

the most time. In order to reduce the runtime of the algorithm, two 

structures are created: one storing the fitness of each evaluated indi- 

vidual and other storing each multi-label classifier that was built. Thus, 

if an individual appears more than once, regardless of the order of its 

multi-label classifiers, the fitness is directly obtained from this structure, 

avoiding to evaluate a full ensemble. Further, if an individual which is 

going to be built contains a classifier that was previously built for other 

individual, this multi-label classifier does not have to be built again but 

it is directly obtained from the structure. 

3.4. Genetic operators 

In this section the crossover and mutation operators used in the 

evolutionary algorithm are described. Tournament selection is used 

to determine the individuals that form the set of parents. Then, each 

of these individuals is crossed or mutated based on crossover and 

mutation probabilities. The crossover and mutation operators are not 

mutually exclusive, i.e., an individual could be crossed and mutated in 

the same generation. 

3.4.1. Uniform crossover operator 

The uniform crossover operator swaps fragments of genotype of size 

q corresponding to multi-label classifiers between two parents. For each 

of the n fragments, the operator decides based on a probability (by de- 

fault, 0.5) if the fragments in the same position in both parents are 

swapped. Fig. 5 shows an example of the crossover operator, where the 

first and third classifiers are swapped between the parents. This operator 

makes each ensemble explore new combinations of classifiers that were 

already present in other individuals. The new individuals will always 

be valid, because neither the number of active bits of each classifier nor 

the number of classifiers are modified. 

3.4.2. Phi-based mutation operator 

We have proposed a phi-based mutation operator as a contribution of 

the paper. This operator swaps two bits of different value for each frag- 

ment corresponding to a base classifier in an individual, making each 
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Fig. 6. Phi-based mutation operator. 

classifier of the individual cease to classify one label to classify other. 

The bit swapping is performed considering the relationships among the 

labels, favoring the mutation to combinations of more related labels. In 

order to evaluate the relationships among the labels, the phi ( 𝜙) coef- 

ficient [32] that identifies the relationship between label pairs, is used. 

The phi coefficient is in the range [−1 , 1] , 1 meaning total direct corre- 

lation, −1 total indirect correlation, and 0 no correlation. 

Fig. 6 shows an example of the phi-based mutation operator for a 

fragment of an individual. First, a random position corresponding to an 

active label is randomly selected ( Fig. 6 a). Then, mutation weights w b 

of each position b corresponding to each inactive label are calculated as 

shown in Eq. (5) . The weights are calculated by accumulating the values 

of 𝜙 between the corresponding labels and each label in A , being A the 

set of remaining active labels ( Fig. 6 b). As the purpose is to evaluate 

the dependencies among the labels, regardless of whether positive or 

negative, the absolute value of phi is used. Also, a small value of 𝜀 is 

used to assign a small probability of mutating to the labels that are not 

correlated with the other active labels. 

𝑤 𝑏 = 𝜀 + 

∑
𝑙∈𝐴 

|𝜙𝑏,𝑙 | (5) 

Based on these weights, one of the inactive labels is selected to mu- 

tate ( Fig. 6 c), where labels with a higher weight are more likely to 

be selected. Finally, the two selected positions are swapped ( Fig. 6 d). 

Thereby, subsets of more related labels are more likely to be selected, 

but also keeping a small probability to search for less related combi- 

nation of labels. The mutated individuals are always valid, because the 

number of active bits remains constant. 

3.5. Time complexity 

As previously stated, the most consuming process of the whole evo- 

lutionary algorithm is the evaluation of the individuals, since it requires 

to build each of the multi-label classifiers. The individuals are based on 

the use of C4.5 classifier, which complexity is O ( m × d 2 ) [33] , where m 

is the number examples and d is the number of features of the dataset. 

The complexity of EME is upper bounded by the total number of C4.5 

classifiers that it has to evaluate. In each of the G generations, a total of 

popSize individuals, each composed by n C4.5 classifiers are evaluated. 

However, each base classifier that has been ever built is stored and EME 

does not have to build it again to evaluate an individual, so the number 

of classifier to build is usually drastically reduced. Besides, note that the 

number of possible C4.5 classifier to build is the same as the number of 

possible combinations of k labels given q . Thereby, the time complexity 

of EME is upper bounded by O ( m × d 2 × n T ), being n T the number of C4.5 

classifiers that could be build, defined as 𝑛 𝑇 = min ( 𝑛 × 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 × 𝐺, 
(𝑞 
𝑘 

)
) . 

Nevertheless, this asymptotic time complexity is reduced in the reality, 

since each individual that appears repeated in the population in any 

generation, is not evaluated and its fitness is directly obtained, avoid- 

ing to build an entire individual. Also note that the complexity of EME 

is directly related to the complexity of the base classifier used; using a 

different single-label classifier its complexity would vary. 

Table 2 

Datasets and their characteristics. 

Dataset Domain m q d card dens Ref. 

Emotions Audio 72 6 72 1.868 0.311 [6] 

Reuters1000 Text 294 6 1000 1.126 0.188 [35] 

Guardian1000 Text 302 6 1000 1.126 0.188 [35] 

Bbc1000 Text 352 6 1000 1.125 0.188 [35] 

3s-inter3000 Text 169 6 3000 1.142 0.190 [35] 

Gnegative Biology 1392 8 440 1.046 0.131 [36] 

Plant Biology 948 12 440 1.080 0.089 [36] 

Water-quality Chemistry 1060 16 14 5.072 0.362 [37] 

Yeast Biology 2417 14 103 4.237 0.303 [38] 

Human Biology 3108 14 440 1.190 0.084 [36] 

Birds Audio 645 19 260 1.014 0.053 [39] 

Slashdot Text 3782 22 1079 1.180 0.053 [40] 

Genbase Biology 662 27 1186 1.252 0.046 [41] 

Medical Text 978 45 1449 1.245 0.028 [42] 

4. Experimental studies 

The purpose of the experimental studies is to compare EME to other 

state-of-the-art algorithms in multi-label classification over a wide range 

of datasets and evaluation measures. In this section the multi-label 

datasets and the evaluation measures used in the experiments are first 

presented, and then, the experimental settings are explained. 

4.1. Datasets 

The experiments were performed over a wide set of 14 reference 

datasets 1 from different domains, such as text categorization, multime- 

dia, chemistry and biology. Table 2 lists the datasets along with their 

main characteristics, such as domain, number of instances ( m ), number 

of labels ( q ), number of features ( d ), cardinality ( card , mean number of 

labels per instance) and density ( dens , cardinality divided by the num- 

ber of labels). The datasets are ordered by number of labels. The MLDA 

tool [34] was used for the characterization of the datasets. 

4.2. Evaluation measures 

In order to evaluate multi-label classification methods, many eval- 

uation measures that take into account all labels were proposed [43] . 

We have based on the study of correlation among evaluation measures 

carried out in [44] to select the measures for the experiments. 

Given its wide use in the evaluation of MLC methods in the litera- 

ture, Hamming loss (HL) has been selected. It is a minimized measure 

which computes the average number of times that a label is incorrectly 

predicted. HL is defined in Eq. 6 , being Δ the symmetric difference be- 

tween two binary sets. Subset Accuracy (SA) is a very strict evaluation 

measure which requires the full multi-label prediction, including rele- 

vant and irrelevant labels, to be correctly predicted. SA is defined in 

Eq. 7 , where � 𝜋� returns 1 if predicate 𝜋 is true and 0 otherwise. On 

the other hand, usually the labels that are most important, interesting 

or difficult to predict are the minority labels. Therefore, the macro ap- 

proach, which gives the same importance to all labels in the evaluation 

has been selected to calculate label-based measures such as precision 

(MaP), recall (MaR) and specificity (MaS). These measures are formally 

described in Eqs. (8) –(10) respectively, being tp i , tn i , fp i , and fn i the 

true positives, true negatives, false positives, and false negatives for the 

i th label. Precision and recall are both based on measuring the predic- 

tion of relevant labels. The study in [44] did not consider the specificity 

measure; however, we consider that measuring the ratio of correctly 

1 All the datasets and their descriptions are available at the repository in 

http://www.uco.es/kdis/mllresources/ . 
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Fig. 7. Variation in fitness of the best individual and the average value of fitness of the population for Scene and Flags datasets. 

Fig. 8. Variation in fitness of the best individual and the average value of fitness of the population for PlantGO and EukaryotePseAAC datasets. 

predicted irrelevant labels should be also interesting. 

↓ HL = 

1 
𝑚 

𝑚 ∑
𝑖 =1 

1 
𝑞 
|𝑌 𝑖 Δ𝑌 𝑖 | (6) 

↑ SA = 

1 
𝑚 

𝑚 ∑
𝑖 =1 

� 𝑌 𝑖 = 𝑌 𝑖 � (7) 

↑ MaP = 

1 
𝑞 

𝑞 ∑
𝑖 =1 

𝑡𝑝 𝑖 

𝑡𝑝 𝑖 + 𝑓𝑝 𝑖 
(8) 

↑ MaR = 

1 
𝑞 

𝑞 ∑
𝑖 =1 

𝑡𝑝 𝑖 

𝑡𝑝 𝑖 + 𝑓𝑛 𝑖 
(9) 

↑ MaS = 

1 
𝑞 

𝑞 ∑
𝑖 =1 

𝑡𝑛 𝑖 

𝑡𝑛 𝑖 + 𝑓𝑝 𝑖 
(10) 

4.3. Experimental settings 

The experimental study carried out was divided in two parts. First, 

EME was compared to other classic MLC methods such as BR, LP, CC, PS, 

and ChiDep. Then, in order to perform a more complete experimental 

study, EME was compared to other state-of-the-art EMLCs such as EBR, 

ECC, MLS, EPS, RA k EL, HOMER, and RF-PCT. 

To compare the performance of the algorithms, the Friedman’s test 

[45] was used for each evaluation measure. In cases where the Fried- 

man’s test indicated that there were significant differences in the perfor- 

mance of the algorithms with a 95% confidence, the Holm’s post-hoc test 

[46] for comparisons of multiple classifiers involving a control method 

was performed. The adjusted p -values were used in the analysis, since 

they consider the fact of performing multiple comparisons without a 

significance level, providing more statistical information [47] . 

The experiments were carried out using a random 5-fold cross- 

validation and using 10 different seeds for those which use random 

numbers, such as CC, EBR, ECC, EPS, RA k EL, and RF-PCT. The default 

parameters, as originally recommended by their authors, were used in 

different algorithms employed. All methods use C4.5 as a single-label 

classifier. PS prunes the instances with labelsets occurring less than 3 

times, and keeps the top two best ranked subsets when reintroducing 

the pruned instances. EPS is composed of 10 classifiers and sampling is 

done without replacement, keeping the rest of parameters as PS. RA k EL 

is composed of 2 q classifiers and each with a subset of 𝑘 = 3 labels. 

Both EBR and ECC are composed of 10 classifiers and use sampling with 

replacement. HOMER generates 3 clusters at each node and uses the bal- 

anced k-means clustering method. RF-PCT uses 10 trees in the ensemble, 

each with the full set of the training instances. 

For C4.5 decision tree we used a minimum number of objects per 

leaf of 2, and a pruning confidence of 0.25. It should be noted that if the 

174 



J.M. Moyano, E.L. Gibaja and K.J. Cios et al. Information Fusion 50 (2019) 168–180 

Table 3 

Results of classic MLC algorithms for HL ↓ measure and standard deviations. Values in bold indicate the best results 

for each dataset. 

EME BR LP CC PS ChiDep 

Emotions 0.220 ± 0.016 0.254 ± 0.022 0.263 ± 0.016 0.262 ± 0.019 0.273 ± 0.016 0.252 ± 0.017 

Reuters1000 0.229 ± 0.013 0.257 ± 0.004 0.268 ± 0.019 0.284 ± 0.022 0.276 ± 0.025 0.257 ± 0.004 

Guardian1000 0.228 ± 0.015 0.265 ± 0.030 0.279 ± 0.021 0.287 ± 0.018 0.274 ± 0.014 0.265 ± 0.030 

Bbc1000 0.216 ± 0.016 0.263 ± 0.015 0.264 ± 0.013 0.284 ± 0.016 0.270 ± 0.010 0.267 ± 0.017 

3s-inter3000 0.265 ± 0.014 0.308 ± 0.026 0.312 ± 0.009 0.311 ± 0.030 0.314 ± 0.030 0.308 ± 0.026 

Gnegative 0.091 ± 0.007 0.120 ± 0.011 0.119 ± 0.007 0.122 ± 0.009 0.118 ± 0.011 0.123 ± 0.011 

Plant 0.102 ± 0.004 0.139 ± 0.008 0.141 ± 0.006 0.141 ± 0.005 0.144 ± 0.005 0.139 ± 0.006 

Water-quality 0.299 ± 0.007 0.310 ± 0.007 0.375 ± 0.008 0.334 ± 0.009 0.337 ± 0.011 0.315 ± 0.012 

Yeast 0.210 ± 0.007 0.249 ± 0.007 0.283 ± 0.006 0.268 ± 0.008 0.279 ± 0.007 0.274 ± 0.007 

Human 0.090 ± 0.002 0.121 ± 0.002 0.126 ± 0.002 0.122 ± 0.003 0.123 ± 0.002 0.121 ± 0.001 

Birds 0.047 ± 0.004 0.052 ± 0.010 0.063 ± 0.004 0.052 ± 0.008 0.054 ± 0.006 0.052 ± 0.010 

Slashdot 0.041 ± 0.001 0.043 ± 0.001 0.054 ± 0.001 0.052 ± 0.007 0.053 ± 0.001 0.042 ± 0.001 

Genbase 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.001 0.001 ± 0.000 0.004 ± 0.001 0.001 ± 0.001 

Medical 0.010 ± 0.001 0.011 ± 0.001 0.013 ± 0.002 0.010 ± 0.001 0.013 ± 0.002 0.010 ± 0.001 

Table 4 

Results of classic MLC algorithms for SA ↑ measure and standard deviations. Values in bold indicate the best results 

for each dataset. 

EME BR LP CC PS ChiDep 

Emotions 0.248 ± 0.038 0.170 ± 0.047 0.226 ± 0.034 0.218 ± 0.040 0.209 ± 0.056 0.191 ± 0.036 

Reuters1000 0.111 ± 0.026 0.092 ± 0.047 0.207 ± 0.055 0.163 ± 0.051 0.204 ± 0.074 0.092 ± 0.047 

Guardian1000 0.086 ± 0.035 0.069 ± 0.040 0.166 ± 0.050 0.147 ± 0.049 0.192 ± 0.045 0.069 ± 0.040 

Bbc1000 0.120 ± 0.034 0.071 ± 0.037 0.207 ± 0.040 0.175 ± 0.039 0.202 ± 0.024 0.071 ± 0.037 

3s-inter3000 0.040 ± 0.023 0.089 ± 0.041 0.094 ± 0.024 0.105 ± 0.050 0.106 ± 0.057 0.089 ± 0.041 

Gnegative 0.487 ± 0.030 0.397 ± 0.035 0.522 ± 0.031 0.503 ± 0.035 0.520 ± 0.049 0.422 ± 0.038 

Plant 0.113 ± 0.017 0.099 ± 0.009 0.189 ± 0.033 0.188 ± 0.021 0.172 ± 0.022 0.101 ± 0.013 

Water-quality 0.014 ± 0.008 0.008 ± 0.006 0.005 ± 0.003 0.010 ± 0.007 0.015 ± 0.011 0.008 ± 0.007 

Yeast 0.137 ± 0.013 0.070 ± 0.009 0.135 ± 0.014 0.138 ± 0.014 0.131 ± 0.007 0.113 ± 0.011 

Human 0.159 ± 0.014 0.115 ± 0.012 0.175 ± 0.011 0.192 ± 0.014 0.187 ± 0.017 0.122 ± 0.011 

Birds 0.496 ± 0.048 0.471 ± 0.069 0.429 ± 0.058 0.476 ± 0.049 0.462 ± 0.045 0.471 ± 0.069 

Slashdot 0.323 ± 0.015 0.308 ± 0.019 0.410 ± 0.015 0.344 ± 0.027 0.412 ± 0.021 0.328 ± 0.019 

Genbase 0.966 ± 0.015 0.965 ± 0.015 0.965 ± 0.016 0.965 ± 0.013 0.937 ± 0.019 0.965 ± 0.015 

Medical 0.649 ± 0.037 0.635 ± 0.045 0.661 ± 0.044 0.664 ± 0.040 0.666 ± 0.029 0.665 ± 0.035 

Table 5 

Results of classic MLC algorithms for MaP ↑ measure and standard deviations. Values in bold indicate the best results 

for each dataset. 

EME BR LP CC PS ChiDep 

Emotions 0.657 ± 0.039 0.596 ± 0.041 0.569 ± 0.029 0.578 ± 0.027 0.560 ± 0.032 0.593 ± 0.022 

Reuters1000 0.235 ± 0.068 0.215 ± 0.051 0.287 ± 0.070 0.211 ± 0.073 0.256 ± 0.106 0.215 ± 0.051 

Guardian1000 0.284 ± 0.088 0.205 ± 0.053 0.221 ± 0.053 0.230 ± 0.074 0.248 ± 0.048 0.205 ± 0.053 

Bbc1000 0.362 ± 0.061 0.262 ± 0.045 0.293 ± 0.058 0.244 ± 0.079 0.291 ± 0.043 0.256 ± 0.050 

3s-inter3000 0.107 ± 0.048 0.167 ± 0.086 0.174 ± 0.038 0.177 ± 0.064 0.154 ± 0.055 0.167 ± 0.086 

Gnegative 0.509 ± 0.104 0.317 ± 0.029 0.366 ± 0.125 0.316 ± 0.040 0.335 ± 0.056 0.300 ± 0.027 

Plant 0.183 ± 0.046 0.142 ± 0.021 0.144 ± 0.014 0.142 ± 0.028 0.123 ± 0.036 0.143 ± 0.016 

Water-quality 0.558 ± 0.023 0.521 ± 0.027 0.446 ± 0.014 0.500 ± 0.024 0.354 ± 0.048 0.510 ± 0.024 

Yeast 0.510 ± 0.029 0.403 ± 0.009 0.377 ± 0.021 0.394 ± 0.014 0.377 ± 0.012 0.381 ± 0.010 

Human 0.220 ± 0.038 0.163 ± 0.014 0.129 ± 0.007 0.143 ± 0.011 0.132 ± 0.019 0.158 ± 0.014 

Birds 0.396 ± 0.071 0.398 ± 0.082 0.318 ± 0.086 0.386 ± 0.090 0.318 ± 0.048 0.398 ± 0.082 

Slashdot 0.529 ± 0.045 0.518 ± 0.055 0.430 ± 0.029 0.500 ± 0.053 0.434 ± 0.043 0.514 ± 0.071 

Genbase 0.929 ± 0.050 0.929 ± 0.056 0.915 ± 0.061 0.929 ± 0.050 0.760 ± 0.084 0.929 ± 0.056 

Medical 0.651 ± 0.054 0.644 ± 0.053 0.615 ± 0.059 0.646 ± 0.049 0.621 ± 0.068 0.643 ± 0.056 

parameters of C4.5 were tuned for each specific case, the performance 

of EME should be improved. However, this improvement should be the 

same for the rest of state-of-the-art methods, so tuning the parameters 

of C4.5 is not the objective of this paper. In this way, we carry out a fair 

comparison among methods that use the same parameters of C4.5. 

EME was implemented using JCLEC [48] and Mulan [49] frame- 

works, and the code is publicly available in a GitHub repository 2 . A 

brief study was carried out first in order to select the parameters of 

2 https://github.com/kdis-lab/EME . 

the evolutionary algorithm, such as the population size, number of gen- 

erations, and crossover and mutation probabilities. For the parameters 

of the multi-label classifier in EME, they are similar to those proposed 

for RA k EL, each member of the ensemble has a subset of 𝑘 = 3 labels, 

the ensemble is composed of 2 q classifiers, and the prediction threshold 

is 0.5. 

5. Results and discussion 

In this section we present the experimental results. First the experi- 

mental study to select the parameters of EME is introduced, and then, the 
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Table 6 

Results of classic MLC algorithms for MaR ↑ measure and standard deviations. Values in bold indicate the best results 

for each dataset. 

EME BR LP CC PS ChiDep 

Emotions 0.592 ± 0.025 0.547 ± 0.028 0.561 ± 0.022 0.568 ± 0.037 0.553 ± 0.023 0.571 ± 0.032 

Reuters1000 0.131 ± 0.034 0.178 ± 0.062 0.275 ± 0.072 0.201 ± 0.053 0.235 ± 0.069 0.178 ± 0.062 

Guardian1000 0.133 ± 0.038 0.132 ± 0.032 0.223 ± 0.054 0.196 ± 0.055 0.217 ± 0.009 0.132 ± 0.032 

Bbc1000 0.164 ± 0.039 0.136 ± 0.055 0.291 ± 0.059 0.202 ± 0.036 0.263 ± 0.033 0.129 ± 0.057 

3s-inter3000 0.078 ± 0.042 0.173 ± 0.108 0.206 ± 0.085 0.191 ± 0.081 0.187 ± 0.092 0.173 ± 0.108 

Gnegative 0.352 ± 0.083 0.343 ± 0.078 0.368 ± 0.104 0.340 ± 0.067 0.327 ± 0.052 0.330 ± 0.078 

Plant 0.082 ± 0.016 0.151 ± 0.018 0.137 ± 0.018 0.151 ± 0.026 0.125 ± 0.049 0.151 ± 0.017 

Water-quality 0.469 ± 0.018 0.429 ± 0.023 0.451 ± 0.021 0.445 ± 0.026 0.179 ± 0.009 0.440 ± 0.027 

Yeast 0.361 ± 0.008 0.384 ± 0.006 0.375 ± 0.014 0.387 ± 0.017 0.362 ± 0.017 0.388 ± 0.011 

Human 0.095 ± 0.011 0.162 ± 0.017 0.130 ± 0.011 0.148 ± 0.017 0.134 ± 0.018 0.155 ± 0.017 

Birds 0.228 ± 0.048 0.269 ± 0.053 0.292 ± 0.068 0.264 ± 0.059 0.226 ± 0.025 0.269 ± 0.053 

Slashdot 0.319 ± 0.027 0.313 ± 0.031 0.400 ± 0.024 0.336 ± 0.029 0.398 ± 0.024 0.314 ± 0.033 

Genbase 0.934 ± 0.045 0.934 ± 0.050 0.902 ± 0.059 0.934 ± 0.045 0.751 ± 0.080 0.934 ± 0.050 

Medical 0.650 ± 0.056 0.644 ± 0.057 0.605 ± 0.062 0.645 ± 0.051 0.600 ± 0.047 0.645 ± 0.058 

Table 7 

Results of classic MLC algorithms for MaS ↑ measure and standard deviations. Values in bold indicate the best results 

for each dataset. 

EME BR LP CC PS ChiDep 

Emotions 0.858 ± 0.014 0.829 ± 0.022 0.811 ± 0.013 0.808 ± 0.014 0.800 ± 0.020 0.820 ± 0.011 

Reuters1000 0.914 ± 0.015 0.865 ± 0.018 0.833 ± 0.016 0.822 ± 0.020 0.834 ± 0.019 0.865 ± 0.018 

Guardian1000 0.918 ± 0.017 0.864 ± 0.037 0.826 ± 0.011 0.823 ± 0.016 0.833 ± 0.007 0.864 ± 0.037 

Bbc1000 0.922 ± 0.018 0.864 ± 0.022 0.831 ± 0.009 0.824 ± 0.012 0.833 ± 0.011 0.862 ± 0.024 

3s-inter3000 0.883 ± 0.023 0.801 ± 0.026 0.799 ± 0.009 0.795 ± 0.032 0.801 ± 0.018 0.801 ± 0.026 

Gnegative 0.961 ± 0.006 0.922 ± 0.013 0.922 ± 0.005 0.919 ± 0.005 0.923 ± 0.007 0.917 ± 0.009 

Plant 0.968 ± 0.004 0.916 ± 0.009 0.916 ± 0.003 0.914 ± 0.004 0.915 ± 0.001 0.916 ± 0.008 

Water-quality 0.786 ± 0.016 0.782 ± 0.016 0.687 ± 0.008 0.750 ± 0.023 0.899 ± 0.009 0.770 ± 0.020 

Yeast 0.803 ± 0.006 0.745 ± 0.006 0.735 ± 0.010 0.743 ± 0.013 0.743 ± 0.009 0.730 ± 0.010 

Human 0.968 ± 0.002 0.924 ± 0.002 0.923 ± 0.001 0.924 ± 0.002 0.925 ± 0.002 0.925 ± 0.003 

Birds 0.989 ± 0.003 0.982 ± 0.005 0.968 ± 0.004 0.982 ± 0.003 0.982 ± 0.003 0.982 ± 0.005 

Slashdot 0.992 ± 0.001 0.991 ± 0.001 0.972 ± 0.001 0.978 ± 0.009 0.973 ± 0.001 0.991 ± 0.002 

Genbase 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 

Medical 0.995 ± 0.001 0.995 ± 0.001 0.993 ± 0.001 0.995 ± 0.001 0.994 ± 0.001 0.995 ± 0.001 

Table 8 

Friedman’s test results for the comparison 

with classic MLC algorithms. Values in bold 

indicate that there exist significant differ- 

ences in the performance of the algorithms at 

95% confidence. 

Statistic p -value 

HL 45.42 0.0000 

SA 27.61 0.0000 

MaP 19.97 0.0013 

MaR 8.81 0.1171 

MaS 37.72 0.0000 

Table 9 

Adjusted p -values of the Holm’s test for the comparison with classic 

MLC algorithms. Algorithms marked with “–” are the control algo- 

rithm in each measure and values in bold indicates that there are 

significant differences with the control algorithm at 95% confidence. 

EME BR LP CC PS ChiDep 

HL – 0.0299 0.0000 0.0001 0.0000 0.0267 

SA ≥ 0.2 0.0003 ≥ 0.2 ≥ 0.2 – 0.0160 

MaP – 0.0617 0.0041 0.0120 0.0002 0.0128 

MaS – 0.0339 0.0000 0.0000 0.0008 0.0080 

analysis and discussion of the two experiments carried out are presented, 

including the statistical tests performed for each of them. Te supplemen- 

tary material available at the KDIS Research Group webpage 3 includes 

3 http://www.uco.es/kdis/eme/ . 

tables with the detailed results of all the experiments, including those 

of the selection of parameters of EME, more evaluation measures and 

runtime for the following experiments, and the average rankings and 

p -values of statistical tests. 

5.1. Selection of parameters of EME 

A brief study to select the parameters of the evolutionary algorithm 

in EME was carried out first. For these experiments, four datasets of dif- 

ferent size were selected: Scene, Flags, PlantGO, and EukaryotePseAAC 

4 . 

For the study of the size of the population and the number of genera- 

tions, we analyzed the fitness value of the best individual in each gener- 

ation, as well as the average value of fitness of the whole population. For 

the smaller datasets (i.e., Scene and Flags, with 6 and 7 labels respec- 

tively), 50 individuals and a total of 200 generations were used. Fig. 7 a 

and b shows the fitness value of the best individual and the average value 

of the whole population for Scene and Flags datasets respectively. For 

Scene dataset, we could see as the algorithm converged soon, obtaining 

the best value of fitness in early generations (less than 50); however, for 

Flags dataset the algorithm converged over the iteration 110, moment 

in which also the average fitness value of the population stabilized. 

Secondly, for PlantGO and EukaryotePseAAC datasets, which have 

14 and 22 labels respectively, the experiments were executed with 50 

and 100 individuals in the population, and with a total of 300 genera- 

tions, allowing enough time for the algorithm to stabilize. Fig. 8 a and 

b shows the fitness value of the best individual and average population 

4 All these datasets are different from those used in the rest of the ex- 

perimental study, and are available at the repository in http://www.uco.es/ 

kdis/mllresources/ . 
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Table 10 

Results of EMLCs for HL ↓ measure and standard deviations. Values in bold indicate the best results for each dataset. 

EME ECC EBR RA k EL EPS HOMER MLS RF-PCT 

Emotions 0.220 ± 0.016 0.200 ± 0.017 0.202 ± 0.015 0.225 ± 0.015 0.209 ± 0.012 0.253 ± 0.015 0.259 ± 0.013 0.213 ± 0.017 

Reuters1000 0.229 ± 0.013 0.227 ± 0.017 0.214 ± 0.011 0.237 ± 0.014 0.231 ± 0.017 0.317 ± 0.030 0.256 ± 0.012 0.205 ± 0.012 

Guardian1000 0.228 ± 0.015 0.225 ± 0.016 0.210 ± 0.014 0.239 ± 0.022 0.226 ± 0.016 0.288 ± 0.018 0.264 ± 0.019 0.202 ± 0.011 

Bbc1000 0.216 ± 0.016 0.216 ± 0.012 0.202 ± 0.011 0.222 ± 0.017 0.221 ± 0.015 0.286 ± 0.016 0.257 ± 0.007 0.197 ± 0.010 

3s-inter3000 0.265 ± 0.014 0.246 ± 0.020 0.220 ± 0.013 0.279 ± 0.019 0.243 ± 0.016 0.302 ± 0.022 0.315 ± 0.031 0.207 ± 0.014 

Gnegative 0.091 ± 0.007 0.082 ± 0.007 0.082 ± 0.007 0.094 ± 0.007 0.086 ± 0.006 0.117 ± 0.010 0.117 ± 0.008 0.092 ± 0.006 

Plant 0.102 ± 0.004 0.097 ± 0.004 0.093 ± 0.003 0.107 ± 0.007 0.095 ± 0.003 0.140 ± 0.005 0.137 ± 0.005 0.096 ± 0.003 

Water-quality 0.299 ± 0.007 0.295 ± 0.007 0.290 ± 0.007 0.311 ± 0.008 0.324 ± 0.008 0.341 ± 0.015 0.337 ± 0.016 0.314 ± 0.008 

Yeast 0.210 ± 0.007 0.210 ± 0.006 0.207 ± 0.008 0.225 ± 0.008 0.210 ± 0.007 0.263 ± 0.008 0.273 ± 0.005 0.219 ± 0.007 

Human 0.090 ± 0.002 0.088 ± 0.002 0.085 ± 0.002 0.097 ± 0.005 0.087 ± 0.002 0.121 ± 0.004 0.118 ± 0.003 0.090 ± 0.003 

Birds 0.047 ± 0.004 0.043 ± 0.006 0.043 ± 0.006 0.048 ± 0.004 0.046 ± 0.007 0.062 ± 0.009 0.049 ± 0.007 0.046 ± 0.005 

Slashdot 0.041 ± 0.001 0.043 ± 0.002 0.042 ± 0.001 0.042 ± 0.001 0.044 ± 0.001 0.048 ± 0.002 0.043 ± 0.001 0.043 ± 0.001 

Genbase 0.001 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.004 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.046 ± 0.003 

Medical 0.010 ± 0.001 0.010 ± 0.001 0.011 ± 0.001 0.011 ± 0.001 0.012 ± 0.001 0.011 ± 0.002 0.011 ± 0.001 0.025 ± 0.001 

Table 11 

Results of EMLCs for SA ↑ measure and standard deviations. Values in bold indicate the best results for each dataset. 

EME ECC EBR RA k EL EPS HOMER MLS RF-PCT 

Emotions 0.248 ± 0.038 0.297 ± 0.036 0.274 ± 0.037 0.250 ± 0.032 0.292 ± 0.031 0.182 ± 0.041 0.186 ± 0.039 0.284 ± 0.037 

Reuters1000 0.111 ± 0.026 0.064 ± 0.031 0.040 ± 0.026 0.129 ± 0.029 0.115 ± 0.035 0.078 ± 0.031 0.112 ± 0.010 0.045 ± 0.022 

Guardian1000 0.086 ± 0.035 0.063 ± 0.030 0.037 ± 0.020 0.092 ± 0.036 0.130 ± 0.040 0.069 ± 0.036 0.076 ± 0.055 0.037 ± 0.026 

Bbc1000 0.120 ± 0.034 0.086 ± 0.034 0.057 ± 0.024 0.134 ± 0.028 0.142 ± 0.042 0.102 ± 0.051 0.088 ± 0.024 0.045 ± 0.022 

3s-inter3000 0.040 ± 0.023 0.050 ± 0.029 0.025 ± 0.026 0.037 ± 0.022 0.044 ± 0.035 0.042 ± 0.027 0.077 ± 0.044 0.033 ± 0.032 

Gnegative 0.487 ± 0.030 0.548 ± 0.032 0.497 ± 0.031 0.493 ± 0.030 0.513 ± 0.027 0.421 ± 0.023 0.397 ± 0.037 0.470 ± 0.030 

Plant 0.113 ± 0.017 0.140 ± 0.024 0.089 ± 0.020 0.127 ± 0.029 0.095 ± 0.018 0.094 ± 0.015 0.109 ± 0.028 0.101 ± 0.018 

Water-quality 0.014 ± 0.008 0.017 ± 0.010 0.016 ± 0.009 0.013 ± 0.008 0.015 ± 0.009 0.004 ± 0.004 0.008 ± 0.004 0.012 ± 0.008 

Yeast 0.137 ± 0.013 0.171 ± 0.016 0.131 ± 0.014 0.112 ± 0.015 0.168 ± 0.015 0.076 ± 0.011 0.051 ± 0.008 0.145 ± 0.014 

Human 0.159 ± 0.014 0.174 ± 0.011 0.141 ± 0.013 0.167 ± 0.018 0.140 ± 0.013 0.105 ± 0.004 0.122 ± 0.007 0.127 ± 0.012 

Birds 0.496 ± 0.048 0.522 ± 0.054 0.516 ± 0.055 0.490 ± 0.045 0.515 ± 0.055 0.457 ± 0.049 0.491 ± 0.053 0.503 ± 0.057 

Slashdot 0.323 ± 0.015 0.330 ± 0.021 0.303 ± 0.016 0.314 ± 0.024 0.399 ± 0.008 0.309 ± 0.021 0.310 ± 0.020 0.252 ± 0.013 

Genbase 0.966 ± 0.015 0.968 ± 0.013 0.967 ± 0.013 0.965 ± 0.014 0.937 ± 0.018 0.970 ± 0.009 0.967 ± 0.016 0.000 ± 0.000 

Medical 0.649 ± 0.037 0.671 ± 0.030 0.650 ± 0.025 0.641 ± 0.040 0.674 ± 0.024 0.654 ± 0.052 0.637 ± 0.044 0.085 ± 0.038 

Table 12 

Results of EMLCs for MaP ↑ measure and standard deviations. Values in bold indicate the best results for each dataset. 

EME ECC EBR RA k EL EPS HOMER MLS RF-PCT 

Emotions 0.657 ± 0.039 0.685 ± 0.033 0.704 ± 0.034 0.640 ± 0.032 0.673 ± 0.029 0.588 ± 0.017 0.588 ± 0.026 0.647 ± 0.033 

Reuters1000 0.235 ± 0.068 0.170 ± 0.087 0.134 ± 0.090 0.243 ± 0.048 0.244 ± 0.089 0.165 ± 0.030 0.208 ± 0.061 0.137 ± 0.099 

Guardian1000 0.284 ± 0.088 0.166 ± 0.070 0.133 ± 0.083 0.250 ± 0.076 0.272 ± 0.114 0.242 ± 0.049 0.202 ± 0.070 0.120 ± 0.111 

Bbc1000 0.362 ± 0.061 0.216 ± 0.102 0.214 ± 0.123 0.353 ± 0.077 0.359 ± 0.098 0.248 ± 0.052 0.267 ± 0.069 0.179 ± 0.117 

3s-inter3000 0.107 ± 0.048 0.139 ± 0.092 0.094 ± 0.090 0.144 ± 0.061 0.090 ± 0.063 0.165 ± 0.074 0.157 ± 0.080 0.117 ± 0.107 

Gnegative 0.509 ± 0.104 0.495 ± 0.094 0.499 ± 0.082 0.476 ± 0.091 0.473 ± 0.094 0.369 ± 0.087 0.349 ± 0.050 0.406 ± 0.087 

Plant 0.183 ± 0.046 0.178 ± 0.051 0.189 ± 0.057 0.190 ± 0.054 0.170 ± 0.061 0.145 ± 0.028 0.157 ± 0.023 0.135 ± 0.041 

Water-quality 0.558 ± 0.023 0.556 ± 0.024 0.573 ± 0.024 0.536 ± 0.024 0.281 ± 0.049 0.500 ± 0.023 0.498 ± 0.029 0.522 ± 0.022 

Yeast 0.510 ± 0.029 0.495 ± 0.037 0.515 ± 0.034 0.463 ± 0.029 0.505 ± 0.054 0.389 ± 0.014 0.392 ± 0.007 0.465 ± 0.035 

Human 0.220 ± 0.038 0.222 ± 0.035 0.224 ± 0.040 0.206 ± 0.033 0.211 ± 0.053 0.143 ± 0.012 0.171 ± 0.018 0.182 ± 0.043 

Birds 0.396 ± 0.071 0.431 ± 0.078 0.420 ± 0.082 0.398 ± 0.086 0.330 ± 0.066 0.318 ± 0.049 0.408 ± 0.127 0.432 ± 0.078 

Slashdot 0.529 ± 0.045 0.522 ± 0.044 0.521 ± 0.051 0.524 ± 0.045 0.535 ± 0.028 0.463 ± 0.052 0.506 ± 0.034 0.477 ± 0.024 

Genbase 0.929 ± 0.050 0.923 ± 0.053 0.921 ± 0.053 0.925 ± 0.053 0.768 ± 0.078 0.921 ± 0.071 0.929 ± 0.056 0.217 ± 0.104 

Medical 0.651 ± 0.054 0.645 ± 0.055 0.647 ± 0.063 0.645 ± 0.049 0.625 ± 0.061 0.627 ± 0.055 0.646 ± 0.057 0.379 ± 0.067 

with both configurations for PlantGO and EukaryotePseAAC datasets 

respectively. For PlantGO, we can see that in early generations the con- 

figuration with 50 individuals achieved better fitness values, however, 

at the end of the evolution both configurations reached the same fitness 

for the best individual. On the other hand, the behavior for Eukary- 

otePseAAC dataset is similar to PlantGO, but in this case the algorithm 

reached the best value in the last generations, where the configuration 

with 50 individuals obtained slightly better results. For both cases, the 

configuration with 50 individuals obtained the same or slightly better 

results, obtaining also a lower execution runtime. 

Given these results, for datasets with a small number of labels ( ≤ 8 

labels), 50 individuals and a total of 110 generations were used. Further, 

for datasets where the label space is more complex ( > 8 labels) and 

therefore the search space is much wider, also 50 individuals and a total 

of 300 generations were used. 

On the other hand, the probability of crossover and mutate an indi- 

vidual could have a direct effect on the final performance of the algo- 

rithm, since their variation would vary the diversity of the population 

and could lead to a premature convergence of the algorithm or to never 

converge; therefore, an experimental study to select the optimal val- 

ues for both probabilities was performed. For that, values of 𝑝𝐶𝑟𝑜𝑠𝑠 = 

{0 . 7 , 0 . 8 , 0 . 9} and 𝑝𝑀𝑢𝑡 = {0 . 1 , 0 . 2 , 0 . 3} were used. For both Scene and 

Flags datasets, the best results were obtained with 𝑝𝐶𝑟𝑜𝑠𝑠 = 0 . 9 , and 

𝑝𝑀𝑢𝑡 = 0 . 2 , so we selected this configuration for small datasets. On 

the other hand, EukaryotePseAAC obtained the best performance with 

𝑝𝐶𝑟𝑜𝑠𝑠 = 0 . 8 and 𝑝𝑀𝑢𝑡 = 0 . 2 , while PlantGO also obtained competitive 
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Table 13 

Results of EMLCs for MaR ↑ measure and standard deviations. Values in bold indicate the best results for each dataset. 

EME ECC EBR RA k EL EPS HOMER MLS RF-PCT 

Emotions 0.592 ± 0.025 0.585 ± 0.033 0.590 ± 0.029 0.627 ± 0.034 0.621 ± 0.025 0.606 ± 0.048 0.575 ± 0.024 0.667 ± 0.031 

Reuters1000 0.131 ± 0.034 0.084 ± 0.042 0.045 ± 0.026 0.158 ± 0.032 0.130 ± 0.034 0.158 ± 0.029 0.162 ± 0.044 0.044 ± 0.022 

Guardian1000 0.133 ± 0.038 0.077 ± 0.029 0.041 ± 0.019 0.163 ± 0.040 0.142 ± 0.040 0.226 ± 0.048 0.141 ± 0.040 0.040 ± 0.025 

Bbc1000 0.164 ± 0.039 0.086 ± 0.028 0.057 ± 0.023 0.177 ± 0.038 0.163 ± 0.039 0.235 ± 0.052 0.164 ± 0.032 0.039 ± 0.019 

3s-inter3000 0.078 ± 0.042 0.069 ± 0.038 0.031 ± 0.026 0.098 ± 0.050 0.053 ± 0.036 0.165 ± 0.060 0.166 ± 0.094 0.035 ± 0.031 

Gnegative 0.352 ± 0.083 0.341 ± 0.071 0.299 ± 0.067 0.386 ± 0.087 0.298 ± 0.060 0.374 ± 0.060 0.360 ± 0.083 0.255 ± 0.061 

Plant 0.082 ± 0.016 0.069 ± 0.014 0.051 ± 0.015 0.101 ± 0.020 0.046 ± 0.013 0.140 ± 0.023 0.165 ± 0.032 0.042 ± 0.009 

Water-quality 0.469 ± 0.018 0.519 ± 0.014 0.465 ± 0.015 0.525 ± 0.022 0.148 ± 0.011 0.579 ± 0.042 0.453 ± 0.017 0.587 ± 0.018 

Yeast 0.361 ± 0.008 0.389 ± 0.009 0.351 ± 0.009 0.405 ± 0.017 0.358 ± 0.008 0.406 ± 0.017 0.394 ± 0.020 0.402 ± 0.010 

Human 0.095 ± 0.011 0.086 ± 0.008 0.066 ± 0.007 0.118 ± 0.016 0.064 ± 0.006 0.141 ± 0.013 0.157 ± 0.026 0.057 ± 0.005 

Birds 0.228 ± 0.048 0.222 ± 0.055 0.201 ± 0.048 0.246 ± 0.050 0.198 ± 0.047 0.295 ± 0.057 0.271 ± 0.074 0.217 ± 0.043 

Slashdot 0.319 ± 0.027 0.321 ± 0.023 0.305 ± 0.022 0.317 ± 0.029 0.399 ± 0.018 0.325 ± 0.028 0.314 ± 0.035 0.232 ± 0.020 

Genbase 0.934 ± 0.045 0.929 ± 0.052 0.926 ± 0.049 0.931 ± 0.048 0.759 ± 0.075 0.912 ± 0.065 0.935 ± 0.050 0.216 ± 0.104 

Medical 0.650 ± 0.056 0.646 ± 0.054 0.641 ± 0.060 0.645 ± 0.052 0.600 ± 0.059 0.598 ± 0.063 0.646 ± 0.055 0.335 ± 0.058 

Table 14 

Results of EMLCs for MaS ↑ measure and standard deviations. Values in bold indicate the best results for each dataset. 

EME ECC EBR RA k EL EPS HOMER MLS RF-PCT 

Emotions 0.858 ± 0.014 0.861 ± 0.014 0.881 ± 0.012 0.834 ± 0.016 0.856 ± 0.012 0.805 ± 0.013 0.810 ± 0.012 0.828 ± 0.014 

Reuters1000 0.914 ± 0.015 0.924 ± 0.017 0.952 ± 0.011 0.896 ± 0.014 0.910 ± 0.017 0.793 ± 0.042 0.867 ± 0.014 0.964 ± 0.014 

Guardian1000 0.918 ± 0.017 0.929 ± 0.016 0.958 ± 0.013 0.897 ± 0.021 0.910 ± 0.017 0.822 ± 0.019 0.863 ± 0.016 0.969 ± 0.011 

Bbc1000 0.922 ± 0.018 0.936 ± 0.015 0.964 ± 0.010 0.911 ± 0.018 0.912 ± 0.014 0.817 ± 0.020 0.865 ± 0.010 0.974 ± 0.011 

3s-inter3000 0.883 ± 0.023 0.907 ± 0.023 0.952 ± 0.016 0.863 ± 0.024 0.918 ± 0.015 0.811 ± 0.026 0.794 ± 0.023 0.967 ± 0.014 

Gnegative 0.961 ± 0.006 0.964 ± 0.004 0.973 ± 0.004 0.949 ± 0.008 0.968 ± 0.004 0.922 ± 0.007 0.922 ± 0.009 0.964 ± 0.004 

Plant 0.968 ± 0.004 0.974 ± 0.004 0.985 ± 0.002 0.959 ± 0.012 0.982 ± 0.003 0.915 ± 0.007 0.917 ± 0.003 0.979 ± 0.004 

Water-quality 0.786 ± 0.016 0.759 ± 0.018 0.800 ± 0.017 0.735 ± 0.021 0.940 ± 0.007 0.662 ± 0.046 0.741 ± 0.029 0.685 ± 0.018 

Yeast 0.803 ± 0.006 0.774 ± 0.006 0.804 ± 0.005 0.761 ± 0.013 0.786 ± 0.005 0.727 ± 0.017 0.743 ± 0.010 0.746 ± 0.005 

Human 0.968 ± 0.002 0.969 ± 0.002 0.981 ± 0.002 0.954 ± 0.008 0.975 ± 0.002 0.927 ± 0.003 0.927 ± 0.003 0.972 ± 0.003 

Birds 0.989 ± 0.003 0.993 ± 0.002 0.995 ± 0.001 0.986 ± 0.003 0.992 ± 0.003 0.970 ± 0.006 0.985 ± 0.005 0.991 ± 0.002 

Slashdot 0.992 ± 0.001 0.989 ± 0.002 0.992 ± 0.001 0.992 ± 0.001 0.985 ± 0.001 0.984 ± 0.002 0.990 ± 0.001 0.997 ± 0.001 

Genbase 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 

Medical 0.995 ± 0.001 0.994 ± 0.001 0.995 ± 0.001 0.995 ± 0.001 0.994 ± 0.001 0.995 ± 0.001 0.995 ± 0.001 0.999 ± 0.001 

results with this configuration, so we selected it as default configuration 

for bigger datasets. The results of these experiments are fully available 

at the KDIS Research Group webpage 5 . 

5.2. Experiment 1: Comparing EME with other classic MLC algorithms 

In this first experiment, EME is compared to other classic state-of-the- 

art MLC algorithms. The results of EME and the rest of state-of-the-art 

algorithms over all datasets are shown in Tables 3–7 for HL, SA, MaP, 

MaR, and MaS evaluation measures, respectively. 

For HL, EME performed the best in all cases, including a tie with BR, 

CC and ChiDep for Genbase dataset. For SA, the best results are more 

spread, where EME, LP, CC, and PS achieved the best result in many 

datasets. In the case of MaP, EME again shown the best performance 

in 11 out of 14 datasets. MaP and MaR are opposite measures, so good 

results in one of them usually lead to bad results in the other; for MaR LP 

achieved the best performance in seven datasets, while EME was the best 

in four, BR and ChiDep in three each, and finally CC was the best in two 

datasets. MaP and MaR measures are both focused on relevant labels; on 

the other hand MaS measures the ratio of correctly predicted irrelevant 

labels. For MaS, EME performed the best in 13 out of 14 datasets, being 

the best method so far. Despite the opposition of evaluation measures, 

EME was able to achieve great performance in all of them. 

The results of the Friedman’s test for all evaluation measures, in- 

cluding the Friedman’s statistics and the p -values are shown in Table 8 . 

In four measures the Friedman’s test determined that significant differ- 

ences exists in the performance of the algorithms at 95% confidence, so 

the Holm’s post-hoc test was also performed, and the adjusted p -values 

are shown in Table 9 . 

5 http://www.uco.es/kdis/eme/ . 

Table 15 

Friedman’s test results for the comparison 

with state-of-the-art EMLCs. Values in bold in- 

dicate that there exist significant differences 

in the performance of the algorithms at 95% 

confidence. 

Statistic p -value 

HL 52.99 0.0000 

SA 31.65 0.0000 

MaP 26.74 0.0004 

MaR 42.49 0.0000 

MaS 50.84 0.0000 

For the four evaluation measures where the Friedman’s test indicated 

that there were significant differences in the performance of the algo- 

rithms, EME had the better performance in three of them. For HL and 

MaS, EME performed significantly better than the rest of methods, while 

for MaP it performed statistically better than all except BR. Further, for 

SA, where EME was not the control algorithm, it performed statistically 

equal than the control algorithm. These results showed that our algo- 

rithm has statistically better performance than the rest of classic MLC 

algorithms for all evaluation measures. 

5.3. Experiment 2: Comparing EME with other EMLCs 

Although EME has already shown that performs significantly better 

than classic state-of-the-art MLC algorithms, its performance was also 

compared to other state-of-the-art EMLCs. The results of EME and the 

rest of EMLCs over all datasets are shown in Tables 10–14 , again for HL, 

SA, MaP, MaR, and MaS measures. 
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Table 16 

Adjusted p -values of the Holm’s test for the comparison among state-of-the-art EMLCs. Al- 

gorithms marked with ‘–” are the control algorithm in each measure and values in bold 

indicates that there are significant differences with the control algorithm at 95% confidence. 

EME ECC EBR RA k EL EPS HOMER MLS RF-PCT 

HL 0.1016 ≥ 0.2 – 0.0014 0.0436 0.0000 0.0000 0.1016 

SA 0.1613 – 0.0081 0.1613 ≥ 0.2 0.0013 0.0052 0.0003 

MaP – ≥ 0.2 ≥ 0.2 ≥ 0.2 0.1636 0.0007 0.0308 0.0007 

MaR ≥ 0.2 0.0436 0.0001 ≥ 0.2 0.0030 – ≥ 0.2 0.0002 

MaS 0.0758 0.0758 – 0.0011 0.0745 0.0000 0.0000 ≥ 0.2 

For HL, EBR performed the best in seven datasets, while ECC in five, 

RF-PCT in four, EME in three and both RA k EL, HOMER and MLS in 

one tied. As can be shown, the performance of EME in HL is better for 

datasets where the number of labels is greater. That means that when the 

label space is wider, EME tends to predict correctly, in average, a greater 

number of labels than the rest of methods. This is given by the fact that 

for cases where a greater number of different possible combinations of 

k -labelsets are available, EME is able to obtain a good combination of 

subsets of labels with a great performance. It can be also seen as EME 

obtained a better performance than RA k EL in all cases, enhancing the 

need for optimizing the combination of k -labelsets instead of only mak- 

ing a random selection. In the case of SA, EME did not achieved the best 

results in any dataset for such a strict measure, in which ECC was the 

best in seven datasets. SA evaluates the ratio of multi-label predictions 

where both the relevant and irrelevant labels were exactly predicted. Al- 

though it is an interesting evaluation measure in some cases, it must be 

interpreted cautiously since it does not consider partially correct predic- 

tions. For example, a method with a low value of SA could be predicting 

the rest of instances with almost all relevant labels, while a method with 

a higher value of SA could be predicting completely bad the rest of in- 

stances. For MaP, EME was the best in five datasets, followed by EBR 

being the best in four. ECC, which achieved better results in other mea- 

sures, was not the best in any case for MaP. Further, although MaP and 

MaR are opposite measures, ECC did not achieve great results in MaR 

either, being the best in only one case. On the other hand, EME was the 

best in only one case in MaR but achieved better results for MaP, which 

is an expected behavior. Both ECC and EBR were not the best in any 

case for this measure. Finally, for MaS the better results were spread 

between EBR and RF-PCT, being the best in seven datasets each, while 

the rest in only one. 

As in the previous experiment, first Friedman’s test was performed 

in order to know if there were significant differences on the perfor- 

mance of the algorithms. The results of Friedman’s test are shown in 

Table 15 , indicating that significant differences exist for all measures at 

95% confidence. Therefore, the post-hoc Holm’s test was performed for 

all the measures. The results, including the adjusted p -values are shown 

in Table 16 . 

Although EME was the best performing algorithm for only one eval- 

uation measure, it was the only one that did not have significant differ- 

ences with the control algorithm in any measure. ECC and EBR, which 

achieved great results in some evaluation measures, being the control 

algorithm in one and two cases respectively, also had a significantly 

poor performance than the control algorithm in some cases, such as for 

SA and MaR. These results showed that EME is more consistent in over- 

all performance than other state-of-the-art EMLCs over all measures, 

and did not perform significantly worse than the rest in any case. EME 

achieved high predictive performance compared not only with classic 

MLC algorithms, but also when compared with other EMLCs. 

Further, EME had a better overall performance than RA k EL in four of 

the five measures, including HL and MaS, where RA k EL performed sig- 

nificantly worse than the control algorithm. This indicates that the fact 

of not only selecting the k -labelsets randomly as RA k EL does, but also 

evolving towards a more promising combination of k -labelsets in the 

ensemble makes the model to achieve a better predictive performance. 

6. Conclusions 

In this paper we presented an evolutionary algorithm for the auto- 

matic generation of ensembles of multi-label classifiers based on projec- 

tions of labels, taking into account the relationships among the labels 

but avoiding a high complexity. Each individual in the evolutionary al- 

gorithm encodes an ensemble of multi-label classifiers, which are evalu- 

ated taking into account both the predictive performance of the individ- 

ual and the number of times that each label appears in the ensemble. The 

evolutionary algorithm helps to obtain a promising and high-performing 

combination of multi-label classifiers into an ensemble. 

The experiments over a wide set of fourteen datasets and five evalu- 

ation measures showed that our algorithm performed statistically better 

than classic MLC methods and also had a more consistent performance 

than other other state-of-the-art EMLCs. EME obtained the best results 

in several cases, and although not being always the first algorithm in the 

ranking, EME was the only algorithm that did not perform significantly 

worse than the rest in any case. Further, the experimental results also 

show that the fact of evolving the individuals toward more promising 

combinations of multi-label classifiers achieves better results than just 

selecting them randomly, as RA k EL does. 

As future work, we aim to extend EME to use a variable number of 

labels ( k ) in each of the classifiers of the ensemble and to explore other 

ways to combine the predictions of the classifiers to create the final 

ensemble prediction. Further, we we aim to perform an optimization 

and tuning of the parameters of the single-label classifier in order to 

improve the performance of the final multi-label classifier. Finally, we 

aim to explore some multi-objective fitness functions that may improve 

the performance of EME, instead of selecting only one. 
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Chapter 5

Evolutionary approach to evolve
ensemble members: EAGLET

Once demonstrated the great performance of EME, we aim to develop a second

EA, called EAGLET, trying to improve some of the drawbacks of EME. Despite its

great predictive performance, EME’s biggest drawback is its computational com-

plexity, due to the fact of evolving the entire ensemble as an individual, and there-

fore evaluating such a complex structure. Furthermore, it is harder for EME to find

an optimal structure of the ensemble, since evaluating the ensemble as a whole, it

is not able to discriminate if some of the base classifiers are useful and some other

are decrementing the predictive performance.

The objective of EAGLET is to build an EMLC by selecting simple, accurate, and

diverse multi-label classifiers. It codifies a separate multi-label classifier or future

hypothetical member of the ensemble in each of the individuals. By doing this,

EAGLET is able to determine the quality of each of the classifiers separately, which

is useful to generate the consequent EMLC. Furthermore, the fact of dealing with

separate classifiers also leads to a reduction in the computational complexity of the

EA, since it drastically reduces the number of classifiers to evaluate in total.

Despite the fact that EMLCs tend to perform better than simpler methods, the

selection of ensemble members is not trivial, but a key point to be carefully han-

dled. As EAGLET deals with individual base classifiers, a procedure to build the

ensemble given this pool of individuals needs to be proposed. The EMLC is gener-

ated incrementally as follows: I) the best individual of the population, according
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only to its predictive performance, is selected and included in the current ensem-

ble; II) the distance between each individual and the current ensemble is calculated

in terms of the labels that are considered, i.e., individuals modeling labels that are

less present in the ensemble will have a greater distance to the ensemble and then

a higher chance to be included; III) the individual that maximizes a linear com-

bination between its predictive performance and the diversity or distance to the

current ensemble is selected; IV) steps II and III are repeated until the desired size

of the ensemble is reached.

This procedure enables EAGLET to build an EMLC including not only accurate

multi-label classifiers, but also classifiers that are diverse among them and consid-

ering the number of appearances of each label in the ensemble. Thus, regardless

of the frequency of each labels, they are all considered in the ensemble.

As for the experimental study, a preliminary study on the parameters of the

EA demonstrates that EAGLET achieves better performance when more weight

is given to the selection of diverse classifiers than to the selection of more accu-

rate members. Then, EAGLET demonstrates to significantly outperform EME, thus

proving that the fact of evolving the members of the ensemble separately instead

of the entire ensemble lead EAGLET to a better predictive performance. Later,

EAGLET demonstrates to perform significantly better than standard MLC methods

and state-of-the-art EMLCs, not only being the best method in overall for all metrics

(i.e., the one with better average ranking value), but also it is the only one that do

not perform significantly worse than any of the methods in any case. The perfor-

mance of the rest of methods is significantly worse than the control algorithm in at

least one metric each. Tables with full results are available online1.

Finally, it is shown that the efficiency of EAGLET is much higher than EME, and

also than other MLC methods based on EAs, such as GACC. Furthermore, although

being more complex than other EMLCs such as ECC and RAkEL, given that the pre-

dictive performance of EAGLET is significantly better than those EMLCs, it is a great

option in cases where the runtime of the algorithm is not a main problem.

Following, the paper associated with this chapter of the thesis [J5] is presented.

1https://www.uco.es/kdis/eaglet/

https://www.uco.es/kdis/eaglet/
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a b s t r a c t

The multi-label classification task has gained a lot of attention in the last decade thanks to its
good application to many real-world problems where each object could be attached to several
labels simultaneously. Several approaches based on ensembles for multi-label classification have been
proposed in the literature; however, the vast majority are based on randomly selecting the different
aspects that make the ensemble diverse and they do not consider the characteristics of the data to
build it. In this paper we propose an evolutionary method called Evolutionary AlGorithm for multi-
Label Ensemble opTimization, EAGLET, for the selection of simple, accurate and diverse multi-label
classifiers to build an ensemble considering the characteristics of the data, such as the relationship
among labels and the imbalance degree of the labels. In order to model the relationships among labels,
each classifier of the ensemble is focused on a small subset of the label space, resulting in models
with a relative low computational complexity and lower imbalance in the output space. The resulting
ensemble is generated incrementally given the population of multi-label classifiers, so the member
that best fits to the ensemble generated so far, considering both predictive performance and diversity,
is selected. The experimental study comparing EAGLET with state-of-the-art methods in multi-label
classification over a wide set of sixteen datasets and five evaluation measures, demonstrated that
EAGLET significantly outperformed standard MLC methods and obtained better and more consistent
results than state-of-the-art multi-label ensembles.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A large number of problems of classification tasks can be
represented as a Multi-Label Classification (MLC) problem, where
each of the instances may have several labels associated with
them simultaneously [1]. For example, in multimedia annota-
tion or text categorization problems, each could be categorized
using several labels or groups simultaneously. Many real-world
problems have been successfully solved using this framework,
such as protein classification [2], decision support systems for
medical diagnosis [3], and image retrieval [4]. The fact of hav-
ing more than one label associated with each instance, poses
new classification challenges that need to be addressed, such as
modeling the compound relationships among labels and dealing

✩ The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.
∗ Corresponding author at: Department of Computer Science and Numerical

Analysis, University of Córdoba, Córdoba, Spain.
E-mail address: sventura@uco.es (S. Ventura).

with the imbalance of the output space. Although imbalance is
a difficulty which exists in many other problems, and has been
widely studied in the literature [5–7], the problem of dealing
with the dependencies among many output labels emerged with
MLC. Some studies have already demonstrated that addressing
these challenges and dealing with the main characteristics of the
multi-labeled data, the predictive results are improved [8–10].

Ensemble-based approaches have been studied and success-
fully used in many areas of data mining. Ensembles of classi-
fiers are based on the combination of several base classifiers
to improve the overall predictive performance; some studies
have shown that ensembles outperform single classifiers [11].
Similarly, Ensembles of Multi-Label Classifiers (EMLCs) aim to
improve the prediction of simple multi-label classifiers by joining
predictions of several multi-label base classifiers. Several ap-
proaches were proposed in the literature to build EMLCs, mostly
based on building models over different subsets of the training
data [12], using different feature spaces [13], or using different
subsets of the output space [9]. A thorough description of EMLCs
can be found in [14] and [15].

https://doi.org/10.1016/j.knosys.2020.105770
0950-7051/© 2020 Elsevier B.V. All rights reserved.
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Despite the fact that EMLCs tend to perform better than single
classifiers, the selection of the ensemble members is not a triv-
ial key point [16]. Using accurate classifiers in the ensemble is
obviously necessary. However, an ensemble that contains base
classifiers that are very similar to each other, although being
accurate, not only may not perform as well as expected, but it
can even perform worse than individual classifiers. An ensemble
containing diverse base classifiers should lead to a better accu-
racy thanks to the diversity in their outputs, although formal
proof of this dependency does not exist [17,18]. Therefore, the
selection of base classifiers is key in generating the ensemble.
On the other hand, in multi-label scenarios one usually deals
with problems of high dimensional output space, so the problems
can be intractable with certain algorithmic approaches [19]. As a
consequence, selecting a good technique to solve the problem is
another key point to be taken into account.

Evolutionary algorithms (EAs) are biology-inspired search al-
gorithms that have been successfully used in different fields of
data mining [20–23]. EAs have been also used in multi-label
learning tasks such as optimization of base multi-label classi-
fiers [24], and generation of ensembles for both classification
and regression problems [25,26]. EAs not only provide a valuable
framework to obtain an optimal structure for the EMLC, but
also allows to consider the whole characteristics of the data
when building the EMLC. Our proposed method, called Evolu-
tionary AlGorithm for multi-Label Ensemble opTimization and
hereafter referred as EAGLET, is able to take advantage of the
useful tips that the characteristics of the data provide. EAGLET
focuses on building an EMLC by selecting simple, accurate and
diverse classifiers. Each base classifier is focused on a small subset
of labels, considering the relationship among labels and being
able to model the compound dependencies among them with
a relatively low computational cost. Modeling subsets of labels
implies low imbalance in each of the multi-label classifiers, not
only making easier the learning phase, but also improving the
predictive performance of each model. The imbalance of the
data is considered when selecting the members of the ensemble;
therefore, EAGLET select accurate but also diverse classifiers in
such a way that individuals predicting labels that infrequently
appear in the ensemble are more likely to be selected. In this way,
EAGLET ensures that all labels are included in the ensemble, while
not neglecting infrequent labels.

The experimental study carried out over 16 multi-label
datasets and using five evaluation measures demonstrated that
EAGLET outperformed other method based on evolutionary algo-
rithms to construct EMLCs [25]. Further, EAGLET outperformed
other standard and baseline MLC methods, as well as obtained
more consistent performance than state-of-the-art EMLCs, being
the only one that did not perform statistically worse than any of
the methods.

The rest of the article is organized as follows: Section 2 in-
cludes background and related work in MLC, Section 3 presents
our proposal of evolutionary algorithm for the combination of ac-
curate and diverse multi-label classifiers into an EMLC, Section 4
shows the experimental setup, Section 5 describes and discusses
the results, and finally Section 6 ends with conclusions.

2. Background

2.1. Formal definition of MLC

Let be D a multi-label dataset composed by a set of m in-
stances, defined as D = {(xi, Yi)|1 ≤ i ≤ m}. Let X = X1×· · ·×Xd
be the d-dimensional input space, and Y = {λ1, λ2, . . . , λq} the
output space composed by q > 1 labels. Each multi-label instance
is composed by an input vector x and a set of relevant labels

associated with it Y ⊆ Y . Note that each different Y is also called
labelset [1].

The goal of MLC is to construct a predictive model h : X → 2Y

which provides a set of relevant labels for an unknown instance.
Thus, for each x ∈ X , a bipartition

(
Ŷ , Ŷ

)
of the label space Y is

provided, where Ŷ = h(x) is the set of relevant labels and Ŷ the
set of irrelevant ones.

Further, lets define an EMLC as a set of nmulti-label classifiers.
Each of the classifiers hj provides prediction b̂j = {b̂j1, b̂j2, . . . , b̂jq}
for all (or part of) the labels, each bj being 1 if the label is relevant
and 0 otherwise. The final prediction of the ensemble is calculated
given the average value of the predictions for each label v̂ =
{v̂1, v̂2, . . . , v̂q}, where the v̂l for each label λl is calculated as
v̂l =

1
n

∑n
j=1 b̂jl. Other methods instead of simple voting could

be used in order to combine predictions of multi-label classifiers
in the ensemble [27].

2.2. MLC algorithms

MLC algorithms are categorized into three main groups: prob-
lem transformation, algorithm adaptation, and EMLCs [1].

Problem transformation methods transform a multi-label
problem into one or several single-label problems, solving each
new problem using traditional single-label algorithms. One of
the most popular methods is Binary Relevance (BR) [28] which
decomposes the multi-label learning problem into q independent
binary classification problems, one for each label. The fact that BR
treats each label separately makes it simple, highly parallelizable
and resistant to overfitting label combinations, but it does not
take into account label combinations so makes it unable to model
possible dependencies among the labels. Label Powerset (LP) [29]
generates one single-label dataset where each distinct labelset
is considered as a different class. LP takes into account label
correlations but its complexity is exponential with the number
of labels. Also, it is not able to predict a labelset that does not
appear in the training dataset and, since many labelsets are
usually associated with only few examples, may lead to a highly
imbalanced dataset which would make the learning process more
difficult and less accurate.

Many other methods were proposed in the literature to over-
come the disadvantages of BR and LP. LPBR [30] identifies groups
of dependent labels and builds a LP for each of these groups
and a BR for each independent label. Pruned Sets (PS) [31] is
based on LP, but prunes the instances with infrequent labelsets
and then reintroduces them using more frequent subsets of their
labels. Classifier Chains (CC) [32] is based on the idea of chaining
binary models in such a way that each of them includes as
input features the outputs of the previous models in the chain.
Genetic Algorithm for ordering Classifier Chains (GACC) [24] uses
a genetic algorithm for selecting the most appropriate chain for
CC. Each individual in GACC represents a label permutation, i.e., a
chain for CC, and they are evaluated using a linear combination
of three multi-label evaluation measures. Label specIfic FeaTures
for multi-label learning (LIFT) [33] uses clustering of the feature
space to select a subset of features that best discriminate each
label independently; it also deals with the imbalance in the
output space.

Algorithm adaptation methods utilized almost all single-label
classification techniques to directly handle multi-label data. Pre-
dictive Clustering Trees (PCTs) [34] are decision trees where
the data is partitioned at each node by means of a clustering
algorithm. These trees are able to deal with multi-label data
since the distance between two instances for the clustering al-
gorithm is defined as the sum of Gini Indices of all labels, being
able to model the relationship among labels. The well-known
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instance-based k-NN method was also adapted to MLC. Multi-
Label k-Nearest Neighbors (ML-kNN) [35] deals with multi-label
data by finding the k nearest neighbors, counting the number of
neighbors belonging to each label, and finally using the maximum
a posteriori principle to predict the labels for the given instance.
Neural networks were also adapted to MLC, such as the Back-
Propagation for Multi-Label Learning (BP-MLL) [36], where a new
error function taking into account the predicted ranking of labels,
and thus considering the relationship among labels was proposed.
Multi-Layer Extreme Learning Machine RBF (ML-ELM-RBF) [37]
implements a deep network based on radial basis functions for
multi-label learning. A thorough description of MLC algorithm
adaptation methods can be found in [1].

The third group of methods consists of the EMLCs. Although
some methods such as BR or CC combine the predictions of
several classifiers, only those that combine the predictions of sev-
eral multi-label classifiers are considered as EMLCs. RAndom k-
labELsets (RAkEL) [9] is one of them with good performance [15].
It breaks the full set of labels into random labelsets of small size,
and then trains a LP over each subset of labels of size k (a.k.a.
k-labelset). RAkEL is much simpler than LP since it only considers
a small subset of labels at once; it takes into account the labels
relationship but avoids complexity in the output space that LP
might have. The base classifiers of RAkEL include a much more
balanced distribution of the classes than using directly LP with all
labels. RAkEL overcomes the problem of not being able to predict
a labelset that does not appear in the training dataset by means
of voting. However, as RAkEL selects its k-labelsets randomly,
it cannot guarantee neither that all labels will be used nor the
number of times that each label appears in the ensemble. Besides,
in selecting the k-labelsets the nature of the data or relationships
among labels are not taken into account.

Other EMLCs have been also proposed in the literature. En-
semble of BRs (EBR) [8] combines several BR classifiers built
over different subsets of the data. Ensemble of Classifier Chains
(ECC) [8] combines several CCs built over different subsets of the
data and different random chains. Multi-Label Stacking (MLS) [38]
builds q binary models in a first stage, and other q more by
extending the input space with label predictions of previous
stage. Ensemble of Pruned Sets (EPS) [31] builds an ensemble of
PSs, each built over different data subsets. Hierarchy Of Multi-
label classifiERs (HOMER) [39] builds a tree-shaped hierarchy of
simpler multi-label models, where each node contains a subset
of the labels on its parent node. Random Forest of Predictive
Clustering Trees (RF-PCT) [40] builds an ensemble of n PCTs by
selecting a random subset of the instances in each model, and
selecting at each node of the tree the best feature from a random
subset of the original ones. Dynamic selection and Circulating
Combination-based Clustering (D3C) [41] uses a dynamic ensem-
ble method, where several single-label classifiers of different type
are built for each label independently and then uses clustering
and dynamic selection to select a subset of accurate and diverse
base methods for each of the labels. Ensemble of Multi-Label
Sampling (EMLS) [42] builds an ensemble where each member
not only is built over a random sample of the data, but also uses a
resampling technique, Multi-Label Synthetic Oversampling based
on the Local distribution (MLSOL), which aims to deal with the
imbalance of the data. A more complete study of state-of-the-art
EMLCs can be found in [15].

Finally, an Evolutionary algorithm for building Multi-label En-
sembles (EME) was recently proposed [25]. In EME, each individ-
ual of the population was a complete EMLC, where each of the
base classifiers is centered only in a small k-labelset, similarly to
what RAkEL does. In contrast to RAkEL, EME considers the char-
acteristics of the data to build the ensemble, instead of randomly
selecting the k-labelsets, which contributed to a better perfor-
mance than RAkEL and other state-of-the-art EMLCs. However,
the fact of evolving the whole ensemble as an individual, made
EME computationally complex.

Fig. 1. Prediction of an EMLC for a given instance, using k = 3, and prediction
threshold t = 0.5.

3. EAGLET

In this section, we introduce EAGLET. First, the structure of
the multi-label classifier obtained as solution is presented and
analyzed. Then, the main aspects of the evolutionary algorithm
are presented, including description of the individuals and their
initialization, the genetic operators, the fitness function, and how
the ensemble is generated from the individuals.

3.1. Ensemble of multi-label classifiers

The aim of EAGLET is to obtain an EMLC, where each of its
members is a multi-label base classifier focused only on a small
set of labels of size k (k-labelset). Any multi-label base classifier
can be used, but we will use LP, as in [9] and [25]. Thus, each
classifier is able to model the relationships among labels but with
a lower complexity than using the entire output space. As the
number of possible combinations of labels in the reduced label
space is lower, the imbalance of the output space is consequently
reduced in each of the ensemble members.

For an unseen instance, each classifier gives prediction for the
labels in its own k-labelset. Then, outputs of all the classifiers
are used for the final prediction of the ensemble. For each label,
the ratio of positive predictions is calculated, and if it is greater
or equal than a given threshold, it results in the final positive
(relevant) prediction for this label; otherwise it is irrelevant. Fig. 1
shows an example of how the EMLC combines the predictions
for a given instance. The classifier MLC1 had in its k-labelset the
labels λ2, λ3, and λ6, so it can give prediction only for these labels.
For instance, for label λ1, the three classifiers that had it in their
k-labelsets give a positive prediction, so, for a threshold t = 0.5,
the final prediction of the ensemble is positive (relevant). On the
other hand, for label λ2, as only one of the six possible votes were
positive, the final prediction is negative (irrelevant).

3.2. Individuals

The individuals of the population in the EA represent each a
multi-label base classifier. Each individual is encoded as a binary
vector of q elements, where the lth element with a 1 indicates if
the label λl is included in the multi-label classifier, and with 0 if
it is not. Each individual has k elements to 1, k being a parameter
of the algorithm. Fig. 2 shows an example of some individuals.
For example, for the first of them, which has labels λ2, λ3, and λ6
active, the training dataset is filtered keeping only these labels,
and therefore the classifier that it encodes is focused only on their
prediction.
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Fig. 2. Example of individuals of the evolutionary algorithm.

In contrast to EME, which encodes the entire EMLC into an
individual, in EAGLET we encode each base classifier of the en-
semble in a different individual. In this way, we better know
if each of the ensemble members is positively contributing to
the final prediction or not, as they are evaluated separately.
In addition, since EME evaluates the entire ensemble, it is not
able to determine if any of its members is deteriorating its final
performance. The fact of encoding and evaluating each member
separately, entails the need of EAGLET to determine how to
construct the ensemble; this procedure is analyzed in Section 3.6.

3.3. Initialization

The individuals are created at the beginning of the evolution
by using the frequency of each label. The frequency of a label is
a representative of its importance or even difficulty of modeling.
However, this assumption should be used cautiously as minority
labels can be also important. Thus, although the more frequent
labels appear more in the initial population, infrequent labels
must also be considered and ensured they are present both in
the initial population and in the final ensemble. Therefore, the
generation of the initial population is biased so that the more
frequent labels appear in more individuals than the infrequent
ones. At the same time, we ensure that all labels appear on the
initial population a minimum number of times, so infrequent
labels are taken into account.

The process of creating the initial population is divided into
two phases. First, the number of times that each label will appear
in the initial population is calculated, and then the individuals are
created using the calculated number of appearances.

In order to calculate how many times each label will appear in
the initial population, we define as k× popSize the total number
of active bits among all the initial individuals, popSize being the
number of individuals in the population. As it has been described
above, each label is forced to appear at least amin times in the
initial population. Thereby, the remaining r = k×popSize−q×amin
bits are shared among different labels by using their frequencies.
The number of times, al, that each label λl will appear in the
initial population is calculated by Eq. (1), where fl stands for the
frequency of the lth label.

al = max

(
popSize, amin +

 fl∑q
j=1 fj
× r


)

(1)

In this way, the number of times that each label appears in
the initial population is given by its relative frequency. Since
each label can appear only once in each individual, the number
of appearances of each label is upper bounded by the number
of individuals of the population. As k × popSize bits must be
shared, if the sum of active bits shared to all labels were less
than k× popSize, the remaining bits would be evenly distributed
among those labels with fewer number of appearances. This ad-
justment is performed as follows: (I) labels are sorted upwards by

Fig. 3. Fixing the individual creation when a label cannot be shared in al
individuals.

frequency; (II) the number of bits to share for the more infrequent
label is incremented in one; (III) until the number of bits to share
is adjusted, the number of bits to share for next infrequent label is
incremented. A similar process is followed if more than k×popSize
bits are shared, decreasing the number of shared bits to those
labels which are more frequent.

Once the number of times that each label appears in the initial
population is calculated, the individuals are created. First, popSize
empty individuals (all bits are 0) are created. Then the labels
are ordered by descending frequency order. For each label λl, al
individuals where λl is still not present are randomly selected,
activating the lth bit. If for a given label λl there are less than al
possible individuals, this issue would be fixed as shown in Fig. 3.
Suppose as example, that when selecting the individuals where
λ3 is to be active, there are less than a3 available individuals. So
first, two individuals are selected randomly: one not including
λl as active label, and the other having active λl and less than
k active labels (Fig. 3a). Then, a random active bit from the first
individual (that is not active in the second) is selected (Fig. 3b).
Finally, label λl is activated in the first individual, while the
previously selected bit is deactivated in the first individual and
activated in the second (Fig. 3c).

At the end of the initialization, individuals that are repeated, if
any, are replaced by randomly initialized individuals, created by
randomly selecting k different active bits.

3.4. Genetic operators

In this section, both the crossover and the mutation operators
are explained. Tournament selection is applied to the population
to select the individuals that will form the set of parents. Then,
each individual of this set is subject to the crossover and mutation
based on their probabilities, pc and pm.

3.4.1. Crossover operator
Given two individuals ind1 and ind2, the crossover operator

swaps information among them in order to obtain individuals
including information of both parents. Fig. 4 shows an example
of how the crossover operator works. First, the operator identifies
the positions of the binary vectors where the individuals differ,
creating two sets ds1 and ds2 with the positions that are active in
one individual but not in the other (Fig. 4a). The elements in each
set are shuffled and divided later by the midpoint (Fig. 4b). Then,
two new sets ds1′ and ds2′ are created: ds1′ is created from the
first half of ds1 and the second of ds2, and ds2′ is created from the
second half of ds1 and the first of ds2 (Fig. 4c). Finally, the new
individuals ind1′ and ind2′ are created by copying the bits that
matched in ind1 and ind2, and activating the bits of ds1′ in ind1′

and those of ds2′ in ind2′ (Fig. 4d).
In this way, each new individual inherits information from

both parents, which helps to obtain new combination of labels
that may perform better. The individuals created by the crossover
operator are always valid, since the number of active bits and the
structure of each individual is not modified.
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Fig. 4. Example of crossover operator.

Fig. 5. Example of mutation operator.

3.4.2. Mutation operator
The mutation operator works as shown in Fig. 5: given an

individual, two bits with different value are randomly selected
and swapped. This stops the individual from taking into account
that label but using instead a random one, looking for new combi-
nations of labels. As the number of active labels in the individual
is not modified, the generated individuals are always valid.

3.5. Fitness function

The fitness of each individual is calculated using as a measure
the performance of the multi-label classifier that it encodes.
Many of these evaluation measures are non-decomposable, eval-
uating the multi-label prediction as a whole [43]. As our ap-
proach is based on modeling label dependencies in small subsets
of labels, a non-decomposable measure that implicitly consid-
ers the relationships among labels is a good choice to evaluate
the individuals. The Example-based FMeasure (ExF), presented
in Eq. (2), adapts the FMeasure metric to multi-label classifica-
tion as non-decomposable measure, calculating the FMeasure for
each instance, and then averaging [19]. Evaluation measures are
indicated as ↑ if they are maximized and with ↓ if they are
minimized. FMeasure is a robust evaluation measure which is less
sensitive to the imbalance of the labels prediction (in MLC, most
predictions tend to be 0, so the output is usually imbalanced). For
each individual, the corresponding multi-label classifier is built,
and the ExF is calculated over the training set to obtain its fitness.
Note that the full training set is used both for training the model
and evaluating it.

↑ ExF =
1
m

m∑
i=1

2|Ŷi ∩ Yi|

|Ŷi| ∪ |Yi|
(2)

Note that the same individuals could appear in the subsequent
populations from one iteration to another. As the evaluation of an
individual could be a time-consuming procedure, a table storing
the fitness of each individual is created. Therefore, before evaluat-
ing an individual, it is searched if it appears in the table, obtaining
its fitness and saving the time of evaluating the individual.

3.6. Ensemble generation

The objective of EAGLET is to build an EMLC given the indi-
viduals of the population, where each of them is a multi-label
classifier. One of the characteristics that make an ensemble per-
form better than single classifiers is the inclusion of a group of
diverse classifiers [18], so the selection of classifiers that will
form the ensemble is not straightforward. Therefore, the goal is to
generate an ensemble not only taking into account the predictive
performance of each of the individuals but also how diverse is the
ensemble that the algorithm is generating.

Considering the intrinsic imbalance in multi-label problems, as
well as the importance of not neglecting any label when building
a model, we consider that all labels should appear a similar
number of times in the final ensemble. For this purpose, we define
the expected number of appearances or votes in the ensemble
for each label as n×k

q , n being the number of classifiers in the
ensemble. In this way, EAGLET should not allow some labels to
appear a high number of times in the ensemble while others not
being present at all.

The process to generate the ensemble, given the population p,
is shown in Algorithm 1 and works as follows. At the beginning,
the array eV storing the expected number of votes for each
label is initialized with even values. Then, the best individual
according to its fitness is selected and added to the ensemble e.
Once one individual is added to the ensemble and removed from
p, eV is updated by decreasing by one vote each of the labels
that appear in the added individual, but always ensuring that
all positions in eV are greater than 0. Then, until the ensemble
reaches the desired number of n members, the distance among
each individual in p and the current ensemble is calculated. This
distance is calculated as a modified Hamming distance, using the
array of expected votes as weight vector. The vector of weights
w to calculate the Hamming distance is obtained by normalizing
eV in such way that

∑q
l=1 wl = 1. Then, the Hamming distance

between an individual ind in p and the ensemble e of current size
n′ is calculated using Eq. (3), where [[π ]] returns 1 if predicate
π is true and 0 otherwise. Thereby, the distance among two
individuals is lower if they differ in a label that is more present
in the current ensemble than if they differ in a label that appears
less frequently, favoring the selection of individuals with labels
that rarely appear in the ensemble. The distance to the ensemble
is calculated among each of the members of the ensemble (ei)
and then is averaged by the number of members in that moment.
Afterwards, the individual that maximizes the linear combination
of its fitness and the distance to the ensemble, as β ∗ hd + (1 −
β) ∗ fitness, is added to e and removed from p. The β value could
be modified in order to give more importance to the performance
of the individuals or to the distance to the current ensemble. In
this way, we generate the ensemble with high performing and
accurate individuals, which also results in a diverse ensemble.
While n′ < n, the process selects and add one individual from
p to e in each iteration.

hdind =
1
n′

n′∑
i=1

q∑
l=1

(
wl × [[indl ̸= eil]]

)
(3)

If for any reason, at the end of the ensemble generation any
label λl was not included in any of the members, it is fixed as
follows. First, a random member including one of the labels that
is more frequent in the ensemble (but not including any label
appearing only once) is removed from e. Then, the distance to
the ensemble of all the individuals in p containing λl is calculated,
and from those, which best fits to the ensemble considering the
lineal combination of fitness and distance, is included in e. In this
way, we ensure that the ensemble includes all labels
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Algorithm 1 Ensemble generation.
Input p: population of popSize individuals.
Output e: ensemble of n multi-label classifiers.
1: eV← calculate expected votes array.
2: b← argmax

ind
(fitnessind)

3: e← {b}
4: n′ ← 1
5: p← p \ {b}
6: eV← update(eV, b)
7: while n′ < n do
8: for each individual ind in p do
9: hdind ← HammingDistance(ind, e, eV)

10: end for
11: b← argmax

ind
(β ∗ hdind + (1− β) ∗ fitnessind)

12: e← e ∪ {b}
13: n′ ← n′ + 1
14: p← p \ {b}
15: eV← update(eV, b)
16: end while
17: return e

Since the ensemble generated with the final population is not
ensured to be the best, an ensemble is created and evaluated in
each generation using ExF measure; if it is better than the best
found so far, it is stored as the new best.

Further, this process of selecting the individuals is also useful
for updating the population from one generation to another. In
this way, pg being the population in the generation g , and sg the
crossed and mutated individuals in generation g; pg+1 is created
as follows: (I) pg and sg are combined into cg ; (II) the individuals
which are repeated in cg are removed; (III) the n individuals
selected to form the ensemble are copied to pg+1 and removed
from cg ; and (IV) popSize − n individuals are randomly selected
from cg and copied to pg+1, where individuals with greater fitness
have higher probability to be selected. Thus, we pass to the next
generation not only high performing but also diverse individuals.

3.7. Time complexity

As in most EAs, the part of EAGLET that is most time-
consuming is the evaluation of the individuals. To evaluate each
individual, the multi-label classifier that it encodes is built and
then evaluated over the training dataset. The total number of
individuals that EAGLET evaluates is upper bounded by popSize×
G, being G the number of generations; in some cases, the number
of possible different individuals, i.e., possible combinations of
activating k bits into a set of q labels, is lower than popSize × G,
so the maximum number of individuals to evaluate is

(q
k

)
. Note

that EAGLET includes a table where the fitness of all evaluated
individuals is stored, so in practice, the number of individuals to
evaluate is drastically reduced. Further, the evaluation of individ-
uals in EAGLET is performed in parallel, so as many individuals as
available threads can be evaluated in parallel.

We decided to use C4.5 as single-label classifier in EAGLET,
which complexity is O

(
m× d2

)
, m being the number of in-

stances and d the number of features of the dataset [44]. If
other base classifier were used, the time complexity of EAGLET
would change in the same way as the single-label classifier used,
but we analyze the complexity of EAGLET according to C4.5.
Therefore, the time complexity of EAGLET is O

(
m× d2 × nT

)
,

being nT the total number of individuals evaluated, as nT =

min
(
popSize× G,

(q
k

))
.

Table 1
Datasets and their characteristics. The datasets are ordered by the number of
labels.
Dataset m d q card avgIR rDep comp

Emotions 593 72 6 1.868 1.478 0.933 2.56E5
Reuters1000 294 1000 6 1.126 1.789 0.667 1.76E6
Guardian1000 302 1000 6 1.126 1.773 0.667 1.81E6
Bbc1000 352 1000 6 1.125 1.718 0.733 2.11E6
3s-inter3000 169 3000 6 1.142 1.766 0.400 3.04E6
Gnegativea 1392 1717 8 1.046 18.448 0.536 4.90E6
Planta 978 440 12 1.079 6.690 0.318 5.16E6
Water-quality 1060 16 14 5.073 1.767 0.473 2.37E5
Yeast 2417 103 14 4.237 7.197 0.670 3.49E6
Humana 3106 440 14 1.185 15.289 0.418 1.91E7
Birds 645 260 19 1.014 5.407 0.123 3.19E6
Genbase 662 1186 27 1.252 37.315 0.157 2.12E7
Medical 978 1449 45 1.245 89.501 0.039 6.38E7
NusWideb 2696 128 81 1.863 89.130 0.087 2.80E7
Stackex coffee 225 1763 123 1.987 27.241 0.017 4.88E7
CAL500 502 68 174 26.044 20.578 0.192 5.94E6

aThese datasets correspond to the PseAAC version of dataset available in the
repository.
bA random selection of the original instances of NusWide cVLAD+ dataset was
performed in order to be able to execute it in a reasonable time.

4. Experimental studies

In this section, the datasets and evaluation measures used
for assessing the algorithms are described, and the experimental
settings are explained.

4.1. Datasets

A set of 16 multi-label datasets was selected from the data
repository at http://www.uco.es/kdis/mllresources/. The selected
datasets cover a wide range of labels from 6 to 174. For the larger
dataset, there are almost one million of possible combinations of
k-labelsets with k = 3. The number of possible combinations of
these individuals into an ensemble is much higher. The immense
variety of different possible k-labelsets stresses the importance
of having a method which optimizes the combination of labels
and selection of multi-label classifiers for the ensemble accord-
ing to its performance. Table 1 shows the datasets along with
their characteristics, such as number of instances (m), number
of attributes (d), number of labels (q), cardinality (card), average
imbalance ratio (avgIR), ratio of dependent label pairs (rDep),
and complexity (comp). The avgIR measures the imbalance of the
labels, the greater the value, the greater the imbalance of the
dataset; rDep measures the relationship among pairs of labels, the
greater the value, the greater the conditional dependence among
labels in the dataset; comp is defined as m×d×q, the greater the
value, the higher the complexity of the dataset. These datasets
were selected according to a wide range of card, avgIR, and rDep
values to have a diverse set of multi-label datasets with different
characteristics. The characterization and partitions of the datasets
was performed using MLDA tool [45].

4.2. Evaluation measures

For assessing different multi-label classifiers in the experi-
ments, several evaluation measures are used [28]. Hamming loss
(HL) is one of the most used evaluation measures in multi-label
classification. HL measures, on average, how many labels have
been correctly predicted, taking into account both prediction and
omission errors, i.e., where a negative label is predicted or a
positive label is omitted, respectively. HL is a measure to be
minimized as defined in (4), ∆ being the symmetric difference
between two binary sets. HL tends to be 0 in datasets where
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the number of labels is large but only a small subset of them
appears in each instance. So using other evaluation measures is
recommended to have a better assessment of performance of the
classifiers [46]. Subset Accuracy (SA) is a strict but often used
measure in MLC, and it is defined in Eq. (5). It evaluates the ratio
of full correctly predicted instances, i.e., the true and predicted
labels for a given instance perfect match, including both relevant
and irrelevant labels.

↓ HL =
1
m

m∑
i=1

1
q
|Yi∆Ŷi| (4)

↑ SA =
1
m

m∑
i=1

[[Yi = Ŷi]] (5)

On the other hand, classic evaluation measures for binary clas-
sification have been extended to MLC scenarios, such as example-
based, micro-averaged, and macro-averaged approaches [1]. We
used macro-averaged evaluation measures to compare different
MLC state-of-the-art methods. They give the same importance to
all labels in their calculation, so infrequent labels are taken into
account and not neglected to calculate the value of the measure.
Precision (MaP), recall (MaR), and specificity (MaS) are defined
in their macro-averaged approach in Eqs. (6)–(8) respectively,
tpi, tni, fpi, and fni being the true positives, true negatives, false
positives, and false negatives respectively for the ith label. With
these measures we evaluate both the ratio of correctly predicted
relevant labels (MaP and MaR), as well as the ratio of correctly
predicted irrelevant labels (MaS). These 5 evaluation measures
are sufficient to assess the performance of MLC methods [47].

↑ MaP =
1
q

q∑
i=1

tpi
tpi + fpi

(6)

↑ MaR =
1
q

q∑
i=1

tpi
tpi + fni

(7)

↑ MaS =
1
q

q∑
i=1

tni

tni + fpi
(8)

4.3. Experimental settings

The goal of the experimental study is to compare the perfor-
mance of EAGLET with other state-of-the-art MLC methods. For
that, first previous experiments to select some of the parame-
ters of EAGLET were carried out. Then, given that both EAGLET
and EME present some similarities, their performance was com-
pared. Subsequently, EAGLET was compared with standard MLC
methods such as BR, LP, CC, GACC, PS, LPBR, and LIFT; and also
with other state-of-the-art EMLCs such as ECC, EBR, RAkEL, EPS,
HOMER, MLS, RF-PCT, D3C, and EMLS. The runtime of EAGLET was
analyzed and compared to other MLC methods.

For the experiments, the datasets were partitioned using ran-
dom 5-fold cross-validation procedure. Since many multi-label
datasets are high imbalanced in the output space, with many
labels rarely appearing, using a higher number of partitions may
result in the loss of some labels at some partitions. Each method
was executed over different partitions, and those methods that
use random numbers (such as EAGLET, EME, CC, GACC, EBR, ECC,
EPS, RAkEL, RF-PCT, and EMLS) were executed using 10 different
random seeds over each partition. The evaluation measures were
calculated in the test set in each of the partitions, and then the
results were averaged. The experiments were performed on a
machine with Rocks cluster O.S., Intel Xeon E5645 Processor (6x
2.40 GHz) and 24 GB DDR4 RAM.

For all methods, the default parameters proposed by original
authors were used. EME was executed using 50 individuals in all

cases, while the number of generations varied from 110 to 300
depending on the dimensionality of the dataset. The probability to
mutate was set to pm = 0.2, and the probability of crossover was
set to pc = 0.9 for datasets with q ≤ 8 and to pc = 0.8 for those
datasets with q > 8. Further, the EMLC built by EME used n = 2q
classifiers with subsets of k = 3 labels. GACC was executed using
20 generations and 35 individuals for datasets with complexity
lower than 1E07, and with 15 generations and 20 individuals for
those with higher complexity. LIFT fixed the ratio for controlling
the number of clusters to r = 0.1. Both PS and EPS pruned the
instances with labelsets occurring less than 3 times, and kept
the top two best ranked subsets when reintroducing the pruned
instances.1 EPS included n = 10 members in the ensemble, each
of them built over a sample without replacement of the original
training data. Both EBR and ECC used n = 10 and sampling
with replacement of the original training set. RAkEL used n = 2q
classifiers with subsets of k = 3 labels. HOMER generated c = 3
clusters at each node and used the balanced k-means clustering
method. RF-PCT used 10 trees in the ensemble, each using the full
training set. EMLS used a sampling ratio r = 0.3 for the MLSOL
resampling method, and n = 10.

EAGLET, whose source code is publicly available in a GitHub
repository,2 was implemented using the JCLEC [48] and Mu-
lan [49] frameworks. We fixed EAGLET to use k-labelsets of size
k = 3 in each of the members of the ensemble [9]. In order to
have, on average, 10 votes for each label (as in state-of-the-art
EMLCs such as EBR, ECC, EPS, RF-PCT, or EMLS), the ensemble
was composed by n = ∥3.33q∥ members. In the individual
initialization, we set amin = 1 in order to ensure that all labels are
considered in the initial population. Finally, the selection of most
of its parameters, such as the value of β in the ensemble gen-
eration, the number of individuals, number of generations, and
crossover and mutation probabilities, is described in Section 5.1.

All methods used C4.5 (Weka’s J48 [50]) as a single-label
classifier given its generalized use in EMLCs [8,9,51]. The mini-
mum number of objects per leaf was set to 2, and the pruning
confidence to 0.25. We used the same parameters for C4.5 for all
methods to compare the MLC approaches under the same con-
ditions; by optimizing the parameters of C4.5, the performance
of all MLC methods could be improved, but the optimization of
these parameters is not in the scope of this paper.

Finally, for the comparison of the predictive performance of
different methods, the Skillings–Mack’s test [52] was performed
for each evaluation measure. Skillings–Mack’s test is similar to
the Friedman’s test, but is able to deal with missing values
(e.g., algorithms that did not finish its execution are considered
as missing values). In cases where the Skillings–Mack’s test deter-
mined that there were significant differences in the performance
of the algorithms, the post-hoc Holm’s test [53] for multiple com-
parisons with a control algorithm was also performed. In cases
where only two methods were compared, Wilcoxon’s signed-
rank [54] test was done. In order to perform multiple compar-
isons without a significant level, and therefore providing more
statistical information, the adjusted p-values were used [55].

5. Results and discussion

In this section, a summary of the results of the different
experiments defined in previous section is presented. The supple-
mentary material available at the KDIS Research Group website
contains full tables with results, including not only the five eval-
uation measures presented in the paper, but also many more.3

1 CAL500 dataset has as many different labelsets as instances, so only for it,
both PS and EPS were run without pruning the infrequent labelsets.
2 https://github.com/kdis-lab/EAGLET.
3 All results are available at http://www.uco.es/kdis/eaglet/.
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Table 2
Results of EAGLET and EME for 5 evaluation measures. Best results for each dataset and measure are marked in bold.

↓HL ↑SA ↑MaP ↑MaR ↑MaS

EAGLET EME EAGLET EME EAGLET EME EAGLET EME EAGLET EME

Emotions 0.204 0.220 0.290 0.248 0.681 0.657 0.638 0.592 0.859 0.858
Reuters1000 0.227 0.229 0.123 0.111 0.253 0.235 0.141 0.131 0.912 0.914
Guardian1000 0.227 0.228 0.083 0.086 0.259 0.284 0.151 0.133 0.917 0.918
Bbc1000 0.211 0.216 0.145 0.120 0.375 0.362 0.157 0.164 0.928 0.922
3s-inter3000 0.261 0.265 0.041 0.040 0.120 0.107 0.069 0.078 0.891 0.883
Gnegative 0.084 0.091 0.523 0.487 0.563 0.509 0.377 0.352 0.963 0.961
Plant 0.099 0.102 0.113 0.113 0.202 0.183 0.081 0.082 0.974 0.968
Water-quality 0.294 0.299 0.016 0.014 0.559 0.558 0.503 0.469 0.773 0.786
Yeast 0.208 0.210 0.151 0.137 0.512 0.510 0.384 0.361 0.788 0.803
Human 0.087 0.090 0.163 0.159 0.241 0.220 0.092 0.095 0.974 0.968
Birds 0.046 0.047 0.500 0.496 0.422 0.396 0.247 0.228 0.989 0.989
Genbase 0.001 0.001 0.976 0.966 0.930 0.929 0.938 0.934 1.000 1.000
Medical 0.010 0.010 0.658 0.649 0.637 0.651 0.640 0.650 0.995 0.995

First, the effect of the parameters of EAGLET was analyzed and
their default values were selected. Then, EAGLET was compared
with EME, standard MLC methods, and state-of-the-art EMLCs.
The runtime of EAGLET and other MLC methods is also analyzed.

5.1. Analysis of the parameters of EAGLET

The performance of EAGLET, as most EAs, depends on sev-
eral parameters, such as the number of individuals, number of
generations, or probabilities of crossover and mutation operators.
In order to select the best default parameters for EAGLET, we
conducted several experiments over four datasets. These datasets
are different from those used in the experimental setup, to not
bias further comparisons. PlantGO, Tmc2007-500, Enron, and Me-
diamill datasets, with 12, 22, 53, and 101 labels respectively, were
used. For both Tmc2007-500 and Mediamill datasets, given its
large number of instances, a random subset of 10% and 5% of the
instances was selected, respectively.

First, EAGLET was executed using different values for the num-
ber of individuals and the value of β used in the ensemble
generation (see Section 3.6). Note that the lower the value of β ,
the greater the importance of the fitness of each individual in the
member selection for the ensemble. Higher β values mean that
we prefer selecting more diverse individuals for the ensemble.
The number of individuals was set to popSize = {2n, 3n, 4n}, n
being the number of members in the ensemble. Values of β =
{0.25, 0.5, 0.75} were used. In these experiments, the number of
generations was set to 50 in all cases.

In all cases, EAGLET performed better if β = 0.75 was used;
i.e., it built better ensemble methods when more diverse indi-
viduals were included. As for the number of individuals, EAGLET
performed better with 3n individuals in Mediamill, while in the
rest of cases, better results were obtained with 2n individuals. As
the number of labels increases, the number of different possible
individuals and also different combinations of individuals in the
ensemble grows exponentially; that is why in Mediamill a greater
number of individuals is needed to obtain better results. There-
fore, given these results, we set β = 0.75, and popSize = 2n for
datasets with less than 100 labels, and popSize = 3n for datasets
where the number of labels is greater or equal than 100.

Once we fixed the number of individuals in the population,
we performed experiments to select the number of generations.
We executed EAGLET over all four datasets using ng = 100
generations. Results show that in generation 50, the fitness value
of the best ensemble was stabilized. Therefore, for all further ex-
periments we set the number of generations to 50, since EAGLET
obtained good results and reduced the total runtime.

Experiments to select probabilities for both crossover and
mutation operators were performed, and values of pc = {0.7, 0.8,
0.9} and pm = {0.1, 0.2, 0.3} were used. For smaller datasets

Table 3
Results of the Wilcoxon’s test comparing EAGLET and EME. Those p-values lower
than 0.05 are marked in bold, indicating that EAGLET performed better than EME
at 95% confidence.

HL SA MaP MaR MaS

R+ 89.5 75.0 74.0 72.0 39.0
R− 1.5 3.0 17.0 19.0 39.0
p-value 0.0014 0.0038 0.0409 0.0592 ≥0.2

(PlantGO and Tmc2007-500) EAGLET performed better on average
using pc = 0.7 and pm = 0.2, so we set these parameters as
default for datasets with less than 30 labels. For datasets with
larger number of labels, such as Enron and Mediamill, better
results were obtained on average using pc = 0.7 and pm = 0.1,
so we used them in the remaining experiments conducted over
datasets with a large number of labels.

5.2. Comparing EAGLET and EME

EME is a method based on EAs able to build EMLCs, whose
behavior is similar to the EMLC obtained by EAGLET. However,
the way in which EAGLET obtains the EMLC is different from
EME’s. Therefore, comparing the performance of EAGLET and EME
is necessary. To make a fair comparison, the results are presented
using only 13 of the 16 datasets included in Section 4.1, since
EME did not finish its execution on the three datasets with a
higher number of labels, due to memory overhead. Results for
all evaluation measures and 13 datasets for both EAGLET and
EME are shown in Table 2. The best results for each measure and
dataset are shown in bold typeface.

It can be observed that for HL, SA, and MaP measures EAGLET
obtained better performance than EME in most cases. In MaR
and MaS, EME obtained better results; however, EAGLET was still
better than EME on most datasets. Given these results, we next
performed the Wilcoxon’s signed-rank test for each evaluation
measure, and the results are shown in Table 3. The test indicates
that EAGLET performed statistically better than EME in three of
the five evaluation measures with 95% confidence. Therefore, we
prove that the fact of evolving the members of the ensemble
separately instead of the entire ensemble, lead EAGLET to obtain
an EMLC which performs significantly better than EME.

5.3. Comparing EAGLET with standard MLC methods

In this section, we present and discuss the results of the exper-
imental study comparing EAGLET with standard and baseline MLC
methods such as BR, LP, CC, GACC, PS, LPBR, and LIFT. Tables 4–8
show the results for HL, SA, MaP, MaR, and MaS measures.
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Table 4
Results of ↓HL for EAGLET and standard MLC methods. Best results for each dataset are marked in bold. DNF values
indicate that the method did not finish its execution.

EAGLET BR LP CC GACC PS LPBR LIFT

Emotions 0.204 0.254 0.263 0.262 0.260 0.273 0.252 0.250
Reuters1000 0.227 0.257 0.268 0.284 0.285 0.276 0.257 0.191
Guardian1000 0.227 0.265 0.279 0.287 0.289 0.274 0.265 0.190
Bbc1000 0.211 0.263 0.264 0.284 0.282 0.270 0.267 0.187
3s-inter3000 0.261 0.308 0.312 0.311 0.310 0.314 0.308 0.190
Gnegative 0.084 0.120 0.119 0.122 0.121 0.118 0.123 0.066
Plant 0.099 0.139 0.141 0.141 0.139 0.144 0.139 0.084
Water-quality 0.294 0.310 0.375 0.334 0.334 0.337 0.315 0.284
Yeast 0.208 0.249 0.283 0.268 0.265 0.279 0.274 0.193
Human 0.087 0.121 0.126 0.122 0.122 0.123 0.121 0.078
Birds 0.046 0.052 0.063 0.052 0.053 0.054 0.052 DNF
Genbase 0.001 0.001 0.002 0.001 0.001 0.004 0.001 0.044
Medical 0.010 0.011 0.013 0.010 0.010 0.013 0.010 0.012
NusWide 0.024 0.031 0.039 0.030 0.029 0.031 0.033 0.021
Stackex coffee 0.016 0.017 0.027 0.017 0.017 0.022 0.017 0.015
CAL500 0.154 0.163 0.198 0.175 0.174 0.198 0.189 0.138

Table 5
Results of ↑SA for EAGLET and standard MLC methods. Best results for each dataset are marked in bold. DNF values
indicate that the method did not finish its execution.

EAGLET BR LP CC GACC PS LPBR LIFT

Emotions 0.290 0.170 0.226 0.218 0.217 0.209 0.191 0.140
Reuters1000 0.123 0.092 0.207 0.163 0.171 0.204 0.092 0.003
Guardian1000 0.083 0.069 0.166 0.147 0.155 0.192 0.069 0.000
Bbc1000 0.145 0.071 0.207 0.175 0.181 0.202 0.071 0.009
3s-inter3000 0.041 0.089 0.094 0.105 0.105 0.106 0.089 0.018
Gnegative 0.523 0.397 0.522 0.503 0.508 0.520 0.422 0.595
Plant 0.113 0.099 0.189 0.188 0.206 0.172 0.101 0.156
Water-quality 0.016 0.008 0.005 0.010 0.010 0.015 0.008 0.019
Yeast 0.151 0.070 0.135 0.138 0.143 0.131 0.113 0.173
Human 0.163 0.115 0.175 0.192 0.194 0.187 0.122 0.181
Birds 0.500 0.471 0.429 0.476 0.468 0.462 0.471 DNF
Genbase 0.976 0.965 0.965 0.965 0.965 0.937 0.965 0.083
Medical 0.658 0.635 0.661 0.664 0.668 0.666 0.665 0.598
NusWide 0.188 0.097 0.084 0.143 0.147 0.095 0.092 0.230
Stackex coffee 0.085 0.067 0.031 0.053 0.056 0.018 0.067 0.053
CAL500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6
Results of ↑MaP for EAGLET and standard MLC methods. Best results for each dataset are marked in bold. DNF
values indicate that the method did not finish its execution.

EAGLET BR LP CC GACC PS LPBR LIFT

Emotions 0.681 0.596 0.569 0.578 0.583 0.560 0.593 0.538
Reuters1000 0.253 0.215 0.287 0.211 0.217 0.256 0.215 0.033
Guardian1000 0.259 0.205 0.221 0.230 0.237 0.248 0.205 0.000
Bbc1000 0.375 0.262 0.293 0.244 0.241 0.291 0.256 0.083
3s-inter3000 0.120 0.167 0.174 0.177 0.175 0.154 0.167 0.120
Gnegative 0.563 0.317 0.366 0.316 0.323 0.335 0.300 0.557
Plant 0.202 0.142 0.144 0.142 0.149 0.123 0.143 0.168
Water-quality 0.559 0.521 0.446 0.500 0.500 0.354 0.510 0.652
Yeast 0.512 0.403 0.377 0.394 0.393 0.377 0.381 0.545
Human 0.241 0.163 0.129 0.143 0.145 0.132 0.158 0.240
Birds 0.422 0.398 0.318 0.386 0.369 0.318 0.398 DNF
Genbase 0.930 0.929 0.915 0.929 0.714 0.760 0.929 0.245
Medical 0.637 0.644 0.615 0.646 0.361 0.621 0.643 0.614
NusWide 0.171 0.171 0.098 0.165 0.039 0.151 0.159 0.170
Stackex coffee 0.641 0.635 0.495 0.635 0.055 0.607 0.635 0.641
CAL500 0.190 0.168 0.164 0.178 0.149 0.164 0.164 0.105

In both HL and MaS, LIFT was the algorithm that performed the
better (in 12 datasets for HL and 13 in MaS), while EAGLET was
the best in four and two datasets, respectively, including some
ties. For SA, the results were more spread among the different
methods. Note that in CAL500 dataset all methods obtained a
subset accuracy of 0.0. This dataset has as many distinct labelsets
as the number of instances, i.e., each instance has a different
subset of labels associated with it.

On the other hand, for MaP, EAGLET obtained the best per-
formance in 11 datasets, followed by LIFT being the best in
3. Further, and although MaP and MaR are opposite measures,

i.e., obtaining good results by one usually leads to bad results by
the other, EAGLET also obtained a great performance in MaR, only
surpassed by LP. This behavior shows consistent performance of
EAGLET when compared with standard MLC methods.

In order to determine if there were significant differences
between the methods, Skillings–Mack’s test was performed. In
Table 9, the rankings of each algorithm as calculated by the
Skillings–Mack’s test are shown. For each dataset and measure,
the Skillings–Mack’s test gives to the method with better per-
formance a value of ranking of 1, to the second best a ranking
of 2, and so on. In cases where the algorithm did not finish its
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Table 7
Results of ↑MaR for EAGLET and standard MLC methods. Best results for each dataset are marked in bold. DNF
values indicate that the method did not finish its execution.

EAGLET BR LP CC GACC PS LPBR LIFT

Emotions 0.638 0.547 0.561 0.568 0.573 0.553 0.571 0.349
Reuters1000 0.141 0.178 0.275 0.201 0.205 0.235 0.178 0.004
Guardian1000 0.151 0.132 0.223 0.196 0.197 0.217 0.132 0.000
Bbc1000 0.157 0.136 0.291 0.202 0.206 0.263 0.129 0.008
3s-inter3000 0.069 0.173 0.206 0.191 0.186 0.187 0.173 0.023
Gnegative 0.377 0.343 0.368 0.340 0.338 0.327 0.330 0.385
Plant 0.081 0.151 0.137 0.151 0.157 0.125 0.151 0.076
Water-quality 0.503 0.429 0.451 0.445 0.452 0.179 0.440 0.369
Yeast 0.384 0.384 0.375 0.387 0.395 0.362 0.388 0.345
Human 0.092 0.162 0.130 0.148 0.148 0.134 0.155 0.080
Birds 0.247 0.269 0.292 0.264 0.246 0.226 0.269 DNF
Genbase 0.938 0.934 0.902 0.934 0.719 0.751 0.934 0.227
Medical 0.640 0.644 0.605 0.645 0.361 0.600 0.645 0.549
NusWide 0.139 0.161 0.099 0.153 0.025 0.142 0.154 0.137
Stackex coffee 0.636 0.628 0.498 0.628 0.047 0.613 0.628 0.618
CAL500 0.139 0.146 0.162 0.158 0.129 0.162 0.163 0.087

Table 8
Results of ↑MaS for EAGLET and standard MLC methods. Best results for each dataset are marked in bold. DNF
values indicate that the method did not finish its execution.

EAGLET BR LP CC GACC PS LPBR LIFT

Emotions 0.859 0.829 0.811 0.808 0.810 0.800 0.820 0.910
Reuters1000 0.912 0.865 0.833 0.822 0.821 0.834 0.865 0.995
Guardian1000 0.917 0.864 0.826 0.823 0.820 0.833 0.864 0.997
Bbc1000 0.928 0.864 0.831 0.824 0.825 0.833 0.862 0.999
3s-inter3000 0.891 0.801 0.799 0.795 0.797 0.801 0.801 0.993
Gnegative 0.963 0.922 0.922 0.919 0.920 0.923 0.917 0.979
Plant 0.974 0.916 0.916 0.914 0.914 0.915 0.916 0.990
Water-quality 0.773 0.782 0.687 0.750 0.746 0.899 0.770 0.845
Yeast 0.788 0.745 0.735 0.743 0.733 0.743 0.730 0.809
Human 0.974 0.924 0.923 0.924 0.924 0.925 0.925 0.987
Birds 0.989 0.982 0.968 0.982 0.981 0.982 0.982 DNF
Genbase 1.000 1.000 0.999 1.000 1.000 0.999 1.000 0.999
Medical 0.995 0.995 0.993 0.995 0.995 0.994 0.995 0.997
NusWide 0.995 0.986 0.979 0.987 0.988 0.987 0.984 0.998
Stackex coffee 0.996 0.996 0.986 0.997 0.996 0.992 0.996 0.999
CAL500 0.913 0.901 0.856 0.883 0.884 0.856 0.865 0.949

Table 9
Average rankings of the Skillings–Mack’s test comparing EAGLET with standard
MLC methods. Last column shows the average ranking among all measures.

HL SA MaP MaR MaS avgRank

EAGLET 1.97 3.53 1.91 4.34 2.41 2.83
BR 3.75 6.06 3.75 4.16 3.84 4.31
LP 6.78 4.34 5.25 3.72 6.63 5.34
CC 5.34 3.81 4.41 3.47 5.63 4.53
GACC 5.06 3.28 5.47 4.59 5.94 4.87
PS 6.66 4.09 5.63 5.09 5.09 5.31
LPBR 4.38 5.63 4.63 3.72 4.72 4.61
LIFT 2.06 5.25 4.97 6.91 1.75 4.19

execution, the average value of ranking for this measure and
dataset among the rest of methods is assigned. EAGLET was the
control algorithm in two cases, while CC, GACC, and LIFT were in
one measure each. We also observe that LIFT, which seemed to
have a very great performance in some measures such as HL and
MaS, has a poor performance in other measures, including that
it has the worst ranking for MaR. For HL, although LIFT was the
best method in most datasets, the consistency of EAGLET (which
performed the best or second in almost all cases for HL) made
it the one with better ranking, followed by LIFT. Further, EAGLET
has the better average ranking value among all measures, again
demonstrating its consistency. Skillings–Mack’s test rejected the
null hypothesis that performance of all methods was statistically
the same for all measures, with p-values 3.02E-11 (HL), 6.47E-3
(SA), 2.74E-4 (MaP), 1.79E-3 (MaR), and 1.49E-9 (MaS).

Table 10
Results of Holm’s post-hoc test comparing EAGLET and standard MLC methods.
Algorithms marked with ‘‘–’’ are the control algorithm in each measure, while
p-values in bold typeface indicate that there are significant differences with the
control algorithm at 95% confidence.

HL SA MaP MaR MaS

EAGLET – ≥0.2 – ≥0.2 ≥0.2
BR 0.0794 0.0092 0.0333 ≥0.2 0.0312
LP 0.0000 ≥0.2 0.0006 ≥0.2 0.0000
CC 0.0005 ≥0.2 0.0078 – 0.0000
GACC 0.0014 – 0.0002 ≥0.2 0.0000
PS 0.0000 ≥0.2 0.0001 ≥0.2 0.0005
LPBR 0.0164 0.0408 0.0051 ≥0.2 0.0018
LIFT ≥0.2 0.1150 0.0016 0.0005 –

Then, we performed Holm’s test and the results are shown in
Table 10. We observe that EAGLET is the only algorithm whose
performance is statistically the same than the control algorithm
in all cases, at 95% confidence. Let us emphasize in MaP, where
EAGLET is the control algorithm and its performance is signifi-
cantly better than all the rest of methods. Also, in MaS, where
LIFT is the algorithm with best performance, EAGLET is the only
one whose performance is not significantly worse than LIFT.
Therefore, we demonstrated that EAGLET obtained a significantly
better performance than standard MLC methods.

5.4. Comparing EAGLET with state-of-the-art EMLCs

In this part of the experimental study, we discuss the ex-
perimental results comparing EAGLET with other state-of-the-art
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Table 11
Results of ↓HL for EAGLET and state-of-the-art EMLCs. Best results for each dataset are marked in bold. DNF values indicate that
the method did not finish its execution.

EAGLET ECC EBR RAkEL EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.204 0.200 0.202 0.225 0.209 0.253 0.259 0.213 0.182 0.247
Reuters1000 0.227 0.227 0.214 0.237 0.231 0.317 0.256 0.205 0.198 0.314
Guardian1000 0.227 0.225 0.210 0.239 0.226 0.288 0.264 0.202 0.193 0.319
Bbc1000 0.211 0.216 0.202 0.222 0.221 0.286 0.257 0.197 0.194 0.304
3s-inter3000 0.261 0.246 0.220 0.279 0.243 0.302 0.315 0.207 0.200 0.362
Gnegative 0.084 0.082 0.082 0.094 0.086 0.117 0.117 0.092 0.090 0.136
Plant 0.099 0.097 0.093 0.107 0.095 0.140 0.137 0.096 0.112 0.192
Water-quality 0.294 0.295 0.290 0.311 0.324 0.341 0.337 0.314 0.270 0.304
Yeast 0.208 0.210 0.207 0.225 0.210 0.263 0.273 0.219 0.204 0.274
Human 0.087 0.088 0.085 0.097 0.087 0.121 0.118 0.090 0.113 0.166
Birds 0.046 0.043 0.043 0.048 0.046 0.062 0.049 0.046 0.097 0.065
Genbase 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.046 0.003 0.127
Medical 0.010 0.010 0.011 0.011 0.012 0.011 0.011 0.025 0.032 0.278
NusWide 0.024 0.023 0.023 0.026 0.023 0.036 0.030 0.024 0.052 0.439
Stackex coffee 0.016 0.016 0.016 0.016 0.020 DNF 0.017 0.016 0.024 0.608
CAL500 0.154 0.148 0.149 0.166 DNF 0.210 0.170 DNF 0.200 0.359

Table 12
Results of ↑SA for EAGLET and state-of-the-art EMLCs. Best results for each dataset are marked in bold. DNF values indicate that
the method did not finish its execution.

EAGLET ECC EBR RAkEL EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.290 0.297 0.274 0.250 0.292 0.182 0.186 0.284 0.315 0.195
Reuters1000 0.123 0.064 0.040 0.129 0.115 0.078 0.112 0.045 0.031 0.068
Guardian1000 0.083 0.063 0.037 0.092 0.130 0.069 0.076 0.037 0.023 0.075
Bbc1000 0.145 0.086 0.057 0.134 0.142 0.102 0.088 0.045 0.043 0.086
3s-inter3000 0.041 0.050 0.025 0.037 0.044 0.042 0.077 0.033 0.006 0.041
Gnegative 0.523 0.548 0.497 0.493 0.513 0.421 0.397 0.470 0.530 0.386
Plant 0.113 0.140 0.089 0.127 0.095 0.094 0.109 0.101 0.118 0.073
Water-quality 0.016 0.017 0.016 0.013 0.015 0.004 0.008 0.012 0.022 0.015
Yeast 0.151 0.171 0.131 0.112 0.168 0.076 0.051 0.145 0.146 0.077
Human 0.163 0.174 0.141 0.167 0.140 0.105 0.122 0.127 0.102 0.076
Birds 0.500 0.522 0.516 0.490 0.515 0.457 0.491 0.503 0.327 0.435
Genbase 0.976 0.968 0.967 0.965 0.937 0.970 0.967 0.000 0.926 0.000
Medical 0.658 0.671 0.650 0.641 0.674 0.654 0.637 0.085 0.222 0.000
NusWide 0.188 0.213 0.211 0.165 0.210 0.109 0.108 0.189 0.028 0.000
Stackex coffee 0.085 0.030 0.032 0.088 0.014 DNF 0.058 0.000 0.022 0.000
CAL500 0.000 0.000 0.000 0.000 DNF 0.000 0.000 DNF 0.000 0.000

Table 13
Results of ↑MaP for EAGLET and state-of-the-art EMLCs. Best results for each dataset are marked in bold. DNF values indicate that
the method did not finish its execution.

EAGLET ECC EBR RAkEL EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.681 0.685 0.704 0.640 0.673 0.588 0.588 0.647 0.724 0.591
Reuters1000 0.253 0.170 0.134 0.243 0.244 0.165 0.208 0.137 0.220 0.210
Guardian1000 0.259 0.166 0.133 0.250 0.272 0.242 0.202 0.120 0.203 0.215
Bbc1000 0.375 0.216 0.214 0.353 0.359 0.248 0.267 0.179 0.349 0.238
3s-inter3000 0.120 0.139 0.094 0.144 0.090 0.165 0.157 0.117 0.033 0.149
Gnegative 0.563 0.495 0.499 0.476 0.473 0.369 0.349 0.406 0.453 0.331
Plant 0.202 0.178 0.189 0.190 0.170 0.145 0.157 0.135 0.262 0.163
Water-quality 0.559 0.556 0.573 0.536 0.281 0.500 0.498 0.522 0.616 0.553
Yeast 0.512 0.495 0.515 0.463 0.505 0.389 0.392 0.465 0.547 0.415
Human 0.241 0.222 0.224 0.206 0.211 0.143 0.171 0.182 0.244 0.169
Birds 0.422 0.431 0.420 0.398 0.330 0.318 0.408 0.432 0.298 0.355
Genbase 0.930 0.923 0.921 0.925 0.768 0.921 0.929 0.217 0.907 0.835
Medical 0.637 0.645 0.647 0.645 0.625 0.627 0.646 0.379 0.463 0.427
NusWide 0.171 0.167 0.174 0.175 0.153 0.127 0.158 0.154 0.088 0.053
Stackex coffee 0.641 0.626 0.627 0.639 0.609 DNF 0.635 0.597 0.578 0.158
CAL500 0.190 0.181 0.187 0.194 DNF 0.176 0.177 DNF 0.190 0.175

EMLCs, such as ECC, EBR, RAkEL, EPS, HOMER, MLS, RF-PCT, D3C,
and EMLS. Tables 11–15 present the results for HL, SA, MaP, MaR,
and MaS, respectively.

For HL, EBR, ECC, and D3C methods performed the best in 7
datasets each, while EAGLET performed best in 3 cases. As the
number of labels increases, it can be easily seen that the results
were nearer to 0 and also the best results were obtained by
several methods. This shows the previously mentioned problem
of HL, namely, that it is not the best evaluation measure to assess
methods in scenarios when the number of labels is large and
only few instances are associated with each. On the other hand,

for CAL500, Water-quality and Yeast datasets, which have large
cardinality values, the HL tends to be clearly higher than for the
rest of the datasets.

For SA, again the best results were spread among different
methods, although ECC was the best on 7 datasets, followed by
EAGLET, RAkEL, and D3C, each being the best in 3 cases. Note, that
for example EBR, which previously achieved good performance,
got very poor results for SA. This could be due to the fact that
EBR does not consider the relationships among labels, so correctly
predicting all labels for each example is difficult.
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Table 14
Results of ↑MaR for EAGLET and state-of-the-art EMLCs. Best results for each dataset are marked in bold. DNF values indicate that
the method did not finish its execution.

EAGLET ECC EBR RAkEL EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.638 0.585 0.590 0.627 0.621 0.606 0.575 0.667 0.648 0.739
Reuters1000 0.141 0.084 0.045 0.158 0.130 0.158 0.162 0.044 0.031 0.257
Guardian1000 0.151 0.077 0.041 0.163 0.142 0.226 0.141 0.040 0.036 0.251
Bbc1000 0.157 0.086 0.057 0.177 0.163 0.235 0.164 0.039 0.057 0.289
3s-inter3000 0.069 0.069 0.031 0.098 0.053 0.165 0.166 0.035 0.004 0.203
Gnegative 0.377 0.341 0.299 0.386 0.298 0.374 0.360 0.255 0.560 0.522
Plant 0.081 0.069 0.051 0.101 0.046 0.140 0.165 0.042 0.234 0.345
Water-quality 0.503 0.519 0.465 0.525 0.148 0.579 0.453 0.587 0.492 0.555
Yeast 0.384 0.389 0.351 0.405 0.358 0.406 0.394 0.402 0.402 0.544
Human 0.092 0.086 0.066 0.118 0.064 0.141 0.157 0.057 0.242 0.297
Birds 0.247 0.222 0.201 0.246 0.198 0.295 0.271 0.217 0.641 0.440
Genbase 0.938 0.929 0.926 0.931 0.759 0.912 0.935 0.216 0.921 0.885
Medical 0.640 0.646 0.641 0.645 0.600 0.598 0.646 0.335 0.640 0.516
NusWide 0.139 0.137 0.136 0.147 0.134 0.125 0.152 0.134 0.131 0.364
Stackex coffee 0.636 0.619 0.620 0.633 0.611 DNF 0.631 0.597 0.598 0.282
CAL500 0.139 0.132 0.124 0.162 DNF 0.224 0.157 DNF 0.177 0.379

Table 15
Results of ↑MaS for EAGLET and state-of-the-art EMLCs. Best results for each dataset are marked in bold. DNF values indicate that
the method did not finish its execution.

EAGLET ECC EBR RAkEL EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.859 0.861 0.881 0.834 0.856 0.805 0.810 0.828 0.886 0.756
Reuters1000 0.912 0.924 0.952 0.896 0.910 0.793 0.867 0.964 0.978 0.776
Guardian1000 0.917 0.929 0.958 0.897 0.910 0.822 0.863 0.969 0.986 0.773
Bbc1000 0.928 0.936 0.964 0.911 0.912 0.817 0.865 0.974 0.979 0.779
3s-inter3000 0.891 0.907 0.952 0.863 0.918 0.811 0.794 0.967 0.987 0.723
Gnegative 0.963 0.964 0.973 0.949 0.968 0.922 0.922 0.964 0.945 0.869
Plant 0.974 0.974 0.985 0.959 0.982 0.915 0.917 0.979 0.957 0.830
Water-quality 0.773 0.759 0.800 0.735 0.940 0.662 0.741 0.685 0.816 0.750
Yeast 0.788 0.774 0.804 0.761 0.786 0.727 0.743 0.746 0.806 0.675
Human 0.974 0.969 0.981 0.954 0.975 0.927 0.927 0.972 0.948 0.851
Birds 0.989 0.993 0.995 0.986 0.992 0.970 0.985 0.991 0.915 0.956
Genbase 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.998 0.873
Medical 0.995 0.994 0.995 0.995 0.994 0.995 0.995 0.999 0.969 0.726
NusWide 0.995 0.997 0.998 0.993 0.998 0.980 0.987 0.997 0.965 0.571
Stackex coffee 0.996 0.998 0.998 0.997 0.994 DNF 0.996 1.000 0.986 0.397
CAL500 0.913 0.916 0.924 0.890 DNF 0.814 0.887 DNF 0.869 0.654

In MaP, both EAGLET and D3C obtained the best results, being
the best on 5 datasets each; ECC was not the best method in
any case. For MaR, EMLS, which did not obtain a competitive
performance in the rest of measures, was the best method in most
of the cases. Finally, in MaS, both EBR and D3C obtained the best
results on 7 and 6 datasets each, respectively.

In order to determine if the performance of the EMLCs was
statistically different, Skillings–Mack’s test was performed. Ta-
ble 16 shows the rankings computed by the Skillings–Mack’s
test; different algorithms obtain the best ranking value in each
measure. As previously introduced, we observe that although
EMLS has the best performance for MaR, its performance in the
rest of measures is very poor. Also, note that in Tables 11 and
15, D3C seemed to obtain a great performance in HL and MaS
measures; however, its ranking for these measures is lower than
expected, demonstrating its inconsistent performance, i.e., per-
forming poorly in some of the datasets. In all cases, EAGLET
obtains a better ranking value than D3C. Further, EAGLET obtains
the best average ranking among all evaluation measures, showing
its consistent performance.

The Skillings–Mack’s test concluded that there exist significant
differences among the performance of methods for all measures,
with p-values 2.41E-13 (HL), 1.49E-6 (SA), 1.96E-6 (MaP), 2.18E-7
(MaR), and 4.24E-13 (MaS). Therefore, Holm’s test was performed
and the results are presented in Table 17. Although EAGLET was
the control algorithm in only one case (MaP), for the rest of
evaluation measures, EAGLET performed statistically equal to the
control algorithm. On the other hand, the rest of EMLCs had
significantly worse performance than the control algorithm in at

Table 16
Average rankings of the Skillings–Mack’s test in the comparison among EAGLET
and state-of-the-art EMLCs. Last column shows the average ranking among all
measures.

HL SA MaP MaR MaS avgRank

EAGLET 3.78 3.34 2.53 4.94 4.50 3.82
ECC 3.19 3.03 4.88 6.28 4.03 4.28
EBR 2.44 5.69 4.47 7.59 2.25 4.49
RAkEL 5.88 4.72 3.91 3.72 5.88 4.82
EPS 5.09 3.94 5.78 7.56 4.47 5.37
HOMER 8.03 6.50 7.28 4.38 7.94 6.82
MLS 7.59 6.06 6.09 4.41 7.28 6.29
RF-PCT 4.69 7.00 7.47 7.72 3.78 6.13
D3C 4.88 6.72 5.03 5.66 5.19 5.49
EMLS 9.44 8.00 7.56 2.75 9.69 7.49

least one evaluation measure. For example, ECC and EBR, which
achieved a great performance in some of the evaluation measures,
had poorer performance than EMLS in MaR, and D3C performs
significantly worse than the control algorithm in three measures.
RAkEL, which builds an EMLC similar to the one used in EAGLET,
also performed statistically worse than the control algorithm in
HL and MaS measures.

Given the results of the experimental study, we conclude
that EAGLET was able to outperform standard MLC methods and
also other state-of-the-art EMLCs, which improved the predictive
performance of standard methods. Further, EAGLET demonstrated
a very consistent performance among all evaluation measures.



J.M. Moyano, E.L. Gibaja, K.J. Cios et al. / Knowledge-Based Systems 196 (2020) 105770 13

Table 17
Results of Holm’s post-hoc test comparing EAGLET and state-of-the-art EMLCs.
Algorithms marked with ‘‘–’’ are the control algorithm in each measure, while
p-values in bold typeface indicate that there are significant differences with the
control algorithm at 95% confidence.

HL SA MaP MaR MaS

EAGLET ≥0.2 ≥0.2 – 0.1640 0.1422
ECC ≥0.2 – 0.0857 0.0058 0.1922
EBR – 0.0523 0.1406 0.0000 –
RAkEL 0.0079 ≥0.2 0.1990 ≥0.2 0.0042
EPS 0.0654 ≥0.2 0.0120 0.0000 0.1422
HOMER 0.0000 0.0072 0.0001 ≥0.2 0.0000
MLS 0.0000 0.0231 0.0052 ≥0.2 0.0000
RF-PCT 0.1067 0.0017 0.0000 0.0000 0.1922
D3C 0.0911 0.0040 0.0781 0.0331 0.0303
EMLS 0.0000 0.0000 0.0000 – 0.0000

Fig. 6. Comparison of the runtime (in seconds) among MLC methods. The x-
axis is in logarithmic scale, and results grouped by the number of labels of the
datasets. Since EME did not finish its execution in the most complex datasets,
its runtime is not shown in these cases.

5.5. Analysis of the runtime

In this section, we analyze the runtime of EAGLET and com-
pare it to other state-of-the art methods. In the supplementary
material, the required runtime of all the algorithms is provided.
However, in this section we compare the runtime of EAGLET to
EME and GACC, which also use evolutionary algorithms, to RAkEL,
whose operation is similar to the EMLC obtained by EAGLET, and
also to ECC, which demonstrated a good performance (being the
second EMLC with better average ranking).

In Fig. 6, the runtime of these algorithms is presented. The
results are ordered by the number of labels of the data, and for
those datasets with the same number of labels (such as Water-
quality, Yeast, and Human, all of them with 14 labels), the results
were averaged. The x-axis is in logarithmic scale, for better pre-
sentation of the results. Note that since EME was not able to finish
its execution for the most complex datasets, its runtime is not
shown in the three last cases.

We first observe as EAGLET has a lower runtime than EME,
also considering the reduction in the complexity, which made
EAGLET able to obtain an EMLC in reasonable time for complex
datasets. Since EME evolves the entire ensemble as individuals,
their evaluation is much more complex than just evaluating sep-
arate members of the ensemble, as EAGLET does. Therefore, we
not only demonstrated that EAGLET achieved a better predictive
performance than EME, but also EAGLET is less computationally
complex.

EAGLET was able to obtain a model in much less time than
GACC, except for the two last cases. However, note that although
both use evolutionary algorithms, EAGLET is building an ensem-
ble, and GACC just a single multi-label model, so trying to build
an ensemble of GACC members should be much more complex.

So, EAGLET not only obtained a significantly better predictive
performance than GACC, but also it needs lower runtime in most
cases.

Finally, when compared to other EMLCs such as ECC and
RAkEL, we observe that EAGLET is more complex than them,
needing a higher runtime to obtain its model. However, we pre-
viously demonstrated than the predictive performance of EAGLET
was significantly better than other EMLCs, such as ECC and RAkEL,
so EAGLET would be a very good option in cases when the
runtime of the algorithm is not a main problem.

5.6. Discussion

Although EME had the same objective than EAGLET, the fact of
evolving the whole ensemble instead of each of the members of
the ensemble, lead to a more difficult optimization of the final
ensemble and the members that formed it. EAGLET evolved a
population of multi-label classifiers based on projections of the
label space, i.e., a population of future hypothetical members of
an ensemble; then EAGLET combined a subset of these accurate
multi-label classifiers while favoring the construction of a diverse
ensemble thanks to the β parameter (see Section 3.6). It has been
shown that using a high β value, which leads to selecting more
diverse classifiers for the ensemble, EAGLET obtained a better
predictive performance (see Section 5.1). Therefore, thanks to
the presented method to build the EMLC in EAGLET, it outper-
formed the predictive performance of EME as well as was able
to significantly speed-up its runtime and reduce complexity (see
Sections 5.2 and 5.5).

The state-of-the-art methods, including standard MLC meth-
ods and state-of-the-art EMLCs, have been assessed on five differ-
ent evaluation measures and on 16 different datasets. For datasets
with a high number of labels and low cardinality, the results in
HL for all the methods were similar and near to zero, and there
were several ties among algorithms. SA is a widely used measure,
but it is so strict that its results should be carefully analyzed.
For example, for CAL500, which had as many different labelsets
as instances, all methods obtained a value of 0.0 in SA; so only
considering this measure will not give much useful information.

On the other hand, using macro-averaged evaluation mea-
sures, we give the same importance to all labels. In scenarios with
high number of labels and a high imbalance, using other type
of evaluation measures could lead to an omission of infrequent
labels in their calculation, biasing the results by frequent labels.

In both comparisons against standard MLC methods and state-
of-the-art EMLCs, EAGLET obtained a promising and consistent
performance. Compared with standard MLC methods, EAGLET
was the best method in 2 of the 5 evaluation measures and also
obtained the best average ranking value among all measures.
EAGLET performed statistically better than the rest of methods
in at least 2 of the evaluation measures each. On the other hand,
compared with state-of-the-art EMLCs, which have been proven
to obtain better results than standard methods, EAGLET also ob-
tained competitive results. In these cases, EAGLET was the control
method in only one out of five evaluation measures; however,
it again obtained the best average ranking value and also was
the only one that obtained statistically same performance than
the control algorithm in the rest of evaluation measures at 95%
confidence. The rest of state-of-the-art EMLCs performed statisti-
cally worse than the control algorithm in at least one evaluation
measure.

Therefore, we designed a new method to build ensembles of
both accurate and diverse multi-label classifiers, improving pre-
viously proposed similar methods and also outperforming state-
of-the-art methods in MLC.
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6. Conclusions

In this paper we proposed an evolutionary algorithm, EAGLET,
focused on creation of an EMLC where each of the members is a
multi-label classifier able to predict a subset of k labels. EAGLET
considers characteristics of the data such as the imbalance of the
dataset when building the ensemble and the relationship among
labels in the prediction phase, considering the relationship among
small subsets of k labels.

EAGLET evolves a population of multi-label classifiers with
subset of labels. Then, it builds an ensemble by combining these
multi-label classifiers, considering their predictive performance
and favoring selection of diverse members in such a way that all
labels appear a similar number of times in the final ensemble.

The experimental study over a set a 16 MLC datasets and 5
evaluation measures has shown the strengths of EAGLET. It out-
performed EME, a similar approach of building EMLCs, showing
its benefits. EAGLET was significantly better than standard MLC
methods. When compared with state-of-the-art EMLCs, although
not being the best in several cases, the statistical tests showed
that EAGLET’s performance was on par with the methods that
performed best on each individual measure. EAGLET was the
only algorithm that did not perform significantly worse than the
control algorithm in each case.

EAGLET has improved the performance of EME, and has shown
consistent performance and competitive results when compared
with several of state-of-the-art methods.
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Chapter 6

Discussion and conclusions

Throughout the development of this Ph.D. thesis, a number of contributions to

MLC have been made, including a comprehensive study of state-of-the-art EMLCs

and the proposal of two approaches to build EMLCs. In Section 6.1, the conclusions

derived from this Ph.D. thesis are presented. The thorough study of EMLCs as well

as the promising results achieved by the proposed models, suggest that this Ph.D.

thesis could serve as basis for further investigation by multi-label classification re-

searchers. Then, Section 6.2 presents some lines of future work, including both the

development of models to build EMLCs based on those proposed in this disserta-

tion, as well as novel approaches to build EMLCs.

6.1 Concluding remarks

In this dissertation, we have first presented an extensive study and categorization

of EMLCs, and then, we have proposed two evolutionary methods to build ELMCs.

The main contributions of this Ph.D. thesis are presented as three journal papers,

published in first quartile journals. The experimental review of EMLCs is carried

out in [J4], while the EAs to build EMLCs, EME and EAGLET, are presented in [J5]

and [J6] respectively. In addition, we provide three more papers (one first quartile

journal and two international conferences) including research associated with the

topic of the Ph.D. thesis . In [J2], a tool for preprocessing and analyzing multi-label

datasets is developed. Furthermore, in [C13] and [C14], two preliminary evolution-

ary approaches based on CCEAs and G3P respectively, are introduced.
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Following, we highlight the contributions and conclusions obtained from this

work.

6.1.1 Experimental review and categorization of EMLCs

The review of the literature in EMLCs provides this dissertation with a thorough

study of the state-of-the-art in the main topic of the Ph.D. thesis. Given this study,

we have proposed a taxonomy where the EMLCs are categorized considering two

criteria. First, EMLCs are categorized depending on the multi-label classifier they

are based on to build the ensembles, such as BR, LP, PCT, or independent of the

multi-label classifier. Second, EMLCs are categorized depending on how they gen-

erate diversity in the ensemble, such as selecting different subsets of instances,

subsets input features, subsets output labels, or maybe using different hyperpa-

rameters for the learning algorithms. This taxonomy presents, to the best of our

knowledge, the first taxonomy to specifically categorize EMLCs.

In addition to the categorization, in this first study we have carried out several

experiments to determine, depending on the characteristics of a given problem,

which EMLC or group of EMLCs perform better. It has been demonstrated that in

caseswhere the imbalance among labels is small, ELP obtains a great performance.

However, one of the main drawbacks of ELP is that it usually generates very im-

balanced subproblems at each member. Consequently, it is not surprising that in

scenarios with moderately and very imbalanced output spaces, RAkEL, which also

considers the relationships among subsets of labels but leading tomuch less imbal-

anced subproblems, performs the best.

Furthermore, the experimental results have indicated that both RAkEL and ECC

perform well in datasets where the dependency among labels is low and medium.

Both of them are able to model the relationship among groups of labels: RAkEL

by selecting subsets of the labels for each member, and ECC by chaining the bi-

narymodels and considering the relationship with labels that are previously in the

chain. On the other hand, ELP considers all labels at once, being able to exploit bet-

ter and more exhaustively the relationships among labels, thus performing better

in highly dependent datasets.
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In terms of efficiency of the EMLCs, there exist some EMLCs that are very fast,

such as CBMLC, but whose performance is very poor. On the other hand, other

methods such as CDE are extremely complex and are not able to finish its execution

in reasonable time. Furthermore, ECC, which achieves very good results in many

cases, is the second most complex method.

In overall, considering all datasets together and all evaluation metrics, ECC ob-

tains the best performance, closely followed by RAkEL. It is worth mentioning EPS,

which is a combination of both good performance and efficient algorithm, which

may be a good option if a fast but also accurate classifier is needed.

6.1.2 Evolving the entire ensemble as individual

In the first evolutionary approach to build EMLCs, EME encodes an entire ensem-

ble in each of the individuals. The population of EMLCs is evolved towards more

promising combinations of base classifiers, looking for an optimal structure.

Unlike state-of-the-art EMLCs, EME considers both the relationship among la-

bels, the imbalance, and the high dimensionality of the output spacewhen building

the ensemble. EME considers the dimensionality of the output space by selecting

small subsets of k labels for each member, thus also obtaining base classifiers that

deal with less imbalanced and less complex models.

In addition, EME also considers the imbalance when evaluating an EMLC to as-

sess its quality. It is evaluated not only considering its predictive performance, but

also the number of times that each label appears in the ensemble, so as to obtain

an accurate EMLC which also considers all labels equally, regardless of their fre-

quency. Furthermore, in order to consider the relationships among labels in the

evolution, the mutation operator is more likely to obtain individuals with more

related subset of labels than with labels that are not very related among them.

The fact of evolving the EMLC looking for promising combinations of k-labelsets,

instead of selecting them just randomly, has led EME to outperform the state-of-the-

art EMLCs. As demonstrated, although EME do not perform the best in all cases, it

is the only one that do not perform significantly worse than the best method in any

metric, thus demonstrating its consistency in a wide range of scenarios.



102 Chapter 6. Discussion and conclusions

6.1.3 Evolving separate members of the ensemble

In our second approach to build EMLCs, instead of encoding the entire ensemble

as in EME, EAGLET encodes separate members as individuals, which are future

hypothetical members for the EMLC. The fact of evolving the members of the en-

semble independently enables EAGLET to assess the performance of each member

separately, thus being easier to combine accurate classifiers in the ensemble.

Together with the evolution of the separate members, the process of selecting

those that form the ensemble have obtained competitive results. The EMLC is built

by iteratively selecting the members that maximize both their individual perfor-

mance and the diversity of the ensemble. Besides, it has been demonstrated that

giving more weight to the selection of diverse members than accurate ones, leads

to an improvement on the predictive performance of the final ensemble.

By following this new evolutionary process, EAGLET not only drastically re-

duces the computational complexity of EME, but it also outperforms EME and the

rest of the state-of-the-art EMLCs. This improvement has been mainly because it is

easier to evolve separate classifier towards more accurate ones, as well as by the

reduction of the time needed to evaluate each individual.

6.1.4 Open-source code

In order to largely increase our contribution to the scientific community, we have

released the code of every algorithm and tool developed in the course of this Ph.D.

thesis. These codes are all released in GitHub repositories under GPLv3 license.

The aim of publicly providing the code of the developed algorithms is two-fold:

I) facilitating the reproducibility of results, i.e., anyone interested in reproducing

the experimental results of our research papers can do it easily, as well as use it in

new datasets for their research; and II) any researcher interested in modifying or

adapting any aspect of the algorithms can modify it for their future research. We

have not only made available the code of EME and EAGLET, but also of two other

preliminary evolutionary approaches: CCEA [C13] and G3P-kEMLC [C14]. These

two methods are further described in Section 7.2 and Section 7.3 respectively.
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We have also made publicly available the code of two different tools. First, a

library to execute the Mulan algorithms from command-line interface, which has

been used to carry out the different experiments of the thesis. In this way, having

this code, any researcher who aims to execute these methods can just download

the library and use it, or maybe extend it with new features, such as including

other algorithms and evaluation measures. Then, the code of MLDA [J2], a tool for

analyzing and preprocessing multi-label datasets has been released too. This tool

is described in more detail in Section 7.1.

Following, the list of repositories derived from this Ph.D. thesis is provided.

• ExecuteMulan. https://github.com/kdis-lab/ExecuteMulan

• EME. https://github.com/kdis-lab/EME

• EAGLET. https://github.com/kdis-lab/EAGLET

• MLDA. https://github.com/i02momuj/MLDA

• CCEA. https://github.com/kdis-lab/CCEA_EMLCs

• G3P-kEMLC. https://github.com/kdis-lab/G3P-kEMLC

6.2 Future work

Although two EAs to build EMLCs have been developed within the scope of this

Ph.D. thesis, we consider that there is still work to do to improve both the predictive

performance and the efficiency of these models, as well as to find new structures

for the EMLCs or approaches to build them. Following, we highlight some lines of

future work.

Using variable k values. In both EME and EAGLET, as well as RAkEL does, each

member of the ensemble is focused on predicting a subset of k labels. In all

of them, k is a parameter of the algorithm, and fixed for all multi-label classi-

fiers. Usually, k = 3 is used, as proposed in [53]; however, it would depend on

each problem if the labels are better modeled considering a lower or higher

https://github.com/kdis-lab/ExecuteMulan
https://github.com/kdis-lab/EME
https://github.com/kdis-lab/EAGLET
https://github.com/i02momuj/MLDA
https://github.com/kdis-lab/CCEA_EMLCs
https://github.com/kdis-lab/G3P-kEMLC
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number of labels along with it. Therefore, we propose to study the effect of

considering a variable value of k in each member of the ensemble.

A first approximation has beenmade in [C14], which is then presented in Sec-

tion 7.3. In this method, different values of k are used in each base classifier,

being randomly chosen at the beginning between a range given as param-

eter. However, these values are fixed at the beginning of the evolution for

each base classifier and not modified then. Although it is able to select the

most suitable members for the ensemble, it is not able to modify the number

of labels considered in each of them.

We consider that the fact of using a variable value of k and automatically

adapting it through the evolution would lead to a better predictive perfor-

mance, since each classifier would select the most appropriate number of la-

bels. Nevertheless, it is not straightforward to apply to previously proposed

algorithms, since many critical parts of the EAs must be modified, such as the

mutation and crossover operators, as well as some ensemble-specific param-

eters, as the number of classifiers in the ensemble.

New approaches to select the ensemble members. Since the construction of the

EMLCs is one of the key points to obtain a high-performing method, other

ways to generate the ensemble should be investigated. In EAGLET, an itera-

tive greedy algorithm to build the ensemble is proposed, which selects in each

iteration the classifier that maximizes a combination of accuracy and diver-

sity.

The aim would be to have an EA which is in any way able to both evolve sep-

arate members, but also to evolve the structure of the ensemble (instead of

using this iterative process to build it). One idea could be to generate an EA

in two steps: the first step focused on obtaining a pool of good candidate in-

dividuals for the ensemble, and the second step focused on combining these

individuals into an ensemble.

Using different populations. So far, we have used EAs involving one population

of individuals. However, other types of EAs, such as CCEAs provide the ability
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of dealing with different subpopulations at the same time. These subpopula-

tions could be each of them focused on a different part of the problem (maybe

considering different subsets of instances or labels), each of them optimizing

the classifiers according to its own criteria. Then, to generate the ensemble,

individuals from different subpopulations might be used, so the diversity of

the EMLC would improve.

A first approach based on a CCEA has been already proposed [C13], and it

is presented in Section 7.2. In this method, several subpopulations are used,

each of them focused on a different subset of the data. These subpopulations

not only evolve separately, but also exchange useful information between

them each some generations. However, we think that there still work to do in

this way.

Different structures for the EMLC. TheEMLCsproposed in this dissertationhave

both of them the same final structure: the predictions of n multi-label classi-

fiers, each of them considering k labels are combined, where all members

have the same weight in the final prediction.

We consider that other types of structures for the EMLC should be investi-

gated. For example, in [C14] we have proposed a preliminary version of a

G3P method to build EMLCs, where the EMLC has a tree structure (see Sec-

tion 7.3). In this way, at each node of the tree, the predictions of children

nodes are gathered and combined, while the final ensemble prediction is the

one at the root of the tree. Thus, each base classifier of the ensemble does not

have the same weight in the final prediction, but it depends on its depth and

the number of children of each combination node.

However, in this first approach the k-labelsets for the base multi-label clas-

sifiers are randomly generated at the beginning of the evolution and they

do not change, but they are combined in an optimal tree-shaped structure.

Therefore, we think that further research in this field would be interesting.

Finally, although up to date we have based all our approaches in the use of

k-labelsets for each ensemblemember in the sameway as RAkEL, other struc-
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tures as the use of CCs members should be investigated (using all or just part

of the labels). The benefit of using CC-based EMLCs is that ECC is usually one

of the best performing EMLCs; however, its optimization would be more dif-

ficult since it is not only selecting the labels at each member but also their

chaining order.
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The objective of this paper is to present MLDA, a tool for the exploration and analysis of multi-label 

datasets with both simple and multiple views. MLDA comprises a GUI and a Java API, providing the user 

with a wide set of charts, metrics, methods for transforming and preprocessing data, as well as compari- 

son of several datasets. The paper introduces the main features of the framework, and introduces its use 

toward some illustrative examples. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Multi-label learning (MLL) is a supervised learning paradigm in 

which a pattern may have associated some classes or labels simul- 

taneously. This learning paradigm has become a challenging re- 

search area with an increasing number of papers and application 

domains, including multimedia classification, medical diagnosis or 

social network mining, among others [1] . In MLL, datasets usually 

include characteristics such as imbalance, high dimensionality or 

relationship among labels [2] . These characteristics could hamper 

the performance of the algorithms, so characterizing and analyzing 

the data is essential [3] . 

To the best of our knowledge, only mldr [4] has been proposed 

for data characterization in MLL. It is an R package focused on an- 

alyzing the imbalance and relationship among labels, which offers 

both an API and a GUI. Mulan [5] and Meka [6] are two APIs to 

develop MLL algorithms which also include some basic metrics, 

data transformations and preprocessing tasks. Finally, Chekina et al. 

[3] provided a wide study on the datasets’ characteristics to se- 

lect the best MLL algorithm, giving rise to a large number of met- 

rics on this sense. For that, a wide number of metrics have been 

proposed. 

With the aim of extending the offer of data characterization 

tools we have develop the MLDA tool, a GUI and an API for char- 

∗ Corresponding author. 

E-mail address: sventura@uco.es (S. Ventura). 

acterization, exploration and analysis of multi-label and multi-view 

multi-label (MVML) datasets. MLDA includes all the functionality of 

previous works, also expanding the metrics to analyze the imbal- 

ance and dependences among labels as well as different prepro- 

cessing methods. Moreover, MLDA includes new tools to convert 

dataset’s format, to analyze MVML data and to compare several 

datasets. 

The rest of the manuscript is organized as follows: 

Section 2 presents the software framework, Section 3 shows 

some illustrative examples and finally Section 4 presents some 

conclusions. 

2. Software framework 

The MLDA tool code and its documentation (javadoc and user 

guide) are available at the GitHub repository https://github.com/ 

i02momuj/MLDA . The software has been released under the GPLv3 

license. 

2.1. Software architecture 

Both MLDA GUI and API have been implemented in Java and 

have been built over Mulan and Weka [7] . The libraries JGraphX 

[8] and JFreeChart [9] have been used to represent the charts. The 

API class diagram is shown in Fig. 1 . The base package includes the 

base classes from which all the metrics inherit; metricsTaxonomy 

package enables to represent the taxonomy of metrics; utils pack- 

age includes extra methods to calculate metrics; and dimensional- 

http://dx.doi.org/10.1016/j.knosys.2017.01.018 

0950-7051/© 2017 Elsevier B.V. All rights reserved. 
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Fig. 1. MLDA class diagram. 

Fig. 2. Main characteristics and preprocessing. 

Fig. 3. Measuring imbalance and relationship among labels. 

ity, labelsRelation, labelsDistribution, imbalance and attributes pack- 

ages include the implementation of the corresponding metrics. 

2.2. Software functionalities 

MLDA provides a wide set of 57 metrics, which can be saved in 

different file formats ( csv, txt, tex and arff) for further analysis. It 

includes specific metrics and charts to measure the imbalance of 

the labels, such as histograms and boxplot diagrams with the la- 

bels distribution, and Imbalance Ratio for labels (IR both inter-class 

and intra-class) and combinations of labels (also called labelsets). It 

also includes Chi and Phi coefficients, as well as co-occurrence and 

heatmap graphs to analyze the relationships among labels. Further- 

more, MLDA enables to compare several datasets. 

Additionally, MLDA includes different instance and feature se- 

lection methods. It can also perform data partition in both hold- 

out and k -folds, including random and stratified partitioning spe- 

cific for MLL. MLDA is able to load, transform and save datasets 

in both Mulan and Meka file formats. It includes some transforma- 

tion methods which generate one or more single-label datasets. For 

MVML datasets, MLDA also shows a set of MVML specific metrics 

and allows to save a set of user-selected views. Finally, the API in- 

cludes the full set of metrics included in the GUI and a framework 

to implement new metrics. 
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Table 1 

Software metadata. 

Nr. (executable) Software metadata description Please fill in this column 

S1 Current software version 1.2.2 

S2 Permanent link to executables of this version https://github.com/i02momuj/MLDA/releases/tag/1.2.2 

S3 Legal Software License GPLv3 

S4 Computing platform/Operating System Linux, Microsoft Windows, OS X 

S5 Installation requirements & dependencies Java version 1.8 or higher 

S6 If available, link to user manual - if formally published include a reference to the 

publication in the reference list 

https://github.com/i02momuj/MLDA/blob/master/doc/MLDA _ Doc.pdf 

S7 Support email for questions sventura@uco.es 

Table 2 

Code metadata. 

Nr. Code metadata description Please fill in this column 

C1 Current code version v1.117 

C2 Permanent link to code/repository used of this code version https://github.com/i02momuj/MLDA/releases/tag/1.2.2 

C3 Legal Code License GPLv3 

C4 Code versioning system used git 

C5 Software code languages, tools, and services used Java 

C6 Compilation requirements, operating environments & dependencies Java version 1.8 or higher 

C7 If available Link to developer documentation/manual https://github.com/i02momuj/MLDA/releases/download/1.2.2/javadocs.zip 

C8 Support email for questions sventura@uco.es 

3. Illustrative examples 

In this section, an example of use of MLDA with emotions 

dataset is shown (available at https://www.uco.es/grupos/kdis/ 

kdiswiki/index.php/Resources ). Its main characteristics can be ob- 

tained loading the dataset with MLDA ( Fig. 2 (a)). It provides re- 

searcher with a first characterization of the dataset. Usually train 

and test or k -folds partitions are needed to run the algorithms, 

which can be generated by the Preprocess tab ( 2 (b)). 

As many algorithms are influenced by the imbalance of labels, it 

might be analyzed in order to use a rebalancing technique or not. 

The Labels tab shows the IR inter-class chart ( Fig. 3 (a)). As some 

labels has an IR > 1.5, a rebalancing technique could be necessary. 

In order to use an algorithm either considering label relationships 

or not, the Dependences tab provides a co-occurrence graph, which 

shows the co-occurrence between each pair of labels ( Fig. 3 (b)). As 

all labels are related, using a technique that takes into account the 

relationship among labels might be more recommendable. Finally, 

the frequency of the labelsets ( Fig. 3 (c)) also could increase the 

complexity of certain algorithms [1] . As many labelsets are very 

infrequent, an algorithm that prune infrequent labelsets could be 

recommendable. 

4. Conclusions 

In this paper MLDA have been proposed, including a GUI tool 

and a Java API, which is a useful tool in the MLL research field 

since it enables to characterize, analyze and preprocess MLL and 

MVML datasets in an easy way. The analysis of the datasets are 

highly important since it helps researchers to select the most ap- 

propriate algorithm depending on the characteristics of the dataset. 

Required Metadata 

Current executable software version 

Table 1 

Current code version 

Table 2 
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Generating Ensembles of Multi-Label Classifiers
Using Cooperative Coevolutionary Algorithms
Jose M. Moyano1 and Eva L. Gibaja2 and Krzysztof J. Cios3 and Sebastián Ventura4

Abstract. Multi-label classification deals with problems where
each of the data instances has several labels associated with it. Al-
though many ensemble-based approaches for multi-label classifica-
tion have been proposed, several of them do not take into account
intrinsic characteristics of the data during their design. In this paper
we present a cooperative coevolutionary algorithm which considers
such specific characteristics to build an ensemble of accurate and di-
verse multi-label classifiers. The algorithm evolves several subpop-
ulations simultaneously, each using a different subset of the training
data. Also, each individual is focused only on a small subset of la-
bels. These two characteristics provide greater diversity of members
to generate the ensemble. As it evolves separate members, we also
define a procedure to build an ensemble given the individuals. The
experimental study comparing the proposed method to the state-of-
the-art in multi-label classification using thirteen datasets and five
evaluation metrics demonstrated that the developed cooperative co-
evolutionary algorithm performed consistently and statistically better
than the other methods.

1 INTRODUCTION

Multi-Label Classification (MLC) is a classification paradigm capa-
ble of dealing with problems where each of the instances of the data
may have several labels associated with it simultaneously, unlike tra-
ditional classification, where each example has only one class asso-
ciated with it. For example, in medical diagnosis, a patient can have
a few diseases at the same time [21]. The MLC paradigm has been
successfully applied not only to medically related problems, but also
to multimedia annotation [23], legal documents categorization [11],
and prediction of sub-cellular locations of proteins [27]. The fact of
dealing with several labels simultaneously, leads to new challenges
that need to be tackled, such as modeling the dependencies among
labels, and dealing with the data imbalance and high-dimensionality
of the output space.

Existing MLC methods are focused on dealing with some or all
of these challenges [20, 25]. We focus on the Ensembles of Multi-
Label Classifiers (EMLCs), which combine the predictions of many
multi-label classifiers, which leads to better performance [20, 18, 9].
Although ensemble models outperform single classifiers, the classi-
fiers combined into the ensemble should not only be accurate but
also diverse [26, 1]. Further, although EMLCs are usually able to
deal with the different characteristics of the multi-labeled data, such
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2 University of Córdoba, Spain, email: egibaja@uco.es
3 Virginia Commonwealth University, U.S.A., and Polish Academy of Sci-

ences, Gliwice, Poland, email: kcios@vcu.edu
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as the relationship among labels, imbalance, and high dimensional-
ity of the output space, many of them do not consider all of them
when building the ensemble [13]. For example, RAndom k-labELset
(RAkEL) [25] is able to deal with the relationship among labels, but
it just selects random subsets of labels, without considering any of
the characteristics of the data for selecting them (more about it in
Section 2.2).

One of the ways that have been successfully used for building en-
semble learners is the use of Evolutionary Algorithms (EAs) [14, 13].
EAs are biology-inspired search algorithms [4], and they provide
an optimal framework for solving the problem of the member se-
lection for the ensemble. Specifically, the Evolutionary Multi-label
Ensemble (EME) method [13] proposes an evolutionary algorithm
to build EMLCs where each of the individuals of the population is
an EMLC. EME not only deals with the three main characteristics
of multi-label data, but takes them into account when building the
ensemble. Further, the fact of evolving the ensembles toward a fit-
ness function based on both the performance and the diversity of the
ensemble results in its outperforming to other state-of-the-art MLC
methods.

Although classic EAs have shown good performance in solving
optimization problems, several extensions of EAs have been pro-
posed to improve their performance; example are Cooperative Co-
Evolutionary Algorithms (CCEAs) [16]. The main difference be-
tween EAs and CCEAs is that while in EAs there is just one pop-
ulation of individuals, in CCEAs there are several subpopulations at
the same time. Also, individuals in an EA usually represent a full so-
lution to the problem, while in CCEAs, the individuals of each sub-
population usually represent only a partial solution to the problem;
the final solution is obtained by combination of individuals from sev-
eral subpopulations. Further, in CCEAs, individuals not only com-
pete among them (as in traditional EAs), but also cooperate among
them, for example either obtaining a full solution as combination of
some of the individuals, or sharing useful information among sub-
populations.

CCEAs were first proposed because of the need for representing
and evolving complex structures. Taking into account the complexity
and difficulty of selecting the most appropriate members for the en-
semble, the aim of this paper is to propose a CCEA for the generation
of EMLCs. The method focuses on building an EMLC where each
individual is a different member of the ensemble (unlike in EME,
where each individual is the entire ensemble), and where each mem-
ber is focused only on a small subset of the labels. Further, individ-
uals of each subpopulation use a different subset of the data. The
fact of focusing each individual only on a subset of labels allows
the model to take into account the relationship among labels but in a
less complex way. This, plus the use of different subpopulations over



different data subsets allows for greater diversity for the ensemble.
As each individual is a different member of the ensemble, we also
propose a method for communicating between subpopulations and
building the final solution, the EMLC.

The experimental study carried out over thirteen multi-label
datasets and using five evaluation metrics demonstrated that the pro-
posed CCEA performed more consistently and statistically better
than the state-of-the-art EMLCs.

The rest of the article is organized as follows: Section 2 provides
background and describes the related MLC work; Section 3 presents
the CCEA for building EMLCs; Section 4 describes the experimental
studies carried out; Section 5 presents and discusses the results; and
Section 6 ends with conclusions.

2 RELATED WORK
In this section, we first formally define MLC, and then present state-
of-the-art EMLCs.

2.1 Formal definition of MLC
Let X = X1 × · · · × Xd be the d-dimensional input space, and
Y = {λ1, λ2, . . . , λq} the output space composed by q > 1 la-
bels. Let D be a multi-label dataset composed of m instances, as
D = {(xi, Yi)|1 ≤ i ≤ m}, where each multi-label instance is com-
posed by an input feature vector x ∈ X and a set of relevant labels
associated with it Y ⊆ Y . The goal of MLC is to construct a pre-
dictive model able to provide a set of relevant labels for an unknown
instance. Thus, for each x, a bipartition

(
Ŷ , Ŷ

)
of the label space

Y is provided, where Ŷ is the set of relevant labels and Ŷ the set of
irrelevant ones.

Further, an EMLC is defined as a set of n multi-label classifiers,
each of them providing prediction b̂j = { ˆbj1, ˆbj2, . . . , ˆbjq} for all
(or part of) the labels. If each model predicts bipartitions, each bj
is 1 if the label is predicted as relevant and 0 otherwise; however,
each of them could also provide confidences, being each bj a value
in [0, 1] range indicating the likelihood of each label to be relevant
or not. Then, these predictions are combined in some way; majority
voting is the most used but there are several other combining methods
[6].

2.2 Ensembles of Multi-Label Classifiers
MLC algorithms are categorized into three groups: problem transfor-
mation, algorithm adaptation, and EMLCs [7]. Problem transforma-
tion methods transform the multi-label problem into one or several
single-label problems, which are then solved using traditional clas-
sification methods. Algorithm adaptation methods adapt traditional
classification methods to directly handle multi-label data, without the
need of transforming the dataset. Finally, EMLCs are methods that
combine the predictions of several multi-label classifiers. Given the
better performance of ensemble methods over simpler ones, we fo-
cus attention on the EMLCs. A thorough description of EMLCs can
be found on [12].

Ensemble of Binary Relevances (EBR) [20] is based on Binary
Relevance (BR) method [24]. BR builds q independent binary mod-
els, one for each of the labels, and thus is not able to model depen-
dencies among them. EBR still is not able to model these dependen-
cies, but tries to improve the performance of BR by combining n BR
models, each of them built over a different subset of training data.

Ensemble of Classifier Chains (ECC) combines the predictions of
several Classifier Chains (CC) [20]. Each of the CC builds q binary
models but in this case they are linked in such a way that the pre-
dictions of previous labels in the chain are introduced as additional
input features, being able to model some of the dependencies among
the labels. ECC, on the other hand, consist of n CCs each built over
a different subset of the training dataset and with a different random
chain. Although able to model some of the dependencies among la-
bels, ECC does not consider these relationships in building the en-
semble, e.g., to select the chains.

Ensemble of Pruned Sets (EPS) is built on top of the Pruned Sets
(PS) method [19]. PS is an extension of Label Powerset (LP) [22],
which transforms the multi-label problem into a multi-class one,
where each of the combinations of labels is considered as a differ-
ent class. PS works as LP but it prunes the classes whose frequency
is below a given threshold, reducing imbalance. EPS is built by com-
bining n PS models, each of them built over different subsets of the
training data. Therefore, EPS considers both the imbalance and di-
mensionality of the output space while building the models; it prunes
the infrequent labelsets to obtain less complex models.

RAndom k-labELsets (RAkEL) [25] builds an ensemble of LP
methods, where each of them is only focused in a small random sub-
set of k labels (a.k.a. k-labelset). The fact of partitioning the label
space into smaller subspaces makes RAkEL able to model the rela-
tionships among labels, but deals with less imbalanced and complex
problems than when all labels are considered at a time. Although
able to deal with these relationships, it does not take them into ac-
count when building the ensemble, for example, to select subsets of
more related labels.

Finally, Evolutionary Multi-label Ensemble (EME) [13] is an evo-
lutionary algorithm to automatically design EMLCs. In EME, each of
the individuals of the population is a complete EMLC, where the op-
eration of the EMLC is similar to RAkEL. However, unlike RAkEL,
EME does not just select the k-labelsets randomly, but it evolves to-
wards more promising combinations of labels in each member as
well as better combinations of members into the ensemble, leading
to an improvement of performance of RAkEL and other state-of-the-
art methods. The fact of evolving the entire ensemble as an indi-
vidual not only made EME computationally more complex but also
more difficult to converge to a better solution than if members were
evolved independently.

3 COOPERATIVE COEVOLUTIONARY
ALGORITHM

In this section, we describe the proposed CCEA for building EMLCs.
First, we briefly describe the structure and operation of the EMLC
generated. Then, we present the CCEA, describing its main steps,
representation and initialization of individuals and subpopulations,
the way subpopulations communicate, genetic operators, fitness
function, and finally, the method used to generate the EMLC.

3.1 Structure of the EMLC
The EMLC obtained in the CCEA consists of n members, each of
them considering only a small subsets of k labels. In this way, each
member of the ensemble is able to model the compound dependen-
cies among its k-labelset, leading to less complex and less imbal-
anced models than when the full set of labels is used. Although any
multi-label classifier can be used at each member, we use LP as in
[25] and [13].



For an unseen instance, each member gives a bipartition for each
of the labels in its k-labelset. Figure 1 shows an example of the pre-
diction phase of the EMLC for a given instance. Suppose for example
that the first classifier is focused on learning labels λ2, λ3, and λ6, so
it gives prediction for only these labels. Then, predictions of all clas-
sifiers are gathered and the ratio of positive predictions for each label
is calculated; if it is greater than a threshold t, the final prediction of
the EMLC is positive, and negative otherwise.

-	1	0	-	-	0	-	-MLC1

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1	-	-	-	0	1	-	-MLC2

......

-	-	0	-	-	1	-	1MLCn

-	0	-	1	-	-	0	-MLC3

3
/3

2
/4

0
/5

2
/3

1
/4

2
/3

0
/2

2
/3

1	1	0	1	0	1	0	1
t	=	0.5

Figure 1: Example of the prediction phase of the EMLC.

3.2 Individuals and initialization

Each individual represents not only the subset of labels that it consid-
ers, but also the subpopulation to which it belongs. Therefore, each
individual is represented as a binary array, where genes to 1 indicate
that the label belongs to its k-labelset and genes to 0 that it does not
belong; and also with an integer value indicating the index of the
subpopulation to which this individual belongs. In Figure 2 we show
some examples of individuals. We can see that there are two individ-
uals belonging to each subpopulation si, i ∈ {1, 2, 3}. For example,
individual I1,1 will be focused on predicting labels λ2, λ3, and λ6,
and built over the subset of the data corresponding to subpopulation
s1. Note that individuals I1,1 and I3,1, although they focus on pre-
dicting the same labels, they are different since they are built over
different subsets of the data.

1	0	1	1	0	0	1	0	0

1	1	0	0	0	1	1	0	0

2	0	0	1	1	0	0	0	1

2	0	1	0	0	1	0	1	0

3	0	1	1	0	0	1	0	0

3	1	0	0	1	0	0	0	1

k-labelsetsi

I1,1

I1,2

I2,1

I2,2

I3,1

I3,2

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Figure 2: Example of individuals of the CCEA. Each individual in-
cludes both the index of the subpopulation as well as the labels
present in its k-labelset.

At the beginning of evolution, a subset of the data is generated for
each subpopulation, in such a way that all individuals of the same
subpopulation use always the same data. The individuals are initial-
ized independently for each subpopulation.

Although all labels are required to appear a minimum number of
times in each subpopulation, ensuring the use of minority labels, we

use their frequency as a proxy of their importance in this process. The
expected number of appearances of each label in each subpopulation
is calculated using Equation 1, where fl is the frequency of a given
label λl, and r is the number of remaining appearances after sharing
the minimum number of appearances amin for each label, calculated
as r = k × subpopSize− q × amin. Note that k × subpopSize is
the total number of active bits in the subpopulation. The number of
times that a label could appear in the initial subpopulation is upper
bounded by the size of the subpopulation.

al = max

(
subpopSize, amin +

∥∥∥∥∥ fl∑q
j=1 fj

× r

∥∥∥∥∥
)

(1)

Individuals are created by activating k randomly selected bits,
where labels with higher value of al have higher chance to be acti-
vated, thus making sure that more frequent labels appear more times
in the initial subpopulations. Note that these frequencies are calcu-
lated for each subpopulation.

3.3 Steps of the CCEA

Figure 3 shows the main steps of the CCEA. Boxes with double
lines indicate that the process is performed independently for each
subpopulation. At the beginning, ns samples of the original train-
ing data are selected, where ns is the number of subpopulations in
the algorithm. Then, each subpopulation si is initialized (see Section
3.2), and the individuals are evaluated (see Section 3.6). While the
maximum number of generations ng is not reached, individuals are
selected by tournament selection, crossover and mutation operators
are applied with pc and pm probabilities respectively (see Section
3.5), new individuals are evaluated, and the subpopulations for next
generation are selected following the same process to generate the
ensemble (see Section 3.7). Then, subpopulations communicate be-
tween them each ngc generations, obtaining an ensemble (and stor-
ing the best so far), and exchanging information between subpopula-
tions (see Section 3.4). The whole process of communication among
subpopulations is represented with a dashed box in the figure. Fi-
nally, when the maximum number of generations is reached, the best
EMLC is returned as the best solution.

3.4 Communication between subpopulations

The communication between subpopulations have two objectives: I)
generate a complete solution to the problem, i.e., an EMLC, given
the individuals of all subpopulations, and II) transfer good genetic
material of individuals from one subpopulation to another at some
iterations of the CCEA. This communication is not performed at each
iteration, but after ngc iterations; this allows each subpopulation to
evolve their own individuals before putting them together with the
rest of subpopulations.

In order to generate an EMLC, individuals of all subpopulations
are joined, and then the process described in Section 3.7 is followed.
After the EMLC is built, it is evaluated using the entire training
dataset; it is stored if it is the best ensemble generated so far.

Communication between subpopulations occurs also to exchange
information between subpopulations. For that, after ngc generations,
individuals of each subpopulation si are applied specific crossover
and mutation operators, with pcc and pmc probabilities respec-
tively (see Section 3.5). If one individual from si is selected for
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Figure 3: Main steps of the CCEA. Boxes with double lines indicate
that the process is performed independently for each subpopulation.
The region within the dashed line indicates the communication be-
tween subpopulations.

crossover operator, a random individual from a different subpopu-
lation sj , i 6= j is also selected, thus exchanging genetic material be-
tween individuals of different subpopulations. If mutation operator
is used, it changes the index of subpopulation without modifying the
rest of the genes of the individual; this enables to train an individual
with the same k-labelset but in another subpopulation.

3.5 Genetic operators
In this section, we define the crossover and mutation operators used.
For that, we need to look at two possible scenarios: the first scenario
is when genetic operators are applied to individuals of a given sub-
population, so the index of subpopulation of the individual does not
change; the second is when operators are applied to communicate
subpopulations, so the index of the individual is considered and it
could be modified.

3.5.1 Crossover operator

Given two individuals I1 and I2, the crossover operator swaps in-
formation relative to their k-labelsets. The child individuals will in-
herit the subpopulation index of their parents so, independently of
the scenario, its operation is the same. In Figure 4, an example of the
crossover operator is shown when individuals belongs to different
subpopulations. It would be exactly the same if they both belonged
to the same subpopulation.

First, the crossover operator creates two sets ds1 and ds2 with the
positions of genes that are activated in one individual but not in the
other (Figure 4a). These sets are shuffled and divided by the midpoint
(Figure 4b). Then, two new sets ds1′ and ds2′ are created with one
half of each previous sets (Figure 4c). Finally, crossed individuals I ′1

and I ′2 are created by copying the genes that were identical in both
parents and activating the genes of their corresponding sets (Figure
4d). New individuals are always feasible and contain genetic material
of both parents.

I1

I2

ds1	=	{2,	3}

ds2	=	{1,	5}2	1	0	0	0	1	1	0	0

1	0	1	1	0	0	1	0	0

ds1	=	{3,	2}

ds2	=	{1,	5}

ds'1	=	{3,	5}

ds'2	=	{1,	2}

I'1

I'2

ds'1	=	{3,	5}

ds'2	=	{1,	2}2	1	1	0	0	0	1	0	0

1	0	0	1	0	1	1	0	0

a)

b)

c)

d)

Figure 4: Example of crossover operator.

3.5.2 Mutation operators

We define different mutation operators for each scenario. In both
cases, feasible individuals are always obtained after mutation.

The so-called label mutator is used when the mutation operator
is applied for a specific subpopulation (Figure 5a). It aims to mod-
ify the k-labelset of an individual, randomly selecting one active and
one inactive gene, and swapping their values. Unlike the crossover
operator, which tries to find new subsets of labels by combining in-
formation of existing individuals, mutation operator modifies the k-
labelset of a given individual with randomly created genetic material,
thus looking for new combinations of labels.

If the mutation operator is applied to communicating subpopula-
tions, we use the subpopulation mutator. In this case, the k-labelset
is not modified, but the index of the subpopulation is (Figure 5b).
This mutation operator selects a random different subpopulation for
the individual, allowing to learn the same combination of labels from
the point of view of other subpopulation.

1	0	1	1	0	0	1	0	0

1	0	1	0	0	0	1	1	0
(a) Label mutator

1	0	1	1	0	0	1	0	0

2	0	1	1	0	0	1	0	0
(b) Subpopulation mutator

Figure 5: Mutation operators.

3.6 Fitness function
In order to evaluate the fitness of individuals, the correspond-
ing multi-label classifier is built and the Example-based FMeasure
(ExF), which is presented in Equation 2, is calculated [8]. FMeasure
is a robust evaluation metric used to evaluate classification models
in imbalanced scenarios [10]. Although there are several approaches
to calculate FMeasure in MLC, ExF evaluates the prediction of each
instance as a whole, therefore being able to capture the relationship
among labels in its calculation. As our approach is focused on mod-
eling label dependencies of small subsets of labels, we are using ExF
as the fitness function.



↑ ExF =
1

m

m∑
i=1

2|Ŷi ∩ Yi|
|Ŷi|+ |Yi|

(2)

Each individual is built using the corresponding training data of its
subpopulation. The ExF is calculated over the full training dataset,
which has two objectives: I) individuals are evaluated over a dataset
including unknown instances, allowing to check its generalization
ability, and II) all individuals are evaluated over the same data in-
dependently of their training datasets, therefore giving a better ap-
proximation of how each individual will perform when used in the
ensemble. Further, each time an ensemble is built in the communi-
cation phase, it is also evaluated by obtaining the ExF of the EMLC
over the full training dataset.

As some individuals could appear again in subsequent generations,
each classifier is stored in a table along with its fitness. Therefore, if
this individual needs to be evaluated again, its fitness is just taken
from the table.

3.7 Ensemble generation
The process of generating the ensemble is shown in Algorithm 1.
The array with the number of expected votes eV is calculated before
selecting any member for the ensemble (line 1). This array contains
the number of times that each label should be added to the current
ensemble; at the beginning this array is calculated spreading votes
evenly among all labels. The best individual according to its fitness
is selected to initialize the ensemble e, and it is removed from p (lines
2-5); then the eV array is updated by subtracting one to each label of
this individual (line 6). Then, until the ensemble reaches the desired
size, the individual that best fits the ensemble, considering both per-
formance and diversity with the current ensemble is selected (lines
7-16). For that, the distance from each individual to the current en-
semble is calculated as a weighted distance. This distance is defined
in Equation 3, where JπK returns 1 if predicate π is true and 0 other-
wise, and ei is each of the members of the current ensemble. Also,
the weights w to calculate the distance are calculated by normalizing
the eV array in such a way that

∑q
l=1 wl = 1. This distance gives

more weight to labels that are less frequent in the ensemble, favor-
ing the selection of individuals containing them. Then, the individual
that maximizes a linear combination between its fitness and the dis-
tance is added to the ensemble. The β value could be modified in
order to give more importance to the performance of the individuals
or to the diversity of the ensemble, thus allowing to generate an en-
semble composed of accurate individuals which are diverse. Finally,
the ensemble e is returned (line 17).

dind =
1

n′

n′∑
i=1

q∑
l=1

(
wl × Jindl 6= eliK

)
(3)

4 EXPERIMENTAL STUDY
In this section we describe experimental studies performed, including
description of datasets and evaluation metrics used, as well as the
experimental settings.

4.1 Datasets
A set of 13 multi-label datasets from different domains was selected
to perform our experimental studies5. These datasets are shown in
5 Datasets were downloaded from the repository in

http://www.uco.es/kdis/mllresources

Algorithm 1 Ensemble generation.
Input: p: set of individuals.
Output: e: ensemble of n multi-label classifiers.

1: eV← calculate expected votes array
2: b← arg max

ind
(fitnessind)

3: e← {b}
4: n′ ← 1
5: p← p \ {b}
6: eV← update(eV, b)
7: while n′ < n do
8: for each individual ind in p do
9: dind ← distance(ind, e, eV)

10: end for
11: b← arg max

ind
(β ∗ dind + (1− β) ∗ fitnessind)

12: e← e ∪ {b}
13: n′ ← n′ + 1
14: p← p \ {b}
15: eV← update(eV, b)
16: end while
17: return e

Table 1 along with their main characteristics such as the cardinality,
i.e., average number of labels associated with each instance (card),
the average imbalance ratio (avgIR), and the ratio of dependent la-
bel pairs (rDep) [15]. Note that as the number of labels increases,
the number of possible different k-labelsets also increases, and even
more the number of different combinations of k-labelsets into an en-
semble. We selected datasets ranging from 6 to 123 labels, covering
a wide range of complexity.

Table 1: Datasets and their characteristics, including number of in-
stances (m), number of attributes (d), number of labels (q), cardinal-
ity (card), average imbalance ratio (avgIR), and ratio of dependent
label pairs (rDep). The datasets are ordered by the number of labels.

Dataset m d q card avgIR rDep
Reuters1000 294 1000 6 1.126 1.789 0.667
Guardian1000 302 1000 6 1.126 1.773 0.667
Bbc1000 352 1000 6 1.125 1.718 0.733
GnegativePseAAC 1392 1717 8 1.046 18.448 0.536
PlantPseAAC 978 440 12 1.079 6.690 0.318
Water-quality 1060 16 14 5.073 1.767 0.473
Yeast 2417 103 14 4.237 7.197 0.670
HumanPseAAC 3106 440 14 1.185 15.289 0.418
Birds 645 260 19 1.014 5.407 0.123
Genbase 662 1186 27 1.252 37.315 0.157
Medical 978 1449 45 1.245 89.501 0.039
NusWide6 2696 128 81 1.863 89.130 0.087
Stackex coffee 225 1763 123 1.987 27.241 0.017

4.2 Evaluation metrics

For the evaluation of the MLC methods, several evaluation metrics
have been used [8]. Hamming loss (HL) evaluates the average num-
ber of times a label is incorrectly predicted. It is a minimized metric,
and it is defined in Equation 4, where ∆ is the symmetric difference
between two binary sets. Subset Accuracy (SA), defined in Equation

6 A random selection of the original instances of NusWide cVLAD+ dataset
was performed in order to be able to execute it in a reasonable time.



5, is a strict metric that evaluates the ratio of instances whose labelset
was perfectly predicted (including all relevant and irrelevant labels).

↓ HL =
1

m

m∑
i=1

1

q
|Yi∆Ŷi| (4)

↑ SA =
1

m

m∑
i=1

JYi = ŶiK (5)

On the other hand, FMeasure is a widely used evaluation met-
ric in traditional classification, however, in MLC, three different ap-
proaches are usually used to calculate it, such as Example-based
FMeasure (ExF, Equation 2), Micro FMeasure (MiF, Equation 6),
and Macro FMeasure (MaF, Equation 7). In these equations, tpi, fpi,
and fni stands for the number of true positives, false positives, and
false negatives of the i-th label, respectively. ExF is calculated for
each instance, so it captures compound dependencies among labels.
MiF first joins the confusion matrices of all labels and then calcu-
lates the metric, thus giving more weight to more frequent labels.
MaF calculates the metric for each label and then averages their val-
ues, thus giving the same weight to each of the labels. Thus, there are
three different approaches to calculate FMeasure, each treating in a
different way the relationship and imbalance issues.

↑ MiF =

∑q
i=1 2 · tpi∑q

i=1 2 · tpi +
∑q

i=1 fpi +
∑q

i=1 fni
(6)

↑ MaF =
1

q

q∑
i=1

2 · tpi
2 · tpi + fpi + fni

(7)

4.3 Experimental settings
The goal of the experimental studies is to compare the performance
of the proposed CCEA with other state-of-the-art EMLCs. There-
fore, we selected the EMLCs with better performance [12], as well
as EME, which also uses an EA to build EMLCs. The datasets were
partitioned using random 5-fold cross-validation procedure, and all
methods were executed using 6 different seeds; then, the results were
averaged over 30 different runs. The experiments were performed on
a machine with Rocks cluster O.S., Intel Xeon E5645 Processor (6
× 2.40 GHz) and 64 GB RAM.

The default parameters proposed by their authors are used for each
method. Unless otherwise specified, EMLCs use n = 10 members
in the ensemble and LP with C4.5 decision tree [17] as the single-
label classifier. Both EBR and ECC use sampling with replacement
of the original training dataset at each member. EPS uses sample
without replacement. RAkEL uses n = 2q members and k = 3
labels. Finally, EME was run using 50 individuals in all cases, while
the number of generations ranges from 110 to 300 depending on the
dimensionality of the label space. As in RAkEL, EME uses n = 2q
members and k = 3.

In CCEA we use k = 3, just as in EME and RAkEL. However, in
order to have on average 10 votes for each label (as in EBR, ECC,
and EPS), the ensemble is composed by n = ‖3.33q‖members. Fur-
ther, the number of individuals of the whole population is 2n, evenly
distributed among subpopulations. For the selection of the rest of
parameters, a preliminary study was performed, which is available
in additional material7. We fixed the maximum number of genera-
tions ng = 50 in all cases and the number of generations between
communications of subpopulations to ngc = 5, so subpopulations

7 Additional material available at http://www.uco.es/kdis/CCEA

have some generations to evolve by themselves until they commu-
nicate. Crossover and mutation probabilities were fixed to pc = 0.7
and pm = 0.2 in smaller datasets (q < 30), and pc = 0.7 and
pm = 0.1 for bigger datasets (q ≥ 30). The number of subpopula-
tions (ns ∈ {3, 4, 5}) and value of β in the ensemble selection and
subpopulations update (β ∈ {0.25, 0.5, 0.75}) were selected by ex-
perimentation. In all cases, each subpopulation uses a random subset
of 75% of the instances, sampled without replacement.

To determine if significant performance differences existed among
the different EMLCs, we use Skillings-Mack’s [2] and Bonferroni-
Dunn’s statistical tests [3]. Skillings-Mack’s test is used to determine
if the performance of the algorithms is statistically different. It is sim-
ilar to Friedman’s test, but it could be used with missing values. Fur-
ther, Bonferroni-Dunn’s test is used to perform pairwise comparisons
with the control algorithm in each case. In order to perform compar-
isons without specifying a significance level and provide more statis-
tical information, the adjusted p-values were used [5].

5 RESULTS AND DISCUSSION
Due to space constraints, in this section we present a summary of the
experimental results; full results are available in additional material7.

The results are summarized in Table 2, showing the average rank-
ing for each of the EMLCs. For each dataset-metric pair, the best
method is given a ranking of 1, the second best a ranking of 2, etc.
The final ranking for each metric is calculated as the average value
of each method over all datasets. Note that in the two most complex
datasets, EME was not able to build a model within 2 days of exe-
cution. In these cases, the missing value is replaced by the average
value of ranking among the rest of algorithms for the given data, as
proposed in [2]. The last column shows the meta-ranking, calculated
as the average value of ranking for each method over all metrics.

Table 2: Average rankings.

HL SA ExF MiF MaF Meta-rank
CCEA 3.54 3.12 2.27 1.88 1.96 2.55
EME 4.00 3.96 4.08 3.85 3.00 3.78
ECC 2.50 2.69 2.88 3.08 3.96 3.02
EBR 1.69 4.15 4.69 4.65 4.92 4.02
RAkEL 5.08 3.81 2.85 2.81 1.85 3.28
EPS 4.19 3.27 4.23 4.73 5.31 4.35

As can be seen, the CCEA is the best ranked method overall, being
the best in two of the metrics, while EBR, ECC, and RAkEL are the
best in one metric each. Besides, except for MaF, in all cases CCEA
obtains a better average ranking than both RAkEL and EME, which
are based on learning small k-labelsets. Further, note that in SA and
MaF metrics the CCEA is the second best, and third in HL. RAkEL
achieves the worst performance in HL; EBR is always between the
two last positions in all metrics except for HL; and ECC is fourth in
MaF.

Skillings-Mack’s test results are shown in Table 3. It determines
that for all the metrics but SA, the performance of the EMLCs is
statistically different, so Bonferroni-Dunn’s post-hoc test is also per-
formed for those 4 metrics. Table 4 shows the adjusted p-values of
the comparison of the EMLCs using the control algorithm in each
case, which is the best method for a given metric. For each metric,
the control algorithm is indicated using “-”, and those methods which
performance is statistically different to the control algorithm at 95%
confidence are shown in bold.



Table 3: Results of Skillings-Mack’s test.

Skillings-Mack statistic p-value
HL 27.80 3.98E-5
SA 5.90 3.16E-1
ExF 17.12 4.28E-3
MiF 23.15 3.15E-4
MaF 40.33 1.28E-7

Table 4: Results of Bonferroni-Dunn’s test.

HL ExF MiF MaF
CCEA 5.94E-02 - - 4.38E+00
EME 8.31E-03 6.88E-02 3.76E-02 5.79E-01
ECC 1.36E+00 2.01E+00 5.21E-01 1.97E-02
EBR - 4.80E-03 8.04E-04 1.38E-04
RAkEL 2.00E-05 2.16E+00 1.04E+00 -
EPS 3.29E-03 3.76E-02 5.25E-04 1.20E-05

From the results we can reach several conclusions. First, the pro-
posed CCEA is able to outperform EME. The fact of evolving in-
dividuals as separate members of the ensemble instead of using the
entire ensemble allows the CCEA to build an ensemble with more
promising members, while considering both performance and diver-
sity. On the other hand, the use of different subpopulations, each us-
ing a different sample of the original training dataset, introduces the
necessary diversity in the EMLC.

Second, we have shown that the CCEA had statistically better and
more consistent performance than state-of-the-art EMLCs. It has the
best average ranking among all metrics, being the best in two of
them, and also is the only method that does not perform statistically
worse than the control algorithm in any of the cases. EPS performs
statistically worse than the control method in all cases. EBR, which is
the best method in HL, performs statistically worse than the control
method in the rest of the metrics. ECC and RAkEL, which achieve
good performance in several metrics, perform statistically worse than
the control algorithm in one metric each at 95% confidence. The
CCEA is the only algorithm whose performance is statistically the
same than the control algorithm in all cases, which shows its consis-
tency.

Finally, a large number of labels means that in EMLCs where each
member is focused on a small k-labelset (such as CCEA, EME, and
RAkEL), the possible number of different k-labelsets and the pos-
sible number of combinations of members into an ensemble, grows
exponentially. Thus, in order to study the performance of the CCEA
in regard to dimensionality of the output space, in Figure 6 we show
the ranking of CCEA, EME, and RAkEL in each dataset for two of
the metrics, the MiF and MaF. Since rankings are presented in both
figures, the lower the value, the better the performance. In both fig-
ures the datasets are ordered by ascending number of labels. We can
see that as the number of labels increases, the CCEA obtains an op-
timal combination of members for the ensemble. This means that the
CCEA is suitable for datasets with a large output space. Since for
the two most complex datasets EME did not finish its execution, its
ranking is not shown in the figures.

6 CONCLUSIONS

In this paper we propose a cooperative coevolutionary algorithm to
build EMLCs. In CCEA algorithm, each individual of the population
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Figure 6: Ranking of CCEA, EME, and RAkEL for each dataset. The
ranking of EME in the two most complex datasets is not shown since
it did not finish its execution.

is a possible member of the ensemble. Several subpopulations ex-
ists simultaneously, where each of them use a different subset of the
training data to build multi-label classifiers, providing more diver-
sity to the ensemble. The evaluation of the individuals is performed
over the full training dataset, thus allowing to evaluate individuals
over some unseen instances as well as to better know how they will
perform when combined into the ensemble. Further, each ngc gener-
ations, subpopulations communicate among them, not only building
an EMLC using individuals from all subpopulations, but also sharing
information between them, thanks to the used genetic operators.

The experimental study carried out using 13 multi-label datasets
and 5 evaluation metrics demonstrated that the proposed CCEA has a
statistically better and more consistent performance than state-of-the-
art EMLCs. The CCEA is not only the method with better average
ranking among all metrics but also it is the only one which does not
perform statistically worse than the control algorithm in any of the
cases.

In the future, we will work on other ways to communicate between
the subpopulations, as well as define other criteria to increase the
diversity of each subpopulation.
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Abstract—Multi-label classification paradigm has had a grow-
ing interest because of the emergence of a large number of
classification problems where each of the instances of the data
can be associated with several output labels simultaneously.
Several ensemble methods were proposed to solve the multi-
label classification problem. However, most of them simply create
diversity in the ensemble by following a random procedure and
give the same importance to all members. In this paper, we
propose a Grammar-Guided Genetic Programming algorithm to
build ensembles of multi-label classifiers. Given a pool of multi-
label classifiers, each of them modeling dependencies among a
subset of k labels, they are combined into a tree-shaped ensemble.
At each node of the tree, predictions of its children nodes are
combined, while each leaf represents a classifier from the pool.
We propose two configurations for the method: using a fixed
value of k for all classifiers in the pool, or using a variable value
of k for each classifier, thus being able to capture relationships
among groups of labels of different size in the ensemble. The
experiments performed over sixteen multi-label dataset and using
five evaluation metrics demonstrated that our method performs
significantly better than the state-of-the-art ensembles of multi-
label classifiers.

Index Terms—Genetic programming, Multi-label classification,
Ensemble learning

I. INTRODUCTION

In recent years, classification problems where each of the
instances of the data may belong to several classes/output
labels simultaneously associated with it, are increasingly fre-
quent. For example, in medical diagnosis systems, patients
may have more than one disease, or complications, at the
same time. Traditional classification methods are only able
to deal with one class per instance. Thus, the Multi-Label
Classification (MLC) paradigm emerged for addressing these
situations [1]. MLC has been successfully applied to many
real-world problems in addition to medical diagnosis [2], such
as biology [3] and multimedia categorization [4].

Dealing with several output labels at the same time leads to
emergence of new challenges such as modeling the compound
dependencies among the labels, imbalance, and high dimen-
sionality of the output space. Although a wide range of MLC
methods has been proposed [1], we focus here our attention
on Ensembles of Multi-Label Classifiers (EMLCs), which have

been shown to outperform the base methods [5]–[7]. Ensemble
classifiers are methods that combine predictions of several base
classifiers, aiming to improve the overall generalization ability
of each. Selection of classifiers to combine, however, is not
trivial as they should not only be accurate but also diverse [8],
[9].

Although the EMLCs outperform their base methods, they
usually combine classifiers where the diversity is created by
following any random procedure (such as randomly selecting
instances or labels at each member of the ensemble), and the
same weight or importance is given to all base classifiers. In
this paper, we propose a Grammar-Guided Genetic Program-
ming (G3P) algorithm able to generate EMLCs. G3P, which is
an extension of Genetic Programming (GP), is an evolutionary
learning technique that uses syntax trees to represent the
individuals, and also a grammar to guide the learning process,
such as the creation of initial individuals [10]. Using G3P a
tree-shaped ensemble is obtained; at each node of the tree the
predictions of children nodes are combined, while the leaves
are the base multi-label classifiers. The use of G3P makes the
selection of members of the ensemble more flexible, allowing
to adapt to each particular problem, as well as to obtain an
optimal structure of the ensemble.

In our method each of the base classifiers of the ensemble
focuses only on a subset of k labels, also known as k-labelset.
In this way, each member is able to consider the relationship
among the labels, while drastically reducing the imbalance
and high-dimensionality of the output space. In addition, our
method is not only able to deal with fixed k for all base
classifiers, but also is able to use different values of k in
each base classifier, to capture the relationship among subsets
of labels of different size. The experimental study using 16
datasets and five evaluation metrics, demonstrated that our
method obtains significantly better performance than state-of-
the-art MLC methods.

The rest of the paper is organized as follows. Section II pro-
vides background about MLC and G3P; Section III describes
the G3P-based method for building the EMLCs; Section IV
introduces the experimental study; Section V presents and
discusses the results; and Section VI ends with conclusions.



II. BACKGROUND

In this section, we first describe MLC and state-of-the-art
MLC methods, and then we introduce the G3P framework.

A. Multi-Label Classification

Let X = X1 × · · · ×Xd be the d-dimensional input space,
and Y = {λ1, λ2, . . . , λq} the output space composed by
q > 1 labels. Let D be a multi-label dataset composed of
m instances, as D = {(xi, Yi)|1 ≤ i ≤ m}, where each multi-
label instance is a pair composed by an input feature vector
x ∈ X and a set of relevant labels Y ⊆ Y associated with it [1].
The goal of MLC is to construct a model able to provide a
set of predicted relevant labels Ŷ for an unknown instance x.

MLC algorithms are categorized into three groups: I) prob-
lem transformation, which transform the multi-label problem
into one or several single-label problems; II) algorithm adapta-
tion, which directly adapt traditional classification methods to
be able to deal with multi-label data without transforming it;
and III) EMLCs, defined as a set of n multi-label classifiers,
each of them providing prediction for all or part of the
labels [7]. Finally, the prediction of all n classifiers are
combined, usually by majority voting, although many other
combining methods can be used [11].

Ensemble of Binary Relevances (EBR) algorithm [5] com-
bines the predictions of n Binary Relevance (BR) meth-
ods [12]. As BR creates an independent binary model for
each label, EBR is not able to model the relationship among
the labels. Also, diversity of classifiers in EBR is obtained by
simply randomly selecting a subset of the instances for each
of the members, which is a weakness.

Ensemble of Classifier Chains (ECC) [5] combines the pre-
dictions of n Classifier Chain (CC) methods. CC also creates
binary models for each label, but they are not independent
as in BR as they are chained in such a way that predictions
of previous labels in the chain are introduced as additional
input features in the subsequent binary classifiers. Therefore,
ECC is able to model some of the relationship among labels.
The diversity in ECC is obtained not only by selecting random
subsets of the instances but also using different random chains
at each member.

Ensemble of Pruned Sets (EPS) algorithm [13] combines the
predictions of n Pruned Sets (PS) methods. PS follows the
Label Powerset (LP) [14] approach, transforming the multi-
label problem into a multi-class problem, where different com-
binations of labels (a.k.a. labelsets) are considered as different
classes; then, PS prunes those instances associated with very
infrequent classes, leading to less imbalanced problems. In this
way, EPS is able to model the relationship among all labels;
however, although it prunes infrequent labelsets, the resulting
multi-class problem still tends to be imbalanced with a high
number of classes, resulting in a still complex problem. As for
the diversity, EPS selects random subset of instances at each
member of the ensemble.

RAndom k-labELsets (RAkEL) [6] builds an ensemble of
LP methods, but in this case each member of the ensemble
focuses on a small subset of k labels, being k fixed for all

members. Therefore, each member of the ensemble is able
to deal with the relationships among k labels, leading to
less imbalanced and lower dimensional problems than if all
labels were considered at the same time. RAkEL selects the
k-labelsets randomly to generate diversity in the ensemble.

Random Forest of Predictive Clustering Trees (RF-
PCT) [15] builds an ensemble of Predictive Clustering Trees
(PCTs) [16]. Each member uses a random selection of training
instances, and at each node of the tree selects the best feature
from a random subset of attributes.

In all described methods, the diversity among the members
is generated following a random process, and the combination
of labels is performed by majority voting, with the same
weight given to each member of the ensemble.

B. Grammar-Guided Genetic Programming (G3P)

GP is an evolutionary and very flexible heuristic technique
which allows the use of very complex individual represen-
tations. G3P is an extension of GP, where a free-context
grammar is used to generate the individuals. Each individual
is represented as a syntax tree, where internal or non-terminal
nodes correspond to functions taking their children as argu-
ments, and leaves or terminal nodes correspond to variables
and constants. The use of the grammar provides ability of
applying certain constraints at each node of the tree, such as
the number or type of the child nodes, and also ensures that
all generated individuals represent a valid solution [17].

G3P has been widely used in the literature on a large number
of different problems, such as bankruptcy prediction [18],
predicting student performance [19], and discovery of sub-
groups within a population [20], as well as it has been proven
to work well on high-dimensional scenarios [21]. However,
there are not many multi-label classification methods that
are based on G3P. In [22] a G3P algorithm to build a rule-
based multi-label classifier was proposed. In [23], an algorithm
that automatically selects the most appropriate multi-label
classifier is proposed using G3P. Nonetheless, to the best of
our knowledge, no studies exist in applying either GP or G3P
to the construction of EMLCs.

III. G3P-KEMLC

In this section we present the proposed method, called G3P-
kEMLC. First, the main steps of the algorithm are presented,
and then, the individuals, fitness function, and genetic opera-
tors are described.

A. Algorithmic strategy

The main steps of the G3P-kEMLC algorithm are
shown in Fig. 1. First, a pool of n multi-label classifiers
MLC1,MLC2, . . . ,MLCn, where each is focused on predict-
ing k labels, is created. Although any multi-label classifier
could be used, we will use LP, in order to model the re-
lationship among all k labels at the same time [6]. Unlike
other methods, such as RAkEL, G3P-kEMLC is able to handle
multi-label classifiers using different values of k. Therefore,
two parameters kmin and kmax are given, so that each classifier



pool	<-	generateMLCs(n,	kmin,	kmax)

p	<-	initPopulation(popSize,	mC,	mD)

g	<	ng

s	<-	selectInds(p)

s	<-	applyOperators(s,	pc,	pm)

evaluate(p,	pool,	β)

evaluate(s,	pool,	β)

p	<-	replace(s,	p)

getBestIndividual(p)
No

Yes

Fig. 1. Main steps of G3P-kEMLC.

will focus on a subset of k labels, being k a random value
in the range [kmin, kmax]. Note that repeated k-labelsets are
not allowed, so if the generated random k-labelset is currently
present in the pool, it is discarded and a new one is created.
To increase diversity of the base classifiers, each of them
is built over a random subset of the instances. Although
building the base classifiers over random subsets of instances
and labels, the difference between G3P-kEMLC and other
EMLCs is that G3P-kEMLC will look for an optimal structure
of the ensemble by means of the evolutionary procedure,
instead of just giving the same weight to all base classifiers in
the combination of predictions. In our tree-shaped ensemble,
classifiers that are placed at a shallower depth have more
importance in the final prediction than classifiers that are
deeper in the tree.

Then, the initial population p of popSize individuals is
generated by using the grammar (see Section III-B). Note that
mC and mD parameters indicate the maximum number of
children of each node of the tree, and the maximum allowed
depth of the tree, respectively. Once initial individuals are
created, they are evaluated (see Section III-C).

Until the maximum number of generations ng is reached,
individuals are selected by tournament selection, genetic op-
erators are applied (see Section III-D), and new individuals
are evaluated. For the replacement of the population, the
population at next generation is formed by all new children.
However, if the best parent is better than the best child,
it replaces the worst child, thus maintaining elitism. Once
the maximum number of generations is reached, the best
individual is returned as the optimal ensemble.

B. Individuals

Each individual in G3P-kEMLC is represented as a string
encoding a tree-shaped ensemble. As non-terminal nodes,
only one function called Comb is used, which combines the
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Fig. 3. Individual as string and its corresponding tree.

predictions of children nodes. For each label λl that is included
in any of the children of the Comb node, it computes the
ratio of positive predictions among all the children; if it is
greater or equal than a given threshold t (as default t = 0.5
is used), the combined prediction for λl is positive, and
negative otherwise. On the other hand, as terminal nodes, we
use the previously generated pool of multi-label classifiers,
represented as integers from 1 to n. Each of the multi-label
classifiers gives prediction for the labels in their own k-
labelsets. Note that, since each leaf is focused on a subset of
k labels (and k could be different for each leaf), the number
of labels considered at each Comb node can be different.

In Fig. 2 the grammar used to build individuals is shown.
The initial node S is always replaced by a Comb node.
Each Comb node starts and ends with ‘(’ and ‘)’ characters
respectively, to represent (in the string) the hierarchy of the
nodes. Each Comb node may contain from 2 to mC children
nodes, each of them being either another Comb node or a MLC
(leaf). The number of children is randomly selected in the
given range [2,mC] at each node, so each internal node could
have a different number of children. However, the maximum
depth (mD) of the tree is controlled in such a way that if the
depth of the current Comb node is equal to mD − 1, only
MLC nodes can be selected as children of this Comb. In Fig.
3 an example of an individual obtained using the grammar is
shown, both as a string and as its corresponding tree.

The use of the grammar is helpful in two main aspects.
On the one hand, it allows to determine the number of child
nodes at each Comb node, as well as if these children are either
other Comb nodes or leaves. On the other hand, if different
types of combiner nodes for the predictions were used (as



we propose for future work), the use of the grammar would
become essential, since it would select the appropriate type
and/or number of child nodes depending on different type of
combiner node.

C. Evaluation

For evaluation of the individuals, we use a fitness function
(Eq. 1) which differentiates between incomplete and complete
trees. Hereafter, it is indicated with ↑ and ↓ if metrics are
maximized or minimized, respectively. Lt is the set of labels
that the tree is considering among all the leaves. We define
complete trees as those that include at least one vote for each
label in the dataset (|Lt| = l), while incomplete trees are not
able to give prediction for all labels (|Lt| < l).

↑ fitness =

{
− (l − |Lt|) /l if |Lt| < l

β · ExF + (1− β) ·MaF if |Lt| = l
(1)

If the individual represents an incomplete tree, its fitness
is a negative value, being closer to zero as the number of
labels that are not considered is lower. We aim to remove
incomplete individuals in the population, but in case when
several incomplete individuals are chosen to compete with
each other in the selection procedure, the one that is closer
to be a complete tree is selected.

On the other hand, if the individual is a complete tree,
first the predictions for the whole training set are obtained
by combining predictions of internal nodes, until the final
prediction of the ensemble is obtained at the root node. Then,
the fitness function, composed of two terms, is computed.
FMeasure is a robust evaluation metric that has been widely
used to evaluate models in cases where the output space is
imbalanced [24]. In MLC, several approaches are defined
to compute the FMeasure, such as Example-based FMeasure
(ExF) and Macro-averaged FMeasure (MaF) [25]. ExF (Eq.
2) computes the FMeasure of each instance as a whole, thus
capturing the relationships among the labels in its calculation.
On the other hand, MaF (Eq. 3) computes the FMeasure for
each label independently and averages it by the number of
labels, thus giving the same importance to all labels in its
calculation. Note that tpl, fpl, and fnl stand for the number
of true positives, false positives, and false negatives of the l-th
label, respectively.

↑ ExF =
1

m

m∑
i=1

2|Ŷi ∩ Yi|
|Ŷi| ∪ |Yi|

(2)

↑ MaF =
1

q

q∑
l=1

2 · tpl
2 · tpl + fpl + fnl

(3)

Therefore, using a combination of both ExF and MaF, we
not only consider the relationship among labels when calculat-
ing the FMeasure, but also ensure that minority labels are also
considered. Further, the fact of calculating the fitness function
over the whole training set, while each base classifier is built
over a subset of the same data, also offers an approximation
of how each of them performs on unseen data.

D. Genetic operators

Each individual of the population is selected for crossover
and mutation operators based on probabilities pc and pm
respectively. Fig. 4 illustrates use of both operators.

1) Crossover operator: Given two parents, the crossover
operator creates a new individual as follows: I) a random
subtree st1, not including the whole tree, is selected from the
first parent; II) a random subtree st2, including the possibility
to select the whole tree, is selected from the second parent;
III) if the maximum depth of st2 is greater than the maximum
allowed depth of the tree minus the depth of the root node of
st1, step II is repeated again but selecting a random subtree of
st2; IV) st2 replaces st1 in the first parent, obtaining the child
individual. Crossed individuals include genetic material of
both parents, and because of step III they are always feasible,
as we ensure not to exceed the maximum allowed depth of
the tree.

Regarding the example in Fig. 4a, consider that the subtree
whose root is the shaded node of the first parent is selected as
st1. Then, the node marked with a dotted line in the second
parent is first selected as st2. However, considering mD = 3,
if st2 replaces st1, the maximum depth constraint would not
be met in the generated child; therefore, a new random subtree
below this node is then selected as st2 (shaded node of the
second parent). Finally, the first child is created by replacing
st1 with st2.

Given this crossover operator, just one child is obtained
by each pair of parents. Proposing an operator where two
children were obtained, for example swapping subtrees of
the parents, would make more difficult the selection of these
subtrees in such a way that they both fit in the other parent and
do not break the maximum depth restriction in any of them.
Therefore, the second child is obtained by following the same
procedure but swapping the roles of each of the parents.

2) Mutation operator: For the mutation operator, the steps
are: I) a random subtree st, not including the whole tree, is
selected; II) a subtree is created following the grammar, but
using as maximum depth the maximum allowed depth minus
the depth of the root node of st; III) the generated tree replaces
st. Therefore, a subtree of the individual is replaced by a
random subtree, ensuring that it is feasible thanks to the use
of the grammar and control of the maximum depth.

According to Fig. 4b, assume that the shaded node is
randomly selected as root of the subtree to mutate. Then,
a random new subtree is created following the grammar to
replace it, creating the mutated individual.

IV. EXPERIMENTAL STUDY

In this section, first the datasets and evaluation metrics used
in the experiments are described, and then, the configuration
of both G3P-kEMLC and the state-of-the-art MLC methods
are presented.
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TABLE I
DATASETS AND CHARACTERISTICS. THE DATASETS ARE ORDERED BY

THE NUMBER OF LABELS.

Dataset m d q card avgIR rDep
Emotions 593 72 6 1.868 1.478 0.933
Reuters1000 294 1000 6 1.126 1.789 0.667
Guardian1000 302 1000 6 1.126 1.773 0.667
Bbc1000 352 1000 6 1.125 1.718 0.733
3s-inter3000 169 3000 6 1.142 1.766 0.400
GnegativePseAAC 1392 1717 8 1.046 18.448 0.536
PlantPseAAC 978 440 12 1.079 6.690 0.318
Water-quality 1060 16 14 5.073 1.767 0.473
Yeast 2417 103 14 4.237 7.197 0.670
HumanPseAAC 3106 440 14 1.185 15.289 0.418
Birds 645 260 19 1.014 5.407 0.123
Genbase 662 1186 27 1.252 37.315 0.157
Medical 978 1449 45 1.245 89.501 0.039
NusWide2 2696 128 81 1.863 89.130 0.087
Stackex coffee 225 1763 123 1.987 27.241 0.017
CAL500 502 68 174 26.044 20.578 0.192

A. Datasets

A selection of 16 multi-label datasets from the KDIS
repository1, covering a wide range of characteristics, were
used in the experiments and are shown in Table I. The number
of instances (m), attributes (d), and labels (q) of each dataset
are shown, as well as the cardinality or average number
of labels associated with each instance (card), the average
imbalance ratio (avgIR), and the ratio of dependent label pairs
(rDep) [26].

B. Evaluation metrics

Five evaluation metrics are used to assess the performance
of the multi-label methods [25]. The Adjusted Hamming loss

1http://www.uco.es/kdis/mllresources
2In order to execute it in reasonable time, a random selection of instances

of NusWide cVLAD+ dataset was performed.

(AHL) [27] was proposed because of the drawbacks of the
Hamming loss, which tends to be zero in cases with a large
number of labels but low cardinality. AHL, defined in Eq.
4, computes the ratio of misclassified labels divided by the
number of positive labels (in both true and predicted sets),
and averages it by the total number of instances. Note that ∆
is the symmetric difference between two binary sets.

↓ AHL =
1

m

m∑
i=1

|Ŷi∆Yi|
|Ŷi ∪ Yi|

(4)

Subset accuracy (SA), Eq. 5, is a strict metric which
evaluates the number of instances where the set of predicted
labels exactly matches the set of true labels. Note that JπK
returns 1 if predicate π is true, and 0 otherwise.

↑ SA =
1

m

m∑
i=1

JŶi = YiK (5)

Also, we use different versions of the FMeasure, namely
Example-based FMeasure (ExF; Eq. 2), Micro-averaged
FMeasure (MiF; Eq. 6), and Macro-averaged FMeasure (MaF;
Eq. 3). While ExF captures the relationship among the labels
in its calculation, MiF and MaF give different weight to the
labels; MiF is biased by more frequent labels, while MaF gives
the same importance to all of them.

↑ MiF =

∑q
l=1 2 · tpl∑q

l=1 2 · tpl +
∑q

l=1 fpl +
∑q

l=1 fnl
(6)



C. Methods and configurations

G3P-kEMLC has been built using JCLEC [28], Mulan [29],
and Weka [30] libraries, and the code is publicly available in
a GitHub repository3.

In the experiments, we use two different configurations of
G3P-kEMLC: I) with a fixed value of k = 3 for all base
classifiers; and II) with a variable value of k for each of them.
For the second configuration, the size of the k-labelset of each
multi-label classifier is in the range [3, q/2]. In this way, we
observe how the method works both using fixed k value as
in RAkEL, and also by considering the relationships among
a large number of labels. Regarding the size of the pool of
classifiers, Eq. 7 indicates how to calculate the number of
classifiers needed to have, on average, v votes for each label
in the pool. For n we also use two different configurations: I)
n for v = 10; and II) n for v = 20. Note that in our approach,
the fact of using a large number of base classifiers in the
pool does not mean that all of them will be included in the
ensemble, since the G3P algorithm selects the most suitable
models. For each dataset, the results of the best of these two
configurations are reported; the best configuration is the one
with better ranking among all five evaluation metrics.

n =
v

(kmin + kmax) /2
· q (7)

Concerning the size of the tree, we use the maximum
number of children at each node mC = 7, while the maximum
depth is fixed to mD = 3 for most cases. However, when
using fixed k = 3, for those datasets with more than 50 labels,
mD = 4 is used. Note that for example for NusWide dataset,
which has 81 labels, the size of the pool for v = 20 is n = 540,
while a tree of mD = 3 and mC = 7 can have, as most,
73 = 343 leaves, so it could not include all classifiers in the
pool if it was necessary. Using mD = 4, more complex trees
including at most 74 = 2401 leaves can be created, which is
enough for these cases.

For the selection of the rest of parameters of the al-
gorithm, we performed a brief preliminary study. Due to
space constraints, additional material including this study is
available at the KDIS Group Webpage4. We use popSize = 50
individuals; ng = 150 generations; probabilities pc = 0.7
and pm = 0.2 for genetic operators; β = 0.5 for the
fitness function; and 75% of instances are sampled without
replacement at each multi-label classifier. Finally, not only in
G3P-kEMLC but also in other EMLCs, the C4.5 [31] decision
tree algorithm is used as a single-label classifier (except for
RF-PCT, which uses PCTs).

A comparison with RAkEL, which also uses subsets of k
labels at each base classifier, shall demonstrate whether the
fact of evolving an optimal structure for the ensemble instead
of just giving the same weight to each classifier improves (or
not) predictive performance. The recommended configuration
for RAkEL is with k = 3 and n = 2q, so that each

3https://www.github.com/kdis-lab/G3P-kEMLC
4http://www.uco.es/kdis/G3P-kEMLC/

label has, on average, 6 votes. However, to perform a fair
comparison, RAkEL was executed with n = 2q (so v = 6,
as recommended), n = 3.33q (meaning v = 10, as in other
EMLCs), and also with n calculated in such a way that v is the
same as in the best configuration of G3P-kEMLC; we report
the results of the best configuration. In this way, we aim to
show that the performance of our method is not only biased
by the number of base classifiers.

A second comparison involving state-of-the-art EMLCs was
also performed. The best EMLCs according to the study in [7]
were selected for the comparison. For all EMLCs, the default
parameters proposed by their authors were used. EBR, ECC
and RF-PCT use sampling with replacement of the original
training dataset at each member, while EPS uses samples
without replacement of 66% of the instances. Note that for
CAL500 dataset, which has as many different labelsets as
instances, EPS was executed without pruning the infrequent
labelsets. Finally, all of them use n = 10.

In all cases, the datasets were partitioned using random 5-
fold cross-validation, and all methods were executed using 6
different seeds for random numbers. Finally, the results were
averaged over 30 runs.

V. RESULTS AND DISCUSSION

In this section, the results of the experimental study are
presented and discussed. First, analysis and comparison of
G3P-kEMLC and RAkEL is performed; then, G3P-kEMLC
is compared to other state-of-the-art EMLCs. Hereafter, the
two versions of our proposed method are indicated as G3P-
kEMLC-3 when k = 3 is used, and as G3P-kEMLC-V when
a variable value of k in the range [3, q/2] is used.

A study of the efficiency of G3P-kEMLC was also carried
out; however, due to space constraints, the results of this study
are available in the additional material, as well as detailed
results of the experiments and also p-values of statistical tests.

A. G3P-kEMLC vs RAkEL

In this section, we compare the performance of G3P-
kEMLC and RAkEL, as methods that use base classifiers
focused on k-labelsets. In Table II, the average ranking values
for each metric, computed for all datasets, are shown. For each
pair dataset-metric, the method that performs best obtains a
ranking of 1, the next a ranking of 2, and so on; the lower the
value the better. We can see that in four of the metrics G3P-
kEMLC-V has the best average ranking, while G3P-kEMLC-3
is the best in one. Further, both methods are ahead of RAkEL
in all cases except in SA, where RAkEL has a better average
ranking than G3P-kEMLC-3.

In order to determine if significant differences exist among
algorithms, Friedman’s [32] and Holm’s [33] tests were per-
formed, using a confidence value α = 0.05. Friedman’s test
has shown that significant differences existed for all metrics
except for SA. Further, Holm’s test has shown that for the rest
of the metrics, the performance of both configurations of G3P-
kEMLC is statistically the same, and both are significantly
better than RAkEL. Fig. 5 shows the critical diagrams for



TABLE II
AVERAGE RANKINGS IN THE COMPARISON AMONG G3P-KEMLC AND

RAkEL.

G3P-kEMLC-3 G3P-kEMLC-V RAkEL
AHL 1.72 1.47 2.81
SA 2.19 1.81 2.00
ExF 1.72 1.47 2.81
MiF 1.76 1.65 2.59
MaF 1.53 1.78 2.69

1 2 3

G3P−kV

G3P−k3

RAkEL

(a) AHL

1 2 3

G3P−kV

G3P−k3

RAkEL

(b) ExF

1 2 3

G3P−kV

G3P−k3

RAkEL

(c) MiF

1 2 3

G3P−k3

G3P−kV

RAkEL

(d) MaF

Fig. 5. Critical diagrams of Holm’s test at 95% confidence for the comparison
between G3P-kEMLC and RAkEL. G3P-kEMLC-3 and G3P-kEMLC-V are
indicated as G3P-k3 and G3P-kV, respectively.

the four metrics comparing G3P-kEMLC with RAkEL; in
these diagrams, a line linking two methods indicates that their
performance is statistically the same at 95% confidence.

Fig. 6 shows the average number of votes per label, v, of the
best configuration in each case. Note that, although RAkEL
was executed with a large number of classifiers (such as n
calculated for v = 10 and for v equal to the best configuration
of G3P-kEMLC), in most cases it performed better just with
6 votes on average for each label. We see that G3P-kEMLC is
able to model and adjust the number of classifiers depending
on each dataset, and is flexible to adapt to each specific case. In
many cases, G3P-kEMLC obtained better results than RAkEL
using less classifiers. Therefore, we also show that the number
of classifiers used in the ensemble is not the only characteristic
that contributes for our method to achieve good performance,
but the selection of classifiers into an optimal tree-shaped
ensemble structure is decisive for its performance.

B. G3P-kEMLC vs state-of-the-art

Once we have shown that the performance of G3P-kEMLC
is significantly better than RAkEL, we next compare it with
other state-of-the-art EMLCs. As in the previous experiment,
Table III shows the average ranking values of each method
on all datasets. In it, G3P-kEMLC-3 and G3P-kEMLC-V
are indicated as G3P-3 and G3P-V respectively. We see that
both G3P-kEMLC configurations always have better average
ranking than the rest of EMLCs, except for SA, where EPS is
better ranked.

Friedman’s test determined that there existed significant
differences in the performance of the algorithms for all met-
rics. Fig. 7 shows the critical diagrams of the Holm’s test
for all metrics. For AHL, ExF, and MiF, the performance of
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Fig. 6. Average number of votes per label in each dataset.

TABLE III
AVERAGE RANKINGS IN THE COMPARISON AMONG G3P-KEMLC AND

STATE-OF-THE-ART EMLCS.

G3P-3 G3P-V ECC EBR EPS RF-PCT
AHL 1.81 1.44 4.59 4.69 3.81 4.66
SA 3.22 2.88 3.22 4.09 2.66 4.94
ExF 2.00 1.63 4.41 4.34 3.88 4.75
MiF 1.75 1.50 4.72 4.16 4.25 4.63
MaF 1.47 1.97 4.41 3.75 4.50 4.91
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Fig. 7. Critical diagrams of Holm’s test at 95% confidence for the comparison
between G3P-kEMLC and state-of-the-art EMLCs. G3P-kEMLC-3 and G3P-
kEMLC-V are indicated as G3P-k3 and G3P-kV, respectively.

both G3P-kEMLC configurations is significantly better than all
other methods. For MaF, the performance of G3P-kEMLC-V
is statistically comparable to EBR, while for SA, RF-PCT is
the only method that perform significantly worse than both
EPS and G3P-kEMLC-V.

Therefore, we demonstrate that given the optimal structure
of the ensemble that G3P-kEMLC obtains, independently
of the configuration used, it outperformed state-of-the-art
EMLCs.



VI. CONCLUSIONS

In this paper, we introduced a method based on G3P for
building EMLCs. Given a pool of multi-label classifiers, each
focused on a subset of k labels, where k could be different
for each, the algorithm evolves individuals representing a tree-
shaped ensemble. At each node of the ensemble, predictions
of children nodes are combined, while the leaves represent
any multi-label classifier of the pool. The experimental study
on 16 multi-label dataset using 5 evaluation metrics yielded
promising results, demonstrating that the fact of building a
tree-shaped ensemble where not all members have the same
importance in the final prediction not only outperformed
RAkEL (which also is focused on small subsets of the labels)
but also the other state-of-the-art EMLCs, obtaining the model
in acceptable time. Moreover, the proposed method is flexible
and able to adapt the number of members of the ensemble
according to each specific case.

In the future, we will explore other types of non-terminal
nodes to combine the predictions, which also may use different
types or number of child nodes. Further, we will develop a
heuristic or evolutionary process to get a pool of multi-label
classifiers that are accurate, diverse, and have an optimal size
of the k-labelsets.
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