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Abstract

LEVERAGING PEER-TO-PEER ENERGY SHARING FOR RESOURCE

OPTIMIZATION IN MOBILE SOCIAL NETWORKS

By Aashish Dhungana

A dissertation submitted in fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2020.

Director: Dr. Eyuphan Bulut,

Associate Professor, Department of Computer Science

Mobile Opportunistic Networks (MSNs) enable the interaction of mobile users

in the vicinity through various short-range wireless communication technologies (e.g.,

Bluetooth, WiFi) and let them discover and exchange information directly or in ad

hoc manner. Despite their promise to enable many exciting applications, limited

battery capacity of mobile devices has become the biggest impediment to these appli-

cations. The recent breakthroughs in the areas of wireless power transfer (WPT) and

rechargeable lithium batteries promise the use of peer-to-peer (P2P) energy sharing

(i.e., the transfer of energy from the battery of one member of the mobile network

to the battery of the another member) for the efficient utilization of scarce energy

resources in the network. However, due to uncertain mobility and communication

opportunities in the network, resource optimization in these opportunistic networks

is very challenging. In this dissertation, we study energy utilization in three different

applications in Mobile Social Networks and target to improve the energy efficiency in

the network by benefiting from P2P energy sharing among the nodes. More specifi-

xi



cally, we look at the problems of (i) optimal energy usage and sharing between friendly

nodes in order to reduce the burden of wall-based charging, (ii) optimal content and

energy sharing when energy is considered as an incentive for carrying the content

for other nodes, and (iii) energy balancing among nodes for prolonging the network

lifetime. We have proposed various novel protocols for the corresponding applications

and have shown that they outperform the state-of-the-art solutions and improve the

energy efficiency in MSNs while the application requirements are satisfied.
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CHAPTER 1

INTRODUCTION

About 5 billion users are carrying a mobile device with a service around the globe [1].

The various uses of these devices and increasing popularity of software applications

such as email, Facebook, and maps have made people highly dependent on mobile

devices. This intensive use of mobile devices has brought a huge load on battery re-

quirements. The hardware capabilities have significantly improved since the advent of

smartphones but the development of powerful batteries have not taken the necessary

pace, making the batteries the main bottleneck. The charge on most smartphones

lasts about one day with average usage, or less with intensive usage (e.g., social sens-

ing [2]). As a result, users are required to charge their devices frequently. The most

common practice for users is to charge their phones by connecting them to a wall

outlet through charging cables. This requires users to carry a charging cable and

find an outlet, which is mostly available indoors. Thus, the charging process can

potentially be irritating and sometimes infeasible. With the integration of built-in

wireless charging capability in recent phones (including iPhone 8 and X [3]), users are

relieved from the need to carry charging cables but the current application of wireless

charging is very limited as it requires not the phone but the charging mat to be con-

nected to an outlet. Recently, this somewhat limited usage of wireless charging has

further been extended with energy transfer between mobile devices [4, 5]. Through

bidirectional chargers, mobile devices could exchange energy without the need of be-

ing connected to an outlet. Such a peer-to-peer (P2P) energy sharing opportunity

brings flexibility to users for finding power ubiquitously and mitigates the risks of

1



facing an emergency situation with depleted battery [6, 7, 8]. This power sharing

technique transforms power to a tradable commodity and can incentivize users for

sharing. However, users may be concerned about the effects of power transfer on

human health and safety [9]. The idea that power is transferring through the air or

is buzzing around can worry people about possible radiation. Yet, the most common

form of wireless charging, inductive charging, is indeed very safe to use. Several stud-

ies have been done to determine the safety limits (through several metrics such as

Specific Absorption Rate (SAR), and current density) of human exposure to electro-

magnetic (EM) fields (created by inductive charging) by several agencies including

WHO and ICNRP [10]. The reports from these studies show that there is no evidence

showing that human exposure to radio frequency (RF) electromagnetic fields causes

cancer, as long as they stay in given limits defined by these agencies. That’s why

one needs to follow these guidelines while developing new wireless charging products.

Current commercially available Qi wireless chargers use low power (e.g., 5 watts) and

operate at the frequencies between 110 and 205 kHz [11] which are already considered

to be within these safety limits.

The charging of battery powered devices has gained a different perspective with

recent breakthroughs in the areas of wireless power transfer (WPT) [12, 13] and

rechargeable lithium batteries [14]. Thanks to both academic and industrial efforts,

wireless charging has been adopted for the charging of various mobile nodes including

not only the low-power devices such as RFID tags, sensors or other Internet-of-Things

(IoT) devices but also other devices and vehicles that operate with moderate and high

capacity batteries such as smartphones, tablets, and cars. There are many commercial

products that can be charged wirelessly in the market today and it is expected that

the global wireless charging market is projected to reach $71,213 million by 2025,

with a compound annual growth rate (CAGR) of 38.7% from 2018 to 2025 [15].

2



A survey has also been done in [16] to understand the users interest in sharing

their energy. The study shows that majority of people is interested in P2P energy

sharing but they look for charging with better efficiency and at somewhat longer

distances. While the current technology is not there yet, there are some breakthroughs

in the literature which could lead to progress in these aspects of wireless charging.

This work also develops a prototype for mobile app that aims to build a social network

platform to let people find each other and share energy wirelessly. Thanks to the

convenience and better user experience provided, wireless charging technologies have

been recently adopted for the sharing of energy among peers. However, energy sharing

not necessarily be achieved via wireless power transfer. Conductive (wired) way could

also be possible and a better option for efficiency in some networks consisting of high-

power vehicles (e.g., electric vehicle to electric vehicle [17]). Moreover, this energy

sharing could be between some specific type of agents (e.g., mobile charger to mobile

charger (C2C ) [18]), between ordinary nodes (N2N ) when they are equipped with

necessary hardware (e.g., phone to phone [19]) or from specific agents to ordinary

nodes (e.g., mobile charger to a sensor node [20] (C2N )). The scenarios considered

for energy sharing in different mobile network applications are summarized in Fig. 1.

Depending on how the energy sharing is used within a specific application, it also

comes with different design challenges including optimal trajectory planning, schedul-

ing of multiple chargers as well as providing incentives for the sharing. Moreover, if

wireless power transfer is used, the energy transfer efficiency should be taken into ac-

count during the development of protocols and algorithms. The consumption of the

energy may also need to be optimized not just in terms of its distribution to other

peers but also for the mobility of agents in some scenarios. For example, while in the

case of smartphones the mobility is provided by people carrying them, in the case of

mobile robots or vehicles as mobile chargers in a sensor network, the energy is also

3
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Fig. 1.: The scenarios considered for energy sharing in different mobile network ap-

plications.

consumed for their movement, thus, a joint optimization is required. In this disser-

tation, we only focus on resource optimization via energy sharing between mobile to

mobile (N2N) devices in a mobile social network.

1.1 Motivation

Mobile Social Networks (MSN) is a type of delay tolerant networks (DTNs)

where the mobility and connectivity of nodes are often non-deterministic. Mobile So-

cial Networks (MSNs) enable the interaction of mobile users in the vicinity through

various short-range wireless communication technologies (e.g., Bluetooth, WiFi) and

let them discover and exchange information directly or in ad hoc manner. Despite

their promise to enable many exciting applications, limited battery capacity of mo-

bile devices has become the biggest impediment to these applications. Two recent

breakthroughs in the areas of wireless power transfer (WPT) and rechargeable lithium
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batteries promise the use of peer-to-peer energy sharing for the efficient utilization

of scarce energy resources in the network. We refer to energy sharing as the transfer

of energy from the battery of one member of the mobile network to the battery of

the another member. Resource optimization in these opportunistic networks is chal-

lenging due to uncertainty of possible communication opportunities. Thus, efficient

techniques are required to develop a strategy on optimizing the available resources in

these networks for collaborative network operations. There have been many research

efforts performed to provide solutions based on different methods (e.g., harvesting [21],

battery replacement [22]) to this problem so that network lifetime can be prolonged.

With the recent advances in wireless power transfer (WPT) technology and in-

creasing efforts from both the academia and industry, numerous studies considered

WPT based energy replenishment of nodes in mobile networks. Most of these studies

have been performed for wireless sensor networks [18, 23, 24], but it has also been

considered for smartphones [25, 26, 27], electric vehicles [28, 29, 30] and Internet-of-

Things (IoT) devices [31, 32]. For example, in the sensor networks domain, most of

the time mobile chargers, which are special vehicles (e.g., robot, Unmanned Aerial

Vehicle (UAV)) with high energy supplies are employed to periodically charge the

sensors in the field.

The one-way charging of mobile devices from chargers has recently been extended

to bidirectional energy sharing between the regular nodes in the network and several

application specific problems have been studied benefiting from this. For example, in

mobile social networks domain, thanks to the recent products (e.g., Samsung Galaxy

S10, Huawei Mate 20 Pro) in the market and also some prototypes developed by

research community [4, 27] bidirectional wireless charging between smartphones has

been considered for crowdcharging of smartphones by other users [6, 7]. While current

form of wireless charging used in these products only happen in very close distances
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(i.e., almost touching), it provides a convenient process without the hassle of cables.

On the other hand, peer-to-peer energy sharing has triggered a new set of research

studies in different mobile network applications. For example, for an opportunistic

content delivery, energy has been considered as an incentive [8, 33] to the devices to

carry the message. Similarly, an interesting problem of energy balancing [34, 35, 36,

37, 38] among nodes has been studied towards prolonging the lifetime of the network,

which could be vital especially when there is no access to external energy sources.

In this dissertation, we study energy utilization in three different applications in

Mobile Social Networks and target to improve the energy efficiency in the network by

benefiting from P2P energy sharing among the nodes. More specifically, we look at

the problems of (i) optimal energy usage and sharing between friendly nodes in order

to reduce the burden of wall-based charging, (ii) optimal content and energy sharing

when energy is considered as an incentive for carrying the content for other nodes,

and (iii) energy balancing among nodes for prolonging the network lifetime. We have

proposed various novel protocols for the corresponding applications and have shown

that they overcome the state-of-the-art solutions and improve the energy efficiency

in MSNs while the application requirements are satisfied.

1.2 Contributions

Our contributions for resource optimization in Mobile Social Networks utilizing

peer-to-peer energy sharing among mobile nodes can be summarized as below:

• We investigate the utilization of peer-to-peer wireless energy sharing to relieve

the users from the burden of cord-based charging. The devices of users can

make use of energy available from other users’ devices based on their meeting

patterns so that the battery level of their devices could be maintained within

an acceptable level without the need of charging it through a cable frequently.
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To this end, we first use dynamic programming to find the optimal skips of

existing cord-based charging sessions for each pair of users in an MSN and then

use stable roommate matching to map each user to its best peer for energy

exchange.

• We study the content delivery problem in mobile social networks in which nodes

are motivated by energy transfers for carrying the messages. That is, each relay

node carries a message forwarded by another node as long the energy provided

or the corresponding time-to-live (TTL) value lasts. To this end, we utilize

dynamic programming and Optimal Stopping Theory to solve this problem.

• We study the energy balancing problem that aims to minimize both the energy

difference between nodes and the energy loss during this process. We propose

three interaction protocols for a fully connected contact graph and discuss its

performance based on the achievable balance and energy loss.

• We also present efficient and loss-aware energy balancing protocols consider-

ing the contact graph heterogeneity between nodes and a time threshold for

completing the energy balancing and propose several single hop and multi hop

interaction protocols to achieve the optimal energy balance.

• We also extend the idea of energy balancing to network lifetime maximization

problem and also propose modifications to the energy balancing problem for

lifetime maximization when a perfect energy balancing is not achievable.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows: Next section discusses on

the relevant background of the literature including various available energy sharing

7



techniques and problems focused by researchers in this area. Third chapter discusses

on charging skip optimization algorithms that aims to reduce the burden of cord

based charging utilizing P2P energy sharing between users. Similarly, fourth chapter

presents the content delivery algorithm in Mobile Social Networks utilizing energy

as incentives. Fifth chapter discusses on the energy balancing problem and presents

several protocols to achieve optimal energy balance. Finally, in sixth chapter, we pro-

vide concluding remarks and in the last chapter we provide future research directions

related to topics in this dissertation.
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CHAPTER 2

LITERATURE REVIEW

The relevant backgrounds and current state-of-art technologies for peer-to-peer energy

sharing in mobile networks are discussed in the sections below:

2.1 Energy Sharing Technologies

In this section, we review the various technologies and methods used to achieve

energy sharing between the batteries of mobile devices in different mobile network

applications. Due to its practicability and recent advances, several wireless charging

technologies adopted recently, however, wired energy transfers through conductive

cables or gadgets have also been considered.

Wireless power transfer (WPT) or simply wireless charging is a technology of

transmitting power through the air to electrical devices for energy replenishment.

There are several ways of achieving wireless charging (e.g., inductive coupling [39],

magnetic resonant coupling [12] and radio frequency (RF) based charging [40]), each

with advantages and disadvantages to one another. For example, RF based charging

is radiative charging and uses electro-magnetic waves like RF waves and microwaves

to deliver energy in the form of radiation. As it can be unsafe due to the RF expo-

sure [9, 41], it is usually offered for low-power devices like sensor nodes and medical

implants [42]. Inductive coupling based charging can provide good efficiency but has

a short range. Magnetic resonance coupling based wireless charging can operate at

larger distances but with less efficiency. Other forms of wireless charging (e.g., ul-

trasound [43], or lasers [44]) are also possible but none of those approaches yet made
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it available for consumers while staying in the safety limits defined by FCC [41]. A

comprehensive overview of the existing and emerging wireless charging technologies

and their applications in wireless communication networks could be found in [45].

Wireless charging has also been utilized for energy sharing between mobile de-

vices. However, due to the efficiency issues with wireless charging at larger distances,

it has been mostly considered for sensor networks consisting of devices with low power

requirements. A mobile robot or a vehicle usually charges itself and navigates to the

sensors in the network to charge them. As sensor nodes are considered stable most of

the time, peer-to-peer energy sharing among sensor nodes is not applicable. However,

to increase the number of sensors that could be charged, energy sharing among charger

vehicles [18] has been considered as an example of peer-to-peer energy sharing.

With the introduction of new generation mobile devices such as smartphones

with built-in wireless charging capability, the adoption of wireless charging beyond

sensor networks as well as its research has gained momentum. However, current

common usage scenarios are very limited. For example, smartphone users need to

place their devices on a charging pad and start charging their devices without the

hassle of cables. While several additional convenience could be provided by embedding

charging equipment in other things such as a desk [46] or a cup holder in a car [47], as

the charging equipment still needs to be plugged into a power source, it does not really

achieve an energy sharing as defined in this dissertation. Energy sharing between

smartphones could indeed simply be achieved by power sharing cables [48], and power

equalizer gadgets [49] in a conductive way. However, it comes with the burden of

carrying such accessories. There are some recent studies [19, 50] demonstrating that

current wireless power transfer technologies can easily be utilized to create an on-

the-go power sharing system between mobile devices. While, due to the efficiency

problems this is achieved at very close distances (i.e., almost touching), it can provide
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the flexibility to users for finding energy ubiquitously from other users’ devices.

Energy sharing between high-power mobile agents has also been studied recently.

With the rise of electric vehicles (EV), charging of vehicles has been one of the major

problems. Wireless charging has been considered as an option for electric vehicle

charging by several means (e.g., convenient charging while parking [51], dynamic

wireless charging on roads [52]). However, such solutions require heavy investment

and high labor costs [53]. Recently, vehicle to vehicle charge sharing has been con-

sidered to address the immediate charge needs of vehicles especially in the absence

of nearby charging stations. While wireless charging based energy sharing between

EVs has been claimed with a recent study [54], there is actually no practical imple-

mentation due to aforementioned challenges and limitations. However, the possibility

of energy exchange between two EVs has already been introduced to the market

through different products by a few companies, such as Andromeda Power (AP) [55]

and eMotorWerks (EMW) [56]. These products provide a direct V2V charge sharing

with a DC/DC converter and a charging cable that tie the batteries of both EVs

through their fast charging ports. However, these products are mainly developed for

the purpose of rescuing stranded vehicles. Building on top of these solutions, there is

a growing number of studies that aim to solve charging problem of EVs through V2V

charge sharing. However, understanding the potential benefits of such V2V charg-

ing among a network of EVs at a large scale is a challenging question, thus several

specific aspects of this problem are focused on these studies. Furthermore, recent

research studies also look at the utilization of Unmanned Aerial Vehicles (UAV) to

solve the charging problem. Energy sharing solutions using UAVs is more effective

since UAVs can hover around a large place significantly increasing the charging cov-

erage. However, the high speed of drones and energy constraints make energy sharing

a challenging problem. Moreover, due to the longer charging distances from UAVs,
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the charging efficiency will be lower. Thus, most research studies focuses on tackling

these aspects of the problem.

In this dissertation, we focus on energy sharing in MSNs and its utilization

for resource optimization in MSNs. Thus, in the next section, we elaborate on the

state-of-art P2P energy sharing applications between mobile nodes in a Mobile Social

Network.

2.2 Mobile Social Networks

With the proliferation of mobile devices used by people, a new form of network-

ing, called mobile social networks (MSN) [57], has appeared. The unique feature of

these networks is the mobility of the nodes, which is provided freely (i.e., without en-

ergy consumption from their batteries) by humans carrying them. Moreover, thanks

to the growing peer-to-peer communication technologies (e.g., Bluetooth Low Energy

(BLE), WiFi Direct), these devices can talk to each other when they are within the

wireless ranges of each other. However, most of the time, this type of interaction is

determined by the social relations of people carrying these types. Leveraging these

properties of MSNs, many studies have been conducted focusing on different problems

such as opportunistic routing [58, 59], friend discovery [60] and user tracking [61].

One bottleneck in the operation of these complicated mobile devices (e.g., smart-

phones) constituting the MSNs is their limited battery capacity. They struggle to

reconcile their increasing capabilities with their battery lives. While there are ways

to optimize the use of battery [62, 63] in mobile devices, the need of frequent charg-

ing of these devices by their users to keep them operational is inevitable. However,

charging facilities may not be continuously accessible (e.g., when the user is outside).

In response to this, for example, some crowdsourcing based apps are developed to find

out the nearest available plugs (e.g., ChargeItSpot [64], Airport Power [65]). Alterna-
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tively, external power banks [66], solar chargers [67] or other eco-friendly chargers like

mobile hand generators [68] are also considered but they provide limited solutions in

practice and come with the cost of carrying additional accessories.

To provide a more comprehensive solution, opportunistic peer-to-peer energy

sharing among mobile devices is considered recently (see Fig. 2). That is, users with

high energy in their devices (i.e., recently charged) can share energy with other user

devices (i.e., N2N) having less energy and can consider getting it back in another time

when they need. This brings flexibility to users for finding power ubiquitously and can

potentially mitigate the risks of facing an emergency situation with depleted battery.

Conductive energy sharing solutions could be considered but with the increasing

number of mobile devices that have built-in wireless charging feature, this could be

achieved in a more convenient way. While the current wireless charging application

on commercial mobile devices is considered from charging pads and unidirectional

only, in some recent studies [19, 50] prototype systems managing and controlling

bidirectional energy exchange among mobile phones are presented.

Recently, there is a growing number of studies that utilizes the peer-to-peer

energy sharing in mobile social networks. We categorize them based on the objective

of the research. Below, we overview the studies in each category.

2.2.1 Optimal Energy Usage

The studies in this group aim to take the advantage of opportunistic interaction

of nodes in a mobile social network for energy sharing. Their goal is to optimize

the energy usage at nodes in general but different approaches are considered. Users

can share energy when they travel and encounter each other such that mobile users

don’t run out of energy on the way or before reaching to its charging point. Thus, to

maximize the benefit from opportunistic energy sharing, not only the mobility and

13



Fig. 2.: Energy sharing scenarios in a mobile social network consisting of smart mobile

devices. The energy sharing can be achieved in a conductive manner via a sharing

cable or a gadget or through near-field wireless power transfer.

encounter patterns of users but also energy levels of the user devices’ batteries at

their encounter times should be taken into account.

In[7, 8] a constrained Markov decision process is used to formulate the optimal

energy sharing policy that minimizes the energy outage probability. Users are ranked

based on the potential mutual benefits to each other in terms of shareable energy and

the best pairs of nodes are found using stable matching. However, this concept is

studied without an integrated analysis of charging habits of individual user devices

and meeting patterns between the users that can exchange energy. To address this,

in [6], the limits of energy sharing among mobile devices is investigated by analyzing

the current charging patterns and the social interactions between these mobile users.

The nodes are paired as power buddies and energy sharing is achieved only among

them similar to [7]. Interestingly, this model is able to show that these power buddies

can provide a good percentage of energy needs allowing users to delay their charging

decisions and increase average charging cycle duration. In [69], a group-based charging
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system is introduced and assuming two separate battery units at nodes, the burden

of charging is given to only some lead nodes who are responsible for charging their

second units overnight and providing energy during the day to others.

2.2.2 Energy Sharing for Content Delivery

There is a group of studies that exploit energy sharing in the context of con-

tent delivery in sparsely connected mobile networks such as Delay Tolerant Networks

(DTN) [70] or Mobile Social Networks (MSN). The communication between the nodes

in such networks is achieved in opportunistic manner. That is, when a source node

has a message to send to a destination node, the message is forwarded or copied to

other nodes in the network with some decision rationale [70, 71, 72, 73] to achieve the

minimum possible delay. Then, the message is stored in the relay node, carried until

another better relay node or destination node is met and forwarded again. While

routing is the main problem studied in such networks, as the nodes in these networks

require energy for storing, carrying and forwarding the message contents to other

nodes in the network, energy management is also a major issue. Thus, there are

many studies that aim to develop energy efficient routing protocols. Besides these

works, recently several studies have considered the scenario in which a mobile user

transfers not only the content but also energy (see Fig. 3) to intermediate users [33,

74, 75], as an incentive to them to carry this content to the destination. However,

this makes the problem more challenging as the nodes need to determine not only the

forwarding of the content but also the amount of energy to be given to relay nodes.

Several approaches are adopted in the literature to address this challenging prob-

lem. In [33], the problem is formulated using a Markov decision process (MDP) based

on the contact state of content source to obtain the optimal energy sharing policy. The

content source moves and visits a charger to receive energy and when it meets with
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Fig. 3.: Source node charges itself at a charger and when it meets with a messenger

offering better delivery option for its message to a specific destination, it transfers the

message as well as the sufficient energy for the messenger to carry it to the destination.

a messenger (e.g., relay), asks for the delivery of the content to the destination node

by sharing some energy to the messenger. If the energy depletes before reaching to

the destination, the content is discarded by the messenger. MDP is used to carefully

select a messenger node and transfer optimal energy so that the content is delivered

to the destination with highest probability. Extending this study in [76] the authors

show that the optimal strategy obtained by MDP is a threshold policy. In order to

avoid the cumbersome of centralized solutions and achieve a decentralized decision

policy, authors also formulate the problem using a decentralized partially observable

Markov decision process with constraints and a decentralized learning algorithm is

proposed to obtain an optimal local policy at nodes [77].

The interaction between the source and the messenger nodes has also been mod-

eled using game theoretical models in several studies. In [74] the peer-to-peer relations

between mobile nodes is exploited to form a coalition to help one another on deliver-

ing packets. They also look at the cases when these coalitions might not be beneficial

and some nodes might decide to deviate away from the coalition. A different ap-

proach based on forming a non-cooperative game model is considered in [75]. The

source node holds an auction for wireless energy and the nodes send their bids for it.

In return of service, the nodes have to pay certain cost to the source. A stochastic

16



dynamic response algorithm that allows nodes to adapt their strategies to the Nash

Equilibrium is presented and proved to be the optimal policy.

Different than the focus of the aforementioned works, in [78], a charging-aware

mobility model is studied to integrate the charging needs of mobile nodes during their

mobility. To this end, nodes are motivated to move towards energy sources when they

have low energies while they are motivated to move towards the destination node when

they have sufficiently high energy. Moreover, as the deadline for delivery gets close,

the weight for moving towards destination increases to achieve timely delivery. It

has been shown that this approach lets the nodes maintain high energy and achieve

better packet delivery ratios depending on the location and the number of charger

nodes in the network.

2.2.3 Energy Distribution for Balancing

One important problem studied exploiting peer-to-peer energy sharing in mobile

social networks is to distribute the available energy in a desirable way. Mostly, the

goal of such distribution is to achieve the energy balance in the network or to reach a

certain target energy distribution. However, the distributed cooperation of the nodes

towards collectively achieving global computational and communication goals can be

challenging. In this effort, some studies offer peer-to-peer energy exchange between

agents to achieve approximate energy balance [36, 79, 80, 81] in the network with

minimum energy loss whereas some advocates on constructing a network structure

[37, 38, 79], basically a star structure to reach a desired energy distribution in the

network. Next, we discuss these approaches, respectively.

Energy balancing can provide efficient utilization of scarce energy in mobile so-

cial networks and can prolong the network lifetime (e.g., especially when network

lifetime is defined as the duration until the first node dies). Distributing energy such
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Research Objective Key features

Optimal Energy Usage [6,

7, 8, 69]

• Limits the energy sharing only among assigned

pairs.

• Allows opportunistic energy exchange at meeting

times only.

Energy Distribution for Bal-

ancing [36, 37, 79, 80, 81]

• Energy is shared in certain (e.g., half, small

amount) portions between all or some (e.g., in the

opposite sides of average network energy) of the

interacting nodes.

• Roles of nodes within a network formation prob-

lem is jointly considered for a weighted distribu-

tion.

Energy Sharing for Content

Delivery [33, 74, 75, 76, 77,

78]

• Energy is provided to relay nodes to carry content

to destination.

• Optimal amount of energy to be transmitted is

determined jointly with the decision of forwarding.

Table 1.: A summary of current research using energy sharing in mobile social net-

works.

that each node in the network has access to similar level of energy or energy propor-

tional to its weight (e.g., importance in the network) can be thought of a fair way of
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collaboration among mobile users in efficient utilization of energy resource. Studies

focusing on energy balance mostly investigate on interactive, peer-to-peer wireless

energy exchange in populations of resource limited mobile agents, without use of any

special chargers with the main goal of achieving the energy balance among the mobile

nodes [36, 79, 80, 81].

In these works, it is assumed that the agents are capable of achieving bi-directional

wireless energy transfer acting both as energy transmitters and receivers. Both loss-

less and lossy cases are considered for energy sharing where the energy loss follows a

fixed linear law. Under these assumptions, various interaction protocols are proposed

that will achieve the energy balance. These include sharing half of the available energy

or only a small amount of energy. When the average of the available energy in the

network is also known, more smart sharing rules such as sharing between the agents

on the opposite sides of the average, are also considered to speed up the convergence.

There are also weighted versions of these protocols considered when the significance

of nodes are not the same.

Energy distribution among peers has also been studied [37, 38, 79] within a

network formation problem considering the roles of the nodes and their energy needs.

For example, in a star topology, nodes are organized in a cluster, and a cluster

head is selected to which all communications is forwarded. In view of this, the fair

distribution of energy in the network could be when the energy level of the cluster

head is proportional to the number of mobile nodes in its cluster. In networks, where

the central agent knows the number of actual peripheral nodes, this could be easily

managed by finding the proportional energy needs of nodes, however, this may not

be the case always in practice. Thus, naive (e.g., transferring all or half of the energy

from the peripheral nodes to the central node) solutions are simply adopted mostly

favoring the heavy-duty nodes such as cluster heads.

19



Apart from these works, there is also an interesting work [82], which studies

the fair charging of smartphones (e.g., balancing energy distribution based on their

current energies) from the wireless chargers deployed at subways (i.e., C2N). This

study applies a similar uni-directional charging model as considered in WSNs and

aims to increase the energy gain by making the phones charged from the closest

chargers during the passengers’ trip times.
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CHAPTER 3

MOBILE CHARGING RELIEF VIA P2P ENERGY SHARING

3.1 Introduction

In this chapter, we investigate the benefit of P2P energy sharing between mobile

devices on reducing the burden of traditional cord-based charging process (simply

called wall charging in the rest of the chapter). Depending on the meeting schedules

with other users, a user can make use of excessive1 energy available from other users’

devices to skip some of the wall chargings while still maintaining the device’s charge

within an acceptable level. Our goal is to maximize the number of wall chargings

that could be skipped through utilization of energy shared by other users in the

vicinity. We aim to discover the potential benefit of P2P energy sharing on existing

charging habits of users. Hence, we assume that the charging patterns of user devices

and as well as their meeting patterns with other users (from which shareable energy

amounts could be derived) are given. We exploit dynamic programming approach

to find out the optimal skipping patterns for conservative and cooperative cases. In

the conservative case, we assume that there is no external energy available and hence

the node will utilize its own available energy to optimize its charging cycles. In the

cooperative case, we allow both sharing and receiving of energy between users and

study simultaneous optimization of skipping patterns from each user’s perspective.

Different from previous work, we define the burden of charging in terms of the number

of charging sessions that the devices stay plugged to the outlet (i.e., wall charging)

1Current charging habits of users show that they charge their devices more often
than they need [6], yielding opportunity for energy sharing with others.
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and discuss the minimization of that number exploiting the energy shared by other

users without changing the charging and movement patterns of any user. We also

provide a satisfactory network-wide solution for all users by mapping our problem

to roommate matching problem and assign partners to each user while satisfying all

users with their assignments. The notations used throughout the chapter are given

in Table 2.

3.2 Problem Definition

A charging pattern of a user device consists of alternating charging and discharg-

ing sessions. Let δc and δd denote the set of all charging and discharging sessions for

a user, respectively:

δc = {δc(1), δc(2), . . . , δc(n)}

δd = {δd(1), δd(2), . . . , δd(n)} where,

δd(i).ls = δc(i).le,∀i ∈ {1 . . . n} and

δc(i+ 1).ls = δd(i).le,∀i ∈ {1 . . . (n− 1)}

We define the time from the start of one wall charging to the start of next one as a

charging cycle. Here, each (δc(i), δd(i)) represents a charging cycle with one charging

and one discharging session. The attributes ls and le represent the starting and ending

charge levels (integers in [0-100]) for each of these periods.

We consider that when a mobile user meets another mobile user, they can ex-

change energy between each other wirelessly. Recent studies [4, 27] have shown that

mobile devices could easily be equipped with necessary hardware and software sup-

port to realize this. We assume that the users know each other and are interested in

sharing their excessive energy with their friends non-intrusively. That is, they do not
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Notation Description

δc(i) ith charging session of user.

δd(i) ith discharging session of user.

δAc [t] Total energy gained by user A during wall charging in tth decision block.

δAd [t] Total energy lost by user A during discharging in tth decision block.

SA→Bt The energy shared from A to B during the tth decision block.

ls Starting charging level attribute of a charging or discharging session.

le Ending charging level attribute of a charging or discharging session.

lmin Minimum acceptable energy level of user devices.

linit Initial charge level of the user.

XA
t Charging decision variable for user A in tth decision block.

D Matrix that stores the number of wall chargings required for each charge

level by every decision block.

T Matrix that stores the index of the D matrix from which the correspond-

ing D matrix entry is derived.

UAt The total unplugged time of user A in tth decision block.

MA,B
t The meeting event between users A and B in tth decision block.

TS The speed of energy transfer between users.

TE The efficiency of energy transfer.

nA Number of charging sessions of user A.

RA(B) User A’s charging relief from collaborative charging with user B.

J(RA(ui)) Energy saving with charging skip pattern associated with RA(ui).

PL[A] Preference list of user A to be matched with other users for collaborative

charging.

Table 2.: Notations used in Chapter 3
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want to change their regular movement patterns and their own usage of the device.

The amount of energy that could be exchanged depends on several factors includ-

ing transfer speed, efficiency, duration of their meeting, maximum shareable energy

by the sender without causing it have less than an acceptable energy level and the

available capacity in the receiver.

The optimization problem is studied for two different cases; (i) conservative

charging, and (ii) cooperative charging. While the former looks at the problem from

only one user’s perspective by trying to minimize the number of wall charging ses-

sions while still keeping the device with sufficient power to operate, in the latter, we

consider both receiving and sharing of energy between the users and aim to optimize

the problem jointly from the perspective of both users. We formulate these problems

using decision points that occur at the beginning of each cycle. Next, we discuss the

details of the problem within each context.

3.2.1 Conservative Charging

In this case, we study the problem from the perspective of a single user who

aims to skip as many wall chargings as possible. Note that in this case user is not

sharing energy with others nor receiving energy from them. This case is studied in

order to understand the potential charging relief users could have obtained by their

own scheduling. Moreover, it also forms the base for the formulation of complicated

collaborative charging case.

Fig. 4 shows example charging patterns for two different users for a certain time

frame. Depending on the applications that are running on the device the discharging

rate might vary at different times. Similarly, depending on the equipment used for

charging or due to the active usage while charging, the charging of the device could

happen at different rates. Note that in some charging sessions there could be some
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Fig. 4.: Charging patterns and decision points of two users.

idle charging duration in which the device stays plugged after being fully charged

(e.g., overnight charging). While such cases could help increase the charging relief as

the charging amount in the previous skipped sessions could be compensated during

those idle charging times, we do not consider them in this work for the sake of

brevity. However, all the formulations could be easily adapted to integrate such

cases. Moreover, It has been shown by several studies conducted with smartphones

that the battery voltage and state of charge (SOC) or battery level has almost a

linear relation [83, 84] after the first few battery levels, thus we assume a linear but

potentially with different rate charging and discharging sessions.

The conservative charging problem here is defined as follows. Given an existing

charging pattern of a user, what is the minimum number of wall charging instances

that would be sufficient for the user device while keeping the same device functionality

and charging habits? In such scenario, the only way a user may try to skip some of

its wall chargings is purely by benefiting from the unnecessarily frequent charging in

its own charging schedule.

We formulate the problem using decision points that occur at the beginning of
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each charging cycle. Decision points divide a given user charging pattern into blocks of

time periods known as decision blocks. Each block starts with the start of a charging

session for a user and ends with the completion of a discharging session. In this case,

since there is a single user, each decision block corresponds to an individual charging

cycle of the user. For user A’s charging pattern shown in Fig.4, there are six decision

blocks with starting times D = {0, 4, 7, 10, 12, 15}. Similarly, for user B, there are

five decision blocks with starting times D = {2, 5, 8, 10, 13}.

Assume that there are n decision blocks and let δc[t] and δd[t] denote the total

energy gained (i.e., δc(t).le - δc(t).ls) during wall charging and total energy lost (i.e.,

δd(t).le - δd(t).ls) during discharging throughout the tth decision block. The objective

function in conservative charging is then formally described as:

min
n∑
t=1

Xt (3.1)

subject to Dt.le = (Dt.ls + δc[t]Xt − δd[t])}, ∀t ∈ [1, n] (3.2)

Dt.le ≥ lmin, ∀t ∈ [1, n] (3.3)

D1.ls = δc(1).ls (3.4)

Dt+1.ls = Dt.le ∀t ∈ [1, (n− 1)] (3.5)

where, lmin is the minimum acceptable level (e.g., 1%) and Xt is the charging decision

variable ∈ {0,1}, with 0 meaning the current charging session is skipped.

3.2.2 Cooperative Charging

In this case, users are allowed to both send and receive energy between each

other. Therefore, the optimal skipping pattern has to be determined considering

the amount of energy that will be exchanged between users. The decision points

(i.e., start of charging cycles) coming from both users will form decision blocks with
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partitioned charging cycles of users. Moreover, some decision points might divide a

charging session of a user into two or more parts.

The set of decision points that come from both users in Fig. 4 is D = {0,

2, 4, 5, 7, 8, 10, 12, 13, 15}, which is DA ∪ DB. When a decision point causes a

split in the charging session of a user, since we assume skipping of wall chargings

completely (i.e., no partial skipping allowed), the skip decision made for a portion of

a wall charging inside a decision block should match with the decision made for the

remaining portion of the same wall charging in the next decision points. In order to

reach the optimal skipping solution that maintains this, for every such decision point,

both results (skipping or not) have to be stored until the split of a charging period

with decision points is over and only the optimal one should be picked. The splitting

of a charging session can create different types of decision blocks based on which the

solution is modeled:

• Full(u): The decision block contains the entire charging session of the user u.

• First Split(u): The decision block contains only the beginning portion of the

split charging session of the user u.

• Mid Split(u): The decision block contains neither the start nor the end of the

user u’s charging session but has a middle part.

• Last Split(u): The decision block contains only the ending portion of the split

charging session of the user u.

For example, in Fig. 4, the third decision block (i.e., from time 4 to 5) is

First Split(A) and the next one (i.e., from time 5 to 7) is Last Split(A) and Full(B).

It is possible that a decision block can only include discharging session for a user (e.g.,

user B in third decision block). Such blocks could be considered for users like a Full
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split with no charging. Moreover, some of the combinations of these block types for a

pair of users is not possible. For example, while there is a First Split(A), there cannot

be a Mid Split(B). The valid combinations have to be carefully analyzed towards the

solution.

Let δAc [t] and δAd [t] denote the total energy gained by user A during wall charging

and total energy lost by user A during discharging throughout the tth decision block.

Moreover, let SA→Bt denote the energy shared from A to B during the tth decision

block and TE denote the efficiency of transfer. The objective function in cooperative

charging is then formally described as:

min
n∑
t=1

(XA
t +XB

t ) (3.6)

subject to DA
t+1.le = DA

t .ls + δAc [t]XA
t − δAd [t] + TESB→At − SA→Bt (3.7)

DB
t+1.le = DB

t .ls + δBc [t]XB
t − δBd [t] + TESA→Bt − SB→At (3.8)

Dk
t .le ≥ lmin, ∀t ∈ [1, n],∀k ∈ {A,B} (3.9)

Dk
1 .ls = δkc (1).ls ∀k ∈ {A,B} (3.10)

Dk
t+1.ls = Dk

t .le ∀t ∈ [1, (n− 1)], ∀k ∈ {A,B} (3.11)

where, lmin is the minimum acceptable level (e.g., 1%) and XA
t , and XB

t ∈ {0,1} are

the charging decision variables for A and B, respectively, with 0 meaning the current

charging session is skipped.

3.3 Dynamic Programming based Optimization

We use a dynamic programming based approach to find out the optimal charging

pattern in both problems. At each decision point, the algorithm tries to recursively

find the best charging levels that will result in the minimum number of wall chargings

for each user. The solution includes two matrices: D and T . D matrix stores the
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integer value that represents the number of wall chargings required for each charge

level by every decision block and T matrix stores the index of the D matrix from

which that value is derived. In the subsequent sections, we provide the details of the

solution for each of these cases.

3.3.1 Optimization for Conservative Charging

In this case, a two dimensional D matrix is considered where the first dimension

represents the decision points and the second dimension represents the charge level

for the user of interest. The algorithm takes the list of wall charging amounts (δc[]),

and the list of discharging amounts (δd[]) for the user as a parameter. linit is the

initial charging level for the given charging pattern. For example, for A’s pattern in

Fig. 4, linit is 20%. Values from D[0][lmin] to D[0][0] is initialized to 0 because it is

ensured that each of these charging levels could be achieved at the beginning without

any wall charging. All other values in D matrix are initialized to some very high

integer value.

The details of the dynamic programming based solution for the conservative

charging is shown in Algorithm 6. The main principle on which the algorithm works

is, for each charge level (i.e., from 0 to 100) at each decision block (Dt), it finds out

what charge level could be reached by either decision (skipping (Xt=0) or not (Xt=1))

and updates the number of wall chargings at that level with the smallest ever seen

as long as it is more than the minimum acceptable level and less than 100%. Note

that if the smallest wall charging count is achieved with a skip from previous decision

point, the number of wall chargings from previous decision point is transferred. On

the other hand, if the wall charging in that decision block is used, the number of wall

chargings from previous decision point is incremented by 1 and used in the update.

The same logic is applied recursively for all charging cycles to find the optimal skip
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Algorithm 1: Conservative Charging Decision Algorithm

1 Input: δc[]: Charging amounts; δd[]: discharging amounts

2 Output: Number of minimum wall charging sessions for the user

3 for each decision block Dt do

4 for each charging level 0 ≤ l ≤ 100 do

5 current = D[t][l]

6 for each Xt ∈ {0, 1} do

7 lnew = min(100, l + δc[t]Xt) - δd[t]

8 if lnew ≥ lmin then

9 if current+Xt < D[t+1][lnew] then

10 D[t+1][lnew]= current+Xt

11 T[t+1][lnew] = l

12 return min{D[n][l] ∀l ≥ lmin}

sequence at the end. The running time of the algorithm is O(100|D|), while brute

force solution has O(2|D|) complexity.

Once the algorithm finishes, we apply a general solution readout approach to

find the actual wall charging sessions used. We start at the last decision block and

get the index with the minimum number of charging sessions from D matrix. Each

position in D matrix is associated with its previous cell using T matrix. If the value

in current index of D matrix has increased compared to its previous value, then the

wall charging session at that decision block is used, otherwise it is skipped.
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3.3.2 Optimization for Cooperative Charging

In cooperative charging, in order to increase the overall charging relief for users,

they consider exchanging energy between each other. However, for each energy ex-

change opportunity within the decision blocks, the amount of actual energy exchange

amounts should be decided to obtain the optimal charging pattern at the end. The

energy exchange between users can potentially happen when they actually meet and

are not charging. Hence, the amount of energy that could be shared between these

devices will be determined by their meeting and charging patterns as well as their

charging decisions. In Fig. 5, an example decision block with a single meeting be-

tween two users is illustrated. If both users decide to skip their charging session in

the decision block, the energy exchange opportunity duration will be equal to the

total meeting duration. However, if one of the users decides to use its wall charging

in that decision block, that portion of their meeting has to be excluded as we assume

it is not practical to exchange energy for users while being charged.

Let UAt denote the total unplugged time of user A in decision block t ∈ {1, 2, . . .,

n}. The charging session in a decision block will always be earlier than the discharging

session within the block by definition of blocks. UAt should be either from the start

of charging till the end of discharging or from the start of discharging till its end

depending on the charging decision. More formally:

UAt =


(δAd [t].ts, δ

A
d [t].te) if XA

t = 1

(δAc [t].ts, δ
A
d [t].te) otherwise

(3.12)

Here, ts and te denote the start and end times, respectively.

Let MA,B
t denote the meeting event between users A and B, TS denote the

speed of wireless energy transfer. The total amount of energy that can be exchanged
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Fig. 5.: Total duration with energy exchange opportunity determined by the inter-

section of user meetings, charging patterns and charging decisions of users.

between A and B in decision block t, EA,Bt , can be computed by:

EA,Bt = IA,Bt ∗ TS ∗ TE where, (3.13)

IA,Bt = MA,B
t

⋂
UAt
⋂
UBt (3.14)

Here, IA,Bt is the intersection of total meeting duration between A and B and total

unplugged times of A and B.

It is also important to remark that EA,Bt should be considered as the maximum

energy that could be exchanged but the actual energy exchange between users depends

on the current charge level of each user device. A user device’s charge level cannot

exceed 100% and cannot be less than lmin by definition. Moreover, note that in order

to reach an optimal solution at the end, the optimal energy exchange values at each

individual decision block could be less than EA,Bt even though device capacities donot
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Fig. 6.: Dynamic programming table cell updates in the fourth dimension on a sample

charging pattern of two users with different charging types included in decision blocks.

restrict it.

In this case, D matrix is defined as a four dimensional matrix. The first dimension

represents the decision points and the second and third dimensions represent the

charge level for each user. The last dimension is used to keep track of decisions made

for charging sessions split into multiple decision blocks. Due to the binary decision

used for skipping a charging session as a whole, the charging decision made for all

portions of a charging session at different decision blocks has to match. Consider the

example in Fig. 6. In the first decision block (from t to t+1), there is a First Split(A)

and a Full(B). Thus, updates based on different charging decisions made for user A

on D matrix are written into different indexes at the fourth dimension. In the second

decision block, as there is a Mid Split(A), only the updates with consistent decisions

are allowed to be made on D matrix’s corresponding index at fourth dimension (e.g.,

there can not be skip (i.e., 0) after not skipping in previous block). In the next decision
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User A/User B Full/None First Split Mid-Split Last Split

Full/None (0,0) (0, XB
t ) (XB

t , XB
t ) (XB

t ,0)

First Split (0, XA
t ) N/A N/A (XB

t , XA
t )

Mid-Split (XA
t , XA

t ) N/A N/A N/A

Last Split (XA
t ,0) (XA

t , XB
t ) N/A N/A

Table 3.: (Source, destination) index assignments for D matrix’s fourth dimension

based on charging decisions of users with different types of decision blocks.

block, there is a Last Split(A) and a First Split(B). In this case, optimal decision for

A should be selected and written on the first index (0) at fourth dimension. However,

due to the split of B, the corresponding fourth dimension index for the updates is

found using the B’s charging decision. In the fourth decision block, as there is a

Last Split(B) with a Full(A), the final decision for user B’s charging session is made

and written into the first index at fourth dimension. The fifth block has a Full(A)

and a Full(B), thus, only the first index at fourth dimension is used for the updates.

In Table 3, we provide (source, destination) index assignments at the fourth

dimension of D matrix with different decision block type combinations. For example,

for the second decision block in Fig. 6, which has a Mid Split(A) and a Full(B), if A’s

decision is to skip, source index will be 0 and will be written to index 0 to keep the

decision consistent. Note that some of the combinations are not possible due to the

definition of decision blocks that start with the start of charging sessions.

The details of the dynamic programming based solution for cooperative charging

is presented in Algorithm 2. The algorithm takes the list of all wall charging and

discharging events with amounts, start and end times and finds out the minimum

wall charging sessions needed to keep the both devices always more than lmin. The
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Algorithm 2: Cooperative Charging Decision Pattern Algorithm

1 Input: δc[]/δd[]: Charging/discharging amounts; M[]: meeting patterns

2 Output: Number of minimum total charging sessions for both users.

3 for each decision block Dt do

4 (cA, cB) ← Decide the charging types for both users

5 for each charging level 0 ≤ lA ≤ 100 do

6 for each charging level 0 ≤ lB ≤ 100 do

7 for each (XA
t , XB

t ) case do

8 IA,Bt ← Max duration for energy exchange with (cA, cB)

9 (sc, dt) ← Fourth dimension indexes based on current case

10 for each 0 ≤ k ≤ IA,Bt do

11
−→
A = min(100, lA + δAc [t]Xt) - k*TS - δAd [t]

12
←−
B = min(100, lB + δBc [t]Xt) + (k*TS *TE) - δBd [t]

13
←−
A = min(100, lA + δAc [t]Xt) + (k*TS* TE) - δAd [t]

14
−→
B = min(100, lB + δBc [t]Xt) - k*TS - δBd [t]

15 for each (lA, lB) ∈ {(
−→
A ,
←−
B ), (

←−
A ,
−→
B )} do

16 if lA ≥ lmin and lB ≥ lmin then

17 new = D[t][lA][lB][sc]+XA
t +XB

t

18 if new < D[t+1][lA][lB][dt] then

19 D[t+1][lA][lB][dt] = new

20 T[t+1][lA][lB] = (lA , lB, sc, k)

21 return min{D[n][lA][lB][0] ∀lA, lB ≥ lmin}
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algorithm covers all four possible charging decision cases for a pair of nodes and finds

out the maximum duration that could be used for energy exchanges. Then, for each

possible duration less than this maximum, it finds the corresponding charge levels

that will be reached by each user (lines 10-14). Considering either direction of energy

exchange (i.e., when A sends and B receives (
−→
A ,
←−
B ) or when A receives and B sends

(
←−
A ,
−→
B )), it then updates the D matrix values based on previous iteration (lines 15-

20). Note that the corresponding (source, destination) index values at the fourth

dimension is determined using the aforementioned principle (line 9). The running

time of this algorithm is O((100)2|D|(E)), where E is the average shareable energy

range. Brute force solution has O(4|D|) complexity.

3.4 Network-wise Optimization

The previous section finds out the optimal collaborative charging decision pat-

terns for a pair of nodes. In a network of smartphone users, each user can potentially

consider exchanging energy with all other users. The Algorithm 2 could be extended

with additional dimensions to find out an optimal solution for every size of group of

users at the expense of increased complexity. On the other hand, sharing energy with

multiple other users may not be practical and users may have concerns about their

privacy. To this end, in this section, we focus on grouping of users into pairs and let

them exchange energy with only one other user. A centralized graph based matching

solution could provide the highest network-wide mobile charging relief among users.

However, in reality, this may not address the individual preferences of users and may

result in users not satisfied with their assignments. To address this issue, we map

our problem to stable roommate matching problem (SRP). The goal is to find a sta-

ble matching among a group of users such that there will not exist a pair of nodes

which are not assigned to each other and both prefer each other to their assigned
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partners under the current matching. Note that this problem is distinct from the

stable-marriage problem as the stable-roommates problem allows matches between

any pair of nodes, not just between two disjoint classes such as men and women [85].

To this end, we first run the collaborative charging algorithm for every pair of

nodes in the network. Then, for a given node, say A, we calculate the relieves obtained

from each other user. Let nA denote the total number of charging sessions of user A.

The charging relief that user A obtains from a collaborative charging, RA, is defined

as the ratio of skipped charging sessions to the total number of charging sessions.

That is:

RA =
nA −

∑nA

t=1X
A
t

nA
(3.15)

Denoting RA(B) as the user A’s relief from collaborative charging with the user B,

we then form a preference list for user A, PL[A], in the descending order of obtained

relief. In some cases, however, there may be more than one user that provide the

same relief to the user. To break such tie situations, we use reduction in the energy

amount obtained due to the skipped charging sessions.

PL[A] = {u1, u2, . . . un | RA(ui) > RA(ui+1) or (3.16)

RA(ui) = RA(ui+1) and J(RA(ui)) > J(RA(ui+1))}

Here, J(RA(ui)) represents the energy saving with skipped pattern associated with

RA(ui). Once each user forms its preference list as described, we then adapt Irving’s

algorithm [86] to find out a stable matching among users, if it exists. Note that since

the matchings will be mutual, we assume that there are even number of users in the

network.

Algorithm 3 shows the details of the proposed matching process. For each free
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Algorithm 3: Collaborative Charging Partner Matching Algorithm

1 Input: a set of users N , and their preference lists PL

2 Output: Matched collaborative charging partner for all, if exists.

3 //step 1

4 for each free user i ∈ [1, N ] as proposer do

5 if PL[proposer] is not empty then

6 u ← PL[proposer].first()

7 if u is not proposed earlier then

8 Match (u, proposer)

9 else

10 current ← u.hasProposalsFrom()

11 if u prefers current over proposer then

12 Remove u from PL[proposer] and proposer from PL[u]

13 else

14 current.setFree()

15 Remove u from PL[current] and current from PL[u]

16 Match (u, proposer)

17 for each user i matched to a user m do

18 Remove i from PL[r] and r from PL[i], ∀r with rank(r) > rank(m)

19 //step 2

20 for each user pi with |PL[pi]| > 1 do

21 Find a cycle (pi, qi, pi+1, qi+1, . . . qs−1, ps=pi), where

22 qi = second preference in PL[pi] and pi+1 = last preference in PL[qi]

23 Remove qi from PL[pi+1] and pi+1 from PL[qi] ∀i

24 return matching if @ a user i with |PL[i]| > 1
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user not assigned a partner, the first user in the preference list is proposed. If the

proposed user has not been matched with any other user yet, it immediately accepts

the proposal and a pending matching is assigned. On the other hand, if the proposed

user has already been matched with some other user, it checks if the new proposer has

better rank in its preference list than the current matched user. If that is the case,

previous proposer is set free and it is matched with this new proposer. Otherwise,

both users remove each other from their preference lists mutually. Once a user is

assigned a partner, it also deletes all other users in its preference list with ranking

more than the assigned user. In some rare cases, this process may end up with some

users having still more than 1 users in their preference lists. In that case, a further

elimination is conducted with some special cycles of users described in lines 20-23.

At the end, if each user has only one other user in their preference lists, the stable

matching is obtained.

3.5 Evaluation

In this section, we first provide results of running conservative and cooperative

charging on an example pattern of two users. Then, we conduct an empirical analysis

using various mobile datasets with user meeting and charging patterns and find out

the potential charging relief in realistic scenarios2.

3.5.1 Numerical Example

We have used the charging patterns for two users shown in Fig. 4 and run the

optimization algorithms for both cases. Table 4 shows the optimal charging decision

2The Java codes developed to generate the results in this sec-
tion are available at https://github.com/aashish33128/Mobile-Charging-
Relief/tree/master/EnergySharing.
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Fig. 7.: Charging patterns and skips after cooperative charging. Arrows show the

direction and the amount of energy shared between the users.

results for both cases. In conservative case, decision blocks consist of charging cycles

but in collaborative charging the number of decision blocks is more than the actual

charging cycles. Thus, in Table 5, we show the actual decisions made for each decision

block in collaborative charging.

In conservative scenario, the results show that node A could have skipped 4th and

6th charging blocks, while node B could have skipped its 1st and 4th blocks (skipping

1st and 3rd would also be optimal). This results in a total of 4 skips for both nodes.

Scenario Charging Sessions 1 2 3 4 5 6

Conservative
A’s decisions 1 1 1 0 1 0

B’s decisions 0 1 1 0 1 N/A

Cooperative
A’s decisions 1 1 0 1 0 0

B’s decisions 0 1 0 1 1 N/A

Table 4.: Optimal charging decisions in each charging scenario.
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Decision Blocks 1 2 3 4 5 6 7 8 9 10

Energy (B → A) 0 19 0 0 0 0 0 0 0 0

A’s decisions 1 0 1 1 0 0 1 0 0 0

Energy (A → B) 0 0 0 0 0 5 0 0 0 4

B’s decisions 0 0 0 1 0 0 1 0 1 0

Table 5.: Charging decisions for each decision block in cooperative case.

In cooperative charging scenario, out of 10 decision blocks, user A is able to skip

6 of them. However, not all of these are independent decisions as well as some of these

decision blocks with skip decisions have only discharging. Similarly, for user B, 7 of

them can be skipped. Note that there are multiple energy exchanges between users

in order to get to the optimal point. As the decision blocks do not correspond to

the actual individual charging cycles of users, the skipping decisions for each decision

block have to be converted to the skipping pattern for charging cycles. From Fig. 7

and Table 5, we can deduce the original charging decision sequence for user A and

user B shown in Table 4. This results in a total of 5 skips for both nodes, showing

the advantage of cooperative P2P sharing over conservative case. To achieve that

both node A and B share energy between each other and receive energy from each

other. Fig. 7 shows the charging patterns after the optimal skips are done. Here, we

assume that when a user skips a wall charging, a minimal/zero discharge happens

during that duration in this example, however, a discharge could have been applied

with an average discharging rate during a skipped charging sessions and algorithms

could be updated accordingly.
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3.5.2 Empirical Results

3.5.2.1 Datasets

Mobile devices should be in close proximity to be able to transfer power. In order

to see the potential benefit of the proposed P2P energy sharing for charging relief of

users in real settings, we have used several mobile network datasets with meeting

patterns of user devices. These datasets mainly contain the logs of device-to-device

(D2D) interactions of different types of wireless devices carried by people. While

the D2D communication range is in the order of several meters, such interactions

could be considered as an indication of users seeing each other and potentially asking

for energy exchange from each other. Each of these datasets represents a different

environment with a different number of users and durations [87]:

• Haggle dataset: [88] These are the Bluetooth sightings recorded between the

iMotes carried by 41 attendants of Infocom Conference held in Miami in 2005.

It spans a four day period.

• Cambridge dataset: [89] These are the Bluetooth recordings among 36 stu-

dents with iMotes from Cambridge University for a duration of almost two

months.

• MIT Reality dataset: [90] It consists of the mobility traces of 97 Nokia 6600

smart phones carried by MIT students and staff during an academic year. We

used data from the three month period of Spring semester.

While the above datasets provide information about the meeting patterns of

users, they do not include battery charge level information of the devices. Assum-

ing that the battery energy levels of the devices are independent from the contact
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patterns of their users, we use another dataset to extract that information and com-

bine charging and meetings patterns of user devices using the time domain of these

datasets.

• DeviceAnalyzer dataset [91]: It includes all kinds of logs of Android users

who downloaded the app worldwide. For the experiment, we have extracted 9

days of battery charging status information from 40 users.
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Fig. 8.: Statistics from real mobile network traces: a) distribution of number of

meetings between pairs of nodes, b) hourly distribution of meeting times between

nodes during a day, and c) distribution of meeting durations.

Having these datasets, we have used the following methodology to merge the

charging and meeting patterns of users from different datasets. We first extract the

meeting count distribution among pairs (Fig. 8-a), the hourly meeting time distribu-

tion in a day (Fig. 8-b) and the meeting duration distribution among all meetings
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Fig. 9.: CDF of mobile charging relief obtained among all users and pairs with con-

servative and collaborative charging, respectively.

(Fig. 8-c). Then using the 40 users data from DeviceAnalyzer [91] with charging

patterns, we assign them meetings from the aforementioned meeting count, time and

duration distributions. Note that the user meeting patterns from different datasets

are different from each other. In general, users in Haggle dataset have the highest

number of daily meetings with the shortest durations. However, as expected nat-

urally, the meeting time distributions are similar (e.g., with the highest frequency

around lunch time).

3.5.2.2 Simulation Results

We first run the conservative charging algorithm for each of the 40 users and

collaborative charging algorithm for each of the 780 pairs of nodes to obtain the mobile

charging relief in each case (with TS=1%/min and TE = 1). Each of the results here

is the average of 10 different runs. Fig. 9 shows the CDF of the relief among all users

and pairs for conservative and collaborative charging, respectively. Note that each

cooperative charging result with different dataset used for meeting pattern generation

is shown with a legend of the corresponding dataset. The results show that almost half

of the users can not have any charging relief with conservative charging, while there
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Fig. 10.: Average mobile charging relief with conservative and different collaborative

charging cases.

are some users who can obtain up to 50% relief. In collaborative case, only in a few of

the pairs, users cannot experience any relief. Moreover, the number of users that can

experience high relief increases remarkably thanks to the power of sharing. Comparing

the collaborative charging results obtained with different datasets, we observe that

users obtain the highest relief with Haggle dataset while the lowest relief is obtained

with MIT dataset. This is because in Haggle dataset users have more meeting than

in others, which then provides more energy exchange opportunity to users yielding

higher charging relief. MIT data has the smallest number of meetings. Even though

the durations are longer than in other datasets, due to the fewer number of meetings,

the lowest relief is obtained. However, it is still more than the relief users can achieve

by conservative charging. Cambridge dataset has characteristics in between the other

two datasets. Thus, a performance in between their performance is obtained.

In Fig. 10, we show the average mobile charging relief obtained for users in the

network with conservative and collaborative charging. For collaborative charging,

the results show the average relief obtained by users assigned after running optimal

charging partner assignments in Algorithm 3. Results with Haggle dataset shows the
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Fig. 11.: Average mobile charging relief with different number of days of data used.

highest average relief due to the aforementioned reasons. This is also the double of

the relief users could experience with conservative charging only.

Next, to understand the impact of data size on the results, we obtain average

charging relief with fewer than 9 days of DeviceAnalyzer dataset. Fig. 11 shows these

results. Here, each data point indicates the cumulative usage of dataset. For example,

results at point 5 shows the results obtained with 5 days of data from the beginning.

The results show that the average user charging relief remains somewhat constant

after a few days, given the same meeting patterns. The jump on the last day and the

small savings in the first 3 days are due to the impact of partial charging/discharging

sessions included in these end cases. We also observe that most of the users have

discharging only sessions during the first day, which reduces the average charging

relief for all users in the network. Similarly, for the last charging cycle, most of these

cycles have only the portion of their charging session without any discharging. Thus,

most of these last charging sessions are skipped easily increasing the average relief for

the 9 day result.

Fig. 12 shows the impact of transfer efficiency and speed on average mobile

charging relief in Haggle dataset. As expected, the results clearly show that the
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Fig. 12.: Impact of wireless power transfer efficiency and speed on the average mobile

charging relief.

relief will increase if the wireless energy sharing between devices is more efficient

(when TS=1%/min). The figure also shows that when the transfer speed is 0, it is

equal to the conservative case results but when the transfer speed increases, there

is a significant gain in charging relief (when TE = 1). However, the result is not

increasing linearly because contact duration becomes dominant and optimal energy

that is exchanged within the decision block does not change much. A slower but

efficient transfer also performs well.

3.6 Conclusion

In this chapter, motivated by the recent technologies enabling wireless energy

sharing between mobile devices, we investigate to what extent the burden of charging

process on users could be released. We develop a dynamic programming based opti-

mization model and find out the minimum number of charging sessions that would be

sufficient for users to keep their devices with the energy they need through utilization

of excessive energy from other users in the vicinity. We first study both conservative

and collaborative charging. Then, in order to achieve a network-wide charging relief

among a group of users, we map our problem to roommate matching problem and
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find out the best matching among users that will achieve the highest network-wide

relief while satisfying all users with their assigned partners. With the empirical results

based on different datasets of user meetings and charging patterns, we observe that

users can achieve up to 13-17% relief without affecting their existing usage habits of

mobile devices.
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CHAPTER 4

CONTENT DELIVERY WITH P2P ENERGY SHARING

4.1 Introduction

The dynamic mobility and connectivity of the nodes in opportunistic networks

makes the dissemination and the delivery of content very challenging. There have

been numerous works [59, 92, 93] in the literature that look at this problem under

different settings and propose different routing algorithms in such networks. While

the main focus has been to decide on the selection of the relay nodes to optimize the

routing performance (e.g., better delivery ratio), most of the time it is assumed that

there is already an incentive to carry the others’ messages. Some of the works have

studied the incentive oriented routing through tit-for-tat style [94] or credit-based [95]

solutions. Some others have also considered the problem under social-selfishness [96]

of nodes (i.e., being selfish to strangers and unselfish to friends) and provided trust

management based solutions. However, such solutions compensate the actual energy

consumption of relay nodes indirectly.

In some recent interesting works [33, 74, 75], this problem has been studied

through energy sharing to relay nodes, providing direct compensation for the energy

loss of nodes. In other words, a node with a content to be delivered to a destination

transfers not only the content (e.g., copy of the message) but also sufficient energy to

relay nodes, as an incentive to them to carry this content to the destination. Note that

such an energy sharing between nodes can be performed in a convenient way, thanks
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Fig. 13.: An illustration of energy sharing based content delivery in opportunistic

networks, where energy is used as an incentive to carry a message copy.

to the recent advances [12] in wireless power transfer1 and related developments to

integrate them to mobile devices [4, 97, 27]. In the previous work, however, the

problem is studied in a limited scenario, in which only the source node with unlimited

energy resources gives the content and the energy to relay nodes with the goal of

minimum energy consumption for the delivery. In a more general scenario, source

node may have a limited energy budget for the delivery. Moreover, both the source

node and the relay nodes can distribute the content and energy to other relay nodes

met. However, this makes the problem more challenging as a more comprehensive

approach has to be followed to determine not only the distribution of the content to

relay nodes but also the amount of energy to be given to each of them.

4.1.1 Motivating Example

Consider the example in Fig. 13 with source node 0 having a message to deliver

to destination node 2 and having an initial energy budget of 10 units to be used in the

1While we do not restrict the proposed solution in this work to only wireless power
transfer based energy sharing, we also consider the impact of associated parameters
(e.g., transfer efficiency) in the design of the proposed solution.
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delivery of this message (i.e., node’s actual energy may be more). Assume that each

node consumes 1 unit of energy at every time unit while carrying the message. When

node 0 meets node 1 at time t1, it has a remaining energy budget of 7 units (as it spent

3 units of energy from t0 to t1). Node 0 predicts that its energy is more than enough

to carry the message until it meets the destination with a high probability. Thus, to

increase the delivery probability further, it decides to share 5 units of its energy with

node 1 to have a better collaborative delivery probability than its individual delivery

probability. Note that, due to the transfer efficiency, node 1 can only get 4 units of

energy. After t1, both nodes have a copy of the message and try to meet with the

destination for delivery. Node 1 carries the message only 4 time units and node 0

carries the message only 2 times units after t1. The message is delivered to node 2 at

time t3 by node 1. However, if node 2 were to follow an alternative predicted path,

node 0 would deliver the message.

In a more general context, consider that node 0 and node 1 has met and node 0

has a message with some budget of energy. The options for node 0 are (i) to forward

the content and available energy budget entirely (i.e., without keeping a copy and

potentially with some loss during content/energy transfer), (ii) to keep the content

and energy totally, or (iii) to give a copy of the content with some energy. The first

two options are exactly similar to the decisions made in single-copy or forwarding

based routing algorithms [98]. However, the third option is different than multi-copy

based routing algorithms [99, 100, 101, 102, 103] as it divides the available energy to

keep the content among nodes, thus essentially decreases time-to-live (TTL) of the

messages or the deadline for delivery (on the contrary, in multi-copy based routing

algorithms, the deadline is not changed). While multiple nodes carrying the content

increase the likelihood for delivery, their smaller TTL values decrease the delivery

chance. Such content and energy sharing can indeed provide a better cooperative
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Fig. 14.: An example opportunistic network with mean intermeeting times denoted

as the weights of the edges on the graph.

delivery probability with a careful and thorough decision process. In particular,

in mobile social networks where messages can get lost during opportunistic content

transfers between nodes, the benefit gets more pronounced.

Consider the network graph in Fig. 14 which shows the mean intermeeting times

of three nodes as the link weights. The lower chart shows the delivery probability

of both node 0 and node 1 for destination 2 for different TTL values. Note that for

node 0, this represents a comprehensive [99] delivery rate including both the direct

delivery and delivery through node 1, while for node 1 it is the direct delivery rate.

We also assume a link loss rate of 0.1 (i.e., a message is lost with 0.1 probability

during transfer from a node to another), thus the expected delivery rates will only

reach 90% at most. If node 0 meets node 1 and has a remaining TTL budget of 200

time units or less (which could be obtained by dividing energy budget available by

energy consumption rate), the combined delivery rate (shown in red) suggests that it

should forward both the content and energy entirely as node 1 offers better delivery

rate. However, if it had TTL budget of 300 time units at the meeting time, the

best strategy would be sharing of around half of the energy (or the corresponding

52



TTL) with a copy of the content (assuming energy consumption rates of the nodes

are similar and there is no loss during energy transfer).

4.1.2 Contributions

In this chapter, we study the optimal content delivery problem through sharing

of both the content and the energy among the nodes in a mobile social network.

The content delivery in mobile social networks happens through opportunistic non-

deterministic meetings of nodes and the design of most protocols usually depends

on the analysis of historical contact information [104] with the expectation that the

mobility of nodes shows long-term regularities (e.g., friendship [59]). That is, for

example, if some pairs of nodes meet more frequently compared to other pairs, the

same is in general expected consistently over time. In this chapter, we consider a

mobile social network where the long-term mean intermeeting times between nodes

can be estimated from the contact history of the nodes. We assume each node has a

complete information about the intermeeting times between all pairs of nodes in the

network. However, in simulations, we relax this assumption and show the performance

of the proposed algorithm with partial available information. Based on the available

knowledge and the source’s limited energy budget, our goal is to find the optimal

policy for both content and energy sharing among nodes to achieve the best delivery

rate. We utilize optimal stopping theory [105] and dynamic programming [106] to

model and solve this problem under different settings (e.g., link loss rate, transfer

efficiency rate). We also evaluate the performance of the proposed sharing based

solution with simulations and show its benefit over just forwarding/keeping based

strategy.
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4.1.3 Optimal Stopping Theory

The theory of optimal stopping [105] deals with the problem of deciding the

optimal time to take a given action based on a set of sequential observations to

maximize an expected reward or to minimize an expected cost. These observations are

usually assumed to be random variables with a known joint distribution. Well-known

problems solved via optimal stopping theory include secretary hiring problem [107]

and parking problem.

In an optimal stopping rule problem, you may observe a sequence X1, X2, . . . for

as long as you wish, where X1, X2, . . . are random variables whose joint distribution

is assumed to be known. For each stage t = 1, 2, . . . after observing X1, X2, . . .

Xt, you may stop and receive the known reward yt, or you may continue and observe

Xt+1. The optimal stopping rule is to stop at some stage t to maximize the expected

reward.

An optimal stopping rule problem has a finite horizon if there is a known upper

bound on the number of stages at which one may stop. In other words, if there are

only T observations possible before making a decision, the problem has a horizon of

T . Such finite horizon optimal stopping problems can be solved by using backward

induction method. That is, as the last stage to stop is T , optimal rule for the stage

T − 1 can be found first, then based on this optimal rule for stage T − 1, optimal rule

at stage T − 2 can be found and so on. This process can be chained until the initial

stage 0. As defined in [105], let V
(T )
t (1 ≤ t ≤ T ) represent the maximum expected

reward one can obtain starting from stage t and let V T
t = yT and then inductively

for t = T − 1, backward to t = 0,

V
(T )
t = max{yt, E(V

(T )
t+1 )}. (4.1)

54



That is, we compare the reward (i.e., yt) for stopping at stage t, with the expected

reward E(V
(T )
t+1 ) to get by continuing to the next stage under the assumption that

we will use the optimal rules for all stages from t + 1 to T . If the V
(T )
t = yt, that

is yt ≥ E(V
(T )
t+1 ), it is better to stop at stage t. Otherwise, we continue making new

observations.

4.2 System Model

4.2.1 Assumptions

Let N={0, 1, 2 . . . n − 1} denote the set of |N | = n nodes in a mobile social

network. Without loss of generality, we assume that 0 is the source node and n − 1

is the destination node. The message at the source node has to be delivered to the

destination node. We assume that source node has an initial energy budget, E , to

be used in the delivery of the message. Note that this energy budget can easily

be converted to an estimated time-to-live (TTL) value for the message by dividing

the energy by the energy consumption rate of the node, as it will be shown in next

section. This also helps modeling the problem using optimal stopping theory with

discrete time steps. A message is maintained until the TTL value lasts. When the

source node is met with another node, it determines if it is useful to give a copy of

the content and how much of its energy should be shared.

We assume that all nodes in the network have energy receiving and transferring

capabilities (e.g., Samsung Galaxy S10, Huawei Mate 20 Pro) and energy sharing

could be achieved via wireless energy transfer with a transfer efficiency of λ. The en-

countered node informs the source node or any other relay who has the content about

how different its energy consumption than the source node’s energy consumption rate,

so that corresponding TTL at the encountered node with a specific amount of trans-
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ferred energy could be found. The meetings of different pairs of nodes are assumed

independent and the intermeeting times are exponentially distributed. However, the

proposed algorithm can easily be updated under different distribution assumptions.

We assume that the mobility of nodes exhibits long-term regularities, as it is assumed

in related previous work [33, 99]. Thus, we initially assume that each node has the

knowledge of mean intermeeting time information, Ii,j, for all pairs of nodes. We

then relax this assumption and study the performance of the proposed solution when

different levels of partial information is available to the nodes. We also assume that

the links between nodes are lossy and the content will be dropped with some proba-

bility, denoted by γ, during transfers between nodes. This notion of link loss rates can

be considered as a result of link failures or faulty relay nodes in the network which

accept the incentive but deviates away from the delivery process. The notations used

throughout the chapter are summarized in Table 6.

4.2.2 Energy and Residual Time-to-Live relation

Let Ei denote the energy budget of the node i to be used in the delivery of the

message, and ei denote its average energy consumption rate. The discrete remaining

time-to-live (TTL) value of the message (i.e., the duration the message will be kept

by node i), ti, will then be:

ti = Ei/ei (4.2)

When this node meets with another node j, it can either keep, forward or share

the content/energy with j if it estimates that the likelihood of the message delivery

will increase. Let Ei→j(ti) denote the optimal energy that needs to be shared from

node i to node j when it has a TTL of ti. The corresponding remaining TTL values
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Notation Description

n Total number of nodes in the network.

Ii,j Mean intermeeting time of nodes i and j.

Mi,j Meeting probability of two nodes i and j at each time slot.

U The size of each time slot.

E Initial energy budget to be used in the delivery of the content.

Ei Energy incentive held by node i to be used in the delivery of the content.

ti TTL of the content carried by node i.

t+i TTL of the content carried by node i in the next time slot.

Ei→j(ti) The optimal energy that needs to be shared from node i to node j when

it has a TTL of ti.

ei Energy consumption rate of node i at each time slot.

Pi,d,k,t Probability that the content is delivered from source i to destination d

with remaining TTL value of t in up to k hops.

K The maximum number of hops that a content can be forwarded before

it reaches destination.

γ Link loss rate (i.e., content drop rate) between two nodes.

λ Energy transfer efficiency rate.

Table 6.: Notations used in Chapter 4

of each node after this exchange (i.e., in the next time unit) will be:

t+i =
Ei − Ei→j(ti)

ei
− 1 (4.3)

t+j =


λEi→j(ti)

ej
, if r[0, 1] ≤ γ

0, otherwise

(4.4)

57



Here, r[0, 1] is a random number between 0 and 1. Note that the TTL value of node

j should be estimated by taking into account the energy consumption rate of node

j as well as the energy transfer efficiency, λ. For node i, it also needs to consider

the energy consumption at the current time (hence the -1 in (4.3)). If the content

transfer is not successful due to the link loss rate, the TTL value of node j, will be

assigned to 0, as having energy incentive for a message not received will be nonsense.

4.2.3 Optimal Content and Energy Sharing

We divide the time into equal size slots and assume that in each time slot, a node

can either meet or not meet with another node. The intermeeting times of two nodes

i and j are assumed to follow an exponential distribution with a mean of Ii,j. Then,

the meeting probability of two nodes i and j in each time slot of size U , denoted as

Mi,j, can be computed by

Mi,j = 1− e−U/Ii,j . (4.5)

We adopt exponential distribution for intermeeting time distributions between nodes

since it is a relatively general model [99, 100, 101, 102], however, the proposed solution

can be adapted to other distributions.

In our model, we follow a similar terminology introduced in [99] and adopt a hop

count limited opportunistic forwarding protocol. That is, there is a hop count limit

of K indicating the maximum number of hops a message can be forwarded before it

reaches destination. Such a forwarding scheme also helps achieve scalability as it can

limit the forwarding cost per message delivery which is usually assumed to be the

major cost for routing in mobile social networks. When a message with a hop limit of

k is forwarded to another node, its remaining hop count limit becomes k − 1. When

a node has a message with k = 0, it can no longer forward the message to another
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TTL Decision with forwarding

t Pi,d,k,t

t− 1
Not Forward Forward

Pi,d,k,t−1 Pj,d,k−1,t−1 × (1− γ)

TTL Decision with sharing

t Pi,d,k,t

t− 1

Not Share Share

Pi,d,k,t−1 (1-γ) × [1-(1-Pi,d,k∗i ,t∗i )× (1-Pj,d,k∗j ,t∗j )] + (γ)× Pi,d,k∗i ,t∗i

Table 7.: Decisions with forwarding and sharing.

node but still can deliver it to the destination.

Let Pi,d,k,t denote the delivery probability of a message at node i for destination

d with a remaining hop count of k and a remaining time-to-live (TTL) value of t.

The direct delivery probability of the message, with k = 0, can be estimated by,

Pi,d,0,t =
(
1− e−tU/Ii,d

)
× (1− γ) (4.6)

The first part defines the meeting probability of node i with node d during t time

slots and the second part considers the likelihood that the content will be lost during

transfer, hence it will not be delivered.

When node i meets with another node j, the optimal forwarding decision can

be made by simply comparing Pi,d,k,t−1 with Pj,d,k−1,t−1 × (1− γ) (as shown in Table

7). That is, within the same remaining time of t− 1, if node i has a higher expected

delivery rate with k hops than the delivery rate node j can achieve with k − 1 hops

given that the content is successfully transferred to node j with probability (1−γ), the

optimal decision becomes not to forward the content to node j. Otherwise, forwarding
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Algorithm 4: Pi,d,k,t calculation with optimal forwarding

1 Pi,d,k,t ←Mi,d × (1− γ)

2 Rp ← 1−Mi,d

3 for ∀j ∈ N s.t. j 6= i and j 6= d and Mi,j > 0 do

4 Pj ← Pj,d,k−1,t−1 × (1− γ)

5 if Pj > Pi,d,k,t−1 then

6 Pi,d,k,t = Pi,d,k,t +Rp ×Mi,j × Pj × (1− γ)

7 Rp = Rp −Rp ×Mi,j

8 Pi,d,k,t = Pi,d,k,t +Rp × Pi,d,k,t−1

the content to node j will be better on average. Note that this is different than the

optimal forwarding strategy presented in [99, 104] as it considers keeping a copy of the

content at node i even it will be forwarded to node j, thus, it determines the optimal

strategy through cumulative delivery probability of both copies and determines the

optimal strategy accordingly. The likelihood of unsuccessful transfer of the content

due to link failures is also not considered in [99, 104] .

In order to calculate the expected delivery probability, Pi,d,k,t, for each node pair

(i, d) and different k and t values, the problem can be modeled as a finite horizon

optimal stopping problem and can be estimated using backward induction method.

That is, we first calculate Pi,d,k,2 based on Pi,j,k−1,1, ∀j 6= i, d and Pi,d,k,1, which can

be calculated using (4.6). Then, we continue calculating Pi,d,k,3, Pi,d,k,4, and so on.

The calculation of delivery probability Pi,d,k,t under optimal forwarding strategy

is shown in Algorithm 4. It is first initialized to direct meeting probability with

a potential loss (line 1) and for each node, j, that is different than destination, if

forwarding to j is considered better in terms of delivery probability (line 5), the
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expected increase in delivery probability through node j is added to Pi,d,k,t. Note

that due to the sparse nature of mobile social networks similar to delay tolerant

networks, it is assumed that each node meets one another node at each time slot.

Thus, the remaining probability, denoted by Rp, is calculated for each node j, by

excluding the meeting probabilities with other nodes considered. Once the estimated

probability increase is added from all other nodes, finally, with remaining probability,

the probability of delivery from current node with one less remaining TTL value is

added (line 8).

In optimal forwarding strategy, as the message is either forwarded or kept en-

tirely, the associated strategy for energy sharing becomes either transfer or keep the

entire energy, respectively. However, as sharing can potentially increase the delivery

probability, as shown in Fig. 14, the calculation of delivery probability Pi,d,k,t under

optimal sharing strategy should consider the split of energy and hop counts with each

met node j that can achieve the best delivery probability increase. Algorithm 5 shows

this calculation. Lines 7-18 show the process of finding the best TTL split (t∗i , t
∗
j) and

hop split (k∗i , k
∗
j ) between node i and a met node j that achieves the highest delivery

probability, P ∗j . Note that each Pj calculation needs to consider potential loss during

transfer thus, with probability γ, Pj is equal to node i’s own delivery probability with

ti, ki pair, while with probability (1− γ) it is equal to the cumulative delivery prob-

ability with the corresponding optimally split TTL and hop counts, which is defined

as

1− (1− Pi,d,k∗i ,t∗i )× (1− Pj,d,k∗j ,t∗j ). (4.7)

Once the maximum delivery probability with each neighbor j is found through optimal

TTL and hop split, it is compared with individual delivery ratio of node i and if

splitting is considered better, it is added to the comprehensive delivery probability of

61



Algorithm 5: Pi,d,k,t calculation with optimal sharing

1 Pi,d,k,t ←Mi,d × (1− γ)

2 Rp ← 1−Mi,d

3 for ∀j ∈M s.t. j 6= i and j 6= d and Mi,j > 0 do

4 P ∗j = 0

5 (t∗i , t
∗
j) = (t− 1, 0)

6 (k∗i , k
∗
j ) = (k, 0)

7 for ∀ti ∈ [0, t− 1) do

8 tj = (ti − 1)× ei/ej × λ

9 for ∀ki ∈ [0, k − 1] do

10 kj = k − 1− ki

11 Pj = (1− γ) × [1− (1− Pi,d,ki,ti) × (1− Pj,d,kj ,tj)] + (γ)× Pi,d,ki,ti

12 if P ∗j < Pj then

13 P ∗j = Pj

14 (t∗i , t
∗
j) = (ti, tj)

15 (k∗i , k
∗
j ) = (ki, kj)

16 if P ∗j > Pi,d,k,t−1 then

17 Pi,d,k,t = Pi,d,k,t +Rp ×Mi,j × P ∗j × (1− γ)

18 Rp = Rp −Rp ×Mi,j

19 Pi,d,k,t = Pi,d,k,t +Rp × Pi,d,k,t−1

node i, as in the optimal forwarding strategy case. Finally, with remaining probability,

Rp, the probability of delivery by current node i with one less remaining TTL value

is added.

Table 7 shows the summary of comparisons that need to be made for a decision
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Parameter Value

n 36, 41, 50.

Ii,j Obtained from datasets.

E 16, 8, 8 hours of energy

γ 0.1

λ 0.98

ei [0.95, 1.05] units of energy per time slot

L 6 relay nodes

K 4 hops

Table 8.: Simulation settings for Chapter 4

under forwarding and sharing cases. Algorithms 4 and 5 show the calculation of

Pi,d,k,t for these scenarios for a specific (i, d, k, t) tuple. Once it is calculated for

every possible tuple following the backward induction order, the actual forwarding or

sharing decision can be made by checking these values from the corresponding tables.

4.3 Evaluation

In this section, we evaluate the performance of the proposed energy sharing based

content delivery process. Next, we first list the algorithms compared, performance

metrics used, and describe how the simulations are set. Then, we provide the simula-

tion results and analyze the impact of several parameters on results. The list of the

parameters and their values used in simulations are shown in Table 8.
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4.3.1 Algorithms in Comparison

Since energy is used as an incentive to relay nodes to carry the content received

from other nodes and defines the time-to-live (TTL) value of the message, we define

the algorithms to compare in terms of their impact on the TTL of the message:

• TTL sharing: This corresponds to the proposed optimal sharing based strategy

obtained with Algorithm 5. TTL is shared with the met node in the amount

that will provide the most significant expected benefit in delivery ratio.

• TTL forwarding: This corresponds to the optimal forwarding strategy obtained

with Algorithm 4. TTL is either fully forwarded (with loss) to the met node or

kept fully depending on whichever provides higher expected delivery ratio.

• TTL spraying: This is a modified version of well-known Spray-and-Wait [102]

algorithm within the context of energy and TTL sharing based delivery. Source

node distributes the message to L different relay nodes (who can directly meet

with destination2) together with its 1/L of initial TTL budget. If the remaining

TTL budget is less than that, the entire remaining TTL is forwarded.

4.3.2 Performance Metrics

We use the following metrics in the performance comparison of the aforemen-

tioned algorithms:

• Average delivery rate: This is the ratio of the number of messages delivered

to the destination node within all messages generated before the TTL budget

expires.

2This is considered in order to increase the likelihood of delivery. However, if there
is no such node, it is not considered.
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• Average delivery delay: This is the average of elapsed time between the delivery

of the messages and their generation at the source nodes. It is the average of

delivery delays of only delivered messages before the TTL budget expires.

• Number of forwardings: This is the number of times a message is exchanged

between two nodes before the delivery of the message.

4.3.3 Datasets

We use two of the commonly used real DTN traces [89] for routing performance

evaluation. Moreover, we also generate our own synthetic dataset to have a more dense

connectivity graph with sufficient meeting history. Each of these datasets represents

a different environment with a different number of users and duration:

• Cambridge dataset: These are the Bluetooth recordings among 36 students

with iMotes from Cambridge University for a duration of almost two months.

• Haggle dataset: These are the Bluetooth sightings recorded between the

iMotes carried by 41 attendants of Infocom Conference held in Miami in 2005.

It spans a four day period.

• Synthetic dataset: This is a dataset generated randomly among 50 nodes

with a mean intermeeting time of a random value between [200, 400] minutes.

The nodes have a meeting history on average with 10 different nodes.

In today’s technology, mobile nodes should be in close proximity (i.e., almost

touching) to be able to transfer power. While the Bluetooth (which is considered

in above real traces) communication range is in the order of several meters, such

interactions can be considered as an indication of users being in the close proximity

of each other so that they can communicate and get further close to each other for a
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potential energy transfer. We assume that when nodes meet, they stay close enough

to each other until they can achieve the required energy transfer under optimal TTL

sharing scenario. We look at the impact of transfer efficiency in our results, which can

be considered as the relaxation of this assumption to some extent. However, in our

future work, we will enhance our algorithm considering the partial energy transfers

between nodes during meetings with limited duration.

4.3.4 Performance Results

In Fig. 15, we first compare the performance of the three algorithms in the

Cambridge dataset. In order to see the benefit of the sharing based delivery, source

and destination pairs are selected such that they do not directly meet. TTL sharing

offers the best delivery rate among all algorithms. Moreover, it can achieve this

with a similar average delivery delay and a similar number of forwardings with TTL

forwarding. There is a slight increase in the number of forwardings with larger TTL

budgets. This is due to the increased delivery ratio achieved at those TTL budgets.

The results for Haggle traces are illustrated in Fig. 16. We observe similar

performance graphs, but the gap in the number of forwardings of TTL sharing and

TTL forwarding is more and starts in earlier TTL budgets. On the other hand, it is

still less than the TTL spraying algorithm and achieves the best delivery ratio. Note

that such a performance improvement in the delivery ratio can be preferred as the

forwarding cost per message delivery is a small value.

In Fig. 17, we look at the performance results with synthetic dataset. The results

are also similar to other dataset results but the delivery ratios of TTL sharing and

TTL forwarding is closer to each other. This is because the benefit of sharing policy

could be dominated with other optimal forwarding based paths which could appear

more often in dense graphs.
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Fig. 15.: Delivery rate, delay and number of forwardings versus time-to-live in Cam-

bridge dataset.
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Fig. 16.: Delivery rate, delay and number of forwardings versus time-to-live in Haggle

dataset.
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Fig. 17.: Delivery rate, delay and number of forwardings versus time-to-live in syn-

thetic dataset.

Finally, we look at the impact of some parameters in the performance results. In

Fig. 18, we plot the impact of loss rate, transfer efficiency and partially available link

weight information on the performance ratio of the TTL sharing compared to TTL

forwarding. As the results show, with increasing loss rates, the benefit of sharing is

more pronounced as it can provide better delivery probability over multiple paths

(despite the shorter TTL in each due to the split). However, this also increases the

forwarding ratio which can be an issue if there is not enough buffer at nodes. On the

other hand, as loss rate gets smaller, the performance ratio gets close to 1. Transfer

efficiency also affects the performance ratio of the TTL sharing remarkably. As the

efficiency gets lower, TTL sharing behaves like TTL forwarding, meaning sharing is
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Fig. 18.: Impact of loss rate, transfer efficiency and available partial link weight on

the performance ratio of sharing over forwarding.

not considered beneficial due to the loss during energy transfers. Finally, in the last

graph, the impact of partially available intermeeting time information on the results is

shown. For these results, we set the Ii,j values for some pairs to 0 (i.e., unknown) and

calculate the Pi,d,k,t values accordingly. The results show that when 50% of the link

weights or mean intermeeting times are unknown, the benefits over TTL forwarding

are lost. Thus, this suggests that the proposed optimal sharing policy will be more

effective in networks with long-term stable relations among nodes with predictable

meeting patterns.
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4.4 Conclusion

In this chapter, we study the content delivery problem in mobile social networks

in which nodes are motivated by energy transfers for carrying the messages. That

is, each relay node carries a message forwarded by another node as long the energy

provided or the corresponding time-to-live (TTL) value lasts. In order to find the

optimal content and energy forwarding or sharing policy, we model and solve the

problem using optimal stopping theory and dynamic programming. We evaluate the

performance of the proposed solution in both real and synthetic mobile social network

traces and show that sharing can offer better delivery rate, while it can also cause an

increase in the cost of delivery (i.e., number of forwardings) to some extent. We also

look at the impact of several parameters on the performance of the proposed sharing

based content delivery process and discover the settings that provide performance

enhancements.
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CHAPTER 5

ENERGY BALANCING WITH P2P ENERGY SHARING

5.1 Introduction

In Mobile Social Networks, energy balancing [34, 35, 36, 37, 38] among nodes

has been studied towards prolonging the lifetime of the network, which could be vital

especially when there is no access to external energy sources. Energy balancing is the

process of equalizing the energy at each node or minimizing the sum of the differences

of their energy from the average energy (i.e., variation distance) in the network as

much as possible. The main goal is to minimize the difference in the energy levels

of all nodes and this can be targeted through the opportunistic energy exchanges

between the nodes. However, as nodes interact and transfer energy between each

other, there occurs an energy loss. Thus, both balancing the energy among nodes

and keeping the loss of total network energy as low as possible is equally important.

5.1.1 Motivation

The state-of-the-art solutions [34, 35, 36] suggest that the variation distance

among the target energy levels of nodes and current energy levels will decrease only

if the nodes in the opposite sides of the average energy in the network interact and

exchange energy. While this is correct and help reach an energy balance among

the devices as fast as possible, it wastes energy due to the unnecessarily frequent

interactions between nodes. For example, consider the example in Fig. 19. When node

1 and node 2 meets at time t1, node 2 gives energy to node 1 in the amount of the half

of the difference of their energies. Note that due to the loss, node 1 can only receive
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Fig. 19.: Energy balancing through interactions between nodes at opposite sides of

the average energy in the network.

a portion of the shared energy, hence it has a smaller energy than node 2 after this

interaction. Similarly, node 3 provides energy to node 2 at time t2 and node 3 again

provides energy to node 1 at time t3. While such an interaction protocol can help

reach an energy balance among nodes quickly, this can cause unnecessary wastage

of energy as some nodes keep switching between the opposite sides of the average

energy (which will decrease as the interactions with energy exchanges increase). In

this specific example, after three interactions, node 2 has almost the same energy as

in the beginning. A similar energy distribution could have been obtained if the first

two interactions were not performed and only in the third one node 3 provided energy

to node 1. It is also assumed that each pair of nodes interact with equal probability,

however, this is not always true in mobile opportunistic networks. In a realistic

scenario, some pairs of nodes might not have any interaction opportunity with other

nodes and some pairs of nodes might have large intermeeting times incurring huge

waiting times for some possible interactions to occur. Another major problem with

the current approach is that they do not consider the final optimal target that can
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Fig. 20.: (a) Energy balancing in a fully connected contact graph. (b) Energy balanc-

ing in a partially connected contact graph. (c) Energy Balancing with time limit of

50. Edges represent that the nodes meet each other opportunistically with an average

intermeeting time shown as link weight.

be reached after possible interactions and thus energy loss. Instead, they rely on the

initial distribution of energy and target the initial average energy in the network.

Thus, a perfect energy balance (i.e., all nodes having energy equal to the average

energy in the network) can not be achieved since the average energy in the network

will change after some energy exchanges between nodes.

Consider the example in Fig. 20 with six nodes in the network and with corre-

sponding energy levels. Here, we consider three different scenarios in which energy

levels of nodes are the same but the contact graphs between nodes are different. If

each node on the negative side (i.e., having energy less than the average energy in

the network (53.5%)) has an opportunity to meet with each node on the positive side

as in Fig. 20a, the energy sharing process will be relatively easy. For example, with

an 80% transfer efficiency (or with an energy loss rate of 0.2), the optimal average

energy reachable by all nodes will be 50%, which happens when node 5 transfers 35%
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Scenario Energy transfer amounts Final energy levels of nodes
1 2 3 4 5 6

Fig.20a 4© 50%−→ 2©, 5© 35%−→ 1©
50% for all nodes

6© 20%−→ 3©
Fig.20b 5© 48.68%−→ 2©, 6© 21.05%−→ 3©,

4© 51.05%−→ 1©, 1© 13.89%−→ 5©,

3© 1.89%−→ 5©

48.94% for all nodes

Fig.20c 5© 35.90%−→ 2©, 6© 31.81%−→ 3©,

4© 50.90%−→ 1©, 1© 13.63%−→ 6©
49.09% 38.72% 59.45% 49.09%

Table 9.: Energy transfer amounts between nodes and final energy levels of nodes for

scenarios in Fig.20 with 80% transfer efficiency.

to node 1 (which only gets 28% due to loss), node 4 transfers 50% to node 2 (which

only gets 40%) and node 6 transfers 20% to node 3 (which only gets 16%).

On the other hand, when there is no energy exchange opportunity between some

negative and positive side node pairs, as in the case of Fig. 20b, the optimal energy

achievable can be less than this due to the more number of interactions required

between nodes and multi-hop travel of energy, causing additional loss. In this case,

nodes still reach a perfect energy balance (i.e., all nodes having the same energy level)

at 48.94% through transfer amounts shown in Table 9, however, the final balanced

energy level is less than it is in Fig. 20a (which has a complete contact graph be-

tween all positive and negative side nodes). Finally, there can be a time threshold

for reaching an energy balance. In that case, we can simply ignore the edges (i.e.,

contact relations) with an average intermeeting time higher than this threshold and

recalculate the average optimal energy balance. Fig. 20c shows the situation where

the deadline for energy balance is set to 50 time units. The dotted edges shown in the

figure are ignored; hence, nodes cannot use these edges for energy exchanges. In this

case, the optimal average energy balance is 49.09%, however, as it is shown in Table 9,
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not all nodes can reach this energy level. This example shows that with sparse con-

tact graphs, the optimal energy balance can change and not all nodes may reach that.

5.1.2 Contributions

In this chapter, based on the above findings, we discuss several protocols to

achieve a goal of a better variation distance with minimum energy loss. To this end,

we discuss several single hop energy balancing protocols when each node can transfer

energy only to its immediate neighbors in contact graph. It is not always possible

to make an effective decision especially in sparse networks when the node relations

are restricted to its immediate neighborhood. Hence, we would also like to relax this

constraint and allow the nodes to exchange energy using multiple hops. This will

allow nodes with higher energy to give energy to nodes with low energy even though

they are not meeting directly (i.e., distant in contact graph). Furthermore, we also

exploit the underlying social relations between nodes to develop social aware energy

balancing protocols aimed for faster energy balancing between various social groups.

Finally, we extend the problem of energy balancing to understand the relation of

network lifetime and energy distribution. We see that when a perfect energy balancing

cannot be achieved in a network, balancing energy between nodes does not guarantee

the optimal network lifetime and thus requires a slight modification in the original

balancing problem to address this issue. To this end, our contribution in this chapter

can be summarized as below:

• We find out the optimal energy balance possible for fully connected contact

graphs and propose three single hop interaction protocols to achieve the mini-

mum variation distance.
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• We also find out the optimal energy balance possible for partially connected

graphs using Mixed Integer Linear Programming (MILP) only by utilizing the

direct relationship between nodes and propose interaction protocols for the

same.

• For networks with sparse contact graphs, we enhance the MILP model to allow

multi-hop energy exchanges to achieve a better energy balance and develop

the corresponding energy balancing protocol among nodes considering both the

direct and relayed energy exchanges.

• We discuss the relation of the energy balancing problem to the problem of

network lifetime maximization and provide the updates needed in the MILP

model in disconnected contact graphs.

• We perform extensive simulations using meeting patterns from synthetic and

real user traces and show that the proposed energy sharing protocols perform

better than state-of-the-art.

5.2 System Model

5.2.1 Assumptions

We assume a set of m nodes denoted byM = {u1, u2, ..., um} in a mobile network.

Each node is assumed to have equal battery capacity and necessary hardware for

sending and receiving energy. As in previous work [34, 35, 36, 108, 109], for simplicity,

we also do not consider energy loss due to mobility or other activities of the nodes.

When two nodes meet, they exchange energy according to an interaction protocol

P . The energy level of a node u at time t is denoted by Et(u), which is assumed to

be between 0 and 1 (i.e., 100%). We assume each pair of nodes, (ui, uj), meets in an
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Notation Description

m Number of nodes in the network.

P Interaction protocol between nodes for energy exchange.

β Energy loss rate.

τ Time threshold to complete energy balancing process.

p Minimum expected meeting probability by time threshold.

Et(u) Energy of user u’s device at time t.

Et(M) Total energy of a set M of nodes at time t.

λi,j Meeting rate between nodes i and j.

Et Average energy in the network at time t.

Eopt Optimal average energy achievable in the network with minimum varia-

tion distance possible.

δ(P,Q) Total variation distance between two distributions, P , Q.

Et(u) Ratio of node u’s energy to the total energy in the network at time t.

Et Energy distribution at time t on a sample space M.

εu,u′ The amount of energy exchanged from u to u′.

L The total energy loss in the network due to the energy exchanges.

Ef (u) The final energy level of node u at the end of energy balancing process.

εsu,u′ The amount of u’s self energy that is shared to u′.

εou,u′ The amount of relayed energy from u to u′ for other sources.

hs Total number of single hop energy exchanges used.

hm Total number of multi-hop energy exchanges used.

Lu,u′ Minimum hop distance from node u to node u′.

Table 10.: Notations used in Chapter 5
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exponentially distributed manner with a rate of λuiuj (i.e., average intermeeting time

is 1/λuiuj) similar to many studies (e.g., [110, 111, 112, 101]) in mobile opportunistic

networks. We also assume an energy loss rate, β ∈ [0, 1), which is assumed to be a

constant and depends on the technology and the equipment used. When two nodes u

and u′ interact at time t and node u transfers ε energy to node u′, node u′ will receive

(1− β)ε energy and their new energy levels will be:

(Et(u), Et(u
′)) = P(Et−1(u), Et−1(u

′))

= (Et−1(u)− ε, Et−1(u′) + (1− β)ε)

As the interaction between u, and u′ doesn’t affect the energy levels of any other

nodes, the energy levels of all other nodes remain unchanged. The notations used

throughout the chapter are summarized in Table 10.

5.2.2 Problem Description

The goal is to achieve an energy balance among a population of nodes with a

minimum possible variation within a given time threshold τ while minimizing the

energy loss due to the energy transfers among nodes. We define the energy difference

among nodes using the total variation distance from probability theory as in [34, 35,

36, 109].

Let P, Q be two probability distributions defined on a sample space M. The

total variation distance is calculated as:

δ(P,Q) =
∑
x∈M

|P (x)−Q(x)| (5.1)

Here, we do not divide the sum by two for the sake of keeping the actual dif-

ferences. In our context, the total variation distance between the current energy

distribution of nodes and the target energy distribution, where all nodes have the
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same energy, needs to be calculated. Note that the target energy level will not be

equal to the current average energy in the network, as during the energy exchanges

to balance energy among nodes, there will be some energy loss. This will make the

average energy level decrease over time after each interaction. At any time, we define

the energy distribution Et on a sample space M by

Et(u) =
Et(u)

Et(M)
,where, Et(M) =

∑
x∈M

Et(x)

for any u ∈M. We also define the average energy in the network at time t

Et =
Et(M)

m
(5.2)

Note that in a network with a contact graph that connects all nodes (i.e., Fully

Connected Graphs), the perfect balance with zero variation distance can always be

achieved. However, depending on the hop distances between nodes in the contact

graph, and energy level distribution of nodes, the optimal energy level may be dif-

ferent. For example, for a network with a complete contact graph between nodes,

as each negative side node has the opportunity to exchange energy with any positive

side node as shown in Fig. 20a, it is relatively easy to compute the optimal balanced

energy for all nodes as discussed in the next section. Moreover, when m → ∞, for

a uniformly distributed energy levels of nodes, the final optimal balanced energy can

be computed as :

Eopt =
−(1− β) +

√
(1− β)

β

However, in networks with incomplete contact graphs (i.e., heterogeneous relations),

this will be harder to compute, thus we model it as an MILP problem and solve

accordingly.
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5.3 Energy Balancing for Fully Connected Graphs

In this section, we give the details of the three proposed energy balancing proto-

cols for fully connected graphs. In this, we assume the interactions are possible among

all pairs of nodes. Each new protocol represents a solution attempt towards our goal

to achieve an energy balance with minimal possible loss. Each solution depends on a

rationale towards decreasing the loss, with the third one achieving the optimal loss.

5.3.1 Greedy Positive First Energy Balancing (PGP )

Let ∆t = δ(Et,U) − δ(Et−1,U) be the decrease in variation distance from time

t − 1 to t, where at time t two nodes u and u′ interact and U denotes the uniform

distribution on M (i.e., Et(u) = Et ∀u). Let also zt(x) = Et(x) − 1
m

denote the

difference of node x’s energy from the uniform distribution. It has been shown in [34,

35, 36] that if zt−1(u)zt−1(u
′) < 0, ∆t < 0. That is, if a node u with Et(u) < Et and a

node u′ with Et(u
′) > Et interact at time t and split their energy equally, the energy

variation distance in the network decreases. Otherwise, with zt−1(u)zt−1(u
′) ≥ 0,

∆t = 0.

While energy sharing in the opposite sides of the average energy will decrease the

variation distance, it may cause nodes move between the negative and positive side of

the average energy level in the network (as shown in Fig. 19), and causes unnecessary

energy loss in the network. In order to solve this problem and minimize the energy

loss in the network as much as possible while achieving low variation distance among

peers, we propose to make one of the nodes greedily reach the current average energy

level in the network (i.e., target) immediately. Moreover, we give priority to the

positive node. That is, if two nodes u and u′ at different sides of the average energy

level in the network interacts, the one in the positive side gives its excessive energy
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Algorithm 6: GreedyPositive (u, u′, t)

Input: (u, u′): Interacting nodes

t: Time of interaction

1 if (Et−1(u) > Et−1 and Et−1(u
′) < Et−1) OR (Et−1(u) < Et−1 and

Et−1(u
′) > Et−1) then

2 if Et−1(u) > Et−1 then

3 PGP (Et−1(u), Et−1(u
′)) = (Et−1, Et−1(u

′) + (1− β)(Et−1(u)− Et−1))

4 else

5 PGP (Et−1(u), Et−1(u
′)) = (Et−1(u) + (1− β)(Et−1(u

′)− Et−1), Et−1)

6 else

7 do nothing

above the target to the one in the negative side. Note that, as the interactions in

the network continue, the target energy level will decrease thus, this node may need

to interact and decrease its energy again. However, this will not waste energy as the

node will still stay in the positive side. If the node in the negative side was given the

priority to reach the target first, then this would make the node switch to the positive

side as the new interactions happen and the average energy in the network decreases.

Algorithm 6 shows the interaction process of this Greedy Positive first protocol, or

PGP in short.

5.3.2 Greedy Closer First Energy Balancing (PGC)

In the greedy positive first protocol, it is still possible that some of the nodes in

the negative side can switch to the positive side. For example, if the positive node

has a very high excessive energy and can provide the node in the negative side with

more energy than it actually needs to reach the target, this will make the node in the
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negative side switch to the positive side. To address this, we propose a new protocol

which gives priority to the node that is closest to the target energy level and let it

reach the target. Note that this has to be handled separately depending on different

cases.

Algorithm 7 shows the details of the Greedy Closer first protocol, or PGC in

short. If the node in the negative side, u−, needs less than the energy that the node

in the positive side, u+, can give after loss, u− is given priority to reach the target.

The amount of energy that u+ has to transfer should consider the loss, thus should be

more than what u− will actually need (lines 10-11). Otherwise, u+ is given priority

to reach the target and the energy of u− is increased accordingly (line 12-13).

5.3.3 Greedy Optimal Energy Balancing (PGO)

The proposed protocols in previous sections aim to minimize the energy loss

while achieving a small variation distance of energy level distribution of nodes with

respect to the uniform distribution at the current time. However, as nodes interact,

the average energy in the network, Et will decrease and it will require the nodes that

already reached the current average in the network interact again to reach this new

target. For example, in PGC protocol, there is still a possibility for negative side

nodes that reach the target find themselves later in the positive side. Similarly, if

priority is given to the nodes in the positive side as it is closer to the current target,

even though it reaches the current average energy in the network, it can find itself

again in the positive side.

To this end, we propose a third protocol called Greedy closer to Optimal first

protocol, or PGO in short. We aim to maximize the benefit from each interaction,

hence we make one of the nodes in the interacting pair reach the final optimal tar-
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Algorithm 7: GreedyCloser (u, u′, t)

Input: (u, u′): Interacting nodes

t: Time of interaction

1 (u+, u−) ← (null, null)

2 if (Et−1(u) > Et−1 and Et−1(u
′) < Et−1) then

3 (u+, u−) ← (u, u′)

4 else

5 if (Et−1(u) < Et−1 and Et−1(u
′) > Et−1) then

6 (u+, u−) ← (u′, u)

7 if (u+, u−) is not null then

8 δt−1(u
+) = Et−1(u

+)− Et−1

9 δt−1(u
−) = Et−1 − Et−1(u−)

10 if δt−1(u
+)(1− β) > δt−1(u

−) then

11 PGC(Et−1(u
+), Et−1(u

−)) = (Et−1(u
+) - δt−1(u−)

(1−β) , Et−1)

12 else

13 PGC(Et−1(u
+), Et−1(u

−)) = (Et−1, Et−1(u
−) + (1− β)δt−1(u

+))

get immediately and stop interacting with others. This achieves a larger variation

distance decrease per interaction and keeps the possible maximum energy in the net-

work. However, the key point here is to find this optimal target energy level in the

final network when all interactions finish and every node’s energy is balanced.

For a given population of nodes and their energies, this can be calculated in a

discrete manner through iterations. Let us divide the nodes in the network into three
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sets based on a reference energy level j as follows:

S+
t (j) = {x ∈M | Et(x) > j}

S−t (j) = {x ∈M | Et(x) < j}

S=
t (j) = {x ∈M | Et(x) = 0}

Assume that Eopt is the optimal average target energy in the network that can be

reached by all nodes with the minimum energy loss. It is clear that in the optimal way

each node should reach this target directly. That is, the nodes having more energy

than this target should give their excessive energy to others and the nodes having

less energy than this target should receive energy from others in the amount of the

difference. However, due to the loss, the nodes that will give energy to receiving nodes

should transfer more than what they actually need. Eopt will then be obtained when

the sum of receiving nodes energy can be supplied by giver nodes with minimal loss.

More formally,

Eopt = arg min
j
{B+

j − B−j } where,

B+
j =

∑
∀x∈S+

0 (j)

(E0(x)− j)

B−j =
∑

∀x∈S−0 (j)

(
j − E0(x)

1− β

)

In a large scale network with many nodes having uniformly distributed energy

levels in [0,1], the expected value of Eopt can also be calculated as follows:∫ x

y=0

(x− y)dy =

∫ 1

x

(y − x)(1− β)dy

x2 = (x2 − 2x+ 1)(1− β)

f(x) = βx2 + 2(1− β)x− (1− β) = 0
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Fig. 21.: Optimal target average energy for different energy loss rates for a large-scale

network with uniform energy distributions.

This function, f(x) is strictly increasing function when x ∈ [0,1] and β ∈ [0,1], as

f ′(x) > 0. The solution is equal to the positive root at,

Eopt =
−2(1− β) +

√
4(1− β)

2β

=
−(1− β) +

√
(1− β)

β

As (1− β) ≤
√

(1− β) when β ∈ [0,1], the value of Eopt is positive and lies in [0,1].

In Fig. 21, we show the values of Eopt for different energy loss rates. The results

are average of 1000 runs among 100 nodes where each node’s energy is determined

randomly between 0 and 100%. For example, when there is a 20% energy loss dur-

ing transfers, the optimal energy balance with minimum loss and zero variation is

47.213%.

So, as shown in Algorithm 10, the interaction protocol between nodes will be

similar to the PGC protocol except that Eopt will be used instead of Et−1. If the

nodes in the opposite sides of Eopt interact, the one that can reach the target first

based on energy exchanges between them is given priority.

Note that in an ideal scenario, with n/2 interactions, a perfect energy balance
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Algorithm 8: GreedyOptimal(u, u′, t)

Input: (u, u′): Interacting nodes

t: Time of interaction

1 Replace all Et−1 in GreedyCloser(u, u′, t) with Eopt

2 Run the same algorithm

among all nodes can be achieved at Eopt. This happens when the energy need of a

node in the negative side is perfectly provided by a node in the positive side during

a single interaction and they both reach the target. This requires equal number

of nodes in the opposite sides of the target and perfect meeting schedule between

corresponding pairs that can complement each other. In practice, usually this is not

the case as due to uniform distribution, there will not be equal number of nodes in

both sides of the final optimal average and the meeting patterns of nodes may be

very different.

5.4 Energy Balancing for Partially Connected Graphs

In a real setting, the ideal scenario will not be the case as opportunistic interac-

tions will be limited to only some pairs of nodes and the distribution of energy levels

of nodes may not be uniform. However, in a given mobile opportunistic network

contact graph1 and the initial energy levels of nodes, we can find the optimal energy

balance achievable among nodes by Mixed Integer Linear Programming (MILP).

We target an energy balance with minimum possible energy variation distance

first. Then, we target minimum loss without sacrificing the variation distance. Espe-

cially, when there are multiple ways (i.e., energy exchange schedules between nodes)

1This can be obtained from historical meeting patterns of nodes and thanks to the
long-term regularities [104, 59] in node relations, it can be used for predicting future
meetings.
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of reaching a zero variation distance, utilizing the one that will result in the minimum

energy loss is important. By the way, depending on the application requirements, it

is possible to consider other objective functions with weighted variation distance and

loss combination similarly. In this section, we will discuss on two different approaches

namely single hop and multi hop approaches to achieve a minimum variation distance

with minimum loss given different network scenarios. We will then extend the idea

of energy balancing to network lifetime and propose minor modifications to the en-

ergy balancing problem to obtain optimal network lifetime when a perfect energy

balancing is not achievable.

5.4.1 Energy Balancing with Single Hop Energy Exchanges

In this section, we consider the case where only single hop energy exchanges

are allowed between nodes. That is, each node is able to transfer energy only to its

immediate neighbors and the total shareable energy is limited to its available energy.

This makes the process easy as nodes can use every meeting opportunity with other

nodes to share energy without waiting to receive any energy from some others. Below,

we first provide a MILP based solution to find the optimal energy level for a given

connected contact graph of any size and given characteristics of node relations (e.g.,

intermeeting time). Utilizing MILP results, we then propose two different energy

balancing protocols.
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5.4.1.1 Optimal Energy Balance

In a given mobile opportunistic network contact graph2 and the initial energy

levels of nodes, we can find the optimal energy balance achievable among nodes

by MILP. In this chapter, we target an energy balance with minimum possible en-

ergy variation distance first. Then, we target minimum loss without sacrificing the

variation distance. Especially, when there are multiple ways (i.e., energy exchange

schedules between nodes) of reaching the same variation distance (e.g., zero), utiliz-

ing the one that will result in the minimum energy loss is important. Depending on

the application requirements, it is possible to consider other objective functions with

weighted combinations of variation distance and loss in a similar way.

Let εu,u′ denote the amount of energy transferred from u to u′ and Ef (u) denote

the final energy level of node u at the end of energy balancing process. Then,

Ef (u) = E0(u)−
∑
∀u′

εu,u′ +
∑
∀u′

εu′,u(1− β)

Let also L denote the total energy loss in the network due to the energy exchanges

between nodes during the balancing process. Then,

L =
∑
∀u

∑
∀u′ 6=u

εu,u′β

The objective is to minimize the variation distance between the final energy

distribution of nodes, Ef , and the final uniform energy distribution, Uf , where all

nodes have energy equal to the average energy in the final network (i.e., Ef (u) =

Ef ∀u) as much as possible and then minimize the total loss in the network. More

2This can be obtained from historical meeting patterns of nodes and thanks to the
long-term regularities [104, 113, 114] in node relations, it can be used for predicting
future meetings.
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formally:

min δ(Ef ,Uf )m+ L (5.3)

s.t. 0 ≤ εu,u′ ≤ Et(u)luu′ ∀(u, u′) (5.4)

0 ≤
∑
∀u′ 6=u

εu,u′ ≤ Et(u) ∀u (5.5)

kuu′ + ku′u ≤ 1 ∀(u, u′) (5.6)

where εu,u′ is a decimal in [0, 1] ∀(u, u′) (5.7)

kuu′ =


1, if εu,u′ > 0

0, otherwise

∀(u, u′) (5.8)

luu′ =


1, if (1− e−λuu′τ ) ≥ p

0, otherwise

∀(u, u′) (5.9)

In objective function (5.3), as we give priority to the minimization of variation

distance over minimization of loss, we use scalarization method and multiply the

former with a constant that is larger than the maximum possible value for L. That

is, we select the constant as m as each node’s energy can be at most 100% or 1 and

there are m nodes in the network, making the total possible loss at most mβ. With

a non-zero β, this guarantees that the optimization prefers a decrease in variation

distance over any decrease in loss. (5.4) allows energy sharing between the nodes that

are expected to meet within given time threshold τ as when luu′ = 0 or no meeting

is expected, no sharing will be allowed (i.e., εu,u′ should be zero) and (5.5) limits

the total energy sharing from each node to any other node by its available energy.

This is to take into account the fact that all the energy sharing events can happen

earlier than any energy receiving event potentially due to the opportunistic and non-

deterministic nature of meetings between nodes. We also do not allow unnecessary
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two-way energy exchanges between nodes via (5.6). In order to determine if the nodes

will meet by the time threshold, in (5.9), we use a predefined probability, p, and set

the link between nodes to 1 if the CDF of expected meeting by time threshold is

more than p. Note that the optimal average energy level will be equal to the average

energy in the final network. That is,

Eopt =

∑
x∈MEf (x)

m
. (5.10)

5.4.1.2 Energy Balancing Protocols

After the optimal energy balance and the corresponding required energy ex-

changes (i.e., εu,u′) between nodes to reach that optimal balance is computed3 via an

MILP solver, we propose two different energy balancing protocols to define the actual

energy exchanges during the opportunistic meetings between pairs of nodes.

In the first protocol, we require each node to follow the exact energy exchange

schedule found by the MILP solution (hence, named Linear Exact or PLE in short).

Thus, each node waits for meeting with the nodes that it is supposed to perform an

energy exchange with and exchanges energy only in the amount it is allowed to do

so with them. This protocol will let the nodes reach the optimal variation distance

in the network eventually but due to the non-deterministic nature of opportunistic

meeting patterns, it may cause nodes wait longer than expected as well as cause them

miss the advantage of any earlier meeting opportunity with some unexpected nodes.

In the second protocol, we aim to benefit from the non-deterministic meetings

between nodes which may let the nodes reach the target energy level earlier, thus we do

not require nodes to follow the energy exchange schedule found by the MILP solution.

3This one-time process can be computed at a central device (which can be one of
the nodes in the network or a remote server) that knows all initial energy levels of
nodes and can be communicated back to the nodes through cellular connection.

91



Optimal target average energy level, Eopt is still found by MILP (using (5.10)) as in

the case of first protocol, however, the nodes do not need to wait specifically for

the nodes that they are supposed to exchange energy with. Instead, whenever two

nodes from opposite sides of Eopt meet, they utilize this opportunity and update their

energy towards the target. Here, in order to prevent nodes from switching their sides

as in the case of previous work and causing unnecessary additional energy loss, we

give priority to the node whose energy is closer to the target and let it reach that

target by receiving or sharing energy with the other node. We name this protocol

Opportunistic C loser or POC in short. Note that this protocol takes the benefit of

any opportunistic meeting for energy exchange besides the scheduled ones, however,

it can cause nodes not reach the optimal energy levels due to the divergence from the

schedule that will make them reach the optimal energy balance. This may especially

adversely affect the performance when the contact graph in the network is sparse.

We show the details of these two energy balancing protocols in Algorithm 9.

For POC protocol (lines 8-14), if the node in the negative side, u−, needs less than

the energy that the node in the positive side, u+, can give after loss, u− is given

priority to reach the target. The amount of energy that u+ has to transfer should

consider the loss; thus, it should be more than what u− will actually need (lines

11-12). Otherwise, u+ is given priority to reach the target and the energy of u− is

increased accordingly (line 14). For PLE protocol (lines 16-20), the energy of nodes

are simply updated based on the scheduled energy exchanges between nodes. Note

that by MILP formulation design either εu+,u− or εu−,u+ will be more than zero at the

same time, however, it is possible that both could be zero as the optimal schedule

may not recommend an interaction between them even though they are in opposite

sides of the average energy level.
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Algorithm 9: Single Hop Energy Balancing (P , u, u′, t)

Input: (u, u′): Interacting nodes, t: Time of interaction

Eopt: Optimal average energy from MILP

1 (u+, u−) ← (null, null)

2 if (Et−1(u) > Eopt and Et−1(u
′) < Eopt) then

3 (u+, u−) ← (u, u′)

4 else

5 if (Et−1(u) < Eopt and Et−1(u
′) > Eopt) then

6 (u+, u−) ← (u′, u)

7 if (u+, u−) is not null then

8 if P = POC then

9 δt−1(u
+) = Et−1(u

+)− Eopt

10 δt−1(u
−) = Eopt − Et−1(u−)

11 if δt−1(u
+)(1− β) > δt−1(u

−) then

12 POC(Et−1(u
+), Et−1(u

−)) = (Et−1(u
+) - δt−1(u−)

(1−β) , Eopt)

13 else

14 POC(Et−1(u
+), Et−1(u

−)) = (Eopt, Et−1(u
−) + (1− β)δt−1(u

+))

15 else

16 if εu+,u− > 0 then

17 PLE(Et−1(u
+), Et−1(u

−)) = (Et−1(u
+) - εu+,u− , Et−1(u

−) +

(1− β)εu+,u−)

18 else

19 if εu−,u+ > 0 then

20 PLE(Et−1(u
+), Et−1(u

−)) = (Et−1(u
+) + (1− β)εu−,u+ ,

Et−1(u
−) - εu−,u+)

93



!

"

#

"$%

!&%

&&% !

"

#

'%

!&%

&(%

)*+ ),+

Fig. 22.: An example contact graph with 3 nodes: (a) Perfect energy balancing is

possible with single hop energy exchanges. (b) Perfect energy balancing requires

multi-hop energy exchanges (with β = 0.2).

5.4.2 Energy Balancing with Multi-Hop Energy Exchanges

In the previous section, we study the energy balancing problem when each node

can transfer energy only to its immediate neighbors in contact graph. However, this

may result in an imperfect energy balance (i.e., non-zero variation distance) especially

in sparse networks. Hence, in this section, we relax this constraint and allow the nodes

to exchange energy using multiple hops. This will allow nodes with higher energy to

give energy to nodes with low energy even though they are not meeting directly (i.e.,

distant in contact graph). For example, in Fig. 22a, the optimal energy achievable

is 30% by all nodes (i.e., perfect energy balance with zero variation distance) with

the total energy loss of 6%. This happens when node 2 gives 5% to node 1 and gets

25% from node 3, making energy levels of all nodes equal to Eopt = 30%. Note that

all energy exchanges to reach perfect balance happen between direct neighbors and

the initial energy levels of nodes is more than the energy that their neighbors need

to take from them (e.g., node 2 has 15% initially and just sends 5% to node 1).

However, for the example shown in Fig. 22b, this is not the case. A perfect

energy balance at 23% is possible, but node 3 should share its energy with node 1

94



and node 2 to make that happen. Note that node 2 cannot make node 1 reach 23%

by the energy it has, as it needs to transfer 20% to node 1 but it has less than that.

Thus, it has to wait for receiving energy from node 3 first. This requires a multi-hop

based energy sharing process. Node 3 shares 35% of its energy with node 2, which

receives 28% due to 20% loss rate. Then, node 2 keeps 8% for itself and shares the

remaining 20% with node 1, which receives only 16% and reaches 23%.

While multi-hop based energy sharing can help reach a perfect energy balance

when single hop exchanges cannot, there are some additional challenges that need to

be addressed. That is, the average time required until an energy balance occurs as

well as the loss during energy exchanges can increase as more hops result in more

loss.

Thus, for the efficient modeling of this problem, we will allow the linear program

to only use paths that are viable within the time constraint and has the least number

of hops. To this end, we find the paths from all possible source nodes to all possible

destinations and discard the paths that cannot provide an energy transfer with a

probability p over the nodes on that path by the time threshold.

Then, we find the shortest hop path among the paths selected for each pair and

use this path in the linear program to compute energy exchanges and energy loss.

If there are multiple same hop paths, then we select the path that can achieve the

energy transfer with the highest probability among them.

5.4.2.1 Optimal Energy Balance

Let G denote the (undirected connected) contact graph of nodes in the network

and let phu,u′ = 〈u1, u2, u3, ..., uh〉 be a path of h hops from node u to node u′ in G

where u1 = u and uh = u′. As we assume that the intermeeting times of nodes i and j

are defined with an independent random variable Xij ∼ Exp(λij), the energy transfer
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time from node u to node u′ on phu,u′ can be modeled with a random variable Xh
u,u′ =∑h−1

i=1 Xui,ui+1
. Here, with a common λ = λuiuj , ∀ui 6= uj ∈ [1, h], this will convert to

gamma distribution [115], Γ(h, λ), and for different rates, one can calculate the actual

CDF of Xh
u,u′ , or FXh

u,u′
, where the mean will be equal to E[X] =

∑h−1
i=1

1
λui,ui+1

[116].

Let ~Pu denote the set of all possible phu,u′s in graph G from a source node u to any

node u′ for all h such that FXh
u,u′

(τ) ≥ p, where p is the predefined minimum expected

meeting probability as used in Section 5.4.1. Consider a new subgraph G′u ⊂ G such

that all the edges in this new graph corresponds to the edges, ~eu,u′ ∈ ~Pu.

In order to reduce the loss during multi-hop based energy sharing and balancing

process, we need to use the path with the minimum hop that can achieve an energy

exchange within the time threshold. Thus, we set a weight of 1 for each edge in G′u

and apply Dijkstra’s shortest path algorithm to identify the minimum hop path from

source u to each destination in G′u.

Let L be an m × m matrix, where Lu,u′ shows the minimum hop distance from

node u to node u′ in G′u (we set Lu,u′ = ∞ if there is no such path). Since single

hop based energy balancing, if possible, should be preferred over multi-hop based

balancing as it will have lower loss, we set the objective function such that it also

prioritizes using single hop over multi-hop after the priorities defined in single hop

objective function. Let hs be the total number of single hop energy exchanges used,

which can be given as:

hs = |{(u, u′) | u, u′ ∈M, u′ 6= u, εu,u′ > 0, Lu,u′ = 1}|

Similarly, let hm be the total number of multi-hop energy exchanges used, which can

be given as:

hm = |{(u, u′) | u, u′ ∈M, u′ 6= u, εu,u′ > 0, Lu,u′ > 1}|
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Total energy loss in the network can also be computed as:

L =
∑
∀u

∑
∀u′ 6=u

(εu,u′ × (1− (1− β)Lu,u′ ))

The optimization model used in single hop case can then be extended to multi-

hop energy balancing problem as:

min (M2 × (M2 × (δ(Ef ,Uf )m+ L) + hs) + hm) (5.11)

s.t. 0 ≤ εu,u′ ≤ Et(u)luu′ ∀(u, u′) (5.12)

0 ≤
∑
∀u′ 6=u

εu,u′ ≤ Et(u) ∀u (5.13)

kuu′ + ku′u ≤ 1 ∀(u, u′) (5.14)

where εu,u′ is a decimal in [0, 1] ∀(u, u′) (5.15)

kuu′ =


1, if εu,u′ > 0

0, otherwise

∀(u, u′) (5.16)

luu′ =


1, if Lu,u′ 6=∞

0, otherwise

∀(u, u′) (5.17)

In the objective function (5.11), in order to make sure that single hop paths are

prioritized over multi-hop paths we again use scalarization method. That is, we first

multiply the single hop energy balancing objective by a constant (M2) and add the

number of single hop energy exchanges. We then multiply the overall term by the

same constant and add multi-hop counts. Note that each constant is selected as it

is described in single hop case such that the previous prioritized objective will be

preferred over the next one. Similarly, we update the constraints for energy exchange

bounds in (5.12) where luu′ now specifies if there is a path from node u to node u′ in

G′u, i.e., luu′ is set to 1 if Lu,u′ is equal to some finite number of hops. Otherwise, lu,u′
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is set to 0 if there is no path from node u to node u′ in G′u (i.e., Lu,u′ = ∞). With

lu,u′ = 0, we again do not allow any energy exchange between nodes. Note that (5.13)

still limits the total energy shared by a node (to any single and multi-hop node) by

its own energy and allows the relay nodes preserve their own energy when relaying

energy from other sources.

5.4.2.2 Energy Balancing Protocol

Similar to the single hop case, we adopt a linear exact energy balancing protocol

which lets the meeting nodes exchange energy that is given by the linear program.

However, using linear exact for multi-hop based energy balancing is not straightfor-

ward as it is for single hop. This is because a node acting as a relay might need to

relay more energy than it can hold. Also, in order to avoid the temporary out-of-

energy situations for nodes, we do not allow the relay nodes to transfer energy upon

opportunistic contact with next hop nodes unless they have received energy from

previous hop nodes4. This requires nodes to maintain information on energy amount

to be transferred from its own energy as well as energy amount that is received from

other sources and will be forwarded as a relay.

Let εu,u′ be the energy amount that needs to be transferred from node u to node

u′, over single hop or multiple hops, to achieve the optimal solution found by the

multi-hop MILP. Also, let εsu,u′ be the amount of u’s self energy that needs to be

shared to u′ (for u′ and all other nodes using u′ as relay). Note that this also refers

to the energy amount that node u can transfer to node u′ without waiting for any

energy reception from other nodes. Similarly, let εou,u′ denote the amount of energy

to be transferred from node u to u′ where node u is acting as a relay for energy from

4Due to this restriction, we also do not develop equivalent of POC for multi-hop
case.
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other sources. In order to compute the values of εsu,u′ and εou,u′ , we also need to know

the path used for energy exchanges by the linear program. In the subgraph G′u, after

applying Dijkstra’s algorithm with edge weights set to 1, we can end up with multiple

paths from node u to any other node u′ with the same number of hops (h). In such

cases, we select the path with the minimum expected time in order to increase the

chance of completing the energy sharing within the time threshold. Let pminu,u′ be the

minimum cost path from u to u′ in G′u, and let 〈i, j〉 denote the edge between nodes

i and j. Then,

εsu,u′ = εu,u′ +
∑

k∈M,k 6=u,u′
(εu,k | 〈u, u′〉 ∈ pminu,k )

εou,u′ =
∑

k∈M,k 6=u,u′
d∈M,d 6=u,u′,k

(εk,d × (1− β)Lk,u | 〈u, u′〉 ∈ pmink,d )

In the above equations, εsu,u′ is computed as the sum of energy to be transferred

from u to u′ and the total amount of energy to be transferred from u to every other

destination in which u′ is the first hop in its path. Similarly, εou,u′ is calculated as the

sum of total amount of energy to be transferred from all sources to all destinations in

which u′ is the next hop after u in its path. Note that we only take into account the

energy amount that will reach node u after losses during transfers in previous hops

(from the source node k to node u). After computation of necessary parameters, we

can run this protocol as given in Algorithm 10.

In Algorithm 10, we divide the energy exchanges into two parts. In the first part

(lines 1-9), we perform the energy exchanges originated from a node’s self energy.

In the second part (lines 10-19), we perform the energy exchanges due to a node’s

being relay between other nodes. Priority is given to the former. In the first part,

we first calculate the amount of available energy that can be shared (line 4), and
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Algorithm 10: PMLE(u, u’, εsu,u′ , ε
o
u,u′ , ru, t)

Input: (u, u′): Interacting nodes, t: Time of interaction

εsu,u′ : Energy to be sent from u to u′ directly

εou,u′ : Energy to be sent from u to u′ as a relay

ru: Received energy in node u as relay

1 for εi,j ∈ {εsu,u′ , εsu′,u} do

2 if (εi,j > 0) then

3 (u+, u−) ← (i, j)

4 ε ← min(Et−1(u
+), εsu+,u−)

5 if (Et−1(u
−) + ε(1− β) > 100) then

6 ε = 100 - Et−1(u−)
(1−β)

7 (Et−1(u
−), Et−1(u

+)) = (Et−1(u
−) + (1− β)ε, Et−1(u

+) - ε)

8 εsu+,u− = εsu+,u− - ε

9 ru− ← ru− + (1-β)ε

10 for εi,j ∈ {εou,u′ , εou′,u} do

11 if (εi,j > 0) then

12 (u+, u−) ← (i, j)

13 ε ← min(Et−1(u
+), ru+ , ε

o
u+,u−)

14 if (Et−1(u
−) + ε(1− β) > 100) then

15 ε = 100 - Et−1(u−)
(1−β)

16 (Et−1(u
−), Et−1(u

+)) = (Et−1(u
−) + (1− β)ε, Et−1(u

+) - ε)

17 εou+,u− = εou+,u− - ε

18 ru+ ← ru+ - ε

19 ru− ← ru− + (1-β) ε
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depending on the available space in the receiver, we determine the actual energy

transfer that will happen (lines 5-6) and update the corresponding parameters based

on the transferred amount. In the second part, we again first calculate the amount

of available energy that can be shared (line 13), however this time we also consider

the received energy as relay so far and only let such energy transfers after receiving

sufficient energy from previous hops. Then, depending on the available space in the

receiver, we again determine the actual energy transfer that will happen (lines 14-15)

and update the parameters once it is performed (lines 16-19). Note that, different

from the first part, as both the receiver and transmitter nodes are relays in the second

part, the received energy amounts as relays are updated for both.

5.5 Evaluation

In this section, we present the results of our evaluation through simulations5.

From the beginning of the simulation, we let the devices interact following their ex-

ponentially distributed intermeeting times and exchange energy based on the charac-

teristics of each energy balancing protocol compared. Each simulation is repeated 100

times for statistical smoothness. Error bars are not shown as the results were highly

concentrated around the mean. The energy levels of nodes are uniformly distributed

in (0-100]% in general. However, for the group-based synthetic contact traces gener-

ated for multi-hop protocol evaluation, we consider one group with nodes having high

energy (i.e., ≥ 50%) and the other group with nodes having less energy (i.e., < 50%).

Moreover, for the partially connected graphs we use two values for expected meeting

probability p within time threshold, namely, 1 − 1/e ∼ 0.63 and 0.8. Note that, for

example in the single hop case, the former simply considers the edges in the contact

5The simulations code is available at https://github.com/aashish33128/Energy-
Balancing-Journal.

101



graph with average intermeeting time less than or equal to τ , and the latter requires

the edges to have an average intermeeting time less than or equal to ≈ τ/1.6.

5.5.1 Energy Balancing Protocols in Comparison

Below are the brief descriptions of all protocols compared through simulations:

• PGP : Protocol Greedy positive as discussed in 5.3.1 prioritizes the node which

has energy greater than the current average network energy to reach the average

first.

• PGC : Protocol Greedy Closer as discussed in 5.3.2 prioritizes the node which

has energy closer to the current average network energy to reach the average

energy first.

• P∗OA: This Online Average protocol is the updated version of the state-of-the-

art protocol POA proposed in [34, 35, 36]. The protocol simply lets the nodes

in opposite sides of the current average energy in the network interact and

split their energies equally. In the original POA, each node locally estimates

the average energy level in the network using the ratio of the total energy of

the encountered nodes to the number of encountered nodes, which may not be

accurate. As we allow computation of MILP results at a node or a server by

knowing the energy levels of all nodes, for a fair comparison we assume the same

for POA and name it as P∗OA, which performs better than POA. Moreover, we

use Eopt obtained from discrete method for fully connected graphs and MILP

results for partially connected graphs to decide the boundary between opposite

sides in P∗OA, which helps decreasing energy loss.

• PLE: In the Linear Exact protocol, when the nodes meet, they only share

the exact amount of energy that MILP solution with only single hop energy
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exchanges (obtained6 by IBM CPLEX solver [117]) finds to reach the Eopt with

minimum possible variation and loss after that, as described in Alg. 9.

• POC : In the Opportunistic C loser protocol, Eopt is obtained via the discrete

method for fully connected graphs (Note: This protocol is equivalent to protocol

PGO as discussed in 5.3.3) and from MILP for partially connected graphs (with

single hop energy exchanges) as in PLE, but the nodes opportunistically try

to reach Eopt. That is, they do not wait for the other nodes that they are

supposed to exchange energy with, as found by MILP, but utilize every meeting

opportunity with the nodes in the opposite side. The one with closer energy

level to Eopt is given priority to reach it first as described in Alg. 9.

• PMLE: In the M ulti-hop Linear Exact protocol, we first find the Eopt by

MILP solution using multi-hop energy exchanges (obtained by IBM CPLEX

solver [117]) and then depending on the actual self and relayed energy amounts

calculated, we let the meeting nodes share the exact amount of energy they are

supposed to exchange, as described in Alg. 10.

Note that there is no opportunistic version of PMLE algorithm, as nodes in more than

one hop distance away in the contact graph do not meet opportunistically.

5.5.2 Performance Metrics

We use the following metrics in the performance comparison of the aforemen-

tioned protocols:

• Total variation distance: This is calculated by δ(Et,Ut). That is, we find the

ratio of the energy levels of nodes to the total energy in the network at each

6We set the MILP gap tolerance to 0 to make sure the results obtained are optimal.
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time, take the absolute difference from uniform distribution at that time and

sum it for all nodes.

• Total energy in the network: This is the sum of energies at all nodes. As the

nodes interact and exchange energy, due to the imperfect transfer efficiency the

total available energy in the network decreases.

• Number of interactions: This is the number of interactions between nodes dur-

ing which an energy exchange happens towards reaching a balance. It shows

how selective the protocol is and hence it affects the efficiency of the protocol.

• Total variation distance at a given total energy: As the performance of the

protocols may vary based on total variation distance and total energy in the

network, we use this combined metric as an indicator of true performance.

• Total variation distance at a given number of interactions: Similarly, we use

this metric to understand the impact of necessary interactions towards reaching

the minimum possible total variation distance.

Note that all protocol that depends on Eopt calculated from MILP model at a

central server, the initial computation and communication cost for all protocols will be

the same. The additional computation and communication costs will come from the

node interactions they result in. Thus, the performance results showing the number

of interactions can also be used to compare their computation and communication

cost differences.

5.5.3 Contact Traces

We use both real and synthetic user traces to define the meeting relations be-

tween the nodes in the network. Real traces are obtained from one of the commonly
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used datasets in DTN literature [89] that is used for performance analysis of routing

algorithms. With synthetic traces, we aim to generate different contact graphs with

various sparsity levels.

• Cambridge traces: These are the Bluetooth recordings between the iMotes

carried by 36 students from Cambridge University for a duration of almost two

months. While Bluetooth has a range in the order of several meters, we use

these interactions as an indication of nodes in close proximity of each other and

assume that they can communicate and agree to come closer to perform energy

exchange operation if needed.

• Regular synthetic traces: These traces are generated for 30 nodes that meet

with an exponentially distributed intermeeting time with a mean selected ran-

domly between [1000, 7000] time units for fully connected graph results and

[1000, 15000] time units7 for partially connected graph results. Through simu-

lations, different time thresholds are also used to generate contact graphs with

different average neighbor counts.

• Group-based synthetic traces: In order to show the benefits of multi-hop

based energy exchanges during energy balancing process in particular, we use

30 nodes divided into two equal groups and allow nodes within each group meet

up to 40% of other nodes in their own group and meet with a node in the other

group with probability γ, which is set to 3% by default. However, we look at

the impact of different γ on results. Intermeeting times are generated with an

exponential distribution with a mean selected randomly between [100, 300] time

7Note that while generating results, we scale the time units down by 10 for proper
presentation of results.
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units. We selected a smaller upper bound to allow multi-hop paths within time

threshold.

Note that depending on the energy sharing technology used between nodes, the prox-

imity requirements and corresponding energy transfer efficiency might be different.

While we assume a default energy loss rate, β = 0.2 (i.e., 80% transfer efficiency) for

main simulations, we look at the impact of this parameter in our results. Moreover,

we assume that when nodes meet, they stay close enough to each other until they can

achieve the required energy transfer under the energy balancing protocol in use, as

in previous work [34, 35, 36, 108, 109]. The results with different transfer efficiency

however can be considered as the relaxation of this assumption to some extent.

5.5.4 Fully Connected Graphs

In Fig. 23-a, we show the total variation distance comparison for all algorithms.

P ∗OA can provide smaller variation distance than the proposed algorithms. However,

this is achieved with a very high energy loss, as shown in Fig. 23-b. Moreover,

the number of interactions between nodes is also the highest among all compared

algorithms, as shown in Fig. 23-c. Thus, when we compare the variation distance at

the same total energy in the network in Fig. 23-d, we see that it achieves the worst

performance. On the other hand, PGO achieves the best performance and decreases

the variation distance towards the optimal energy, Eopt, gradually. It also achieves

this with minimum number of interactions. Thus, as it is shown in Fig. 23-e, it gives

the best performance in terms of the total variation distance at a given interaction

time.

The other proposed algorithms, PGP and PGC , perform better than P ∗OA, and

worse than the PGO. PGC indeed can achieve similar total variation distance (Fig. 23-

b) at a given total energy in the network as PGO and very close total energy in the
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Fig. 23.: Comparison of proposed algorithms with the state-of-the-art algorithm in

terms of (a) variation distance, (b) total energy remaining in the network, (c) to-

tal number of interactions, (d) variation distance at each total energy level and (e)

variation distance at each total number of interactions (when β=0.2). (f) shows the

impact of different loss rates on PGO performance.

107



network around the same simulation time (Fig. 23-d). However, as the nodes target to

reach the current average energy in the network their interaction does not stop as in

PGO, thus total variation distance at a given total interaction (with energy exchanges)

count is worse than the case in PGO (Fig. 23-e).

The impact of energy loss rate on the performance of PGO is also shown in

Fig. 23-f. PGO always reaches the target if it is run sufficiently long. However, we

notice that with higher β, the linear decrease converts to non-linear decrease. This is

because, with higher β, Eopt gets lower, hence the difference in the number of nodes

in the opposite sides of Eopt increases. This then results in less meeting likelihood

between opposite side nodes in earlier times. Moreover, due to the high energy loss,

the nodes in negative side receive small energy and cannot reach the target quickly.

Thus, the variation distance decreases slowly. However, PGO eventually reaches the

optimal target with minimal loss.

5.5.5 Partially Connected Graphs

In Fig. 24, we first show the optimal energy balance (Eopt) achievable in contact

graphs with different sparsity. To this end, we use regular synthetic traces and for

different time thresholds (τ) and loss rates (β) we calculate the optimal average energy

reachable with single hop exchanges8 and corresponding variation distance and total

loss at Eopt for two different p values. Note that as τ decreases the contact graph

gets sparser as the edges between some pairs cannot achieve the expected meeting

probability p by τ anymore, thus are removed from the graph. As the results show,

optimal variation distance gets lower as τ increases and hits zero around τ = 400

time units when p = 0.63. The loss associated with this optimal variation distance on

8We discuss the impact of using multi-hops on Eopt in Fig. 28.
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Fig. 24.: Impact of time threshold (τ) and loss rate (β) on optimal average energy

achievable (Eopt) and corresponding variation distance and total loss at Eopt with

expected meeting probability threshold p = 1 − 1/e = 0.63 and p = 0.8 (For visual

clarity, error bars are only shown for one line in top four figures as they are similar

in others).
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the other hand increases initially and gets smaller later. This is because with smaller

τ values, some nodes either have very small contacts or are totally isolated from

others. Thus, perfect energy balance with zero variation distance was not possible.

However, once this threshold is exceeded, the loss could be lowered by finding better

energy exchange schedules. Note that Eopt results are also inline with this reasoning.

Moreover, we see that as β increases, the optimal average energy achievable with

different time thresholds decreases but it follows a similar pattern at different loss

rates. Similarly, with p = 0.8, we obtain an expanded but similar pattern in all

graphs compared to p = 0.63. This is because a time threshold τ = τ1 with p = 0.63

will yield the same contact graph with a time threshold τ = 8τ1/5 with p = 0.8.

In Fig. 25, we compare all protocols9 in terms of aforementioned performance

metrics using regular synthetic traces. In Fig. 25a, we see that PLE can achieve

the lowest variation distance among others. P ∗OA and POC have a similar variation

distance which is slightly higher than the variation distance of PLE. However, when

we look at the total energy levels in the network shown in Fig. 25b, we observe that

P ∗OA sacrifices a lot of energy during the energy balancing process. On the other hand,

POC keeps more energy in the network even more than PLE. This is because as it uses

some unscheduled energy exchange opportunities towards the optimal average energy

level, it diverges from optimal variation distance but this does not cause losing energy

in the network unnecessarily. Moreover, the number of interactions between nodes in

P ∗OA is the highest among all compared protocols, as shown in Fig. 25c, while proposed

protocols limit the interactions. When we compare the variation distance at the same

total energy in the network in Fig. 25d, we observe that P ∗OA indeed has the worst

9As the results for PMLE are similar to PLE results in regular synthetic and Cam-
bridge traces, we do not show them in corresponding figures. We show PMLE results
explicitly only when group-based synthetic traces are used.
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Fig. 25.: Comparison of protocols in terms of (a) variation distance, (b) total energy

remaining in the network, (c) total number of interactions, (d) variation distance at

each total energy level and (e) variation distance at each total number of interactions

(when β=0.2, τ=400 time units, p = 0.63) using regular synthetic traces. (f) shows

variation distance with p=0.8
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performance. On the other hand, PLE reaches the optimal energy level and decreases

the total variation distance gradually. Here, POC shows an interesting behavior as

it achieves a better variation distance at a given total energy in the network but it

cannot reach the smallest possible variation distance as PLE does. Thus, if some

variation distance is tolerable, POC can be considered performing better than PLE.

Moreover, POC achieves this with smaller variation distance at a given interaction

count than other protocols, as it is shown in Fig. 25e. P ∗OA again performs the worst

due to its design. In order to show the impact of p, we provide the variation distance

results as a representative in Fig. Fig. 25f. As expected, all protocols achieve a

smaller variation distance in earlier times. One interesting observation here is, POC

can achieve zero variation distance which was not possible when p = 0.63. This is

because larger p allows energy exchanges only between nodes that are more likely to

meet. Note that, while using larger p is desirable, it can cause the contact graph be

partitioned and make the zero variation distance impossible. We discuss the situation

in disconnected graphs in the next section.

In the results shown in Fig. 26, we relax the time threshold and set it to τ = 1000

time units in order to increase the contact graph density and the energy exchange

opportunities. Here, only results with three metrics are shown for the sake of brevity.

We observe that with this increased time threshold, the total energy kept in the

network increases (i.e., loss decreases). POC also causes more loss initially which is

not the case in earlier results. Another significant change is that the performances of

POC and PLE get closer in terms of total variation distance at a given total energy

and number of interactions. These can be explained by the increased energy exchange

opportunities. With p = 0.8, as shown in Fig. 26d, total energy in the network

decreases quickly due to earlier happening link selections, but eventually this also

causes slightly more energy loss due to the decreased energy exchange opportunities.
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Fig. 26.: Comparison of protocols in terms of (a) total energy remaining in the net-

work, (b) variation distance at each total energy level and (c) variation distance at

each total number of interactions (when β=0.2, τ=1000 time units, p = 0.63) using

regular synthetic traces. (d) shows total energy remaining in the network with p=0.8.
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Fig. 27.: Comparison of protocols in terms of (a) variation distance, (b) total energy

remaining in the network, (c) total number of interactions, (d) variation distance at

each total energy level and (e) variation distance at each total number of interactions

(when β=0.2, τ=5000 sec, p = 0.63) using Cambridge traces.
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Next, we compare the performance of all protocols using Cambridge traces. In

Fig. 27a, we see that PLE provides close to zero variation distance and performs the

best compared to others. Interestingly, P ∗OA achieves better variation distance than

POC , which was not the case in regular synthetic traces. However, as it is shown

in Fig. 27b, P ∗OA causes more loss in the network compared to POC . PLE reaches

the optimal energy in the network with the smallest possible variation distance. In

terms of total variation distance at a given total energy level, POC performs better

than others for earlier energy levels, but it cannot reach the variation distance others

can do, as shown in Fig. 27d. The interactions for P ∗OA is the highest again among

all protocols while POC has the smallest interactions that is also considerably less

than the interactions of PLE which was not the case in regular synthetic traces. This

is because in Cambridge traces, the contact graph density is smaller than it is in

regular synthetic traces and POC stops interacting further when nodes greedily reach

the target.

In Fig. 28, we show the results with group-based synthetic traces which are

particularly generated in order to show the benefit of PMLE over PLE clearly. From

Fig. 28, we observe that PMLE achieves the smallest variation distance and keeps

more energy in the network, while it increases the number of interactions slightly.

This is because, as the hop distance between high energy nodes and low energy

nodes increases, which is the case in these group-based synthetic traces, protocols

considering only single hop based energy exchanges will offer limited energy transfer

opportunities. Note that a node cannot share more than what it has in both single hop

and multi-hop cases. However, multi-hop case allows energy transfers between nodes

that are more than one hop away in contact graph through the help of intermediate

nodes. Thus, a node with more energy can transfer its excessive energy to a node

with low energy even it is multi-hop away. The multi-hop energy transfers indeed
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Fig. 28.: Comparison of all algorithms in terms of (a) variation distance, (b) total

energy remaining in the network, (c) total number of interactions, (d) variation dis-

tance at each total energy level and (e) variation distance at each total number of

interactions (when β=0.2, τ=2000, p = 0.8) using group-based synthetic traces.
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eventually allow achieving a zero variation distance if the contact graph is connected.

One interesting observation in Fig. 28b is that optimal energy balance (Eopt) in multi-

hop case is more than it is in single hop case. This is because even though single hop

exchanges may not allow reaching perfect energy balance, they leverage all possible

single hop interactions and try to reduce the variation distance as much as possible.

This then causes some unnecessary interactions and associated loss. Note that POC

has the least amount of energy loss since the protocol cannot find useful interactions

to reduce the variation distance. Moreover, PMLE has more interactions than PLE

but it is still smaller than the number of interactions in POA.

In order to show the impact of inter-group sparsity γ on the benefit offered by

multi-hop based energy exchanges, we obtain the results in Fig. 29 with different

γ values in group-based synthetic traces. As the results show, with increasing γ,

the performances of PMLE and PLE get closer. This is because larger γ connects

more nodes between two groups thus decreases the hop distance between low energy

nodes and high energy nodes. This makes zero optimal variation distance possible

with single hop energy exchanges, thus even PMLE starts using single hop interactions

rather than multi-hop interactions to prevent unnecessary energy loss. Note that with

γ = 0, the contact graph will be disconnected and no interactions will be helpful to

reduce variation distance further as they will be all between same side nodes.

5.6 Discussion on Network Lifetime Maximization

In this section, we discuss the relation between the energy balancing problem

and network lifetime maximization problem. As it is also highlighted in previous

studies [34, 35, 36, 108], one of the goals of energy balancing process is to prolong

the network lifetime. However, the relation of energy balancing and network lifetime

has not been elaborated in these studies. Network lifetime is usually defined as the
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Fig. 29.: Comparison of PLE and PMLE in terms of (a) variation distance, (b) total

energy remaining in the network, and (c) total number of interactions under different

inter-group contact sparsity (γ) in group-based synthetic traces (p = 0.8).

time until one of the nodes in the network dies due to energy depletion. Thus,

network lifetime maximization problem can simply be defined as maximizing the

minimum energy level of the nodes (assuming that energy consumption rates after

energy exchanges completed are the same for each node) in the network through

energy exchanges in opportunistic meetings. The objective for this problem can then

be defined as:

max(min{Ef (u) ∀u}) (5.18)
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where Ef (u) is the final energy level of node u. Here, as opposed to the objective

function in energy balancing problem, the objective function in lifetime maximiza-

tion problem is not concerned about the variation distance and the total loss in the

network as the main priority is increasing the energy of the node with the minimum

energy level. However, the constraints of energy balancing problem are still valid

with lifetime maximization objective since the interactions of nodes still depend on

the node relations and the amount of energy available.

If a perfect energy balance is possible in a network (i.e., zero variation distance)

such that all nodes have the same energy level, the maximum network lifetime will

also be achieved. That is, these two problems converge to each other. Moreover, we

know that PMLE will always achieve the perfect balance if the contact graph among

nodes is connected. Thus, in such networks, energy balancing and network lifetime

maximization result in the same outcome. However, if the contact graph is not

connected (e.g., due to the removal of links due to time threshold τ), or the protocol

cannot achieve the zero variation distance (e.g., PLE may not achieve a perfect balance

even if the contact graph is connected), the final energy distribution of nodes after

energy balancing process may not result in the maximum network lifetime achievable.

Thus, the objective should be updated as (5.18).

In order to show the difference in the outcomes of energy balancing and network

lifetime maximization problems, we obtain results in group-based synthetic traces.

Fig. 30 shows the network lifetime obtained with balancing and maximum lifetime

objectives when γ = 0.03 and γ = 0 (i.e., network is disconnected). Comparing

Fig. 30a and Fig. 30b, we observe that PMLE can achieve the same network lifetime

with both objective functions. This is because PMLE can reach zero variation distance

by τ = 2000 as shown in Fig.28a. On the other hand, we see that with maximum life-

time objective, network lifetime increases earlier than it does with balancing function.
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Fig. 30.: Comparison of protocols in terms of achievable network lifetime with bal-

ancing and lifetime maximization objective functions and different γ values (when

β=0.2, τ=2000 time units, p = 0.8) using group-based synthetic traces.

This is because the outcomes of the two objectives overlap only at the end (i.e., when

perfect balance is obtained) and maximum lifetime objective always considers network

lifetime maximization target even before the time threshold is reached. Regarding

the performance of PLE, we see that it cannot achieve the same network lifetime with

balancing objective as it obtains with maximum lifetime objective. This is because

it cannot reach perfect balance by the time threshold thus both problems cannot

converge to one another. POC and P ∗OA provide similar network lifetime with both

120



objectives as the objective function change slightly affects their performance (i.e.,

average energy in the final network changes slightly so do the positive and negative

node sets).

When γ = 0, the network is partitioned into two groups thus no energy transfer

is possible between the nodes in different groups. Thus, the balancing (Fig. 30c)

and lifetime maximization objectives (Fig. 30d) yield remarkably different energy ex-

changes among nodes towards their goals. The balancing objective tries to decrease

the variation distance in the network as much as possible through energy exchanges

between positive and negative side nodes which only exist in the low energy group.

However, this yields a very small network lifetime for all protocols (with PMLE of-

fering slightly more lifetime than others). On the other hand, lifetime maximization

objective can help PMLE and PLE achieve much higher lifetime with a focus on in-

creasing the minimum energy level among the nodes in the low energy group. Note

that as the nodes within each group have high contact density (i.e., 40%), PMLE and

PLE perform similarly, however with a smaller intra-group contact density PMLE will

provide better lifetime than PLE as in the case of Fig. 30b.

5.7 Conclusion

In this chapter, we study the energy balancing problem among the nodes in a

mobile opportunistic network. We aim to both balance the energy levels of nodes

and minimize the energy loss during this process considering both the homogeneous

and heterogeneous relations among nodes as well as a time threshold to finish the

balancing. We first propose three protocols for homogeneous case and also suggest

a method to compute the final achievable optimal energy in the network. For het-

erogeneous networks where the contact graph are partially connected, we find the

optimal average energy achievable using a MILP based formulation. We initially con-
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sider single hop based energy exchanges in our model. However, due to its limitations

especially in sparse networks with long hop distances between low energy and high

energy nodes, it cannot reach lower variation distances. Thus, we extend our model

using multi-hop based energy exchanges, where nodes that are not meeting directly

use relay nodes to exchange energy between them. We develop three different energy

sharing protocols based on these models and through simulations using both synthetic

and real user based traces we compare their performance with a state-of-the-art pro-

tocol. Results show that we can achieve better variation distance by keeping more

energy in the network with the proposed protocols. Moreover, multi-hop based ap-

proach performs better than single hop based approach especially in sparse networks.

Finally, through different network scenarios, we discuss on the implications of energy

balancing process on network lifetime and propose modifications to the existing MILP

model that aims to maximize the network lifetime directly instead of aiming to min-

imize variation distance and loss. With simulation results we show that especially in

disconnected networks such modifications can help reach the maximum lifetime while

energy balancing process cannot.
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CHAPTER 6

FINAL REMARKS

In this dissertation, we look at the utilization of P2P energy sharing in mobile social

networks for resource optimization by several means in three different ways. First,

we look at mobile charging relief where we investigate to what extent the burden of

charging process on users could be released. We develop a dynamic programming

based optimization model and find out the minimum number of charging sessions

that would be sufficient for users to keep their devices with the power they need

through utilization of excessive energy from other users in the vicinity. With the

empirical results based on different datasets of user meetings and charging patterns,

we observe that users can achieve up to 13-17% relief without affecting their existing

usage habits of mobile devices. Second, we also study the content delivery problem in

mobile social networks in which nodes are motivated by energy transfers for carrying

the messages. That is, each relay node carries a message forwarded by another node

as long the energy provided or the corresponding time-to-live (TTL) value lasts. In

order to find the optimal content and energy forwarding or sharing policy, we model

and solve the problem using optimal stopping theory and dynamic programming. We

evaluate the performance of the proposed solution in both real and synthetic mobile

social network traces and show that sharing can offer better delivery rate, while it

can also cause an increase in the cost of delivery (i.e., number of forwardings) to

some extent. We also look at the impact of several parameters on the performance

of the proposed sharing based content delivery process and discover the settings that

provide performance enhancements.
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Last, we study the energy balancing problem with the goal of balancing the

energy levels of nodes with the minimal energy loss. Since, the optimal achievable

target changes with the change in interaction patterns, we discuss energy balancing

protocols in two different settings. First, when nodes are fully connected (i.e. a com-

plete contact graph), we propose three different energy sharing protocols and show

better results than the state of the art solutions. In second setting, we assume het-

erogeneous nodes relations (i.e. partially connected contact graph) as well as a time

threshold to finish the balancing. We then find the optimal average energy achievable

using a MILP based formulation then propose several single hop and multi hop pro-

tocols to achieve an efficient and a faster energy balancing process. We also provide

a discussion on the relation of energy balancing and network lifetime maximization

problem and propose updates to the balancing problem to achieve optimal network

lifetime when an optimal energy balance is not achievable (e.g. in disconnected net-

works.) Simulation results in both synthetic and real traces show that the proposed

algorithms perform better than the previous work and they have advantages to one

another in different performance metrics and contact graph densities.

The solutions proposed in these different contexts provide important results and

algorithms to improve energy efficiency in mobile social networks. However, this

area of research is relatively new and a lot has yet to be done in order to realize

its applications in real world. We believe that this work will provide significant

contribution for opening up new insights into the existing problems and help conduct

further research for energy sharing in mobile networks.
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CHAPTER 7

FUTURE RESEARCH DIRECTIONS

Utilization of peer-to-peer wireless energy sharing among low power mobile nodes

opens up a variety of research topic in the field of wireless networks. While many

different problems including the problems discussed in this dissertation have been

studied, the topic is still in its infancy and there are many directions that the research

can go. Below, we discuss some of the potential new research directions in this

area. While this does not cover every aspect of the research directions, it provides

few research topics that is necessary to be addressed in order to implement these

technologies in real world.

• Incentive and energy consumption aware energy sharing:

The problem of energy sharing in mobile social networks have been studied

in several aspects but these works assume that the nodes in the network are

friendly and are willing to share their energy (e.g., due to altruism). However,

some nodes may act selfishly, or may ask for incentives, thus without them

they can deviate from collaboration significantly diverging the stability of the

system. Thus, designing energy sharing protocols by considering differences in

user interests as well as through incentives could be an interesting problem to

investigate. Moreover, all of the studies including our works on energy balancing

in this dissertation do not take into account the energy consumption due to

mobility or other operations of devices during energy balancing process. Thus,

new approaches are needed as current solutions cannot be used directly.
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• Reactive charging with controlled mobility:

The notion of energy sharing in MSNs has been considered mostly in uncon-

trolled mode as the mobility of devices is maintained by the humans carrying

the devices. While this is an advantage compared to other networking scenarios

in which the mobility also causes energy consumption on the mobile nodes, it

makes the energy sharing possible only opportunistically, i.e., when nodes en-

counter. A more interesting scenario could be when the mobility of the agents

are controllable at least partially through incentives. Thus, we can develop ef-

fectual strategies of energy sharing as contingency measures to energy depletion

problem.

• Long-distance charging:

In the current form, wireless energy sharing has been mostly considered between

the devices that are within close-proximity of each other (<1cm). While it is

possible to charge sensor networks at higher distances, due to the higher power

requirements of smartphone like devices (e.g., 5-10 watt hours [118]), it cannot

be applied directly. In some recent studies [119, 120] it has been shown that

long distance charging for such devices is possible through beamforming the

magnetic field. Moreover, when it is applied to multiple devices simultaneously,

an increasing efficiency could be achieved (e.g., 6 devices at distances of up to

50 cm). However, such concept has not been considered for peer-to-peer energy

sharing which could be challenging but can provide more flexibility.
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