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Abstract

SPARSITY AND WEAK SUPERVISION IN QUANTUM MACHINE LEARNING

By Seyran Saeedi

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2020.

Director: Dr. Tomasz Arodz,

Associate Professor, Department of Computer Science

Quantum computing is an interdisciplinary field at the intersection of computer

science, mathematics, and physics that studies information processing tasks on a quan-

tum computer. A quantum computer is a device whose operations are governed by the

laws of quantum mechanics. As building quantum computers is nearing the era of com-

mercialization and quantum supremacy, it is essential to think of potential applications

that we might benefit from. Among many applications of quantum computation, one

of the emerging fields is quantum machine learning. We focus on predictive models

for binary classification and variants of Support Vector Machines that we expect to be

especially important when training data becomes so large that a quantum algorithm

with a guaranteed speedup becomes useful. We present a quantum machine learning

algorithm for training Sparse Support Vector Machine for problems with large datasets

that require a sparse solution. We also present the first quantum semi-supervised al-

gorithm, where we still have a large dataset, but only a small fraction is provided with

labels. While the availability of data for training machine learning models is steadily

increasing, oftentimes it is much easier to collect feature vectors to obtain the corre-

sponding labels. Here, we present a quantum machine learning algorithm for training

v



Semi-Supervised Kernel Support Vector Machines. The algorithm uses recent advances

in quantum sample-based Hamiltonian simulation to extend the existing Quantum LS-

SVM algorithm to handle the semi-supervised term in the loss while maintaining the

same quantum speedup as the Quantum LS-SVM.
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CHAPTER 1

INTRODUCTION

The theory of computation has traditionally been studied almost entirely in

the abstract, as a topic in pure mathematics. This is to miss the point of

it. Computers are physical objects, and computations are physical processes.

What computers can or cannot compute is determined by the laws of physics

alone, and not by pure mathematics.

— David Deutsch [1].

Computers are physical devices for processing information by executing algorithms. Al-

gorithms are finite steps for performing well-defined procedures that realize an information-

processing task. All information-processing tasks on computers are eventually trans-

formed into a physical task. For example, on a classical computer, we perform infor-

mation processing by operating logical gates on bits using transistors as gates (e.g.

AND and NOT) and encoding bits with voltages. Quantum computers replace the bits

with quantum 2-dimensional systems (qubits), the logical gates with a set of unitary

operations (such as Pauli operators, Hadamard, C-NOT), and replace read-out with

quantum measurement.

Quantum computing is an interdisciplinary field at the intersection of computer science,

mathematics, and physics that studies information processing tasks on a quantum com-

puter. A quantum computer is a device whose operations are governed by the laws of

quantum mechanics. In the absence of reliable large-scale quantum computers, re-

searchers use an abstract computing model that expresses our expectation of what a

quantum device would be capable of doing, much like a Turing machine or a logical

gates model captures what a classical processor can do. Quantum mechanics rules im-
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ply a drastic departure from the classical setting that usually comes with the idea of

fundamentally improving the speed and/or security of certain algorithms. For exam-

ple, a classical bit can only take two discrete values, 0 and 1. A qubit not only takes

|0〉 = (1, 0)T and |1〉 = (0, 1)T in 2-dimensional Euclidean complex space C2 (which

correspond to the classical bits 0 and 1, respectively), but it also takes linear combi-

nations α|0〉 + β|1〉, where α, β ∈ C, and |α|2 + |β|2 = 1. This is called superposition,

a central ingredient in many quantum algorithms that plays quantum parallelism role.

While superposition makes quantum computers sound stronger, quantum mechanics

also imposes some restrictions. For example, copying and reading bits are eminently

reasonable and obvious tasks on a classical computer, but on a quantum computer,

qubits do not behave normally. In general, cloning an unknown quantum state is pro-

hibited by the No-Cloning theorem. Reading a qubit that is initially in a superposition

will change the qubit. For example, reading (in computational basis) a qubit in the

state 1√
2 |0〉 + 1√

2 |1〉, gives the result 0 fifty percent of the time, and the result 1 fifty

percent of the time and will change the state to |0〉 and |1〉, respectively.

Although building universal large-scale quantum computers still seems a hard task to

accomplish, much progress has been made from both sides of academia and industry.

For the last five years, quantum computing has left the purely academic home and is on

the agenda of the research labs of some of the largest companies such as IBM, Google,

and Microsoft. There is also an ongoing interest on the development of quantum pro-

gramming languages and software packages by tech companies. As building quantum

computers is nearing the era of commercialization and reaching quantum supremacy1,

it is important to think of potential applications that we might benefit from. Among

many applications of quantum computation, here we focus on the emerging field of

quantum machine learning.

1Quantum supremacy is defined as the goal of demonstrating that a programmable
quantum device can solve a problem that no classical computer can solve in any feasible
amount of time.
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Machine Learning is the science and art of making computers learn from available data

to solve problems where the exact sequence of steps in an algorithm is hard to de-

velop by humans. Both machine learning and quantum computing are expected to

have a radical impact on the way society deals with processing information. Therefore

it is natural to ask how these two booming disciplines impact each other, especially

as machine learning and optimization (the mathematical core of machine learning) are

promising candidates for finding applications that outperform classical algorithms for

specific tasks. To answer this question, the field of quantum machine learning has

emerged.

Roughly speaking, quantum machine learning refers to all approaches that merge ma-

chine learning with quantum information processing. Depending on whether the data

are classical or quantum and also if the processing on data is achieved by classical com-

puters or quantum devices, there are different directions based on how machine learning

is combined with quantum computing. Here we restrict the scope of our study to using

quantum algorithms as part of a larger implementation to process classical dataset on

a quantum computer. The hope is that a quantum algorithm outperforms classical

algorithms, and achieves what is known as as quantum speedup. However, we would

need a quantum computer to determine its advantages in speed or, alternatively, the

largest solvable problem size, over classical ones. Currently, in the absence of large-scale

universal quantum computers, presence or absence of quantum speedup for quantum

machine learning algorithms is determined using complexity theory measures, where

both classical and quantum algorithms are compared in terms of asymptotic growth of

their query and gate complexity with respect to problem size.

Quantum algorithms for machine learning problems started to emerge in recent years,

with quantum principal component analysis and quantum support vector machine

(SVM) being two of the first. Our focus is on predictive models for binary classifica-

tion, and we focus on variants of SVM that we expect to be especially important when
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training data becomes so large that a quantum algorithm with a guaranteed speedup

becomes useful. We present a quantum machine learning algorithm for training Sparse

Support Vector Machine, where we deal with a large dataset having a sparse solution.

We also present the first quantum semi-supervised algorithm, where we have still large

dataset but only a small fraction is provided with labels.

This dissertation is organized as follows. In Chapter 2, we provide background on the

basics of linear algebra and quantum computation. In Chapter 3 we elaborate the

quantum algorithm for sparse support vector machines. In Chapter 4 we proposed a

quantum algorithm for semi-supervised kernel learning.
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CHAPTER 2

BACKGROUND

...the “paradox” is only a conflict between reality and your feeling of what

reality “ought to be.”

— Richard Feynman.

Quantum phenomena do not occur in a Hilbert space. They occur in a

laboratory.

—Asher Peres

2.1 Linear Algebra

In quantum computation and quantum information, we usually deal with finite

dimensional quantum mechanics, which for our purpose is essentially more linear algebra

rather than a physical theory. This is why we need a solid grasp of linear algebra for

understanding of both quantum mechanics and quantum computation. In this section,

we give a brief review of linear algebra crucial to the content of this dissertation.

The basic object of linear algebra is a vector space, which is a collection of objects

called vectors. We are particularly interested in the complex d-dimensional vector space

Cd. We denote a complex vector |v〉 ∈ Cd (read: ket v) as

|v〉 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

v1

...

vd

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
. (2.1)

Here we used Dirac notation |.〉, the standard quantum mechanical notation for a vector

in a vector space. We denote the zero vector of a vector space by 0. Note that 0 ∕= |0〉,

the latter is a possibly non-zero vector that we labelled 0 instead of v. The purpose

5



of doing that will become apparent once we start using vectors to represent binary

numbers.

The conjugate transpose of |v〉 is denoted 〈v| (read: bra) and is a row vector

〈v| = (v∗
1, v∗

2, . . . , v∗
d) , (2.2)

where v∗
i is the complex conjugate of the complex number vi.

Inner products. The inner product of two vectors |v〉, |w〉 ∈ Cd is defined as

〈v|w〉 := 〈v, w〉 =
d󰁛

i=1
v∗

i wi. (2.3)

The (Euclidean) norm of a vector |v〉 is defined by 󰀂 |v〉 󰀂 =
󰁴

〈v|v〉. We say a vector |v〉

is a unit vector (or normalized) if 󰀂 |v〉 󰀂 = 1. A vector space equipped with an inner

product is called an inner product space.

Orthonormal bases. A set of vectors |v1〉, . . . , |vd〉 ∈ Cd is called a basis if they

are linearly independent and all |v〉 ∈ Cd can be written as a linear combination |v〉 =
󰁓d

i=1 αi|vi〉 for some {αi} ∈ C. A set of vectors {|ei〉} ⊆ Cd is orthonormal if 〈ei|ej〉 =

δij, where δij is the Kroenecker delta, whose value is 1 if i = j and 0 otherwise. A natural

way for representing a vector |v〉 is in terms of orthonormal bases |v〉 = 󰁓d
i=1 αi|ei〉 for

an orthonormal basis {ei} of the vector space.

A common basis in quantum computation is computational basis (also called stan-

dard basis). It is composed of vectors ei such that the vector ei has 1 at i-th position

and null values elsewhere; for example, e0 ∈ Cd is a vector represented in the compu-

tational basis by 1 followed by d − 1 zeros. In quantum computing, we often represent

the index i in binary form; for example, e1101 instead of e13. We frequently denote

computational basis in Dirac notation as {|i〉}d−1
i=0 instead of {ei}d−1

i=0 , which leads to a

more convenient representation of basis vectors; for example e1101 will be represented

6



by |1101〉. The computational basis for C2 is

|0〉 =

󰀳

󰁅󰁅󰁃
1

0

󰀴

󰁆󰁆󰁄 |1〉 =

󰀳

󰁅󰁅󰁃
0

1

󰀴

󰁆󰁆󰁄 . (2.4)

Thus for example, any vector in C2 can be written as |v〉 = α|0〉+β|1〉 for some α, β ∈ C,

and |v〉.

Linear operators. Almost all operators encountered in quantum mechanics are

linear operators. Applying a linear operator A : Cd 󰀁→ Cd on a vector |v〉 = 󰁓d
i=1 αi|vi〉

satisfies:

A

󰀣
󰁛

i

αi|vi〉
󰀤

=
󰁛

i

αiA|vi〉. (2.5)

The set of all linear maps from vector space V to W is denoted by L(V, W ), and L(V )

is a shorthand for L(V, V ).

Matrix representation of linear operators. The most convenient way of repre-

senting a linear operator in finite dimensional spaces is in terms of matrix representa-

tion. These two concepts are intimately related and we use them interchangeably. The

matrix representation of a linear map A : Cd 󰀁→ Cd in the computational basis {|i〉}d−1
i=0

is a d × d matrix

A =
󰀗

A(|0〉), A(|1〉), . . . , A(|d − 1〉)
󰀘

, (2.6)

where A(|i〉) is a column vector indicating applying the operator A on the computational

basis for Cd.

Outer product representation of linear operators. Using inner product, we

can make another useful way of representing linear operators called outer product rep-

resentation. Suppose |v〉, |w〉 ∈ Cd, the outer product of these two vectors gives a d × d

matrix, |v〉〈w|. If we choose |v〉, and |w〉 from computational basis {|i〉}d−1
i=0 of the inner

vector space, then any d × d matrix A can be expressed as 󰁓
ij Ai,j|i〉〈j|. This is called

7



the outer product representation of A. Note that Ai,j = 〈i|A|j〉.

Eigenvectors and eigenvalues. Let A ∈ L(Cd). A non-zero vector |λ〉 ∈ Cd is an

eigenvector of A with eigenvalue λ ∈ C if A|λ〉 = λ|λ〉. To be consistent with quantum

computing literature, here we used the same notation λ for both the eigenvector and

for the label of its corresponding eigenvalue.

Transpose, complex conjugate, adjoint, and trace. Here, we review a number

of matrix operations appearing frequently in quantum computation. The transpose,

complex conjugate, and adjoint operation are defined, respectively as follows:

AT (i, j) = A(j, i) A∗(i, j) = (A(i, j))∗ A† = (A∗)T . (2.7)

The trace of a matrix is a linear map Tr : L(Cd) 󰀁→ C defined as Tr(A) = 󰁓d
i=1 A(i, i).

A very useful property of the trace is that it is cyclic, i.e. Tr(ABC) = Tr(CAB). This

implies Tr(AB) = Tr(BA), even if AB ∕= BA.

Hermitian and unitary operators. The operator A ∈ L(Cd) is Hermitian if

A† = A, where A† = (AT )∗ is the complex conjugate of the transpose of the matrix

A. All eigenvalues of a Hermitian operator are real. Another more restricted class of

operators are called positive semidefinite (denoted by A ≽ 0) whose all eigenvalues are

non-negative. If A is positive semidefinite then for every |v〉 ∈ Cd, 〈v|A|v〉 ≥ 0. A linear

operator U ∈ L(Cd) is called unitary if satisfies UU † = U †U = I. All eigenvalues of U

are complex numbers of modulus 1, therefore they can be written, using Euler’s formula,

as eiθ for some θ ∈ R. An important property of unitary operators is that they preserve

the inner product between two vectors, i.e. 〈U |v〉, U |w〉〉 = 〈v|U †U |w〉 = 〈u|w〉.

Hermitian, positive semidefinite, and unitary operators are subclasses of a more

generalized class of operations called normal operators. A linear operator N ∈ L(Cd)

is normal if it satisfies N †N = NN †.

8



Spectral decompositions. A matrix A is said to be diagonalizable if it can be

written as A = 󰁓
i=1 λi|λi〉〈λi|, where {|λi〉}i=1 is orthonormal set of eigenvectors corre-

sponding to eigenvalues λi of A. This spectral decomposition is an extremely useful tool

in our study, providing a sufficient and necessary condition for diagonalizable opera-

tors: an operator A is normal if and only if its matrix representation is diagonalizable.

Spectral decomposition of a normal matrix can also be written as A = UDU †, where

U is the unitary matrix whose i-th column is |λi〉 and D is a diagonal matrix with

D(i, i) = λi.

Since eigenvectors of a matrix A form an orthonormal basis for the vector space,

the spectral decomposition of A immediately tells us how it acts on the vectors of the

vector space represented in that basis. Another immediate application of the spectral

decomposition is that Tr(A) = 󰁓d
i λi.

Operator functions. Given the spectral decomposition of a normal operator A =
󰁓d

i=1 λi|λi〉〈λi|, and a function f : C 󰀁→ C, applying f on A is defined as

f(A) :=
d󰁛

i

f(λi)|λi〉〈λi|.

The commutator and anti-commutator. Let A, B ∈ L(Cd), the commutator

between A and B is defined as

[A, B] := AB − BA.

If [A, B] = 0, i.e. AB = BA, then we say A and B commute. The anti-commutator

is defined as

{A, B} = AB + BA,

we say A anti-commute with B if {A, B} = 0.

Many important properties related to a pair of operators can be derived from

their commutator and anti-commutator. For example, if two operator A and B are

9



Hermitian, then [A, B] = 0 if and only if there exist an orthonormal basis such that

both A and B are diagonal with respect to this basis, i.e. A and B are simultaneously

diagonalizable.

Tensor products of Hilbert spaces. Suppose V = Cm and W = Cn, then the

tensor product space V ⊗W is a complex vector space of dimensionality mn, Cm ⊗Cn =

Cm×n. Elements of V ⊗ W result from linear combinations of |i〉 ⊗ |j〉, where |i〉 ∈ V

and |j〉 ∈ W are computational bases of V and W , respectively and where |i〉 ⊗ |j〉

is used to denote an ordered pair of vectors. This definition provides tools needed for

describing joint quantum systems. If u ∈ Cm, w ∈ Cn, then (v ⊗ w)ij = viwj, for all

i ∈ [m] and j ∈ [n]. In the tensor product space, the addition and multiplication in Cn

have the following properties

c{|v〉 ⊗ |w〉} = {c|v〉} ⊗ |w〉 = |v〉 ⊗ {c|w〉}, (2.8)

|v〉 ⊗ |w〉 + |v′〉 ⊗ |w〉 = {|v〉 + |v′〉} ⊗ |w〉,

|v〉 ⊗ |w〉 + |v〉 ⊗ |w′〉 = |v〉 ⊗ {|w〉 + |w′〉}.

The inner product between |v〉⊗ |w〉 and |v′〉⊗ |w′〉 is defined as a product of individual

inner products

〈|v〉 ⊗ |w〉, |v′〉 ⊗ |w′〉〉 = 〈v|v′〉〈w|w′〉. (2.9)

It immediately follows that 󰀂 |v〉 ⊗ |w〉 󰀂 = 󰀂 |v〉 󰀂 󰀂 |u〉 󰀂; in particular, a tensor product

of two unit-norm vectors, from V and W , respectively, is a unit norm vector in V ⊗ W .

Formally, the Hilbert space V ⊗ W is a space of equivalence classes of pairs |v〉 ⊗ |w〉;

for example {c|v〉} ⊗ |w〉 and |v〉 ⊗ {c|w〉} are equivalent ways to write the same vector.

A vector in a tensor product space is often simply called a tensor.

For operators A ∈ L(Cm) and B ∈ L(Cn), the tensor product A ⊗ B is an operator in

10



L(Cmn) represented by a matrix of dimension mn × mn. Its elements are defined as

(A ⊗ B)(i1,i2),(j1,j2) := A(i1,i2)B(j1,j2), (2.10)

for i1, i2 ∈ [m] and j1, j2 ∈ [n]. The tensor product has the following properties for any

A, B ∈ L(Cm), C, D ∈ L(Cn), c ∈ C:

(A + B) ⊗ C = A ⊗ C + B ⊗ C (2.11)

A ⊗ (C + D) = A ⊗ C + A ⊗ D (2.12)

c(A ⊗ C) = (cA) ⊗ C = A ⊗ (cC) (2.13)

(A ⊗ C)† = A† ⊗ C† (2.14)

(A ⊗ C)(B ⊗ D) = AB ⊗ CD (2.15)

Tr(A ⊗ C) = Tr(A)Tr(C) (2.16)

(Hilbert-Schmidt) inner product on Operators. The (Hilbert-Schmidt or trace)

inner product of two operators A, B ∈ L(Cd) is defined as

〈A, B〉 := Tr(A†B) (2.17)

2.2 Quantum Computation

Quantum computers are devices which perform computing according to the laws of

quantum mechanics. Therefore learning how to work with these devices requires under-

standing the basics of quantum mechanics. Quantum mechanics, despite its reputation

as a difficult field, has just a few simple rules, all based on linear algebra. These rules

intuitively describe the following ideas: how to describe quantum systems (a single

quantum system such as a qubit, or composite quantum systems), how quantum sys-

tems evolve over time, what operations can be applied on a quantum system, and how

to extract (or measure) classical information from a quantum system. In this section

11



we discuss the basic knowledge of quantum mechanics we need to work with quantum

computers.

2.2.1 Describing quantum states

Single quantum systems. In classical computation, the basic building block of

information is a bit. A bit can only take one of two values, usually represented as 0

and 1. In quantum computation, a quantum bit (or qubit, for short) is the basic unit

of quantum information, encoding 0 and 1 as |0〉 and |1〉, respectively. One of the key

differences between classical and quantum computation is that a qubit can be in a linear

combination of |0〉 and |1〉, often called superposition:

|ψ〉 = α|0〉 + β|1〉, (2.18)

where α, β ∈ C are called the probability amplitudes of |0〉 and |1〉 respectively, and

satisfy |α|2 + |β|2 = 1. Therefore, any unit vector in C2 can be the state of a qubit.

More generally, any unit vector in Cd is the state of a d-dimensional quantum system,

called a qudit. A qudit |ψ〉 ∈ Cd is described as

|ψ〉 = α0|0〉 + α1|1〉 + · · · + αd−1|d − 1〉 =
d−1󰁛

i=0
αi|i〉, (2.19)

where αi ∈ C, 󰁓d−1
i=0 |αi|2 = 1, and {|i〉}d−1

i=0 ∈ Cd denotes the computational basis for

Cd.

Composite quantum systems. To build an interesting quantum computer we

certainly need multiple quantum bits, that is, multiple quantum systems. There-

fore we need to mathematically describe composite quantum systems as well. The

mathematical tool that we use for describing composite quantum systems is the ten-

sor product. Suppose quantum systemsA and B are described by the state vectors

|ψA〉 ∈ Cd
A and |ψB〉 ∈ Cd

B, respectively. Quantum mechanics describes the state of

the joint system AB as a vector in the tensor product space of the systems A and B,
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i.e. |ψA〉 ⊗ |ψB〉 ∈ CdA ⊗ CdB = CdA×dB . As an example the state of two single-qubits

|ψ〉 ⊗ |φ〉 ∈ C2 ⊗ C2 can be described as

|ψ〉 ⊗ |φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉,

where each amplitude is a complex number, and 󰁓
i,i∈{0,1} |αij|2 = 1. Note {|ij〉}i,j∈{0,1}

is the computation basis for C4

|00〉 = |0〉 ⊗ |0〉 =

󰀳

󰁅󰁅󰁃
1

0

󰀴

󰁆󰁆󰁄 ⊗

󰀳

󰁅󰁅󰁃
1

0

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1

0

0

0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

|01〉 = |0〉 ⊗ |1〉 =

󰀳

󰁅󰁅󰁃
1

0

󰀴

󰁆󰁆󰁄 ⊗

󰀳

󰁅󰁅󰁃
0

1

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

1

0

0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

|10〉 = |1〉 ⊗ |0〉 =

󰀳

󰁅󰁅󰁃
0

1

󰀴

󰁆󰁆󰁄 ⊗

󰀳

󰁅󰁅󰁃
1

0

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

0

1

0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

|11〉 = |1〉 ⊗ |1〉 =

󰀳

󰁅󰁅󰁃
0

1

󰀴

󰁆󰁆󰁄 ⊗

󰀳

󰁅󰁅󰁃
0

1

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

0

0

1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Density Operators Density operator formalism is an alternative formulation for

quantum mechanics that allows probabilistic mixtures of pure states, more generally

referred to as mixed states. All states, including superposition states, that we descibed
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above are pure states – they describe a single, specific state of the quantum system. On

the other had, a mixed state describes an ensemble {pi, |ψ〉i} of states and is written

as

ρ =
k󰁛

i=1
pi|ψi〉〈ψi|, (2.20)

where 󰁓k
i=1 pi = 1 forms a probability distribution and ρ is called density operator. The

outer product formalism is used here to differentiate mixed states from superpositions
󰁓

i αi|ψi〉, which are pure states. If a quantum system is in a pure state |ψ〉, the density

operator of is a rank-1 matrix ρ = |ψ〉〈ψ|. From the definition we can imply that a

density operator ρ is positive-semidefinite, that is ρ ≽ 0 1, and Tr(ρ) = 12.

Quantum entanglement. An important property between multiple qubits that

deserves to be mentioned separately is entanglement. Entanglement refers to quantum

correlations between two qubits (or more), that has no classical correspondence and is

a key ingredient in many surprises in quantum computation and quantum information

such as quantum teleportation and super-dense coding. Consider a bipartite (i.e., two-

qubit) quantum state, known as the Bell state or EPR pair

|φ+〉 = |00〉 + |11〉√
2

(2.21)

It cannot be written as tensor product two single qubit states, i.e. there are no single

qubit states |a〉 and |b〉 such that |φ+〉 = |a〉 ⊗ |b〉. If someone measures the first qubit

of the Bell state (we will learn how to measure quantum systems shortly), there are two

possible results: 0 with probability 1
2 , leaving the post-measurement state |φ+′〉 = |00〉,

and 1 with probability 1
2 , leaving the post-measurement state |φ+′〉 = |11〉. Now if

someone else measures the second qubit, the result always gives the same result as the

first qubit; the measurement results are correlated.

1A short proof follows the fact that ρ is the sum of nonnegative positive-semidefinite
operators |ψ〉〈ψ|)

2We can prove this property using cyclic property of the trace
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Partial trace. As said earlier for expressing the composition of two vector spaces, we

use the tensor product. The natural question arises here is how to reverse this action.

The partial trace operation is defined to answer this question. The partial trace is a

tool for describing the state of a subsystem of a composite system, that usually uses

the density operator formalism. Consider a joint density matrix ρ⊗σ ∈ L(V ⊗W ), the

partial trace of ρ⊗σ over W is defined as the linear operator Tr2(ρ⊗σ) : L(V ⊗W ) 󰀁→

L(V ) given by

Tr2(ρ ⊗ σ) = ρTr(σ), (2.22)

Tr2

󰀳

󰁃
󰁛

j,k

rjsk(ρj ⊗ σk)
󰀴

󰁄 =
󰁛

j,k

rjskTr2(ρj ⊗ σk). (2.23)

2.2.2 Evolution of quantum states

Every physical system evolves in time and so the state vector |ψ〉 of a quantum

system is no exception; in fact it is a function of time |ψ(t)〉, sometimes called wave

function in quantum physics. Quantum mechanics postulates that the evolution of

closed quantum systems acts linearly and is described using unitary transformations. A

closed quantum system is an ideal system which does not have any unwanted interaction

with other systems. That is, for any evolution from time t1 to t2 that occurs in a closed

quantum system with the initial state |ψ(t1)〉, there exists a unitary operator U such

that the state of the system in time t2 is described as

|ψ(t2)〉 = U |ψ(t1)〉. (2.24)

A unitary operator U maps a quantum state expressed as a density operator ρ to UρU †,

where U † is the complex conjugate of the operator U .

One might ask why the dynamics of physical systems acts linearly and particularly

in unitary fashion? While the answer is not at all obvious, motivated empirically, we

can simply answer that this is how Nature behaves, and mathematically we know that
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the only linear operators that preserve norms and, more generally, magnitudes of inner

products, of vectors are the unitary operators3.

It is worth mentioning that unitary transformations are invertible; thus, all closed

system dynamics are reversible in time – as long as we do not measure (observe) them.

Hamiltonian dynamics. The equation 2.24 describes how the quantum states of a

closed quantum systems change over discrete time. In quantum mechanics the evolution

of a closed quantum system in continuous time is described by the Shrödinger equation,

i󰄁
d|ψ〉
dt

= H(t)|ψ〉, (2.25)

where 󰄁 is a a physical constant known as Planks’s constant and H(t) is a Hermitian

operator known as Hamiltonian of the system. Therefore, in principal the Shrödinger

equation states if we know the Hamiltonian of a system, we are able to completely

describe the dynamics of the system.

For our convenience we consider Hamiltonians H, and the solution of the Schrödinger

equation in this case is

|ψ(t2)〉 = e−i󰄁H(t2−t1)|ψ(t1)〉. (2.26)

Comparing the equations 2.24 and 2.25 suggests there should be a connection between

unitary operators and Hamiltonians. In fact any unitary operator U ∈ L(Cd) can

be written as U = eiH for some Hermitian operator H ∈ L(Cd). As we mentioned

earlier, since all eigenvalues of a unitary operator can be written as λj = eiθj (all of its

eigenvalues are modulo 1), by taking the spectral decomposition we can write U as

U =
󰁛

j

eiθj |λj〉〈λj|. (2.27)

If we define H = 󰁓
j θj|λj〉〈λj| (which obviously is a Hermitian matrix), we can

3Per Wigner’s theorem, anti-unitary operators also possess this property, but are
not suitable for describing quantum evolution forward in time.
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write U = eiH . The eigenstates {|λj〉} of a Hamiltonian are referred to as its energy

eigenstates (or stationary states), and the eigenvalue λj corresponding to |λj〉 is the

energy of the state |λj〉. The smallest eigenvalue λmin of H is called the ground state

energy, and |λmin〉 is the ground state of H.

2.2.3 Quantum operations

Thus far we discussed the dynamics of quantum systems and how they evolve over

time. As quantum computation is actually exploiting quantum mechanics for the pur-

pose of the computing, therefore it is obvious that we are interested to manipulate

qubits for our own desires. For example in classical computation we manipulate bits

using classical logic gates such as NOT, AND, or XOR. Therefore it is natural to ask

what type of operations we can perform on qubits. Again, the answer is unitary oper-

ations and in fact unitary constraint is the only physics-based constraint on quantum

gates 4. This immediately yields that all quantum gates are reversible.

Unitary operators U ∈ L(C∈) acting on a single-qubit are called single qubit gates,

and we commonly represent them as 2 × 2 matrices in the computational basis.

Pauli gates. In the study of quantum computation and quantum information there

are four ubiquitous matrices called the Pauli matrices, as follows:

I := σ0 :=

󰀳

󰁅󰁅󰁃
1 0

0 1

󰀴

󰁆󰁆󰁄 X := σ1 := σx :=

󰀳

󰁅󰁅󰁃
0 1

1 0

󰀴

󰁆󰁆󰁄

Y := σ2 := σy :=

󰀳

󰁅󰁅󰁃
0 −i

i 0

󰀴

󰁆󰁆󰁄 Z := σ3 := σz :=

󰀳

󰁅󰁅󰁃
1 0

0 −1

󰀴

󰁆󰁆󰁄 .

(2.28)

There are three other quantum gates that play an important role in quantum

4Some more specific engineering constraints may appear in practical attempts to
construct a workable quantum computer.
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computation, as follows

H := 1√
2

󰀳

󰁅󰁅󰁃
1 1

1 −1

󰀴

󰁆󰁆󰁄 S :=

󰀳

󰁅󰁅󰁃
1 0

0 i

󰀴

󰁆󰁆󰁄 T :=

󰀳

󰁅󰁅󰁃
1 0

0 eiπ/4

󰀴

󰁆󰁆󰁄 . (2.29)

Phase shift gates. Note that the gate S and T are special cases of a more general

class of gates called phase shift gates

Rφ :=

󰀳

󰁅󰁅󰁃
1 0

0 eiφ

󰀴

󰁆󰁆󰁄 , (2.30)

which maps state |φ〉 = α|0〉 + β|1〉 to Rφ = α|0〉 + βeiφ|1〉, that is, inject the relative

phase eiφ into the second component of |ψ〉. One can easily verify that S = Rπ
4
, S = Rπ

2
,

and Z = Rπ.

2.2.4 Extracting information from quantum systems

We have seen that closed quantum systems evolve according to unitary evolution

and also how to alter quantum states in our favor. Ultimately, it is time to ask how

to observe what is going on inside a closed system and how to extract the information

from the system. In quantum mechanics such an act is called a measurement, which

is performed in a certain basis, commonly in the computational basis. Note that for

measuring a closed quantum system, one (a measuring device for example) has to

interact with the system, therefore the system is no longer closed and the evolution of

the state of the system during a measurement process is not unitary, and thus may be

non-reversible. To go beyond unitary evolution, we need to add an additional quantum

mechanics postulate for describing the effects of measurements on quantum systems.

Quantum measurement. Suppose |ψ〉 is the state of a quantum a system, im-

mediately before the measurement. A quantum measurement is described by a set

of operators Π := {Mi} on the state space. These operators are called measurement
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operators and satisfy the following condition know as the completeness relation

󰁛

i

M †
i Mi = I. (2.31)

The index i refers to the measurement outcome that may occur in the measurement

process with the probability

p(i) = 〈ψ|M †
i Mi|ψ〉 = Tr(Mi|ψ〉〈ψ|M †

i ), (2.32)

and the state of the system after the measurement is

|ψ′〉 = Mi|ψ〉
󰁴

〈ψ|M †
i Mi|ψ〉

= Mi|ψ〉
󰁴

p(i)
. (2.33)

The above statement means that the act of measuring |ψ〉 with Π is in general a

probabilistic process, and reading (or observing) a quantum system irreversibly alters

the state of the system.

Measurement in the computational basis. One of the most common measure-

ment in quantum computation is the measurement of a qubit (or qudit) in the compu-

tational basis. Suppose we measure a quantum system in the state |ψ〉 = 󰁓d−1
i=0 αi|i〉.

Note that we, as a classical observer, are not able to see a superposition itself; we can

only see the classical state |i〉, which is not determined in advance. However, we can

say if we measure |ψ〉 using Π = {Mi = |i〉〈i|}d−1
i=0 , then the probability of obtaining

measurement outcome i is

p(i) = 〈ψ|i〉〈i|ψ〉 = |αi|2, (2.34)

and the state after measurement is

|ψ′〉 = (|i〉〈i|)|ψ〉
󰁴

p(i)
= αi

|αi|
|i〉. (2.35)

Note each Mi is Hermitian and M2
i = Mi, therefore 󰁓

i M †
i Mi = 󰁓

i M2
i = 󰁓

i M = I.
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2.2.5 Quantum Circuit Model

In section 2.2.3, we learned that admissible operations on quantum states are

unitary; they map normalized states to normalized states. In the context of quantum

algorithms and quantum computational complexity, having a model for defining the

efficiency of quantum algorithms is a necessity; for which we utilize quantum circuit

model. For an efficient quantum computation, we require that the corresponding unitary

operators are realized by quantum circuits. To begin, suppose we are given a quantum

system with n qubits and a set of gates, each of which acts on one or two qubits at a

time (this means it is tensor product of a single or two-qubit operator with the identity

operator on the remaining qubits). A quantum computation on this system begins in the

initial state |0〉⊗n and applies a sequence of single or two-qubit gates chosen from a set

of predefined gates. The last step is quantum measurement (usually in computational

basis), which produces the desired output. For example, here we have a very simple

quantum circuit on a single qubit input |ψ〉, and the corresponding evolution is HX|ψ〉:

|ψ⟩ X H

In quantum circuits, each wire denotes a quantum system that evolves from the left to

the right. We depict quantum gates with a box labeled by the corresponding unitary

operator (for example, Pauli gates X,Y,Z). In the above circuit diagram, if |ψ〉 = |0〉,

first Pauli gate X and then Hadamard gate should be applied: HX|0〉 = H(X|0〉) =

H|1〉 = |−〉.

As an example for two-qubit gates, we mention controlled-NOT, denoted as CNOT.

In the CNOT gate, one qubit is considered as the control qubit and the other as the

target qubit. If the control qubit is |0〉, the target qubit remains intact and if the

control qubit is |1〉, quantum NOT gate (i.e. Pauli X) is applied on the target qubit.
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In computational basis, we have

CNOT |00〉 = |00〉 CNOT |01〉 = |01〉 CNOT |10〉 = |11〉 CNOT |11〉 = |10〉.

Thus, CNOT acts as a one-to-one mapping on the basis vectors and is thus an invertible,

unitary transformation. The circuit diagram for CNOT is shown below.

|ψ⟩ •

|φ⟩ ⊕

Finally, for a measurement in computation basis we use the following symbol.

|ψ⟩
!!

✙
✙
✙
✙
✙
✙ ❴❴❴❴❴❴❴❴

✤
✤
✤
✤
✤✤
✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤
✤✤
✤
✤
✤
✤

Universal Gate Sets and Quantum Gate Complexity. Any quantum compu-

tation is unitary, and thus in principle can be performed by a single unitary matrix,

in unit time. Such an approach, which involves defining a potentially very large single

matrix, and passing it on to the quantum computer as a program, is impractical, and

the quantum circuit model is used instead in defining quantum computing algorithms

and in analyzing their complexity. To be meaningful, the circuit model cannot allow

arbitrary unitary transformation as units. For analyzing cost of a circuit, we need an

priori fixed set of gates, where we can assign unit cost to each of them. It is impor-

tant that we can simulate all other arbitrary gates using this set. Such a set of gates

is called auniversal set. For example, the set {H, T, CNOT} is universal. It is also

known that two-qubit gates are universal, i.e., every n-qubit gate can be implemented

as composition of a sequence of two-qubit gates. Quantum gate complexity is defined as

the total number of two-qubit gates required in implementing a quantum circuit, when
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no higher-qubit gates are allowed. A quantum algorithm is said efficient if the its gate

complexity is polynomial in the number of input qubits.

Oracles and Quantum Oracle Complexity. Oracles are common construct in

quantum circuits. An oracle can be thought of as a black-box unitary that encodes

the function x 󰀁→ f(x); often, the oracle models some input data for the computation,

for example f(i) returns i-th element of the input vector. In quantum setting this is

formalized as

Of |x〉|y〉 = |x〉|y ⊕ f(x)〉. (2.36)

Each call of the Of is called a query to the oracle, which is typically assumed as a

unit cost operation. Quantum query complexity is defined as the total number of oracle

queries. If for a specific problem, we have a quantum algorithm with an efficient query

complexity, then by providing an explicit circuit that realizes the oracle (the black-box)

transformation, we can imply that we have an efficient quantum algorithm for that

problem. For example, in quantum computation, it is common to assume there is an

oracle for preparing data, an it is assumed that using quantum RAM one can do the

preparation efficiently.

Quantum Input Model. As mentioned, quantum computation typically starts from

all qubits in |0〉 state. To perform computation, access to input data is needed. For

problems involving large amounts of input data, such as for quantum machine learning

algorithms, an oracle that abstracts random access memory is often assumed. Quantum

random access memory (qRAM) uses log N qubits to address any quantum superposi-

tion of N memory cell which may contains either quantum or classical information. For

example, qRAM allows accessing classical data entries xj
i in quantum superposition by

a transformation

1
√

mp

m󰁛

i=1

p󰁛

j=1
|i, j〉|0...0〉 qRAM−−−→ 1

√
mp

m󰁛

i=1

p󰁛

j=1
|i, j〉|xj

i 〉,
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where |xj
i 〉 is a binary representation up to a given precision. Several approaches for

creating quantum RAM are being considered [2, 3, 4], but it is still an open challenge,

and subtle differences in qRAM architecture may erase any gains in computational

complexity of a quantum algorithm [5].

2.3 Supervised Machine Learning

Our work is concerned with quantum algorithms for machine learning problems.

We focus our attention on supervised and weakly-supervised learning methods for bi-

nary classification problems. Binary classification involves vector-scalar pairs (x, y) ∈

X × Y , where Y = {−1, 1} and X ⊂ Rp is a compact subset of p-dimensional feature

space. Each pair describes an object of study, for example a brain scan or a tissue

sample of a medical patient. Individual components xj of a vector x are called fea-

tures. Each feature describes some numerical property of the object represented by x,

for example signal intensity in a single voxel of a brain scan, or expression level of a

single gene. The value of y tells us whether the object belongs to the positive or the

negative class. In many scenarios the feature vectors are easy to obtain, but the class

variable is not. For example, we can measure methylation status of each CpG base-pair

in patient’s genome relatively easily, but deciding if the patient’s prognosis is positive

or negative is challenging.

In statistical learning [6], we assume that samples (x, y) come from a fixed but

unknown distribution D over X × Y . For a given feature vector x, the probabilities of

either class are given by conditional distribution Dy|x over Y , and for a given class y, the

probability density of feature vectors in that class is given by conditional distribution

Dx|y over X . While the underlying distributions D, Dy|x, and Dx|y are unknown, we

have access to a training set Z consisting of m samples zi = (yi, xi) drawn independently

from D. In the binary classification problem the goal is to use the training set to learn

how to predict classes y for feature vectors x, even if we did not see such a feature
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vector in the training set.

The training set can be used to construct a predictive model, in a form of a hy-

pothesis function h : X → R, where the sign of h(x) indicates the predicted class for

input feature vector x. For a given sample (x, y), the prediction is considered correct if

the signs of the predicted and the true class agree, that is, if yh(x) > 0. The predictive

model should make as few errors as possible over samples z = (x, y) sampled from

distribution D, that is, it should minimize
󰁕

X ×Y I[yh(x) ≤ 0]D(z) dz, where I is an

indicator function over Boolean domain returning 1 for true and 0 for false.

A simple but often effective class of hypotheses is the class of linear functions

h(x; β, b) = βT x + b = 󰁓p
j=1 βjx

j + b. A linear predictive model is parameterized by

a vector of feature weights β ∈ Rp and a bias term b ∈ R. To simplify the notation,

we often add one more dimension to X with all samples having a value of one. The

predictive model is then simply h(x; β) = βT x, β ∈ Rp+1, with βp+1 playing the role of

bias.

Training of a linear model involves finding a suitable parameter vector β. For a

single sample (x, y), the suitability of a model h with specific β will be captured by a loss

function ℓ(y, h(x; β)), which returns a nonnegative real number that we interpret as a

measure of our dissatisfaction with the prediction h(x; β). The natural 0/1 loss, defined

as ℓ(y, h(x; β)) = I[yβT x ≤ 0], is not a continuous function of the parameter vector

β, and is flat almost everywhere, leading to problems with finding β that minimizes

the loss. Instead of the 0/1 loss, a convex function that upper-bounds it is often used

in training classification models. For example, the least-square loss ℓ(y, h) = (y − h)2

is used in Fisher’s Linear Discriminant and in Least-Squares Support Vector Machine

(LS-SVM) classifier [7].

Once the loss function is chosen, the goal of training a model is to find the param-

eter vector β that minimizes the expected loss Ez∼Dℓ(y, h(x; β)), referred to as risk of

the model, R(β) =
󰁕

X ×Y ℓ(y, h(x; β))D(z) dz. Since D is unknown, a surrogate goal is
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to search for β that leads to low loss on samples from the training set. For example,

the empirical risk minimization strategy involves finding parameters β that minimize

empirical risk, that is, the average loss on the training set, R̂(β) = 1
m

󰁓m
i=1 ℓ(yi, h(xi; β)).

The model β that minimizes the empirical risk may have high generalization risk

R(β), that is, may fare poorly on samples outside of the training set, especially if

the number of training samples m is smaller, or not much larger, than the number

of features p, the features are not statistically independent, or the feature values are

noisy. Often, the generalization error can be reduced if a penalty on the complexity of

the model is introduced into the optimization problem. Typically, this penalty term,

known as regularization term, is based on 󰀂β󰀂, a norm of the vector of model parameters,

leading to regularized empirical risk minimization strategy, which finds parameters that

minimize L̂(β) = R̂(β) + λf(󰀂β󰀂). For example, most Support Vector Machines [8] use

squared L2 norm of β, 󰀂β󰀂2
2, as the regularizer.
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CHAPTER 3

QUANTUM SPARSE SUPPORT VECTOR MACHINES

3.1 Introduction

Steadily increasing ability to measure large number of features in large number of

samples leads to ongoing interest in fast methods for solving large-scale classification

problems. One of the approaches being explored is training the predictive model using

a quantum algorithm that has access to the training set stored in quantum-accessible

memory. In parallel to research on efficient architectures for quantum memory [9, 10,

11], work on quantum machine learning algorithms and on quantum learning theory is

under way (for review, see [4, 12, 13, 14]), and is starting to attract interest form the

machine learning community [15, 16, 17].

In order to achieve quantum speedup, the choice of the variant of the machine

learning problem often matters. For example, the pioneering quantum machine learning

method – quantum SVM [18] – focused on quadratic loss and quadratic regularizer, in

order to be able to utilize solvers for quantum linear systems of equations, such as

HHL [19]. This and other recent solvers based on quantum manipulation of eigenvalues

[20, 21] can lead to exponential speedup compared to classical methods, as long as

the eigenvalues of the linear kernel matrix are of similar magnitude. However, linear

systems arise only from unconstrained, or equality-constrained quadratic problems,

such as LS-SVM, but not from hinge-loss SVM. A more recent quantum supervised

learning method [16] that can achieve sublinear training time involves efficient quantum

primal-dual approach for solving minimax problems, and as a consequence focuses on

minimizing the maximum – not the average – loss over the training set.

In this chapter, we focus on the possibility of achieving quantum speedup for the
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Sparse SVM [22, 23, 24, 25], a linear classifier that combines hinge loss with L1 regu-

larizer. Sparse SVM is useful in cases where the number of features is large compared

to the number of training samples, and where interpretability of the classifier matters,

not just its predictive abilities. For example, in biomedicine it is important to know if,

and how much, each feature contributes to the prediction, and often a small number

of features is enough to tell the classes apart. Thus, linear models1 h(x; β) = βT x

with weights β, x ∈ Rp, which learn a single multiplicative weight βj for each feature

xj of a p-dimensional sample x, are often preferred over non-linear approaches, such

as kernel methods, ensembles, or neural networks. In these settings, we often expect

that highly-accurate predictions can be made using just a few discriminative features;

we expect that a well-performing model should be sparse, that is, there is a vector β

composed mostly of zeros that achieves near-optimal accuracy. The remaining features

either carry no information about the separation of classes, or the information is re-

dundant. To find sparse solutions to classification problems, a regularization term in

the form of L1 norm of β is often included in the objective function.

3.1.1 Our Contribution

Quantum Sparse SVM (QsSVM) results from using a quantum algorithm for solv-

ing linear programming (LP) problems [26] instead of a classical solver. Our aim is to

analyze whether using a quantum solver provides benefits in terms of computational

complexity of model training, that is, if sublinear training time in terms of the number

of training samples, m, and the number of features, p, be achieved. This problem is

challenging, since quantum LP solver [26] and similar quantum SDP/LP solvers [27,

28, 29, 30] express the complexity not only in terms of m and p, but also in terms of

characteristics of the primal and dual solution to the LP/SDP instance being solved

1For brevity, we fold the bias term into the feature weight vector β, by adding a
constant-one feature.
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(see Fig. 1). So far, realistic application scenarios with characteristics that provably

lead to quantum speedup have been scarce.

We show that for arbitrary binary classification problems no quantum speedup is

achieved using quantum LP solvers. More broadly, we prove that the lower bound for

solving Sparse SVM using any quantum algorithm with black-box access to training

data is Ω(min(m, p)). However, we show there are realistic cases in which a sparse

linear model will have high accuracy, and sublinear time in m and p can be guaranteed.

Figure 1: Graphical illustration of the factors contributing to the computational com-

plexity of Quantum Sparse SVM for a classification problem with linear solution vector

β (a). Complexity is proportional to the product Rr, where R is the sum of sample

loss values (b: green lines) and feature weight magnitudes (b: orange lines), and r is

the sum of weights of support vectors (c: green circles).

3.2 Quantum Sparse SVM

The training of Sparse SVM model using a training set {(xi, yi)} with p features

and m samples involves solving a minimization problem

arg min
β∈Rp

1
m

m󰁛

i=1
max(0, 1 − yiβ

T xi) + λ
p󰁛

j=1
|βj|. (3.1)

Using standard techniques, for λ > 0, this non-linear unconstrained optimization

problem can be transformed to an equivalent primal constrained linear program with
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n = m + 2p nonnegative variables and m linear inequality constraints

min
ξ,β+,β−

1
m

m󰁛

i=1
ξi + λ

p󰁛

j=1
β+

j + λ
p󰁛

j=1
β−

j (3.2)

s.t.
p󰁛

j=1
yix

j
i β

+
j −

p󰁛

j=1
yix

j
i β

−
j ≥ 1 − ξi, i ∈ [m]

ξi, β+
j , β−

j ≥ 0,

where [m] = {1, ..., m}. We can read out the solution as βj = β+
j − β−

j . We also have

|βj| = β+
j + β−

j . The value of the hinge loss of i-th training sample is equal to ξi. The

dual problem is

max
α

m󰁛

i=1
αi s.t. − λ ≤

󰁛

i

αiyix
j
i ≤ λ, j ∈ [p]

0 ≤ αi ≤ 1/m i ∈ [m]. (3.3)

To solve the linear program associated with Sparse SVM, we employ a recently pro-

posed quantum LP solver [26]. A classification problem with m samples in p-dimensional

feature space leads to an LP with n = m + 2p nonnegative variables and m linear in-

equality constraints. The quantum LP solver results in Õ
󰀕󰀓√

m +
√

n
󰀔󰀓

R(r + 1)/ε
󰀔3

󰀖

complexity of obtaining the solution to the LP to within ε additive error where Õ no-

tation hides logarithmic factors. The key question is whether the dependence on R and

r, the L1 norms of the primal and dual LP solutions, respectively, allows for achieving

sublinear time complexity.

3.2.1 Linear Programs and Matrix Games

We employ a recently proposed quantum LP solver based on zero-sum games [26].

The solver is based on a series of zero-sum matrix games. For a given LP, each game

in the series is constructed to indicate if the optimal value of the LP lies in a certain

numerical range.

Each zero-sum matrix game involves two players, Alice with n possible strategies
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and Bob with m possible strategies. If Alice chooses strategy i ∈ [n] and Bob chooses

j ∈ [m], the pay-off to Alice is Mij and to Bob is −Mij, where M is the matrix defining

the game. Given a randomized strategy for Alice, sampled from u ∈ Rn
+, with 󰀂 u 󰀂 = 1,

and a randomized strategy for Bob, sampled from v ∈ Rm
+ , the expected payoff to Alice

is uT Mv. Bob can assume optimal strategy distribution u on Alice’s part and chose his

strategy distribution v according to minv maxu uT Mv to minimize Alice’s and maximize

his own expected pay-off.

For a given linear program LP(c, A, b) = min cT x s.t.Ax ≤ b, x ≥ 0 and a real

value α, finding the expected pay-off for the optimal strategy in a game defined by

a matrix M that contains α as an element and A, b, c as sub-blocks can be used to

determine if the optimal value of the LP is lower than α. If it exists, a feasible LP

solution with optimal value below α can also be obtained from the optimal strategy

vectors u and v. Iteratively, this process can solve the LP up to a pre-determined error.

A classical algorithm [31] can solve the game up to ε additive error in Õ ((n + m)/ε2)

time, where Õ notation hides logarithmic factors. The quantum version replaces

Gibbs sampling step in the classical algorithm with its quantum counterpart, achieving

quadratic speedup in terms of n, m, and a 1/ε3 dependence on the desired additive error

ε of the solution. A query about the optimal value of an LP with m variables and n

constraints being in a certain range reduces to a game with (n+3)× (m+2) matrix M .

Further, assuming that the LP primal and dual solution vectors are bounded in L1 norm

by R and r, respectively, through the bisection argument only a logarithmic number of

such range queries – matrix games – are needed, each solved to within error R(r + 1)/ε

error, in order to obtain the solution to the LP to within ε additive error. Together, the

computational complexity of the quantum LP solver is Õ
󰀕󰀓√

m +
√

n
󰀔󰀓

R(r + 1)/ε
󰀔3

󰀖
,

a polynomial speedup compared to classical methods, and lower exponent in dependence

on R, r, ε than in previous quantum methods [27, 28, 29, 30].
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3.2.2 Data Access Model

For a linear program LP(c, A, b) = min cT x s.t.Ax ≤ b, x ≥ 0, the quantum

LP solver requires read-only access to the vectors and matrices (c, A, b) defining the

LP, and read/write access to internal data. The solver assumes access to data using

a quantum oracle implemented using quantum random access memory (QRAM). For

example, the access to element Aij of the LP constraint matrix A is given by an oracle

associated with A, a unitary linear operator OA capable of performing the mapping

OA|i〉|j〉|z〉 → |i〉|j〉|z ⊕ Aij〉 in superposition. The operator that takes three qubits on

input, corresponding to indices i, j and a placeholder z, and output produces i, j and the

exclusive alternative (⊕) of the binary representation of the matrix element Aij and the

placeholder value of the third qubit, z. The algorithm assumes the oracle can operate

in superposition, that is, given a superposition of indices, returns a superposition of

array elements

OA|i〉
󰀓
α|j〉 + β|j′〉

󰀔
|z〉 → α|i〉|j〉|z ⊕ Aij〉 + β|i〉|j′〉|z ⊕ Aij′〉,

and similarly for the first index. The computational complexity of the algorithm is

measured with respect to number of oracle calls and the number of two-qubit quantum

gates required for further processing.

Availability of quantum random access memory is a typical assumption in quantum

algorithms, including recent quantum machine learning methods [16, 15, 17]. Workable,

large-scale QRAM does not exist yet and feasibility of its constructing is still debated,

but algorithmic models [2, 3, 10, 32] and experimental demonstrations [33, 11, 34, 35] of

quantum memory alone, and as part of quantum networks or quantum learning systems,

are emerging. Recent results indicate that loading classical data into quantum RAM

can be done in logarithmic time [36, 37], at the cost of introducing small perturbations

into the data.

In a fully-quantum RAM, operations of both reading and writing in quantum
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superposition should be available. In quantum machine learning systems, typically the

input data, as well as certain intermediate data, is processed classically; for example, we

assume the feature values for each sample arrive over some classical information channel.

Only the read operation is required to operate in quantum superposition, that is, with

parallelism implied in linearity of the data access oracle. This type of access is referred

to as quantum-read, classical-write RAM (QCRAM) [38, 39]. The standard model of

QCRAM utilizes a tree structures over non-zero elements of an n-dimensional vector

x to allow classical readout and update of a single vector entry xi in O (log n) time.

It also allows for accessing selected elements xi in quantum superposition, sampling

integers i ∈ [n] according to xi/ 󰀂 x 󰀂, and creating the quantum state corresponding to

x.

For a linear program LP(c, A, b) = min cT x s.t.Ax ≤ b, x ≥ 0, the quantum LP

solver requires read-only access to the vectors and matrices (c, A, b) defining the LP,

and read/write access to the strategy distribution vectors u, v as it iterates through

a sequence of matrix games. The solver assumes access to data via a quantum oracle

implemented efficiently using QRAM. Through iterations, the game solution vectors

u, v are stored in QCRAM. Solving each game involves an iterative algorithm that

results in at most O (1/ε2 log mn) elements of u, v being non-zero [26]. The QCRAM

stores only non-zero elements of u, v, thus, accessing all solution elements classically

using sequential tree traversal adds O (1/ε2 log mn) overhead. For sparse models, with

few non-zero feature weights in the optimal solution, access can be even faster.

Iterations of the quantum LP solver include the scaled feasible solutions to the

original LP. These are stores in QCRAM. Each iteration involves an algorithm that

result in at most O (1/ε2 log mn) elements of u, v being non-zero. The QCRAM stores

only non-zero elements of u, v, thus, accessing all solution elements classically using

sequential tree traversal adds O (1/ε2 log mn) overhead. For sparse models, with few

non-zero feature weights in the optimal solution, access can be even faster.
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3.3 Lower Bound for Complexity of Quantum Sparse SVM

Assuming efficient oracle access to input, the computational complexity of quantum

LP solver utilized in Quantum Sparse SVM shows improved dependence on n and m,

but polynomial dependence on R and r may erase any gains compared to classical LP

solvers.

For any training set, the minimum of the objective function of the SparseSVM op-

timization problem (eq. 3.1) is bounded from above by one, since an objective function

value of one can be obtain by setting β = 0, which leads to unit loss for each training

sample, and thus unit average loss. For some training sets, one is the minimum of the

objective function – for example if training samples come in pairs, (x, +1) and (x, −1).

In this case, the norm of the primal solution is R = 󰁓
i |ξi| + 󰁓

j |βj| = m, and the

norm of the dual solution is r = 󰁓
i |αi| = 1, since by eq. (3.3) and strong duality it is

equal to the value of the primal objective function. The quantum solver we use includes

(R(r + 1)/ε)3 term in its complexity, and Rr = O (m) erases any speedups compared

to classical solvers.

A more realistic case in which we see R = O (m) is a regular XOR problem, for

example involving two features and four training samples, [+1, +1] and [−1, −1] with

y = +1 and [+1, −1], [−1, +1] with y = −1. For any β ∈ R2, if there is a sample with

loss 1 − δ, there is another sample with loss 1 + δ. Thus, sum of ξi variables is one for

any β, and again β = 0 is the minimizer of the regularized empirical risk, leading to

Rr = O (m) and a O (m3.5) term in the solver worst-case computational complexity.

The above negative results concern speedup of Sparse SVM utilizing a specific

quantum LP solver. It can be shown that sublinear worst-case complexity, in terms of

the smaller of m and p, is not possible in general. To provide lower bound on solving

Sparse SVM using any quantum algorithm with black-box access to elements of feature

vectors x and class variables y, we utilize reduction from majority problem, that is, the

problem of finding the majority element in a binary vector f of size n. In the majority
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problem, vector f has t unity and s = n − t null elements, and the algorithm should

return true if t > s or false otherwise. Alternatively, it suffices to return the value of t

or s. Given arbitrary majority problem instance, we show a simple procedure to treat it

as the input training set for a Sparse SVM classifier, and prove that solving the Sparse

SVM classification problem, for values of the regularization constant C leading to non-

null feature weights vector β, allows us to provide the answer to the instance majority

problem. The lower bound for computational complexity of the majority problem,

assuming black-box quantum oracle access to elements fi in superposition, is Ω(n) [40],

leading to the lower bound on complexity of quantum Sparse SVM.

Theorem 1. Assuming black-box quantum oracle access to a training set with m sam-

ples and p features, the lower bound for finding the optimal Sparse SVM solution β

and its objective value L∗ = minβ R̂(β) + C 󰀂 β 󰀂1, for C > 1/m and C = Õ (1/m), is

Ω̃ (min(m, p)). The lower bound holds even if the optimization algorithm is allowed to

return a suboptimal solution with objective value at most L∗ + Ω̃ (1) /16.

Proof. We will rely on reduction from majority problem, with oracle complexity Ωn for

a problem of size n, both in the classical and in the quantum setting. We will also use a

promise vartiant of majority, in which the minority class is guaranteed to have at most

k elements, which has Ωk complexity lower bound.

First, we construct a dataset with p′ = n features and m′ = zn samples, for

some number z ∈ N not growing with m′, p′ or growing very slowly; that is, we require

z = Õ (1). Based on chosen z, we represent C as C = (2z−γ)/m′ for some 1/2γ < 2z−1.

This guarantees that C > 1/m′ and C = Õ (1/m′).

Given n, let fn,t be an arbitrary instance of a majority problem of size n with

t ones and n − t nulls. We construct the training set based on fn,t in the following

way. For k = 1, ..., n, if fn,t(k) = 1, we add z pairs of samples with 1 value of the

k-the feature and positive class for the even samples, and −1 and negative class for

the odd samples, with null for other features. These samples can be perfectly classified
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by setting βk = 1. In the optimal objective value L∗ = minβ R̂(β) + C 󰀂 β 󰀂1, for

empirical risk R̂(β) = m′−1 󰁓
i

󰁫
1 − yiβ

T xi

󰁬

+
, we will have null loss

󰁫
1 − yiβ

T xi

󰁬

+
for

each sample, and a C = (2z − γ)/m′ contribution from the L1 regularizer. Note that

for C > 2z/m′, it is better to set βk to null and instead have 2z/m′ loss for the z pairs

of samples. If fn,t(k) = 0, we add z pairs of samples, with the same pattern of feature

values and classes as for fn,t(k) = 0, except both odd and even samples have +1 as the

value of feature k. These samples cannot be classified correctly, the optimal regularized

solution has βk = 0. The optimal objective value will have 1/m′ loss 1/m′ per each

sample corresponding to fn,t(k) = 0.

In total, there are 2zt samples with fn,t(k) = 1, together contributing t(2z − γ)/m′

to the objective function. There are 2z(n − t) samples with fn,t(k) = 0, together

contributing 2z(n − t)/m′ to the objective function. We have m′ = 2zn samples in

total. The optimal objective value is

L∗ = t(2z − γ) + 2z(n − t)
2zn

.

If the minimization algorithm returns the objective value R̂∗, we can use it to calculate

t for the underlying majority problem

t = n
2z

γ
(1 − L∗).

Given arbitrary p, m, we find the largest n, z for which p′ ≤ p and m′ ≤ m. First

m′ samples with p′ features are set as above. If p ≥ p′, we add additional features

with all-null values, which does not change the optimal solution’s objective value. If

m ≥ m′, we add all-null samples, which adds a 1/m loss per sample. The solution L∗

above needs to be adjusted for the added constant (m − m′)/m, and scaled, since now

the loss and the regularizer constant C both involve 1/m instead of 1/m′, but otherwise

remains the same.

Hence, among datasets with m samples and p features are those corresponding
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to all possible majority problems of size Ω̃ (min(m, p)), some of which require number

of data oracle calls proportional to n to be solved. Thus, quantum Sparse SVM is

Ω(min(m, p)), since training the Sparse SVM classifier on the training set constructed

above allows us to solve the underlying majority problem of size n = min(p, ⌈m/2z⌉),

with z = Õ (1).

We assumed above that the algorithm for training the Sparse SVM is able to find

the optimal solution and return its objective value L∗. If the algorithm instead returns

a suboptimal solution with objective value within ε of the optimal L∗, the error in

estimating t from it is at most

∆t = n
2z

γ
ε.

Consider a promise variant of the majority problem, in which the instances are promised

to have less than n/4 elements in the minority class. These problems require on the

order of n/4 oracle calls in the worst case. For such problems, making an n/4 error in

calculating t does not change the correctness of the solution.

We can limit the error in estimating t to at most n/4 if the error in estimating Ł∗

is ε < γ/8z. Given that γ > 1/2 and z = Õ (1), that is 1/z = Ω̃ (1), to achieve error in

estimating t higher than n/4, we need

ε > γ/8z > Ω̃ (1) /16.

If the Sparse SVM solver guarantees error below Ω̃ (1) /16, the solution to Sparse SVM

can be used to solve the n/4-promise majority problem, and thus has Ωn lower bound,

same as in the no-error case. Note that L∗ ≤ 1, since L∗ = 1 can always be achieved

irrespective of the training set by an all-null feature weights vector β.

The result above shows that we cannot design a quantum algorithm that trains

Sparse SVM in time sublinear in both the number of samples and the number of features.

Notably, the dataset constructed above may have much fewer discriminative features
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than p, indicating that the lower bound depends on the total number of features, not

the number of non-zero features in the model.

3.4 Speedup in Quantum Sparse SVM for Special Cases

Worst-case analysis of the proposed method utilizing quantum LP solver [26], and

of quantum Sparse SVM in general, shows that it cannot achieve sublinear computa-

tional complexity. This does not preclude sublinear complexity for some families of

classification problems for specific quantum SVM solvers.

In the quantum LP-based approach, sublinear time can only be achieved if the

L1 norms of the primal and dual solution vectors are kept in check as the number

of samples and features grows. The regularizing term 󰀂 β 󰀂1 can be expected to grow

slowly in sparse models, and the average loss is normalized by the number of training

samples and thus always below one. Yet, sparsity assumption alone is not enough to

achieve speedup when class distributions overlap in the features space and the optimal

error is not null. While the bound on the dual solution norm is a direct consequence of

sparsity of the model, the 󰁓
i ξi term in the primal solution norm in principle grows in

proportion to the number of training samples and to the generalization risk, and may

be further inflated by the stochastic nature of the training set. We show that under

realistic assumptions about the family of classification problems for growing number of

features, where new features occasionally bring new discriminative information, a bound

on the primal solution norm that leads to sublinear training time can be formulated.

3.4.1 Truncated Subgaussian Classification Problems

The first defining characteristic of the family of classification problems we explore

here is limited overlap between class distributions. Since we are focusing on a linear,

sparse SVM classifier, the overlap will be with respect to a linear decision boundary

– we will assume that the tails of class conditional distributions that reach across the
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decision hyperplane are bounded, in a way formalized in Definition 2. The consequences

of that assumption on the expected loss of the model are analyzed in Lemma 4 in the

distribution setting, and then extended in Lemma 5 to the empirical risk on finite-

sample datasets of fixed size (m, p) that are actually seen during training, providing

basis for asymptotic analysis building up to Theorem 3.

In the asymptotic analysis of time complexity, we will assume that we are given a

series of classification problems where both the number of samples, m, and the num-

ber of features, p, grows. The second defining characteristic of the scenarios leading

to sublinear time complexity is the assumption that p′, the number of discriminative

features used by the sparse model, also grows, but at a slower rate than m or p. In an

illustrative idealized case, these discriminative features have means +c and −c in the

positive and the negative class, respectively – though the situation does not change if

the signs of the means are swapped for some of the discriminative features. Thus, c

represents how discriminative a feature is. With increasing number p′ of discriminative

features, each with means differing by at least 2c, the distance between the means of

the two multivariate distributions increases at the rate of at least 2c
√

p′. Moving be-

yond the idealized case of means of each feature at ±c, we will simply require that the

multivariate class distribution means diverge at this rate. This defining feature of our

scenario is key to asymptotic analysis starting in Lemmas 6 and 7 and concluding with

the final complexity result in Theorem 3.

Definition 2. A (∆, µ)-truncated subgaussian classification problem, for µ > 1, ∆ >

0, is defined by distribution D such that there is an underlying vector β󰂏 ∈ Rp with

󰀂β󰂏󰀂2 = 1, for which

• the conditional distributions Dx|+ and Dx|− of the samples from the positive and

negative class, respectively, give rise to univariate distributions Dv|+ and Dv|− on

a line resulting from the projection v = yβ󰂏T x,

• the tails of Dv|+ and Dv|− are bounded from above, in the region v ∈ (−∞, 1],
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Figure 2: Graphical illustration of Definition 2: a) the initial multivariate two-class

problem; b) intermediate step involving projection u = β∗T x into one dimension; c)

final univariate distributions after projection v = yu.

by the normal probability density function Nµ,1(v) with unit standard deviation,

centered at µ,

• the tails of Dv|+ and Dv|− have zero mass for v < −∆.

A p-dimensional (∆, µ)-truncated subgaussian problem is called sparse if the number of

non-zero components in the vector β󰂏 is small compared to the number of features, p.

A graphical illustration of the definition is shown in Figure 2. Sparse (∆, µ)-

truncated subgaussian problems often arise in dataset coming from natural science.

For example, in molecular biology, levels of raw mRNA transcripts of individual genes

approximately follow a log-normal distribution within a class of samples [41, 42]. Raw

data is typically processed via a log-like transform prior to analyses, then each class of a

multi-gene dataset approximately follows a multivariate normal distribution, leading to

sub-Gaussian tail. Biomedical data often has large number of features, and the samples

are rarely sparse, that is, vast majority of feature values are non-zero. For example,

classification problems involving gene expression measured using RNA-seq may have

tens of thousands of features, only a relatively small number of genes contribute to

between-class differences, leading to a sparse problem – sparse linear models have been

successful in analyzing brain activity [43], microbiome [44], and in other biomedical
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settings [45, 46, 47].

3.4.2 Complexity Analysis of Quantum Sparse SVM for Truncated Sub-

gaussian Problems

We provide the following characterization of the computational complexity of train-

ing the Quantum Sparse SVM for sparse (∆, µ)-truncated subgaussian problems.

Theorem 3. For p → ∞, consider a family of p-dimensional (∆p, µp)-truncated sub-

gaussian problems Dp with underlying vectors β󰂏
p . Assume that the vector β󰂏

p is sparse,

it only has p′ = 1 + 2 log p non-zero coefficients. Further, assume that the mean µp

diverges with the number of discriminative features p′ as µp > c
√

p′ for some c > 1 that

captures how separated class centers are for individual informative features. As p grows,

we allow scattering of the samples farther into the region dominated by the other class,

∆p ≤ 2 log p. For growing p, assume efficient oracle access to the training data, with

the training set sizes m growing proportionally with p, m/p = O (1). Then, training

QsSVM has computational complexity of

Õ
󰀓√

m + 2p poly
󰀓

log p, 1/ε
󰀔󰀔

.

Proof. Training QsSVMs translates to solving an LP problem (eq. 3.2) with m con-

straints and n = 2p + m variables. The quantum LP solver proposed of van Apeldoorn

and Gilyén [26] has complexity Õ
󰀕󰀓√

m +
√

n
󰀔󰀓

Rp(rp + 1)/ε
󰀔3

󰀖
. When m/p = O (1),

by virtue Lemma 7, neither Rp nor rp grow with m, and both grow with p as O (log p),

yielding the complexity result.

Scenarios in which the number of features is larger or at least comparable to

the number of samples are of great practical importance – it is common in biomed-

ical data analysis, for example in classification of molecular profiles such as gene ex-

pression or methylation, or classification of 3D brain scans. In these p > m sce-

narios, in which L1 regularization is especially useful, Theorem 3 shows that the
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complexity is Õ
󰀓√

m + 2p poly
󰀓

log p, 1/ε
󰀔󰀔

, that is, using quantum LP solvers offers

speedup compared to classical solvers. More generally, the computational complexity

is Õ
󰀓√

m + 2p poly
󰀓

m log p
p

, log p, 1/ε
󰀔󰀔

, leading to speedup even in some cases beyond

the p > m scenario, such as m = O (p log p).

The path from Definition 2 to Theorem 3 leads through a series of technical Lem-

mas, from generalization risk to the characteristics of the empirical solution.

For the hinge loss, the generalization risk R(β󰂏) associated with model h(x) =

β󰂏T x on the (∆, µ)-truncated subgaussian problem D is bounded through the following

lemma.

Lemma 4. Let D be a (∆, µ)-truncated subgaussian classification problem with under-

lying vector β󰂏 leading to univariate distributions Dv|+ and Dv|− as described above.

Let L = max(0, 1−v) be a univariate random variable capturing hinge loss of the model

h(x) = β󰂏T x for samples from D. Then, the expectation and standard deviation of L

are bounded from above by

R(β󰂏) = E[L] ≤ 1√
2π

e− (1−µ)2
2 = Nµ(1), (3.4)

Var[L] ≤
󰁫
(1 − µ)2 + 1

󰁬 󰀥

1 + erf
󰀣

1 − µ√
2

󰀤󰀦

. (3.5)

Also, values of L are in the range [0, ∆ + 1].

Proof. The proof relies on properties of integrals of xkN0(x). Let

G(x) = N0(x) = 1√
2π

e− x2
2 , Gk(x) =

󰁝 x

−∞
tkG(t) dt.

Then, we have Let p+ and p− by the probabilities, under D, of the positive and the
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negative class, respectively. We have

E[L] =
󰁝 ∞

−∞
max(0, 1 − v)[p+Dv|+(v) + p−Dv|−(v)] dv

≤ (1 − µ)G0(1 − µ) − G1(1 − µ) ≤ 1√
2π

e− (1−µ)2
2 .

E[L2] ≤ [(1 − µ)2 + 1]G0(1 − µ) + (1 − µ)G(1 − µ)

≤
󰁫
(1 − µ)2 + 1

󰁬 󰀥

1 + erf
󰀣

1 − µ√
2

󰀤󰀦

.

The range of L follows immediately from null mass of Dv|y for v ≤ −∆, and from null

loss for any v ≥ 1.

The result above gives the bound on the expected value of the hinge loss for

the model h(x) = β󰂏T x on the distribution D, that is, it bounds from above the

generalization risk of that model, R(β󰂏) = E[L]. However, it does not give an upper

bound on the empirical risk for the model h(x) = β󰂏T x on a specific training set with m

samples and p features, sampled from D. This bound is given be the following lemma.

Lemma 5. Let D be a (∆, µ)-truncated subgaussian problem based on β󰂏. Let R̂(β󰂏) be

the empirical risk associated with model β󰂏 over a m-sample training set sampled i.i.d.

from D. Then, with probability at least 1 − δ

R̂(β󰂏) ≤ 1√
2π

e− (1−µ)2
2 + 4(∆ + 1) log(2/δ)

m
(3.6)

+ 4

󰁴
log(2/δ)
√

m

󰁫
(1 − µ)2 + 1

󰁬 󰀥

1 + erf
󰀣

1 − µ√
2

󰀤󰀦

Proof. Consider m values l1, ..., lm drawn from a univariate random variable L taking

values in range in [a, b] = [0, ∆+1], and with finite variance s = Var[L] and finite mean

R = E[L]. Let R̂ = 1
m

󰁓m
i=1 li be the empirical mean. Bernstein’s inequality states that

P(|R̂ − R| ≥ t) ≤ 2 exp
󰀣

mt2

2(s2 + (b − a)t)

󰀤

.
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That is, with probability at least 1 − δ,

R̂ ≤ R + 4s

󰁶
log(2/δ)

m
+ 4(b − a) log(2/δ)

m
.

We thus have

R̂(β󰂏) ≤ E[L] + 4Var[L]
󰁶

log(2/δ)
m

+ 4(∆ + 1) log(2/δ)
m

The bound follows from plugging in the bounds on expected value (eq. 3.4) and variance

(eq. 3.5) of the loss.

We are now ready to analyze the behavior of empirical risk of models β󰂏
p on prob-

lems Dp as the number of all features p and the number of discriminative features p′

grow.

Lemma 6. For p → ∞, consider a family of p-dimensional (∆p, µp)-truncated sub-

gaussian problems Dp with underlying vectors β󰂏
p . Assume that the vector β󰂏

p is sparse,

it only has p′ = 1 + 2 log p non-zero coefficients. Further, assume that the mean µp

diverges with the number of discriminative features p′ as µp > c
√

p′ for some c > 1

that captures how separated class centers are for individual informative features. As p

grows, we allow scattering of the samples farther into the region dominated by the other

class – specifically, we allow ∆p ≤ 2 log p. Then, with probability at least 1 − δ, we have

R̂(β󰂏
p) ≤ 1√

2πp
+ 4(2 log p + 1) log(2/δ)

m
. (3.7)

Proof. Under the assumption that µp grows at least as c
√

p′ = c
√

1 + 2 log p, we have

µp ≥ 1 +
√

2 log p, which leads to the bound on the first term of eq. (3.6), and to the

second term approaching null limit.

Specifically, we have the following limit limx→∞ c
√

1 + kx/[1 +
√

kx] = c. Thus,

under the assumption that µp grows at least as c
√

p′ = c
√

1 + 2 log p, for c > 1, for

sufficiently large p, we have µp ≥ c
√

1 + 2 log p ≥ 1 +
√

2 log p, that is, 1 − µp ≤

−
√

2 log p.
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For the first term in eq. (3.6), ex is an increasing function of x, we thus have the

following upper bound

1√
2π

e− (1−µp)2

2 ≤ 1√
2π

e− log p = 1√
2π

1
p

.

For the second term in eq. (3.6), we can show that 1 + erf
󰀓

1−µp√
2

󰀔
approaches null

with the rate faster than 1
p2 . Since 1 − µp ≤ −

√
2 log p and erf (x) is an increasing

function of x, we have 1 + erf
󰀓

1−µp√
2

󰀔
≤ 1 + erf (−

√
2 log p). We also have

d
󰁫
1 + erf (−

√
2 log p)

󰁬

dp
= −

󰁴
2
π

p3
√

log p
.

From the L’Hôpital’s rule,

lim
p→∞

1 + erf (−
√

2 log p)
p−2 = lim

p→∞

1
2
√

π

1√
log p

= 0.

Thus, [(1 − µp)2 + 1]
󰁫
1 + erf

󰀓
1−µp√

2

󰀔󰁬
= O

󰀓󰁫
(−

√
2 log p)2 + 1

󰁬
/p2

󰀔
= O (log p/p2). The

second term quickly approaches null as p grows.

Sparse SVM involves regularized empirical risk, that is, minimization of a weighted

sum of the empirical risk and the L1 norm of the model β. Under the scenario of slowly

increasing number of discriminative features, the Sparse SVM regularized empirical risk

minimization is characterized by the following lemma.

Lemma 7. For p → ∞, consider a family of p-dimensional classification problems Dp

as described in Lemma 6. For each Dp, consider the SparseSVM regularized empirical

minimization problem (eq. 3.1)

arg min
β

1
m

m󰁛

i=1
max(0, 1 − yiβ

T xi) + λ󰀂β󰀂1,

involving m-sample training set sampled from Dp. Then, for each p, with probability

1 − δ, there exist an empirical minimizer β̂p of the problem above that can be found

using a linear program (eq. 3.2), with L1 norms of the primal and dual solutions, Rp
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and rp, respectively, bounded from above by

Rp ≤ 1√
2π

m

p
+ 4(1 + 2 log p) log(2/δ)] + λ

󰁴
1 + 2 log p,

rp ≤ 1√
2π

1
p

+ 4(1 + 2 log p) log(2/δ)
m

+ λ
󰁴

1 + 2 log p.

Proof. For any unit L2-norm vector β with p′ non-zero entries, the highest L1 norm is

achieved if all the p′ coordinates are equal to 1/
√

p′. Thus, 󰀂β󰂏
p󰀂1 ≤

√
p′ for β󰂏

p with

unit L2-norm and at most p′ non-zero coefficients. On the training set, the minimizer

β̂p has lowest objective function of all possible β, including β󰂏
p . Thus, we have

R̂(β̂p) + λ󰀂β̂p󰀂1 ≤ R̂(β󰂏
p) + λ󰀂β󰂏

p󰀂1

≤ 1√
2π

1
p

+ 4(1 + 2 log p) log(2/δ)
m

+ λ
󰁴

1 + 2 log p.

From strong duality, we have rp = R̂(β̂p) + λ󰀂β̂p󰀂1. The norm Rp of the primal solution

does not involve averaging the losses max(0, 1 − yiβ
T xi). Instead, the losses are added

up, that is, Rp includes the term mR̂(β̂p) instead of the empirical risk.

Lemma 7 directly leads to Theorem 3.

3.4.3 Speedup Compared to Classical Sparse SVM for Truncated Subgaus-

sian Problems

For truncated subgaussian classification problems, the proposed algorithm for solv-

ing Sparse SVM optimization problem using quantum LP solver has sublinear complex-

ity. We show here that classical algorithms for the same class of problems cannot be

faster than linear, through reduction from the search problem. As a result, Quan-

tum Sparse SVM holds polynomial complexity advantage to any classical algorithm for

Sparse SVM on this class of problems.

Consider the following truncated subgaussian problem with m samples and p fea-

tures. All samples from the positive class are vectors with p ones. On the other hand, all

samples from the negative class have negative one on the same subset of p′ = O (logp)
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features, and have the value of positive one for all other features. This setup meets the

criteria for a sparse truncated subgaussian classification problem according to Definition

2. Finding the optimal classification model involves finding at least one of the p′ features

where a positive sample differs in value from a negative sample, out of p possibilities.

Successfully training the classifier for this particular classification problem translates

to successfully solving the search problem. Search problem has classical complexity

of O (p), providing lower bound on classical algorithms for training Sparse SVMs for

truncated subgaussian problems. In the quantum setting, the problem can be solved by

Groveer’s search algorithm, which attains the quantum lower bound of O
󰀓√

p
󰀔
. The

quantum lower bound shows that the proposed method involving a quantum LP solver

is optimal, up to slower growing polylog terms.

We also note that since all the sample feature vectors are composed of elements

with the same, unit magnitude, and thus all rows and all columns have the same norm, it

is not possible to use sampling methods to construct a dequantized version of Quantum

Sparse SVM with sublinear complexity for the truncated subgaussian problems.

3.5 Related Work

Considerable effort has been devoted into designing fast classical algorithms for

training SVMs, although the focus is on the traditional SVM that involves the L2

regularizer, which results in a strongly convex objective function even for hinge loss,

as opposed to Sparse SVM, where the objective function is piece-wise linear, and thus

convex but not strongly convex. The decomposition-based methods such as SMO [48]

are able to efficiently manage problems with large number of features p, but their

computational complexities are super-linear in m. Other training strategies [7, 49, 50]

are linear in m but scale quadratically in p in the worst case. In more recent work,

the number of features p is replaced by the average sparsity of samples, s, that is, the

average number of non-zero feature values per sample. The SV Mperf algorithm [51]
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for linear SVM scales as O(sm). The Pegasos algorithm [52] improves the complexity

to Õ (s/(λ󰂃)), where λ, and 󰂃 are the regularization parameter of SVM and the error

of the solution, respectively. However, sublinear sparsity of input samples is a strong

assumption, and holds only in some special scenarios, such as Bag-of-Words encoding in

natural language processing, but rarely holds for data describing physical phenomena,

including biomedical data.

Beyond the classical realm, instead of the solver [26] we used, two alternative

quantum solvers based on the interior point approach were also introduced recently,

an SDP/LP [53] and a dedicated LP [54] solver. However, both of the quantum inte-

rior point solvers come with computational complexity challenges that make them less

appealing for training sparse models. The interior point dedicated LP solver [54] has

complexity of O(
√

nL/󰂃), where L = O(log n) on average but L = mn in the worst

case. Crucially, the complexity also depends on the sparsity of the constraint matrix

A. However, in SVMs, A is composed of elements yix
j
i , the feature values, which are

unlikely to be spare in many applications, including those involving biomedical data.

The SDP/LP solver [53] has cubic dependence on the condition number κ of the in-

termediate solution matrices of the SDP. In the LP variant, κ is ratio of largest to

smallest feature weight magnitude, which can easily explode in machine learning ap-

plications, where some feature weights are null or close to null. Even if the problem is

well-conditioned, the interior-point SDP/LP solver has complexity of Õ(m2).

An alternative to using a quantum LP solver is to use quantum gradient descent.

However, most quantum gradient descent approaches only work reliably for small num-

ber of steps, with probability of following the gradient path decreasing exponentially

with the number of gradient updates. Recently, a quantum descent method circum-

venting this problem has been proposed [55], but only for objective functions where

the norm of the gradient decreases with each step, such as quadratic functions. Sparse

SVM objective function is piece-wise linear and non-differentiable, with possibility of
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subgradient norm increase when a step from one linear region to another is made.

Recently, construction of fast classical algorithm based on quantum machine learn-

ing methods using sampling-based data structure has been proposed [56], and has led

to a dequantization of LS SVM and other machine learning methods under low-rank

assumption [57]. A dequantized SDP solver has also been proposed [58] for SDP prob-

lems with low rank input matrices. While a linear program LP(c, A, b) can be seen as

an SDP with diagonal matrices formed by c and rows of A, for the LP resulting from

Sparse SVM these diagonal matrices are full-rank. Thus, the proposed quantum Sparse

SVM cannot be dequantized using existing approaches as a variant of dequantized SDP.
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CHAPTER 4

QUANTUM SEMI-SUPERVISED KERNEL LEARNING

4.1 Introduction

In the previous chapter, we explored the possibility of achieving quantum speedup

for Sparse SVM, which is categorized as a supervised machine learning problem. While

much progress has been made in developing quantum algorithms for supervised learning,

it has been recently advocated that the focus should shift to the unsupervised and semi-

supervised setting. To maximize the potential of finding applications on near-term

quantum computers, it is suggested to explore problems that are considered hard and

intractable for the classical machine learning community, such as generative models in

unsupervised and semi-supervised learning [59]. In this chapter, we focus on a setting

where accessing the labels for all data points is hard to obtain and present a semi-

supervised quantum algorithm for a kernel learning problem.

In many domains, the most laborious part of assembling a training set is collecting

sample labels. Thus, in many scenarios, in addition to the labeled training set, we have

access to many more feature vectors with missing labels. One way of utilizing these

additional data points to improve the classification model is through semi-supervised

learning. In semi-supervised learning, we are given m observations x1, ..., xm drawn

from the marginal distribution p(x), where the l (l ≪ m) first data points come with

labels y1, ..., yl drawn from conditional distribution p(y|x). Semi-supervised learning

algorithms exploit the underlying distribution of the data to improve classification ac-

curacy on unseen samples.

49



4.1.1 Our Contribution

In this chapter, we introduce a quantum algorithm for semi-supervised training of a

kernel support vector machine classification model. We start with the existing Quantum

Least Squares Support Vector Machine (Quantum LS-SVM) [18], and use techniques

from sample-based Hamiltonian simulation [60] to add a semi-supervised term based on

Laplacian SVM [61]. As is standard in quantum machine learning [16], the algorithm

accesses training samples and the adjacency matrix of the graph connecting samples via

a quantum oracle. We show that, with respect to the oracle, the proposed algorithm

achieves the same quantum speedup as LS-SVM, that is, adding the semi-supervised

term does not lead to increased computational complexity.

4.2 Preliminaries

In this section, we setup the background that we need for describing quantum

semi-supervised algorithm. We first describe briefly the semi-supervised kernel ma-

chines and show training a semi-supervised LS-SVM problem can be reformulated as a

system of linear equations. LS-SVM minimizes quadratic loss and quadratic regularizer
󰁓m

i=1(yi − βT xi)2 + λ󰀂β󰀂2
2 over the training set {(xi, yi)} and with standard techniques

can be re-written as a system of linear equations. Quantum LS-SVM utilizes a quantum

linear system solver known as HHL algorithm [18]. Second, for preparing the quantum

setting, we describe the utilized quantum subroutines such as HHL algorithm and LMR

technique.

4.2.1 Semi-Supervised Kernel Machines

Reproducing Kernel Hilbert Spaces. Binary classification models take the form

of a function h : X → R from some Hilbert space of functions H. Consider L2(X),

the space of all square-integrable functions X → R. In L2, closeness in norm does not

imply everywhere pointwise closeness of two functions. Difference between f(x) and
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g(x) can be arbitrary large for x ∈ S ⊂ X even if ||f − g||H = 0, as long as S has

measure of 0.

Not all classes of functions exhibit this problem. Consider a family of Dirac eval-

uation functionals H → R, indexed by t ∈ X, and defined for Hilbert spaces of func-

tions as Ft[h] = h(t). A linear functional F : H → R is bounded if ∃M ∈ R :

∀h ∈ H |F [h]| ≤ M ||h||H. Consider a space H in which evaluation functionals

for all t ∈ X are bounded. Then, for any f, g ∈ H, small ||f − g||H implies small

|f(t) − g(t)|, everywhere on X. Riesz representation theorem guarantees that for

each bounded evaluation functional Ft, there exists a unique function Kt ∈ H such

that Ft[h] = h(t) = 〈Kt, h〉H. Function Kt : X → R is called the representer of

t ∈ X. Any space of functions in which every evaluation operator Ft is bounded, and

thus has a corresponding representer Kt, is called a Reproducing Kernel Hilbert Space

(RKHS). In RKHS, by symmetry of inner product, Kt(s) = 〈Kt, Ks〉H = Ks(t). We

can thus define a function K : X × X → R with values K(s, t) = Ks(t), such that

∀x, y ∈ X ∃Kx, Ky ∈ H : 〈Kx, Ky〉H = K(x, y).

Any symmetric and positive definite function K : X × X → R (that is, a function

that fulfills the Mercer condition,
󰁕

X

󰁕
X c(x)K(x, y)c(y)dxdy ≥ 0 ∀c ∈ H ) is called a

reproducing kernel. A reproducing kernel gives rise to functions Kt : X → R defined by

fixing t and defining Kt(x) = K(t, x). We can construct an inner product space as the

span of functions Kt : X → R for all t ∈ X, with the inner product defined through

representers as 〈f, g〉H = 󰁓n
j=1

󰁓n′

j=1 cjc
′
jK(tj, t′

j). The Moore-Aronszajn theorem states

that the space defined this way can be completed, the resulting RKHS space is unique,

and K is the reproducing kernel in that space.

Discrete-topology Gradients of Functions in RKHS. A simple way of measur-

ing local variability of a function X → R is through its gradient; for example, functions

with Lipschitz-continuous gradient cannot change too rapidly. In manifold learning,

instead of analyzing gradient using the topology of X, some other topology is used. In

51



particular, in Laplacian SVM and related methods, a discrete topology of a graph G

connecting training points in X is used.

For a given undirected graph G with a set of m vertices, V , and a set of n edges, E,

let us define a Hilbert space HV of functions h : V → R with inner product 〈f, g〉V =
󰁓

v∈V f(v)g(v), and a Hilbert space HE of functions ψ : E → R with inner product

〈ψ, φ〉E = 󰁓
e∈E ψ(e)φ(e) = 󰁓

u∼v ψ([u, v])φ([u, v]). We can define a linear operator

∇ : HV → HE such that:

∇h([u, v]) =
󰁴

Gu,vh(u) −
󰁴

Gu,vh(v) = −∇h([v, u]).

The operator ∇ can be seen as a discrete counterpart to the gradient of a function –

given a function h over vertices, for a given point u in the domain of h, ∇ over different

vertices v gives us a set of values showing the change of h over all directions from u, that

is, all edges incident to it. We define graph equivalent of divergence, a linear operator

div : HE → HV such that −div is the adjoint of ∇, that is, 〈∇[h], ψ〉E = 〈h, −div[ψ]〉V .

Finally, we define graph Laplacian, a linear operator ∆ : HV → HV

∆[h] = −1
2div[∇[h]] = Dvh(v) −

󰁛

u∼v

Gu,vh(u).

The graph Laplacian operator ∆ is self-adjoint and positive semi-definite, and the

squared norm of the graph gradient can be captured through it as

1
2 ||∇h||2E = 〈∆[h], h〉V = 1

2
󰁛

u∼v

Gu,v(h̄u − h̄v)2 = h̄T Lh̄,

where ∆[h] can be seen as ∆[h] = Lh̄, a multiplication of vector of function values over

vertices, h̄, by combinatorial graph Laplacian matrix L such that L[i, j] = Dj − Gi,j.

Semi-Supervised Least-Squares Kernel Support Vector Machines. Consider

a problem where we are aiming to find predictors h(x) : X → R that are functions from

a RKHS defined by a kernel K. In Semi-Supervised LS-SVMs in RKHS, we are looking
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for a function h ∈ H that minimizes

min
h∈H,b∈R

γ

2

l󰁛

i=1
(yi − (h(xi) + b))2 + 1

2 ||h||2H + 1
2 ||∇h||2E,

where γ is a user define constant allowing for adjusting the regularization strength. The

Representer Theorem states that if H is RKHS defined by kernel K : X × X → R,

then the solution minimizing the problem above is achieved for a function h that uses

only the representers of the training points, that is, a function of the form h(x) =
󰁓m

j=1 cjKxj
(x) = 󰁓m

j=1 cjK(xj, x). Thus, we can translate the problem from RKHS into

a constrained quadratic optimization problem over finite, real vectors

min
c,ξ,b

γ

2

m󰁛

i=1
ξ2

i + 1
2cT Kc + 1

2cT KLKc s.t. 1 − yi

󰀵

󰀷b +
m󰁛

j=1
cjK[i, j]

󰀶

󰀸 = ξi

where l ≤ m is the number of training points with labels (these are grouped at the

beginning of the training set), and h̄ = Kc, since function h is defined using repre-

senters Kxi
. The semi-supervised term, the squared norm of the graph gradient of h,

1/2||∇h||2E, penalizes large changes of function h over edges of graph G. In defining

the kernel K and the Laplacian L and in the two regularization terms, we use all m

samples. On the other hand, in calculating the empirical quadratic loss, we only use

the first l samples.

The solution to the Semi-Supervised LS-SVMs is given by solving the following

(m + 1) × (m + 1) system of linear equations
󰀵

󰀹󰀹󰀷
0 1T

1 K + KLK + γ−11

󰀶

󰀺󰀺󰀸

󰀵

󰀹󰀹󰀷
b

α

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷
0

y

󰀶

󰀺󰀺󰀸 , (4.1)

where y = (y1, ..., ym)T , 1 = (1, ..., 1)T , 1 is identity matrix, K is kernel matrix, L is

the graph Laplacian matrix, γ is a hyperparameter and α = (α1, ..., αm)T is the vector

of Lagrangian multipliers.
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4.2.2 Quantum Computing and Quantum LS-SVM

Quantum Linear Systems of Equations. Given an input matrix A ∈ Cn×n and a

vector b ∈ Cn, the goal of linear system of equations problem is finding x ∈ Cn such that

Ax = b. When A is Hermitian and full rank, the unique solution is x = A−1b. If A is

not a full rank matrix then A−1 is replaced by the Moore-Penrose pseudo-inverse. HHL

algorithm introduced an analogous problem in quantum setting: assuming an efficient

algorithm for preparing b as a quantum state b = 󰁓n
i=1 bi|i〉 using ⌈log n⌉+1 qubits, the

algorithm applies quantum subroutines of phase estimation, controlled rotation, and

inverse of phase estimation to obtain the state

|x〉 = A−1|b〉
󰀂 A−1|b〉 󰀂 . (4.2)

Intuitively, HHL algorithm works as follows: if A has spectral decomposition A =
󰁓n

i=1 λiviv
T
i (where λi and vi are corresponding eigenvalues and eigenstates of A), then

A−1 maps λivi 󰀁→ 1
λi

vi. The vector b also can be written as the linear combination of the

A’s eigenvectors vi as b = 󰁓n
i=1 βivi (we are not required to compute βi). Then A−1b =

󰁓n
i=1 βi

1
λi

vi. In general A and A−1 are not unitary (unless all A’s eigenvalues have unit

magnitude), therefore we are not able to apply A−1 directly on |b〉. However, since

U = eiA = 󰁓n
i=1 eiλiviv

T
i is unitary and has the same eigenvectors as A and A−1, one

can implement U and powers of U on a quantum computer by Hamiltonian simulation

techniques; clearly for any expected speed-up, one need to enact eiA efficiently. The

HHL algorithm uses the phase estimation subroutine to estimate an approximation of λi

up to a small error. The Next step computes a conditional rotation on the approximated

value of λi and an auxiliary qubit |0〉 and outputs 1
λi

|0〉 +
󰁶

1 − 1
λ2

i

|1〉. The last step

involves the inverse of phase estimation and quantum measurement for eliminating of

garbage qubits and for returning the desired state |x〉 = A−1|b〉 = 󰁓n
i=1 βi

1
λi

vi.
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Quantum Estimation of the Kernel Matrix. Quantum LS-SVM uses density op-

erator formalizm and partial trace (see Section 2.2.1) to represent the computation in-

volving the kernel matrix. To obtain kernel matrix K as a density matrix, quantum LS-

SVM [62] relies on partial trace, and on a quantum oracle that can convert, in superposi-

tion, each data point {xi}m
i=1, xi ∈ Rp to a quantum state |xi〉 = 1

󰀂 xi 󰀂
󰁓p

t=1(xi)t|t〉, where

(xi)t refers to the tth feature value in data point xi and assuming the oracle is given

󰀂 xi 󰀂 and yi . Vector of the labels is given in the same fashion as |y〉 = 1
󰀂 y 󰀂

󰁓m
i=1 yi|i〉.

For preparation the normalized Kernel matrix K ′ = 1
tr(K)K where K = XT X, we

need to prepare a quantum state combining all data points in quantum superposition

|X〉 = 1√󰁓m

i=1󰀂 xi 󰀂2

󰁓m
i=1 |i〉 ⊗ 󰀂 xi 󰀂 |xi〉. The normalized Kernel matrix is obtained by

discarding the training set state,

K ′ = Tr2(|X〉〈X|) = 1
󰁓m

i=1 󰀂 xi 󰀂2

m󰁛

i,j=1
󰀂 xi 󰀂 󰀂 xj 󰀂 〈xi|xj〉|i〉〈j|. (4.3)

The approach used above to construct density matrix corresponding to linear kernel

matrix can be extended to polynomial kernels [62].

LMR Technique for Density Operator Exponentiation. In HHL-based quan-

tum machine learning algorithms , including in the method proposed here, matrix A

for the Hamiltonian simulation within the HHL algorithm is based on data. For exam-

ple, A can contain the kernel matrix K captured in the quantum system as a density

matrix. Then, one need to be able to efficiently compute e−iK∆t, where K is scaled by

the trace of kernel matrix. Since K is not sparse, a strategy similar to [63] is adapted

for the exponentiation of a non-sparse density matrix:

Tr1
󰁱
e−iS∆t(K ⊗ σ)eiS∆t

󰁲
= σ − i∆t[K, σ] + O

󰀓
∆t2

󰀔
≈ e−iK∆tσeiK∆t, (4.4)

where S = 󰁓
i,j |i〉〈j| ⊗ |j〉〈i| is the swap operator and the facts Tr1 {S(K ⊗ σ)} =

Kσ and Tr1 {(K ⊗ σ)S} = σK are used. The equation (4.4) summarizes the LMR
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technique: approximating e−iK∆tσeiK∆t up to error O(∆t2) is equivalent to simulating a

swap operator S, applying it to the state K⊗σ and discarding the first system by taking

partial trace operation. Since the swap operator is sparse, its simulation is efficient.

Therefore the LMR trick provides an efficient way to approximate exponentiation of a

non-sparse density matrix.

Quantum LS-SVM. Quantum LS-SVM [62] uses partial trace to construct density

operator corresponding to the kernel matrix K. Once the kernel matrix K becomes

available as a density operator, the quantum LS-SVM proceeds by applying the HHL

algorithm for solving the system of linear equations associated with LS-LSVM, using

the LMR technique for performing the density operator exponentiation e−iK∆t where

the density matrix K encodes the kernel matrix.

4.3 Quantum Semi-Supervised Least Square SVM

We proposed here a quantum algorithm for solving Semi-Supervised Least Square

SVM. Semi-supervised LS SVM involves solving the following system of linear equations

󰀵

󰀹󰀹󰀷
b

α

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷
0 1T

1 K + KLK + γ−11

󰀶

󰀺󰀺󰀸

−1 󰀵

󰀹󰀹󰀷
0

y

󰀶

󰀺󰀺󰀸 = A−1

󰀵

󰀹󰀹󰀷
0

y

󰀶

󰀺󰀺󰀸 (4.5)

In quantum setting the task is to generate |b, α〉 = Â−1|0, y〉, where the normalized

Â = A

Tr(A) . The linear system differs from the one in LS-SVM in that instead of K,

we have K + KLK. While this difference is of little significance for classical solvers, in

quantum systems we cannot just multiply and then add the matrices and then apply

quantum LS-SVM – we are limited by the unitary nature of quantum transformations.

In order to obtain the solution to the quantum Semi-Supervised Least Square SVM,

we will use the following steps. First, we will read in the graph information to obtain

scaled graph Laplacian matrix as a density operator. Next, we will use polynomial

Hermitian exponentiation for computing the matrix inverse (K + KLK)−1.
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4.3.1 Quantum Input Model for the Graph Laplacian

In the semi-supervised model used here, we assume that we have information on

the similarity of the training samples, in a form of graph G that uses n edges to connect

similar training samples, represented as m vertices. We assume that for each sample,

G contains its k most similar other samples, that is, the degree of each vertex is d.

To have the graph available as a quantum density operator, we observe that the graph

Laplacian L is the Gram matrix of the rows of the m × n graph incidence matrix

GI , L = GIGT
I . We assume oracle access to the graph adjacency list, allowing us to

construct, in superposition, states corresponding to rows of the graph incidence matrix

GI

|vi〉 = 1√
d

n󰁛

t=1
GI [i, t]|t〉.

That is, state |vi〉 has probability amplitude 1√
d

for each edge |t〉 incident with vertex

i, and null probability amplitude for all other edges. In superposition, we prepare a

quantum state combining rows of the incidence matrix for all vertices, to obtain

|GI〉 = 1√
md

m󰁛

i=1
|i〉 ⊗ |vi〉

The graph Laplacian matrix L, composed of inner products of the rows of GI , is obtained

by discarding the second part of the system,

L = Tr2(|GI〉〈GI |) = 1
md

m󰁛

i,j=1
|i〉〈j| ⊗ d〈vi|vj〉 = 1

m

m󰁛

i,j=1
〈vi|vj〉|i〉〈j|. (4.6)

4.3.2 Polynomial Hermitian Exponentiation for Semi Supervised Learning

For computing the matrix inverse (K +KLK)−1 on a quantum computer that runs

our quantum machine algorithm and HHL algorithm as a subroutine, we need to effi-

ciently compute e−i(K+KLK)∆tσei(K+KLK)∆t. For this purpose we adapt the generalized

LMR technique for simulating Hermitian polynomials proposed in [60] to the specific
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case of e−i(K+KLK)∆tσei(K+KLK)∆t. Simulation of e−iK∆t follows from the original LMR

algorithm, and therefore we focus here only on simulation e−iKLK∆t. The final dynam-

ics (K + KLK)−1 can be obtained by sampling from the two separate output states for

e−iKLK∆t and e−iK∆t.

Simulating eiKLK∆teiKLK∆teiKLK∆t. Let D(H) denote the space of density operators associated

with state space H. Let K†, K, L ∈ D(H) be the density operators associated with the

kernel matrix and the Laplacian, respectively. We will need two separate systems with

the kernel matrix K, to distinguish between them we will denote the first as K† and

the second as K; since K is real and symmetric, these are indeed equal. The kernel and

Laplacian matrices K†, K, L are not sparse therefore we adapt the generalized LMR

technique for simulating Hermitian polynomials for our specific case B = K†LK.

For adapting the generalized LMR technique to our problem we need to generate

a quantum state ρ′ = |0〉〈0| ⊗ ρ′′ + |1〉〈1| ⊗ ρ′′′ with Tr(ρ′′ + ρ′′′) = 1, such that

Tr1
󰁱
Tr3

󰁱
e−iS′∆ (ρ′ ⊗ σ) eiS′∆󰁲󰁲

= σ − i[B, σ] + O(∆2) = e−iBtσeiBt + O(∆2), (4.7)

where B = ρ′′−ρ′′′ = 1
2K†LK+ 1

2KLK† = KLK and S ′ := |0〉〈0|⊗S+|1〉〈1|⊗(−S)

is a controlled partial swap in the forward (+S) and backward direction (−S) in time,

and

e−iS′∆ = |0〉〈0| ⊗ e−iS∆ + |1〉〈1| ⊗ eiS∆.

Therefore with one copy of ρ′, we obtain the simulation of e−iB∆ up to error O(∆2). If

we choose the time slice ∆ = δ/t and repeating the above procedure for t2/δ times, we

are able to simulate e−iBt up to error O(δ) using n = O(t2/δ) copies of ρ′.

Generating ρ′ = |0〉〈0| ⊗ ρ′′ + |1〉〈1| ⊗ ρ′′′ρ′ = |0〉〈0| ⊗ ρ′′ + |1〉〈1| ⊗ ρ′′′ρ′ = |0〉〈0| ⊗ ρ′′ + |1〉〈1| ⊗ ρ′′′. Figure 3 shows the quantum circuit for

creating ρ′ = |0〉〈0|⊗ρ′′+|1〉〈1|⊗ρ′′′ such that Tr(ρ′′+ρ′′′) = 1 and B = ρ′′−ρ′′′ = KLK.

The analysis of the steps preformed by the circuit depicted in Fig.3 is as follows.
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Figure 3: Quantum circuit for creating ρ′ = |0〉〈0| ⊗ ρ′′ + |1〉〈1| ⊗ ρ′′′. The circuit is to

be read from left-to-right. Each wire at left shows its corresponding input state. The

vertical rectangle denotes the cyclic permutation operator P on K, L, K defined in (4.8).

H is the Hadamard gate, and the waste bins show partial trace. The measurement on

the first quantum state is in computational basis.

Let P be the cyclic permutation of three copies of HA that operates as P |j1, j2, j3〉 =

|j3, j1, j2〉. In operator form it can be written as

P :=
dim HA󰁛

j1,j2,j3=1
|j3〉 〈j1| ⊗ |j1〉 〈j2| ⊗ |j2〉 〈j3 | (4.8)

The input state to the circuit depicted in Fig. 3 is

|+〉〈+| ⊗ K† ⊗ L ⊗ K = 1
2

󰁛

i,j∈{0,1}
|i〉〈j| ⊗ K† ⊗ L ⊗ K.

Applying P on K†, L, K gives

I = 1
2[|0〉〈0| ⊗ K† ⊗ L ⊗ K + |0〉〈1| ⊗

󰀓
K† ⊗ L ⊗ K

󰀔
P

+ |1〉〈0| ⊗ P
󰀓
K† ⊗ L ⊗ K

󰀔
+ |1〉〈1| ⊗ P

󰀓
K† ⊗ L ⊗ K

󰀔
P .

After discarding the third and second register sequentially by applying corresponding
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partial trace operators, we get

II = Tr2 [Tr3(I)] = |0〉〈0| ⊗ 1
2K† + |0〉〈1| ⊗ 1

2K†LK + |1〉〈0| ⊗ 1
2KLK† + |1〉〈1| ⊗ 1

2K,

in this step KLK term where the last line obtained from

Tr2
󰁫
Tr3

󰁫󰀓
K† ⊗ L ⊗ K

󰀔
P

󰁬󰁬
= K†LK,

Tr2
󰁫
Tr3

󰁫
P(K† ⊗ L ⊗ K)

󰁬󰁬
= KLK†,

Tr2
󰁫
Tr3

󰁫
P(K† ⊗ L ⊗ K) P

󰁬󰁬
= K.

After applying a Hadamard gate H = 1√
2 [(|0〉+ |1〉)〈0|+(|0〉− |1〉)〈1|] on the first qubit

of II, we get

III = H ⊗ 1(II)H ⊗ 1 =
1
2 (|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|) ⊗ 1

2K† + 1
2 (|0〉〈0| − |0〉〈1| + |1〉〈0| − |1〉〈1|) ⊗ 1

2K†LK

+ 1
2 (|0〉〈0| + |0〉〈1| − |1〉〈0| − |1〉〈1|) ⊗ 1

2KLK† + 1
2 (|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|) ⊗ 1

2K

= |0〉〈0| ⊗ 1
2

󰀕1
2K† + 1

2K†LK + 1
2KLK† + 1

2K
󰀖

+ |0〉〈1| ⊗ 1
2

󰀕1
2K† − 1

2K†LK + 1
2KLK† − 1

2K
󰀖

+ |1〉〈0| ⊗ 1
2

󰀕1
2K† + 1

2K†LK − 1
2KLK† − 1

2K
󰀖

+ |1〉〈1| ⊗ 1
2

󰀕1
2K† − 1

2K†LK − 1
2KLK† + 1

2K
󰀖

.

The last step is applying a measurement in computational basis {|0〉〈0|, |1〉〈1|} on the

first register to obtain our desired state ρ′,

IV = |0〉〈0| ⊗ 1
2

󰀕1
2K† + 1

2K†LK + 1
2KLK† + 1

2K
󰀖

+ |1〉〈1| ⊗ 1
2

󰀕1
2K† − 1

2K†LK − 1
2KLK† + 1

2K
󰀖

We can see that by defining ρ′′ = 1
2

󰀓
1
2K† + 1

2K†LK + 1
2KLK† + 1

2K
󰀔

and

ρ′′′ = 1
2

󰀓
1
2K† − 1

2K†LK − 1
2KLK† + 1

2K
󰀔

the final state is in the form of ρ′ = |0〉〈0| ⊗

ρ′′+ |1〉〈1|⊗ρ′′′ where Tr(ρ′′+ρ′′′) = 1, and we obtain ρ′′−ρ′′′ = 1
2K†LK + 1

2KLK† = B.

Now with having the output state ρ′ we are ready to apply the generalized LMR in

60



(4.7) to simulate e−iKLK∆tσeiKLK∆t up to error O(∆2). Comparing the LMR technique

in equation (4.4) with the generalized LMR for the spacial case of KLK in equation

(4.7), we see approximating e−iKLK∆tσeiKLK∆t up to error O(∆t2) is equivalent to

simulating the controlled partial swap operator S ′, applying it to the state ρ′ ⊗ σ and

discarding the third and first systems by taking partial trace operations, respectively.

Since S ′ is also sparse, and its simulation is efficient, the generalized LMR technique

offers an efficient approach for simulating eiKLK∆t.

4.3.3 Quantum Semi-Supervised LS-SVM Algorithm and its Complexity

Algorithm 1 Quantum Semi-Supervised LS-SVM
Input: The datapoint set {x1, ...xl, ...xm} with the first l data points labeled and the

rest unlabeled, y = (y1, ..., yl) and the graph G

Output: The classifier |α, b〉 = A−1|y〉

1: Quantum data preparation. Encode classical data points into quantum data

points using quantum oracles Ox : {x1, ...xl, ...xm} 󰀁→ |X〉 = 1√󰁓m

i=1󰀂 xi 󰀂2

󰁓m
i=1 |i〉 ⊗

󰀂 xi 󰀂 |xi〉 and Ox : y 󰀁→ |y〉.

2: Quantum Laplacian preparation. Prepare quantum density matrix using oracle

access to G.

3: Matrix inversion. Compute the matrix inversion |α, b〉 = A−1|y〉 via HHL algo-

rithm. A quantum circuit for the HHL algorithm has three main steps:

4: Phase estimation, including efficient Hamiltonian simulation involving KLK

(Section 4.3.2)

5: Controlled rotation

6: Uncomputing

7: Classification. Based on Swap test algorithm, same as in Quantum LS-SVM.

The quantum LS-SVM in [62] offers exponential speedup O(log mp) over the clas-

sical time complexity for solving SVM as a quadratic problem, which requires time
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O(log(󰂃−1)poly(p, m)), where 󰂃 is the desired error. The exponential speedup in p oc-

curs as the result of fast quantum computing of kernel matrix, and relies on the existence

of efficient oracle access to data. The speedup on m is due to applying quantum matrix

inversion for solving LS-SVM, which is inherently due to fast algorithm for exponenti-

ation of a resulting non-sparse matrix. Our algorithm introduces two additional steps:

preparing the Laplacian density matrix, and Hamiltonian simulation for KLK. The

first step involves oracle access to a sparse graph adjacency list representation, which

is at least as efficient as the oracle access to non-sparse data points. The Hamiltonian

simulation involves simulating a sparse conditional partial swap operator, which results

an efficient strategy for applying e−iKLK∆t in time Õ(log(m)∆t), where the notation Õ

hides more slowly growing factors in the simulation [64].

4.4 Related Work

Classical SVM. Considerable effort has been devoted into designing fast classical

algorithms for training SVMs. The decomposition-based methods such as SMO [48]

are able to efficiently manage problems with large number of features p, but their

computational complexities are super-linear in m. Other training strategies [7, 49, 50]

are linear in m but scale quadratically in p in the worst case. The Pegasos algorithm

[52] for non-linear kernel improves the complexity to Õ (m/(λ󰂃)), where λ, and 󰂃 are

the regularization parameter of SVM and the error of the solution, respectively.

Quantum SVM. Beyond the classical realm, three quantum algorithms for training

linear models have been proposed, the quantum LS-SVM that involves L2 regularizer

[18], and a quantum training algorithm that solves a maximin problem resulting from a

maximum – not average – loss over the training set [16], as well as the quantum Sparse

SVM we introduced in Chapter 3.
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Quantum-inspired SVM. Although quantum machine learning has been consid-

ered a potential application for building scalable quantum computers, its potentially-

exponential speedup has been less manifested in practice than the well-known quantum

algorithms such as Shor’s algorithm. One of the main reason is that most quantum

machine learning algorithms are based on a strong assumption: the existence of an

efficient approach for preparing input data (mainly via QRAM), and learning partially

from the quantum output state (via quantum measurement).

Quantum-inspired machine learning started by Tang’s work [56] is a new line of

research that tries to dequantize quantum machine learning algorithms when a low-

rank approximation is feasible. Namely, a quantum-inspired algorithm, also known as

a dequantized algorithm, solves a classical equivalent of a quantum machine learning

problem in a setting where the data input and output model is design to mimic the

assumptions underlying QRAM and quantum measurements. These assumptions make

the comparison between quantum algorithms and their classical, dequantized coun-

terparts more fair. Specifically, analogous to using QRAM input model and quantum

measurement, these classical algorithms exploit ℓ2-norm sampling and query access, also

known as importance sampling or length-square sampling in randomized linear algebra

literature. However, the dequantized algorithms are efficient when dealing with low-

rank matrices, whereas quantum computers may still exhibit an exponential speedup

over all known classical algorithms for sparse and high-to-full-rank matrix problems.

Dequantizing these cases would imply that classical computers can efficiently simulate

quantum computers, which is currently considered to be unlikely.

ℓ2-norm Sampling and Query Access Model. Analogous to the assumption one

can efficiently prepare a quantum state |x〉 proportional (up to normalization) to some

input vector x, a quantum-inspired algorithm is assisted by an input model called

sampling and query access. One has sampling and query access to a vector x ∈ Cn if

the following queries can be done in Õ (1):
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(a) given an index i ∈ [n], output the ith element xi,

(b) sample an index j ∈ [n] with probability |x2
j |

󰀂 x 󰀂2 ,

(c) output the ℓ2-norm 󰀂 x 󰀂.

For a matrix A ∈ Cm×n the model gives the sampling and query access to each row

A(i, .) and access to a vector with elements corresponding to ℓ2-norm of A’s rows.

The fundamental difference between quantum-inspired algorithms and traditional clas-

sical algorithms is that via importance sampling, their runtime is independent of the

dimension of input data, and thus it builds a setting comparable with quantum machine

learning algorithms aided by QRAM. Recently [65] introduced an algorithmic frame-

work for quantum-inspired classical algorithms on low-rank matrices that generalizes a

series of previous work, recovers existing quantum-inspired algorithms such as quantum-

inspired recommendation systems [56], quantum-inspired principal component analysis

[66], quantum-inspired low-rank matrix inversion [67], and quantum-inspired support

vector machine [68].

It is natural to ask how our proposed quantum algorithm’s complexity can be in-

terpreted in the quantum-inspired classical setting. As earlier mentioned, our quantum

algorithm’s complexity is asymptotically the same as the complexity of the quantum

LS-SVM. Here we briefly compare the complexity of quantum-inspired LS-SVM with

its corresponding quantum version.

Quantum LS-SVM speedup is rooted in utilizing two quantum subroutines: first,

efficient input kernel matrix preparation using quantum inner product; second, efficient

quantum matrix inversion algorithm with the asymptotic final runtime Õ (󰂃−3
κ 󰂃−3 log mp).

The matrix to be inverted is F̂ = F/tr(F ), where F =

󰀵

󰀹󰀹󰀷
0 1T

1 K + γ−11

󰀶

󰀺󰀺󰀸 and assuming

the operator norm
󰀐󰀐󰀐 F̂

󰀐󰀐󰀐 ≤ 1. Here, 󰂃κ is a user-defined constant such that the abso-

lute values of F̂ ’s eigenvalues satisfy 󰂃κ ≤ |λi| ≤ 1, and 󰂃 is the error occurred while

computing e−iF̂ ∆t.
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Similarly, quantum-inspired LS-SVM assumes F̂ has a singular value threshold σ

and
󰀐󰀐󰀐 F̂

󰀐󰀐󰀐
F

∈ O(1) i.e, the Frobenius norm is independent from F̂ ’s dimension. We

also have σmax =
󰀐󰀐󰀐 F̂

󰀐󰀐󰀐 ≤
󰀐󰀐󰀐 F̂

󰀐󰀐󰀐
F

, where σmax is the largest singular value of matrix

F̂ . These conditions simultaneously bounds the rank and condition number of F̂ .

Quantum-Inspired LS-SVM gives the final output by applying the quantum-inspired

low-rank matrix inversion on the corresponding system of linear equations in time
󰁨O

󰀕
󰀂F̂ 󰀂6

F󰀂F̂ 󰀂22

σ28η6ε6 log3 1
δ

󰀖
, which with assumptions on operator and Frobenius norms, it can

be simplified as 󰁨O
󰀓
σ−28η−6ε−6 log3 1

δ

󰀔
. Here σ has the same role as 󰂃κ in quantum LS-

SVM runtime; ε and 󰂃 are the accuracy of quantum-inspired and quantum LS-SVM,

respectively. Parameters η and δ have no corresponding meaning in quantum LS-SVM;

without loss of generality we consider their values as a constant.

For the purpose of understanding how both quantum-inspired and quantum LS-

SVM behaves in edge cases, we consider the following special cases. Recall that by

definition, the operator norm 󰀂 A 󰀂 = σmax and 󰀂 A 󰀂F =
󰁴󰁓min{m,n}

i=1 σ2
i (A). We con-

sider the ratio 󰂃−3
κ

σ−28 as the speedup ratio of quantum over quantum-inspired LS-SVM

and consider the following cases:

1. Extremely low-rank cases: for example, when F̂ has only one nonzero singular

value equal to one, we have 󰂃−3
κ

σ−28 = O(1).

2. Full rank cases: for example, when F̂ is equal to scaled Identity matrix, all singular

value are equal to 1/p and 󰂃−3
κ

σ−28 = O(p3)
O(p28) , thus we expect polynomial speedup

for quantum LS-SVM.

3. Low-rank cases: for example, when F̂ has a scaled Identity block of size q: in this

case 󰂃−3
κ

σ−28 = O(q3)
O(q28) . Note that, if p = 1000000, q = 6

√
p = 10, we gain sub-linear

speedup in both cases; as 󰂃−3
κ

σ−28 = O(p3/6)
O(p28/6) .

We see that for problems involving low-rank matrices, quantum-inspired LS-SVM offers

an asymptotic exponential speed up compared to previously known classical algorithms.
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However, it exhibits still hefty polynomial overhead compared to quantum LS-SVM. A

recent work [69] studies the performance of quantum-inspired algorithms in practice and

concluded that their performance degrades significantly when the rank and condition

number of the input matrix are increased, and high performance requires very low rank

and condition number.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we have analyzed two quantum machine learning problems and

provided quantum algorithms that, under certain assumptions, achieve speedup com-

pared to existing classical algorithms for training the predictive models. The problems

we chose were selected based on their expected utility for very large data.

In the first problem, we analyzed the computational complexity of quantum sparse

support vector machine, a linear classifier that minimizes the hinge loss and the L1

norm of the feature weights vector and relies on a quantum linear programming solver

instead of a classical solver. Sparse SVM leads to sparse models that use only a small

fraction of the input features in making decisions, and is especially useful when the

total number of features, p, approaches or exceeds the number of training samples,

m. We prove a Ω(min(m, p)) worst-case lower bound for computational complexity

of any quantum training algorithm relying on black-box access to training samples;

quantum sparse SVM has at least linear worst-case complexity. However, we proved

that there are realistic scenarios in which a sparse linear classifier is expected to have

high accuracy, and can be trained in sublinear time in terms of both the number of

training samples and the number of features. We believe sparse supervised learning

will be important once we reach data sizes that merit the use of a quantum computer

for model training, because we would want to have a small, compact model that can

be executed on a classical computer once its trained. A sparse model can achieve that:

even if the original feature space dimensionality is huge, the number of features that

are needed for classification once the model is trained is much smaller.

The second area that we focused on, weakly- or semi-supervised learning, is likely

to be equally important in the huge-data regime. It is unlikely that all training samples
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will have class labels attached to them, since often assigning correct labels is much

more laborious than collecting the feature vectors. We provided a quantum algorithm

for semi-supervised SVM that can be trained even if many labels are missing. The

algorithm uses recent advances in quantum sample-based Hamiltonian simulation to

extend the existing Quantum LS-SVM algorithm to handle the semi-supervised term in

the loss, while maintaining the same quantum speedup as the Quantum LS-SVM. We

also analyzed the offered speedup by our algorithm compare to the quantum-inspired

classical equivalent.

Our work leaves several open questions: for both quantum sparse LS-SVM and

semi-supervised LS-SVM, we showed there are polynomial speedup in some cases, and

no speedup in other. It is natural to ask if there could be a general speedup, or if

not, how broad is the set of families of special cases that allow speedup? In the first

problem we analyzed, while speedup is not possible in the worst case, we showed that

for the family of truncated subgaussian classification problems speed up is achievable.

Here a natural question is, can one find other useful distribution that shows quantum

advantage? For the second problem we analyzed, we showed speedup in some moderate-

to-low rank input cases, but not in very low rank cases. It remains to be seen if there

other characterizations of the input data that lead to possibility of speedup.
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