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Abstract 

Of the over 108,000 Americans awaiting a life-saving organ transplant today, over 12,000 

(11%) of those need a new liver (OPTN, 2020). Last year, only 35% of patients on the waiting list 

for an organ were transplanted. Improving the quality of marginal organs by preventing 

preservation injury could vastly increase the number of transplants performed. Preservation injury 

refers to the injury that occurs in an organ graft during cold storage (hypothermic ischemia), and 

it is proportional to graft dysfunction in the recipient. Many of the intracellular molecular 

mechanisms of this injury remain elusive and are not mitigated by current preservation methods. 

During procurement, liver grafts are flushed with cold preservation solution in situ, which washes 

away blood and any circulating, endogenous molecules that may promote survival. Circulating 

lysophospholipids (LPLs), such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate 

(S1P) are attractive targets due to their terminal downstream effectors (primarily cytoskeletal 

structure and mitochondrial activity). Using an in vitro model of organ preservation, we found that 

biologically relevant concentrations of LPA did not prevent preservation injury in hepatocytes 

(though higher concentrations did show a protective effect). Inhibiting RhoA and Rho kinase 

(which are downstream of LPL surface receptors) during cold storage worsens the preservation 

injury phenotype. Albumin, which carries and sequesters lipids in aqueous solution, is dose-

dependently cytotoxic during cold storage; this supports the idea that growth and survival factors 

are important in dampening preservation injury. The ratio of intracellular S1P:ceramide, a 

barometer for cell health, was shifted in favor of cell death following cold storage, implicating that 

sphingolipid signaling is disrupted. Pharmacologically inhibiting sphingosine kinase-2 (SK2), the 

enzyme responsible for producing most of the intracellularly acting S1P, proved devastating in 
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rodent liver transplant, ex vivo perfusion, and in vitro models. Upon further investigation, the 

mechanism of ABC294640 (the selective SK2 inhibitor) toxicity is, in fact, two-fold: ABC294640 

directly inhibits complex I of the electron transport chain (ETC) in the mitochondria, independent 

of its effects on SK2 (clarifying its vastly devastating effects on liver grafts following 

transplantation in rodents). These results indicate that LPLs, such as LPA and S1P, may be relevant 

signaling pathways to target for improved liver graft function following cold storage. Determining 

how to modulate these pathways in favor of maintaining hepatocyte survival, and thus liver graft 

viability, is on the horizon, with the ultimate goal of improving liver preservation methods. 

Chapter 1: Organ preservation and the pathophysiology of preservation 

injury 

1.1 The history of organ preservation 

1.1.1 It all began in the 1800s… 

More than two centuries ago, a French scientist named César Julien Jean La Gallois 

described his theory that extracorporeal perfusion could preserve the heart indefinitely; James 

Phillips Kay and Eduard Brown-Séquard demonstrated the benefits of perfusion in practice 

(though not to the extent we think of today) (Jing et al. 2018; Fye 1995). The first isolated organ 

perfusion is thought to be that of Carl Eduard Loebell on a porcine model while investigating urine 

secretion in the mid-1800s (Boettcher, Merkle, and Weitkemper 2003). The late 1800s gave way 

to the first isolated artificial perfusion system and a double circulator that paved the way to the 

development of extracorporeal membrane oxygenation (ECMO) as we know it today. Early 

perfusion apparatuses used blood to perfuse the biological sample; however, trouble arose when 
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scientists realized that the available blood volume in the animal was not adequate, and 

hemodilution with lactated ringer’s (LR) led to irreversible edema (Jing et al. 2018). Perfusion was 

initially performed at room temperature, then physiologic temperatures in the late 1870s, and 

finally at hypothermic temperatures in the 1960s (Boettcher, Merkle, and Weitkemper 2003). 

1.1.2 The first preservation solution 

 After it was determined that blood was not a good perfusate, researchers began concocting 

their own preservation solutions in order to keep grafts viable without histological and functional 

changes. The first commercially available solution for organ preservation was marketed in 1969 

by Geoffrey Collins (Jing et al. 2018). Aptly named, Collins solution contained a low concentration 

of sodium, high potassium, glucose, and a phosphate buffer. The next generation, Euro-Collins, 

included more glucose and excluded magnesium sulfate (Collins, Bravo-Shugarman, and Terasaki 

1969). While Euro-Collins solution is still used in Europe, it was quickly replaced in the US by 

more advanced preservation solutions, such as University of Wisconsin (UW) and histidine-

tryptophan-ketoglutarate (HTK) solutions, which contained cellular impermeants and amino acids, 

respectively (Petrowsky and Clavien 2015). 

1.1.3 “Firsts” in transplantation and the role of organ preservation 

 While the main barrier to successful organ transplantations early was the lack of 

immunosuppressant therapy, undeveloped organ preservation methods also proved a significant 

challenge. This limited the radius of acceptable donors, and essentially made the procedure an 

emergency since there wasn’t a good way to preserve organs longer than a few hours. A timeline 

of successful “firsts” in the transplantation field is shown in Figure 1.1. The first successful kidney 

transplant, performed in 1954 by Joseph Murray at Brigham and Women’s Hospital in Boston, 

MA, did not advance the field in terms of knowledge. The technical skills associated with kidney 
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transplant had been worked out previously in animal models, and it was known that skin graft 

transplants between identical twins avoided rejection (Barker and Markmann 2013). 

 

Figure 1.1 The timeline of human clinical transplantation “firsts” 

Adapted from UNOS History of Transplant. 

 

 Thomas Starzl, a transplant surgeon first with the University of Colorado and subsequently 

with the University of Pittsburgh, is credited with not only performing the first successful liver 

transplant in 1967, but also with introducing the idea of hypothermia to preserve donor organs 

prior to transplant (Starzl et al. 1963). Until the clinical introduction of cyclosporin, preservation 

of the organs wasn’t as high a priority since immunosuppression wasn’t on the table and rejection 

was a more immediate threat (Barker and Markmann 2013). Despite the existing trouble with 

rejection, Christiaan Barnard completed the first heart transplant in South Africa in 1968 (for a 

riveting take on the competition that led to the first heart transplant, read Every Second Counts: 

The Race to Transplant the First Human Heart, by Donald McRae) (Barker and Markmann 2013; 

Alivizatos 2017). In order to promote fair and equal organ allocation processes across the US, the 
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United Network for Organ Sharing (UNOS) was established in 1977 to implement a national 

waiting list. Cyclosporin, the first clinically relevant immunosuppressant for organ transplantation, 

was utilized beginning in 1983 to prevent rejection (Barker and Markmann 2013). That same year, 

the first isolated single lung transplant was completed by the Toronto Lung Transplant Group 

(Venuta and Van Raemdonck 2017; Toronto Lung Transplant 1986). In 1986, the Toronto group 

successfully transplanted double lungs into a terminal emphysema patient (Patterson et al. 1988). 

Finally, the last organ graft to be transplanted was the intestines in 1987 (Margreiter 1997). 

Cyclosporin exhibited a very narrow therapeutic window and nephrotoxicity and was replaced by 

Tacrolimus in the late 1980s, moving the field of organ transplantation lightyears into the future 

(Starzl et al. 1989). Now, patients were living long enough post-transplant to assess organ graft 

viability as a function of ischemic injury during procurement. 

1.2 The cellular basis for organ preservation 

1.2.1 Principles of organ preservation 

 Developed by Drs. Belzer and Southard, the principles of organ preservation were 

published in the 1980s and provided a basis for the invention of the standard organ preservation 

solution (see Section 1.3.1). They contended that good surgical technique and adequate donor 

selection were not enough to support success of an organ transplantation: good preservation was 

also required to maintain the cadaveric organ between donor procurement and recipient 

transplantation. These principles (hypothermia, metabolic energy synthesis, cellular housekeeping, 

and protection against ischemia-reperfusion injury, or IRI) are meant to mitigate the deleterious 

effects of ischemia (Belzer and Southard 1988; Southard and Belzer 1993). Collectively, the 

damages sustained by organ tissue before, during, and after organ preservation are referred to as 

preservation injury. 
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1.2.2 Hypothermia 

The primary objective of hypothermia is to decrease cellular metabolism to a level that is 

manageable during organ preservation. Van’t Hoff’s rule (Figure 1.2) states that for every 10C 

drop in temperature, there is an approximately 50% reduction in oxygen consumption (measure of 

enzyme reaction rate, or metabolism) (Belzer and Southard 1988; Taylor 2007; Petrowsky and 

Clavien 2015). This results in fewer active enzymes requiring significantly less oxygen to satisfy 

cellular metabolic needs. 

 

Figure 1.2 Van’t Hoff’s rule for metabolic changes as a function of temperature 

As shown in Principles of Liver Transplantation (2015) by Petrowsky and Clavien. For every 

10C decrease in temperature, there is a two-fold reduction in enzymatic activity. k1 and k2 

represent the reaction rates at temperatures T1 and T2; Q10 is the van’t Hoff’s coefficient for a 

temperature change of 10° C and has been determined to be 2 for lactate dehydrogenase (LDH). 

 

Arguably the most detrimental target of this decrease in enzymatic activity are the 

membrane-associated pumps that help maintain ion balance across the plasma membrane. One 

such pump, the Na-K ATPase (sodium-potassium ATPase, or Na+ pump) located in the basolateral 

epithelial cell membrane, maintains osmotic balance for the cell by pumping three (3) Na+ ions 
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out for every two (2) K+ ions pumped in. Hypothermia knocks out this Na+ pump by depleting all 

available ATP, and where Na+ ions travel, water follows down its osmotic gradient. Catastrophic 

cellular edema results and can lead to cell lysis if left uncorrected (Figure 1.3a). 

 

Figure 1.3 Prevention of hypothermia-induced cell swelling with cellular impermeants 

a) Hypothermia prevents membrane-associated ion pumps from functioning, leading to rapid 

influx of Na+ and water, and edema/lysis. b) Organ preservation solutions contain cell 

impermeants, which balance the osmotic driving forces in the interstitial space and prevent cell 

swelling. 

 

Preservation solutions contain cellular impermeants that are small enough to leave the 

capillaries, but too large to enter cells to restore the osmotic driving forces in the extracellular 

space to prevent cell swelling during hypothermia (Figure 1.3b). Edema is not only present at the 

cellular level, but also in the parenchyma (Fig 1.4). This leads to compression of the capillaries, 

resulting in end-organ hypoperfusion (Petrowsky and Clavien 2015).  
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Figure 1.4 Swollen parenchyma stops blood flow to small vessels 

Adapted from (Reffelmann and Kloner 2002). Edema is not limited to cells during organ 

preservation. The parenchyma retains water as well, leading to compression of the vasculature 

and decreased perfusion to those tissues. 

 

1.2.3 Metabolic energy synthesis 

On the one hand, hypothermic temperatures experienced during organ preservation 

decrease cellular metabolism by nearly 97% and as a result, energy consumption and oxygen 

demand is vastly reduced. On the other hand, this reduction in enzyme activity impacts ATP 

synthesis, leading to a deficit in available intracellular ATP (and a rapid depletion of any stored 

ATP). Not only is ATP hydrolyzed quickly during hypothermia, but the resulting degradation 

products (such as adenosine) are permeable and cross the plasma membrane freely. There is 

therefore a lack of available ATP synthesis precursors in the hypothermic cell (Belzer and Southard 

1988).  

Many downstream processes, such as membrane-associated ion pumps, have a hefty ATP 

requirement that cannot be satisfied during hypothermia. The aforementioned Na-K ATPase is a 
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prime example. As such, jump-starting ATP production upon reperfusion is absolutely paramount 

to organ preservation success. Including the precursor molecules required for ATP synthesis (such 

as adenine, ribose, and adenosine) during preservation ensure that the mitochondria will be well-

supplied upon reperfusion to begin rapidly making ATP (Belzer and Southard 1988; Southard and 

Belzer 1993; Taylor 2007). 

1.2.4 Cellular housekeeping 

In addition to ion dysregulation, hypothermic ischemia is deleterious to other intracellular 

processes. Increase in intracellular pH is the result of several processes, including increased 

glycolysis and glycogenolysis, as well as lactic acid production and other processes that lead to 

the presence of more hydrogen ions in the intracellular space. This ultimate decrease in pH is 

detrimental to both lysosomes and mitochondrial stability and must be mitigated through the 

preservate. Though a minor contributor to preservation injury, hypothermic ischemia generates 

increased reactive oxygen species (ROS). In the liver and kidney, the impact of increased ROS is 

not as significant as in the lungs, due to the balance of enzymes that create and scavenge these 

oxygen free radicals (i.e., xanthine oxidase and superoxide dismutase, respectively). Finally, 

increased intracellular calcium as a result of an open mitochondrial permeability transition pore 

(mPTP) leads to hyperosmolarity, so the inclusion of calcium chelators in the preservation solution 

is important (Wu et al. 2018; Belzer and Southard 1988; Southard and Belzer 1995; Taylor 2007). 

1.2.5 Protection against preservation injury 

 Ultimately the best protection against this hypothermic ischemia-induced reperfusion 

injury is prevention. Organ grafts procured from brain-dead donors (DBD) experience four (4) 

sources of damage (pre-preservation, cold preservation, rewarming, and reperfusion injuries), and 

those grafts from donation after cardiac death (CDC) experience an additional injury during the 
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time following cardiac arrest and in situ flushing prior to procurement. Protecting against all of 

these sources of damage, in an ideal world, would be accomplished by the preservation 

method/solution. However, in order for this to occur, preservation would need to repair damages 

that occur prior to and after the actual contact between the organ graft and the preservation system 

(static cold storage, machine perfusion, etc.). Many advances are needed to attain this ambitious 

goal. 

1.3 The process of organ procurement 

 In order to understand why improved organ preservation is so important, one must first 

understand the logistics around organ placement and the process of actually recovering the organ 

grafts from the donor (summarized in Figure 1.5). It all starts in the hospital, in the intensive care 

unit (ICU) where a potential organ donor is in declining health. Via either first-person consent 

(i.e., the potential donor is registered through the Department of Motor Vehicle, or through 

donatelife.org) or family consent, a potential donor is identified by the ICU staff and the local 

organ procurement organization (OPO) is called onsite to manage the patient and begin the process 

of allocating organ grafts to prospective recipients. In Virginia, LifeNet Health is the OPO and the 

multidisciplinary organ procurement team is made up of nurses, paramedics, scrub technicians, 

respiratory therapists, and surgical assistants.  
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Figure 1.5 The organ allocation, donation, and transplantation process 

Once all of the viable, healthy organs are allocated to recipients and accepted by the 

surgeon, then the operating room (OR) can be scheduled. The donor is moved to the OR, and the 

teams begin working to isolate each viable organ graft prior to cross-clamp, which is when the 

ischemia clock starts ticking. Organ grafts are removed in order of preservation window, starting 

with the heart, then lungs, then abdominal organs (liver, kidneys, intestines and pancreas). Grafts 

are placed on ice in cold preservate and prepared for transport to their final destination (by car, 

ambulance, or air transport depending on the distance). Upon arrival at the recipients’ hospitals, 

the grafts are flushed with saline and the vasculature is connected with that of the recipient, leading 

to reperfusion of the organ with warm, oxygenated blood. It is only after reperfusion that any 

preservation injury that occurred during cold storage manifests in the recipient. There are many 
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opportunities to intervene throughout the procurement process, from donor management (a 

therapeutic provided directly to the donor while they are still in the ICU), to in situ flush solution 

and SCS/MP preservation solution, finally to the rehabilitation of the organ on the recipient end 

prior to transplantation. It is important to remember that even with the best logistical preparation, 

unexpected delays and complications arise often and may prolong ischemic time; all the more 

reason to have an expanded toolbelt to deal with the consequences of hypothermic ischemia-

induced preservation injury. 

1.4 Expansion of the donor pool and the use of extended criteria donors 

 Signing up to be an organ donor is not a guarantee that upon your death, your wish will be 

fulfilled. In fact, the vast majority of deaths (up to 97%) occur in a manner that is not currently 

conducive to organ donation (Figure 1.6). Under the current guidelines and limits of organ 

preservation, a donor must be in the hospital and relatively hemodynamically stable at the time of 

death. There are two types of organ donors, those who donate after brain death (DBD) or after 

cardiac death (DCD). Most organ donors are declared brain dead after a devastating injury or 

illness results in cessation of blood flow to the brain (caused by brainstem herniation), while a 

portion have no chance for a meaningful recovery (though have not yet met the criteria for brain 

death). The latter pool of donors, at the request of the family, have their life-support withdrawn in 

a controlled setting and are allowed to pass away naturally (i.e., cardiac death). The warm ischemia 

clock starts, not after cardiac death, but when the donor enters a state of hypoperfusion: an oxygen 

saturation of less than 80% or a systolic blood pressure of less than 80. These vital signs are not 

conducive to adequate perfusion of organs (Petrowsky and Clavien 2015). After cardiac activity 

ceases, and a short waiting period has passed (at least 5 minutes), the organ procurement team gets 

to work in the operating room.  
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Figure 1.6 Types of organ donors from 2019 

Of the 19,252 organ donors from 2019, 62% of those were deceased donors. 23% of those 

deceased donated after cardiac death (DCD). However, up to 97% of deaths are cardiac in 

nature, and those which are uncontrolled are the target for increasing the donor pool. Data from 

OPTN (2019). 

 

 Typically, the organs procured from DBD donors do not experience an appreciable amount 

of warm ischemia (cardiac function is intact in these donors, so blood continues to circulate until 

cross-clamp and removal of the organ grafts). However, DCD donors experience hypoperfusion 

during the withdrawal of care, followed by a period of warm ischemia before the organ grafts are 

procured. At present, only the liver and kidneys are suitable for transplant from DCD donors, and 

while work is being completed on how to rehabilitate the heart and lungs from these donors, it is 

not yet clinically useful. And yet, up to 97% of deaths are of the cardiac variety and only a small 

portion of these occur in a hospital (that is, they are “controlled”). The remainder of cardiac deaths 
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occur in an uncontrolled setting (and are thus considered “extended criteria donors”): at home, in 

the field, in the emergency department, and often rather unexpectedly. This is where we can expand 

the pool of organ donors! The primary concern with organs from uncontrolled DCD donors is 

extensive warm ischemia, and currently there is no way to reverse the associated cellular damage. 

The organ grafts from uncontrolled DCD donors would then necessitate cold storage, introducing 

yet another blow in the form of hypothermic ischemia. The combination of extensive warm and 

hypothermic ischemia damages these grafts beyond repair under the current preservation 

paradigm. In order to move preservation forward and introduce organ rehabilitation, we must 

understand the molecular mechanisms of preservation injury. New preservation solutions and 

strategies that can mitigate and even reverse a portion of this injury will move the field forward 

into new and exciting territory. 

1.5 Advances in organ preservation 

 Kidney transplantation began in the 1950s, followed by liver transplantation, heart 

transplantation in 1968, and finally lung transplants in the 1980s. Transplant operations took place 

directly after procurement from the organ donor, necessitated by the lack of preservation methods 

and extensive cellular damage observed in early organ grafts (Starzl et al. 1963). As the 

transplantation field progressed, so too did the preservation field to keep up with the influx of 

available organs. Donors were arising faster than the surgeons could complete transplants and 

extending the viability of procured organs beyond immediate removal from the donor was critical 

to the success of the field. This shifted the transplant procedure from an emergent to a selective 

surgery, reducing organ waste and provider fatigue (Belzer and Southard 1988). As mentioned 

previously, the logistics of organ placement, procurement, and transplantation play a larger role in 

preservation than appreciated. 
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1.5.1 University of Wisconsin solution – the golden standard 

Drs. Belzer and Southard recognized in the mid-1980s that they could create a solution to 

the problems associated with organ preservation, and University of Wisconsin (or UW) solution 

was born (Southard et al. 1990; Belzer and Southard 1988). Prior to the development of UW 

solution, a review on the cellular control of internal volume was published by MacKnight and Leaf 

(1977). It surmised that cell swelling as a result of ischemia was a) due to the lack of ATPase 

activity as cellular energy is depleted and sodium ions rush into the cell, and b) may not be 

recognized immediately, but only upon reperfusion when there is more interstitial fluid and 

potential organelle rupture to flood the cell leading to edema (Macknight and Leaf 1977). 

Belzer and Southard realized these mechanisms, and how they contribute to the imbalance 

of ions across the plasma membrane, decreasing the membrane potential and increasing the 

osmotic driving forces that force sodium ions into the cell. Their solution was to add cellular 

impermeants to restore the osmotic gradient, keeping water in the interstitium and preventing cell 

swelling. Intracellular acidosis, the result of increased glycolysis combined with lactic acid 

production and increased hydrogen ion presence, necessitates preservation solution contain buffers 

to balance the pH. There is also the possibility of mesenchymal edema leading to compression of 

the microvasculature (see Figure 1.4), so UW solution contains solutes capable of creating oncotic 

pressure. Free-radical scavengers and ATP precursors (as previously described in section 1.2.3) 

round out the composition of UW solution, and it has hardly changed since its inception (Belzer 

and Southard 1988). Table 1.1 shows the composition of UW as it exists today.  
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Pentafraction 50 g/L 

Lactobionic acid 35.83 g/L 

Potassium phosphate monobasic 3.4 g/L 

Magnesium sulfate heptahydrate 1.23 g/L 

Raffinose pentahydrate 17.83 g/L 

Adenosine 1.34 g/L 

Allopurinol 0.136 g/L 

Total glutathione 0.922 g/L 

Potassium hydroxide 5.61 g/L 

Sodium hydroxide/hydrochloric acid Adjust to pH of 7.4  

Table 1.1 The components of UW solution 

From https://bridgetolife.com/belzer-uw-cold-storage-solution-instructions. 

1.5.2 Static cold storage 

 The earliest form of organ preservation was static cold storage (SCS): no perfusion, in a 

modified solution to prevent the known mechanisms of the associated hypothermic ischemic 

injury. There are many benefits of SCS, which is why it continues to be popular today. It is cost 

effective, technology-free, and universally implemented. However, there is still preservation injury 

associated with SCS. There is an inherent lack of oxygen, and for this reason the temperature must 

remain between 2-4C in order to keep the basal metabolic rate low. The preservate mitigates the 

known causes of preservation injury but does not mitigate them all as we still see injury with SCS. 

As additional mechanisms are identified, it may be necessary for the preservate to circulate through 

the organ to deliver the components to the vasculature. 

https://bridgetolife.com/belzer-uw-cold-storage-solution-instructions
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1.5.3 Alternatives to static cold storage 

Conceptually, static cold storage lacks a fundamental aspect that may mitigate some of its 

own detrimental effects: perfusion. If the preservation solution were circulated through the organ 

during transit, there could be constant delivery of preservate constituents to the vasculature and 

subsequently the interstitial space for signaling through cell surface receptors. 

 Intuitively, since the hypothermia associated with traditional organ preservation methods 

is inherently destructive to the tissues and cells, many scientists have investigated the role of 

increasing the temperatures during preservation to midthermia (15-20C) or even normothermia 

(37C, physiologic temperatures). As a general rule, raising the temperature during preservation 

increases the metabolism, and thus the oxygen requirement of the organ. These mid- and 

normothermic preservation methods, therefore, must be perfused and oxygenated to pacify the 

increased cellular metabolism. Raising the temperature avoids the problems associated with 

hypothermia, but also increases the basal metabolic rate beyond the limits of the preservation 

method. Some machine perfusion (normothermic and hypothermic) trials have been successful, 

while others result in graft failure and cholangiopathy (Nasralla et al. 2018; Ceresa et al. 2018; 

Watson et al. 2017; Schlegel, Kron, and Dutkowski 2016). Unfortunately, a degree of ischemia-

reperfusion injury is still observed, pointing to an underlying mechanism outside of those targeted 

by increasing the temperature of preservation.  

1.7 Hepatic physiology and preservation injury phenotype 

 Since this research focuses on the liver specifically, it is prudent to review general liver 

physiology and how the preservation injury phenotype manifests in the liver – both at the cellular 

level and in terms of graft survival in the recipient.  
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The cellular majority in the liver is composed of two types: hepatocytes (around 85% of 

the biomass) and cholangiocytes (which line the bile ducts). Hepatocytes perform many of the core 

functions of liver, including drug and macromolecular (i.e. carbohydrates, lipids, and amino acids) 

metabolism, bile and serum production, and bilirubin detoxification (Tanimizu and Mitaka 2016). 

Cholangiocytes are also injured during organ preservation, which leads ischemic cholangiopathy 

and can be fatal to the recipient. Sinusoidal endothelial cells and Kupffer cells are also affected by 

preservation injury. (Petrowsky and Clavien 2015; Serracino-Inglott, Habib, and Mathie 2001). 

 The degree of preservation injury is directly proportional to graft function and recipient 

survival post-transplant. Preservation injury in the liver during cold storage manifests in the 

recipient as primary graft nonfunction, elevated liver enzymes, hemodialysis, prolonged 

postoperative ventilation, and other advanced intensive care measures (Glanemann et al. 2003). 

By the time preservation injury is realized in the recipient, it is too late to reverse the damage. 

Therefore, prevention is key to improving graft function post-liver transplant. 

1.8 The problem 

Despite all of the advances made in organ preservation over the past several decades, 

ischemia-reperfusion injury is still a major problem that manifests as acute and delayed graft 

rejection in the recipient (which can certainly be fatal). Even when the known cellular propagators 

of preservation injury are targeted with improved preservation solutions, a degree of this injury 

remains. This leads to the belief that there are underlying cellular mechanisms that contribute to 

the preservation injury phenotype that remain elusive. Uncovering these and providing a solution 

to the problem can vastly increase the pool of available donor livers by improving the quality of 

marginal liver grafts (which are currently unsuited for transplantation). As Kahn and Schemmer 

discuss in their recent review on liver transplantation, the processes that contribute to the 
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pathophysiology of preservation injury in the liver are complex and multifaceted. There is no one 

therapeutic strategy to prevent this injury, but rather a compilation of adjustments to existing 

methods and preservates that can tackle the complex mechanisms, improving graft viability and 

reducing preservation injury. 

The overarching theme of these research projects over the past five (5) years has been 

solving the aforementioned problem of mystery cellular mechanisms of preservation injury that 

are independent of those mitigated by current preservation methods (i.e., UW solution, cold 

storage). This research, like many dissertations before, has taken unexpected twists and turns that 

are culminating in a pharmacology manuscript that is a bit divergent from the overall theme of 

organ transplantation and preservation. Nevertheless, we are proud of this journey and hope this 

work advances the fields of both organ preservation and cancer treatment (for reasons that will 

become apparent in Chapter 7). 

Chapter 2: Pleiotropic lipid signaling molecules & their downstream 

effectors 

2.1 Overview of lysophospholipids 

One of the inherent features of the organ procurement and preservation process is what is 

known as the “washout effect”; pro-survival signaling molecules, ATP precursors, and other 

essential cellular mediators are washed out when the organ is flushed in situ. These include 

compounds that are circulating in the blood stream, and those that are found in the interstitial space 

(over time, the extracellular milieu mixes with the preservate in the interstitial space). 

Lysophospholipids (LPLs) are the focus of this work, due to their extracellular receptors, autocrine 

signaling mechanisms, and growth/survival pathway targets. Specifically, lysophosphatidic acid 
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(LPA) and sphingosine-1-phosphate (S1P) were investigated. These two LPLs are increasingly 

well-studied for their role in cancer among other disease processes (Anliker and Chun 2004).  

While there is overlap in cellular responses, LPA and S1P are structurally distinct and do not share 

synthetic or metabolic pathways. They each possess their own unique G-protein coupled receptors 

(GPCRs), with a diverging network of intracellular downstream effectors that modulate processes 

such as transcription, cytoskeletal architecture, and mitochondrial activity (Fig 2.1) (Kihara et al. 

2014). Of interest to this research, LPL signaling pathways have been shown to modulate cell 

survival, proliferation, and migration (Gardell, Dubin, and Chun 2006). 

 

Figure 2.1 Summary of LPL surface receptors and downstream effectors of interest  
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For these studies, LPARs and S1PRs are the focus, figure from (Kihara et al. 2014). 

 

Pathophysiologically, LPLs have many diverse actions in basic physiology as well as 

implications in development of disease. LPLs signal primarily through cell surface receptors, with 

intracellular actions such as transcriptional regulation, cell motility, differentiation, and apoptosis. 

However, some of these normal physiological actions of LPLs can be dysregulated and promote 

disease progression. For example, LPA plays a role in vascular and skeletal development, but also 

influences vessel and bone remodeling post-development (Binder et al. 2015). LPL signaling is 

upregulated in many cancers, and is implicated in inflammatory disease processes as well (Lewis, 

Voelkel-Johnson, and Smith 2018; Nielsen et al. 2017; Y. Zhao and Natarajan 2013). 

2.2 Lysophosphatidic acid 

Plasma [LPA] ranges from undetectable to 2nM, while serum [LPA] is 1-10uM (Panetti 

2002). The concentration of LPA in the extracellular microenvironment remains unknown and is 

quite difficult to measure. Circulating LPA in the bloodstream is produced primarily by autotaxin 

(ATX) from precursor molecules secreted by platelets (Binder et al. 2015). LPA describes a 

collection of molecules with a fatty acid chain of varying length and varying degrees of saturation 

connected to a glycerol backbone. While there are a variety of biologically active LPA species, 

most studies use the 18:1 LPA molecule (Cerutis et al. 2014; Lin, Herr, and Chun 2010). LPA is 

produced primarily by two synthetic pathways: ATX and phospholipase A1/2. In vivo, LPA is 

produced by platelets and hair follicles (as well as cancer cells, but these are not part of normal 

physiology) (Binder et al. 2015).  
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2.3 Sphingolipids 

Plasma [S1P] is around 200nM, and serum [S1P] is 500nM (Panetti 2002). In contrast to 

LPA synthesis, there exists only one pathway for S1P synthesis: phosphorylation of sphingosine 

by one of two enzymes, sphingosine kinase-1 (SK1) or sphingosine kinase-2 (SK2) (Fig. 2.2). In 

vivo, S1P is produced by several cell types, including platelets, mast cells, and endothelial cells 

(Binder et al. 2015). However, unique to S1P is the known plethora of intracellular targets 

independent of cell surface GPCRs. S1P is important in complex IV assembly in the mitochondrial 

electron transport chain as well as gene regulation (binds to HDAC, altering transcription) (Strub 

et al. 2011; 2010). 

 

Figure 2.2 Overview of sphingolipid synthesis and metabolism 

Sphingosine is interconverted between ceramide and S1P, depending upon many factors in the 

cellular micro- and macroenvironment. SK1, localized to the plasma membrane, is thought to 

produce most of the extracellularly acting S1P that is pumped through membrane transporters. 

SK2, localized to the nuclear and mitochondrial membranes, is thought to produce most of the 

intracellularly acting S1P (mitochondrial electron transport chain assembly and transcription 

factors). SPP1/2 (S1P phosphatases 1/2), figure adapted from (Takabe et al. 2008). 
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2.4 Downstream effectors of lysophospholipid receptors 

LPA and S1P signaling cascades share several downstream effectors, including Erk/Akt, 

Rho/Rho kinase, Rac, and Ca2+ signaling to name a few. As seen above in Figure 2.1, there is a 

high degree of overlap between LPA and S1P receptors. These effectors control aspects of cell 

survival such as migration, morphology, proliferation (all of which may be involved in mediating 

the response of the cell to preservation injury) (Kihara et al. 2014). It is important to note the 

possibility that all or none of these downstream effectors play a causative role in hepatocyte 

preservation injury. This process is excessively complex, due to the myriad of catalysts involved 

in the injury cascade: hypothermia, ischemia, warm ischemia, and reperfusion. Once the immune 

system response to preservation injury is factored into the equation, the theoretical complexity 

increases substantially (Serracino-Inglott, Habib, and Mathie 2001). Instead of starting at the 

surface of the cell (at the LPL GPCR) and moving inward, we began our investigation at the level 

of cytoskeletal protein regulation. 

2.5 The cytoskeleton: effects of preservation injury on actin and associated proteins 

2.5.1 The intracellular actin network 

The cytoskeleton has long been implicated as a contributing factor to preservation injury, 

starting in the kidney (Molitoris and Finn 2001). The intracellular actin network is dynamic, 

responsive to changes in intracellular calcium (among other stimuli) and accompanied by actin-

associated proteins that serve to bundle, sever, and control interactions with the plasma membrane 

(Molitoris, Leiser, and Wagner 1997). After 24 hours of cold storage, biopsies from canine 

proximal tubules were found to have highly deformed microvilli compared to fresh controls (Fig 

2.3).  
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Figure 2.3 Proximal renal tubules are destroyed during cold storage  

Canine kidneys were removed and stored in cold lactated ringer’s (LR) solution for 24 hours. 

Biopsies were obtained and compared to those from fresh control canine kidneys. The structure 

of the microvilli in the fresh sample (left) are organized, homogeneous, and oriented 

appropriately. However, in the 24hr LR sample, the microvilli are collapsed, disorganized, and 

heterogeneous. Transmission electron micrograph at 18,000x magnification. Images from 

Mangino and Southard, 2004 (unpublished). 

 

A key feature of epithelial cells, which make up the majority of the liver (hepatocytes), is 

their polarity. In biology, polarity refers to the organized and differential distribution of cell 

components, both intracellularly and along the plasma membrane, to confer specific functions. 

Organelles, cytoskeletal components, and cell surface proteins are not simply randomly located in 

epithelial cells, but rather strategically located to allow for geographically-selective membrane 

transport (Raman, Pinto, and Sonawane 2018). Epithelial cells in particular rely heavily on the 

cytoskeleton to maintain their organization and architecture, which is paramount to their function. 

For example, in the kidney, proximal renal tubule cells have increased surface area (microvilli) on 

the apical surface to selectively reabsorb molecules to concentrate urine; these microvilli are held 

together by actin filaments. Epithelial cells can also form a water-tight barrier using tight junctions, 

which are stabilized by actin and intermediate filaments. In the liver, hepatocytes are organized 



 

 

 25 

into cord-like structures, usually two cells deep, that lie parallel to the liver sinusoids (allowing for 

nutrient exchange between the blood stream and hepatocytes).  

2.5.2 Ezrin/radixin/moesin (ERM) proteins 

The actin cytoskeleton requires linker elements to keep it anchored to the plasma 

membrane, such as ERM proteins. These sublamellar proteins bind to actin and anchors in the 

plasma membrane to stabilize the intracellular actin network. ERMs are important factors in 

maintaining microvillus structure during apoptosis, which supports the data shown in Figure 2.3 

(breakdown of renal proximal tubule epithelial microvilli) (Kondo et al. 1997). ERMs also bind to 

microtubules, primarily during cell division, but this may have pathophysiological implications as 

more is uncovered about how these proteins behave (Solinet et al. 2013). ERM proteins are part 

of a larger family known as the band 4.1 superfamily and contain two functional domains 

connected by a coiled-coil linker. The FERM domain components form a clover-leaf shaped 

structure that is binds to plasma membrane linkers and Rho-associated proteins (Kawaguchi et al. 

2017). At the other end, the C-terminal domain binds to either the FERM domain (deactivated 

protein) or actin (activated, phosphorylated protein) (Fehon, McClatchey, and Bretscher 2010). 

In addition to binding to Rho-related proteins directly, ERM proteins are activated by C-terminal 

phosphorylation by Rho kinase (ROK), opening the configuration of the linker protein and 

exposing its actin binding site (Matsui et al. 1998). The mechanism of ERM protein activation 

contains two simultaneous stages: first, the FERM domain binds to phosphatidyl-inositol-4,5-

biphosphate (PIP2) and then the actin binding domain at the C-terminus is phosphorylated by one 

of several kinases (Arpin et al. 2011; Ponuwei 2016; McClatchey 2014) (Fig 2.4). ERM protein 

inactivation occurs via dephosphorylation (either by protein phosphatases or via PIP2 hydrolysis) 

(Ponuwei 2016). 
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Figure 2.4 ERM protein regulation 

Protein kinase Cα (PKCα), NIK (NFκB-inducing kinase), LOK (Lymphocyte-Oriented Kinase), 

ROK (Rho kinase) and MST4  are all known to phosphorylate the ERM C-terminal domain. 

Binding to membrane-associated PIP2 releases the FERM domain from the C-terminus. Adapted 

from Pearson et al., 2000 and Ponuwei, 2016. 

 

Our laboratory found that moesin is important in maintaining hepatocyte viability during 

hypothermic ischemia in a cell model of organ preservation. Transfection of HepG2 cells with 

mutant moesin (T558D or T558A) resulted in cells with either constitutively ON or OFF moesin, 

respectively. HepG2 cells with ON moesin were significantly more resistant to preservation injury 

than those expressing OFF moesin (Tian et al. 2014). Similar results were obtained with mutant 

ezrin in LLC-PK1 cells, a porcine renal epithelial cell line (Tian et al. 2012). Lysophosphatidic 

acid treatment has been shown to result in ERM protein phosphorylation, and thus activation in 

fibroblasts (Shaw et al. 1998). S1P signaling through its surface receptor, S1P receptor 2, also 
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results in ERM protein activation (Gandy et al. 2012). However, no connection has been made 

between dysregulated ERM proteins in hypothermic ischemia and LPL receptor activation. 

2.6 Mitochondria: more than a powerhouse 

One of the major limiting factors for increasing organ preservation time is mitochondrial 

health following cold storage. After 24 hours of cold storage, mitochondria were significantly less 

active compared with fresh controls, and this effect was reversed when the mitochondria were 

stored in a mitochondria-specific preservate. It seems that providing ATP precursors in UW 

solution during preservation is not enough to protect the mitochondria against injury (Gnaiger et 

al. 2000). Determining which regulatory pathways are responsible for controlling mitochondrial 

activity during hypothermic ischemia will provide researchers with druggable targets to prevent 

this aspect of preservation injury. 

2.6.1 Overview of mitochondrial biology 

Traced to a prokaryotic origin, the mitochondria perform a plethora of valuable functions 

in the cell (Oliveira 2018). This quote from Milane et al. exemplifies the diverse importance of 

mitochondria: 

 “If the cell was a city, mitochondria would be the electric company (ATP 

production and metabolic center), the HVAC company (thermal regulation), the 

waste management company (ROS containment), the grim reaper (apoptotic 

regulation), the moving company (assists with intracellular and extracellular 

trafficking as well as cell movement), the department of defense (central to 

immunity, inflammation, the stress response, and the cell danger response), the 

historical society (evolutionary tracking through mtDNA), and if the Nucleic DNA 

is considered the Mayor of the city Cell, then mitochondria would assuredly be the 
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City Council as the only organelle with its own DNA, actively engaging with other 

organelles, performing diverse functions, profusely distributed, and maintaining 

cellular homeostasis (Milane et al. 2015).” 

The tissue-variable mitochondrion is dynamic and promiscuous, constantly changing its 

shape/configuration and interacting with various organelles within the cell to accomplish a wide 

array of tasks. Mitochondrion number and intracellular localization are not static, but constantly 

changing to meet the needs dictated by the environment (Oliveira 2018). The only organelle to 

house their own non-nuclear DNA, the mitochondrion contains 37 genes encoding proteins that 

form the basic functional units of the electron transport chain. Each cell contains between one 

hundred (100) and several thousand mitochondria, and these organelles work together to form a 

network of signaling partners (Sharma, Lu, and Bai 2009). Because they are so diverse and 

interwoven with cellular function, it is no surprise that mitochondrial dysfunction is connected to 

many disease processes (including diabetes, obesity, cancer, neurodegenerative conditions, and 

rare mitochondrial diseases) (Milane et al. 2015). In addition to the synthesis of ATP (giving the 

organelle its designation as the “powerhouse” of the cell, the mitochondria produce sterols, fatty 

acids, purines, amino acids, and pyrimidines from the various metabolic pathways housed in this 

organelle (Oliveira 2018). 

2.6.2 The electron transport chain (ETC) 

What is of the most interest to organ preservationists is the mitochondria’s central role in 

cellular energy production; the synthesis of ATP through oxidative phosphorylation (OXPHOS). 

The transfer of electrons down a chain of complexes in the inner mitochondrial membrane 

(electron transport chain, ETC), ending with an ATPase are the components of OXPHOS. Table 
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2.1 summarizes the five (5) ETC complexes. Complex I is the focus of the mitochondrial 

respiratory research presented in this dissertation. 

Complex Name Main Function 

I NADH: ubiquinone oxidoreductase transfer electrons from NADH in 

matrix to ubiquinone 

II Succinate: ubiquinone oxidoreductase links Krebs to OXPHOS, oxidizes 

succinate into fumarate 

III Ubiquinol: cytochrome c oxidoreductase transfers electrons from QH2 to 

cytochrome c 

IV Cytochrome c oxidase transfers electrons from cytochrome c 

to the final electron acceptor, O2 

V H+ translocating ATP synthase ATP synthesis via phosphorylation of 

ADP 

Table 2.1 Summary of complexes I – V of the ETC (R. Z. Zhao et al. 2019) 

 NADH from the Krebs cycle files into complex I, leading to the transfer of electrons into 

the ETC. Complex I, the largest multiunit of the ETC, shuffles electrons through iron centers in 

the enzyme complex, ending in an iron-sulfur (Fe-S) center that transfers electrons to the next 

complex. The reduction of succinate at complex II results in transfer of electrons to QH2 via 

another Fe-S center. Complex III is responsible for moving electrons to cytochrome c, and finally 

complex IV oxidizes cytochrome c, transferring the electrons to O2 creating H2O. A proton 

gradient is established as electrons move through the complexes, and this drives the ATP synthase 

to combine ADP and phosphate into ATP, the energy currency of the cell (R. Z. Zhao et al. 2019).  

2.6.3 Structure of NADH: ubiquinone oxidoreductase: complex I of the ETC 

 Complex I of the ETC is composed of an enzyme (NADH dehydrogenase), a co-factor 

(flavin mononucleotide), and six (6) iron-sulfur (Fe-S) centers. The most crucial functions of 

complex I are carried out by fourteen (14) central subunits. Electron microscopy (EM) unveiled 

the structure L-shaped structure of complex I, with a membrane-bound arm and a peripheral arm 

which was further defined to 6.3Å by x-ray crystallography and more recently to 5.0Å by cryo-
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EM. The peripheral arm is where NADH is oxidized and electrons are transferred to FMN and the 

Fe-S centers extend into the membrane-associated arm of the complex (Wirth et al. 2016).  

Chapter 3: Materials & methods 

3.1 Materials 

3.1.1 Reagents 

All reagents were purchased from Sigma-Aldrich (St. Louis, MO), unless otherwise 

specified. Western blotting supplies were from InvitrogenTM, with the electrophoresis box, transfer 

chamber, and power supplies from Bio-Rad. All cell culture medium was manufactured by Gibco, 

and ordered through Thermo Fisher Scientific, Inc. Fetal bovine serum (FBS) and GlutaMAXTM 

supplement were purchased from Sigma-Aldrich. Antibiotic Antimycotic (AA) solution (100X) 

was supplied by Thermo Fisher Scientific, Inc.  

3.1.2 Cell lines 

 The following cell lines were purchased from ATCC: HepG2 cells, derived from 

hepatocellular carcinoma in a 15-year-old male; SK Hep-1 cells, derived from adenocarcinoma 

in a 52-year-old male; and MDCK cells, derived from normal canine kidney epithelium. 

3.2 In vitro model of organ preservation 

3.2.1 Model development 

Our lab developed an in vitro model of organ preservation, first published in 2008, 

involving the induction of hypothermic ischemia in canine renal proximal tubules primary cells 

stored in UW solution for five (5) days (Mangino et al. 2008). Briefly, primary cells plated in 96-

well plates were grown to confluency in cell culture medium (DMEM). The DMEM was aspirated 



 

 

 31 

and replaced with cold UW solution, and the plates were placed in airtight containers then purged 

with nitrogen to create ischemic conditions. The ischemic containers were then placed in cold 

storage at 4C for the duration of the experiment. After five (5) days, the cells were washed and 

incubated in fresh DMEM at 37C, 5% CO2 in the incubator to simulate reperfusion for one (1) 

hour. During this time, each well was also incubated with a tetrazolium dye as an indicator of 

mitochondrial health and after the hour, plates were read at 450nm in a plate reader. The intensity 

of the signal of WST-1 conversion was a correlate for mitochondrial redox activity, and thus cell 

viability. 

 This in vitro model of cold storage provided a valuable tool to assess how cells responded 

to hypothermia ischemia, and the endpoints measured were typically cell viability (WST-1 or 

WST-8 formazan-based dye conversion and LDH release assays) or protein assays (such as 

western blots and ELISAs) (Fig 3.1). The cell viability data gave an overview of how the cells 

were handling the stress of hypothermic ischemia, and the protein assays told researchers exactly 

how those cells were responding. This model was expanded to immortalized cell lines, and then 

plasmid-transfected cells (both primary and immortalized), all with the goal of expanding our 

intracellular mechanistic knowledge of the preservation injury phenotype. 
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Figure 3.1 In vitro model of organ preservation 

Biologic material, such as immortalized cell lines or primary hepatocytes, were plated on 96-

well (viability), 6-well (PCR and western blotting), and 150mm dishes (mitochondrial 

respiration). Plates were sealed in an airtight container and ischemia induced via 95% N2/5% 

CO2 purge for 10 minutes. Following a 12-24 hour cold storage, plates were reperfused for one 

(1) hour and the desired endpoint was evaluated. 

 

 In terms of translatability, organs for transplantation (even kidneys) are typically not cold-

stored for five (5) days. Figure 3.2 shows the standard limits of cold storage time for each organ 

before viability and functional decline become too problematic. Why, then, does the in vitro model 

for organ preservation expose the samples to double or triple the amount of hypothermic ischemia? 

The goal of the model is to induce a specific amount of preservation injury in the cells being 

studied that is experimentally useful. While there is no specific clinical correlate to the amount of 
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preservation injury required for a “successful” cold storage experiment, the model was developed 

such that an appropriate amount of cell death was observed but not too much that a treatment effect 

wouldn’t be evident. The model aims for about 50-60% cell viability in vehicle controls following 

cold storage compared to physiologic incubator baseline cultures. This allows room for an increase 

in or decline of cell viability as a result of the applied treatment. 

 

Figure 3.2 Windows of storage of all organs for transplantation 

The heart and lungs have the shortest window, between 4-6 hours, followed by the liver (8-12 

hours), intestines (8-16 hours), the pancreas (12-18 hours), and finally the kidneys with a longer 

viability window (24-36 hours). 

 

3.2.2 Optimization of cold storage model 

This model was developed in primary renal tubule cells and the parameters for that cell 

type do not translate into other types of biological material. Each time a new vial of cells is received 

and expanded for experimental use, a new “kill curve” must be generated to determine the 

tolerance of those particular cells to hypothermic ischemia. Examples of this include primary cells 
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isolated using a new collagenase vendor/type, a new aliquot of immortalized cells (such as HepG2 

or MDCK cells), or a new primary cell isolation method/surgeon.  

When the degree of desired preservation injury is defined (see section 3.1.1), then a dose-

response curve is obtained for the new cell type. Cells are dispensed into a 96-well plate, grown to 

about 70% confluence, and then exposed to increasing amounts of hypothermic ischemia (i.e., 12, 

24, 36, and 48 hours). At each time point, a plate is kept in the incubator for the same period of 

time to control for any cell proliferation during that time. After the allotted time, cold-stored plates 

are rewarmed (simulating reperfusion) in the incubator for one (1) hour (37C, 5% CO2) with 10L 

WST-8 to assess mitochondrial redox activity (which correlates to cell viability).  

Other parameters that may vary include cell passage (the more times a cell line is passaged, 

the more resistant to preservation injury; see Fig 3.3), medium type, endpoint measures, and 

plating conditions (i.e., collagen-coated plates for primary hepatocytes).  

 

Figure 3.3 Cell lines with higher passage number may be more resistant to preservation injury 

during cold storage 
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While not statistically significant, the slope of the line between the points on this graph 

correlates to the rate of preservation injury in HepG2 cells. Cells with a higher passage number 

are not as susceptible to hypothermic ischemic insult as their early passage counterparts. 

Control and 24 hours cold storage (CS) (n=3), 48 hours CS (n=2), no statistical analysis 

performed due to n<3. 

3.2.3 Considerations for cell origin 

This model was developed to provide a more simplistic method to evaluate the intracellular 

molecular mechanisms associated with preservation injury, removing the confounding factor of 

intercellular microenvironment and tissue-level milieu. We have an isolated perfused liver 

(Section 3.3) and an orthotopic rat liver transplant model (Section 3.4) that provide a more 

physiologic, complex investigation into these mechanisms. However, they are lower resolution 

and examine different functional parameters than an in vitro model using isolated cell populations. 

We can use these models to determine how preservation injury affects overall graft function (i.e., 

measuring bile output, for example), but it is quite challenging to determine which pathway in the 

hepatocytes or cholangiocytes are responsible for the observed decrease in functional parameter. 

Cell origin (primary versus immortalized line) is an important factor to consider in this 

model, as it dictates all of the aforementioned parameters. Primary cells tend to require a matrix 

for adherence to the plate, a different type of culture medium, and can withstand far less cold 

storage time than immortalized cell lines. When adjusting the model for new cell types, 

considerations for origin suggest the starting point for the optimization process. For example, a 

primary hepatocyte culture may only require eight (8) hours of cold storage to reach the desired 

amount of preservation injury (that is, a translatable amount of injury). 

Immortalized cell lines are often used when developing new models, even if the endpoint 

use will be in primary cells, due to their hardiness and proliferation. Benefits of this include 

reduced animal sacrifice while developing/optimizing a model, easy culture expansion, and 
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predictable results between replicates. Limitations include the translatability of findings to a 

primary cell model; cancer cells have altered and upregulated survival signaling, and in a model 

such as ours (when cellular stress is induced), these cancer cells are likely able to sustain more 

preservation injury than their primary cell counterparts. 

3.3 Isolated perfused liver (IPL) 

Cell models of organ preservation and reperfusion are incredibly useful when the research 

goal is to focus on a single signaling pathway, often from surface receptor intracellularly to 

multiple downstream effectors. In order to pinpoint how individual proteins and intracellular 

organelles behave during preservation, an in vitro cell model exhibits advantages over more 

complex, heterogeneous models. However, certain parameters cannot be evaluated with an in vitro 

model, such as intact liver function – the nature of a single cell population in culture does is not 

conducive to gaining a birds-eye view of how the liver thrives in its physiologic environment.  

Adult male Sprague-Dawley rats were anesthetized with isoflurane, and the liver was 

isolated by R. Li according to previously described methods by Lindell et al. (1996) (Fig 3.4). 

Briefly, a catheter was placed in the portal vein and the bile duct was cannulated to assess bile 

production as an endpoint measure. The liver was flushed in situ with cold (4C) heparinized UW 

solution then removed. The isolated liver was flushed again with the cold heparinized UW solution 

and then stored in either vehicle (DMSO), ABC294640 (Cayman Chemical, Ann Arbor, MI) low 

or high dose for 24 hours (Lindell et al. 1996; Limkemann et al. 2016).  

Reperfusion was performed in an oxygenated recirculating system with warm (37C) 

Krebs-Henseleit bicarbonate (KHB) buffer (which contained in mmol/L: NaCl (118), NaHCO3 

(10), KCl (4.7), MgCl2 (1.2), glucose (11.1), KH2PO4 (1.2), HEPES (20) and CaCl2 at pH of 7.4) 
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infused with O2 (95%) and CO2 (5%) (Compagnon et al. 2002). The flow through the vasculature 

was controlled at 3ml/min/g liver and the vascular pressure was continuously monitored. Livers 

were assessed on the perfusion apparatus for 30 minutes, perfusate was collected and bile 

production was measured. To determine liver viability and function, LDH, AST/ALT and bile 

production were measured. 

 

Figure 3.4 Model of isolated perfused liver (IPL) 

Rat livers were procured, cold-stored, and then reperfused on this IPL apparatus, where flow 

was controlled and resistance, LDH release, and bile production were measured to assess liver 

function. Adapted from (Jimenez-Castro et al. 2013). 

 

3.4 Liver transplant model 

 The best model for assessing gross liver function is that of a transplantation. Liver 

procurement and transplantation was performed by S. Lindell according to previously described 

methods (Sumimoto et al. 1989; Sumimoto, Southard, and Belzer 1993; Lindell et al. 1996). 

Briefly, livers were isolated from anesthetized male Brown Norway rats and stored in cold (4C) 



 

 

 38 

UW solution with either vehicle (DMSO) or ABC294640 (10M or 100M). After 24 hours of 

storage at 4C, the livers were flushed with lactated Ringer’s (LR) solution and transplanted into 

the recipient animals. Transplantation was considered a successful operation if the rats survived 

until 7 days post-transplant, and all animals were assessed at 4 hours post-op for acute rejection. 

Outcome measures include LDH and liver enzymes (AST/ALT). 

3.5 Western blotting 

Evaluation of liver cells for the presence of extracellular LPARs was performed using 

HepG2 cells (as necessitated by the in vitro organ preservation model), SK Hep-1 cells (as a 

positive control for LPAR expression (REF REF)), and WT mouse hepatocytes. Adherent cells 

were washed two (2) times with 10mL of 1X PBS, and then 0.25% trypsin-EDTA was applied to 

dislodge the cells from the plate. It is important to wash adherent cells with PBS because in the 

case of hepatocytes, they release from the plate when they die. Cells were pelleted by 

centrifugation of the trypsinized culture suspension at 1000 rpm at 4C for 5 minutes. The 

supernatant was removed, and the cell pellet was resuspended in 500L RIPA buffer with protease 

inhibitor cocktail (Millipore Sigma). The cell lysate suspension was placed in a microcentrifuge 

tube and centrifuged at max speed at room temperature for 5 minutes to separate out the DNA and 

remaining cell debris. The PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific) was used 

to quantitate protein concentration in each sample, using a bovine serum albumin (BSA) standard 

curve. The supernatant was removed (containing the cell lysate), placed in a fresh microcentrifuge 

tube and Laemmli buffer (with 0.5% reducing agent – B-mercaptoethanol) was added to a final 

protein concentration of 50µg protein per 20L buffer.  Prepared lysate was boiled in water for 10 

minutes and then stored at -20C.  



 

 

 39 

All western blotting reagents were prepared fresh. 50g (in 20L) of each prepared lysate 

was loaded into a precast polyacrylamide gel (NuPAGETM 10% Bis-Tris Mini Protein Gel by 

InvitrogenTM, Thermo Fisher Scientific, Inc), and electrophoresis was conducted in MOPS running 

buffer at 50V for 30 minutes, and then 150V for 30 additional minutes or until the solvent line was 

at an appropriate distance on the gel. 10L of Kaleidoscope protein ladder was used in lane one 

(1) and lane ten (10) on each gel (Bio-Rad). Gels were carefully removed from the plastic housing 

and transferred to a precut PVDF membrane. Tris-glycine transfer buffer was prepared and the 

gel:membrane sandwich was placed in the transfer box. Buffer was added and the entire transfer 

box was placed on ice with a stir bar to keep the cold buffer circulating during transfer. Transfer 

of proteins from the gel to the membrane was conducted at 100V for 60 minutes. The blot was 

washed with tap water and incubated with blocking buffer for 30 minutes prior to application of 

primary antibody overnight (1:500 for SK2). The next day, blots were drained and rinsed with tap 

water, then incubated with blocking buffer containing the secondary antibody (1:1000) for 60 

minutes. All blots were visualized on a Bio-Rad ChemiDoc imager with SuperSignal West Pico 

PLUS chemiluminescence substrate (Thermo Fisher Scientific, Inc). Band intensity was assessed 

using Image J (National Institutes of Health) and graphed as relative level (compared to loading 

control, GAPDH). 

3.6 Polymerase chain reaction (PCR) 

3.6.1 Primer design and validation 

 At the time of this investigation, there was limited information available regarding LPA 

receptor (LPAR) expression in hepatocytes. Various cancer cell lines were known to express 

LPARs, and published sequences of primers for LPAR1-6 were examined first (Sokolov et al. 
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2013). The workflow for primer design and validation is shown in Figure 3.4. Primer sequences 

can be found in Appendix Tables 10.2.1 (human) and 10.2.2 (rodent). Primer pairs were designed 

to include a forward and a reverse primer, each 18-25 nucleotides (NTs) in length, with a GC 

content of approximately 50% and complementary melting temperatures. For traditional PCR, the 

desired amplicon length was under 450 NTs, while real-time (RT) PCR necessitated a shorter 

amplicon (less than 150 NTs).  

 

Figure 3.5 Primer design/validation scheme 

 After verifying the published primer sequences against our biological materials, the need to design 

new primers became apparent (only 3 primer pairs from the literature were able to be validated). For those 

targets requiring redesign, Primer-BLAST was utilized (Ye et al. 2012). The open-access software allows 

the user to input the sequence of the gene of interest and target species, then specify parameters for the 

cDNA primer pair (i.e., primer length, GC%, melting temperature, intron/exon spanning, and amplicon 

length). Primer-BLAST returns ten (10) primer pair options and based on the aforementioned properties as 

Primer 
Sequence

•Search the literature for validated LPAR qPCR primer sequences

• If unknown (e.g. LPAR6), design forward and reverse primers in silico using Primer-BLAST 
(Primer3, NCBI)

Evaluate 
Sequence

•Primer-BLAST (and integrated global alignment algorithm) checks primer sequence against 
genome of selected organism

•Initial considerations: mismatching, melting temperature, balanced G/C content, and self-
complementarity

•Secondary considerations: primer dimers, secondary structure formation (hairpins)

Validate 
Primers

•Conduct RT-PCR on cDNA from sample known to express target protein (serial primer 
dilutions)

•RT-PCR with no template to assess for primer dimer formation / primer contamination
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well as potential off-target binding, the most suitable primer pairs were then evaluated for hairpin and 

primer dimer formation (OligoEvaluatorTM, Sigma-Aldrich). Once theoretically validated in silico, the 

primers were ordered, received, appropriately diluted with nuclease-free water (100M), and finally 

validated in vitro. Serial dilutions on positive (cDNA from sample known to express the target gene) and 

negative (no template) controls were conducted to determine the optimal primer concentration and rule out 

any off-target binding (in the form of products of unexpected amplicon length or multiple product 

bands/peaks) or self-complementary of the primer pairs.  

3.6.2 RNA isolation, purification, and quantitation  

All RNA isolation and PCR protocols required nuclease-free pipette tips, tubes, and water. 

The surfaces were cleaned well with 70% ethanol (EtOH) before, during, and after RNA handling. 

The laboratory bench was designated exclusively for RNA handling. A Thermo ScientificTM 

NanodropTM ONE pedestal microvolume spectrophotometer assessed RNA sample purity. 

Absorbance ratios of 260nm/280nm and 260nm/230nm were utilized to establish purity of the 

RNA sample and identify contaminants. The most common contaminant was guanidine, a common 

result of the RNA isolation protocol. Pure RNA has an A260/A280 ratio of ~2.0, and an 

A260/A230 ratio of 2.0-2.2. RNA concentration following either the RNeasy Mini Kit or Trizol® 

methods of isolation and purification was between 100 – 2,000ng/L. 

Qiagen RNA isolation kit 

 For the initial RNA isolation procedures, the RNeasy Mini Kit (Qiagen, Germantown, MD) 

was utilized according to manufacturer’s instructions. Briefly, 1 x 107 cells were pelleted and lysed 

with RLT buffer from the kit. 70% EtOH was added, the sample was transferred to the RNeasy 

Mini spin column, and the column centrifuged for 15 seconds at > 10,000 rpm. RNA binds to the 

column, while any waste products pass through into the collection tube during the centrifuge cycle. 
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After several column wash steps, the RNA is eluted from the column membrane with 30L RNase-

free water. Residual DNA contamination was removed by DNase treatment protocol (Qiagen 

RNase-free DNase Set). Purified RNA was analyzed on the NanoDrop ONE for purity and 

concentration. Consistently low A260/A280 ratios necessitated a different RNA purification 

method. 

TRIzol® RNA extraction and purification 

 TRIzol® reagent (InvitrogenTM; Thermo Fisher Scientific, Inc.) was utilized according to 

manufacturer instructions. Briefly, 0.3mL TRIzol® was added to washed adherent cells in culture 

flasks and the mixture was gently pipetted to completely lyse the cells. The suspension was 

centrifuged at 4°C, at maximum speed for 15 minutes, resulting in a separation of the lower phenol-

chloroform organic layer and upper aqueous layer (containing the RNA). RNA is precipitated from 

the aqueous phase with isopropanol, and then washed with 75% EtOH. The RNA pellet is then 

carefully vacuum-dried and solubilized in RNase-free water before purity and yield analysis on 

the NanoDrop ONE. RNA quality and yield resulting from the TRIzol® protocol was generally 

superior to that of the Qiagen RNeasy Mini Kit, prompting this method transition. 

3.6.3 cDNA synthesis 

Purified, quantitated RNA samples were converted into complementary DNA (cDNA) for 

compatibility with subsequent qRT-PCR. A commercially available reverse transcriptase (RT) 

cDNA synthesis kit (iScript cDNA Synthesis Kit, Bio-Rad) was employed on RNA samples, 

producing a presumed 1:1 cDNA product. cDNA synthesis was performed separately than the PCR 

reaction for use on the CFX Connect, while a one-step RT-PCR was performed on the agarose gel 

samples. The reaction vials were prepared according to manufacturer’s instructions, with 1mg of 

RNA per reaction, and placed in the thermocycler (manufacturer’s instructions for RT (20 minutes 
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at 46°C) were employed). Samples were then held at 4C and placed on ice (or frozen at -20C if 

endpoint PCR was delayed). 

3.6.4 Traditional PCR 

 Initially, traditional PCR was conducted using the thermocycler and a one-step RT-PCR 

reagent. The purpose of these amplifications was to simply identify the presence of LPAR RNA, 

qualitatively. While RT-PCR was in progress according to manufacturer’s instructions 

(SuperScript IIITM with Taq high-fidelity DNA polymerase, by InvitrogenTM, Thermo Fisher 

Scientific), a 1.8% agarose gel was prepared by boiling TBE buffer with agarose powder until 

dissolved, cooling to handling temperature, adding ethidium bromide (EtBr) and carefully pouring 

into a gel mold. A comb was inserted to create sample-loading well, and the gel was allowed to 

rest at room temperature until set. Samples were loaded into the wells, with a molecular weight 

marker ladder in the first well (New England Biolabs, Inc). 0.5X TBE buffer was added to the 

electrophoresis apparatus (Mini-Sub Cell GT Horizontal Electrophoresis System with PowerPac 

Basic Power Supply, Bio-Rad) to cover the gel and fill the reservoirs on each end, then run for 35-

45 minutes at 100V. Finally, the gel was visualized on the Chemi-Doc imaging system (Bio-Rad). 

3.6.5 Real-Time PCR 

 After purchase of a CFX Connect Real-Time PCR Detection System (Bio-Rad), all LPAR 

gene expression studies were shifted to this instrument. Primers were redesigned to fit the 

specifications of the instrument (see section 3.6.1 for details). We opted to conduct the reverse 

transcription step separately and in the thermocycler prior to PCR. cDNA samples were transferred 

to a 96-well PCR plate and iTaq Universal SYBR Green Supermix (Bio-Rad), forward and reverse 

primer pairs for the gene of interest (Table 10.XXX) were added to each well. The plate was sealed, 

centrifuged for 5 minutes on a plate-spinner, and then analyzed in the CFX Connect according to 
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manufacturer’s instructions. CFX Maestro software collects, compiles, and analyzes the resulting 

data, including amplification cycle and melting curve. 

3.7 Sphingosine kinase-2 siRNA application 

Commercially available sphingosine kinase-2 (SK2) silencing RNA (siRNA) from 

Dharmacon (SMARTpool version, containing four (4) unique siRNAs in the mixture for increased 

potency and specificity, HorizonTM) was applied to HepG2 cells in culture using Lipofectamine 

RNAiMAX for transfection (Thermo Fisher Scientific, Inc). Briefly, Opti-MEMTM Reduced 

Serum Medium (Gibco) was warmed to 37C, the siRNA/RNAiMAX solution was prepared 

according to the manufacturer’s instructions (for either 96-well or 6-well plates, depending on the 

endpoint; viability or protein isolation, respectively), and applied to the HepG2 cells for 48 hours. 

An RNAiMAX vehicle blank was established to control for any reagent cytotoxicity. After 48 

hours of siRNA incubation, the cells were gently washed, fresh culture medium was applied, and 

cells were analyzed. 

3.8 Lipidomics 

3.8.1 Mass spectrometry 

 For the mass spectrometry results presented in this dissertation, all sample preparation and 

instrumental analysis was performed by the VCU Lipidomics & Metabolomics Core Laboratory. 

Instrumentation and methods utilized for this sphingolipid analysis includes the QTrap series 5000 

Quadropole Linear Ion Trap mass spectrometer (AB Sciex) and extraction protocols previously 

described (Merrill et al. 2005; Shaner et al. 2009). However, other LPL samples were prepared by 

the author for mass spectrometric analysis for an unrelated project, according to the methods 

described below. 
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 Cell culture medium was aspirated from 6-well culture plates, and frozen at -80C until 

extraction. Lipid components for analysis were isolated using the Bligh-Dyer method (Bligh and 

Dyer 1959). Briefly, samples (with the appropriate internal standards depending on the target of 

the analysis) were added to pure water, methanol (MeOH) and chloroform (CHCl3) in a ratio of 

2:1:1.5 and vortexed to mix. Following centrifugation at maximum speed at 4C, the organic 

CHCl3 layer was removed, transferred to new autosampler vials, and the CHCl3 was evaporated 

under vacuum. Samples were resuspended in MeOH and stored at -80C until mass spectrometry 

analysis.  

3.8.2 FITC-labeled sphingosine-1-phosphate and BSA precipitation 

Fluorescently labeled S1P was purchased from Echelon Biosciences, Inc. (S1P 

fluorescein). An assay was designed to determine how much S1P was bound and sequestered by 

the FAF-BSA used as a lipid delivery carrier in cold storage experiments. In separate 1.5mL 

Eppendorf tubes, the amount of FITC-S1P and buffer was kept constant while the concentration 

of BSA was increased in 10-fold increments (0 – 10%). After 90 minutes of covered incubation 

on the benchtop, a protein precipitation (BSA) was attempted with 4M ammonium sulfate. The 

sample was centrifuged, and the supernatant plated in triplicate on a 96-well plate. The amount 

of fluorescence was measured on an ELX800 plate reader.  

3.9 Primary hepatocyte isolation 

 Primary murine hepatocytes were isolated according to well-established and validated 

methods (Bissell and Guzelian 1980; Hylemon et al. 1985; Heuman et al. 1991). Briefly, 

sphingosine kinase-2 null (SK2-/-) mice obtained from Dr. R. Proia from the National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK) and their C57BL6 NJ wild-type control 



 

 

 46 

counterparts were anesthetized, and the portal vein was cannulated. Collagenase (type I or type 

IV) was pumped through the cannula to digest the liver tissue, and centrifugation was utilized to 

separate the hepatocytes from other cell populations. Isolated hepatocytes were then either pelleted 

and resuspended in William’s medium for plating on collagen-coated polystyrene plates or MiR05 

buffer for evaluation of mitochondrial activity. 

3.10 High-resolution respirometry analysis of mitochondrial activity 

High-resolution respirometry (HRR) was applied to cell and tissue preparations using the 

Oxygraph-2k (O2k, Oroboros Instruments, Innsbruck, Austria) (Figure 3.6).  

 

Figure 3.6 The O2k and all of its components (Gnaiger 2008) 
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3.10.1 Overview of the Oxygraph-2k (O2k) 

Briefly, the O2k uses a closed system to measure the amount of oxygen consumed by the 

sample in the chamber. A Clark electrode (gold cathode and silver/silver chloride anode separated 

by an electrolyte reservoir, filled with 1M KCl) is separated from the chamber solution by an 

oxygen-permeable Teflon membrane that is impermeable to ions. As O2 diffuses across this Teflon 

membrane, it is reduced by the cathode (creating water and hydroxide), which then results in silver 

oxidation. A current is produced that is proportional to the partial pressure of O2 (pO2) in the 

solution (Gnaiger 2008). The O2k employs a substrate/inhibitor (SUIT) titration protocol to 

manipulate the individual complexes of the ETC to determine in detail how the experimental 

conditions impact the ETC complexes in the sample.  

The O2k is controlled via computer running DatLab software (version 7.0). The main 

measures provided are oxygen concentration in the chamber (blue tracing), and oxygen flux (red 

tracing). Oxygen flux is the change in oxygen consumption and is therefore proportional to the 

slope of the oxygen concentration tracing (blue). Figure 3.7 shows the standard output of the O2k. 

 

Figure 3.7 Sample output from O2k HRR experiment 

Blue line denotes oxygen concentration in the chamber suspension, red line indicates the oxygen 

consumption or flux (proportional to the slope of the oxygen concentration). When a reagent is 

injected into the chamber, a mark is created (e.g., G for glutamate, P for pyruvate, and M for 
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malate, etc.). The plateau after each reagent is marked (red labels below the x-axis), and the 

average of those values is exported for respiration analysis.  

 

Biological samples are suspended in one of a few types of buffer (see section 3.10.2 below), 

but all sample suspensions are added to a chamber containing the standard experimental buffer, 

MiR05. The oxygen solubility factor of MiR05 is 0.92 and describes how the buffer’s salt 

concentration affects oxygen solubility compared to pure water (which is important for calculating 

oxygen consumption). MiR05 was designed with organ preservation in mind, providing 

components that protect the mitochondria during analysis in the O2k (Gnaiger et al. 2000; Gnaiger 

2008). 

3.10.2 Biological sample preparation 

Cell preparations (primary hepatocytes and immortalized cell lines) were pelleted and 

resuspended in MiR05 prior to injection into the O2k chambers. Liver and cardiac tissue 

homogenates were prepared using a Tenbrook glass homogenizer in cold (4C) K medium (10mM 

Tris-HCl, 80mM KCl, 3mM MgCl2, 5mM KH2PO4, 0.5mM EDTA, and 0.5 mg/mL fatty acid free 

bovine serum albumin). A small biopsy from the organ was weighed, placed in the appropriate 

amount of K medium and 50uL of this homogenate was placed in the chambers. A final amount 

of 2 – 12 mg of tissue per mL were used and the amount of tissue in the chamber was titrated to 

instrument sensitivity and basal activity of the tissue sample (similar to the methods described 

above for cells). For example, a tissue homogenate from a cold-stored organ would be less 

metabolically active than a homogenate from control tissue. All data were normalized to cell count 

or tissue weight per mL chamber volume.  
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3.10.3 Experimental Protocol 

 All SUIT protocols were adapted from the manufacturer’s website to address the needs of 

each individual experiment (https://wiki.oroboros.at). After overnight storage in 70% ethanol, each 

chamber and stopper underwent a stringent washing protocol (three (3) distilled water, three (3) 

70% ethanol, and finally three (3) distilled water) prior to addition of miR05 buffer. The 

polarographic oxygen sensor (POS) requires an air calibration each day prior to use, followed by 

a period of buffer equilibration. Additional POS service was performed (such as zero calibration) 

after each membrane change or monthly, as needed. Once a stable oxygen flux signal is obtained 

during the equilibration period, the sample is added to the chamber. A stable rate of oxygen 

consumption by the sample without depleting the oxygen too quickly is desired (if the sample is 

too concentrated the rate of oxygen consumption may be too rapid for appropriate experimental 

measurements to be obtained). If the basal sample respiration was too high, a portion of the sample 

was removed, documented, and replaced with buffer.  

 All substrates and inhibitors are displayed in Table 3.1, and the experimental protocol is 

displayed in Figure 3.8. Most protocols are initiated by adding complex I substrates, often 

abbreviated as “GPM” (as these three reagents are injected with the same syringe). In whole cell 

or tissue homogenate suspensions, digitonin must be added to permeabilize the cell membranes 

(isolated mitochondria do not require digitonin) to allow the reagents access to the intracellular 

space. Adenosine diphosphate (ADP) is then injected and when complex I is functioning, a spike 

in oxygen consumption is observed as complex V phosphorylates ADP to ATP. Following a peak 

in oxygen consumption, rotenone is injected to inhibit complex I. Between each complex, basal 

respiration is allowed to stabilize before adding new substrates. Succinate is injected as fuel for 

complex II, and TTFA (thenoyltrifluoroacetone) inhibits complex II after a peak is observed. After 
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complex II, a choice was made to either investigate complex III or IV. It is not possible to modulate 

both in the same chamber, as the reagents for complex III interact with those for complex IV and 

uncontrolled autooxidation is observed (see Fig 10.4.1 in the appendix). For complex III, 

duroquinone is the substrate and antimycin A is the inhibitor. Finally, for complex IV, ascorbic 

acid is first added as an antioxidant for the substrate, TMPD (N,N,N′,N′-Tetramethyl-p-

phenylenediamine), and sodium azide inhibits complex IV. Those reagents which are not soluble 

in water are dissolved in pure EtOH or DMSO and controlled for by injecting a vehicle blank prior 

to use of the reagent in the chamber.  

 

Compound Volume 

added (uL) 

Role Complex Stock 

Concentration 

Final 

Concentration 

Glutamate 10 Substrate cI (indirect) 2M 10uM 

Pyruvate 5 Substrate cI (indirect) 2M 5mM 

Malate 5 Substrate cI (indirect) 0.8M 2mM 

Digitonin 2 Permeabilizer N/A 10mg/mL 10ug/mL 

ADP 10 Substrate cV 

(ATPase) 

0.2M 1mM 

K145 7.7 SK2 inhibitor N/A 1mg/mL 10uM 

ABC294640 4.5 Inhibitor cI 1mg/120uL 50uM 

Rotenone 10 Inhibitor cI 0.1mM 0.05uM 

Succinate 20 Substrate cII 1M 10mM 

TTFA 8 Inhibitor cII 20mM 80uM 

Duroquinone 10.3 Substrate cIII 120mM 0.6mM 

Antimycin A 5 Inhibitor cIII 0.4mM 1uM 

Ascorbic 

acid 

5 Antioxidant N/A 0.8M 2mM 

TMPD 5 Substrate cIV 200mM 0.5mM 

Azide 50 Inhibitor cIV 4M 100mM 

 

Table 3.1 Reagents for high-resolution respirometry analysis (O2k) 
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Figure 3.8 HRR SUIT protocol for O2k 

Complex I substrates (glutamate, pyruvate, malate) are added, then the plasma membrane is 

permeabilized with digitonin. ADP is added, and after respiratory peak, rotenone inhibits 

complex I. Complex II substrate succinate is added, then TTFA inhibits. Duroquinone is the 

complex III substrate, and antimycin A inhibits. Finally, ascorbic acid and TMPD are complex 

IV substrates, and sodium azide inhibits. 

 

 Appropriate maintenance of the Hamilton syringes is paramount to successful O2k data 

collection. Other than GPM (which are all drawn up and injected with the same syringe), each 

reagent is delivered using its own syringe. The syringes used for water-soluble reagents are washed 

three (3) times with distilled water after each use, while those syringes containing ethanol or 

DMSO-soluble reagents are only washed three (3) times with 100% ethanol at the end of the day 

due to the artifact produced by injection of additional ethanol. 
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3.10.4 Considerations for unique effects on O2 flux by reagents 

 Not every reagent that is to be injected into the chamber produces an equivalently shaped 

change in oxygen consumption (O2 flux) (see Fig 3.7 at the 13-minute mark for rotenone). For 

example, since rotenone is soluble only in EtOH, there is a sharp, drastic decrease in O2 flux upon 

injection into the chamber that is considered an artifact due to its EtOH origins. Only after the flux 

recovers and plateaus do we consider the data suitable for analysis. Likewise, DMSO produces a 

shallower (than EtOH) but long “dip” in flux, with a recovery to baseline flux after about one (1) 

minute (fondly known as the “DMSO dip”) (Fig 3.9).  

Figure 3.9 DMSO-induced oxygen flux artifact 

In preparation for a dose-response experiment using ABC294640 (which is solubilized in 

DMSO), we conducted a vehicle dose-response with DMSO to ensure that DMSO alone does not 

have a significant effect on oxygen consumption (red tracing). While the act of injecting the 

substance leads to an expected dip in oxygen flux, that signal rebounds to near-baseline levels 

and stabilizes within about one (1) minute. The final mark shows the injection of rotenone, and a 

subsequent reduction in oxygen flux, indicating inhibition of complex I. 

 

3.11 Statistical analysis 

 GraphPad PRISM version 7.0 for Windows and Mac was used to conduct these analyses. 

All data are expressed as mean + the standard error of the mean (SEM) unless otherwise noted. 
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Cell viability data was collected as least in triplicate on each plate, and compiled according to 

previously defined parameters (Lord et al. 2020). Outliers were identified and removed from the 

raw in vitro cell viability data to account for expected technical inconsistencies using the Tukey 

test for outliers. Cell viability data was normalized to the vehicle control (either BSA or EtOH, 

depending on the experiment). Differences between greater than three (3) groups were compared 

using a one- or two-way ANOVA (Tukey’s or Bonferroni’s test for multiple comparisons). When 

only two (2) groups were present, an unpaired student’s t-test was conducted. Statistical 

significance was defined as a p-value of less than 0.05.  

Chapter 4: Sublamellar cytoskeletal linker proteins and their upstream 

regulators in preservation injury 

4.1 Abstract 

Not only is the actin network disrupted during organ preservation, but cytoskeletal linker 

proteins are inactivated as well (Molitoris and Finn 2001; Mangino et al. 2008; Tian et al. 2009; 

2012). Ezrin, radixin, and moesin family members (ERM proteins) function to anchor intracellular 

actin to the plasma membrane, stabilizing the cytoskeleton and supporting the morphology (REF 

REF). ERM activation is partially controlled by Rho kinase (ROK or ROCK) and Rho (small 

GTPase) (Ponuwei 2016). Using pharmacologic inhibitors for Rho and ROK, we showed that these 

proteins are important in maintaining cell viability in an in vitro model of organ preservation. 

These data support previous research showing that ERM proteins are deactivated as a result of 

preservation injury, as these two regulators activate ERMs. 
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4.2 Background 

In epithelial cells, such as hepatocytes and renal tubule cells, a particular architecture is 

required for cell function. The orientation of various transporters on either the basolateral or apical 

membrane is critical, and the cytoskeleton is responsible for anchoring those elements to the 

correct portion of the cell’s membrane. ERM proteins are activated in part by phosphorylation, 

conferring their open conformation and allowing these C-shaped proteins to bind with the 

intracellular actin network on one end, and the plasma membrane on the other. In addition to rho 

kinase (ROK), ERM proteins can be phosphorylated by a plethora of other kinases including 

protein kinase C, Nck interacting kinase, G-protein receptor coupled kinase 2, as well as non-

receptor tyrosine kinases (Ponuwei 2016).  

Rho kinase (ROK) activity is controlled by members of the Rho family of small G-proteins 

(Amano, Nakayama, and Kaibuchi 2010). The most well-studied members of the Rho family 

include RhoA, Cdc42, and Rac1 (and each controls different processes involved in cytoskeletal 

rearrangement). Rho proteins are a subfamily of the Ras superfamily of small G-proteins, and are 

primarily GTPases that hydrolyze GTP into GDP, and harness the resulting energy to act as a 

molecular switch (Smithers and Overduin 2016).  

4.3 Results 

4.3.1 Inhibition of Rho and ROK during cold storage worsens preservation injury in HepG2 cells 

 Moesin configuration is an important factor in maintaining HepG2 cell viability during 

cold storage, as evidenced by mutational studied performed in our laboratory (Tian et al. 2014). 

Since ROK is known to regulate ERM protein activity, and RhoA controls ROK activation, we 

used pharmacologic inhibitors to determine if these two proteins play a role in the preservation 
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injury phenotype. Exoenzyme C3 transferase from Clostridium botulinum (Cytoskeleton, Inc., 

Denver, CO) inhibits RhoA, while a commercially available compound, Y-27632, inhibits ROK. 

HepG2 cells were treated with either exoenzyme C3 transferase, Y-27632, or a combination of the 

two compounds and then placed in cold storage for 12 or 24 hours. Figure 4.1 shows that when 

either of these proteins is inhibited, alone or in combination with the other, the degree of 

preservation injury is increased compared to vehicle controls at 12 hours of cold storage. As if 

often the case, no observable differences were seen at 24 hours of cold storage due to the high 

degree of preservation injury seen.  

 

Figure 4.1 Inhibition of RhoA and ROK worsen preservation injury in HepG2 cells 

HepG2 cells were plated in 96-well plates. Exoenzyme C3 transferase from c. botulinum (RhoA 

inhibitor, 0.5µg/mL) and Y-27632 (ROK inhibitor, 10M) were added to cell culture medium, 

and the HepG2 cells were treated for two (2) hours prior to induction of hypothermic ischemia. 

Following cold storage (twelve (12) and twenty-four (24) hours, respectively), the plates were 

reperfused in the incubator for 1 hour and then cell viability was measured (WST-8 assay). Two-

way ANOVA showed significant differences between the vehicle and all other groups at 12 hours 

of cold storage (n=3, *p<0.05). 
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4.4 Conclusions 

 Inhibiting RhoA and ROK during hypothermic ischemia significantly worsens the 

preservation injury phenotype in HepG2 cells. One limitation is that the exoenzyme C3 transferase 

from c. botulinum is not a specific Rho inhibitor, but rather binds to all three isoforms. This implies 

that at least one of the affected Rho kinases is important in supporting hepatocytes during 

hypothermic ischemia, but only when combined with the ROK inhibitor data can we conclude that 

it might be RhoA that is the most important. Combined with our laboratory’s existing data 

suggesting the defensive role of activated ERM proteins, these results support the hypothesis that 

downstream effectors of LPL receptors may confer protection against preservation injury. 

Chapter 5: Lysophosphatidic acid in preservation injury 

5.1 Abstract 

 Lysophosphatidic acid (LPA) is a pleiotropic, biologically active lipid signaling mediator 

produced by activated platelets, with demonstrated roles in blood pressure, cell growth and 

motility, and smooth muscle contraction as well as upregulation in cancer (Ishii et al. 2004). LPA 

signaling through six (6) G-protein coupled receptors (GPCRs) on the plasma membrane, with a 

myriad of intracellular actions. Of interest here is the relationship between RhoA, Rho kinase 

(ROK), and LPA signaling. First, the LPA receptor (LPAR) expression profile on hepatocytes was 

investigated. We found that hepatocytes expressed LPAR1-6 mRNA. We hypothesized that adding 

exogenous LPA to cells in culture during cold storage would improve cell viability, thus reducing 

degree of preservation injury. HepG2 cells were exposed to hypothermic ischemia with increasing 

concentrations of LPA (carried in aqueous solution by 0.1% FAF-BSA), reperfused for one hour 

in the incubator, and then cell viability was assessed. We found that LPA does not dose-
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dependently improve HepG2 viability following cold storage. However, this may be due to 

inadequate LPA delivery by BSA in cold storage. Even at standard lipid-carrying concentrations, 

BSA decreases cell viability following cold storage. These results necessitate the development of 

an effective lipid delivery system for hypothermic ischemia. 

5.2 Background 

5.2.1 LPA receptor expression in hepatocytes 

At the time these studies were proposed and initiated, the literature was not clear on 

whether primary hepatocytes expressed LPARs at all, and if so, which ones were biologically 

relevant? These investigations were carried out both in a traditional PCR method as well as real-

time PCR to quantitate mRNA expression.  

GAPDH was utilized as a loading control for rodent cDNA samples (mouse and rat). 

Unfortunately, due to the difference in cycle number of GAPDH amplification in our two human 

cell lines, a new loading control was required. HepG2 cells were often the standard for in vitro 

organ preservation. However, there was discrepancy over whether HepG2 cells expressed LPARs 

in the quantity required to test the hypothesis of LPAR-mediated protection against preservation 

injury. In order to validate the primers, a cell type with known LPAR expression was required. SK 

Hep-1 served as a positive control. A literature review indicated the following genes exhibited 

potential as appropriate candidate loading controls: B2M, HMBS, and SDHA. Primer pairs were 

designed using Primer-BLAST and validated (see Appendix, Tables 10.2.2 and 10.2.3, for primer 

sequences). The primer pair for B2M yielded the best results and this gene was employed as the 

loading control for the human cell line studies. 
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5.3 Results 

5.3.1 Primary mouse hepatocytes express LPA receptors 

 At the time of study initiation, the literature was sparse regarding whether primary 

hepatocytes expressed LPA receptors (LPARs) in quantities sufficient to elicit a response to 

exogenously applied LPA during cold storage. qRT-PCR was conducted on cDNA from isolated 

mouse hepatocyte purified RNA, with forward and reverse primers for each of the six (6) 

LPARs. Analysis demonstrated that primary hepatocytes do express mRNA for LPAR1-6 (Figure 

5.1). Previous work confirms the presence of LPARs in HepG2 cells, despite the incomplete 

profile in Fig 5.1 (Sokolov et al. 2013; Zuckerman et al. 2015).  

 

Figure 5.1 Primary mouse hepatocytes express LPA receptors 1-6 

Isolated mouse hepatocyte LPAR expression normalized to GAPDH; HepG2 LPAR expression 

data incomplete, only LPAR2, 5, and 6 were examined in this study prior to abandonment due to 

new publication; n=1(no statistical analysis performed). 

5.3.2 LPA does not attenuate preservation injury phenotype 

 Once the presence of LPA receptors was confirmed, HepG2 cells were treated with 

increasing concentrations of LPA with 0.1% fatty acid free bovine serum albumin (FAF-BSA) 
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and cold stored for 12 and 24 hours. We hypothesized that LPA would dose-dependently 

improve cell viability in the cold-stored cells relative to controls. The results, shown in Figure 

5.2, indicate that LPA does not impact cell viability compared to vehicle (0.1% FAF-BSA) 

controls.  

 

 

Figure 5.2 Exogenous LPA does not protect HepG2 cells against preservation injury 

HepG2 cells were treated with escalating doses of LPA (0.1, 1, 10, and 100uM), and then 

subjected to cold storage for 12 and 24 hours. The vehicle was 0.1% fatty acid free-bovine serum 

albumin (FAF-BSA). Data were normalized to the vehicle control cell (no cold storage) viability. 

Control (n = 17), 12hr CS (n = 10), 24hr CS (n = 8). Two-way ANOVA showed no significant 

differences between increasing LPA concentrations within each experimental condition (i.e., 

within the control group, no differences between vehicle and any dose of LPA, etc.), p>0.05. 

 

5.3.3 Bovine serum albumin (BSA) exhibits cytotoxicity 

 We noticed that it seemed even the vehicle controls in the exogenously applied LPA 

during cold storage studies exhibited lower viability than the medium alone (Fig 5.3), indicating 

that any effect LPA might have to protect hepatocytes against preservation injury is likely being 

masked by the vehicle (0.1% FAF-BSA). Using BSA to carry lipids in aqueous conditions is 

standard practice, but these studies are most often conducted in physiologic conditions 

(oxygenated, 37°C). With the introduction of hypothermic ischemia in our in vitro cold storage 
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model of organ preservation, we found that under physiologic conditions, only 10% BSA 

significantly decreased cell viability (Fig 5.4). However, cold stored HepG2 cells were 

significantly affected by only 0.1% BSA, the concentration needed to carry LPA in our studies 

(Figure 5.3). 

 

 

Figure 5.3 0.1% FAF-BSA decreases viability in hepatocytes in cold storage, regardless of LPA 

concentration 

In control cells (incubator storage, 37°C, 5% CO2), viability was approximately stable 

regardless of the experimental conditions applied. However, in cold-stored (CS) cells, addition 

of FAF-BSA led to a decrease in cell viability, that could not be rescued by increasing 

concentration of LPA, n=2 (no statistical analysis performed). 

 

In order to determine if the level of BSA fatty acid saturation impacted cytotoxicity, we 

conducted a dose-response with both fatty acid free (FAF) BSA and fatty acid saturated (FAS) 

BSA. Both forms of BSA were purchased from Sigma-Aldrich, and prepared fresh for each 

application. We hypothesized that if BSA was exerting negative effects on HepG2 cells (Fig 5.3) 

by sequestering the available pro-survival signaling molecules (such as LPA and S1P) and 
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making them unavailable for bind to extracellular LPARs, then the application of FAS-BSA 

should confer an increase in cell viability. These FAS-BSA complexes have not been stripped of 

their endogenous fatty acid molecules, and therefore do not have extensive binding capacity for 

additional fatty acids in the culture medium (Opti-MEM reduced serum medium, Gibco). We 

found that the type of BSA applied to HepG2 cells in culture did not differentially affect cell 

viability (WST-8) (Figure 5.4). 

 

Figure 5.4 Fatty acid saturation of BSA does not impact cytotoxicity 

FAF-BSA (n = 3), FAS-BSA (n = 2, no statistical analysis performed), no significant differences 

between increasing concentrations of FAF-BSA, p>0.05. Error bars are shown for FAF-BSA. 

 

5.3.4 BSA-mediated cytotoxicity is exaggerated in cold storage 

Figure 5.3 illustrates how twelve (12) hours of cold storage increases HepG2 cell 

susceptibility to BSA cytotoxicity. Increasing the time in cold storage further to twenty-four (24) 

hours worsens BSA’s negative effect on cell viability (Figure 5.5). 0.1% FAF-BSA doesn’t seem 
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to impact HepG2 viability under control conditions, but nearly decimates viability after 24 hours 

of cold storage.   

 

Figure 5.5 Cold storage exacerbates BSA cytotoxicity  

Control HepG2 cells (no cold storage) were unaffected by 0.1% BSA, while HepG2 cells cold 

stored for 24 hours are significantly less viable with 0.1% BSA treatment (n=2, no statistical 

analysis performed). 

 

5.3.5 Human and bovine serum albumin exert similar effects on cells 

 Upon the observation that BSA dose-dependently decreased cell viability with and 

without cold storage, it was hypothesized that this negative effect may be due to a cross-species 

interaction between the bovine albumin and the human cell lines. As such, human serum albumin 

(HSA) was dose-dependently applied to immortalized cell lines (HepG2 and SK Hep-1) and 

WST-8 conversion correlating the viability was measured. Human and bovine serum albumin 

have very similar effects on both HepG2 and SK Hep-1 cells in a dose-dependent manner. With 

the exception of 1% albumin in the SK Hep-1 cells (and this same concentration, though not 

statistically significant, is trending in that direction in the HepG2 cells), there is no significant 



 

 

 63 

difference between albumin from human or bovine subjects. If any difference did exist, we 

suspected bovine albumin may be more cytotoxic than albumin from humans. In fact, the 

opposite was true with 1% HSA decreasing viability compared to 1% BSA in SK Hep-1 cells.  

 

Figure 5.6 Human and bovine serum albumin exhibit similar dose-dependent effects on cells 

a) HepG2 (n = 4) and b) SK Hep-1 (n = 6) cells. With the exception of 1% albumin in the SK 

Hep-1 cells, there were no significant differences between bovine and human serum albumin. 

Generally, it seems that human albumin may be trending towards exhibiting more cytotoxicity 

than bovine albumin at higher concentrations (1% and above). Two-way ANOVA compared all 

groups within each cell type (bovine and human, as well as increasing albumin concentration), 

*p<0.05. 

  

5.4 Conclusions 

Based on these results, exogenous LPA does not appear to protect hepatocytes against 

preservation injury, despite the presence of LPARs. This may be an artificial result due to the 

failure of BSA as a lipid delivery system in cold storage. BSA treatment, regardless of the 

concentration of LPA, decreases cell viability in cold-stored HepG2 and SK Hep-1 cells. Extent 

of BSA fatty acid saturation and species of albumin origin did not play a role in the increased 
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preservation injury observed in cold stored cells with even low concentrations of albumin. 

Confirmatory western blotting for LPARs (following PCR) was not completed due to publication 

of these data during this investigation by another group. 

Chapter 6: Sphingolipids in preservation injury 

6.1 Abstract 

 For the same reasons that LPA seems an attractive target for investigating the molecular 

mechanisms of preservation injury in hepatocytes, S1P signaling may play similar and distinct 

roles in protecting against this injury. S1P receptors control some of the same downstream 

effectors as LPA (such as Rho), but due to the inside-out signaling mechanism of S1P, 

intracellularly-produced S1P has biologically distinct roles. Targeting the S1P synthetic pathway, 

a selective sphingosine kinase-2 (SK2) inhibitor (ABC294640) was used to decrease intracellular 

S1P production and the phenotype was observed in cold-stored hepatocytes. We saw a decrease in 

the S1P:ceramide ratio, hepatocyte viability, survival of rodent liver transplant recipients, and 

functional parameters in an isolated perfused liver (IPL) model. Treatment with ABC294640 

during cold storage, presumably through inhibition of its target enzyme, SK2, worsens 

preservation injury in the liver.  

6.2 Background 

6.2.1 Sphingolipid synthesis and the “rheostat” 

 Sphingolipid synthesis is detailed in section 2.3 and figure 2.2. Briefly, sphingosine can be 

converted into one of two species: S1P (via sphingosine kinases, SK1 and SK2) or ceramide (via 

ceramide synthase). These species can be back converted to sphingosine by ceramidase or S1P 

phosphatase. Cell fate can be determined by the sphingolipid rheostat: the balance between pro-
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survival S1P and pro-death ceramide at any given time in the cell. Evidence supports the use of 

this rheostat, as S1P regulates proliferation, angiogenesis, and survival while ceramide is a tumor 

suppressor and promotes apoptotic and autophagic cell death as well as growth arrest (Newton et 

al. 2015; Cuvillier et al. 1996). 

6.2.2 Fate of S1P in the cell 

 Once S1P is produced intracellularly, it has three possible fates. First, it can be degraded 

by S1P lyase. Second, phosphatases can convert it back to sphingosine. And third, it can be pumped 

out of the cell via a surface transporter called SPNS2 (Santos and Lynch 2015). However, before 

the first two fates described above, S1P can bind to intracellular targets and elicit a response prior 

to degradation. It is these intracellular targets of S1P that are of interest in these studies due to 

evidence showing that SK2-derived S1P is important in the assembly of complex IV of the 

mitochondria and nuclear gene transcription (Strub et al. 2011). 

6.3 Results  

6.3.1 BSA binds FITC-labeled S1P in aqueous solution 

 Armed with the knowledge that BSA seems to be cytotoxic during cold storage, we 

wanted to test the hypothesis that this effect is due to BSA’s tendency to sequester lipid growth 

factors in aqueous solution. In 1.5mL Eppendorf tubes, 50µL FITC-S1P (in MeOH) and 500µL 

buffer was added with increasing concentrations of BSA in different tubes (0 – 10% in 10-fold 

increments). After a covered incubation on the benchtop, we attempted to precipitate the BSA 

out of solution with concentrated ammonium sulfate. The vials were centrifuged at maximum 

speed for 5 minutes, and then the supernatant was plated in triplicate on 96-well plates and the 

fluorescence read on the plate reader. The fluorescent units (FU) are reported in Figure 6.1, and 
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with the exception of the control and 0.01% BSA conditions, the results are as expected: the 

higher the BSA concentration, the more S1P seems to have precipitated out with the protein 

resulting in a lower fluorescent signal in the supernatant. Unfortunately, the BSA precipitation 

was incomplete and we hypothesized that nonspecific binding of FITC-S1P to the sides of the 

Eppendorfs with 0% and 0.01% BSA led to the significantly reduced fluorescence in those 

samples (a known complication).  

 

Figure 6.1 BSA dose-dependently sequesters S1P in saline 

FAF-BSA was added to a solution containing FITC-S1P, incubated for 90 minutes, and then 

precipitated with 4M ammonium sulfate. n=1 (no statistical testing performed; error bars 

represent the standard error of the triplicates on the 96-well plate). 

 

6.3.2 Sphingolipid rheostat response to hypothermic ischemia 

 It seems intuitive that since the sphingolipid rheostat correlates to cell status, and 

hypothermic ischemia causes cellular stress, that this rheostat would be altered in an organ 

preservation model. HepG2 cells were plated in 6-well plates, treated with 0.1% FAF-BSA (the 

vehicle control for impending lipid application studies), and either placed in the incubator or cold 
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storage for 12 hours overnight. Following one (1) hour of reperfusion on the cold-stored plate, the 

supernatant from both plates was collected and frozen. The samples were delivered to the VCU 

Mass Spectrometry Laboratory for sphingolipid analysis. Results were reported to the author in an 

Excel spreadsheet, normalized to pmol/mL (data can be found in appendix, Table 10.3.1). While 

there is likely more information to glean from the extensive data provided, it is important to note 

that the S1P:Cer ratio is trending in a direction that indicates sphingolipid production may be 

altered by hypothermic ischemia.  

 

Figure 6.2 S1P:ceramide ratio is decreased in the supernatant from cold-stored HepG2 cells 

The ratio of S1P:ceramide indicates how healthy a cell population is at the time of sampling, 

with a higher ratio suggesting healthier cells. As expected, subjecting cells to hypothermic 

ischemia is a stressful event, corresponding to a lower S1P:ceramide ratio. n=1 for each group 

(one experiment conducted, and one vial of sample provided for mass spectrometry analysis for 

each group), no statistical analysis performed, error bars represent standard error of duplicate 

(0.1% FAF-BSA control) and triplicate (12 hours CS) measures from the same sample. 
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6.3.3 Sphingosine-1-phosphate is bound by BSA in aqueous solution 

 We utilized the lipidomics data from Table 10.3.1 to assess how much S1P is bound up 

by BSA in aqueous cell culture medium. The negative control, serum-free DMEM, as well as 

both 0.1% FAF-BSA only (incubator control and 12 hours cold storage) did not exhibit 

significantly different S1P levels in the precipitate compared to the supernatant, though the 

results are trending in that direction. The positive control, FBS, did exhibit 3.5 times higher S1P 

levels in the precipitate compared to the supernatant, confirming that FAF-BSA does sequester 

S1P and this complex can be precipitated out of solution (Figure 6.3). 

 

Figure 6.3 BSA binds S1P in aqueous solution  

FBS was added to culture medium as a positive control, and the precipitated BSA contained 

significantly more S1P than the supernatant, supporting FAF-BSA’s affinity for S1P in these 

studies. n=1 for each group (one experiment conducted, and one vial of sample provided for 

mass spectrometry analysis for each group), no statistical analysis performed, error bars 
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represent standard error of duplicate (serum-free medium, 0.1% FAF-BSA, and FBS pos 

control) and triplicate (12 hours CS) measures from the same sample. 

 

6.3.4 Sphingosine kinase-2 in preservation injury 

 As discussed in section 5.4, BSA is not an adequate carrier protein for lipid mediators in 

aqueous solution during cold storage, for reasons yet to be determined. As a result, we wanted to 

continue studying LPL signaling in the meantime and decided to tackle SK2, the enzyme proposed 

to be responsible for producing most of the intracellularly acting S1P, via pharmacologic means. 

ABC294640, a selective SK2 inhibitor, was used to treat donor livers during cold storage for 24 

hours prior to transplantation. All animals that received a successful transplant (n=5) survived until 

sacrifice (seven days post-transplant). However, those animals transplanted with a liver which was 

cold stored in ABC294640 (20 or 100µM) did not survive the first day (Figure 6.4a). At four (4) 

hours post-transplant, bloodwork was conducted to assess the health of the liver and kidneys. High 

liver enzyme (ALT) and creatinine (CRE) coupled with low albumin (ALB) are indicative of liver 

disease/failure and inflammation (Figure 6.4b). The animals receiving ABC294640 did markedly 

worse than those receiving a transplant cold stored in UW + DMSO. Results in an in vitro cell 

model of organ preservation echoed those of the transplant model (Figure 6.4c). 
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Figure 6.4 ABC294640 treatment during cold storage leads to failed liver transplants 

a) All animals successfully transplanted (one experienced a technical complication during the 

surgery) with a control liver (stored in UW solution + vehicle, n=5) survived until seven days 

post-transplant. None of the animals receiving an ABC294640-treated liver survived (UW 

solution + ABC294640, low (n=3) or high (n=5) dose). b) Rats receiving liver transplants 

(depicted in panel (a)) had labs drawn (blood for ALT and urine for ALB/SCr) at four (4) hours 

post-transplant to assess liver and kidney function (n=3). Alanine aminotransferase (ALT) is 

elevated in both cold-stored groups compared to fresh controls (*p<0.05). However, 

ABC294640 treatment did not seem to impact ALT compared to UW + DMSO vehicle (p>0.05). 

ALB is decreased in both cold-stored groups compared to fresh controls, though not statistically 

significant (p>0.05). Likewise, SCr is increased in both cold-stored groups compared to fresh 

controls (p>0.05). c) HepG2 cells (n=5) were treated with escalating doses of ABC294640, and 

either left in the incubator (control) or cold-stored for twelve (12) hours. Cell viability was then 

measured (WST-8) following one (1) hour of reperfusion. Two-way ANOVA with Bonferroni’s 
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multiple comparisons test showed that all cold-stored samples were significantly less viable than 

incubator controls, regardless of ABC294640 dose (p<0.05). Important, though, is the 

observation that 100µM ABC294640 significantly decreases cell viability compared to FBS and 

lower doses of ABC294640 within the incubator control group (p<0.05). 

 

A lower resolution, but more efficient method of evaluating liver graft function is an ex vivo 

perfusion model (isolated, perfused liver, or IPL). R. Li conducted IPL studies on livers cold-

stored in UW solution with ABC294640 and found that the drug dose-dependently decrease bile 

production and increased LDH release following preservation for 24 hours compared to vehicle 

controls (Figure 6.5a, b). Though not significant, the biological ramifications of a cessation of 

bile production at higher concentrations of ABC294640 correlates with the increased LDH 

release and failed transplants of a dysfunctional liver (in Figure 6.4). While these functional 

parameters were impacted by the dose of ABC294640, flow and resistance parameters were not 

significantly different between the groups, indicating that these livers were perfusing on the IPL 

apparatus (Figure 6.5c). Small changes in flow with opposite changes in resistance indicate those 

livers receiving 105 and 131µM ABC294640 have tighter vasculature, matching the functional 

profile of a more damaged liver.  
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Figure 6.5 Isolated perfused liver (IPL) showed detrimental effects of ABC294640 treatment 

during cold storage 

Rat livers exhibited signs of preservation injury following twenty-four (24) hours of cold storage 

with escalating concentrations of ABC294640 on IPL apparatus. Control (n=6), 87µM (n=6), 

105µM (n=4), 131µM (n=3), two-way ANOVA with Bonferroni’s multiple comparisons test 

performed, statistically significant when *p<0.05. a) LDH release, a marker of tissue damage, is 

increased in those livers treated with ABC294640, at any concentration, compared to control. b) 

Bile production is decreased, and ultimately ceases, with increasing doses of ABC294640 

compared to control (not significant). c) Flow and resistance are not markedly altered by 

ABC294640 treatment compared with control livers.  

 

6.3.5 Warm ischemia worsens preservation injury phenotype  

Preparing this in vitro organ preservation model to study DCD in the future, we introduced 

one (1) hour of warm ischemia (WI) prior to 24 hours of cold storage and compared these cells to 

those receiving cold storage alone (as well as fresh incubator controls). Cells were treated with 
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ABC294640 (100µM) prior to cold storage. The HepG2 cells receiving WI for one (1) hour were 

significantly less viable than their fresh or CS alone counterparts (Figure 6.6). However, there was 

no difference between the groups that all received ABC294640 treatment; all were less viable than 

their vehicle counterparts, regardless of storage conditions.  

 

Figure 6.6 Warm ischemia worsens preservation injury phenotype in HepG2 cells 

ABC294640 treatment (100µM) decreased cell viability, regardless of the conditions 

imposed on HepG2 cells. There was no difference between control, 24hr CS, and 1hr WI+24hr 

CS groups that received ABC194640. Among those groups receiving vehicle (DMSO), there was 

a significant decrease in cell viability between incubator controls and 24hr CS groups. Adding 

warm ischemia (WI) only decreased viability further. Two-way ANOVA with Bonferroni’s 

multiple comparisons test performed to compare all groups (n=3 in each group, statistically 

significant when *p<0.05). 

 

6.3.6 SK2 siRNA 

 Silencing SK2 in HepG2 cells would provide another confirmation of any effects of SK2 

in preservation injury. Genetic knockout (KO) mice were available in limited quantities, and due 

to the sensitivity of primary cells, they are not conducive to cold storage method optimization. 
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As such, we purchased a pooled siRNA from Dharmacon (recommended by a collaborator) and 

tasked C. Chmielewski with this portion of the project, overseen by the author. Despite many 

attempts with the siRNA, we did not see sufficient knockdown of SK2 compared to the 

RNAiMAX lipofectamine controls (Figure 6.7a). Functionally, HepG2 cells treated with siRNA 

for 24 hours were cold stored for an additional 12 hours, and viability was measured (Figure 

6.7b). We hypothesized that knocking down SK2 with siRNA would result in a decrease in cell 

viability, showing that SK2 activity may regulate a process that is disrupted by hypothermic 

ischemia. There was no difference between the lipofectamine controls and cells treated with the 

SK2 siRNA. 

 

Figure 6.7 Application of SK2 siRNA to HepG2 cells 

a) Western blotting showed no significant reduction in SK2 protein levels compared to 

lipofectamine (lipo) controls, at 24 or 48 hours (n=2, error bars represent variation of the mean 

between triplicates per blot). Expression relative to GAPDH loading control. b) Following 12 

hours of cold storage, HepG2 cells treated with SK2 siRNA for 24 hours were equally as viable 

as controls as measured by WST-8 assay (n=2, error bars represent variation of the mean 

between triplicates per plate). 
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6.3.7 ABC294640 treatment decreases complex I activity in the electron transport chain  

 Since ABC294640 treatment of HepG2 cells results in decreased viability following cold 

storage, we wanted to examine if mitochondrial activity was causatively involved in this 

decrease. We showed that HepG2 cells exhibit decreased respiration following 24 hours of cold 

storage (no drug treatment), an expected result (Figure 6.8). Complex I respiration is calculated 

by subtracting oxygen flux following rotenone injection from the flux following ADP injection. 

Complex II respiration is calculated by subtracting flux after TTFA from flux after succinate 

injection. Complex IV respiration is calculated by subtracting flux after azide from flux after 

TMPD injection. 

 

Figure 6.8 HepG2 cellular respiration is decreased following 24hr of cold storage (CS) 

HepG2 cells were pelleted and divided evenly between chambers A and B on the O2k following 

24 hours in the incubator (control) or in cold storage (CS). All respiratory activity normalized to 

cell count per chamber. No statistical analysis performed, n=1. 

 

To first assess how HepG2 cell mitochondria respond at baseline (i.e., no cold storage), 

we treated a T75 flask of HepG2 cells with either 50µM ABC294640 or DMSO vehicle control 

and replaced them in the incubator for 12 hours. Each flask was analyzed separately in the O2k 

C
om

ple
x 

I

C
om

ple
x 

II

C
om

ple
x 

IV

0

5

10

15

20

O
2
 f

lu
x
 (

p
m

o
l/
m

in
/1

0
3
 c

e
ll
s
)

Control

24hr CS



 

 

 76 

in duplicate. While this 12-hour ABC294640 treatment had a global effect on mitochondrial 

respiration, the most striking decrease was in complex I respiration (Figure 6.9).  

 

Figure 6.9 ABC294640 treatment decreases ETC activity in HepG2 cells 

After 12 hours of ABC294640 treatment, HepG2 cells exhibited a significant defect in complex I 

respiration. Complex I activity was significantly decreased compared to complexes II and IV 

following ABC294640 treatment. One-way ANOVA with Bonferroni’s multiple comparison test 

performed, comparing the control group with the ABC294640-treated group at all complexes, 

n=3, *p<0.05. 

 

6.4 Conclusions 

 Sphingolipid metabolism is dysregulated by hypothermic ischemia, as evidenced by the 

slight shift in the sphingolipid rheostat during cold storage. In terms of experimental design, 

FAF-BSA does sequester S1P in aqueous solution, and extrapolating from the LPA studies, this 

further supports the notion that FAF-BSA is not an optimal or effective carrier for LPLs during 

hypothermic ischemia. Inhibiting SK2 with ABC294640 during cold storage leads to a dose-

dependent decrease in cell viability. Furthermore, ABC294640 treatment results in a defect in 

ETC complex I respiration in HepG2 cells (without cold storage). The mechanism of this 

complex I defect is discussed in Chapter 7. Further studies are needed to verify the siRNA 
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knockdown of SK2 and any functional effects that may have on hepatocyte viability during cold 

storage.  

Chapter 7: Novel mechanism of ABC294640 

7.1 Abstract 

 ABC294640, a selective SK2 inhibitor, is utilized clinically and experimentally in the 

laboratory to modulate S1P synthesis. Modulating this pathway is of great interest due to its vast 

involvement in many pathophysiologies, including liver cancer, lung cancer, and inflammatory 

diseases. Determining the underlying mechanism of ABC294640’s devastating impact on livers 

during preservation, for both transplantation into rodents and ex vivo IPL, is very important to 

consider for a drug currently in clinical trials. As the mitochondria are a) a downstream target of 

LPL signaling, b) dysregulated during organ preservation, and c) SK2 is an important source of 

S1P in the mitochondria that is important for complex IV assembly, it was prudent to investigate 

the if the mitochondria were affected by treatment with this SK2 inhibitor using high-resolution 

respirometry (HRR). We found that 12 hours of ABC294640 treatment significantly reduced 

complex I respiration compared to vehicle controls. Furthermore, this effect is independent of 

ABC294640’s primary mechanism of action (SK2 inhibition). Injection of ABC294640 directly 

into the HRR chambers rapidly inhibits complex I, but not complexes II-IV. SK2 null hepatocytes 

exhibited the same complex I inhibition as a result of ABC294640 injection into the HRR 

chambers as their wild-type counterparts. This indicates a novel mechanism of action of 

ABC294640, which must be considered due to the drug’s current clinical trial applications. 
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7.2 The discovery and utility of ABC294640, a selective sphingosine kinase-2 inhibitor 

Targeting sphingosine kinases 1 and 2 (SK1 and SK2, respectively) emerged in the early 

2000s as a desirable avenue for drug development, primarily due to the combined roles of 

sphingolipid signaling in cancer and a lack of selective SK2 inhibitors (many also inhibited other 

protein kinases) (K. French et al. 2010). ABC294640, the structure of which is shown in figure 

7.1, was first identified in a screen for compounds containing an aryladamantane scaffold, due to 

its good oral bioavailability (K. J. French et al. 2006; K. French et al. 2010; K. J. French et al. 

2003; Xun et al. 2015). The IC50 of this compound is around 40µM, and it is selective for the SK2 

isoform up to 100µM, making it a seemingly perfect compound for drugging SK2 in vivo (Gao et 

al. 2012). ABC294640 competes with sphingosine for the active site on SK2, with a Ki of around 

10µM (K. French et al. 2010). 

 

Figure 7.1 Structure and selectivity of ABC294640, a sphingosine kinase-2 inhibitor 

 

ABC294640 was first studied in a murine model of inflammatory bowel disease, but its utility 

was realized and studies expanded to include other diseases with inflammatory origins, as well as 

several types of cancer (Britten et al. 2017; Maines et al. 2008; Lewis, Voelkel-Johnson, and 

Smith 2018). Low toxicity combined with efficient oral delivery of the drug makes it attractive 
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for clinical use, and it is currently being investigated in several phase II-III clinical trials for solid 

tumors, as well as COVID-19-associated pneumonia (NIH 2020). 

7.3 Results 

7.3.1 ABC294640 dose-dependently inhibits complex I respiration in multiple cell types  

 To evaluate the mechanism of ABC294640’s toxicity in hepatocytes (Chapter 6), high-

resolution respirometry (HRR) on the Oroboros Oxygraph-2k (O2k) was performed. Upon 

ABC294640 injection into the O2k chambers with either HepG2 or SK Hep-1 cells, there was an 

immediate reduction in oxygen consumption (or flux), which was not further reduced by rotenone 

(Figure 7.2a). The concentration of ABC294640 chosen for subsequent HRR studies, 50µM, was 

selected due to a) its neutral effect in control cells, b) its cytotoxicity in cold stored cells, and c) it 

is the lowest effective concentration required to inhibit complex I to the same degree as rotenone 

(Figure 7.2b). A dose-response of DMSO vehicle was conducted as well, with no significant 

changes in oxygen flux. At the 31-minute mark in Figure 7.2c, labeled “ABC” in green, the 

immediate decrease in oxygen flux after injection of ABC294640 can be observed.  
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Figure 7.2 ABC294640 directly inhibits complex I of the ETC 

a) HepG2 (n=3) and SK Hep-1 (n=4) cells are responsive to ABC294640 as a direct complex I 

inhibitor. Two-way ANOVA with Bonferroni’s multiple comparisons test showed that complex I 

baseline flux is significantly higher than that of ABC294640 (in both cell types), while the flux 

following ABC294640 treatment is not different compared to rotenone (in both cell types), 

*p<0.05; b) Complex I inhibition is dose-dependent, with no obvious difference between 50µM, 

100µM, and rotenone (n=2, no statistical analysis performed); c) O2k output tracing, showing 

the DMSO artifact and rapid inhibition of complex I by ABC294640. Of note, at the 42 minute 

mark, the chamber was opened to allow dissolved oxygen to replenish prior to complex IV 

substrate addition. The flux (red) drops off, while the oxygen concentration (blue) increases, 

restabilizing after the chamber is closed. 

 

7.3.2 ABC294640 does NOT inhibit activity at complexes II-IV 

 When examining complex I in the O2k, it is possible that oxygen consumption occurring 

in downstream ETC complexes (II-IV) may manifest at complex I. As the experiment moves down 
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the ETC, and the inhibitor for each complex is added, the activity of individual complexes can be 

separated. We investigated if ABC294640 was exerting its inhibitory effect on complexes II-IV, 

to confirm that the decrease in oxygen flux at complex I was in fact due to ABC294640 directly 

inhibiting complex I, and not a downstream ETC complex. Injecting ABC294640 into the O2k 

chambers does not significantly decrease oxygen consumption after complex II, III, or IV 

substrates (Figure 7.3). Furthermore, addition of the complex-specific inhibitors after ABC294640 

injection elicited the expected response: a decrease in oxygen flux.  

 

Figure 7.3 ABC294640 does NOT inhibit complexes II, III, or IV  

Complex II: HepG2 (n=3), SK Hep-1 (n=3), one-way ANOVA with Bonferroni’s multiple 

comparisons test compared flux following injection of each chemical within each cell type, there 

was no difference between complex II baseline (following succinate injection) and ABC294640, 

and there was a significant difference between the flux following ABC294640 and that following 

TTFA. Complex III: HepG2 (n=1, no statistical tests conducted), trending such that flux 

following complex III substrate injection is not different from that following ABC294640 

injection, while antimycin A produces a decrease in flux. Complex IV: SK Hep-1 (n=3), 

ABC29464 injection does not decrease flux following injection of complex IV substrates, while 

there is a significant decrease in flux following azide injection. *p<0.05 is considered 

statistically significant for all above datasets/analyses. 
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7.3.3 K145 does NOT inhibit complex I respiration 

 K145, a structurally distinct SK2 inhibitor with an IC50 of 4.3µM, was injected into the 

O2k chambers (final concentration 5µM) after addition of ADP and the effect on oxygen 

consumption was observed (DMSO vehicle control was included and showed no significant effect 

on O2 flux outside of the known “vehicle dip”). Figure 7.4 shows how HepG2, SK Hep-1, and 

MDCK cells respond to K145 injection into the O2k chambers. Due to K145’s structural 

uniqueness compared to ABC294640 and rotenone, we believe this evidence strengthens the 

argument that ABC294640 is acting on complex I through an SK2-independent mechanism. 
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Figure 7.4 K145 does not inhibit complex I respiration 
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After oxygen signal stabilization, addition of complex I substrates and ADP, the “complex I 

baseline” was obtained. K145 was injected in place of ABC294640 after addition of ADP to 

determine the effect of K145 on complex I activity. No significant decrease in flux was observed 

following K145 injection. Two-way ANOVA with Bonferroni’s multiple comparisons test 

compared flux following chemical injection within each of the three cell types, n=3 in each 

group, *p-value < 0.05 is considered statistically significant.  

^ The only sample with a statistically significant difference between K145 and rotenone were SK 

Hep-1 cells. The other two cell types, however, exhibit a response trending in that direction.  

 

7.3.4 Novel mechanism of ABC294640 action is independent of SK2 activity  

 To complement the pharmacologic data on ABC294640, genetically-modified biologic 

materials were used to confirm that this drug was working independent of SK2, the primary target 

of ABC294640 and enzyme responsible for producing intracellular S1P. We first attempted 

silencing/knockdown of SK2 (protocol described previously) with pooled siRNA from Dharmacon 

and conducted HRR analysis in tandem with western blotting for protein levels (see Figure 6.7 for 

SK2 protein expression and impact on cell viability). We did not see a significant decrease in SK2 

protein levels following siRNA treatment compared to lipofectamine controls (Fig 6.7a), and the 

HRR data showed no difference between SK2 siRNA and lipofectamine (Fig 7.5a). Likewise, with 

primary hepatocytes isolated from SK2 KO mice and their WT counterparts responded similarly 

to ABC294640 injection into the O2k chambers with a significant reduction in complex I activity, 

not further reducible by rotenone (Fig 7.5b).  
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Figure 7.5 Genetic manipulation of SK2 did not impact ABC294640’s complex I inhibition 

a) Functional results of SK2 siRNA and lipofectamine controls in HRR analysis (no significant 

protein level reduction, n=4); b) Germline SK2 knockout mouse hepatocytes respond to 

ABC294640-mediated complex I inhibition in the same manner as WT littermates (n=3); Two-

way ANOVA with Bonferroni’s multiple comparisons test examined flux following injection of 

each chemical, within each cell type and between cell types, *p<0.05 is considered statistically 

significant. 

7.4 Conclusions 

The mechanism of ABC294640’s devastating effects on livers for transplant is likely in 

part due to the drug’s direct chemically-mediated inhibition of complex I of the ETC. When HepG2 

cells were treated with ABC294640 overnight, they exhibited a significant complex I defect 

compared to vehicle controls. Upon further investigation, ABC294640 was found to directly 

inhibit complex I oxygen consumption without impacting complexes II, III, or IV. K145, a 

structurally distinct SK2 inhibitor had no effect on complex I activity, indicating that the 

mechanism of action may be independent of SK2. Finally, hepatocytes lacking SK2 were 

responsive to ABC294640-mediated complex I inhibition, confirming that SK2 is not involved in 

modulating this response. These data uncover a novel mechanism of action for ABC294640.  
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Chapter 8: Discussion 

8.1 Methodological development and optimization 

 It may seem obvious that biological systems behave differently under hypothermic 

ischemia compared to physiologic conditions. Why do we study protein behavior and signaling 

under these conditions, if they are not in line with traditional mammalian physiology? Organ 

preservation remains an essential component of transplantation, and advances in this field will 

open the doors required for many more Americans (and people of the world) to receive their life-

saving organ transplant. Hypothermic ischemia is the reality of organ preservation, despite 

advances in mid- and normothermic oxygenated perfusion. Even if the latter advances gain more 

traction, hypothermic ischemic static cold storage will always be the default if problems arise.  

 Our research group developed an in vitro model for organ preservation, involving airtight 

Tupperware, tissue culture plates (6-, 24-, and 96-well), a nitrogen purge, and storage on slushy 

ice (2-4C) for the desired amount of time. After cold storage and one (1) hour of reperfusion in 

the incubator, the endpoint is assessed (cell viability, protein/RNA expression, lipidomics analysis, 

etc.). However, novel to these studies is the application of lipid mediators (such as LPA) to the 

cell culture medium during cold storage. LPA (and S1P, for the sake of future experiments) is a 

lipid and is therefore hydrophobic and requires a carrier system for delivery to aqueous solutions. 

Typically, bovine serum albumin (BSA) is used to carry lipid mediators into aqueous in vitro 

studies, at a concentration of 0.1-0.5% (Cerutis et al. 2014). As mentioned previously, the behavior 

of the entire biological system changes in the cold and this is starkly evident when attempting to 

apply LPA to cells in culture prior to induction of hypothermic ischemic cold storage.  
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 It is also important to ensure that ischemia is induced on the entire 96-well plate. We 

initially conducted a nitrogen purge for 5 minutes in the inner container, and 5 minutes in the outer 

container. However, after careful inspection, we found that the outermost wells, regardless of 

experimental condition, were significantly more viable than those towards the interior of the plate. 

This was resolved by increasing the nitrogen purge to 10 minutes for each container. We also 

performed temperature monitoring in the cold storage boxes, due to results indicating that the 

extent of preservation injury was not appropriate for the applied time frame of hypothermic 

ischemia.  

 Overall limitations for these studies are further complicated by a low sample size. During 

method development, each replicate is different (as is necessary to optimize the methods), so the 

resulting sample size is small. Another global limitation is translatability of HepG2 mechanistic 

data to primary hepatocytes and thus physiologic preservation injury. However, the goal is not to 

translate immortalized cancer cell line results to the clinic; rather, it is to optimize methods until 

they are suitable for application to primary hepatocytes. As will be covered in the discussion, a 

new method of delivering LPLs in cold storage will be required to continue these studies.  

8.2 RhoA and ROK in preservation injury 

 Moesin, the dominant ERM protein in the liver, is inactivated by hypothermic ischemia. 

Mutation of moesin to either an ON or OFF configuration confers protection or worsening of the 

preservation injury phenotype, respectively (Tian et al. 2014). When moesin is phosphorylated at 

the threonine-558 position, it becomes activated and open, allowing the linker element to bind 

the actin cytoskeleton to the plasma membrane, stabilizing cell morphology. The activation of 

ERM proteins is controlled, in part, by Rho kinase (ROK), and ROK activity is modulated by 

RhoA. Inhibiting ROK and RhoA during preservation increases preservation injury in HepG2 
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cells, suggesting these two proteins play a role in protecting the cells during hypothermic 

ischemia. Lysophospholipids (LPLs) are bioactive lipid growth factors that circulate in the blood 

stream, are upstream of the RhoA/ROK/ERM axis and are washed away during organ 

preservation. Thus, the motivation for the studies in this dissertation began with these early 

studies on downstream effectors.  

 It is important to remember that ROK is not the only kinase shown to phosphorylate 

ERM proteins in vivo. Protein kinase C (PKC), Nck interacting kinase, G-protein receptor 

coupled kinase 2, as well as non-receptor tyrosine kinases are also responsible for controlling 

ERM activation via phosphorylation. Likewise, proteins responsible for inactivation via 

dephosphorylation include protein phosphatase 1α (PP1α) and myosin light chain phosphatase; 

targeting phosphatases to upregulate ERM protein activation is another mechanism that warrants 

further investigation (Ponuwei 2016). 

8.2 Lysophosphatidic acid (LPA) in preservation injury 

8.2.1 LPA is not protective against preservation injury 

Despite many attempts to troubleshoot testing the hypothesis that LPA signaling is 

protective against preservation injury, we found that there is no significant reduction in HepG2 

cell preservation injury associated with the application of exogenous LPA. Escalating doses of 

LPA (0.1 – 1000M) did not significantly improve the phenotype following cold storage, although 

at the highest concentration of LPA (1000M), the response is trending in a positive direction. 

However, at these high concentrations, solubility becomes a challenge, and they are above 

physiologic serum levels in humans.  
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While serum and plasma concentrations of LPA are 1-10M and less than 2nM, 

respectively, we are proposing an adjuvant to an existing preservation solution as the end-goal of 

this research (Panetti 2002). The required concentration of adjuvant, in this case LPA, to elicit a 

protective response in UW solution would not need to correlate to physiologic conditions. UW 

solution, by nature, is not physiologic – if physiologic conditions were sufficient to prevent 

preservation injury, the field of organ preservation would be much farther along. LPA and other 

growth factor signaling pathways (in addition to those included in these studies) such as 

VEGF/EGF provide exciting therapeutic exploration opportunities in many pathophysiologies, 

including cancer, inflammatory diseases, and even organ preservation/transplantation.  

There is debate amongst statisticians and other scientific professionals about the validity 

and reproducibility of data that has been subjected to outlier removal. According to a survey 

conducted by Gress et al. in 2018, scientists with medical school faculty appointments who held a 

PhD were nearly twice as likely to exclude outliers than their MD/DO counterparts, regardless of 

the availability of a statistician. There are several acceptable methods for removing outliers, 

including the Tukey method and Grubb’s test (ESD method). Editing data by removing outliers 

may introduce type I error, where researchers may find a statistically significant difference where 

one actually does not exist (Gress, Denvir, and Shapiro 2018).  

Another point to consider, however, is the known plethora of inconsistencies with in vitro 

experiments, especially those conducted in 96-well plates in multiplicate. When designing an 

experiment in this setting, it is standard practice to apply conditions to cells plated in at least 

triplicate (to account for any plating or other errors that may result). These multiplicates are then 

assessed for any technical outliers (such as plating errors, drug application errors, plate edge 

effects, etc.) using one of the aforementioned outlier tests. Once the technical outliers are removed, 
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the mean is calculated for the remaining multiplicate wells and this value is reported as an “n” of 

one (1). Since the cells contained within the single plate were from a single population, albeit an 

immortalized one in many of these studies, and the conditions were applied all at once, it is correct 

to count the entire plate as one (1) replicate of the experiment (Lord et al. 2020).  Upon evaluation 

of all of the cell viability data collected for these studies, we decided to remove outliers from the 

raw data using the Tukey outlier test (which relies on the interquartile range, or IQR, to set the 

boundaries for inclusion). Often times, it is obvious with the naked eye at the completion of an 

experiment which wells were incorrectly plated (such as a large clump of cells in one well, which 

is a problem with “sticky” or overly adherent cell lines), over- or underconfluent, incorrectly 

pipetted, or otherwise technically inept. Our practice was to mark these wells at the conclusion of 

the experiment, and these blind assessments were confirmed by the Tukey outlier test. 

 As optimization of these studies progressed, it was observed that any experimental 

conditions containing bovine serum albumin (BSA) led to cells which a) were less viable than the 

clear medium controls, and b) were equally viable, regardless of additional reagents such as LPA 

in the solution. To determine if this was the cause for the lack of response to LPA in cold-stored 

HepG2 cells, we investigated the role of BSA in this process. 

8.2.2 LPA receptors in preservation injury 

 LPA receptor expression is variable between different tissue types, and has been shown to 

be altered following injury to the liver in the form of a partial hepatectomy (Simo et al. 2014). As 

we progressed through these studies, another group published on the presence of LPA receptors in 

primary hepatocytes, so we postponed this investigation (Bae et al. 2017). However, it is important 

to note that based on the data from Simo et al. (2014), an increase in circulating LPA and specific 

LPARs as a result of hepatic injury is also a possibility in the case of preservation injury. It remains 
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to be determined how the hypothermic aspect of preservation may alter LPAR expression, but if 

these receptors are upregulated and washout eliminates circulating LPA, then we may have a 

druggable target. It is a challenge to conduct cold storage experiments on primary hepatocytes; 

these cells require a matrix for adherence and exhibit low overall optical density values upon WST-

8 assay for viability; detecting changes as a result of LPA administration may not be possible. It 

is also possible that the BSA carrier protein required had a disproportionate effect on the primary 

cells, resulting in an even lower overall optical density. Future studies would be required to 

optimize the method for lipid delivery during cold storage to primary cells. 

8.3 Albumin exhibits cytotoxicity in vitro, which worsens following cold storage 

After careful consideration of the results reported in Chapter 5, perhaps BSA is masking 

any protective effects of LPA treatment. Independent of the presence of LPA, we found that even 

at low concentrations (0.1%), BSA is cytotoxic to cells in culture following a period of cold storage 

(while the cytotoxic threshold was increased to 10% BSA in incubator-kept cells). In line with the 

idea that lipid growth factors may protect against preservation injury, we examined how fatty acid 

saturation affected cytotoxicity of BSA during cold storage. Fatty acid saturated and fatty acid free 

BSA were equally as harmful to HepG2 cells during hypothermic ischemia. Initially, we also 

hypothesized that the species origin of BSA may be the cause of the detrimental effects. However, 

upon replication with human serum albumin (HSA), the species of origin did not change the 

outcome. Albumin is used clinically in organ transplantation to maintain blood volume post 

transplantation, so these data should be considered if any albumin is being added during 

preservation (Amouzandeh et al. 2018). A different lipid delivery method would be needed to 

continue these studies.  
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8.4 Sphingolipid signaling may be involved in preservation injury 

The balance between pro-survival and pro-apoptotic sphingolipids is a determining factor 

in cell fate. Organ preservation conditions shift this balance from pro-survival to pro-death, 

correlating to a decrease in S1P:Ceramide ratio. Preliminary data showed that treating livers with 

ABC294640, a selective sphingosine kinase-2 (SK2) inhibitor, during preservation led to fatal 

graft failure in recipients post-transplant and increased damage to isolated perfused livers. This 

trend continued in the in vitro organ preservation model, resulting in a dose-dependent decrease in 

HepG2 cell viability following cold storage. These data suggest that SK2 is important in 

maintaining hepatocytes during liver preservation. However, further examine was needed to 

determine the mechanism of such a significant liver injury.  

8.5 ABC294640 is an ETC complex I inhibitor 

8.5.1 Comparison of ABC294640 and rotenone 

 We found that ABC294640 possesses a secondary, novel mechanism of action as an ETC 

complex I inhibitor (in addition to inhibiting its primary target, SK2). ABC294640, developed due 

to the increasing demand for specific sphingosine pathway pharmacologics, has been shown 

effective against many types of cancer in vitro, in vivo, and is now in human clinical trials for 

cancers as well as the treatment of COVID19-associated pneumonia (NIH 2020). Its widespread 

clinical utility coupled with its numerous laboratory uses makes ABC294640 a powerful and 

popular compound (Lewis, Voelkel-Johnson, and Smith 2018). And until recently, it was thought 

to only possess one mechanism of action: inhibiting SK2 by binding competitively with 

sphingosine at the enzyme’s active site (K. French et al. 2010). We showed that ABC294640 

directly inhibits complex I of the ETC, independent of SK2. This effect on complex I oxygen flux 
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is similar to that of rotenone, the most well-studied complex I inhibitor. If this compound is to be 

continued in the clinic, determining the mechanism of this action is crucial to understanding how 

ABC294640 behaves in different pathophysiologies.   

 The site of action of rotenone in complex I was discovered in 1968 through mutational 

studies. Rotenone binds to the non-heme iron the NADH dehydrogenase enzyme, blocking 

electron transfer through the iron centers of complex I. However, this does not seem to be the only 

site of rotenone binding to complex I, making it difficult to identify if any single interaction is the 

most important for rotenone’s mechanism of action (Palmer et al. 1968). There are multiple 

inhibitors of complex I, including piericidin A, mucidin, and capsaicin, which exhibit diverse 

actions at complex I (Sharma, Lu, and Bai 2009). A structural comparison between ABC294640 

and these compounds may provide insight into the mechanism of action. 

8.5.2 Selectivity of ABC294640 on the basis of ETC complex structure 

 At the beginning of an O2k HRR experiment, when complex I substrates and ADP are 

added to the chamber, it is possible that any defects seen in complex I activity are artifacts from a 

downstream ETC complex. In order for the oxygen to be consumed, those electrons must be 

transferred all the way down through complexes II, III, and IV before arriving at their final 

destination. If there is a defect in complex II, it is possible that it will show up when modulating 

complex I as well as complex II. As such, we needed to ensure that ABC294640 was not acting at 

a downstream ETC complex and manifesting that inhibition in the respiration capacity of complex 

I. By injecting ABC294640 directly into the chamber in place of TTFA (complex II), antimycin A 

(complex III), and sodium azide (complex IV), we showed that ABC294640 only acts on complex 

I of the ETC. 
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 If this novel mechanism is truly a chemical interaction independent of ABC294640’s target 

protein, SK2, then a structurally distinct SK2 inhibitor producing no response in the O2k would 

confirm this suspicion. K145 was created at Virginia Commonwealth University in the Department 

of Medicinal Chemistry, is a selective SK2 inhibitor (IC50 of 4.3M), and has a unique chemical 

structure compared to ABC294640 (and rotenone) (Liu et al. 2013). Since K145 is soluble in 

DMSO (like ABC294640), we confirmed with a vehicle only injection that DMSO had no 

appreciable effect on oxygen consumption. K145 was then injected into the chambers in place of 

rotenone (to a final concentration of 5M) and no significant changes in oxygen consumption were 

observed, further confirming our hypothesis that ABC294640 was acting on complex I 

independent of SK2.  

8.5.3 SK2 null (SK2-/-) mouse hepatocytes are equally as responsive to ABC294640-mediated 

inhibition of complex I as their WT counterparts 

 Pharmacologic methods attempting to manipulate SK2 (via K145 injection) are only one 

half of this puzzle. The ultimate proof of concept is genetic manipulation of the gene controlling 

the protein of interest. Based on the pharmacologic data discussed above, we hypothesized that 

SK2 was not involved in this response of complex I to ABC294640 treatment. To test this, we 

isolated hepatocytes from SK2 knockout mice (and their WT litter mates) and placed them in the 

O2k chambers for HRR analysis. When SK2 null cells were subjected to ABC294640 injection in 

the chamber in place of rotenone, a significant decrease in complex I activity was observed. This 

result was similar to the response of the WT control cells, confirming that SK2 is not involved in 

this response of hepatocytes to ABC294640 in the O2k chambers.  
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8.5.4 Autoxidation of TMPD 

 Many users of the O2k create unique protocols to satisfy their experimental requirements. 

Unfortunately, there are over one hundred (100) SUIT protocols published on the manufacturer’s 

website (https://wiki.oroboros.at/index.php/MitoPedia:_SUIT). While this provides a wide variety 

of options for using the instrument to its fullest potential, these protocols can be cumbersome and 

may be extraneous for the users’ goals. For these studies, we were specifically interested in 

complexes I – IV and the behavior of each following the injection of ABC294640 to the chamber. 

Early experiments were conducted following a published protocol from a collaborating laboratory, 

which focused exclusively on complexes I, II, and IV (Mohsin et al. 2019). As the project 

progressed, small adjustments were made according to the manufacturer’s website, cited 

publications, and direct correspondence from Oroboros instrumental support. 

 Due to the scarcity of several biological samples (such as the SK2 null mice used for 

hepatocyte isolation), it was favored to examine as many complexes in one experiment (i.e. one 

chamber) as possible. A lack of literature on the subject of cross-reactivity of reagents in the 

chamber led us to believe that all four (4) complexes could be modulated in a single experiment. 

We tested this assertion on HepG2 cells due to their abundance and found that complex III and IV 

reagents were incompatible with each other. That is to say, once duroquinone and antimycin A 

were in the chamber, the POS couldn’t handle the addition of ascorbic acid and TMPD (Fig 10.4.1). 

While it is known that TMPD is susceptible to autoxidation (and ascorbic acid is added to prevent 

this during the experiment), this level of oxygen consumption is extreme and the result of an 

unknown interaction between one of the complex III reagents and TMPD (Munday 1988). This 

effect was observed with and without cells in the chamber, further confirming that the reagents 

and not the sample were responsible for autoxidation (Fig 10.4.2).  

https://wiki.oroboros.at/index.php/MitoPedia:_SUIT
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8.5.5 O2k setup and maintenance complications 

 The author was involved in setting up the O2k out of the box, with limited guidance from 

the manufacturer. Some of the early data collected from the instrument had high interchamber 

variability, likely a result of bubble formation under the Teflon membrane and/or incomplete POS 

calibration. Once realized, and the membranes replaced, variably between chambers was reduced. 

Unfortunately, after 3 months in storage due to the COVID-19 pandemic, one of the POS 

electrodes was unable to be calibrated following a membrane change and POS service. There is 

one remaining option for the lab in the form of troubleshooting before the POS must be sent back 

to the manufacturer in Austria, postponing any remaining studies until service is complete. 

8.6 Considerations for future expansion of these projects 

 The global COVID-19 pandemic delivered a devastating blow to the world in March 

2020, and graduate students were certainly not spared. Between being out of the lab for over 

three (3) months, working in healthcare on the front lines (and supporting a spouse who does the 

same), and worrying about the health of my medically fragile mother and brother, this 

dissertation completion could not have come at a more stressful time. That said, as a result of the 

pandemic, many of the studies proposed in this section scheduled for this year were not able be 

completed, prior to the submission of this dissertation. Therefore, I will propose them as 

ongoing/future directions for this work, which I believe has opened an exciting door in the world 

of organ preservation. 

8.6.1 Selecting an appropriate SK2 inhibitor 

 Before moving forward with repeating the cold storage studies in hepatocytes while 

inhibiting SK2 (as the first round of studies used ABC294640, which as explained in section 8.5, 

is not an appropriate drug for these experiments), we must identify a suitable pharmacologic agent 



 

 

 97 

for targeting SK2. There are several options available commercially, including K145 and 

SLR080811, but many more compounds are in the pipeline due to the utility of these inhibitors in 

cancer treatment and laboratory exploration (Cao et al. 2018). Selective inhibition of SK2 in vitro 

has the ability to increase circulating S1P in an SK1-dependent manner, which is why the 

development of these compounds is a challenge (Kharel et al. 2012). In silico screening is a 

powerful tool for identifying new potential therapeutics, though the crystal structure of SK2 has 

not yet been solved. Homology modeling with the known crystal structure of SK1 may provide 

some insights into potential active sites on the enzyme. More importantly, a selective inhibitor of 

SK2 would provide a molecular tool for discerning the role of S1P from SK2 intracellularly during 

organ preservation.  

8.6.2 Treatment with exogenous LPLs during cold storage 

 The ultimate proof-of-concept is in the lipid mediator rescue studies to determine if the 

overall preservation injury phenotype can be improved by application of exogenous lipids, such as 

LPA or S1P. If an improvement in cell viability is observed, then using some of the molecular 

tools described throughout this dissertation to investigate at what level of the signaling cascade 

this improvement lies. Is it in the more distal proteins, such as Rho? Or, at the proximal end of the 

pathway, at the level of ERM protein configuration, transcription, or mitochondrial activity? Or 

perhaps even an intracellular mechanism yet to be characterized? Our lab has previously worked 

from the inside out, and now we are proposing focusing on cell surface signaling as a potential 

therapeutic strategy. As discussed in section 8.3, before these rescue protocols can be explored, 

either a new method of lipid delivery in aqueous cold storage must be developed or water/DMSO-

soluble LPL mimetic or agonists must be identified. A limitation of using C3 exoenzyme 

transferase from c. botulinum is that it inhibits all three isoforms of Rho (RhoA, RhoB, and RhoC).  
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 While not the focus of this research, the role of the immune system in transplant recipients 

is vastly important. Despite advances in immunosuppressant therapy, graft-versus-host disease 

(GVHD) and allograft rejection are still observed. S1P signaling has been demonstrated to regulate 

the immune response to small bowel transplant. S1P receptor agonists, such as FTY720 and KRP-

203, have efficacy against acute causes of rejection in animal transplant models (Kimura et al. 

2003; Shimizu et al. 2005; Fujishiro et al. 2006). W-061, another S1P receptor agonist, binds to 

all receptors except S1PR2 and prevents immune cell recruitment to the transplanted small bowel 

(Song et al. 2012). If we can elucidate the role of S1P in preventing physiological consequences 

of preservation injury (i.e. cytoskeletal stability and mitochondrial function), then targeting S1P 

signaling would be a dual treatment in organ transplantation: inhibiting donor and recipient 

immunoreactivity to the graft and preventing physiologic disruption in the organ during 

preservation. 

8.6.3 Other possible downstream effectors contributing to preservation injury phenotype 

 Following pathways other than that of Rho/ROK, existing data suggests that Erk may play 

a protective role in ischemia-reperfusion (I-R) injury. The mechanism gets complicated, because 

in the setting of myocardial infarction and ischemic stroke, mild hypothermia is protective against 

I-R injury (by maintaining Erk phosphorylation) (Choi et al. 2017). However, organ preservation 

is a two-fold insult: profound hypothermia coupled with I-R injury. A study in 2005 on rat liver 

grafts showed that phosphatidylinositol 3-kinase (PI-3K) and Akt signaling is not only disrupted 

during liver preservation, but contributes to the phenotype (Li et al. 2005). Mutational studies 

conferring highly activated Akt proved to protect livers against I-R injury (Harada et al. 2004). 

The common theme: all of these pathways are LPL effectors. However, studies must not be limited 

to only signaling mediators associated with LPL receptors. It could take decades to figure out 
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underlying mechanisms, and there could be too many to count; however, the goal of this work is 

to develop a therapeutic strategy to prevent preservation injury. Understanding the most basic 

mechanisms, while important, is therefore only half of the puzzle.  

8.6.4 Continuing evaluation of ABC294640 and its novel mechanism of action at ETC complex I 

 Due to the clinical utility of this compound, the exact mechanism of interaction between 

ABC294640 and complex I of the ETC should be characterized. In silico and in vitro studies 

combined would likely give the best outcome. Molecular modeling and ligand docking software 

(such as Modeller, Chimera, Autodocker, etc.) can be used to predict where ABC294640 and 

complex I may interact (and if this site is distinct from that of rotenone). All that is needed is a 

.pdb file of the crystal structure of complex I, the structure of the ligand(s) (ABC294640 and 

rotenone), and a bit of trial and error with the software to determine the optimal kinetics and 

dynamics of the simulation.  

 Once a tentative binding site is proposed, then mutational studies in vitro can be conducted, 

similar to those for rotenone, to confirm the active site of ABC294640 (Palmer et al. 1968). For 

final confirmation, mitochondrial respiration can be measured in cells containing the mutant 

complex I that is unresponsive to ABC294640 binding. We would expect to see no significant 

effect in complex I, II, III, or IV activity in these complex I-mutant cells. It is at this point that 

considerations can be made about the clinical value of this drug weighed against the newly 

described risks involving the mitochondria. 

8.6.5 The future of organ preservation 

It is appropriate to end with how the field is advancing, what works and what does not in 

terms of improving graft survival, and any gaps that remain and could be good targets for future 

research. With all of the advances in biomolecular engineering on the horizon, 3-dimensional 
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bioprinting of organs may become a reality (either using a 3-D printer (Faulkner-Jones et al. 2015), 

or with a decellularized extracellular matrix from an existing organ (Jing et al. 2018)). Machine 

perfusion is improving every day, with new ex vivo perfusion devices being built and trialed around 

the country. Manipulating the temperature of preservation is also a consideration, one that comes 

with some advantages (such as a reduction in those detrimental effects caused by hypothermia) 

and some marked disadvantages (such as an increased metabolic demand and need for additional 

oxygenation) (Boteon and Afford 2019). Expanding the organ donor pool to meet the growing 

needs of the waitlist will be crucial, and that must be done by improving preservation methods 

with the ultimate goal of rehabilitating organs from uncontrolled DCD donors. 
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Chapter 10: Appendix 

10.1 Abbreviations 

ADP    adenosine diphosphate 

ALT    alanine aminotransferase 

AST    aspartate aminotransferase 

ATP    adenosine triphosphate 

ATX    autotaxin 
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Cer    ceramide 

CS    cold storage 

DBD    donation after brain death 

DCD    donation after cardiac death 

DHS1P   dihydrosphingosine-1-phosphate 

DHSo    dihydrosphingosine 

FAF-BSA   fatty acid free-bovine serum albumin 

FAS-BSA   fatty acid saturated-bovine serum albumin 

GDP    guanosine diphosphate 

GPCR    G-protein coupled receptor 

GTP    guanosine triphosphate 

HexCer   hexosylceramide 

HRR    high-resolution respirometry 

ICU    intensive care unit 

IRI    ischemia-reperfusion injury 

K+    potassium (ion) 

LPA    lysophosphatidic acid 

LPL    lysophospholipids 

MP    machine perfusion 

Na+    sodium (ion) 

NADH    nicotinamide adenine dinucleotide 

O2k    Oroboros Oxygraph-2k 

OR    operating room 

OXPHOS   oxidative phosphorylation 

PCR    polymerase chain reaction 

POS    polarographic oxygen sensor 

rpm    revolutions per minute 

S1P    sphingosine-1-phosphate 

SCS    static cold storage 

SK1    sphingosine kinase-1 
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SK2    sphingosine kinase-2 

SM    sphingomyelin 

So    sphingosine 

TMPD    N,N,N′,N′-Tetramethyl-p-phenylenediamine 

TTFA    thenoyltrifluoroacetone 

WI    warm ischemia 

WT    wild-type 

 

10.2 Final Primer Sequences 

Target Direction Sequence Tm 

(C) 

Amplicon 

Length 

LPAR1 Forward GGCTATGTTCGCCAGAGGACTAT 62 135 NT 

 Reverse TCCAGGAGTCCAGCAGATGATAA 61  

LPAR2 Forward GCTCTGTCGAGCCTGCTTGTCTTC 66 149 NT 

 Reverse ACAGTCTTGACCAGGCTGAGCGTG 67  

LPAR3 Forward TCCAACCTCATGGCCTTCTT 59 101 NT 

 Reverse GACCCACTCGTATGCGGAGA 61  

LPAR4 Forward GGGTGACAGAAGATTCATTGACTTCC 62 415 NT* 

 Reverse GGCCAGGAAACGATCCACACTA 62  

LPAR5 Forward ATGTTAGCCAACAGCTCCTCAACC 63 262 NT 

 Reverse GCCAGTGGTGCAGTGCGTAGTA 65  

LPAR6 Forward GGTAAGCGTTAACAGCTCCCACT 63 139 NT 

 Reverse TTTGAGGACGCAGATGAAAATGT 59  

GAPDH^ Forward GTCAACGGATTTGGTCGTATT 56 223 NT 

 Reverse GATCTCGCTCCTGGAAGATGG 60  

B2M Forward AGATGAGTATGCCTGCCGTG 60 96 NT 

 Reverse TCAAACCTCCATGATGCTGCT 60  

Table 10.2.1 Human Primers 

All sequences are in a 5’ to 3’ orientation. *denotes primer that was designed for traditional PCR. 

^primer sequences from (Vaughan et al. 2016). 
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Target Direction Sequence Tm Amplicon 

Length 

LPAR1 Forward GGCTATGTTCGCCAGAGGACTAT 60 118 NT 

 Reverse TCCAGGAGTCCAGCAGATGATAA 60  

LPAR2 Forward AAACTCCATGAGGAAGGGGC 60 109 NT 

 Reverse GACCTCAGGCCTGGCATATC 60  

LPAR3 Forward TCTTAGGAGCCTTCGTGGTG 59 93 NT 

 Reverse TCACGTGCTGCACATTACAC 59  

LPAR4 Forward TTTGTTAAAGGCATGCGGGC 60 111 NT 

 Reverse TCCTTACTGCAAACCGCTCA 60  

LPAR5 Forward GAAGGTATCTGTGGTCAAGGC 60 84 NT 

 Reverse AGCTCGGTACATCCTTCCCA 60  

GAPDH Forward AGTGCCAGCCTCGTCTCATA 60 248 NT 

 Reverse GATGGTGATGGGTTTCCCGT 60  

Table 10.2.2 Rodent Primers 

All sequences are in a 5’ to 3’ orientation. 

10.3 Data Tables 

 Precipitate    Supernatant    

 Serum-free 

medium 

0.1% FAF-

BSA 

FBS (pos 

control) 

12hr CS 

(0.1% FAF-

BSA) 

Serum-free 

medium 

0.1% FAF-

BSA 

FBS 12hr CS 

(0.1% FAF-

BSA) 

Cer 0.86821 0.86821 0.86821 0.86821 0.14785 0.14785 0.14785 0.14785 

HexCer 0.24858 0.24858 0.24858 0.24858 0.0528 0.0528 0.0528 0.0528 

SM 8.421165 8.421165 8.421165 8.421165 0.7804 0.7804 0.7804 0.7804 

So 0.020373 0.020373 0.020373 0.020373 0.004025 0.004025 0.004025 0.004025 

DHSo 0.002095 0.002095 0.002095 0.002095 0 0 0 0 

S1P 0.009557 0.009557 0.009557 0.009557 0.0029 0.0029 0.0029 0.0029 

DHS1P 0.000703 0.000703 0.000703 0.000703 0 0 0 0 

Table 10.3.1 Sphingolipid mass spectrometry output 

Values are in pmol/mL. Relevant abbreviations: ceramide (Cer), monohexosylceramide (HexCer), 

sphingomyelin (SM), sphingosine-1-phosphate (S1P), dihydrosphingosine-1-phosphate (DHS1P), 

sphingosine (So), and dihydrosphingosine (DHSo). 
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10.4 Supplemental Figures 

 

Figure 10.4.1 Interaction between complex III and IV reagents 

After addition of complex III substrate (duro) and inhibitor (antia), oxygen flux(red tracing) was 

stabilized and then we proceeded with complex IV substrates asc (ascorbic acid) and TMPD 

(tmpd/asc). The blue tracing sharply decreases upon addition of asc, with a further decline to 

zero upon addition of TMPD (at the 40-minute mark). While TMPD addition leads to a peak in 

oxygen flux, that peak is limited by the concentration of oxygen in the chamber (the blue tracing 

bottoms out at zero, around the 42-minute mark). Anecdotally, others who use the O2k have 

noted the same phenomenon between these reagents; separate experiments must be conducted to 

acquire complex III and complex IV data. 

 

 
Figure 10.4.2 Cell-free autoxidation of ascorbic acid and TMPD 

The addition of TMPD to a cell-free chamber results in an increase in oxygen consumption (red 

tracing) paired with a decrease in chamber oxygen concentration (blue tracing). This represents 

the capacity of TMPD to autoxidize. The sharp decline at 22 minutes represents the opening of 

the chamber stopper. 
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