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Abstract 

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for diagnostics, prognostic, 

and treatments of various neurological diseases. However, the lack of anatomically realistic brain 

phantoms has made the experimental verification of stimulation strength in the form of induced 

electric fields/voltages in the brain tissues an impediment to developing new TMS coils, 

stimulators, and treatment protocols. There are significant technological, safety, and ethical 

limitations to test the potential TMS treatment procedures or develop enhancements and refine 

them on humans or animals. This work aims to bridge the gap by introducing and developing an 

innovative manufacturing and fabrications process to produce a geometrically and anatomically 

accurate head and brain phantom capable of being used in experimental evaluations of stimulation 

strengths in neuromodulation techniques and in particular in TMS. We developed a 3-D 

anatomically accurate brain phantom that can mimic the electrical conductivity of the brain by first 

developing a process of creating computational 3D models using patient-specific MRIs followed 

by the development of a polymer composite that mimics the brain’s conductivity and finally, a 

process to covert computational 3D models to patient-specific anatomically accurate brain 

phantoms. We present the development and fabrication processes of the head and brain phantom 

in detail. The process is based on our novel technique called “the shelling method” that enables 

the production of highly intricate geometries like the brain. After that, we show an example of the 

current and immediate application of this research in which the brain phantom can play an essential 

role in developing new TMS treatment procedures for neurological disorders. We use the brain 

phantom to examine the safety of combing two of the prominent brain stimulation techniques, 

TMS and DBS. Our experiment on the phantom shows that It is unsafe to operate the TMS joined 

with the DBS when operated at maximum and proximal to the DBS leads. Moreover, we run a 
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series of experiments and measurements to assess and evaluate the brain phantom’s stimulation 

strengths during TMS. We also present the measured magnetic fields generated by the TMS coils 

in the Biomagnetics Laboratory. We investigated the feasibility of mapping the electric field on 

the brain using anatomically accurate brain phantoms. Finally, we conclude our work and 

recommend future improvements to the patient-specific, anatomically accurate brain phantom. 
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1 Introduction 

One in five adults in the US has a diagnosable mental illness [1]. Alzheimer's and Parkinson's 

diseases are the most common neurodegenerative disorders in the US, accounting for half a million 

for the former  [2]  and 5.4 million for the latter [3]. Therefore, neuroscience and brain research 

has gained increasing attention in recent years [4]. TMS is an FDA approved treatment for 

depression [5], migraine [6], and obsessive-compulsive disorder (OCD) [7]. Researchers also 

investigate it extensively to be used as a promising treatment technique for other neurological 

disorders like Parkinson's [8,9], Alzheimer related cognitive impairments [10], and ischemic 

strokes recovery [11]. While computer modeling and simulation help calculate and predict the 

strength of stimulation of the TMS to design treatment protocols (dosage), it lacks aspects of the 

actual representation of real-world physics. Although there are extensive computational and 

clinical studies of the TMS, there is a lack of experimental and physical models for testing and 

examining the brain stimulation procedures and protocols. There are significant technological, 

safety, and ethical limitations to test the potential TMS treatment procedures or develop 

enhancements and refine them on humans or animals. The lack of anatomically realistic brain 

phantoms has made the experimental verification of stimulation strength in the form of induced 

electric fields/voltages in the brain tissues an impediment to developing new treatment protocols. 

Several papers report electrically conductive brain phantoms but lack the anatomical and 

geometrical features of the brain.  [12–14]. The geometry of an electrically conducting material in 

the presence of a magnetic field can significantly influence the induced electric fields [15,16]. 

Wagner et al. (2004) state that “The induced field is entirely dependent upon the 

anatomical/geometrical structure and electrical tissue properties of the system and small 

perturbations can alter the field drastically” [17]. Therefore, it is crucial to consider the brain's 
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geometry, either numerically or experimentally, when studying the level of stimulation produced 

by external brain stimulation techniques.  

 

Figure 1 Electric field distribution and maxima change between FEM simulation that considers the geometry and heterogeneity 

in electrical conductivity compared to spherical models' projection.[15] 

Advancement in the computational and modeling studies in TMS was achieved as researchers 

developed pipelines that can convert complex structural images of MRI into realistic models of 

the brain to investigate TMS's stimulation parameters further. For example, Thielscher et al. (2011) 

showed that the gyri's geometry in the brain, along with heterogeneity in conductivity, has a 

significant impact on the focality and target-ability.  Figure 1 shows that the electric field 

distribution and maxima change between FEM simulation that considers the geometry and the 

heterogeneity in electrical conductivity compared to the projection of spherical models.  

Previous modeling techniques were experimentally validated and verified with simple 

geometries like spheres or cubes [12,13,18]. Analogously, there is a need for experimental 

validation/verification of the computer modeling and simulation of complex and realistic brain 

models. This work aims to bridge the gap by introducing and developing an innovative 

manufacturing and fabrications process to produce a geometrically and anatomically accurate head 
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and brain phantom capable of being used in experimental evaluations of stimulation strengths in 

neuromodulation techniques and in particular in TMS.  

This thesis consists of three main sections/chapters. In the first chapter, we present the 

processes involved in the development and fabrication of the head and brain phantom in detail. 

We present the novel method that we call the shelling method that we developed to obtain highly 

intricate and complex geometries like the brain. The other central part of chapter 1 is that we show 

the process of obtaining the “tissue" that mimics the brain's most relevant electrical property in 

such an application, namely, the electric conductivity.  

In chapter 2, we show an example of the current and immediate application of this research in 

which the brain phantom can play an essential role in developing new TMS treatment procedures 

for neurological disorders. We use the brain phantom to examine the safety of combing two of the 

prominent brain stimulation techniques, TMS and DBS. We investigate the possible 

electromagnetic interference when using both modalities in this chapter. The alternating magnetic 

field generated by the TMS coils can induce unintended and excessive current on the DBS probe 

implanted in the head/brain.  We present the brain and head phantom developed to host the DBS 

probe and exposed to the TMS's intense magnetic pulses. We measured the current in the DBS 

lead, and we show that the current is in the range of the unsafe limits when used at maximum coils 

power. 

In chapter 3, we run a series of experiments and measurements to assess and evaluate the TMS 

and brain phantom environment. We present the measured magnetic field of the TMS coils in the 

Biomagnetics laboratory. We also investigated the feasibility of mapping the electric field on the 

brain using the oscilloscope probe. We measured the coils' induced voltages, on a conductive 

polymer sheet, and the brain phantom to reconstruct the electric field.   
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1.1 Brain anatomy and electrical properties 

 The central nervous system (CNS) consists of the brain and the spinal cord. The brain 

consists of three main parts: Cerebrum, cerebellum, and brainstem. The cerebrum is divided into 

left and right hemispheres that each hemisphere controls the opposite part of the human body. The 

cerebrum is comprised of different smaller regions and layers. The brain's outer layer is called the 

grey matter (GM) or the cortex, where the neural cells are mostly found. Going more in-depth than 

the cortex, we find the white matter (WM) made up of the neuron's axons or fiber tracts. The TMS 

work is substantially related to the brain's outer layer, the cortex because the effect of the magnetic 

field is mostly superficial [19]. Figure 2 shows some of the main parts of the CNS and the brain. 

 

Figure 2 An illustration of some of the main parts of the central nervous system and the brain [20] 

 The electrical properties of the brain, especially the electrical conductivity, is of significant 

relevance to our work in the TMS and the fabrication of the brain phantom.  Many researchers 

studied the brain's electrical properties over the past decades by various techniques and 

methodologies [21–30]. The first observation is that there is a wide range of variations in the 

reported electrical conductivity values. Such disparity could have resulted from the verity of the 

measuring techniques. Some of the techniques, for example, are based on direct measurements of 

the current form excised brain tissues of patient or cadavers, and some other techniques were based 
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on non-invasive means by evaluating the conductivity based on correlations to the MRI images 

information. We observed that in some cases, the conductivity of the grey matter is higher than the 

white matter and vice versa. 

Moreover, the electrical properties like the conductivity and the permittivity are dependent 

on the frequency.  For that reason, in table 1, we present some of the most relevant publications 

with values and measurements of electrical conductivity and permittivity (often referred to as the 

dielectric property). In general, these conductivity values (from 0.1 up to 2.5 S/m) are considered 

to fall in the low conductance values compared to the electrical conductivities of various materials, 

as in Figure 3.  

 

Figure 3 Spectrum of electrical conductivity of materials [32] 

In this work, as we will show the process of manufacturing and fabricating the brain 

phantom, we chose to assign conductivity values that are averaged and within the range of the 

reported values.  
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Table 1. Relevant reported brain electrical properties in literature 

 

 

 

  

Reference/ 
Author Method Frequency 

Conductivity (	" ) and relative permittivity (# r) values 

GM WM CSF 

 $[S/m] # r $   
[S/m] # r $   

[S/m] # r 

Gabriel. S 
(1996) 

[21,22,24] 

Direct 
measurement 

10 Hz - 
20GHz (2.5 

kHz) 

0.05 - 10  
( 0.1) 

10E+07 
(10E+04) - - - - 

Wagner. T - - 0.27 1.2E+07 0.12 1.2E+07 1.65 0.6E+07 

Gabriel. C 
(2009) [27] 

Direct 
measurement 

less than 1 
MHz - - - - 1.5 - 

Akhtari. M 
(2016) [29] 

Bulk 
measurements 
from excised 
brain tissues 
and dMRI 
analysis. 

- 0.06-0.24 - 0.06-
0.24 - - 

Mickel. E. 
(2017) [30] 

MRI T1-water 
content 

weighted 
acquisition 

- 0.63 74.66 0.39 61.1 2.22 83.83 
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1.2 Neurons and action potential 

 The building blocks of the nervous system are the neuron cells and glial cells. The glia 

cells support the growth and development of the neurons by providing nourishment and protection. 

Experts estimated that there are around 85 billion nerve cells in an adult human CNS [33]. 

The neuron consists of four main parts, cell body, axon, dendrites, and synaptic terminals, as shown 

in Figure 4.  

 

Figure 4 Depiction of the basic structure of the neurons [34] 

 There is tremendous connectivity between the neurons; there are trillion synaptic 

connections in one cubic centimeter of the cortex, and there are up to six levels of connections 

between some neurons in the brain. Therefore, the brain is highly interconnected, and any influence 

on one area of the brain will have a more considerable impact on the brain due to the connectivity. 

The neuron cells in the nervous system are divided into different groups according to their 

functions. Some are sensory; others are motor or a combination of the two. They also differ in 

terms of the geometrical structure like pyramidal, basket spindle, etc. 

The neurons' activity and function are to process and transmit information around the 

nervous system and the body. Of the essential functions is the neural action potential shown in 

Figure 5. It is the transmission of electrical signals from one neuron to another in which the neuron 

membrane opens and exchange positively charged ions from outside the cell and negatively 
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charged ions inside and vice versa. This action potential happens when the neurons receive signals 

from other cells. The sum potential overcomes a threshold (around -55mV) that triggers the neuron 

to fire and start the ion exchange process. The cell always tries to maintain a resting potential of 

around -70 mV [35]. 

 

Figure 5 An illustration of the stages of the action potential of the neurons [36] 

 There are also other means of eliciting neural firing in neurons, such as applying an external 

alternating magnetic field similar to TMS, which induces an electric field that depolarizes axonal 

membrane and initiates action potentials in the neurons [37]. The amount of excitation depends on 

many factors like the length of the axons, the axons' orientation with respect to the rate of change 

of the electric field, electrical conductivity, and distance from the TMC coil [16,37,38].  

 There are two types of neuronal signals/responses, inhibitory and excitatory. The excitatory 

action is when the neurons firing extend to the next neuron by a class of chemicals called the 

neurotransmitters. The inhibitory action is the opposite, where the released neurotransmitters 

inhibit the firing of the next neurons. 

The action potential is likely to occur when the electric field gradient is highest along and 

parallel to the axons and when bent as depicted in Figure 6.[39,40] 
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Figure 6 An illustration of the likelihood of neural activation on axons with respect to the electric field. (a) Uniform E along 

axon showing no activation, (b) gradient activation, (c) bent axon in a uniform E, (d) transverse activation, (e) axon termination 

in a uniform E. D= depolarization, H= hyperpolarization.  [39] 

 That shows it is crucial to recognize the magnitude, directions, and gradient of the electric 

field to the treated neuron population during the brain stimulation. 

1.3 Transcranial magnetic stimulation (TMS)  

 Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for diagnostics and 

treatments of various psychiatric and neurological disorders [41–43]. TMS coils produce an 

intense and time-varying magnetic field on the brain that induces an electric field on the brain's 

conductive parts. The electric field works as a driving force on the neurons that will initiate an 

action potential when it exceeds specified limits (motor threshold). The alteration on the neuron 

synaptic in a controllable fashion will inhibit or excite these neurons' activity and, therefore, lead 

to a change in the brain and body functions. Figure 7 shows an illustration of the basic principle 

of the TMS. 

 There are many advantages of TMS that makes it very promising for researchers and 

clinicians. It is non-invasive, meaning that there is no need for any surgical interventions to modify 

the brain neural activity as opposed to techniques like the DBS. It is safe and relatively painless 

and has very little pain in some cases [44]. The most significant advantage of TMS is that it can 

be administered in an outpatient setting where the patient does not need to be hospitalized or 
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anesthetized. Patients can continue their day to day activities immediately after the TMS treatment 

[45].   

 

Figure 7 An illustration of the TMS, where coils produce a magnetic field which induces an electric field on the brain motor 

cortex. [46]  

 The TMS device consists of two main components, the power stimulator, and the coils, as 

in Figure 8. The power stimulator's function is to produce transient current form a charging 

system up 8000 A in less than 100ms (2-3kHz) and with voltages that reach up to 7500 V [47]. 
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Figure 8 Simplified diagram of the single-pulsed TMS stimulator circuitry where V=voltage sources, s= switch, C= capacitor, 

D=diode, R= resistor, T= thyristor. [48]   

 

The waveform of the current running in the coils is significant because it dictates the 

induced magnetic field's shape and the voltages, as illustrated in Figure 9.  

 

Figure 9 (A) monophasic and (B) biphasic pulses produced by the TMS coils [49].  

1.4 Theoretical background 

In electromagnetism, H is known as the magnetic field, and B is magnetic field flux density. They 

have the following relationship in the equation: 
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! = #!#"$                                                          Eq. (1) 

Where B is the magnetic flux density, #! is the permeability of the free space, #" is the relative 

permeability —the resultant multiplication of #!#"=#.  

After the magnetic field production in current-carrying coils, it penetrates the scalp and interacts 

with the brain tissue and generates an electric field in the conductive parts of the brain. This 

phenomenon is governed and expressed by the third law of Maxwell equations, Maxwell-Faraday's 

equation. Maxell's equations are shown in the following, 

                                                            Eq. (2) 

 

                                                            Eq. (3) 

 

                                                         Eq. (4) 

 

                                                  Eq. (5) 

B is the amplitude of the magnetic flux density and E the electric field vectors. r is the charge 

density. J is the current density vector. The electric field in TMS can be found by the following 

equation [39]: 

E&&⃗ = − #$%%⃗
#' − ∇Φ                                                      Eq. (6) 
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A&&⃗  is the magnetic vector potential corresponds to current levels running in a coil, Φ is the electric 

scalar potential resulting from the charge accumulation on the conductor boundaries and 

discontinuities.  

E&&⃗ = −∇Φ                                                         Eq. (7) 

"ohm's law" is as follows, 

J⃗ = σE&&⃗                                                             Eq. (8) 

A special treatment to the Maxwell equations at lower frequency is called the Quasi-static 

approximation. Plonsey et at. (1969) [50] presented the derived equations in terms of the scalar 

and vector potentials. Heller et al. (1992) [51] expressed it in terms of the electric field directly 

and they are as follows: 

∇	 ⋅ 	J + ∂ρ
'( = 0                                                      Eq. (9) 

J can be decomposed into, 

J = J( + σE	                                                     Eq. (10) 

J( is the primary current and σE is the conduction or return current. In biological tissue, the effect 

of the dielectric current or the polarization current is negligible compared to the conduction current 

σE. When the conductivity is constant, the charge density decays fast following 1)*!+. Therefore, 

the charges appear at the surfaces when σ jumps in value.  2! is the characteristics frequency and 

it is giving by, 

2! =
,
-                                                         Eq. (11) 
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The ratio of the conductor size to the skin-depth 3 is of another consideration. 3 is given by, 

.
/" =

.
0 #!42                                                       Eq. (12) 

When there is no electric charge density, the electric field equation is satisfied by, 

∇0E = −(6#!42 + #!720)9                                           Eq. (13) 

Assuming the brain conductivity 4 = 0.4	=/? leads to 

30 = 0
1!,*	

= 	 = 	4.0	@	103	B?3                                       Eq. (14) 

For a frequency 2 ≈ 103 and D ≈ 20	B?,  F 4/"G ≪ 1. This shows that expansion of E in terms of 

2 will converge rapidly to a real solution, which is the principle of the quasi-static approximation. 

Inserting the expansion of E into Eq.13 yields, 

∇0E = 0                                                         Eq. (15) 

Now, to solve the problem for a magnetic source, the reciprocity theorem can be used, and it leads 

to, 

p ⋅ E(6.) = iωm ⋅ B(60)                                             Eq. (16) 

where p is a current dipole at position r inside a conductor, m is a magnetic moment located at 

position r2 outside the conductor. This equation is a direct relation between the 

magnetoencephalography and electromagnetic stimulation, and hence the reciprocity. The static B 

is given by Biot-Savart law, 

B(r) = 8!
9: 	∫ P

;Q<R(Q<) × ∇< .
|")"<|                                    Eq. (17) 

Which can be converted into a surface integral 
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B(r) =
µ!
4U	[Ρ	 ×	∇. 	

1
|Q − Q<| − Σ	>Z4>

) 	+ 4>?[ 

× ∫ P\<>](Q<)^(Q<) × ∇<
.

|")"<|                         Eq. (18) 

Where ] is the electric potential on the surface. Considering that the head is spherical and 

symmetrical, and the conductivity is only a variable of distance, the solution to the magnetic field 

is as follows, 

B(r) = 8!
9: 		∇0 		

@	×"#⋅""
C =	 8!

9:C"	 	[	_p	 × r. − (p	 × r. ⋅ r0	)∇
0_]           Eq. (19) 

F is a function of the r.and	r0, 

_ = 	d(r0d	 +	r0 ⋅ 	d)	                                                Eq. (20) 

And, 

d = 	 r0 − r.                                                       Eq. (21) 

To obtain E(r),  m ⋅ B(r) is needed for the first term and as follows, 

m ⋅ B(r) =
µ!
4U	(? ⋅ ∇0)

p	 × r. ⋅ r0
_  

= 
8!
9: 		p ⋅ (? ⋅ ∇0)

6#×6"
C                                                        Eq. (22) 

Comparing it to Eq.16 results in the electric field solution given by, 

E(6.) = iω
µ!
4U 		p ⋅ (? ⋅ ∇0)

r. × r0
_  

= iω 8!
9:C"	 	[_r. ×? − (? ⋅ ∇0	e)r. × r0]                 Eq. (23) 
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2 Chapter1: Anatomically accurate and electrically conductive 

brain phantom 

2.1 Introduction: 

Mimicking human body organs is an exciting field in engineering and biomedical 

engineering in general [52,53]. Scientists, engineers, and researches have sought to manufacture, 

mimic, fabricate, replicate, and imitate specific properties and characteristics of physical objects 

since the dawn of the scientific method because it allows experimental methodologies to perform 

beside analytical and numerical solutions to apprehend the essences and principles of natural 

phenomena [54].  

We have developed a geometrically accurate 3-D brain and head phantom [55] with the 

electrical conductivity matching the average electrical conductivity of the grey matter (GM) and 

white matter (WM) in the brain as well as the conductivity of the cerebrospinal fluid (CSF). In this 

study, we have mainly focused on GM and WM as they make up the cortex, which is the brain's 

main region that TMS procedures target in most neurological disorders’ treatment. The phantom 

will enable the researchers and clinicians in the brain modulation to test and perform brain 

stimulations on the phantom before clinical studies of TMS treatment.  

Manufacturing the geometry of the brain has been a challenge. Some groups successfully 

obtained the brain geometry but without imparting the electrical conductivity to the regions of the 

phantom material [12–14]. Therefore, the main challenge is to fabricate an electrically conductive 

and anatomical accurate brain phantom to validate the TMS's experimental side. 

The principle of phantoms in medical imaging and health physics has been known for a 

long time [56]. For example, in medical physics, phantoms are used to assist in measuring the 
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absorbed dose of the X-ray of many X-ray machines modalities like conventional X-ray, 

computational tomography CT, mammography, etc. [57]. Also, they are utilized to calibrate other 

medical imaging modalities like the MRI machines [58]. The phantom, in this case, consists of 

many compartments. Each compartment is formed or created with a material that mimics the 

proton density of the different segments or parts of the human body.   

The advancement in 3D printing techniques boosted the manufacturing processes for 

various applications [59,60]. There are many different techniques for 3D printing, including fused 

deposition modeling (FDM), powder bed, inject printing and contour crafting, stereo-lithography 

(SLA), selective laser sintering (SLS). There are also other emerging printing techniques where 

the printed materials consist of polymers enhanced with other composites to improve the 

performance and functionality (e.g., fiber-reinforced polymer composite, particle reinforced 

polymer composites, and nanocomposites).  

The electrical conductivity values of any specific region of the brain vary between different 

sources of literature and also between subjects (see Table 1)  [25,29,30,61]. For that reason, we 

chose an average conductivity of our brain phantom's constituent material (conductive polymer) 

to be approximately 0.25 Sm-1. This value is the average conductivity of the GM and WM from 

the literature. For the CSF, we chose a conductivity of about 1.4 Sm-1 made of saline water and 

injected inside the head phantom. 

This chapter presents the process of creating the anatomically accurate electrically 

conductive brain phantom with an adjustable conductivity for brain stimulation applications.  
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2.2 Materials and Methods: 

This section shows in detail the processes to produce the head and brain phantom. 

Nevertheless, first, I would like to give a brief summarized introduction of the entire process. To 

create an anatomically accurate and electrically conductive brain, we have to take it to step by step. 

Before imparting the conductivity to the brain phantom, we have to overcome manufacturing an 

intricate geometry such as the brain. We introduce a new approach that we call the shelling method, 

where we create shells/molds for the desired part of the brain to be built and used with as 

appropriate conductive composite to be cast into the molds. The process started with acquiring a 

magnetic resonance image (MRI) of the brain of an individual. The MRI images were segmented 

into 3D models in an stl file that is processed to create the shells. Shells were printed using a 3D 

printer with dual extrusion because the shells with the complex geometry need a support material 

that helps build up the shells and the surface finish. The advantage of using the shelling method is 

that those shells can be easily removed after the polymer's molding. After that, the shells were 

broken and dismantled using acetone and finally producing the phantom. We acquired SEM 

images of the conductive polymer composition to show the conductive filler's dispersion into the 

polymer. Finally, CT images of the physical phantom were acquired to confirm the brain's accurate 

reproduction of anatomical features compared to the original MRI segmented brain model. Each 

step is explained in detail in the following sub-sections. Figure 10 shows a summarized process 

chart of the brain phantom's creation and the related steps to validate it. 
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Figure 10 Process chart summarizing the steps related to the brain phantom creation and validation. 

2.2.1 Segmentation: Reconstruction of the MRI images into 3D models. 

There are many techniques for segmenting the 2-dimensional medical images into 3-

dimensional models. For the brain segmentation, we used FreeSurfer (Athinoula A. Martinos 

Center for Biomedical Imaging, Charlestown, MA, United States), SimNIBS (Danish Research 

Centre for Magnetic Resonance (DRCMR), and FSL (Analysis Group, Oxford, UK) software. 

These software are used to segment the MRI images of the head into the skin, skull, CSF, and the 

main parts of the brain: Grey matter, white matter, ventricles, and cerebellum. In the following, 

we present the steps required to install the software to reconstruct the MRI images into brain 

models. 

The process starts with installing the required software and ends by adjusting and handling 

the precision and characteristics of the brain models and simulation. These software are best to be 

installed on MAC and Linux systems.  
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  First, very basic knowledge of how to use the Terminal on Mac is required, which is the 

equivalent of the Command window on Windows. That is because one will need to perform some 

tasks and commands on the terminal to complete either the installation, the configuration of the 

software, or in the later steps, the construction of the brain models and simulation. 

Now, we open the terminal and make sure to work in the right shell environment. In our 

case, it is the ".bash" shell environment. In order to change the shell, go to the link 

(https://osxdaily.com/2007/02/27/how-to-change-from-bash-to-tcsh-shell/) and follow the steps. 

This is a crucial step because the installations will not complete as the variable required for 

installation will not be available on any shells other than the .bash environment. The terminal 

window should look like Figure 11. 

 

Figure 11 MAC terminal set on the Bash environment and ready for the software installation 

 We should note that the terminal's final set up as it appears in Figure 11 will be achieved after 

completing the entire process. The following are the steps needed to install the three primary 

software (FreeSurfer, FSL, simNIBS): 
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1. FreeSurfer 

I. We need to download and install the FreeSurfer from the following link 

(http://freesurfer.net/fswiki/DownloadAndInstall) and download the appropriate 

version for the MAC system.  

II. After the download, simply we click on the .dmg file and complete the installation. We 

make sure that Mac OS X users: Mac OS X platform requires the installation of 

XQuartz for FreeSurfer to work correctly. Pre-Yosemite versions of OSX require 

XQuartz 2.7.5. Post-Yosemite versions of OSX require XQuartz 2.7.6) before going 

further in the installation.  

III. Then, we open the Terminal and write the following configuration command: 

  $> export FREESURFER_HOME=/Applications/freesurfer 

  $> source $FREESURFER_HOME/SetUpFreeSurfer.sh 

This simply means that the software is directly accessible and available to other software or 

whenever needed for recall. 

2. FSL 

I. For the installation of FSL, we go to the following link 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation) and download the FSL version for 

the MAC OS. Here also we need to register and create an account in order to be able to 

download.  

II. Follow the steps in this link 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation/MacOsX) to complete the 
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installation. Then, we open the terminal and go to the download directory and type the 

following command, 

  python fslinstaller.py 

3. simNIBS 

I. After successfully installing FreeSurfer and FSL, we are ready to install simNIBS. 

Click on this link simNIBS (https://simnibs.drcmr.dk/) to go to the website where we 

can download the software. We need to register on the website and create an account. 

Then go to the download section and download SimNIBs latest version for MAC OS 

as in Figure 12. 

 

Figure 12 The webpage where simNIBS is downloaded from. 

II. Now go to the following link and install simNIBS by the terminal. Or simply find the 

installation instructions from simNIBS website.  
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Now we are ready to create brain models with simNIBS. SimNIBS relies on FSL and 

FreeSurfer to perform the Segmentation. The segmentation is a process where the MRI images 

are analyzed based on the T1 and T2 relaxation time.  

Now it is ready to use simNIBS to create models from MRI images that have the extension 

of nii.gz. We can find some of the reconstructed models as examples from the simNIBS 

website.  

After downloading the example file, open the terminal instance to the directory to have the 

file downloaded. Type the following command:  

mri2mesh --all simnibsExample almi5_T1.nii.gz almi5_T1fs.nii.gz almi5_T2.nii.gz 

almi5_T2fs.nii.gz 

simNIBSExample is the model name. Change it accordingly if the file name is different.  

Please allow about 12 hours of modeling. After that, to check up on the results, we can either 

do that through simNIBS_gui or the gmsh software.  

In the terminal window, go to the directory where we have the files created after the modeling. 

The files should look like the following Figure 13: 

 

Figure 13 An example of the file window that contain the segmented files as stl extension 
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Figure 14 An example of a reconstructed model and ready for simulation in simNIBS 

Now, we are ready to run a simulation on the created stl files of the brain model (Figure 

14) and work on the shelling method developed to create and obtain the brain phantom's 

physical geometry. Figure 15 shows the separate regions of the reconstructed brain model in 

Meshmixer. 
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Figure 15 MRI image segmented into the (a) skin, (b) skull, (c) CSF, (d) grey matter GM, (e) white matter WM, and (f) ventricles. 

The scales of the segmented models are modified and do not reflect the actual scales 

b 

c d 

e f 

a 
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2.2.2 Shelling method and shells creation 

We introduced the shelling method. The shelling method's main idea is that it is capable of 

producing the full geometry of the brain without losing any of its intricate features.  

Following the segmentation of the brain parts, we imported the brain model into 

Meshmixer software. In Meshmixer, we worked on creating a shell of the brain's outer side by 

working on the Grey mater layer. One way to do that in Meshmixer is by creating a solid object 

out of the brain (GM) with a 1 mm offset thickness. Then, we subtract the original brain model 

from the solid brain. This will create the shell. The shell's inner side is nothing but the original 

geometry of the brain's surface (GM). There will be an overlap but only on the outer side of the 

shell, which is fine as long as the area of interest, inner side, is intact and has no overlap. In other 

words, the shell = 1 mm-additional-thickness brain model – original brain model. 

After creating the shell, some refinement of the shell is needed as the post shell creation 

process results in tiny parts of the brain with undefined shapes due to the low mesh numbers in 

that region the thickness of the shell can vary depending on the 3D printing technique and material. 

In our work, we found that 1mm thickness is optimal between the shell's sturdiness and the 

dissolving/breaking of the shell time. This process can be applied to different parts of the 

segmented brain. For example, the white matter shell can be obtained by subtracting the white 

matter from the grey matter and then making a 1 mm thickness of the GM's inner side. Figure 16 

shows a simplified illustration of creating the shell for any geometry of the brain. 
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Figure 16 illustration of the shell creation with simplified geometry of the brain parts. This simple method can be 

applied to any part of the brain like GM, WM, or vertical. For example, considering the GM to be object A, we create 

a solid object in Meshmixer with 1mm offset distance to create object A'. Subtracting object A form A’ will result in a 

GM shell with thickness of 1mm. 

 

 

 

 

 

To ease shell's printing, the brain shells were split into two shells, upper and lower shells, as 

in Figure 17. This way, we can cast the conductive polymer inside the shells, join them together, 

and then remove them. 
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Figure 17 (a) inside and (b) outside views of the upper half of the grey matter shells created in Meshmixer and ready for 3D 

printing. 

2.2.3 Shells 3-D printing 

 After the creation and refinement of the shells, the shell is ready to be printed. There are 

many different printing techniques. In this work, we used the filament deposition modeling FDM 

technique. We used Ultimaker3TM (Dual extrusion 3-D printer was obtained from Ultimaker Inc.) 

because it has dual extrusion and can print with Polylactic acid PLA and Polyvinyl alcohol PVA 

as support. The shell has an intricate geometry. Therefore, printing with one material will be 

troublesome to obtain the needed shell geometry with a fine surface finish. The surface finish is 

significant because it is a mold for to-become a phantom. So, we used a dual extrusion, one 

extruder to print the shell material. For that one, we used PLA because it becomes brittle when 

immersed in acetone. For the second extruder, we used PVA that is dissolvable in water to support 

the PLA to be built and help obtain a smoother surface finish. Figure 18  shows the setup of the 

a b 
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3D printing of the shell in open-access software Cura. One can adjust the printing parameters as 

needed, such as the filament deposition rate and temperature. There is no one setup of the 

parameters as it is an optimization process between time and quality. 

  Figure 19 shows the printing in the progress of the GM shells. After the printing is done, 

the entire printed object made of the PLA and PVA is immersed in water to dissolve the PVA and 

remain with the shell made of PLA, as shown in Figure 20. Now, the shell is ready to be cast with 

any polymer (e.g., conductive polymer). Figure 21 shows a flow chart summarizing the entire 

process of the shelling method. The process of preparing and imparting conductivity to the polymer 

is shown in the next section. 

 

Figure 18 Shell printing preparation and setting in Cura software 
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Figure 19  Showing the shells as they are in the printing process with the PLA as the main material and the PVA as a support 

 
Figure 20 Upper and lower shells of the brain (GM) printed. We removed the supporting material PVA by washing and 

dissolving it in water. Now the shells are be casted with the conductive polymer 

a b 
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Figure 21 A flow chart showing summery of steps take in order to obtain the entire geometry of the brain and head phantom 
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2.2.4 Conductive polymer  

 The development of conductive polymers has been widely researched over the last decades 

for different applications [62–69]. In some applications, high electrical conductivity is needed 

regardless of the mechanical properties. In some other applications, elasticity is needed to be 

accompanied with the moderate conductivity. There are many ways to impart conductivity to the 

polymers. Some are achieved by chemical manipulation of the bonds of the polymer, and others 

are achieved by the addition of conductive material to the polymers. Some examples of the material 

used are single and multi-walled carbon nanotubes SWCNTs and MWCNTs, carbon black CB, 

copper flakes, and silver particles and nanowires. Some of the processes and techniques of 

producing the required conductive polymers include mixing, milling, and grinding processes.  

 

Figure 22 Overall trend of the resistivity reading compare to conductive nanoparticles filler in polymers [66] 

 Figure 22 shows the overall established resistivity relationship between the conductive 

filler loading/composition in the host polymer's weight percent. Our work attempted to impart the 
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conductivity to the host polymer and obtained a loading/composition vs. resistivity behavior 

similar to the one in Figure 22.  

2.2.4.1 Conductive polymer preparation-criteria selection: 

 In our work on the conductive polymer, we aimed to match the brain's electrical 

conductivity closely. Table 1 shows the reported values of the electrical conductivity of different 

parts of the brain. Our targeted conductivity value for the brain lies in the range of about 0.1-0.5 

S/m. These ranges cover the averaged conductivity value of the GM and WM in the brain. This 

conductivity range also is considered to be moderate when compared to other materials. Metals 

have a high conductivity of about 1E+06 to 1E+08 S/m. 

Nevertheless, even though metals have high conductivity, they also have high permeability.  We 

decided to work on additive material with high electrical conductivity but with low relative 

magnetic permeability of about 1. Magnetic permeability is the measure of how much a material 

will become magnetized in the presence of an externally applied magnetic field. Carbon allotropes 

like multi-walled carbon nanotubes MWCNT possess relatively low relative permeability µr of 

about 1  [70]. Imparting the electrical conductivity is achieved when the additive filler weight 

percentage wt% reaches a level where the electrical conductivity starts to increase rapidly. This 

threshold is known as the percolation limit. The percolation limit has been calculated and 

experimentally measured in the literature [71]. In our work, we show the conductive polymer's 

behavior and the increment of the conductivity to the wt% of the conductive filler/host polymer 

similar to Figure 23.  

 Our experiment examined the variations in resistance/conductance measurements for the 

following criteria: type of the hosting polymer, mixing time, mixing speed, filler addition rate, 

temperature exposure, and the sequence and order in which the components are mixed to form the 
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composite. Our goal was to test whether the conductivity is established, or passed percolation 

limits, in the samples or not. We used a multimeter to measure any resistance readings less about 

100 kΩ. If the measurement is below 100 kΩ, it is considered that the method is valid in reducing 

the resistivity of the sample or lead to increasing the conductivity.  In the following, we present 

the details of each consideration. 

2.2.4.1.1 Type of host polymer: 

 We used two types of hosting polymers, commercial platinum-catalyzed silicone Ecoflex 

00-20 and Polydimethylsiloxane (PDMS). The Ecoflex silicone consists of two parts mixed with 

a 1A:1B ratio. With Ecoflex, we could measure resistance values less than 100 kΩ, but because 

the Ecoflex is mixed with a 1:1 ratio, each part of the silicone needs to be prepared separately, and 

when joined together, they lost conductivity. Also, the Ecoflex silicone has relatively low 

capacitance for the additive conductive filler MWCNT. At about 13 wt% additive filler of the 

MWCNT, the Ecoflex parts A and B would not appropriately mix and cure. Also, the mechanical 

stiffness of the Ecoflex after mixing is very low. That could be a disadvantage because when the 

brain phantom is made, an acceptable level of stiffness is needed to be compatible with any future 

stimulation strength measurement on the phantom that might include some probe insertion. Based 

on these experiments, we believed that using Ecoflex is not reliable. Then we moved to work on 

the PDMS. PDMS's first advantage is that it has 10base:1curing agent mixing ratio. That means 

the addition of the curing agent to the based will not significantly affect the conductivity 

established in the PDMS base. Also, it is observed that the PDMS has more capacitance than 

Ecoflex to accept higher wt% of the additive conductive filler MWCNT. It can reach more than 

16 wt% without affecting the conductivity established in the PDMS base. 
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2.2.4.1.2 Mixing speed: 

 Mixing speed is the stirrer's rotation per minute (rpm) used to mix the polymer and the 

conductive filler. It determines the shear force exerted on the mixture. Based on our experiments, 

mixing at speeds as high as 2500 rpm will result in a higher probability of losing established 

conductivity. When mixing at such high speed, we could establish the conductivity but then lose 

it before realizing it. That is because there might be a loss in the MWCNT aspect ratio due to the 

high shear force and breakage of the carbon tubes. Maintaining a higher aspect ratio is important 

because it will increase the connect-ability and network formation of the MWCNT within the 

hosting polymer and, therefore, increase the overall electrical conductivity of the composite. On 

the other hand, when mixing at speed around 600-700 rpm, we noticed that the conductivity is not 

established, especially for lower additive wt%. Therefore, we tested the mixing at 1000 rpm and 

found that it is optimal for establishing the conductivity, mixing time, and the weight percentage 

of the additive filler MWCNT. 

2.2.4.1.3 Mixing time and conductive filler addition rate: 

 We noticed that imparting the conductivity to the polymer is obtained when the polymer 

becomes highly viscous and hard to mix. Each MWCNT percentage added to the polymer has 

different mixing timing. Reducing the filler weight's percentage results in a longer mixing time. It 

is logical. Since that with fewer MWCNT percentage, it takes longer mixing time to disperse the 

MWCNT within the polymer texture and create the connected network of the conductive 

MWCNTs. Therefore, the mixing time is variable depending on the MWCNT percentage. Also, 

for the same MWCNT percentage used, time varies based on the rate of addition of the MWCNT 

to the PDMS. When adding the MWCNT gradually, the mixing time increases, and vice versa. 
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For this reason, we made our main criterion is the observed viscosity and mixability. For 

example, the mixing time for 8.5 wt% MWCNT with a fast addition rate is about 10 mins, but the 

mixing time takes about 1 hour with gradual addition. Both cases result in conductivity 

establishment but not with an accurate reading. So, we decided to select the fast rate of conductive 

filler addition as the criterion for consistency.  

2.2.4.1.4 Heat exposure: 

 The PDMS takes about 24 hours to cure after mixing the base with the curing agent 

thoroughly. However, one way to expedite the curing time is by exposing the composite to a heat 

source. When exposing the PDMS to a higher temperature, the curing time reduces to less than 

one hour. In our experiment on the conductive polymer creation, we noticed that exposing the 

conductive polymer to a heat source will lose the established conductivity. For that reason, we let 

the conductive polymer cure naturally and in the room temperature to avoid any modification or 

loss in the conductivity. 

2.2.4.1.5 Components mixing order: 

The conductive polymer components are the PDMS based, the curing agent, and the multi-

walled carbon nanotubes MWCNT. The sequence of adding these components needs to be fixed 

and controlled to obtain consistent results and readings of the conductive polymer samples' 

resistivity. Our observation is that when adding all of the components together before the mixing, 

they result in inconsistent resistivity readings. That could be because as the curing agent was added 

to the mixture before mixing, the heat generated from the fast stirring modified the establishment 

of the sample's conductance. This is coherent with the experiments of heat exposure to the 

conductive polymer, where a loss in the conductivity was observed. For that reason, the curing 

agent is added to the mixture after the complete mixing of the PDMS based on the MWCNTs. 
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After adding the curing agent, the sample was mixed again with the stirrer but for a very brief and 

short time. 

2.2.4.2 Conductive polymer preparation-final criteria selected: 

Based on the experiments mentioned above, our final criteria for preparing the conductive 

polymers to establish a correlation between the weight percentage of the conductive filler 

MWCNT and the hosting polymer are as follows: 

1) We used only PDMS base, curing agent, and multi-walled carbon nanotubes as the main 

components. 

2) The mixing speed of the samples using the mechanical stirrer is 1000 rpm. 

3) The conductive filler MWCNT must not be added at a gradual rate. The entire MWCNT 

patch should be added to the PDMS before the mixing. 

4) The curing agent should be added after the mixing of the PDMS base with the MWCNT. 

It can then be mixed for a brief time (around 30s) to ensure that it is fully distributed 

through the mixture. 

5) The prepared samples of the conductive polymer should not be exposed to a heat source to 

expedite the curing process. Otherwise, the conductive polymer might lose the established 

conductivity. 

2.2.5 Conductive polymer samples preparation: 

In this section, we show the steps of creating the conductive polymer samples (based on the 

criteria) to be tested and undergo resistivity measurements to establish a correlation between the 

weight percentage of the conductive filler MWCNT with the hosting polymer: 
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1) We prepare our sample components, polydimethylsiloxane PDMS base (SYLGARD 184 

silicone elastomer base), curing agent (SYLGARD 184 silicone elastomer curing agent) 

and, Multi-walled carbon nanotubes MWCNT (Graphene supermarket, diameter: 50-85 

nm length: 10-15μm) as seen in Figure 23. Measure each component's weight for the 

desired and targeted MWCNT wt% to the rest of the components. 

 

Figure 23 Main material components used to create the conductive polymer samples. a) PDMS base (SYLGARD 184 silicone 

elastomer base) and the curing agent (SYLGARD 184 silicone elastomer curing agent). b) Multi-walled carbon nanotubes 

MWMWCNTs (Graphene supermarket, diameter: 50-85 nm length: 10-15μm). 

2) For all of the samples prepared, it is recommended that the PDMS base's weight and the 

curing agent are to be fixed. We used about 100 g PDMS based on 10 g curing agents (the 

mixing ratio of 10Base:1curing agent grams). Then the MWCNT weight is varied 

depending on the targeted weight percentage. The weight percentage calculated with the 

straightforward formula: 

fgh	ij% =
fgh	i16lℎj	(l)

nDo=	pd\1	i6lℎj	(l) + BqQ6^l	dl1^j	i16lℎj	(l) + 	fgh	ij	(l) 
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3) We added the MWCNT to the PDMS based on a fast addition rate. Then the cup or 

container of the components is placed in a mechanical stirrer. Our experiment used the 

mechanical stirrer (Caframo, Ultra speed, model- BDC6015) with propeller and shaft 

(model A166), as seen in Figure 24. 

  

Figure 24 The MWCNT is added to the PDMS base and mixed with the mechanical stirrer at 1000 rpm 

4) After starting to mix the MWCNT with the PDMS, we will observe that the mixture's 

texture and outlook are changing over time. In Figure 25, we see that the mixture goes 

through three stages. The first is when the texture looks shinny and watery, low viscosity, 

and easy to be mixed entirely, as in Figure 25(a). The second is when we see that the texture 

becomes dimmer and starts to climb the blades rod, as in Figure 25(b). The third and final 

stage is when the mixture looks dimmer, has a texture of paste, and is harder to mix, 

meaning that the blades will rotate, but the mixture is no longer mixed thoroughly, as in 

Figure 25(c).  
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Figure 25 The main stages of the PDMS and MWCNT mixture over mixing time. (a) First stage where the texture looks shinny 

and watery, with low viscosity, and easy to be mixed entirely. (b) Second stage where we see that the texture becomes dimmer 

and starts to climb the blades rod. (c) The third and final stage is when the mixture looks dimmer, have a texture of paste, and 

harder to mix. 

5) Now, we add the curing agent to the mixture and mix for no more than 30 s. We have to 

ensure that the curing agent is spread evenly through the entire sample for a better polymer 

curing process. Then, we leave the sample to cure for at least 24 hours. Some samples 

might take longer than 24 hours to cure. Therefore, we always need to check and make sure 

that the sample is fully cured. 

2.2.6 Resistivity/ conductivity measurements of the conductive polymer 

The conductivity σ (Sm-1) is the reciprocal of the resistivity ρ (Ω.cm) σ=1/ ρ. The 

resistivity is obtained by measuring the resistance R in (Ω) of the selected sample and convert it 

to Ω.cm based on the sample's dimensions. There are various methods to measure the resistivity 

of the sample. Some techniques, like 4-points probe methods, are more accurate than others. In 

our measurements, we were looking for a very close estimation and measurements of the 

resistivity. We examined the following MWCNT wt% 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 

14.5. For each MWCNT wt%, we made three samples, and for each sample, we cut three 1 cm3 

pieces to perform the measurements. That means we performed nine reading for each wt% value. 

We used the multimeter contact probes and placed them on our conductive polymer samples. Also, 

a c b 
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we used another method to confirm the readings of the first method. We simply added two metal 

plates with carbon conductive paste on both ends of the sample. The resistivity/conductivity 

measurements are shown in the results and discussion section of this chapter. 

2.2.7 SEM images: 

 To understand our conductive polymer and observe the correlation between the conductive 

filler MWCNT wt% with the hosting polymer and the conductivity measured on the sample, we 

took scanning electron microscopy SEM images of four selected MWCNT wt% (5.5, 8.5.9.5 and 

14.5). In the following, we show the preparation steps and parameters used to take the samples' 

images. 

2.2.7.1 Sample preparation and scanning parameter: 

We selected four samples to be scanned with the SEM and obtain images at the microscopic 

level to provide a better understanding of our conductive polymer and to observe the formation of 

the MWCNT and dispersion within the hosting polymer PDMS. In the following, we show the 

main steps we followed to obtain the SEM images: 

We cut small pieces of the conductive polymers sample and place them on the stud with a 

double-side tape, as in Figure 26. It is recommended that the pieces be ripped off by a tweezer 

rather than cut with a razor. That will better show the roughness of the polymer concerning each 

MWCNT wt%.  The sample on the stud then should be placed inside a coating spotter to gold-coat 

the sample to enhance the samples' SEM images.   
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Figure 26 Conductive polymer samples prepared for scanning electron microscopy SEM. (a) the sample placed on the stud. (b) 

The sample after being gold coated by the coating spotter in order to enhance the quality of the images. It is recommended to 

work on 5 kV since we are working on a polymer-based texture. We obtained several images with several magnifications for each 

MWCNT wt% sample, and they are shown in the results and discussion section of this chapter. 

2.2.7.2 Mimicked CFS conductivity: 

To mimic the CFS, we used a saline solution with an adjustable concentration of sea salt. 

The targeted conductivity of CSF is in the range between 1-2.2 Sm-1, as in table 1. We mixed 

mineral sea salt with saline solution to increase its conductivity. The saline solution has an NaCl 

concentration of about 3.5 mg/ml to mimic the CSF’s conductivity. The salt and minerals increase 

the water's conductivity because they introduce more free electrons and ions. Then, we measured 

the resistance at the ends of the narrow path we 3D printed depicted in Figure 27. Based on the 

dimension and measured resistance, we can obtain the resistivity and convert it to conductivity. 

The result of the obtain conductivity is shown in the results and discussion of this section.  

 

Figure 27 Depiction of the saline resistivity measurement process  

  

a b 
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2.3 Results and Discussion 

 Here, we show and discuss the results of the first and second part of this chapter. In the 

first part, we presented the method and steps required to obtain and manufacture the brain's 

intricate geometry. In the second part, we present the results of the conductive polymer resistivity 

measurements. Then we will show the result of the combination of the first and second parts where 

we select specified resistivity of the conductive polymer and fabricate the conductive brain based 

on the shelling method of the first part. 

2.3.1 Brain phantom geometry obtained 

 Here, we show and discuss the results of the first of this chapter. In the first part, we 

presented the method and steps required to obtain and manufacture the brain's intricate geometry.  

The brain material is not electrically conductive at this point. Figure 28 shows the shelling method 

applied in order to obtain the GM layer only. In these shells, we printed the inner and outer layers 

of the GM. Then we injected the polymer (Silicone- Ecoflex) between the shells and let the 

polymer to cure as in Figure 29. After that, we placed and immersed the shells and the cured 

polymer in acetone for 24 hours. The acetone will make the shells softer and brittle. Then we 

removed the shells and obtained the geometry of the GM. This method is very useful in obtaining 

any complex geometry of the human body. There could be some cases in which some of the brain's 

mechanical aspects or any other organ of the human body need to be mimicked, replicated, or 

characterized. The used polymer can be selected based on different applications. One of the best 

advantages of this shelling method is that it can produce complex geometry to higher depth levels 

than some conventional molds and casting methods. That is because the shells are easy to be 

removed by dissolving them in acetone if the shells were printed with Acrylonitrile butadiene 

styrene ABS or they can be dismantled and break if they were printed with PLA. That is more 
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advantageous, primarily if the targeted material will be composed of hard polymers after they cure. 

In this work, as we will show in later sections of this chapter, we used the conductive polymer 

(PDMS/MWCNT composite) that becomes hard after the polymer gets cured. Therefore, 

dismantling the shells became much more comfortable when the shells were immersed in acetone. 

Figure 30 shows the shells after being removed from acetone, and they become easy to dismantle. 

The final production of the brain phantom's material is seen in Figure 31. 

 

Figure 28 GM shells are printed and washed off from the support material. (a) Shows the shells printed with ABS material that 

dissolves in acetone. (b) Shows the GM shells printed with PLA that becomes brittle and softer when immersed in acetone. 

a b 
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Figure 29  (a) the GM shells are being filled with polymer. (b)The polymer and shells after being cured and immersed in acetone 

 

Figure 30 After removing from acetone, the shells became brittle and easy to dismantle. 

 

a b 
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Figure 31 The brain phantom after removing the shells. (a) Shows the GM layer. (b) The GM was filled with another polymer to 

constitute for the WM. (c) the GM shells and the GM layer made of polymer 

  

a b 

c 
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2.3.2 Conductivity/resistivity measurements of the conductive polymer 

The conductive filler MWCNTs percentage plays a vital role in increasing and decreasing 

the polymer mixture's electrical conductivity. We measured the mixture's resistivity after it was 

cured to make sure that the formation of the carbon nanotubes inside the polymer is established, 

and the resistivity measurements are stable and reflect the actual resistivity of the mixture. One 

important observation when measuring the conductive polymer samples' resistance is that the 

resistance measured is not instantaneous, meaning that the resistance drops over time. The 

resistance measured decreases in exponential decay. After about three days of placing the 

multimeter probes on the conductive polymer samples, the resistance reading starts to stabilize. 

Figure 32shows the resistance readings on all of the conductive polymers to time with various 

conductive filler MWCNT wt% ranging from (6.45 wt% - 14.44 wt %). For better visualization 

and understanding of all of the sample's resistance with respect to time, Figure 33 shows the 

resistance behavior of all of the samples with different MWCNT wt% on a log scale. Figure 34 

shows the final measured resistivity of the conductive polymer with different MWCNT wt%. For 

each sample of MWCNT wt%, we performed about nine measurements to approach the actual 

resistance measurements. In Figure 32 and Figure 33 , we can see that the stander deviation SD is 

high in almost all cases. However, the standard deviation decreases as the MWCNT wt % 

increases. This is evident and more explicit when calculating the coefficient of variance (CV = 

standard deviation /average*100) to see how close we are to obtain the targeted resistivity with 

each specific MWCNT wt%. For example, the resistance on day three for the 7.75 MWCNT wt% 

equals about 3.19 kΩ with a standard deviation of 1.78 Ω. Therefore, the coefficient of variance 

CV is about 55%. Nevertheless, with 8.85 MWCNT wt% and 11.40 MWCNT wt%, the CVs are 

about 30% and 12.65%. We attribute these variations to many factors; we observe very high 
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fluctuations in the initial readings of each measurement, and we record a very rough estimation of 

the resistance reading at t=0; the subsequent measurements were not performed at the same time 

of each day. Also, as mentioned in the method section, the resistance measurements can vary 

significantly with each mixing parameter. For that reason, we set the mixing criteria controlled as 

much as possible to avoid losses in the established conductivity or substantial variation in the 

measured resistivity.  

Figure 34 shows the conversion of the resistance measured (Ω) to resistivity (Ω.cm) for 

each conductive polymer with different MWCNT wt%. In this figure, we can see some aspect or 

behavior of the resistivity of polymers with conductive fillers in the literature. On a log scale, we 

see that the resistivity decays over time and then start to stabilize around certain values with higher 

conductive filler weight percentage. In our Figure 34, we would have the same behavior at the 

higher resistivity if we added the pure PDMS polymer's resistivity and very low MWCNT wt%. 

However, since we started with 6.45 MWCNT wt%, we see the resistance's behavior as it is beyond 

the percolation threshold.  

Figure 35 shows the resistivity conversion into conductivity for the conductive polymers 

samples with varying the MWCNTs wt%. The figure shows that the range of conductivities 

obtained covers the human brain's wide range of conductivities. For example, GM's conductivity 

is about 0.25 S/m. That can be achieved if we fabricate our brain phantom with about 8.50 

MWCNTs wt%. The CSF has higher conductivity between (1.2-2.0 S/m); if we needed to fabricate 

a conductive polymer, we could achieve it with about 11.00 -11.50 MWCNTs wt%. The 

conductivity behavior, as seen in Figure 35 is not linear for the MWCNTs wt%. We can see a steep 

increment of conductivity between about 10.50 to 13.50 wt%. That means for any application in 

which the targeted conductivity lies within this region, the controlling parameters and criteria of 
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fabrication the conductive polymer might need to be more accurate and controlled. We should note 

that these measurements were carried on samples with about 100 g. In case we wanted to fabricate 

a conductive polymer on more massive scales like 1000-2000 g, there could be a little variation in 

the conductivity as the volume mixed is much larger than the sample we worked on. Therefore, 

more accurate and established methods and tools need to be used for better control. For example, 

the mechanical stirrer is better to be scaled up to match the container's size in which the conductive 

polymer components are mixed.  
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Figure 32 Resistance measurements of the conductive polymer samples reducing with respect to time with varying the conductive 

filler MWCNT wt%  
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Figure 33 Resistance measurements of all the conductive polymer sample with respect to time with varying the conductive filer 

MWCNT wt% on a log scale 
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Figure 34 Resistivity of the conductive polymer sample with respect to varying the conductive filler MWCNT wt% 

 

Figure 35 Conductivity of the conductive polymer samples with varying the MWCNTs wt% 
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2.3.3 SEM images of the conductive polymer with different MWCNT wt% 

In this section, we present the SEM images of the conductive polymer with different levels 

of MWCNT wt% to show the dispersion of the MWCNTs within the PDMS. They are shown with 

different magnifications for each MWCNT wt% for better visualization of the overall dispersion 

and a smaller scale. These images are shown for four selected MWCNT wt%, 5.5, 8.5, 9.5, and 

14.5 wt%. The difference can be seen clearly in the degree of dispersion. At lower concentrations 

5.5 wt%, as in Figure 36MWCNTs are dispersed almost equally with some agglomerations. At 8.5 

and 9.5 wt%, we can see the increased density of the MWCNTs with more bundles and 

agglomerations, as in Figure 37 and Figure 38.  At 14.3 wt%, Figure 39, MWCNTs are well 

dispersed without agglomeration, but the resulting composite's texture is very rough.  

Figure 40 shows the formation of the MWCNT on a microscopic scale (from 50-500 nm) 

and the actual size of the used MWCNTs in our work. The width of the MWCNTs is about 50 nm, 

and length is about 10 -20 µm which is within the claimed range by the manufacturer (50-85 nm 

width, 10-15 µm length). Therefore, the aspect ratio for the used MWCNTs is about 300:1. 

We show in Figure 41 a correlation between higher and lower magnifications of each 

MWCNTs wt% to put these different concentrations into perspective.  In Figure 42, we show the 

SEM images of selected MWCNT wt% (5.3, 8.3, and 14.3) in correspondence with each value of 

conductivity. We can see at the 8.5 wt%, where the conductivity starts to increase exponentially, 

the dispersed MWCNT throughout the PDMS texture as opposed to lower levels of MWCNT wt% 

(5.5) where the MWCNT is scarce between the MWCNT's bundle and agglomerations. This tells 

us that the dispersion of the MWCNT within the PDMS with preserving the same level of the 

aspect ratio is determinant in the electrical conductivity establishment and maintenance. Also, 

from the SEM figures, we can further improve the composite's conductivity for a given conductive 



71 
 

filler weight percentage inside the PDMS polymer. For example, the 0.25 Sm-1 that corresponds 

to 8.5 wt% can be achieved with lesser wt% conductive filler like 3-4 wt% by dispersing the 

agglomerated MWCNTs. These aggregations can be dispersed with better mixing techniques. 

MWCNTs can be first dispersed in a solution such as a heptane and sonicated before adding to the 

PDMS. Also, our PDMS polymer has few bubble formations within the composite. These bubbles 

can be removed by degassing the PDMS polymer after being molded by the brain shells. This can 

be because the polymer has a high viscosity and the shells on top, which may seal the polymer's 

air bubbles as they leave no openings for the gas to escape. Furthermore, using single-walled 

carbon nanotubes, SWCNTs, and a higher aspect ratio of the carbon nanotubes would further 

enhance the conductivity of any given conductive filler weight percent. 
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2.3.3.1 5.5 wt% MWCNT 

 

Figure 36 (a) & (b) SEM images of 5.5 MWCNT wt% showing the dispersion of the conductive filer MWCNT within the hosting 

polymer PDMS at different magnifications 

2.3.3.2 8.5 wt% MWCNT 

 
Figure 37 (a-e) SEM images of 8.5 MWCNT wt% showing the dispersion of the conductive filer MWCNT within the hosting 

polymer PDMS at different magnifications 

  

a b 

a b 

c d 



73 
 

2.3.3.3 9.5 wt% MWCNT 

 
Figure 38 (a-c) SEM images of 9.5 MWCNT wt% showing the dispersion of the conductive filer MWCNT within the hosting 

polymer PDMS at different magnifications 

  

b a 

c 
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2.3.3.4 15.5 wt% MWCNT 

 
Figure 39 (a-d) SEM images of 14.5 MWCNT wt% showing the dispersion of the conductive filer MWCNT within the hosting 

polymer PDMS at different magnifications 

 

Figure 40 (a, b) SEM images MWCNT at higher magnification showing their size and formation  

 

 

b 

c d 

b 

a 

a 
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Figure 41 SEM images of the conductive polymer composite with varying conductive filler concentrations a) 

5.3 wt% b) 8.3 wt% and c) 14.4%. 

 

a) 5.3 wt% 

b) 8.3 wt% 

c) 14.4 wt% 
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Figure 42 Conductivity measurements with non-linear regression curve acquired from 1 cm3 conductive polymer samples with 

MWCNT filling weight percentage ranging between 5.3-14.4% along with SEM images for the three selected concentrations 

5.3%, 8.3% and 14.4%. 
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2.3.4 Anatomically accurate brain phantom with electrically conductive polymer 

 This is the third and last part of this chapter, where we show the results of combining the 

first and second parts. In the first part, we presented the manufacturing method and steps required 

to obtain and realize and physical geometry of intricate and complex materials like the brain. In 

the second part of the chapter, we presented the method of creating and fabricating the conductive 

polymer used as a constituent material for our brain phantom. We showed our method in adjusting 

and characterizing the electrical conductivity to match and mimic the brain's electrical 

conductivity. We show the steps needed to obtain the anatomically accurate brain phantom with 

the electrically conductive polymer in the following figures.  

We targeted a conductivity of about 0.25 S/m to manufacture the brain because it is within 

the averaged value of the GM and WM conductivity values reported in the literature, as in table 

(1). This conductivity can be achieved with MWCNT wt% of about 8.5, as graphed in Figure 42.  

Following the steps in Part 1, we printed the GM shells with PLA, as in Figure 20. Then, 

we made the conductive polymer but in a larger quantity. We used about 1200 g PDMS base, 120 

g of the curing agent, and 120 g of the MWCNTs. That will equal about 8.5 wt%. We mixed the 

polymer with the conductive filler MWCNT following the previous section's criteria. Then, we 

poured the conductive polymer in the GM shells as. After pouring in the conductive polymer into 

the GM's upper and lower shells, joined the shells and placed it in a c-clamp to ensure a robust 

fixture of the shells and, therefore, accurately obtain the geometry, as in Figure 43.  
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Figure 43 (a) The conductive polymer being poured into the GM shells in order to obtain the brain phantom (b) The brain 

phantom after the conductive polymer was poured into the upper and lower shells were joint and (c) put in a c-clamp to insure 

proper closure during polymer curing 

The polymer needs to rest for about 48 hours before placing the entire brain in acetone for 

at least 24 hours. The acetone will make the PLA shells. We should be cautious when removing 

the shells not to tear the fabric of the brain phantom. If the shells are hard to be removed, they are 

recommended to put back in acetone to soften the shells more. After removing the shells, we will 

have the entire brain phantom as in Figure 44.  

 

Figure 44 The brain phantom shells after being placed in acetone and removing the shells. (a) The brain phantom shells in the 

acetone for at least 24 hours. (b) The shells removed from the acetone. The shells became brittle and softer. (c) The shells are 

being removed and dismantled. (c) the shells are removed, and the brain phantom is realized 

To summarize the entire process of the anatomically accurate brain phantom with the 

electrically conductive polymer using the shelling method, Figure 45 shows in images the major 

steps.   

b d c 

a b c 

a 
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Figure 45 Summarization of the entire process starting from MRI images of the brain until the obtained brain phantom made of 

the conductive polymer. (a) MRI image in an nii format, (b) Reconstructed brain model in stl format,   (c) Shell mold for the outer 

region of the brain/GM. Shown is the inner side of the upper s half shell, (d) Shell after printing and dissolving the support 

material, (e) Shells were filled with the conductive material and joined together and left to be cured, (f) Brain phantom after 

being immersed in acetone and the shells removed 

  



80 
 

2.3.5 Head phantom with the brain and CSF: 

 In our work on the development of the brain phantom, we also worked on obtaining the 

entire head geometry and mimicking the CSF conductivity. Following the same steps of the 

shelling method, we can obtain and create the geometry of the head's scalp and skull. Figure 46(a) 

shows the skull and scalp shells are being created and processed in Meshmixer based on the 

shelling method. The outer shell is the scalp's outer surface, and the inner shell is the structure 

surface of the CSF. We added four rods to fix the CSF structure because the gap area between the 

inner and outer shells will be built, filled, and printed with the supporting material PVA. After 

dissolving the support material with water, the CSF structure will have the supporting rods to fix 

them in place. After creating and then washed the PVA supporting material with water. In the scalp 

and skull, we used only PDMS because the conductivity of these layers is very low and does not 

interfere with the TMS coils' magnetic field. In this process, we used the vacuum to remove the 

PDMS bubble, as in Figure 46 (c).  

 

Figure 46 (a) skull and scalp shells are being created and processed to be ready for 3D printing (b) printing the scalp and skull 

shells with PLA and supporting material PVA. (c) 
We let the PDMS cure, and then the outer shell was removed, as in Figure 47(a). At this 

stage, the inner shell (CSF structure) can be seen inside the PDMS head. We need to cut the PDMS 

and remove the inner shell. For best placement of the brain phantom inside the head, we also 

a b c 
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created the cerebellum structure made with the PDMS and placed it inside the head after that, we 

placed the brain inside the head phantom as in Figure 47(b) &(c). The final step is to close and 

sealed the head phantom and inject the saline solution with the match conductivity to the CSF, as 

in Figure 48.  

 
Figure 47 (a) outer shell of the skin and skull after being removed the PDMS is cut and the inner shell is removed. (b) We created 

the cerebellum and put it inside the head to ensure a good placeman of the brain (c) the brain phnatoim placed inside the head. 

 
Figure 48 The mimicked CFS is being injected isside the head. 

 

  

c a b 
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2.3.6 CT scans for the brain and head phantom 

The brain phantom, shown in Figure 45 (f) was imaged using a CT scan to confirm that the 

anatomical features in the MRI/stl files match the phantom's anatomical features, as shown in 

Figure 49. There are seemingly small deviations of the cortex's anatomical features from the 

original MRI image due to the placement and orientation offsets of the phantom inside the CT 

scanner.  Due to this misalignment, the CT scan slices are challenging to overlap on the original 

MRI slices. This can be corrected by using an accurate fixture to hold the phantom in the CT 

scanner.  
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Figure 49 Brain phantom CT images compared to the brain model confirming anatomical features matching. Top) CT images for the 

brain phantom. Bottom left) cross section of the brain model from Meshmixer. Bottom right) an approximate overlap between cross 

section C 
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2.4 Conclusion: 

 This chapter showed our work on the innovative method of manufacturing and fabricating 

an anatomically accurate and electrically conductive brain and head phantom with mimicked CSF 

based on the shelling method. The process started form downloading MRI images form the Human 

connectome project. The images were segmented in stl models. From the stl brain model, we 

created shells printed with a 3D printer to serve as molds for the brain phantom material or tissue. 

The brain phantom material is fabricated of a conductive polymer that consists of PDMS and 

MWCNT. We showed that the conductivity varies to the concentration and weight percentage of 

the MWCNT with respect to the host polymer PDMS. We established the conductivity curve and 

selected a particular concentration to match the conductivity of the brain. Moreover, we took SEM 

images for the conductive polymer to understand the relation between the MWCNT wt%, 

conductivity, and dispersion. We also image the brain phantom with CT to show that the brain 

phantom geometry is very accurate to the brain in the stl file based on the MRI images.   
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3 Chapter 2: Safety Study of Combination Treatment: Deep Brain 

Stimulation and Transcranial Magnetic Stimulation 

3.1 Introduction: 

Deep brain stimulation (DBS) is a medical technique using one or more electrodes 

surgically inserted deeply into specific regions in the brain to mitigate and alleviate motor 

symptoms in patients with Parkinson’s diseases [72], such as slowed movement (bradykinesia), 

and resting tremor and rigid muscles [73,74]. However,  patients also suffer from other hampering 

symptoms like hypophonic speech and difficulties in swallowing (dysphagia) [75–77].  Since those 

symptoms are not treatable with the  DBS, an introduction of other modalities like repetitive 

Transcranial Magnetic Stimulation (rTMS) is proposed as an option in the treatment or alleviation 

of such symptoms [41,76,78–81]. rTMS is a non-invasive treatment where time-varying magnetic 

fields are produced by current running in coils to induce electric fields in the patient and therefore 

stimulating neurons in the targeted region [79,82]. Combining the two methods of treatment might 

risk the safety of the patient with implanted DBS because the high-intensity magnetic field 

produced by the TMS will elicit high levels of electrical current that might travel down the path 

into the deeper regions of the brain and cause burn or damage. Therefore, there is a need to 

accurately study the prospected effects by including all of the parameters involved without risking 

patients with implanted DBS.  Some previous studies have underestimated and oversimplified the 

geometrical complexities of the lead and biological tissue [83]. Besides, we are not aware of any 

studies as of yet which have used physical models with accurate head, and brain geometry and 

impedances to study the effects of TMS on full implanted DBS leads [14,83–87]. Kumar et al. 

(1999) measured the induced currents by TMS at 100% intensity from a homogenous phantom. 
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They found that the induced currents in the range of microampere, which is lower than the 

operating range of conventional DBS treatment. Kuhn et al. (2011) investigated the effect of the 

TMS on the DBS internal power generator IPG. They measured the voltages induced on the leads 

and found that the voltages did not exceed the operating limit. Both studies concluded that the 

combination of the two modalities would not result in unsafe levels of induction on the DBS leads. 

On the contrary, Shimojima et al. (2010) and Deng et al. (2011) drew a different conclusion that 

the combination of the two techniques will produce high levels of induction. Deng et al. measured 

the induced voltages, and current on a hollow mannequin phantom with a full configuration of the 

DBS leads and extensions. They reported very high levels of induced currents that reached up to 

82 mA. Shimojima et al. did a similar investigation, but in a head phantom that is filled with gelatin 

of similar conductivity to the brain. They measured charge density that reached up to 20 µC/cm2 

/phase, which is considered to be in the unsafe levels. We also found other clinical investigations 

done by Kuhn (2002) and Hidding (2006) of the combination treatments in which the TMS was 

applied to patients with implanted DBS. The investigators measured the motor evoked potentials 

MEP on the patients and did not report any adverse reactions or complications post the application 

of the TMS on the volunteered patients. 

In this study, we experimentally measure an anatomically accurate head and brain phantom 

fabricated based on MRI images, the induced voltages, and current form such combination. With 

an accurate physical model mimicking the impedances and geometries, we can account for any 

energy interference of displacement currents with the induced current in the DBS lead.  

 We fabricated the head and brain phantom based on MRI images developed into the brain 

model using FreeSurfer, simNIBS, and FSL pipelines. The head phantom is fabricated with 
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electrical conductivities matching cerebrospinal fluid and averaged conductivity of grey and white 

matter. Induced current on an implanted DBS probe in the brain phantom was measured. 

. 
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3.2 Materials and Methods 

We realized that based on the literature and discussions with our collaborator from VCU 

medical campus, Dr. Kathryn Holloway, that there are different configurations for the DBS in 

terms of the number of leads used (unipolar or bipolar), number of windings of DBS probe, and 

its extensions, and the overall circuitry involved. Since this is a safety study, we aimed to simplify 

the experiment and configurations to the least complicated setup. We used the unipolar 

configuration, meaning that we used only one DBS lead inserted. Also, surgeons usually tuck the 

DBS wire under the skin on top of the skull. Sometimes they make loops or windings that we posit 

might increase the level of induction based on Ampere’s law. For that reason, we decided to use 

only one loop.  DBS probes are connected to the internal pulse generator IPG. The IPG could be 

set on “ON” or “OFF” state. In our experiment and to take a more simplistic approach, assumed 

that the IPG is set on an “OFF” state so that we would not have any additional current or voltage 

that might interfere with the initial induction by the alternating magnetic field of the TMS on the 

DBS probes and brain phantom. 

We fabricated an anatomically accurate head/brain phantom with an implanted DBS probe 

at the hypothetical STN location. The head model consists of four main parts.1) the brain phantom 

2) skull, skin, and scalp 3) cerebrospinal fluid, and 4) implanted DBS probe. The process of 

creating the brain and head phantom can be found in detail in chapter 1 and in our published patent, 

where we show the detailed steps for creating each part of the head phantom [88,89]. There are 

some additional steps in the fabrication process to place the DBS probes inside the phantom 

properly. In the following sections, we briefly show a general procedure to obtain each part of the 

head phantom with an implanted DBS.  
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3.2.1 Brain phantom 

The brain phantom was fabricated using a healthy subject’s MRI images downloaded from 

the online database of human connectome project HCP, Parkinson’s Progression Marker Initiative 

PPMI [90]. The MRIs were segmented, and a 3D brain model was developed into an stl format 

using FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 

United States), SimNIBS (Danish Research Centre for Magnetic Resonance (DRCMR), and FSL 

(Analysis Group, Oxford, UK) software. From the model, we created shells to serve as molds for 

the segments of the brain. For example, to create the grey matter, we used the head model and 

created the outer shells of the grey matter. These shells were 3-D printed and were used as molds 

for the constituent material of the brain phantom. In parallel, a conductive polymer composite was 

prepared to mimic the electrical conductivity of the brain. The conductive polymer composite is 

composed of multi-walled carbon nanotubes (MWCNT) and polydimethylsiloxane (PDMS). The 

addition of the MWCNT to the PDMS imparts an electrical conductivity dependent on the 

concentration of the MWCNT. The conductive polymer is poured into the molds and left to 

solidify. After the solidification, the molds are immersed in acetone to be removed and to obtain 

the accurate anatomy of the brain matching the MRI. The brain phantom was fabricated with a 

measured impedance of 450-500 Ω that matches the average impedance of the human brain 

[24,25,29,30,91]. 

3.2.2 Skin, scalp and skull 

Skin, scalp, and the skull were built as a single layer with the shelling method used to 

obtain the brain phantom, as in Figure 50. Nevertheless, in this case, we used only PDMS as the 

constituent material because the electrical conductivities of these regions are low and similar to 
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PDMS. The figure shows the PDMS after It cured, and the outer shell was removed. We can still 

see the inner shell through the opaque PDMS polymer. 

 

Figure 50 Anatomically accurate skin and scalp made of PDMS 

3.2.3 Cerebrospinal fluid  

The gap between the brain and the skull is the CSF space. We filled this space with a saline 

solution that has an electrical conductivity similar to the CSF conductivity in humans, which is 

about 1.0-1.2 Sm-1. 

3.2.4 Implanted DBS probe 

DBS leads are comprised of four electrodes which lie at the site of stimulation, with four 

separate wires capable of delivering current to each contact.  Each wire is wrapped in insulation to 

avoid interference with the other wires, and there is further insulation that comprises the entirety 

of the probe body. We used a  commercial FDA-approved DBS lead  (Medtronic 3387 lead) shown 

in Figure 51 that is commonly used in DBS surgeries (Medtronic Lead Kit for DBS Stimulation, 

2016). 
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Figure 51 Schematic depiction of the Medtronic DBS lead model 3387 [72] 

To accurately determine the location of the hypothetical STN in the brain phantom, we 

measured as Figure 52 in the distances and dimensions from the skin to the targeted location so 

that we can print shells with a guided opening designed for the DBS lead insertion. 

 

Figure 52 Measuring the dimension of the STN to help in building the brain shells with guided opening 

Next, we added the guided opening on the shell, and 3D printed the shells with PLA Figure 

53. The DBS probe was inserted into the conductive polymers during the curing and solidification 

period and through a guided opening on the brain phantom shell. After the solidification of the 

brain phantom, the molds were removed. 
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Figure 53 (a) the brain shells with the guided opening being processed in Meshmixer. (b) The shell after printing. We can see 

that a narrow rod can slide into the opening with certain angel. 

We should note that we kept the stylet, supporting material, of the DBS probe in order to 

protect the integrity and structure of the wires inside the probe from damage. The DBS probes are 

very delicate and prone to damages, as reported by the FDA [93] . We believe that the presence of 

stylet has a negligible effect on the induced current in the lead wires as it is electrically isolated 

from the rest of the probe structure. The inside volume of the helical coils of the probe undergoes 

Faraday’s cage effect, and hence the stylet will experience no induced electric field [94].  

 The final realization of the brain phantom that includes the realistic brain phantom and 

mimicked CSF with implanted DBS probe in the hypothetical STN is seen in Figure 54(c). 

 

Figure 54 (a) Head model with skin, scalp and skull (left) and brain phantom with the implanted DBS probe (right). (b) Head 

phantom is enclosed and the saline solution that mimics the CSF is being injected into the head phantom. (c) Final realization of 

the anatomically accurate head phantom with the implanted DBS probe 

a b 

a b c 
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3.2.5 Experimental set up and measurement of the induced current: 

 An FDA-approved TMS device, Magstim (model: Rapid 2 with Magstim AirFilm coils), 

was used to apply TMS to the physical head phantom. TMS coils were placed about 1 cm on top 

of the DBS lead. The magnetic field was applied from 50-100% TMS coil’s current intensity with 

a single pulse and signal frequency of 2500Hz. The probe has one loop winding on top of the 

phantom.  Then, we measured the induced voltage by measuring the voltage difference between 

the lead contacts and converted them into induced currents. The experimental setup is shown in 

Figure 55, and the circuital diagram is shown in Figure 56.  

 

Figure 55 Experimental set-up where time-varying magnetic field by the transcranial magnetic stimulator is applied on the 

physical head phantom. 

 In Figure 56, we show a schematic diagram of the circuit used to measure the induced 

voltage/current on the DBS. The circuit consists of two main parts A and B. Part A represents the 

equivalent impedance Zeq of the brain phantom. In a real patient, this impedance would be the 

impedance of the neighboring regions of the inserted DBS leads. Part B represents the DBS probe 



95 
 

Figure 56 Schematic diagram of the circuit used to obtain the induced electric current on the DBS probe 

in the presence of the time-varying magnetic field. 

and DBS pulse generator’s internal resistance, and it is typically about 100 Ω [95]. The resultant 

voltage waveform is shown in Figure 57, and the voltage values corresponding to coils’ intensities 

50-100% are shown in Figure 58. 

 

 

 

 

 

3.3 Results: 

Figure 57 shows the bi-phasic waveforms obtained during the measurements. The waveform 

shown here corresponds to the measured induced voltage at 100% coils intensity. The waveform 

obtained with minor artifacts at the ends potentially due to an abrupt transition of the original pulse 

of the magnetic field, and the artifact in the middle is a result of minor variations in the electric 

field due to switching off the power transistor inside the TMS stimulator. Figure 58 shows the 

 

“Off” 
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currents induced for changing the magnetic field strength produced by the TMS coils. The induced 

voltages are converted directly to induced current by dividing the voltage drop by the value of 

Req=100 Ω. 

 

Figure 57 The waveforms obtained from the voltage measurements on the DBS probe during TMS. 

 

Figure 58 Induced currents with respect to TMS coil’s intensities. 
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3.4 Discussion  

 From the results of the experiments on the physical head phantom, the induced current 

values are of the order of mA (1.71-3.20 mA), which are in the range of current values used in 

DBS (3.2-4.5 mA) [96]. They are higher than values reported by Kumar et al. (1999), where they 

reported induced current in the range of 70-120 µA. However, [83] reported higher values in the 

range of 12.75-83 mA, and [14] reported a current density of 20 µC/cm2 /phase, which is 

considered to be exceeding the safety threshold ). Therefore, our measured values are consistent 

with Deng et al. and Shimogima et al. We theorize that the variation in the results may be due to 

several factors, the accuracy of the real DBS probe geometry, the medium in which the DBS probe 

is implanted, and the design and values of the electrical components of the complete circuit. We 

have experimentally measured the induced voltages and currents in the widely used Medtronic 

DBS lead. We accounted for the complexity of brain anatomy and geometry. In our 

experimental model, we used our novel anatomically accurate brain and the head phantom that 

mimics the impedance/conductivity of the brain as well as the CFS. Previous studies either lack 

geometrical accuracy of the medium in which the DBS probes were inserted in, DBS probe and 

lead design, or accurate impedance values. The geometry and impedance of the medium are 

essential because they determine the magnitude of the electric field produced and, in turn, 

contribute to the current induced in the DBS probe. Such considerations will help to expand the 

study to include other DBS configurations and TMS coil orientations and placement. Thus, 

considering the prior work in the literature of TMS and DBS safety, our study is an improved 

analysis considering a more accurate brain phantom, actual DBS probe with accurate impedance. 

Previous studies showed that with the increased number of loops, the induced current would 

increase proportionally. Our work shows that even with a single loop, the current induced is on the 
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range of unsafe limits. Moreover, Figure 4 shows that even at lower coil intensities, the induced 

current is noticeable and is in the mA range.  

 Lorentz forces are other potential sources of risk in such combination techniques. However, 

previous work by Shimogima et al. showed that there are no detectable movements on the DBS 

lead inserted in a gelatin phantom, and therefore the risk from Lorentz forces is negligible. For that 

reason, and since our results show that it might be unsafe to combine DBS with TMS, we did not 

investigate other possible risks such as Lorentz forces in our study. 

3.5 Conclusion 

 In this work, we investigated the safety of combining DBS with TMS treatments. We 

developed an accurate physical model with commercially used DBS lead. Our measurements show 

that using a time-varying magnetic field applied by 100% TMS intensity in the presence of DBS 

will induce currents that are higher than the safe limits (3.2-4.5 mA), which may result in over-

stimulation. These results are in agreement with previous studies that considered the safety of the 

combination of TMS with DBS. We attempted to minimize the sources of errors that might result 

in higher variation in the result. The majority of the induction on the DBS lead is primarily due to 

the effect of the magnetic field on the DBS lead. However, we should note that there are several 

reasons we considered such an experimental setup. Based on previous reports related to safety 

studies cited in this chapter, we found conflicting conclusions about whether it is safe to combine 

the TMS with the DBS. Some of those experiments lacked the details and complexities in the 

physical head models. In our lab, we work on the development of the brain and head models to 

bridge the gap on the experimental side of TMS. We have mimicked the physical environment 

where the TMS and other brain-stimulating methods are performed would be beneficial toward 
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approaching such studies. We acknowledge that one major downside is the difficulty of adjusting 

and replicating the setup. 

Nevertheless, we believe that we can minimize if we did our experimental work carefully, 

the sources of errors by providing such a physical environment. The configuration of the DBS lead 

to parameters like the TMS coils intensity and orientations, and also with respect to the brain, and 

the head model is quite simple. We used only one lead, one loop, and a single orientation. There 

is a variety of other configurations that are much complex and might be harder to track the source 

of errors. Our goal is to prepare the physical environment and then extend the test to different 

combinations and configurations of the combined TMS and DBS treatment. We only used a simple 

configuration with one loop on the wire and used an accurate brain, and the head phantom that 

matches the geometry and an averaged electrical conductivity. Our results suggest that even with 

the simplified setup, the level of induction is above the unsafe limits. Therefore, we recommend 

that the TMS should not be applied at 100% intensity directly over the implanted DBS leads in the 

STN area. 
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4 Chapter3: Measurements of stimulation strength 

4.1 Introduction 

 The brain phantom described in the previous chapters are intended to be validated with the 

measurements of stimulation strength such as induced voltages on the phantom, magnetic field 

strength produced by the figure-of-eight coils of the TMS, the induced reference voltages and on 

the oscilloscope probes. The measurements are then used in mapping the electric field on the brain 

phantom. 

 Ever since the introduction of the TMS, many groups have attempted to evaluate the level 

of induced electric field that the TMS can produce on the brain cortex. Many analytical studies 

aimed to establish the correlation between the intensity, frequency, and time variability of the 

magnetic field and its effect on a biologically conductive material like the brain that has specific 

values of conductive and permittivity [12,13,17,18,97–100].  

 With the rapid development of fast and powerful computers, the field of computational 

calculations and numerical simulations expanded and flourished. The computational TMS research 

has thrived to a point where highly accurate brain models with variable and anisotropic 

conductivities are used to study the stimulation [38,101–104].  

 It is vital to measure and evaluate the magnitude and strength of the electric field because 

it is directly correlated to neural excitation and firing. Many factors determine the likelihood of 

neural firing when influenced by an electric field. The directionality and magnitude of the electric 

field are the two major contributors to the neural firing ignition. 

  These measurements presented in this chapter are an effort to evaluate the electric 

field on complex geometry formed by conductive polymer. We are not aware of any group that 



102 
 

made such an attempt. This is because it is not a trivial task, and the brain phantom that we 

developed in the Biomagnetics Lab is the first to account for the geometry of the brain. Previous 

techniques have been developed by other groups to measure the electric field techniques like the 

loaded probe, long rectangular loop, and triangular loop, etc. [105–107]. These techniques are 

developed to measure the electric field in air or saline with simple geometry. Therefore, there is a 

need to develop a new or an existing technique to measure the electric field on complex and with 

relatively low conductivity materials and with minimal interference between the induced field and 

the measuring probes.  

 The work presented here is divided into four sets of measurements: 1) voltage 

measurements on the brain phantom with respect to distance and compared to e-field calculations 

from FEM simulation, 2) Magnetic field measurements, 3) electric field measurements in air, and 

4) electric field measurement on a conductive sheet and conductive brain phantom. The purpose 

of the first task in that we validate and confirm that the brain phantom we fabricated is responsive 

to the magnetic stimulation. In this case, we measure the voltages. Then we compared the change 

of the voltages to the change of the electric field calculated from simulation software. The 

magnitude of the stimulation is not of a concern at this point as we are only interested in showing 

that the brain phantom is being stimulated and that the stimulation is a result of the time-varying 

magnetic field form the TMS coils. Therefore, we will show the stimulation strength and behavior 

on the brain phantom as the distance from the coils and the intensity of the current change. The 

same parameters (coil distance, current in the coil) will be applied in the simulation for 

comparison. The remaining tasks of this chapter aim to map the electric field in air, conductive 

sheet, and the brain phantom to show the effect of the geometry and measuring techniques on the 

electric field mapping.  
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4.2 Materials and methods 

4.2.1 Voltage measurement and E-field calculation on the brain vs. distance 

 The phantom was examined by measuring stimulation strength (voltage) under different 

TMS parameters and compared with FEM of the induced electric field. For the measurement of 

voltage, we positioned the TMS coils on the brain phantom, and an oscilloscope probe is placed 

just underneath the surface of the phantom in order to measure the voltage (phantom probe). Also, 

we placed another probe at the same distance (from the coils) of the first probe, but it was placed 

outside the phantom to measure the voltage induced on the probe just from the TMS coils as a 

reference probe. Then, we applied the magnetic field from the TMS coils at four distances 1, 2, 3, 

and 4 cms and four different power intensities 25%, 50%, 75%, and 100% at each distance. The 

brain phantom and experimental setup are shown in Figure 59(a). 

 Also, we replicated the same setting of the experimental work with FEM simulation where 

the TMS coils in the software were placed at four distances 1, 2, 3, and 4 cm from the surface of 

the brain model and with four intensities 25%, 50%, 75%, and 100% at each distance Figure 59 

(b); the maximum intensity is based on 5000 A. Moreover, the assigned conductivity of the brain 

model is 0.25 S/m, grid size 2mm, and the frequency of the stimulating magnetic field was 2.5 

kHz. 
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Figure 59 (a) the experiment set up to measure the voltages as a function of varying the distance coils-surface distance and coils 

current intensity. (b) The simulation set up to calculate the electric field as a function of varying the distance coils-surface 

distance and coils current intensity 

4.2.2 Magnetic field measurements 

 We must familiarize ourselves with the magnetic field produced by the TMS coils and its 

strength and distribution. That will provide insight and prediction of what would the voltages and 

electric field behave. I used a Gaussmeter (Lakeshore Cryotronics model 475, Westerville, OH, 

USA) with a transverse Hall probe (Lakeshore Cryotronics model HMNT-4E04-VR). The Hall 

probe is a solid-state sensor that proportionally relates the induced output voltage to the magnetic 

flux density. The probe is placed on the x-y plane at z=0 cm of the coils, as in Figure 60 where the 

sensor is perpendicular to the surface of the coil. The Hall probe readings of the magnetic flux 

density are sensitive to the angle of the surface normal and the flux lines. Therefore, the magnetic 

field reading along the plane will only capture the perpendicular component. The Gaussmeter is 

set on the Peak mode designated to measure the pulsed magnetic field. The distance between each 

measurement point is 1 cm. 

a b 

Reference 
probe 

(Insulated) 

Phantom 
probe 

(Contact) 
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Figure 60 Hall probes positioned on the XY-plane of the TMS coils and at z=0 to measure the magnetic flux density. 

4.2.3 Electric field measurements in air 

 Similar to the magnetic field measurements, we placed the oscilloscope probe on the 

surface of the coils and measured the magnitudes of the voltages. According to the equation (7), 

the electric field is the spatial derivation of the voltage. Therefore, we directly measured the 

voltages on the XY-plane and at z=0 cm from the surface of the TMS coils. The results section 

shows the voltages readings and the electric field derived from the voltages. The resolution of the 

measurement is 1 point/cm, same as in the magnetic field flux measurements. 

4.2.4 Electric field measurement on the conductive sheet  

 After measuring the voltages on the surface of the coils, we measured the voltages induced 

on the surface of a conductive sheet that has the same conductivity as the brain phantoms fabricated 

in our lab (average of grey and white matter conductivities). The reason to map the electric field 

on the conductive sheet is that the measurements will take place on simple 2-D geometry. The only 

complication with such measurements is that the probe, in this case, will interfere with and perturb 

the induced electric field on the conductive sheet. The conductive sheet has an average thickness 
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of about 1.5 mm. The sheet was placed on a fixture at about z=1 cm, as close as possible to the 

surface of the coils. In this case, we increased the measurement resolution to 2 points/cm in order 

to enhance the mapping of the electric field. 

Moreover, in order to reduce the interference of the oscilloscope probe with the magnetic 

field, the probe was positioned on the sheet on the opposite side of the coils. We believe that the 

small thickness of the sheet will have a minimal impact on the voltages measured and the electric 

field propagation. The conductive sheet and the experimental set up is shown in Figure 61 

  

Figure 61 (a) Conductive sheet with conductivity similar to the brain phantom used in the voltage measurement and electric field 

mapping. (b) The experimental set up where the conductive sheet is placed on a fixture and the voltage measurements were taken 

from the opposite side of the sheet. 

4.2.5 Electric field measurements on the brain phantom (M1 area) 

 The last step is to map the electric field on the brain phantoms, specifically on the primary 

motor cortex, M1 area. Clinicians usually stimulate this area before TMS treatment to establish 

the evoked motor threshold EMT so that the treatment dose is suitable to the patients. The 

measurement points are spread along the surface of the M1 area, as shown in Figure 62 with a 

resolution of 2 points/cm. The TMS coil was placed parallel to the upper surface of the brain and 

at about z=3 cm. We increased the distance because it was challenging to place the oscilloscope 

probe at a smaller distance. Since we are interested in the electric field mapping (behavior) rather 

a b 
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than the electric field magnitude, we thought that should not have a significant impact on the 

measurements except the fact that the probes can interfere with the magnetic and electric field.  

 

Figure 62 The M1 area of the brain phantom where the voltage measurements were acquired 

4.3 Results and discussion  

4.3.1 Voltage measurement and E-field calculation on the brain Vs. distance 

 Figure 63 shows the biphasic signal of the voltage that is expected and established in the 

literature. As seen in the Figure 63, the reference probe has a lower magnitude of the induced 

voltage. This induced voltage is a result of the induction of the time-varying magnetic field on the 

oscilloscope probe. This indicates that there is a noticeable induced electric field in the phantom 

due to the applied magnetic field from the TMS coils. We subtracted the induced voltage on the 

reference probe from the induced voltage measured on the brain phantom, as presented in Figure 

64. 
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Figure 63 Voltage signals from the phantom and the reference probe 

 In the simulation part, we show the induced electric field as a stimulation strength because 

we could not find a method in sim4life to show the local induction of the voltage. We believe 

presenting the electric field is sufficient in this case because we are interested in comparing the 

effect of distance and coil’s intensity on the level and behavior of the stimulation. The electric 

field magnitude is shown in Figure 65. 
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Figure 64 Voltage measurements from the brain phantom with varying distances (1, 2, 3, and 4cm) and TMS coils’ intensities 

(25, 50, 75, and 100%) 
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Figure 65 Electric field calculation from sim4life on the brain model for varied distances (1, 2, 3, and 4cm) and TMS coils’ 

intensities (25, 50, 75, and 100%) 
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 Comparing Figure 64 between Figure 65, measurements, and simulation, it can be seen that 

there is similar overall behavior. The voltage measurements and e-field readings are linearly 

dependent on intensity in both figures. Also, the induced voltage decreases rapidly with the 

distance. However, the gap between the 1cm and 2cm is larger in the experimental results than it 

is in the simulation. This can be due to the complexity of the experimental setup. For example, 

there could be some discontinuities within the phantom due to the tear in the polymer caused by 

the repeated probe insertion. Also, the magnetic field is sensitive to the distance from the source; 

therefore, there might be a slight difference between the intended and the actual distances from the 

probes to the coils. As stated above that the purpose of the study is just to demonstrate that the 

brain phantom, since it is electrically conductive, can be stimulated. The presented figures indeed 

show that the phantom is responsive.  Finally, even though the phantom is fabricated to be globally 

homogenous but, there could be some local inhomogeneity within the phantom that result in 

slightly deviated voltage readings. 
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4.3.2 Magnetic field measurements 

 As mentioned in the materials and methods section of this chapter, the Gaussmeter used to 

acquire the magnetic field flux measurements has a pulse mode that captures the positive and 

negative peaks of the recorded signal. In Figure 66 we present the averaged magnitude of the two 

peaks. Figure 66 shows the measurement profile of magnetic flux density along the centerline of 

the TMS coils. The highest magnitude of magnetic induction is seen at the center of each coil that 

reaches up to 0.77 T, where the region between the two coils has about 0.43 T.  

 For better visualization of the instantaneous magnetic field flux density, we need to 

consider the polarity of each coil. For that reason and because we know that the current running in 

each coil of the figure-of-eight coil is opposite to the other, the magnetic flux must follow the 

polarity and directionality. We assumed that the polarity of one of the coils is opposite to the other 

one, as we can see in Figure 67 and Figure 68.  

 

Figure 66 Peak magnetic flux density profile at the center of the XY-plane along the surface of the Magstim rapid TMS coils  
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Figure 67 Contour of the magnetic flux density from at the surface of the TMS coils with consideration of the polarity 

 

Figure 68 Magnetic flux density on the surface of the TMS coils with consideration of the polarity 
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4.3.3 Electric field measurements in air  

 In order to map the electric field on the surface of the coil, we need to measure the voltages 

and then map and reconstruct the electric field. The electric field is the first spatial derivative of 

the voltage. In the TMS, the current is running in the coils follows a sine wave. The magnetic field 

generated will follow the same wave function. However, the time varying magnetic field, 

according to Maxwell-Faraday’s law, will induce an electric field which is a cosine wave. We 

confirm this in Figure 69. We can notice the waveform is not symmetrical, and it appears that the 

TMS produces a damped cosine wave. For that reason, whenever we want to determine the 

magnitude of the voltage, we take the averaged peak value. 

 

Figure 69 Bi-phasic voltage induced by the time-varying magnetic field of the TMS coils 

 Figure 68 shows the voltages measured on the surface of the TMS coils. We can see that 

the voltage magnitude follows the pattern seen in the measured magnetic flux density, where the 

highest voltage magnitudes are produced in the center of each coil. However, the voltages’ values 

are graphed without the consideration of the polarity difference between the coils, therefore, would 

result in a wrong reconstruction of the electric field, as in Figure 71. We realized that mapping the 
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electric field is not correct because the essential purpose of the figure of eight coils design is to 

produce a high electric field magnitude (hot spot) in the region in between the coils. What we see 

in this figure is that the electric field is following an opposite behavior as it is showing a rather 

cold spot in that region. This dictated that we had to consider the polarity of the voltages measured 

as we did with the magnetic flux density. Figure 72 shows the voltages as the polarity difference 

between the coils were considered. This is confirmed from the literature as by Meng et al. (2018), 

where they show a voltage polarity in their measurement of the voltages and electric field produced 

by TMS coils [100]. Now the electric field with the consideration of the polarity is mapped in 

Figure 73. The figure shows clearly that the electric field is highest in the center regions between 

the coils as expected. The magnitude of the electric field in the center reaches up to 600 V/m for 

100% power rating of the stimulator (5000A).   



116 
 

 

Figure 70 Voltage measurements of the TMS coils on the XY-plane and z=0. The TMS coils set on 100% intensity, with no 

consideration of the polarity. 

 

Figure 71 Electric field mapping from the Voltage measurements of the TMS coils on the XY-plane and z=0. The TMS coils set 

on 100% intensity, with no consideration of the polarity. 
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Figure 72 Surface view of the Voltage measurements and contour projection of the TMS coils on the XY-plane and z=0. The TMS 

coils set on 100% intensity, with consideration of the polarity. 

 

  

 

Figure 73 Surface view of the electric field mapping from the voltage measurements of the TMS coils on the XY-plane and z=0. 

The TMS coils set on 100% intensity, with consideration of the polarity. 

4.3.4 Electric field measurement on the conductive sheet  

 In this section, the voltage measurement and electric field mapping from the conductive 

sheet is presented. We applied the same polarity consideration here. The resulted measured 
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voltages are shown in Figure 74 and the corresponding electric field mapped is shown in Figure 

75. We can notice that the electric field has the highest magnitude in the middle that extends up to 

30,000 V/m, and the voltages measured reach up to 150 V. The typical values of the electric field 

seen in the FEM simulation range between (100-300 V/m). The high electric field when measured 

on the conductive sheet can be attributed to many factors. First, the distance in which the 

measurement was carried out was close to the surface of the coils, which might exponentially 

increase the induction with respect to the distance. The FEM simulation considers the distance 

between the coils and the brain surface, which is around 2-3 cm. Therefore, the magnitude of the 

electric field should fall steeply as the distance increases. Second, since we measured the voltages 

from a material that is relativity low in electrical conductivity, there could be a stronger and 

dominant influence from other properties of the material in which the measurements are carried 

on. The electric permittivity of the material could be a significant contributor to the measured 

voltage. Even though Porzig et al. (2013) show that when considering the effects of polarization 

in biological tissues, the polarization current increases to high magnitudes but then attenuates 

rapidly when compared to the induced conduction currents [108]. It could be the case that even 

though the polarization currents were very brief, they were captured in the measurements and 

therefore amplified the induced voltages.  On the other hand, there could also be a perturbation 

and distortion of the electric field when the oscilloscope probes are inserted in the conductive sheet 

resulting in faulty readings of the voltages and, therefore, incorrect mapping of the electric field.  
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Figure 74 Surface view of the voltage measurements and the TMS coils on the conductive sheet. The TMS coils set on 75% 

intensity, with consideration of the polarity. 

 

 

Figure 75 Electric field mapping from the voltage measurements of the TMS coils on the conductive sheet. The TMS coils set on 

75% intensity, with consideration of the polarity. 
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4.3.5 Electric field measurements on the brain phantom (M1 area) 

 

Figure 76 Normalized electric field mapping from the voltage measurements of the TMS coils on the Brian phantom. The TMS 

coils set on 75% intensity, with no consideration of the polarity. 

 

Since the electric field magnitudes measured are very high, we thought to examine the 

electric field distribution on the brain phantom regardless of the actual magnitudes. In Figure 76, 

we can see that the electric field distribution does not follow a recognizable pattern. There are 

several reasons for that. The first influence comes from the fact that the geometry of the conductor 

determines the measured electric field. The measurements could be highly distorted to the point 

where the variation in the potential is lost, and as a result, the electric field reconstruction is 

incorrect. Many researchers attempted to capture and measure the electric field without distorting 

the electric field. This group [109], for example, shows the process and development of such 

devices utilized to detect the electric field in the air without distortion. There is a need to develop 
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such devices in TMS field, especially with the emergence of physical models and phantoms of the 

brain.  

4.4 Conclusion: 

 In this chapter, we demonstrated that the brain phantom with the assigned conductivity is 

responsive to an external alternating magnetic field. The phantom showed a recognizable induction 

of voltages when stimulated by the TMS coils.  We ultimately attempted to reconstruct and map 

the electric field on the brain phantom. Given the fact that the electric field mapping on a complex 

geometry is a challenging one, we broke down the work on four main tasks. First, we measured 

the magnetic field flux density produced by the TMS coils. We detected strength of about 0.8 Tesla 

at the highest peak right at the center of the coils. Second, we mapped the electric field on the 

surface of the coils (on air) by measuring the induced voltages. The voltages induced showed a 

behavior similar to the magnetic field. Right at the center of the TMS figure-of-eight coils, we 

detected the highest spatial variation of the voltages, which directly indicated the presence of the 

focal and hot spot of the electric field produced by coils. Third, we mapped the electric field on a 

conductive sheet that has the same conductivity as the brain phantom. The magnitude of the electric 

field on the conductive sheet was very high (up to 3x104 V/m), which is two orders of magnitudes 

higher than the electric field measured on the surface of the coils (on air). Fourth and last, we 

mapped the electric field on the surface of the M1 area of the phantom. The results showed a 

distorted electric field pattern with very high magnitudes. There is an interference between the 

electric field induced on the conductive polymer and the oscilloscope probe. Also, there could be 

charges accumulation on the contact point of measurements that resulted in high spiked in the 

voltages and, in turn, result in distorted mapping to the electric field. We concluded that such a 

task is very challenging, and a much better understanding of the theoretical background of the 
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measurement theory of the electric field in composite polymer media, such as PDMS-CNT, is 

needed. 
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5 Conclusions, contributions, and future work recommendations 

 This thesis's main focus was to overcome what was seemingly an insurmountable task, 

creating a physical model that emulates anatomy and the electrical conductivity of the brain. We 

presented a novel manufacturing method capable of producing geometries complex and intricate 

like the brain with an imparted electrical conductivity. We used the innovative method that we call 

"shelling method," where we used 3D printers to prints molds of the brain based on reconstructed 

models of MRI images. We developed a conductive polymer with tunable conductivity to be cast 

into the 3D printed shells. We established a conductivity vs. filler/composite wt% chart to serve 

as a reference for any desired or targeted conductivity that reach up to 8 S/m. The shelling method 

that we developed now protected by a pending patent. 

We further developed the phantom to include the head and the CSF. It is an important step. 

It leads to a more reliable representation of the physical environment for the experimentations and 

measurements because it has been demonstrated in the literature that the CSF has a significant 

impact on the induced electric field on the GM. 

  There are many potentials applications of the manufacturing process of the brain phantom 

and the fabrication of the conductive polymer. Our brain phantom is primarily designed to mimic 

the conductivity of the brain. However, the relative permittivity of the real brain can reach up to 

70. Even though the impact of the brain's dielectric property might be minimal at low frequencies, 

it still could be considered in the future development of the brain phantom where the conductivity 

and the permittivity are tuned to account for both conduction and polarization effects.  

Moreover, mapping the electric field on the brain phantom would be the next major and 

essential step towards a complete understanding of the brain's stimulation effects. Such a task is 
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non-trivial because the very act of measurement of the electric field using conductive probes will 

distort and perturb the electric field, especially on a complex geometry like the brain and the 

externally application alternating magnetic field. Researchers recently developed a non-distortion 

electric field microelectromechanical (MEMS) sensor for applications like high-voltage power or 

atmospheric electrostatic electric field mapping [109]. Similar sensors or probes are needed to be 

incorporated in the brain phantom's future development and for measurement of the electric field. 

With further development of the measurement theory on such anatomical phantoms, one can 

correlate and verify those measurements using TMS simulation similar to recent work on the 

transcranial direct current stimulation (tDCS) [110–112].   Furthermore, the phantom can further 

be developed for other brain stimulation techniques such as tDCS. In such a case, the 

manufacturing process needs to account for skin conductivity. 

We used the brain, and the head phantom to experimentally study the safety of combining 

two brain stimulations treatments, TMS and DBS. The brain and head phantom was utilized to 

account for the DBS probe inside the brain phantom to replicate the DBS's real surgical 

configuration. Based on preceding work in this subject, we attempted to represent the problem 

most realistically and simplistically. For instance, we used simple configuration to the DBS probe 

with only one winding and simple and accurate circuital components like the impedance of the 

brain and internal pulse generator of the DBS. We measured the currents induced on the leads, and 

we concluded that the current magnitudes were in the unsafe limits when the TMS is operated on 

the maximum intensity and right on top of the DBS windings.  

This study can be extended to consider further the IPG location inside a chest pocket with 

the inclusion of mimicked resistivity of the entire path between the IPG and the DBS leads inside 

the brain. With the proper replication of such a problem, we can even introduce possible solutions 
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to minimize the induced and unintended currents and, therefore, make it possible to combine the 

two treatments to benefit the patient who needs such combinatory treatment. 

In the last chapter, we ran a series of measurements aiming to understand and evaluate the 

magnetic and electric fields produced by the commercial figure-of-eight TMS coils. We show that 

it is imperative to consider each coil's polarity when mapping the magnetic and electric fields. 

Furthermore, mapping the electric field in the air is a straightforward task compared to electric 

field mapping in a material like the conductive polymer developed in this thesis. The electric field 

seems to get distorted without a recognizable pattern in general, except right below the coils. It 

could have resulted from the interference of the measurement probes with the induced electric field 

in the material. Therefore, there is a need for a less invasive and no distortive techniques for 

measuring the electric field in materials like conductive polymers.   
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6 Publications based on this thesis work: 

6.1 Peer-reviewed journals publications 

[1] Safety Study of Combination Treatment: Deep Brain Stimulation and Transcranial 

Magnetic Stimulation 

Magsood, H., Syeda, F., Holloway, K., Carmona, I.C. and Hadimani, R.L., 2020. Safety Study of 

Combination Treatment: Deep Brain Stimulation and Transcranial Magnetic Stimulation. 

Frontiers in Human Neuroscience, 14, p.123.  

 

[2] Effect of anatomical variability in brain on transcranial magnetic stimulation treatment 

Syeda. F, Magsood. H, Lee, E. G., El-Gendy, A. A., Jiles, D. C., & Hadimani, R. L. (2017). “Effect 

of anatomical variability in brain on transcranial magnetic stimulation treatment”. AIP 

Advances, 7(5), 056711. 

 

[3] [Under review] Development of Brain Phantoms for Experimental Verification of 

Stimulation Strengths during TMS 

H. Magsood, R. L. Hadimani” Development of Anatomically Accurate Brain Phantoms for 

Experimental Verification of Stimulation Strengths during TMS”, Material science and 

Engineering: C. submitted Feb 2019. 
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6.2 Patent (Pending)  

Hamzah Magsood, Ciro Serrate, Ahmed El-Gendy, Ravi Hadimani, “ANATOMICALLY 

ACCURATE BRAIN PHANTOMS AND METHODS FOR MAKING AND USING THE 

SAME”, Declared for patent application on Aug 2018, US20190057623A1. 

 

6.3 International Conference Presentations based on this thesis: 

1. H. Magsood, R. L. Hadimani, “Development of a procedure for experimental mapping of 

electric field induced by TMS in an anatomically accurate brain phantom” MMM 2019, Las 

Vegas, November 2019. 

2. H. Magsood, F. Syeda, and R. L. Hadimani, “Anatomically Accurate Brain Phantom for 

Transcranial Magnetic Stimulation” IEEE EMBS Neural Engineering, San Francisco, 

March 2019. 

3. H. Magsood, A. Elgendy, and R. L. Hadimani, “Experimental Verification of Transcranial 

Magnetic Stimulation Using Newly Developed Brain Phantom,” APS March Meeting, Los 

Angeles, March 2018. 

4. H. Magsood, F. Syeda and R. L. Hadimani “Experimental Verification of Transcranial 

Magnetic Stimulation Using Anatomically Accurate Brain Phantom,” INTERMAG 2018, 

Singapore, Jan. 2018 

5. F. Syeda, C. H. Serrate, H. Magsood, K. Holloway and R. L. Hadimani, “Simulation of 

Cortical Transcranial Magnetic Stimulation in Motor Pathway for Treatment of Parkinson’s 

Disease” INTERMAG 2018, Singapore, Jan. 2018. 
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6. F. Syeda, H. Magsood, E. Lee, A. El-Gendy, D. Jiles, and R. Hadimani, “Effect of 

Anatomical Variability in Brain on Transcranial Magnetic Stimulation Treatment,” 

American Physical Society SEAPS,  November 10-12, 2016. 

7. F. Syeda, H. Magsood, E. Lee, A. El-Gendy, D. Jiles, and R. L. Hadimani, “Effect of 

Parkinson's Disease in Transcranial Magnetic Stimulation Treatment” American Physical 

Society March Meeting, New Orleans, March 13-17, 2017. 

8. F. Syeda, Hamzah Magsood, E. G. Lee, D. C. Jiles, P. Rastogi, R. L. Hadimani, “Effect of 

Varying MRI Data on Volume Stimulated in Brain during Transcranial Magnetic 
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Abstract: Transcranial magnetic stimulation (TMS) is a non-invasive technique for diagnosis and 

treatment of various neurological conditions. However, the lack of realistic physical models to test 

the safety and efficacy of stimulation from magnetic fields generated by the coils has hindered the 

development of new TMS treatment and diagnosis protocols for several neurological conditions. 

We have developed an anatomically and geometrically accurate brain and head phantom with an 

adjustable electrical conductivity matching the average conductivity of white matter and grey 

matter of the human brain and the cerebrospinal fluid. The process of producing the phantom 

starts with segmenting the MRI images of the brain and then creating shells from the segmented 

and reconstructed model ready for 3-D printing and serving as a mold for the conductive polymer. 

Furthermore, we present SEM images and conductivity measurements of the conductive polymer 

composite as well as confirmation of the anatomical accuracy of the phantom with computed 

tomography (CT) images. Finally, we show results of induced voltage measurements obtained 

from TMS on the brain phantom. 

* Corresponding authors: Hamzah Magsood: magsoodha@vcu.edu, Dr. Ravi Hadimani: rhadimani@vcu.edu 
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1. Introduction 

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for diagnostics and 

treatments of various neurological diseases [1]–[5]. TMS is an FDA approved treatment for 

depression [5], migraine [6], and obsessive-compulsive disorder (OCD) [7] . It is also investigated 

extensively to be used as a promising treatment technique for other neurological disorders like 

Parkinson’s [8,9], Alzheimer related cognitive impairments [10] and ischemic strokes recovery 

[11]. Although there are extensive computational and clinical studies of TMS, there is a lack of an 

experimental and physical model for testing and examining the brain stimulation procedures and 

protocols. There are significant technological, safety and ethical limitations to test the potential 

TMS treatment procedures or develop enhancements and refine them on humans or animals. The 

lack of anatomically and geometrically realistic brain phantoms has made the experimental 

verification of induced electric fields in the brain tissues an impediment to the development of new 

treatment protocols. There is also a lack of animal studies of TMS due to lack of animal phantoms 

[116–118]. Several papers report electrically conductive brain phantoms but lack the anatomical 

and geometrical features of the brain [119]-[14]. The geometry of an electrically conducting 

material in the presence of a magnetic field can significantly vary and alter the induced electric 

fields [15,120]. Therefore, it is important to mimic the conductivity and the geometry of the 

physical model used in the experimental verification in brain stimulation applications such as 

TMS. 

We have developed a geometrically accurate 3-D brain and head phantom [55] with the 

electrical conductivity matching the average electrical conductivity of the grey matter (GM) and 

white matter (WM) in the brain as well as the conductivity of the cerebrospinal fluid (CSF). In this 

study, we have mainly focused on GM, WM, and CSF as they make up the cortex and the interface 
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of the GM/CSF in which the main regions of the brain are targeted in most of the TMS procedures 

for treating various neurological disorders. The manufacturing process presented in here will help 

researchers in the biomedical field to mimic and develop complex geometries of the human body 

with imparted adjustable electrical conductivity.  The phantom, with appropriate experimental 

verifications, will help the researchers and clinicians in the field of the brain modulation to test 

and approve new coil designs or new treatments protocols  

The brain is made of a conductive polymer. The development of conductive polymers has been 

widely researched over the last decades for different applications [62–68]. In some applications, 

high electrical conductivity is needed along with a rigid constraints on mechanical properties 

[121]; in some other applications, elasticity is needed to be accompanied with moderate 

conductivity [69]. There are many methods to impart conductivity to the polymers; some are 

achieved by chemical manipulation of the bonds of the polymer and other are achieved by the 

addition of conductive material to the polymers. Some examples of the material that can be used 

are single and multi-walled carbon nanotubes (MWCNTs), carbon black, copper flakes, silver 

particles and silver nanowires. Some of the processes and techniques of producing the required 

conductive polymers include mixing, milling, and grinding processes.  

In this paper, we present a process of creating an anatomically accurate and electrically 

conductive brain phantom with an adjustable conductivity for brain stimulation applications. The 

process started with acquiring magnetic resonance image (MRI) of the brain of an individual. Then 

the images were segmented and reconstructed into three-dimensional model in an .stl format. The 

3-D model was processed to create shells/molds that were ready for 3-D printing and then for 

casting the conductive polymers. After that, the shells were broken and dismantled using acetone 

and finally producing the phantom. We then showed experimental results of induced voltages on 
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the brain phantom by TMS coils. We also acquired scanning electron microscopy (SEM) images 

of the conductive polymer composition to show the dispersion of the conductive filler into the 

polymer. Finally, CT images of the physical phantom were acquired to confirm the accurate 

reproduction of anatomical features of the brain compared to the original MRI segmented brain 

model.  

2. Material and Methods 

2.1 Materials: 

To prepare the conductive polymer of the brain phantom, we used Multi-walled carbon 

nanotube (MWCNT) (diameter: 50-85 nm length: 10-15μm) mixed with polydimethylsiloxane 

polymer (PDMS). A mechanical stirrer (Ultra speed, model- BDC6015) was used to mix the 

PDMS polymer with MWCNT. The conductive polymer was casted and poured into shells that 

were printed using Ultimaker3TM Dual extrusion 3-D printer obtained from Ultimaker Inc. We 

used polylactic acid (PLA) as the shell building material and polyvinyl alcohol (PVA) as a support 

material for PLA. The MRI images were segmented using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/, Athinoula A. Martinos Center for Biomedical Imaging, 

Charlestown, MA, United Sates), SimNIBS [122] (Danish Research Centre for Magnetic 

Resonance DRCMR) and FSL [123] software (Analysis Group, Oxford, UK). MRI data used in 

the preparation of this work were obtained from the Human Connectome Project (HCP) database 

[124].The shell creation and modifications were performed using Meshmixer. The scanning 

electron microscopy (SEM) images of the conductive polymer were acquired using Hitachi SU-

70. Voltage measurements acquired using oscilloscope (Tiktronic, TDS20002C). TMS applied on 

the brain phantom using Magstim (model Rapid 2TM stimulator with Magstim AirFilmTM coils). 
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2.2 Reconstruction of the MRI images into 3D models: 

 For the development of heterogeneous head models, we used FreeSurfer, SimNIBS and 

FSL software. The three software packages operate together to segment the T1 and T2 weighted 

MRI images of the head into the skin, skull, cerebrospinal fluid (CSF) GM, WM, ventricles and 

cerebellum and construct a 3D volumetric heterogeneous head model. We have reported this 

procedure of developing head models in our previous publications [125–127]. The final segmented 

and reconstructed brain model from MRI is shown in Figure 1. 

2.3 Shell creation:  

Following the segmentation of the brain parts, we imported the brain model into 

Meshmixer software. In Meshmixer, we worked on creating a shell of the outer side of the brain 

by working on the GM surface, which is the surface of the brain. The shell was created by creating 

a solid brain model with 1mm offset thickness. Then, we subtract the original brain model from 

the solid brain. This will create the shell with 1mm thickness. The additional 1mm thickness is the 

shell of the brain and should not be confused with the brain itself. The inner side of the shell is the 

original geometry of the brain surface (GM). There is an overlap but only on the outer side of the 

shell, which is fine as long as the area of interest, inner side, is intact and has no overlap. In other 

words, the shell = 1 mm-additional-thickness solid brain model – original brain model.  

Furthermore, the shell thickness needed for the job can vary depending on the 3D printing 

technique and the material used. Since we used PLA, 1mm thickness is optimal between the 

toughness and dissolvability/breakage of the shell. That is because the 3D printed shell will be 

immersed in acetone. Acetone makes PLA brittle and breakable. This process is the last step done 

in order to remove the shells from the conductive polymer.  
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To ease the process of printing the shells, we split the brain shell in two, upper and lower 

shells. This way we could cast the conductive polymer inside the shells, join them together, and 

then remove the shells. Figure 2 shows the upper and lower shells and a view of the inside and 

outside surfaces of the upper half.
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Figure 1. Brain model after the completion of segmentation and reconstruction of MRI. a) MRI images before 

segmentation. b) Brain model in stl format after segmentation. 

 

 

 

Figure 2. Upper and lower shells (a) with view to the inner (b) and outer (c) surfaces of the upper half of the grey 

matter that is ready for 3-D printing. 

 

(a) 

(c) (b) (a) 

(b) 
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2.4 The 3-D shell printing: 

We used a filament deposition modeling FDM 3-D dual extrusion printer, Ultimaker3TM. 

It is capable of printing with PLA and compatible PVA as a support. A 3D-printer with dual 

extrusion is essential because for printing such intricate geometry, a compatible support material 

that is easy to remove will ensure best support for the main material. For the first extruder we used 

PLA as main material to build the shells.  PLA is selected because it becomes brittle when 

immersed in acetone. For the second extruder, we used PVA as a support material that is 

dissolvable in water. The printing preparation and support material rendering was done in an open-

source software Cura provided by Ultimaker Inc. Shell material, PLA was printed with 100% infill 

(without voids) and layer thickness 0.12 mm. Support material PVA was printed with standard 

pattern by Cura.  After the printing, the shells configuration that is made of the PLA and PVA is 

immersed in water to dissolve the PVA; then, the shells are ready to be casted with the conductive 

polymer. Figure 3 shows an overview of the printing with the support and the shell after it was 

cleaned from the support.   
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Figure 3. (a) Shells as they are being printed PLA as main material and with PVA as a support. 

(b) Upper half shell after they were washed with water to remove the support material and 

remain with the shell material. 

 

Printing support 

(a) (b

) 
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2.5 Electrically conductive polymer: 

The electrical conductivity of specific regions of the brain varies between different sources 

of literature and also between subjects [25,29,30,61]. For that reason, we chose an average 

conductivity of our brain phantom’s constituent material (conductive polymer) to be 

approximately 0.25 Sm-1. This value is within the average conductivity of the GM and WM from 

the latest literature [23,31]. For the CSF, we chose a conductivity of about 1.4 Sm-1 made of a 

saline water and injected inside the head phantom. 

For our phantom, we chose the PDMS as the hosting polymer and the MWCNT as the 

conductive filler. The PDMS was chosen because it is flexible even with loading of more than 

10% wt. of MWCNTs which is essential for insertion of electrodes in the phantom. It is also widely 

used in research and development of conductive polymers [21-28]. A high-speed stirrer was used 

to disperse MWCNT into PDMS. The process of imparting conductivity to the polymer is an 

optimization process between the mixing time, mixing speed and percentage of conductive filler 

to the polymer. The criterion used in our work was by adding the targeted percentage of the 

MWCNT to the PDMS and then mixing with 1000 rpm until it becomes paste-like; then added the 

PDMS curing agent to the mixture and stir it thoroughly. This mixing speed was chosen because 

when applying higher than 1000 rpm, the MWCNTs break down to lower aspect ratio and therefore 

reduce their ability to conduct electricity; and mixing speed lower than 1000rpm is not effective 

for thorough dispersion of MWCNTs within the polymer matrix. Furthermore, mixing time 

depends on the percentage of the conductive filler in the polymer. The higher the filler percentage, 

the longer the mixing time. It was mixed until the mixture becomes thick and no longer blend into 

itself by the stirrer blades. 
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2.6 Induced voltage measurements:  

Stimulation strengths inside and on the surface of the phantom were measured under 

different TMS parameters. TMS coils were positioned on the brain phantom and an oscilloscope 

probe was placed just underneath the surface of the phantom in order to measure the voltage 

(phantom probe). Also, we placed another probe at the same distance (from the coils) of the first 

probe but it was placed outside the phantom to measure the voltage induced on the probe just from 

the TMS coils as a reference probe. Then, we applied a biphasic magnetic field from the TMS coils 

at four distances 1, 2, 3, and 4 cm and at four different current coil intensities 25%, 50%, 75%, and 

100% at each distance. The amplitude of 100% current pulse in the TMS coil is approximately 

5000A. The brain phantom and experimental setup is shown in Figure 4.  
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Figure 4. Experiment setup with applied time-varying magnetic field with TMS coils at four distances 1, 2, 3, and 
4cm and at four different current coil intensities 25, 50, 75, and 100% at each distance 
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3. Results 

3.1 Resistivity/conductivity measurement of the conductive polymers: 

 The conductive filler CNTs weight percentage play an important role in increasing and 

decreasing the imparted electrical conductivity to the polymer mixture. Figure 5 shows the 

conductivity measurement of the conductive polymer samples with weight percentage of CNT in 

PDMS ranging from 5.3 to 14.4% (with addition of SEM images for 3 concentrations, 5.3%, 8.3% 

and 14.4%).  Resistivity measurements were acquired from 1 cm3 samples and then converted to 

conductivity by the relationship (σ = 1/ρ) where σ is the conductivity in Sm-1 and ρ is the resistivity 

 

Figure 5. Conductivity measurements with non-linear regression curve acquired from 1 cm3 conductive polymer 

samples with MWCNT filling weight percentage ranging between 5.3-14.4% along with SEM images for the three 

selected concentrations 5.3%, 8.3% and 14.4%.  
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Ω.m. Resistivity of the mixture was recorded after the composite was cured so that the resistivity 

values had settled to nearly constant values. 

3.2 SEM Images of the conductive polymer: 

 SEM images in Figure 6 show the dispersion of the MWCNTs within the PDMS with 

increasing MWCNT concentration. The difference can be seen clearly in the degree of dispersion. 

At lower concentrations, MWCNTs are dispersed almost equally with some agglomerations. At 

14.3 wt% (Figure 6 (c)), MWCNTs are well dispersed without agglomeration and the texture of 

the resulting composite is rough. We chose to show three concentrations; the minimum and 

maximum loading concentration, 5.3wt% (Figure 6(a)) and 14.4 wt% (Figure 6(c)), and at the 

concentration used for the brain phantom material 8.3 wt% (Figure 6(b)).  
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Figure 6. SEM images of the conductive polymer composite with varying conductive filler concentrations a) 5.3 wt% b) 

a) 5.3 wt% 

b) 8.3 wt% 

c) 14.4 wt% 
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3.3 Brain phantom: 

After choosing the targeted conductivity of 0.25 Sm-1 for our polymer, the upper and lower 

grey matter shells were filled with the conductive polymer, securely joined, and left for around 72 

hours to cure. Then, the phantom was immersed in acetone. The acetone made the shell material 

PLA brittle and breakable, which made it easier to remove the shells and finally expose the PDMS-

MWCNT composite brain phantom as shown in Figure 7. Also, a summarization of the entire 

process of the phantom creation is shown in Figure 8 and a flow chart is shown in Figure 10. 

 

Figure 7. Final steps of the phantom creation. (a) The shells were filled with the conductive material and joined 

together and left to be cured. The shells were covered by the conductive polymer that was later removed after it fully 

cured (b, c) Top and side views of the brain phantom after being immersed in acetone and the shells removed. 

 

(a) (b) 

(c

) 
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Figure 8. Summarization of the entire process starting from MRI images of the brain until the obtained brain phantom made of the conductive polymer. (a) MRI 

image in an nii format, (b) Reconstructed brain model in stl format,   (c) Shell mold for the outer region of the brain/GM. Shown is the inner side of the upper half 

shell, (d) Shell after printing and dissolving the support material, (e) Shells were filled with the conductive material and joined together and left to be cured, (f) 

Brain phantom after being immersed in acetone and removing the shells 
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3.4. Head phantom and CSF 189 

 The head model consists of, the skin, scalp, skull, CSF and the brain phantom (grey matter, 190 

white matter and ventricles). In the phantom, the skin, scalp, and skull are joined in one layer and 191 

are made of non-conductive PDMS because these regions (except for the skin) exhibit very low 192 

and negligible electrical conductivities compared to the brain and CSF. Since the skull has very 193 

low conductivity where it impedes current flow, we can join the skin with the skull to be made 194 

non-conductive polymer. The CSF is made of a saline solution with adjustable conductivity. Figure 195 

9 shows the steps of creating the layer of the skin, scalp, and skull using the same shelling method 196 

with the brain phantom. We 3-D printed the outer shell of the skin and the inner layer of the scalp. 197 

Then the supporting material of the printing was dissolved, and we poured the PDMS in between 198 

the shells to form the layer. After that, the shells were removed and we remained with the desired 199 

layer. After that, we placed the brain phantom inside the head. The gap in between the inner side 200 

of the head and the outer side of the brain is the CSF region. We injected the conductive saline 201 

solution in the gap.  The saline solution has an NaCl concentration of about 3.5 mg/ml to mimic 202 

the CSF’s conductivity.   The final realization of the head and brain is shown in Figure 9(e). 203 

 204 
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Figure 9. Fabrication of anatomically accurate head phantom using scalp, skull, CSF and the brain phantom. (a) The head shells after printing. (b) The head after 

the PDMS was poured and the outer shells was removed (the inner shell is not removed yet and can be seen through the fabric of the head phantom. (c, d) the 
brain phantom is placed inside the head. (e) The head phantom after being sealed and the conductive saline is being injected to mimic the CSF.  
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Figure 10. A flow chart showing summery of steps take in order to obtain the entire geometry of 

the brain and head phantom 
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3.5 Computed tomography (CT) images of the brain phantom:  

The brain phantom shown in Figure 8 (c) was imaged using CT scan to confirm that the 

anatomical features in the MRI/stl files match the anatomical features of the phantom as shown in 

Figure 11. There are seemingly small deviations of anatomical features of the cortex of the 

phantom from original MRI image due the placement and orientation offsets of the phantom inside 

the CT scanner.  Due to this misalignment, the CT scan slices are difficult to overlap on the original 

MRI slices. This can be corrected by using an accurate fixture to hold the phantom in the CT 

scanner.  

3.6 Induced voltage measurements:  

The voltage measurements at 1, 2, 3 and 4 cm distance are shown in Figure 12. Voltage 

readings shown in Figure  12 (a) and (b) represents the difference between the voltages induced 

on phantom probe and the reference probe; and they demonstrate different relationship between 

the measured voltages, distances, and current in the coil’s intensities. Figure 12 (a) demonstrates 

a linear behavior between the induced voltages in the phantom vs. current intensities in the TMS 

coil at different distances from the phantom. Figure 12 (b) demonstrates a rapid decrease in the 

induced voltage in the phantom as a function of distances between the phantom and the coil at 

different current intensities in the TMS coil.  
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Figure 11.  Brain phantom CT images compared to the brain model confirimg antomical features matching. (a, b) CT 

images for the brain phantom. (c) cross section of the brain model from Meshmixer. (d) an approximate overlap between 
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Figure 12. Measured voltages with varied distances (1, 2, 3, and 4cm) and intensities (25, 50, 75, and 100%) of the 

TMS coil. (a) Illustration of the measured voltage signals from the phantom and the probe with a biphasic TMS 

device. (b) Demonstration of a linear behavior for measured voltages vs intensities at different distances. (c) 

Demonstration of rapid measured voltage decrease with distance at different intensities 

(a) 

(b) 

Reference voltage 

Phantom voltage 

(c) 
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4. Discussion 

The brain phantom was created by a process that started with brain MRIs being segmented 

and reconstructed into three-dimensional brain model. Shells were created out of the brain model 

to be 3-D printed to serve as a mold for the conductive polymer. The shells were removed after 

immersing the PDMS-MWCNT polymer filled mold in acetone to obtain the brain phantom. The 

brain phantom created with above process is anatomically accurate as seen in Figure 9 where the 

CT scan of the phantom is compared with the .stl file of the MRI of the brain.  It is important to 

consider the geometry and anatomy of the brain accurately when studying the effect of induced 

electric field with the application of external magnetic field such as TMS. The geometry has a 

crucial impact on the distribution of the induced electric field because the orientation of the 

magnetic field with respect to the surface of the brain it interacts with can change the amount of 

induction on these specific points of the surface significantly. Therefore, using spherical 

conductive brain phantoms to investigate the induced electric field distribution by TMS will result 

in inaccurate results. Our brain phantom takes accurate anatomical features of the brain into 

considerations and provides an important and essential feature for experimental study of 

stimulation strengths and field profiles generated by TMS in human brain.  

The conductivity of the polymer that constitutes the brain phantom was selected based on 

the average conductivity of WM and GM 0.25 Sm-1. We studied the change in the electrical 

conductivity when using MWCNT as a conductive filler with the hosting polymer PDMS. We 

chose a concentration of MWCNT of 8.3wt% to be used in our phantom because it approximately 

matches the average conductivity of GM and WM of a healthy adult human brain reported in the 

literature [17-20].  
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The conductivity of the composite can be further improved for a given conductive filler 

weight percentage inside the PDMS polymer. For example, the 0.25 Sm-1 that correspond to 8.5 

wt% can be achieved with lesser wt% conductive filler like 3-4 wt% by dispersing the 

agglomerated MWCNTs. This is evident from the SEM images shown in Figure 6 (b). These 

aggregations can be dispersed with better mixing techniques. MWCNTs can be first dispersed in 

a solution such as heptane and sonicated before adding to the PDMS. Also, our PDMS polymer 

has some bubble formations within the composite. These bubbles can be removed by degassing 

the PDMS polymer after being molded by the brain shells. This can be challenging because the 

polymer has high viscosity and also the shells on top, which may seal the air bubbles inside the 

polymer as they leave no openings for the gas to escape. Furthermore, using single walled carbon 

nanotubes, SWCNTs and a higher aspect ratio of the carbon nanotubes would enhance the 

conductivity further for any given conductive filler weight percent. 

Figure 12 shows induced voltage as a function of coil current intensity and distance, it can 

be seen that the voltage is linearly dependent on coil current intensity and decrease rapidly with 

the distance. The variation in induced voltage is significantly higher between the 1cm and 2cm 

coil distances compared to other distances. This is due to rapid decrease in the magnetic field with 

the distance from the source of magnetic field which results in rapid decrease in the induced 

voltage with the distance. This is seen in both Figure  12 (a) and (b) which align with previous 

literature [128][129].   

This brain phantom can be used in many applications related to brain stimulation 

techniques such as TMS and deep brain stimulation (DBS). It can be used to test safety of 

combination treatment of the TMS and the DBS. The DBS probe can be inserted into the brain 
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phantom and the TMS applied to measure the amount of induced currents and determine the safety 

of the combined treatment. 

 The brain phantom can be improved to be fabricated with different conductivities for the 

GM and WM. The electric filed stimulated in the GM is influenced by the conductivity of the WM 

[130]. Therefore, separate conductivities insure a better and more accurate measurements of the 

induced electric field on the brain surface. However, our brain phantom with homogenous 

conductivity can still provide a rigorous insight into stimulation procedures because it is 

geometrically and anatomically matching the human brain.  

Moreover, mapping the electric field on the brain phantom would be a next major and 

important step toward complete understanding of the stimulation effects on the brain. Such task is 

non-trivial because the very act of measurement of the electric field using conductive probes will 

distort and perturb the electric field especially on a complex geometry like the brain and with the 

application of externally alternating magnetic field. Researchers recently developed a non-

distortion electric field microelectromechanical (MEMS) sensor for applications like high-voltage 

power or atmospheric electrostatic electric field mapping [109]. Similar sensors or probes are 

needed to be incorporated in the future development of the brain phantom and for measurement of 

electric field. With the further development of the measurement theory on such anatomical 

phantoms, one can correlate and verify those measurements with computer simulation of TMS 

similar to recent work on the transcranial direct current stimulation (tDCS) [110–112].   

Furthermore, the phantom can further be developed for other brain stimulation techniques such as 

tDCS. In such case, manufacturing process needs to account for the skin conductivity. 
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5. Conclusion  

In this work, we presented a process of creating an electrically conductive anatomically 

and geometrically accurate brain phantom used for experimental validation of neuromodulation 

techniques such as TMS and tDCS. The process started with converting MRIs into 3-D brain 

models. The models used for shell creation are 3D printed and served as molds for electrically 

conductive polymer. The conductive polymer consists of PDMS as host polymer and MWCNT as 

conductive filler. Also, stimulation strengths induced by TMS parameters were measured as 

induced voltages on the phantom. The results showed an expected linear behavior for the measured 

voltages vs. coil’s current intensity and a rapid decrease behavior for the measured voltages vs. 

distances between the phantom and the coils. This phantom with average conductivity of GM and 

WM can work for cortical TMS applications. However, further development of the phantom with 

varying conductivities of GM and WM is needed for better evaluation and measurement of the 

stimulation strength of the TMS. 
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