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ABSTRACT 
 

Many chemical transformations are effectively carried out using homogeneous and heterogeneous 

catalysis. There are a number of differences between the two types of catalysts but the most 

important advantage that homogeneous catalysts have over heterogeneous catalysts are their 

uniform active sites, which allow for selective reactions. The various active sites in small scale 

heterogeneous catalysts can often result in undesired side reactions, making selective reactions 

difficult to carry out. However, due to their nature, heterogenous catalysts also have an important 

advantage: facile catalyst separation from the reaction system. Separation of homogeneous 

catalysts can be complicated and costly. An ideal catalyst would exhibit the best features of both 

homogeneous and heterogeneous catalysts. Recent developments in heterogeneous catalysis has 

led to the conception of single-atom catalysts (SACs), a class of catalysts based on isolated metal 

atoms anchored to a support scaffold. SACs are often much more reactive and can offer better 

selectivity when compared to nano-scale catalysts. Also, like all heterogeneous catalysts, SACs 

can be easily separated from reaction products. In order to realize the full potential of SACs, a 

sound understanding of the underlying catalytic mechanisms is required. This knowledge is crucial 

for the development of catalysis using SACs. However, surface analysis tools can become less 

effective in studying catalytic mechanisms at the atomic scale. 

Mass spectrometry has proven to be a robust technique for studying organometallic catalytic 

mechanisms at the single-molecule level. Using a modified linear triple quadrupole ion trap mass 

spectrometer (modified Thermo Electron LTQ XLTM) equipped with an electrospray ionization 

(ESI) source, we can isolate a specific ionic species and probe its reactivity via ion-molecule 

reactions. By employing established gas-phase synthetic techniques, we have generated zero-
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valent metal complexes that can act as experimental model ions for pristine graphene-supported 

SACs. Our studies on the SAC model ions may shed some light on graphene-supported SAC 

reactivity and the underlying mechanisms.  

When using Ni as the active center, the model ion is capable of the dehydrogenation of alkanes via 

two sequential C-H activations. By introducing energy into the system, additional 

dehydrogenations occur, enabling processes such as the transformation of cyclohexane to benzene. 

Both the Ni and Co SAC model ions are capable of the selective dehydrogenation of amines and 

alcohols via a similar dehydrogenation pathway. We have also generated the model ion using Cu 

and Pd as the active centers. The Ni, Co, and Pd model ions are capable of engaging in oxidative 

addition with a variety of polar reagents. The Cu model ion seems to react with polar reagents via 

one-electron transfer processes. Our work suggests that graphene-supported SACs are capable of 

engaging in dehydrogenation via C-H activation and oxidative addition depending on the metal 

used for the active center. Kinetic isotope effects and DFT calculations support the proposed 

mechanisms. 
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Chapter 1 - Introduction to Single-Atom Catalysts 
 

 1.1 Size Reduction of Heterogeneous Catalysts  
 

Catalysts are an important component in many areas of chemistry. The impact of catalysis is so 

large that more than 90% of chemical industry rely on catalysts to effectively carry out many 

chemical transformations.1,2 While both homogeneous and heterogeneous catalysts have found 

their place in chemical industry, heterogeneous catalysts make up the majority of industrial 

catalysis.3–6 This is largely due to the fact that heterogeneous catalysts can be easily separated from 

reaction products, while homogeneous catalysts can require more complicated separation 

techniques which can often be costly. In addition to catalyst removal, heterogeneous catalysts are 

generally robust  (can handle higher operating temperatures) and are usually recyclable, while 

homogeneous catalysts are often thermally unstable and have short-lifetimes.7  

Over the years, drastic improvements in transition metal heterogeneous catalysis have been 

achieved by decreasing catalyst particle size and anchoring them to a support scaffold.8 Size 

reduction of the catalyst causes two important benefits: (i) the number of metal atoms available on 

the surface to participate in catalysis increases,5 and (ii) the coordination number of the metal 

atoms decreases, often resulting in higher activity.3 Many metal nanoparticle catalysts have been 

reported to produce interesting results due to their small scale nature. A study by Turner et al. on 

Au nanoparticles as partial oxidation catalysts can serve as an example.9 The authors synthesized 

Au nanoparticles on inert supports (such as boron nitride and SiO2) of various sizes and tested their 

performance in the partial oxidation of styrene, a commonly used reactant to asses selective 

oxidation activity.10 Nanoparticles that were about 3.0 nm in diameter produced trace amounts of 

partial oxidation and larger nanoparticles (~17.0 and 30 nm) resulted in no reaction. Au 
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nanoparticles about 1.5 nm in diameter successfully participated in the partial oxidation of styrene 

(Scheme 1.1). However, larger nanoparticles are active when coupled with a peroxy compound as 

the initiator.10 The differences in reactivity of these Au gold nanoparticles can be explained by a 

study by Miller et al.11 The authors investigated the bond length and electronic properties of Au 

nanoparticles with various particle sizes and various supports. For Au nanoparticles smaller than 

~3 nm, the Au-Au bond lengths decreased as the particle size decreased (independent of the type 

of support), whereas little change in bond length was observed in particles larger than ~4 nm. Also, 

a decrease in the white line intensity of the XANES spectrum was observed as particle size 

decreased. These observations led the authors to conclude that decreasing Au particle below 3 nm 

led to an increase in the sp-d band gap and hence the d-electron density of the Au atoms. In this 

study, this effect allowed the particles smaller than ~3 nm to be oxidized by air. In the study by 

Turner et al., this effect allowed small Au nanoparticles to act as partial oxidation catalysts without 

a sacrificial initiator, presumably via dissociative chemisorption of O2.  

 

Scheme 1.1. Partial oxidation of styrene by supported Au55 nanoparticles using solely O2. The 

~1.5 nm Au nanoparticles were derived from 55-atom Au clusters by using a loading of 0.6 wt%.9 
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 1.2 Active Site Heterogeneity 
 

As mentioned previously, decreasing the size of transition metal catalyst particles increases the 

atoms available on the surface for catalysis. While this can lead to increased catalytic activity, not 

all surface atoms offer equal reactivity. Therefore, controlling the size and morphology of the 

catalyst is key when considering selectivity. This is evident in the study by Crespo-Quesada et al. 

on shape- and size-controlled Pd nanocrystals.12 The authors synthesized Pd nanocrystals of three 

different shapes: cubic, octahedral, and cuboctahedral (Figure 1.1). Two types of active sites are 

present on  

 

 

Figure 1.1. Depictions of the two types of active sites on the surface of cubic, octahedral, and 

cuboctahedral Pd nanocrystals. Adapted with permission from Crespo-Quesada, M., Yarulin, A., 

Jin, M., Xia, Y. & Kiwi-Minsker, L. J. Am. Chem. Soc. 133, 12787–12794 (2011). Copyright 

(2011) American Chemical Society.12 

 

the surface of the nanocrystals: plane atoms (σ1 sites) and edge atoms (σ2 sites). The ratio of plane 

to edge atoms can vary depending on the size and shape of the nanocrystal. The authors tested 

theses nanocrystals in the hydrogenation of 2-methyl-3-butyn-2-ol (MBY) and found that the 
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active sites displayed reactivities that can be used to reach a selective reaction (Scheme 1.2). 

Experimental data and kinetic modelling suggest that the active sites provide two pathways to the 

fully hydrogenated product, 2-methyl-3-butan-2-ol (MBA): direct hydrogenation for the plane 

atoms and overhydrogenation for the edge atoms. Both active sites can produce 2-methyl-3-buten-

2-ol (MBE) via partial-hydrogenation but the edge atoms are 4-fold less active in the production 

of MBE production than the plane atoms. Also, as shown in Figure 1.2, Crespo-Quesada et al. 

determined that both active sites were selective towards MBE production at lower conversions 

(~95% selective for MBE at ~50% conversion of MBY). This is due to the higher adsorption 

strengths of alkynes compared to alkenes.13 However, as conversion of MBY increases, the 

concentration of MBE overtakes that of MBY and the overhydrogenation pathway of the edge 

atoms becomes competitive, resulting in an increased production of MBA. It is due to this effect 

that the nanocrystals with a higher fraction of edge surface atoms are less selective towards MBE 

at higher conversions of MBY. Therefore, if selectivity for MBE needs to be maximized, then Pd 

nanocrystals with minimal edge atoms are required. Multiple active sites present in transition metal 

heterogeneous catalysts can lead to different products. Studies such as the report by Crespo-

Quesada et al. make it very clear that by generating a heterogeneous catalyst with uniform active 

sites (or close to it), selective reactions can be achieved. 
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Scheme 1.2. Reaction pathways for the hydrogenation of 2-methyl-3-butyn-2-ol (MBY). 

Semihydrogenation leads to 2-methyl-3-buten-2-ol (MBE) while full hydrogenation leads to 2-

methyl-3-butan-2-ol (MBA). Adapted with permission from Crespo-Quesada, M., Yarulin, A., Jin, 

M., Xia, Y. & Kiwi-Minsker, L. J. Am. Chem. Soc. 133, 12787–12794 (2011). Copyright (2011) 

American Chemical Society.12 

 

 

 

Figure 1.2. Selective production of 2-methyl-3-buten-2-ol (MBE) by Pd nanocrystals at 50% 

(circles) and 95% (squares) conversion of 2-methyl-3-butyn-2-ol (MBY) as a function of the 

amount of edge atoms. OCT = octahedral, CUB18 = 18nm cube, CUB6 = 6nm cube, COT = 

cuboctahedral. Adapted with permission from Crespo-Quesada, M., Yarulin, A., Jin, M., Xia, Y. 

& Kiwi-Minsker, L. J. Am. Chem. Soc. 133, 12787–12794 (2011). Copyright (2011) American 

Chemical Society.12 
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 1.3 Single-Atom Catalysts 
  

Uniform active sites are an innate feature in homogeneous catalysts and are the reason that many 

selective reactions belong to homogeneous catalysts rather than heterogeneous systems. Among 

other issues (e.g. deactivation, leaching, etc.), low selectivity is one of the most significant 

drawbacks to heterogeneous catalysis. Generally, an ideal catalyst would have the benefits of both 

homogeneous and heterogeneous catalysis, i.e. a highly active catalyst with uniform active sites 

that can lead to selective reactions and is also easy to separate from reaction systems. One solution 

to this endeavor are single-atom catalysts (SACs), a class of isolated metal atoms anchored on a 

support scaffold. SACs are considered the ultimate-limit in heterogeneous catalysis for a few 

reasons: (i) the atom-sized active centers display maximum benefits from the size-reduction effects 

mention previously, (ii) uniform dispersion of the active centers can offer selective reactions, and 

(iii) the heterogeneous nature of the catalyst allows for easy separation.8,14–17  

While the field of single-atom catalysis is relatively new, there are many reports in the literature 

that demonstrate the potential of SACs. A good example is the study by Yan et al. about a Pd SAC 

supported on graphene oxide.18 The authors tested the activity of their Pd SAC (Pd1/graphene) in 

the hydrogenation of 1,3-butadiene, a reaction important in chemical industry for the purification 

of alkene streams produced by petroleum cracking.19 
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Figure 1.3. Pd catalytic performance. Panel (a) – butenes selectivity as a function of conversion. 

Panel (b) – product distribution of butenes at 95% conversion. Adapted with permission from Yan, 

H. et al. J. Am. Chem. Soc. 137, 10484–10487 (2015). Copyright (2015) American Chemical 

Society.18 

 

The performance of Pd1/graphene was compared to Pd nanoparticles on graphene (Pd-

NPs/graphene) and commercial Pd/carbon, as shown in Figure 1.3 a). Pd1/graphene demonstrated 

the highest selectivity for butene products (~100%) compared to the other Pd catalysts. However, 

the butene products that result from hydrogenation of 1,3-butadiene can be a mixture of cis-2-

butene, trans-2-butene, and/or 1-butene. Therefore, the authors investigated the product 

distribution of the butene products produced by each catalyst and the results are displayed in Figure 

1.3 b). Yan et al. report that their Pd1/graphene had the largest 1-butene selectivity of 71% at 95% 

conversion of 1,3-butadiene. This is very important since 1-butene is the most desired product in 

industrial hydrogenation of 1,3-butadiene and the selectivity for 1-butene displayed by 

Pd1/graphene was the best reported in the literature at that time.18,19  



 

10 
 

 

Figure 1.4. Depiction of the differences in adsorption modes on the Pd1/graphene catalyst, 

resulting in higher selectivity for butenes. Adapted with permission from Yan, H. et al. J. Am. 

Chem. Soc. 137, 10484–10487 (2015). Copyright (2015) American Chemical Society.18 

 

The authors attribute the selectivity displayed by their catalyst to presumable differences in binding 

modes, depicted in Figure 1.4. Butadiene likely adsorbs on larger Pd particles via the di-π-

adsorption mode due to the presence of multiple Pd atoms and can lead to simultaneous 

hydrogenation of both carbon-carbon double bonds. In the case of the atomically dispersed 

Pd1/graphene, butadiene molecules likely adsorb via the mono-π-adsorption mode, thus 

encouraging 1,2-hydrogen addition to form 1-butene with high selectivity. Also, the isolated 

atomic nature of the Pd1/graphene catalyst likely leads to a higher packing density of the butadiene 

reactant on the Pd atoms, resulting in inhibition of secondary hydrogenation reactions. This report 

by Yan et al. clearly demonstrates how SACs can greatly improve selectivity and there have been 

many other studies exploring other SACs to tune activity and selectivity.20–22 

Investigations on SACs have included various types of support scaffolds, including metal oxides, 

alloys, and carbon-based supports.8,14–17,23 There is great interest in using graphene as a support, 

due to its high surface area and facile production.24–26 However, in order to create a stable SAC, 
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support interactions must be strong enough to avoid migrations of the metal atoms that lead to 

agglomeration. While it is difficult to achieve such interactions on pristine graphene due to metal 

agglomeration,27,28 there are reports that demonstrate how to work around this issue. Modifications 

that introduce heteroatoms into the graphene lattice can be made in order to create better anchor 

sites for the isolated metal atoms18,29,30 (such as the study by Yan et al). Stable anchor points can 

also be introduced by generating structural defects in the graphene lattice.28,31–33 Recently, Zhang 

et al. were able to use of graphene defects to trap single Ni atoms.34 The catalyst demonstrated 

excellent activity and stability in hydrogen and oxygen evolution reactions (comparable with 

commercial Pt/C for hydrogen evolution and outperforming commercial Ir/C catalyst for oxygen 

evolution). 

As information about graphene-supported SACs grows, so does the need to understand the 

mechanisms responsible for the observed activity. While there are tools that can provide some 

insight into SAC mechanisms,20 elucidation of the reactive intermediates involved in these 

catalytic cycles using surface analysis tools can become less effective at the atomic scale.35 Robust 

single-molecule techniques may prove to be an effective method for studying SAC mechanisms. 

Quadrupole ion trap mass spectrometry equipped with an electrospray ionization (ESI) source has 

proven to be an effective single molecule technique for studying organometallic reactions.36–40 

While experiments using this instrumentation occur in the gas phase, mass spectrometry 

investigations of organometallic systems may prove useful for SACs as bare metals and metal 

clusters generated in the gas phase have been used as model systems for heterogeneous catalysts 

in the past.41–45 The goal of the work presented in this dissertation is to generate a gas-phase ionic 

species that can act as a model system for graphene-supported SACs and to investigate the 

reactivity of the novel species in fundamental organometallic reactions. Our intention is to aid non 
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gas-phase chemists in their studies on graphene-supported SACs by providing guidance on 

reaction systems and the underlying mechanisms that graphene-supported SACs may perform. Our 

model ion is depicted in Figure 1.5.  

 

Figure 1.5. Depiction of our gas-phase SAC model ion. The model ion has been generated in our 

lab using four different metal centers: nickel, cobalt, copper, and palladium. 

 

Our gas-phase SAC model ion is comprised of a zero-valent metal atom coordinated to the 

fluorenyl anion. The rationale is that if SACs truly operate through a single metal atom, the 

reactivity of these catalysts mainly depends on the local environment and therefore, metals 

supported on a simple polycyclic aromatic molecule, such as the fluorenyl anion, can serve as a 

model system for SACs supported on graphene. As mentioned above, defects in the graphene 

lattice can be used to trap metal atoms. Zhang et al. reported that a major portion of the defects 

used to trap Ni atoms in their study were Stone-Wales defects.34 Since the structure of our model 

ion most closely resembles a metal atom adsorbed on a Stone-Wales graphene defect,46 the work 

presented in this dissertation may guide studies on single metal atoms supported on graphene 

containing Stone-Wales defects.  

In order to study the reactivity of our SAC model ion system, ion-molecule reactions were carried 

out in the gas phase. We have observed our model system engaging in the dehydrogenation of 



 

13 
 

simple organic species, as well as the oxidation addition of various polar reagents. Before further 

explanation of these studies, it is important to understand how a mass spectrometer can be used to 

study ion-molecule reactions. 
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Chapter 2 - Electrospray Ionization Quadrupole Ion Trap Mass 

Spectrometry 
 

 2.1 Electrospray Ionization 
 

A mass spectrometer is an instrumental tool capable of characterizing gaseous chemical species 

via their mass to charge (m/z) values. Mass spectrometers are generally comprised of three 

hardware systems: (i) the ionization source, (ii) the mass analyzer, and (iii) the detector. Different 

combinations of ionization sources and mass analyzers can drastically change the capabilities of a 

mass spectrometer. While various ionization sources and mass analyzers have been engineered, 

mass spectrometry is mostly known for chemical compound identification and/or quantification. 

However, beyond their role in analytical chemistry, mass spectrometers can be used as a reaction 

vessel to carry out and study chemical reactions in the gas phase.  

 
Figure 2.1. Depiction of ESI. The charged solution forms the Taylor cone and sprays a mist 

charged droplets. The droplets become gaseous ions and are swept towards the mass spectrometer 

inlet. Adapted with permission from Konermann, L., Ahadi, E., Rodriguez, A. D. & Vahidi, S. 

Anal. Chem. 85, 2–9 (2013). Copyright (2013) American Chemical Society.47 
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For decades, instruments such as flowing after glow, ion cyclotron resonance, guided ion beam, 

and triple quadrupole mass spectrometers have been used to study gas-phase ion-molecule 

reactions.37,48–52 Studies presented in this dissertation were performed using a modified linear triple 

quadrupole ion trap mass spectrometer (modified Thermo Electron LTQ XLTM) equipped with an 

ESI source. The ESI source is capable of transferring ions in solution into the gas phase, as depicted 

in Figure 2.1.47 When an ionic solution is passed through a capillary and sprayed with an electric 

field, the solution forms into a Taylor cone and produces a mist of charged droplets that flow from 

the capillary (anode) to the inlet of the mass spectrometer (cathode). On the path into the mass 

analyzer, the relatively large droplets eventually become bare gaseous ions with one or more 

charges. 

The process by which the droplets become gaseous species has been debated over the years but 

there still isn’t a single prevailing explanation. However, there are two widely known theories that 

offer reasonable explanations and each may be active under different experimental conditions. The 

charged residue model (CRM) is depicted at the top of Figure 2.2.53 In this theory, originally 

proposed by Dole et al.,54 solvent gradually evaporates and reduces the droplet size. The decreased 

droplet size reaches a point where the repulsion of the ions in the droplet exceeds the surface 

tension of the droplet (Rayleigh limit), resulting in the fission of the droplet into smaller droplets. 

This process continues until the solvent of a droplet containing a single ion evaporates, leaving 

behind the bare ion. 

Iribarne and Thompson proposed an alternative theory called the ion evaporation model (IEM).55 

As shown at the bottom of Figure 2.2, this theory also proposes that solvent evaporation of the 

charged droplets leads to increased charge repulsion forces. However, when charge repulsion 
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reaches a maximum, the droplet relieves the tension by “pushing” out an ion from the droplet into 

the surrounding atmosphere. This process continues until all the ions are forced into the gas phase.  

 

Figure 2.2. Depiction of ion formation from charged droplets produced by ESI. The CRM 

proposes multiple subdivisions of charged droplets lead to gaseous ions (top). The IEM proposes 

solvent evaporation leads to desorption of bare gaseous ions (bottom). Adapted with permission 

from Nguyen, S. & Fenn, J. B. PNAS 104, 1111–1117 (2007). Copyright (2007) National Academy 

of Sciences, U.S.A.53 
 

Even though the method of ionization is not totally clear, ESI has revolutionized mass 

spectrometry. ESI is known as a “soft” ionization technique because of the ability to transfer liquid 

ionic samples into the gas phase without much or any fragmentation. Upon introduction of ESI 

technology, chemists were able to conduct gas-phase studies with much larger species than they 

believed to be possible. Many areas of study, including the study of organometallic species, 

benefited from the use of ESI. The impact was so large that John Fenn shared the Nobel prize in 

2002 for developing the technique.56 
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 2.2 Linear Triple Quadrupole Ion Traps 
 

ESI is not the only mass spectrometry invention that was awarded with a Nobel prize. Wolfgang 

Paul shared the physics Nobel prize in 1989 for developing the ion trap.57 The  mass analyzer in 

our modified instrument is a linear triple quadrupole (LTQ) ion trap. Even though the original 

invention was the 3D ion trap, the fundamentals of linear ion traps are the same. The LTQ used in 

our instrument is depicted in Figure 2.3.58 Rf and dc voltages are applied to the four symmetric 

surfaces of the LTQ in order to manipulate ion motion. The LTQ is comprised of three sections 

that are electrically isolated (front, center, and back). The front and back sections are used to help 

focus ions into the center section.  

 

Figure 2.3. Depiction of the linear triple quadrupole ion trap used in the modified Thermo Electron 

LTQ XLTM.58 Ions are directed into the front section by ion optics. The front and back sections 

focus ion streams into the center section. Ion trapping occurs in the center section. 
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Ions from the ESI source are directed along the z-axis into the front section of the LTQ by ion 

optics located at the inlet of the instrument. The back section can be used to direct a second ion 

stream into the center section, but this capability is not used for the work presented in this 

dissertation. The center section of the LTQ acts as the ion trap. Rf voltages applied in the center 

section cause the ions to oscillate about the middle of the center section.59  

 

Figure 2.4. Depiction of the potential wells caused by rf voltages. Panel (a) – ions are trapped in 

the radial dimension. Ions with sufficient kinetic energy can move towards the center. Panel (b) – 

ions are trapped in the axial dimension. Ions are accelerated towards the center of the trap. Adapted 

with permission from Weil, C., Nappi, M., Cleven, C. D., Wollnik, H. & Cooks, R. G. Rapid 

Communications in Mass Spectrometry 10, 742–750 (1996). Copyright © 1996 John Wiley & 

Sons, Ltd.60 
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Figure 2.4 depicts potential wells that help describe ionic motion in the trap. Voltages applied to 

the walls of the trap can create the saddle-shaped potential well in Figure 2.4 (a) that traps ions in 

the radial direction.60 This will drive ions towards opposing electrodes. However, when the applied 

rf voltages flip polarity, the field is inverted as depicted in Figure 2.4 (b).60 This will cause ions to 

be accelerated back towards the radial center of the trap.  

Ions are most effectively controlled by the rf voltages when they are radially near the center of the 

ion trap.61 In order to help keep the ions around the center of the trap, helium is introduced into 

the ion trap at about 10-3 torr. At this concentration, frequent collisions between helium and the 

much larger ions dampen the motion of the ions without imparting too much energy and helps shift 

the trajectory of the ions to the center of the trap.61,62 This also aids in correcting any factors that 

may displace ionic motion from the center of the trap, resulting in significant increases in 

resolution and sensitivity.36,61,63  

Ions in the LTQ are sent out to the detectors through slits on either side of the center section (Figure 

2.5). This is accomplished by the application of increasing rf voltage to the center section which 

shifts frequency of motion of the ions and consequently the range of m/z which is stable in the ion 

trap. A strong ion ejection rf is also applied and when ions become resonant with that applied rf, 

they are promptly ejected. As the rf voltage increases, ions become unstable from low to high 

m/z.63 By applying resonant ejection frequencies pertaining to all but a single m/z, it is possible to 

isolate and hold a singular set of ions in the ion trap for a given time period.36,37,59 However, since 

manipulation of the ions depends on their m/z, attempts to isolate an ion may trap more than one 

species if there are multiple ions present with the same m/z. While this can be mitigated with 

careful control of the ESI solution being introduced, this possibility should always be considered 

when interpreting mass spectra results. 
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Figure 2.5. Depiction of ions sent to the detection system from the center section of the linear 

triple quadrupole ion trap.58 All ions can be sent out to the detection system by sweeping rf 

voltages. Alternatively, specific ions can be isolated in the trap based on their m/z value. 

 

The helium background gas in the trap can also be used for collision-induced dissociation (CID). 

In this process, ionic motion is accelerated by applying rf voltages resonant with a specific m/z 

causing more frequent and energetic collisions with helium. The collisional energy imparted on 

the ions leads to ion fragmentation which provides a few benefits. The most common benefit is 

that structural information of parent ions can be deduced from the resulting fragment ions.64 In 

addition to structural analysis, fragmentation can also be used to create new ionic species of 

interest. Lastly, while investigating ion-molecule reactions, ionic species can be given energy via 

CID which may aid in the observation of new reactivity that may have been hidden by energetic 

barriers. 
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 2.3 Ion-Molecule Reactions Using a Linear Triple Quadrupole Ion Trap 
 

Neutral molecules cannot be introduced via ESI due to the lack of charge. In order to use 

quadrupole ion trap mass spectrometers to study ions engaging in reactions with neutral molecules, 

ion traps can be modified to introduce neutral reagents into the ion trap via the helium flow. The 

modification used in our lab is depicted in Figure 2.6.36  

 
 

Figure 2.6. Schematic of the external inlet system. The neutral reagent is introduced into a fast 

flow of helium at a constant rate. The helium-reagent mixture is drawn into the ion trap by a 

restriction capillary and the rest is vented to exhaust.36 Adapted with Permission from Gronert, S. 

Mass Spectrom. Rev. 24, 100–120 (2005). Copyright © 2004 Wiley Periodicals, Inc., A Wiley 

Company. 

 

In this modification, the helium gas is routed through an external manifold before entering the ion 

trap. Helium flow is adjusted to a constant flow of 1-2 L/min by a mass flow controller to create 

the necessary dilution of the neutral reagent.36 The liquid neutral reagent is introduced into the fast 

flow of helium through a septum port, via a syringe pump, at a constant rate of 30-300 μL/hr. The 

neutral reagent is volatilized and mixes with the helium, resulting in helium-reagent mixing ratios 

of 100-100,000 : 1. A small portion of the helium-reagent mixture is drawn into the ion trap by a 
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restriction capillary while the rest is vented to exhaust. Once in the trap, the neutral species can 

collide with ionic species held in the trap and undergo ion-molecule reactions.  

Previous studies have focused on assigning a temperature to ions in the ion trap.65–67 While the 

neutral reagents introduced via the helium flow are at ambient temperature, it was unclear whether 

the energy imparted on ions by the trapping voltages would increase the temperature of the ions, 

resulting in non-thermalized reactions. It has been shown that collisions with the helium buffer gas 

effectively cool the ions to a much greater extent than the effect of the trapping voltages, providing 

near thermal conditions in ion traps.68,69 

It is also important to note that kinetic information for ion/molecule reactions can also be 

determined using this system, since ions can be held in the trap and allowed to react with neutral 

reagents for a pre-determined time period before reactant ions and resulting products are sent to 

the detector. As mentioned previously, the helium-reagent mixture flows into the ion trap, at a 

constant rate, through the restriction capillary. Taking the mixing ratios into account, this means 

neutral reagent pressures are between 10-5 torr – 10-8 torr with a helium pressure of about 10-3 torr. 

These neutral reagent pressures are in great excess to the reactant ion densities and can be 

considered constant, enabling kinetic studies under pseudo first-order conditions. This allows 

kinetic studies to be simplified to the expressions shown in equations (1) and (2), where [A] is the 

concentration of the ion, [B] is the concentration of the neutral reagent, k is the absolute rate 

constant, and k’ is the pseudo first-order rate constant.  By plotting the natural log of the intensity 

of the reactant ion against the reaction time, pseudo first-order rate constants can be obtained 

experimentally. The overall pressure of the helium-neutral reagent buffer gas in the ion trap is 

about 1.75 x 10-3 torr. This pressure is a result of a restriction capillary that controls the flow of 

helium into the ion trap. The pressure is controlled by the balance of the helium flow and the rate 
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that it is pumped out of the ion trap via the vacuum manifold. We calibrate our ion trap pressure 

by routinely running reactions with a known rate constant, typically Br- + CH3I, and back 

calculating the helium pressure (the rate constant used is a literature value from flowing afterglow 

studies).  

Neutral reagent pressures can be deduced from the overall helium pressure by using equation (3),36 

where FB is the neutral reagent flow rate, FHe is the helium flow rate, dB is the neutral reagent 

density, MWB is the neutral reagent molecular weight, and MWHe is the atomic weight of helium 

(a background He pressure of 1.75 mTorr is assumed in this equation). The final term in equation 

(3) is required to account for the differential effusion of the reagent and helium from the ion trap. 

The pseudo-first order rate constant and the neutral reagent concentration can then be entered into 

equation (2) in order to calculate the absolute rate constant. Because reagent gas pressures are 

calculated in number densities, the rates of reaction determined in our system are measured in cm3 

molecule-1 s-1. 

 𝑟𝑎𝑡𝑒 = 𝑘[𝐴][𝐵] = 𝑘′[𝐴] (1) 

 

 𝑘′ = 𝑘[𝐵] (2) 

 

 [𝐵] = 1.75 × 10−3  ×  
𝐹𝐵

𝐹𝐻𝑒
 ×

𝑑𝐵

𝑀𝑊𝐵
 ×  (

𝑀𝑊𝐵

𝑀𝑊𝐻𝑒
)

1/2
 (3) 

 

It is clear that the ion trap is able to manipulate trapped species in various ways. However, the true 

potential of the ion trap is realized by linking all these operations together, sequentially in time, in 

order to effect tandem mass spectrometry (MSn). This allows for a variety of robust and flexible 

operational methods to study ion behavior. As an example, a typical experiment performed in our 
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lab is as follows: (i) a reactive species of interest is isolated from a mixture of ions introduced by 

ESI (or it can be created from a parent ion in the solution by CID), (ii) once a steady signal of the 

reactant ion is achieved, a neutral reagent is introduced into the ion trap through the external 

manifold, as previously discussed, (iii) the ionic species is allowed to react with the neutral species 

for a given time period, (iv) product ion species are produced and can be identified/isolated through 

their m/z values and (v) product ions can be studied further via CID, or can be allowed to 

participate in additional ion-molecule reactions.  

 

2.4 Gas-Phase Synthesis of Graphene-Supported Single-Atom Catalyst 

Model Ions 
 

Generation of a zero-valent metal supported on a fluorenyl scaffold in the condensed phase is 

difficult due to the oxidation state of the metal. However, established gas-phase synthetic 

techniques have demonstrated that decarboxylations via CID can easily lead to reductions of metal 

centers.70,71 Through judicious ligand choice and tandem mass spectrometry, we were able to 

generate our SAC model ion from a precursor ion, via gas-phase reductive decarboxylations. The 

precursor ion, comprised of a di-valent metal coordinated to oxalate and fluorene-9-carboxylate, 

was made in solution by mixing salt solutions of each component together and was introduced into 

the mass spectrometer via the ESI source. The precursor ion was isolated in the ion trap and 

subjected to CID. Scheme 2.1 depicts two observed decarboxylation sequences that lead to the 

SAC model ion, along with our proposed mechanisms. In the two-electron reduction pathway, CID 

of the precursor ion results in the loss of two neutral CO2 molecules by decomposition of the  
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Scheme 2.1. Gas-phase synthesis of the graphene-supported SAC model ion. CID of the precursor 

ion leads to reductive decarboxylations. The two-electron reduction pathway is shown in blue. The 

one-electron reduction pathway is shown in red. 

 

oxalate and a two-electron reduction of the metal. The resulting ion can be isolated in the ion trap 

and subjected to another round of CID, resulting in the loss of another CO2 molecule, formation 

of the fluorenyl anion ligand, and, therefore, generation of the target ion. The SAC model ion can 

also be generated via sequential one-electron reductions. In this pathway, subjecting the precursor 

ion to CID results in the loss of a CO2 molecule, formation of the CO2 anion ligand and a one-

electron reduction of the metal. A second round of CID leads to loss of a second CO2 molecule 
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and another one-electron reduction of the metal. Finally, a third round of CID results in the loss of 

another CO2 molecule and the formation of the SAC model ion. 

We have successfully generated the gas-phase model ion using Ni, Co, Cu, and Pd metal centers. 

The Co SAC model ion was generated through the one-electron reduction pathway, while the Ni 

and Cu SAC model ions can be generated using either of the reduction pathways. When using Pd, 

two rounds of CID were required to transform the precursor ion into the ion of interest. The first 

round of CID resulted in the loss of one CO2 molecule while the second round of CID caused the 

loss of two CO2 molecules. Scheme 2.2 depicts our proposed mechanism for the formation of the 

Pd SAC model ion. The first round of CID releases a CO2 molecule resulting in the formation of 

a CO2 anion ligand and a one-electron reduction of the metal. The second of CID releases two CO2 

molecules, resulting in the formation of the fluorenyl anion ligand and another one-electron 

reduction of the metal.  

 

Scheme 2.2. Gas-phase synthesis of the Pd SAC model ion. The sequence of decarboxylations that 

lead to the Pd SAC model ion differs from the order observed with Ni, Co, and Cu. 
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Attempts to generate the model ion using Fe and Pt centers were unsuccessful. We believe there 

are two issues that made these attempts unsuccessful (Figure 2.7). Our gas-phase synthetic strategy 

relies on decarboxylations to generate the SAC model ion. This means that in order to generate the 

SAC model ion, a precursor ion with carboxylate ligands must form in the condensed phase and 

the carboxylate groups must be released when subjected to CID. When working with Fe as the 

metal center, CID did not result in the model ion. Instead, the metal oxide supported on the 

fluorenyl anion was formed. This is likely caused by adventitious O2 present in the ion trap and 

the oxyphilic nature of Fe. The metal oxide was isolated and neutral reagents were introduced into 

the trap to probe any reactivity, but no reaction was observed. In the case of Pt, attempts to generate 

the precursor ion were unsuccessful which may be explained by the hard-soft acid-base (HSAB) 

theory. Pt, which lies in the 5th row of the d-block, may be too “soft” to bind to three oxygen-based 

ligands via simple coordination chemistry under our conditions.  

 

Figure 2.7. Depiction of the issues creating the Fe and Pt SAC model ions. CID reduction of the 

Fe precursor ion led to the metal oxide species likely due to adventitious oxygen in the ion trap. 

Attempts to generate the Pt precursor ion were unsuccessful. 
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Using Ni, Co, Cu, and Pd metal centers, we were able to probe the reactivity of the SAC model 

ion system via ion-molecule reactions. In addition to experiments, computational modelling of the 

observed reaction systems was also completed. Gas phase studies are well suited for comparison 

to computational calculations, due to the lack of solvent, and can be used to gain further insight 

into reaction chemistry.37,40,45,48,72 DFT calculations were performed and provide a reasonable 

overview of the energetics of the reaction processes and information on transition states. Modern 

DFT methods and current generation computers make even these relatively large molecular 

systems amenable to computation modelling. The studies presented in this dissertation focus on 

dehydrogenation of organic molecules (alkanes, amines, and alcohols), and oxidative addition of 

a variety of polar reagents.  
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Chapter 3 - Gas-Phase Dehydrogenation of Alkanes: C-H Activation 

by a Graphene-Supported Nickel Single-Atom Catalyst Model 
 

 3.1 Alkane Dehydrogenation 
 

The dehydrogenation of alkanes allows for the transformation of unreactive and inexpensive 

alkanes to alkenes that can be used as valuable feedstocks in various industrial processes.73 

Transition metals have successfully been used to perform catalytic dehydrogenation of alkanes in 

both heterogeneous and homogeneous systems. While various noble metal and metal oxide 

catalysts have dominated the heterogeneous systems in chemical industry, the most used and well-

studied catalysts are platinum-based and CrOx systems.74,75 Homogeneous systems are also 

dominated by noble metals, with a heavy focus on irdium.76 Many of the reports on catalytic 

dehydrogenations occur via transfer dehydrogenations.77–84 In these reactions, the catalyst transfers 

hydrogen from the saturated alkane to a sacrificial unsaturated hydrogen acceptor (Figure 3.1). 

The use of the hydrogen acceptor provides the benefit of eliminating the hydrogen being generated 

and shifting the equilibrium towards the products. However, the stoichiometric sacrificial reagent 

also makes the reaction uneconomic. Due to this consequence, many studies have focused on 

acceptor-less dehydrogenation systems.76,85,86 Our Ni SAC model ion, complex I, is capable of the 

acceptor-less dehydrogenation of alkanes via C-H activation.  

 

Figure 3.1. Transfer dehydrogenation reaction. A sacrificial hydrogen acceptor is used to drive 

the reaction towards products. 
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 3.2 Complex I in the Dehydrogenation of Cyclohexane 
 

Using our modified ion-trap mass spectrometer,36 complex I can be formed in the gas phase using 

CID via the two-electron reduction pathway, as depicted in Scheme 3.1. While complex I can also 

be generated using the one-electron reduction pathway described in Scheme 2.1, the two-electron 

reduction pathway was utilized to maximize ion intensities. Mass spectra for the formation of 

complex I via CID is shown in Figures 3.2 and 3.3. The reactivity of complex I was probed by 

isolating the complex in the ion trap and allowing it to participate in ion/molecule reactions with 

a variety of substrates. In a survey of its reactivity with typical oxidative addition reagents (e.g., 

organohalides), we discovered that complex I underwent dehydrogenation reactions with the 

cyclohexane solvent used to dilute the reagent. This reaction resulted in the loss of H2 and the 

formation of a cyclohexene complex with the metal ligand system. Reactivity of the Co, Cu, and 

Pd SAC ions was also probed but these metal complexes did not engage in alkane dehydrogenation. 

Their oxidative addition chemistry is discussed in later chapters. 

 

Scheme 3.1. Gas-phase synthesis of Complex I. 
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Figure 3.2. Mass spectra for the reduction of the Ni of the precursor ion. Panel (a) Isolation of Ni 

precursor complex. Panel (b) Product spectrum for the CID of the Ni precursor complex. The two-

electron and one-electron reduction pathways lead to the products at m/z 267 and 311, respectively. 
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Figure 3.3. Mass spectra for the reduction of the Ni complex with fluorene-9-carboxylate. Panel 

(a) Isolation of the Ni complex with fluorene-9-carboxylate. Panel (b) CID of the Ni complex with 

fluorene-9-carboxylate. Complex I appears at m/z 223. The fluorenyl anion appears at m/z 165. 

An adduct with adventitious nitrogen appears at m/z 251. The peak at m/z 227 may be an adduct 

of fluorene-9-carboxylate and water. 
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Figure 3.4. Mass spectra for reaction of I with cyclohexane. Panel (a) Isolation of I prior to 

introduction of cyclohexane. Panel (b) Product spectrum after introduction of cyclohexane. 

Dehydrogenation and alkane adduct products appear at m/z 305 and 307, respectively. Peak 

broadening of the alkane adduct is observed due to the relative instability of the ion during the 

instrument scans.36 Complex I appears at m/z 223. Products of adduct formation with adventitious 

water, nitrogen, and methanol appear at m/z 241, 251, and 255 respectively. The peak at m/z 227 

may be an adduct of fluorene-9-carboxylate and water formed through secondary reactions. There 

are also peaks (not shown) at m/z 90, an oxide from reaction with adventitious oxygen, and m/z 

107, an unidentified species that is independent of the neutral reagent. 
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Figure 3.4 depicts the reaction spectra for the dehydrogenation of cyclohexane by complex I. Two 

products result from the reaction with cyclohexane (other peaks are from reactions with 

adventitious gases in the ion trap, see figure caption for details). The peak at m/z 305 is the 

dehydrogenation product of cyclohexane, i.e., the cyclohexene adduct of complex I. It is important 

to note that collisions with the helium buffer gas cool reactant ions to near room temperature within 

a few milliseconds.87 Since the cooling is significantly faster than the time scale of reactions, ion-

molecule reactions in our system proceed at near thermal energies even after subjecting the ion to 

trapping voltages or CID.68,69 However, dehydrogenations generally require elevated  temperatures 

in the condensed phase. The key driving force in our system is that the cyclohexene coordinates 

much more strongly with I than cyclohexane, providing more than enough energy to overcome the 

inherently endothermic nature of the dehydrogenation process. The cyclohexane adduct of I also 

appears in the spectrum.  

When complex I is allowed to react with cyclohexane-d12, the dehydrogenation product is 

appropriately shifted to m/z 315, as shown in Figure 3.5 (a). Complex I was also allowed to react 

with a 50%/50% by volume mixture of cyclohexane and cyclohexane-d12, as shown in Figure 3.5 

(b). Since the intensities of ion-molecule reaction products in our system are proportional to their 

rate of reaction (except for very modest mass discrimination effects in this narrow m/z range), 

kinetic isotope effect (KIE) values can be determined via a simple comparison of the appropriate 

reaction product intensities. In this case, the intensity of the C6H10 complex was taken relative to 

the intensity of the C6D10 complex and revealed a KIE of 2.4. This strongly suggests that activation 

of a C-H(D) bond is part of the rate-limiting step in the dehydrogenation. 
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Figure 3.5. Cyclohexane-d12 experiments. Panel (a) Reaction of I with cyclohexane-d12. Panel (b) 

Isotope effect experiment. Alkene complex (C6H10 and C6D10 complexes) and alkane adduct 

(C6H12 and C6D12 adducts) peaks appear at m/z 305, 315, 307 and 319, respectively. Peak 

broadening is observed for the alkane adduct peak due to the relative instability of the product ion 

during the instrument scans. Complex I appears at m/z 223. Products of adduct formation with 

water, nitrogen, and methanol appear at m/z 241, 251, and 255 respectively. The peak at m/z 227 

may be an adduct of fluorene-9-carboxylate and water formed through secondary reactions. There 

are also peaks (not shown) at m/z 90, an oxide from reaction with adventitious oxygen, and m/z 

107, an unidentified adduct that is independent of the neutral reagent. 
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3.3 Dehydrogenation of Various Hydrocarbons 
 

We also allowed I to react with the other alkanes listed in Table 1 and observed alkene formation 

in each reaction. Cyclic alkanes display a range of relative rates, spanning four-fold across the 

series from cyclopentane to cyclooctane. The slowest of the group is cyclohexane (k = 1.6 x 10-10 

cm3 molecule-1 s-1), suggesting that restrictions in conformational freedom can play a significant 

role in limiting reaction rates. Reactions with linear and branched alkanes exhibited less variation 

and were similar to that of cyclohexane, with the exception of 2,2-dimethylbutane which was 

significantly slower (0.5).  

Table 1. Relative rates of alkane dehydrogenation reactions with complex I. 

 

 
Entry Neutral Reagent Relative Rate[a] 

1 cyclohexane 1.0 

2 cyclopentane 1.7 

3 cycloheptane 2.3 

4 cyclooctane 4.4 

5 pentane 1.0 

6 hexane 1.3 

7 2-methylpentane 1.8 

8 3-methylpentane 1.3 

9 2,3-dimethylbutane 1.0 

10 2,2-dimethylbutane 0.5 
[a] Relative to cyclohexane reaction. k = (1.6 ± 0.4) x 10-10 cm3 molecule-1 s-1 
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The product spectrum for the reaction with 2,2-dimethylbutane is shown in Figure 3.6 (a). For this 

reaction, the dehydrogenation product (m/z 307) and the alkane adduct (m/z 309) appear with 

almost equal intensity. The prominence of the latter product in this particular reaction is likely due 

to the presence of the quaternary carbon. When complex I approaches and reacts with one of the 

branched methyl C-H bonds, the substrate lacks a hydrogen on the β-carbon needed to proceed 

with dehydrogenation to generate the alkene (Figure 3.6 (b)). The other alkanes listed in Table 1 

do not have a quaternary carbon that could block dehydrogenation activity and the alkane adduct 

peaks (i.e. non-dehydrogenation) appear at a much lower intensity, as seen in the reaction with 

cyclohexane.   

Dehydrogenation among the branched methyl groups of 2,2-dimethylbutane could generate a 

three-membered ring adduct that is isobaric with the alkene adduct (i.e. 1-ethyl-1-

methylcyclopropane). Since mass spectrometry would be unable to distinguish between these two 

products, complex I was allowed to react with tert-butylbenzene (Figure 3.7). Unlike 2,2-

dimethylbutane, the branched end of tert-butylbenzene is the only position that dehydrogenation 

could occur. However, dehydrogenation did not occur with tert-butylbenzene. The adduct was the 

sole product of this reaction. This suggests that the reaction with 2,2-dimethylbutane forms the 

dehydrogenation product on carbons 3 and 4 rather than cyclopropane formation. 
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Figure 3.6. Reaction of complex I with 2,2-dimethylbutane. Panel (a) depicts the product 

spectrum. Two products are observed: the dehydrogenation product (m/z 307) and the alkane 

adduct (m/z 309). Panel (b) depicts which C-H bonds lead to the products. Insertion into the red 

C-H groups leads to the dehydrogenation product. When approaching the blue C-H groups 

dehydrogenation cannot occur, resulting in the alkane adduct. 
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Figure 3.7. Product spectrum for the reaction of complex I with tert-butylbenzene. The alkane 

adduct (m/z 357) was the only product observed. Complex I appears at m/z 223. Adduct formation 

products of complex I with water, nitrogen, and methanol appear at m/z 241, 251, and 255 

respectively. The peak at m/z 227 may be an adduct of fluorene-9-carboxylate and water formed 

through secondary reactions. There are also peaks (not shown) at m/z 90, an oxide from reaction 

with adventitious oxygen, and m/z 107, an unidentified adduct that is independent of the neutral 

reagent. 

 

Benzene and toluene were also used to probe dehydrogenation reactivity. Dehydrogenation of 

these neutral reagents was not expected due to their aromatic nature. However, C-H activation on 

the aromatic ring could still prove useful for functionalization. Reactions with these reagents 

resulted in one product peak with the combined mass of complex I and the reagent. While the Ni 

model ion and the neutral reagents are clearly interacting, the product spectra alone cannot identify 

the products as C-H insertion products or adducts. In order to identify the products, relative kinetic 

studies using benzene-d6 and toluene-d8 were performed and revealed KIE values of 1.2. These 
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relatively low values suggest that the observed products are adducts instead of C-H insertion 

products.  

3.4 Dehydrogenation Mechanism 
 

DFT calculations for the dehydrogenation of cyclohexane, completed at the M06/6-311+G** 

level, provide added insight into the mechanisms of these C-H activations and dehydrogenation 

processes (it should be noted that a Natural Population Analysis88 of the wavefunction with this 

basis set places the majority of the charge, 70%, on the fluorenyl scaffold, suggesting that the 

species is best described as a nickel atom on a fluorenyl ligand). The energy surface for the 

dehydrogenation of cyclohexane by I is depicted in Figure 3.8.  

 

Figure 3.8. Potential energy surface for the dehydrogenation of cyclohexane by complex I. 

Calculations were completed at the M06/6-311 + G** level. Detailed information on the structure 

and frequencies of the calculated species are shown in Appendix C. 
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DFT calculations suggest that complex I inserts into a C-H bond via a transition state (TS) that is 

13.4 kcal/mol below the reactants (2.1 kcal/mol above the collision complex) and gives a reaction 

that is exothermic by 15.6 kcal/mol. Subsequently, I performs a β-hydride elimination as part of 

the next C-H activation, leading to a complex of I with cyclohexene and molecular hydrogen. The 

elimination TS suggests that the nickel is able to bring the β-hydrogen close to the initially 

abstracted hydrogen, facilitating the formation of an H-H bond (-8.5 kcal/mol). Finally, the Ni 

center can expel the hydrogen molecule and form the complex with cyclohexene and the fluorenyl 

anion. The DFT calculations indicate an overall reaction enthalpy of -19.2 kcal/mol. The 

calculations point to the β-hydride elimination as the rate-limiting step, which is consistent with 

the deuterium kinetic isotope effect studies noted above. The low coordination environment of the 

metal leads to favorable interactions between nickel and the substrate, allowing the process to 

proceed with barriers below the energy of the reactants.  

Bare nickel atoms are unreactive towards unstrained alkanes.89 Anionic nickel atoms have been 

shown to react with acetonitrile under collisional activation, whereas anionic metal clusters react 

with alkanes at efficiencies less than 10%.90,91 Our Ni SAC model anion reacts at 10% efficiency 

with simple alkanes, although reactions with highly branched alkanes can result in more inefficient 

reactions. Cationic nickel atoms  react at about a 10% efficiency with simple alkanes via C-H and 

C-C activation.92–95 Ligated transition metal cations have been studied extensively in the gas phase 

and give a variety of reactivities.94,96–100  

The dehydrogenation mechanism of alkanes by complex I is depicted in Scheme 3.2.  Ethene and 

other light olefins are valuable building blocks in chemical industry and can be used to make a 

wide host of chemicals.74 While we are unable to introduce gaseous neutral reagents into the ion 

trap using our experimental setup, DFT calculations suggest complex I would display similar 
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dehydrogenation reactivity with smaller, gaseous alkanes, such as ethane and butane (Appendix 

B.1 & B.2). 

 

Scheme 3.2. Dehydrogenation mechanism of alkanes by complex I. 

 

3.5 Sequential Dehydrogenations 
 

Surprisingly, the reactivity of I with alkanes does not end with alkene formation. Tandem mass 

spectrometry revealed that complex I can perform sequential dehydrogenations. The reaction 

pathways for cyclohexane are shown in Scheme 3.3. When the cyclohexene complex with I is 

isolated and subjected to CID, additional dehydrogenations occur, resulting in complexes of I with 



 

43 
 

cyclohexadiene or benzene. These processes are endothermic and require 27.4 and 34.4 kcal/mol 

of activation, respectively.  Recovery of complex I, by release of cyclohexene, is observed and 

requires 49.7 kcal/mol of activation. Formation of a complex of I with a hydrogen molecule is also 

observed when the cyclohexene complex of I is subjected to CID (endothermic by 45.9 kcal/mol). 

These additional dehydrogenations are not observed spontaneously at room temperature and 

require the energy introduced via CID in order to occur. The relevant CID spectra are shown in 

Appendix A.3. 

 

Scheme 3.3. Cyclohexane dehydrogenation pathways. Reaction enthalpies were calculated at the 

M06/6-311+G** level. Detailed information on the structure and frequencies of the calculated 

species are shown in Appendix C. 

 

 

This pattern of multiple dehydrogenations was also seen with other alkanes in Table 1. However, 

second dehydrogenations were not observed with 2,2-dimethylbutane, cyclopentane, and 
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cyclooctane. It is not surprising that a second dehydrogenation did not occur with 2,2-

dimethylbutane because this alkane is incapable of forming a diene product. This observation also 

suggests complex I does not form alkynes via sequential dehydrogenations. It is unclear why 

cyclopentane and cyclooctane were unable to form diene adducts. It is likely that the conformations 

adopted by cyclopentene and cyclooctene place the second set of hydrogens in unfavorable 

positions for dehydrogenation. Complex I was only able to perform three sequential 

dehydrogenations when reacting with cyclohexane, forming benzene. The establishment of 

aromaticity in benzene is likely the driving force in this process. Formation of benzene also plays 

a role in producing the hydrogen molecule adduct of complex I. DFT calculations indicate that 

formation of the H2 adduct is more energetically competitive when benzene is formed as a product 

rather than cyclohexadiene (Scheme 3.4). 

 

Scheme 3.4. Reaction enthalpies for the formation of the H2 adduct with release of cyclohexadiene 

or benzene. 
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Figure 3.9. Potential energy surface for the dehydrogenation of cyclohexadiene. Calculations were 

completed at the M06/6-311 + G** level. Detailed information on the structure and frequencies of 

the calculated species are shown in Appendix C.  

 

The aromaticity of benzene also has an effect on the dehydrogenation energy surface (Figure 3.9). 

While DFT calculations suggest the β-hydride elimination step is the rate-limiting step for the 

dehydrogenation of cyclohexane and cyclohexene (Appendix B.3), this is not the case for the third 

dehydrogenation. Aromaticity formation stabilizes the elimination TS, indicating that C-H 

insertion is the rate-limiting step. After elimination, the Ni center can expel the hydrogen molecule 

to form the complex with benzene. Alternatively, as noted above, the Ni center can expel benzene, 

resulting in the complex with the hydrogen molecule (18.4 kcal/mol). While mass spectrometry 

cannot distinguish this complex from the isobaric metal dihydride species, DFT calculations 

indicate that the hydrogen molecule adduct of complex I is favored over formation of the metal 
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dihydride (Appendix B.4), supporting the formation of the hydrogen molecule during 

dehydrogenation. 

This study reports that a novel Ni SAC model system is capable of alkane dehydrogenation via C-

H activation. The experimental data and computational modeling suggest two distinct C-H 

activations are required to enact dehydrogenation: metal insertion into a C-H bond and β-hydride 

elimination. In the condensed phase, defects in the graphene lattice are used to trap single metal 

atoms.28,31 If graphene containing Stone-Wales defects can be used to trap atomic nickel, our 

results suggest that it could be a potent dehydrogenation catalyst. 

 

 

3.6 Experimental Section 
 

All experiments were executed in a modified linear triple quadrupole ion trap mass spectrometer 

(modified Thermo Electron LTQ XLTM) equipped with an electrospray ionization (ESI) source. 

Nickel(II) acetate tetrahydrate and fluorene-9-carboxylic acid were each dissolved in methanol at 

10-4 M. Potassium oxalate monohydrate was dissolved in a water/methanol mixture at 10-4 M. 

These solutions were mixed in a 1:5:2.5 ratio by volume, respectively, and passed into the ion trap 

via ESI. Typical ESI conditions involved flow rates of 5μL/min, needle potentials between 4-5 kV 

and heated capillary temperatures between 230-275 °C. A notched waveform was used to isolate 

the precursor complex. The precursor complex was subjected to sequential rounds of CID to form 

complex I. Once a steady signal of complex I was achieved, neutral reagents were introduced into 

the ion trap via the external manifold, as previously described.36,68 

Reaction spectra were averaged over 200 scans in order to minimize noise. Absolute kinetic 

measurements were measured under pseudo-first order conditions due to the excess of neutral 
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reagent (reagent/anion = 105-106). Reagent flow rates and time delays were varied to obtain plots 

that covered 2-3 half-lives of the anion. Ten different time delays were used at each flow rate and 

the kinetic data were obtained over six days. Relative kinetic measurements were completed by 

allowing complex I to react with an alkane and cyclohexane simultaneously. The hydrocarbons 

were introduced into the external manifold in a 1:1 ratio by volume. Molar ratios were used to 

adjust the peak heights of the alkane and cyclohexane dehydrogenation products and the resulting 

intensities were compared. All neutral reagents were purchased commercially in the highest purity 

available and used without further purification.  

Density functional calculations were completed using the Gaussian16101 suite of quantum 

mechanical programs. All calculations were performed at the M06/6-311+G** level. All 

transitions states were verified using intrinsic reaction coordinate (IRC) calculations to link them 

to reactants and products. 
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Chapter 4 - Gas-Phase Dehydrogenation of Amines and Alcohols by 

Graphene-Supported Single-Atom Catalyst Model Ions 
 

4.1 Amine and Alcohol Dehydrogenation 
 

Amines and alcohols can also be activated via dehydrogenation. Catalytic dehydrogenative 

activation of these substrates can enable lower waste synthetic processes while using less toxic 

starting materials. There is great potential for using catalytic processes to convert these substrates 

to more valuable materials. Dehydrogenation of these functional groups occur in much the same 

fashion as the alkane dehydrogenations described in the previous chapter. However, the wider 

reactivity of the imine and carbonyl containing products of these processes provide a much wider 

scope of application. Many reactions that are inaccessible to the parent compounds are available 

in the unsaturated products. Thus, catalytic dehydrogenation of amines and alcohols is usually 

followed by functionalization of the unsaturated products (Scheme 4.1).76 Once again, the 

dehydrogenation step can be classified into two groups: transfer dehydrogenations or acceptorless 

dehydrogenations. In the former case, hydrogen is transferred to a hydrogen acceptor. While the 

hydrogen acceptor can be a sacrificial component solely intended to help drive the reaction 

forward, judicious choice of the acceptor can lead to the hydrogenation of a molecule of interest. 

In many cases the hydrogen is used to reduce the functionalized product. This paradigm has been 

used to enable a variety of transformations such as transamination, nitrile formation, N-alkylation 

by alcohols, and Guerbet reactions.102–106 Acceptorless dehydrogenations result in the liberation of 

the hydrogen and can also be used to enable transformations to create more valuable products.107–

113 Both the Ni and Co SAC model ions are capable of the acceptorless dehydrogenation of amines 

and alcohols, resulting in the formation of imine and carbonyl adducts and the loss H2. 
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Scheme 4.1. Typical reaction sequence for the dehydrogenation of amines and alcohols. The 

depiction is based on work from Doberiener and Crabtree.76 

 

 

 4.2 Complexes I and II in the Dehydrogenation of Amines and Alcohols 
 

Complex I was generated as described in the previous chapter. The Co SAC model ion, complex 

II, was generated via the one-electron reduction pathway (described in chapter 2.4), depicted in 

Scheme 4.2. Experiments with n-butylamine resulted in imine adducts of both metal complexes, 

as depicted in Scheme 4.3. Reaction spectra for these dehydrogenations are depicted in Figures 4.1 

and 4.2, respectively. I and II also performed dehydrogenations when reacting with piperidine and 

diethylamine (Appendix A.4 – A.7). 
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Scheme 4.2. Gas-phase synthesis of Complex II. 
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Scheme 4.3. n-Butylamine dehydrogenation reaction by complexes I and II. The imine is shown 

as the dehydrogenation product – confirmation of this assignment is provided below. 
 

The peak at m/z 294 in Figure 4.1 is the dehydrogenation product for the reaction with complex I, 

i.e. the butan-1-imine adduct with complex I. The dehydrogenation product is the only product 

observed - all other peaks in the product spectrum are adducts with adventitious species in the ion 

trap (see figure caption). When complex II was allowed to react with n-butylamine, two products 

were observed (Figure 4.2). The peak at m/z 295 is the dehydrogenation product (i.e. the butan-1-

imine adduct of complex II). The peak at m/z 297 is the amine adduct of complex II. 

Dehydrogenation to form the alkene product would result in the same m/z as the imine adduct. 

This possibility must be taken into consideration since it is already known that I can produce 

alkenes via dehydrogenation. However, experiments with n-butylamine-d9 solely exhibited HD 

loss, confirming the identity of the dehydrogenation product to be the butan-1-imine adducts with 

each metal complex (Appendix A.8 & A.9). In other words, I and II are capable of selective 

dehydrogenative imine formation. Ion-molecule reactions in our system occur at room temperature 

even after subjecting the ion to isolation voltages or CID, due to the collision-cooling of the helium 

buffer gas.68,69,87 However, elevated temperatures are typically required to overcome the inherent 

endothermicity of the dehydrogenation process. The impetus for the dehydrogenation of amines in 

our system is the strong coordination of the metal complexes to the imine products. 
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Figure 4.1. Spectra for the reaction of I with n-butylamine. Panel (a) Isolation of complex I prior 

to introduction of n-butylamine. Panel (b) Product spectrum after introduction of n-butylamine. 

The dehydrogenation product appears at m/z 294. Products of adduct formation with adventitious 

water, nitrogen, and methanol are also present and appear at m/z 241, 251, and 255 respectively. 

The peak at m/z 227 may be an adduct of fluorene-9-carboxylate and water formed through 

secondary reactions. There are also peaks (not shown) at m/z 90, a nickel oxide from reaction with 

adventitious oxygen, and m/z 107, an unidentified species that is independent of the neutral 

reagent. 
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Figure 4.2. Spectra for the reaction of II with n-butylamine. Panel (a) Isolation of complex II prior 

to introduction of n-butylamine. Panel (b) Product spectrum after introduction of n-butylamine. 

The dehydrogenation and amine adduct products appear at m/z 295 and m/z 297, respectively. 

Peak broadening of the amine adduct is observed due to the relative instability of the ion during 

the instrument scans.36 Products of adduct formation with adventitious water are present at m/z 

242 and 260. A cobalt complex with adventitious methanol appears at m/z 91 and is the base peak 

(not shown). Unidentified species that are independent of the neutral reagent appear at m/z 180 

and 228. 

 

Complexes I and II are also capable of the dehydrogenation of alcohols. The reaction spectrum 

for the dehydrogenation of n-butanol by complex I is presented in Figure 4.3. Products of reactions 
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with butanol appear as four peaks. Similar to the alkane dehydrogenations, both the 

dehydrogenation (i.e. the butanal adduct with complex I) and the alcohol adduct products are 

formed (m/z 295 and 297, respectively). The peak at m/z 283 likely is an adduct of fluorene-9-

carboxylate and n-butanol formed through secondary reactions. While the peak at m/z 251 appears 

without introduction of neutral reagent due to adduct formation with adventitious nitrogen, the 

significant increase in the peak intensity during experiments with n-butanol suggests a second 

species with m/z 251. DFT calculations indicate formation of an adduct of carbon monoxide of 

complex I with m/z 251 is exothermic and can be formed through decarbonylation of the butanol 

(Scheme 4.4). All other products are formed via reactions with adventitious species or the 

cyclohexane solvent used for dilution (see figure caption for details). Reactions with n-butanol-

1,1,2,2-d4 and n-butanol-3,3,4,4,4-d5 confirmed the identity of the dehydrogenation product to be 

the butanal complex (Appendix A.10 & A.11).  

Figure 4.4 depicts the dehydrogenation of n-butanol by complex II. The dehydrogenation and 

alcohol adduct peaks appear at m/z 296 and 298, respectively. Various products presumably 

formed via secondary reactions are also observed (see figure caption for details). Experiments with 

n-butanol-OD led to loss of HD and confirmed the identity of the dehydrogenation product to be 

the butanal complex (Appendix A.12). The product spectra for reaction with alcohols are more 

complicated than reactions with amines and alkanes. This is likely due to the very reactive nature 

of the aldehyde products. However, similar to the other dehydrogenation processes, the reactions 

with alcohols are likely driven by the strong coordination of the metal complexes to the aldehyde 

products. Isopropanol was also allowed to react with complexes I and II, resulting in acetone 

complexes (Appendix A.13 & A.14). 



 

55 
 

0

10

20

30

40

50

60

70

80

90

100

220 245 270 295 320

R
el

a
ti

v
e 

In
te

n
si

ty

m/z

223

227
241

251

255

283

C6H10

Adduct

C6H12

Adduct

Dehydrogenation

Alcohol 

Adduct

 
Figure 4.3. Product spectrum for the reaction of I with n-butanol. The dehydrogenation and 

alcohol adduct products appear at m/z 295 and 297, respectively. The peaks at m/z 283 and 227 

may be adducts of fluorene-9-carboxylate with n-butanol and water, respectively, formed through 

secondary reactions. The peak at m/z 223 is complex I. Cyclohexene and cyclohexane adduct 

products formed via reaction with the cyclohexane solvent appear m/z 305 and 307. Products of 

adduct formation with adventitious water, nitrogen, and methanol are also present and appear at 

m/z 241, 251, and 255 respectively. The increased signal of m/z 251 also suggests a carbon 

monoxide adduct. There are also peaks (not shown) at m/z 90, a nickel oxide from reaction with 

adventitious oxygen, and m/z 107, an unidentified species that is independent of the neutral 

reagent. 
 

 

Scheme 4.4. Decarbonylation of butanal by complex I. DFT calculations suggest this process is 

exothermic by 45.5 kcal/mol. DFT calculations performed at the M06/6-311+G** level. Detailed 

information on the structures and frequencies of the calculated species are given in Appendix C. 
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Figure 4.4. Product spectrum for the reaction of II with n-butanol. The dehydrogenation and 

alcohol products appear at m/z 296 and 298, respectively. Complex II appears at m/z 224. A metal 

adduct with adventitious methanol appears at m/z 91. Peaks at m/z 93, 107, 147, 284, and 300 are 

likely formed via secondary reactions with adventitious species. An unidentified species that is 

independent of the neutral reagent appears at m/z 180. 

 

4.3 Mechanistic Studies for the Dehydrogenation of Amines 
 

Kinetics experiments with deuterium-labeled neutral reagents were performed to determine KIEs 

which are shown in Table 2. The two methods used to calculate KIE values in this study are shown 

in Scheme 4.5. Intensities of products generated via ion-molecule reactions in our system are 

directly proportional to the rate of their respective reactions. Method A requires data from two 

separate reactions: dehydrogenation of the hydrogen-labeled reagent and dehydrogenation of the 

deuterium-labeled reagent. The intensity of the dehydrogenation product for the hydrogen-labeled 

reagent was taken relative to an unrelated product ion from an adventitious species that is in both 

reactions. The same calculation was performed for the dehydrogenation product of the deuterium-

labeled reagent. A ratio of the two resulting values provided the KIE values. 
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Table 2. Kinetic isotope effects for amine and alcohol dehydrogenations. 

 
Metal Complex Neutral Reagent KIE 

I Piperidine-ND 2.0 

I n-Butanol-OD 0.9 

I n-Butanol-1,1-d2 1.5 

II Diethylamine-ND 1.7 

II n-Butanol-OD 0.9 

II n-Butanol-1,1,2,2-d4 1.3 
 

 

 

Scheme 4.5. Calculations used to obtain KIE values for the dehydrogenation of amines and 

alcohols by complexes I and II. 

 

 Method A was used to determine KIEs in the reactions with complex I. The methanol adduct was 

used as the adventitious product in the calculations for piperidine-ND. In the calculations for the 
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alcohol KIEs, the cyclohexene adduct, formed by reaction with the cyclohexane solvent, was used 

as the adventitious product. Method A was also used to determine KIEs for the reactions of 

diethylamine-ND and n-butanol-OD with complex II. In the experiments to determine the KIE of 

the diethylamine-ND reaction, chlorobenzene was mixed in with the amine reagents since complex 

II was capable of engaging in oxidative addition reactions with aryl halides (see chapter 5). The 

insertion product of the reaction with chlorobenzene was used as the unrelated product in the 

calculations for diethylamine. In experiments to determine the KIE of n-butanol-OD, n-butanol-

d10 was mixed in with the other butanol reagents to produce a separate dehydrogenation product 

in the spectra. This product was used as the unrelated product in the calculations for n-butanol-

OD.  

Method B was used to calculate the KIE of n-butanol-1,1,2,2-d4. In this method, the deuterated 

neutral reagent was mixed with butanol to obtain a 50% by volume solution which was introduced 

into the ion trap for reaction with the metal complex. Due to the wide m/z separation of the 

dehydrogenation products, the intensity of the hydrogen-labeled product was taken relative to the 

deuterium labeled product intensity, resulting in the KIE value. Method A has more uncertainty 

than method B because it assumes that the reactions with adventitious or added species are 

consistent across two experiments. However, method B is only possible when the m/z values of 

the products of interest are distinct. Dehydrogenation of reagents such as piperidine-ND result in 

the same product as the dehydrogenation of the hydrogen-labeled reagent and are indistinguishable 

when formed in the same experiment. In these cases, method A is better suited for KIE 

determination. 

Dehydrogenation of piperidine-ND by complex I revealed a KIE of 2.0 (Table 2). This value 

strongly suggests N-H(D) bond activation during the rate-liming step of the reaction. This is 
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corroborated by the dehydrogenation of butylamine-d9 and butylamine-ND2 by complex I, as 

depicted in Figure 4.5. When reacting with butylamine-d9, the only product observed is the imine 

adduct that appears at m/z 302. However, in the reaction with butylamine-ND2, two 

dehydrogenation products are observed. The imine adduct appears at m/z 295 while an alkene 

adduct appears at m/z 296. These results indicate that imine formation is not greatly hindered by 

an isotope effect in the C-H activation component if the alpha carbon is deuterated. Alkene 

formation would be hindered in this case by deuteration at both alpha and beta sites. Conversely, 

the imine formation process is hindered by an isotope effect in the N-H activation if nitrogen is 

deuterated, allowing alkene formation to become a competitive outlet because it suffers from no 

isotope effects. 

Barriers for imine and alkene formation in the dehydrogenation of n-butylamine by complex I 

were computed using DFT calculations, performed at the M06/6-311+G** level, and the results 

are shown in Figure 4.6. Panels (a) and (b) depict two potential pathways to imine formation. In 

panel (a), the first TS is an insertion into the N-H bond by complex I that is 15.2 kcal/mol below 

the entrance channel. The second TS is a β-hydride elimination which involves C-H activation on 

the alpha carbon and is 19.5 kcal/mol below the reactants. In Panel (b) the activation order is 

reversed. The first TS is an insertion into a C-H bond on the alpha carbon that sits 17.4 kcal/mol 

below the reactants. The second TS is a β-hydride elimination which activates the N-H bond and 

is 7.9 kcal/mol below the reactants. Both suggested pathways indicate N-H activation is the rate-

determining step and are in accordance with the deuterium-labeled isotope effect studies 

mentioned above. Both pathways are favorable, however, there is a preference for the pathway in 

panel (a). In addition to imine formation, alkene formation is depicted in panel (c). In Panel (c), 

the first TS is the same C-H insertion shown in panel (b). However, in order to generate the alkene, 
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Figure 4.5. Product spectra for reactions of deuterium-labeled n-butylamine reagents with 

complex I. Panel (a) depicts the reaction of I with n-butylamine-d9. The imine adduct peak for this 

reaction appears at m/z 302. Panel (b) depicts the reaction of I with n-butylamine-ND2. An alkene 

adduct appears at m/z 296. An imine adduct appears at m/z 295 with loss of HD. The peak at m/z 

294 is likely an imine adduct formed with the loss of D2, due to HD exchange between the N and 

the alpha C. Products of adduct formation with adventitious water, nitrogen, and methanol are also 

present and appear at m/z 241, 251, and 255 respectively. The peaks at m/z 242 and 243 are likely 

formed via HD exchange between the water adduct and the neutral reagent. The peak at m/z 227 

may be an adduct of fluorene-9-carboxylate and water formed through secondary reactions. The 

peak at m/z 228 is likely formed via HD exchange between the m/z 227 species and the neutral 

reagent. There are also peaks (not shown) at m/z 90, an oxide from reaction with adventitious 

oxygen, and m/z 107, an unidentified species that is independent of the neutral reagent. 
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Figure 4.6. Transition states for the dehydrogenation of butylamine by complex I to give the imine 

and alkene adduct products. Panel (a) depicts N-H insertion followed by α-C elimination. Panel 

(b) depicts α-C insertion followed by N-H elimination. Panel (c) depicts α-C insertion followed by 

β-C elimination. Enthalpies for transition states are in kcal/mol. DFT calculations were performed 

at the M06/6-311+G** level. Detailed information on the structures and frequencies of the 

calculated species are shown in Appendix C. 
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the second TS is a β-hydride elimination that activates a C-H bond on the beta carbon and is 11.4 

kcal/mol below the reactants. In other words, when initial activation occurs on the alpha carbon, 

alkene formation is favored by 3.5 kcal/mol. If alpha carbon activation occurred first, one might 

expect to see the appearance of the alkene adduct product in the reaction with butylamine-d9 

despite the isotope effect. On the contrary, the product spectrum solely reveals imine formation.  

The initial C-H and N-H insertion barriers are relatively similar, so it is difficult to make any 

definitive mechanistic statements with respect to the pathways in Figure 4.6.  

As an example pathway, DFT calculations were used to link the TSs in panel (a) to the respective 

intermediates and the resulting potential energy surface is depicted in Figure 4.7. The first step 

which proceeds via the N-H insertion TS gives a reaction that is exothermic by 30.7 kcal/mol. In 

the following β-hydride elimination TS, the structure suggests the metal is able to bring the β-

hydrogen close to the initially abstracted hydrogen, resulting in an adduct with both the hydrogen 

molecule and the imine (exothermic by 29 kcal/mol). Lastly, the metal center expels the hydrogen 

molecule to form the adduct with butan-1-imine, resulting in an overall reaction that is exothermic 

by 26.2 kcal/mol.  
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Figure 4.7. Potential energy surface for the dehydrogenation of butylamine by complex I. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures and 

frequencies of the calculated species are shown in Appendix C. 

 

Isotope effects of amine dehydrogenations by complex II are similar. Experiments with 

diethylamine-ND reveal a KIE of 1.7 for dehydrogenation by complex II, suggesting N-H bond 

breakage during the rate-limiting step. DFT calculations suggest a viable pathway to 

dehydrogenation via the two TSs depicted in Figure 4.8 (a). The first step is an N-H insertion by 

complex II that is 11.9 kcal/mol below the reactants. The second step is C-H activation of the 

alpha carbon via a β-hydride elimination TS that is 16.6 kcal/mol below the reactants. A pathway 

to dehydrogenation via initial C-H insertion was also explored and is depicted in Figure 4.8 (b). 

C-H insertion on the alpha carbon proceeds via a TS that is 8.0 kcal/mol below the reactants. The 

following TS for the β-hydride elimination of the N-H bond is 4.2 kcal/mol above the reactants. 

The calculations suggest that both N-H activation steps of the pathways depicted in Figure 4.8 (a) 

and (b) are the rate-limiting steps. However, N-H activation in panel (a) is favored by 16.1 
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kcal/mol. This preference suggests that complex II performs the dehydrogenation of diethylamine 

via the pathway depicted in Figure 4.8 (a). The potential energy surface for the dehydrogenation 

of diethylamine by complex II is depicted in Figure 4.9. While the surface is higher in energy 

compared to complex I, DFT calculations suggest the overall dehydrogenation reaction is 

exothermic by 5.9 kcal/mol. The mechanism for the dehydrogenation of amines by complexes I 

and II is shown in Scheme 4.6. 

 
Figure 4.8. Transition states for the dehydrogenation of diethylamine by complex II to give the 

imine adduct product. Panel (a) depicts N-H insertion followed by α-C elimination. Panel (b) 

depicts α-C insertion followed by N-H elimination. Enthalpies for transition states are in kcal/mol. 

DFT calculations were performed at the M06/6-311+G** level. Detailed information on the 

structures and frequencies of the calculated species are shown in Appendix C. 
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Figure 4.9. Potential energy surface for the dehydrogenation of diethylamine by complex II. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures and 

frequencies of the calculated species are shown in Appendix C. 
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Scheme 4.6. Mechanism for the dehydrogenation of amines by complexes I and II. 

 

4.4 Mechanistic Studies for the Dehydrogenation of Alcohols 
 

Dehydrogenation of butanol-OD and butanol-1,1-d2 by complex I revealed KIEs of 0.9 and 1.5, 

respectively. These deuterium effects do not provide strong evidence for a particular 

dehydrogenation mechanism, so DFT calculations were used to gain further insight into the 

reaction mechanism. Figure 4.10 depicts two dehydrogenation pathways that can generate the 

aldehyde adduct. In panel (a), the first TS is an insertion into the O-H bond that is 12.3 kcal/mol 

below the reactants. The second TS is a β-hydride elimination which activates a C-H bond on the 
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alpha carbon and is 28.5 kcal/mol below the reactants. In panel (b), the first TS is an insertion into 

a C-H bond of the alpha carbon that is 18.8 kcal/mol below the reactants. The second TS is a β-

hydride elimination that activates the O-H bond and is 11.1 kcal/mol below the reactants. These 

calculations suggest a small preference for the pathway in panel (a) by 1.2 kcal/mol. Alkene 

formation was also explored and is depicted in Figure 4.10 (c). The first TS for alkene formation 

is insertion into a C-H bond of the alpha carbon, as seen in the first TS in panel (b) at 18.8 kcal/mol 

below the reactants. The second TS is a β-hydride elimination which activates a C-H bond on the 

beta carbon and is 13.3 kcal/mol below the reactants. The calculations suggest that, compared to 

the pathway in panel (b), alkene formation is favorable by 2.2 kcal/mol. If complex I enacted 

dehydrogenation by initial insertion into a C-H bond on the alpha carbon, then alkene formation 

would also be expected to appear in the reaction spectra. However, experiments with n-butanol-

1,1,2,2-d4 resulted in a loss of HD instead of D2 (Appendix A.11). These results and the 

experiments with n-butanol-3,3,4,4,4-d5 (Appendix A.12) confirm that complex I does not form 

an alkene on any portion of the alkyl chain. Therefore, dehydrogenation to form the aldehyde 

adduct likely occurs via the pathway depicted in Figure 4.10 (a).  The preference for aldehyde 

formation might be driven by the initial complexation of the nickel to the oxygen, which 

predisposes the system to a reaction along the C-O bond. Using DFT calculations, the TSs in panel 

(a) were linked to their respective intermediates to produce a potential energy surface, depicted in 

Figure 4.11. 
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Figure 4.10. Transition states for the dehydrogenation of butanol by complex I to give the 

aldehyde and alkene adduct products. Panel (a) depicts O-H insertion followed by α-C elimination. 

Panel (b) depicts α-C insertion followed by O-H elimination. Panel (c) depicts α-C insertion 

followed by β-C elimination. Enthalpies for transition states in kcal/mol. DFT calculations were 

performed at the M06/6-311+G** level. Detailed information on the structures and frequencies of 

the calculated species are shown in Appendix C. 
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Figure 4.11. Potential energy surface for the dehydrogenation of butanol by complex I. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures and 

frequencies of the calculated species are shown in Appendix C. 

 

The dehydrogenation of n-butanol by complex I is exothermic by 32.4 kcal/mol. While TSs for 

the amine dehydrogenation were closer in energy, the elimination TS for the dehydrogenation of 

n-butanol is much lower in energy that the insertion TS. This is likely due to the stronger 

coordination of the metal to the carbonyl. The general mechanism for the dehydrogenation of 

alcohols by complex I is shown in Scheme 4.7. 
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Scheme 4.7. Mechanism for the dehydrogenation of alcohols by complex I. 

 

Similar to the experiments with complex I, dehydrogenations of butanol-OD and butanol-1,1,2,2-

d4 by complex II revealed KIEs of 0.9 and 1.3, respectively. Again, these deviations from unity 

are not large enough to confidently suggest mechanistic information. However, DFT calculations 

suggest two competitive pathways for the dehydrogenation of butanol by complex II, depicted in 

Figure 4.12. In panel (a), the first TS is an insertion into the O-H bond by complex II that is 6.0 

kcal/mol below the reactants. The second TS is a β-hydride elimination that activates a C-H bond 

on the alpha carbon and is 26.0 kcal/mol below the reactants. The second pathway in panel (b) 

involves initial C-H insertion on the alpha carbon via a TS that is 9.5 kcal/mol below the reactants. 
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The following TS is a β-hydride elimination which activates the O-H bond and is 6.9 kcal/mol 

below the reactants. These calculations indicate the pathway in panel (b) is favored by 0.9 

kcal/mol. However, this preference is not large enough to distinguish between the two pathways 

and, unlike the dehydrogenation mechanism described previously, complex II may enact alcohol 

dehydrogenation via both pathways. DFT calculations were used to link the TSs of panel (a) to 

their respective intermediates to produce a representative potential energy surface, depicted in 

Figure 4.13. The calculations suggest the dehydrogenation process is exothermic by 23.0 kcal/mol. 
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Figure 4.12. Transition states for the dehydrogenation of butanol by complex II to give the 

aldehyde adduct products. Panel (a) depicts O-H insertion followed by α-C elimination. Panel (b) 

depicts α-C insertion followed by O-H elimination. Enthalpies for transition states are in kcal/mol. 

DFT calculations were performed at the M06/6-311+G** level. Detailed information on the 

structures and frequencies of the calculated species are shown in Appendix C. 
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Figure 4.13. Potential energy surface for the dehydrogenation of butanol by complex II. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures and 

frequencies of the calculated species are shown in Appendix C. 
 

4.5 Additional Reactivity 
 

In the previous chapter, complex I was capable of sequential dehydrogenations when the alkene 

adduct products were subjected to CID. To explore this possibility, tandem mass spectrometry 

experiments were carried out with products from the reactions with amine and alcohols and the 

results indicated that the product complexes are also capable of additional reactivity. Scheme 4.8 

depicts the reaction pathways for piperidine and complex I. When the 2,3,4,5-tetrahydropyridine 

complex with I is isolated and subjected to CID, additional dehydrogenations occur, resulting in 
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the formation of 3,4-dihydropyridine, 2,3-dihydropyridine, and pyridine. These processes are 

endothermic by 21.1 kcal/mol, 15.3 kcal/mol, and 29.3 kcal/mol, respectively. CID provides the 

energy necessary to enable these reactions. While formation of 2,3-dihydropyridine is favored over 

3,4-dihydropyridine by 5.8 kcal/mol, the excess energy provided via the collisions with buffer gas 

will likely allow for the production of both adducts. The hydrogen molecule adduct of complex I 

is observed and requires 45.8 kcal/mol of activation. Recovery of complex I, by release of 2,3,4,5-

tetrahydropyridine, is also observed and requires 47.8 kcal/mol of activation.  

 

Scheme 4.8. Dehydrogenation pathways for reaction of piperidine with complex I. Reaction 

enthalpies were performed at the M06/6-311+G** level. Detailed information on the structures 

and frequencies of the calculated species are shown in Appendix C. 
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In addition to sequential dehydrogenations, release of the fluorenyl scaffold was also observed as 

two products (Scheme 4.9). In panel (a), the fluorenyl anion is released. Panel (b), depicts release 

of fluorene and formation of an anion comprised of either 2,3-dihydropyridine or 3,4-

dihydropyridine bound to Ni. Based on the observed m/z value, it seems this process occurs after 

a second dehydrogenation has taken place and a hydrogen molecule has been released. At this 

point, due to the input of energy via CID, the fluorenyl scaffold can abstract a hydrogen from the 

imine ring, facilitating the formation of fluorene and the observed organometallic anion. 

 

Scheme 4.9. Observed fluorenyl scaffold fragmentation products via CID activation of the 2,3,4,5-

tetrahydropyridine adduct with complex I. DFT calculations performed at the M06/6-311+G** 

level. Detailed information on the structures of the calculated species are shown in Appendix C. 

 

Tandem mass spectrometry revealed similar reactivity in reactions of complex I with n-butylamine 

(Scheme 4.10). When the butan-1-imine adduct of complex I was isolated and subjected to CID, 

a product ion at m/z 128 was observed. This product ion may be formed via a hydrogen abstraction 
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from the nitrogen, alpha carbon, or beta carbon of the imine by the fluorenyl scaffold to form 

fluorene. A product ion at 126 m/z is also observed, indicating the loss of the fluorene scaffold, 

followed by dehydrogenation of the amine ligand. 

 

Scheme 4.10. Reaction pathways for the CID of the butan-1-imine adduct with complex I. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures of the 

calculated species are shown in Appendix C. 

 

Additional dehydrogenations were observed when the butan-1-imine adduct of complex II was 

isolated and subjected to CID (Scheme 4.11). Product ions at m/z 293 and 291 indicate 

dehydrogenations of the imine ligand.  

CID experiments of the dehydrogenation product for the reaction of diethylamine with complex II 

did not result in additional dehydrogenations (Scheme 4.12). Instead, when the dehydrogenation 

product was isolated and subjected to CID, a product at m/z 250 was observed, indicating oxidation 

of the imine to a cyano group. This process can occur with either the loss of methane and an ethyl 

radical (32.7 kcal/mol), or loss of a methyl radical and ethane (37.4 kcal/mol). While the loss of 

methane and the ethyl radical is favored by 4.7 kcal/mol, the energy introduced via CID may enable 

both processes. The signal intensity of the dehydrogenation of piperidine by complex II was not 

high enough to isolate and subject the ion to CID. In these cases, the complexity and uncertainty 
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of the reaction pathways made it impractical to fully map out mechanisms and identify transition 

states. 

 

Scheme 4.11. Reaction pathways for the CID of the butan-1-imine adduct with complex II. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures of the 

calculated species are shown in Appendix C. 
 

 

Scheme 4.12. Reaction pathways for the CID of the N-ethylethanimine adduct of complex II. DFT 

calculations performed at the M06/6-311+G** level. Detailed information on the structures of the 

calculated species are shown in Appendix C. 
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CID studies of the dehydrogenation products generated via reactions with alcohols led to 

decarbonylation by complexes I and II. The butanal adducts were isolated and subjected to CID, 

enabling decarbonylation to produce CO complexes of the metal with the release of propane 

(Scheme 4.13). This process is exothermic by 13.1 kcal/mol and 13.6 kcal/mol for complexes I 

and II, respectively. In experiments with isopropanol, decarbonylation of the acetone adducts also 

occurred. Unlike the experiments with butanol, decarbonylation of acetone resulted in the release 

of CO, leaving the alkyl moiety to form an anion with both metal complexes (Scheme 4.14). DFT 

calculations suggest this process is endothermic by 36.1 kcal/mol and 32.0 kcal/mol for complexes 

I and II, respectively. 

 

Scheme 4.13. Reaction pathways for the CID of the butanal adducts of complexes I and II. Panel 

(a) depicts CID of the butanal adduct of complex I. Panel (b) depicts CID of the butanal adduct of 

complex II. DFT calculations performed at the M06/6-311+G** level. Detailed information on 

the structures of the calculated species are shown in Appendix C. 
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Scheme 4.14. Reaction pathways for the CID of the acetone adducts of complexes I and II. Panel 

(a) depicts CID of the acetone adduct of complex I. Panel (b) depicts CID of the acetone adduct 

of complex II. DFT calculations performed at the M06/6-311+G** level. Detailed information on 

the structures of the calculated species are shown in Appendix C. 

 

In conclusion, our Ni and Co SAC model ions are capable of the dehydrogenation of amines and 

alcohols to produce imines, aldehydes, and ketones. Kinetics experiments and DFT calculations 

suggest that both model ions perform the dehydrogenations via N/O-H insertion followed by β-

hydride elimination on the alpha carbon. Reactions with alcohols also led to decarbonylation 

products. Additional reactivity for amine and alcohol dehydrogenation products was observed by 

subjecting the product ions to CID.  Our model ions most closely resemble metals supported on 

Stone-Wales graphene defects. If a Stone-Wales graphene-supported SAC was created using Ni 

or Co, it may be useful for generating activated products via amine or alcohol dehydrogenation. 
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 4.6 Experimental Section 
 

All experiments were executed in a modified linear triple quadrupole ion trap mass spectrometer 

(modified Thermo Electron LTQ XLTM) equipped with an electrospray ionization (ESI) source. 

The precursor ions for complexes I and II were made by mixing solutions of each component. For 

the nickel complex, nickel(II) acetate tetrahydrate and fluorene-9-carboxylic acid were each 

dissolved in methanol at 10-4 M. Potassium oxalate monohydrate was dissolved in a 

water/methanol mixture at 10-4 M. These solutions were mixed in a 1:5:2.5 ratio by volume, 

respectively, and passed into the ion trap via ESI. For the cobalt complex, Co(II) benzoate and 

fluorene-9-carboxylic acid were each dissolved in methanol at 10-4 M. Potassium oxalate 

monohydrate was dissolved in a water/methanol mixture at 10-4 M. These solutions were mixed in 

a 1:4:0.6 ratio by volume, respectively, and passed into the ion trap via ESI. Typical ESI conditions 

involved flow rates of 5μL/min, needle potentials between 4-5 kV and heated capillary 

temperatures between 230-275 °C. A notched waveform was used to isolate the precursor 

complexes. The precursor complexes were subjected to sequential rounds of CID to form the 

respective SAC model ions. Once a steady signal of the ion of interest was achieved, neutral 

reagents were introduced into the ion trap via the external manifold, as previously described.36,68 

Temperatures of the ion trap environment have been shown to be near room temperature.68,69 

Reaction spectra were averaged over 200 scans in order to minimize noise.  Kinetic measurements 

were completed as described in Scheme 4.5. 

Piperidine-ND and butylamine-ND2 were synthesized as follows: 

Piperidine-ND – 500μL of piperidine and 2mL of D2O were placed in a 25mL round-bottom flask. 

The reaction flask was placed into an oil bath and reaction mixture was stirred and heated to ~ 80° 
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C. D2O (2mL) was added to the reaction mixture twice in one-hour increments after the reaction 

mixture began heating. At 3 hours, the reaction flask was taken off heat and allowed to cool. The 

deuterated amine was extracted in diethyl ether (2 x 3mL and 1 x 2mL) and the organic layer was 

distilled. Piperidine-ND was verified by 1H-NMR. 

Butylamine-ND2 – 500μL of butylamine and 6mL of D2O were placed in a 25mL round-bottom 

flask. The reaction mixture was stirred at room temperature for 24 hours. The deuterated amine 

was extracted in diethyl ether (2 x 3mL and 1 x 2 mL) and the organic layer was distilled. 

Butylamine-ND2 was verified by 1H-NMR. 

 All other neutral reagents were purchased commercially in the highest purity available and used 

without further purification. Density functional calculations were completed using the 

Gaussian16101 suite of quantum mechanical programs. All calculations were performed at the 

M06/6-311+G** level. All transitions states were verified using intrinsic reaction coordinate (IRC) 

calculations. 
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Chapter 5 - Oxidative Addition of Polar Reagents by Gas-Phase 

Graphene-Supported Single-Atom Catalyst Model Ions 
 

 5.1 Oxidative Addition 
 

Classically defined as the formal oxidation of a metal by 2 via the addition of two ligands produced 

by a reductive cleavage of a substrate bond (Scheme 5.1), oxidative addition is a fundamental 

organometallic reaction and is a key step in many catalytic processes.114–117  

 

Scheme 5.1. Classic depiction of an oxidative addition reaction. 

 

For example, the Monsanto process employs oxidative addition as the initial step in producing 

acetic acid, a large scale industrial product, using the four coordinate Rh complex, [RhI2(CO)2]
-

.114,118 The Cativa process generates acetic acid using an Ir-based complex that engages in 

oxidative addition during the catalytic cycle.119 Oxidative additions also play a role in metal-

catalyzed cross coupling cycles (Scheme 5.2).  The first step in a typical cross coupling cycle is 

oxidative addition of a polar reagent, where the metal inserts into the C-X bond resulting in the 

addition of two ligands along with an increase in the oxidation state by 2. While there is a laundry 

list of polar reagents that can be used for this step, alkyl/aryl halides are most commonly seen. In 

the second step, transmetallation, a second metal complex is used to exchange ligands, resulting 

in a new C-R ligand for the catalyst. Finally, reductive elimination releases the product via C-C 

bond formation and recovers the metal catalyst. The ability to form new C-C bonds via cross-

couplings has had a large impact on areas of research and development involving synthetic 
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trasformations120–128 and Professors Heck, Negishi, and Suzuki were awarded the Nobel prize in 

2010 for originally developing Pd catalyzed cross-coupling reactions.129 Since oxidative addition 

is a key step in the practical applications described above, it is important to identify and understand 

metal-centered species that engage in this reaction. Recent studies report the successful use of Pd-

based SACs, supported on metal-oxides and carbon-scaffolds, in Suzuki and Sonogashira coupling 

reactions.130–132  

 

Scheme 5.2. Typical cross-coupling cycle.  

 

 

 5.2 Oxidative Addition of Aryl Halides by the SAC Model Complexes 
 

All four of our SAC model ions are capable of engaging in oxidative additions with polar reagents. 

Most of the reagents included in our study are organic halides due to the common use of these 

chemicals in practical applications.114 A general depiction of the reaction between the SAC model 

ions and aryl halides is shown in Scheme 5.3. When the aryl halide is introduced into the ion trap, 

the first step is the insertion of the metal center into the C-X bond. The resulting product ion is 
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burdened by an excess of energy which results from the initial ion-molecule attraction and the 

enthalpy of reaction. The relatively small product ion often releases the excess energy by breaking 

apart into fragment ions. The initial oxidation addition intermediate has three ligands and can expel 

any of them as a radical or an anion. Three fragment ions are often observed in the oxidative 

addition product spectra. The insertion product is indicated by an anion comprised of the metal 

inserted into the C-X bond of the aryl halide. In this pathway, the fluorenyl scaffold is released as 

a fluorenyl radical. An anion formed by halogen addition suggests the release of the R group 

(phenyl in this case) as a radical. In the third fragmentation pathway, the metal complex can release 

the free halide, resulting in a neutral species comprised of the metal complex with a phenyl ligand. 

Generally, one or more of these fragmentation products are observed in the reaction spectra. 

 
Scheme 5.3. Oxidative addition of aryl halides by complexes I-IV. Due to the excess energy 

gained by the ion-molecule attraction and thermodynamics of reaction, the oxidative addition 

product often breaks apart into three fragment products: the insertion product (top), the halogen 

addition product (middle), and the halide (bottom) product. 

 

It is important to note that the insertion process can also be indicated by two other ions (Scheme 

5.4). As depicted in panel (a), instead of releasing the fluorenyl radical, the carbon scaffold can be 
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released as the fluorenyl anion, leaving behind a neutral complex comprised of the metal atom 

inserted in the polar bond. In another pathway, shown in panel (b), the fluorenyl anion engages in 

a β-elimination of a proton, resulting in an anionic metal π-complex and a fluorene molecule. 

While these products are observed occasionally, the most commonly observed insertion product is 

shown in Scheme 5.3.  

 

Scheme 5.4. Two other possible insertion products. These products occur less often than the 

insertion product depicted in Scheme 5.3. 

 

Figure 5.1 depicts the product spectrum for the reaction of bromobenzene with the Cu SAC model 

ion, complex III. The insertion product appears at m/z 219 while the halogen addition product 

appears at m/z 307. The presence of bromine in these products is identified by the characteristic 

Br-81 isotopologues at m/z 221 and m/z 309, respectively. In some cases, the full oxidative 

addition product is also observed. For example, two primary products are observed in the product 

spectrum of the oxidative addition of iodobenzene and the Pd SAC model ion, complex IV (Figure 

5.2). 
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Figure 5.1. Spectra for the reaction of bromobenzene with complex III. Panel (a) Isolation of 

complex III prior to introduction of bromobenzene. Panel (b) Product spectrum after introduction 

of bromobenzene. The insertion and halogen addition products appear at m/z 219 and 307, 

respectively. The peak at m/z 228 is complex III. The peak at m/z 260 is an adduct with oxygen. 
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Figure 5.2. Spectra for the reaction of iodobenzene with complex IV. Panel (a) Isolation of 

complex IV prior to introduction of iodobenzene. Panel (b) Product spectrum after introduction of 

iodobenzene. Iodide appears at m/z 127, indicating aryl addition. The oxidative addition product 

appears at m/z 475. The peaks at m/z 360 and m/z 437 are [PdI2]
- and [PdI2C6H5]

-, respectively, 

and are formed through secondary reactions with iodobenzene. The peaks at m/z 299 and m/z 303 

are adducts of molecular nitrogen and oxygen, respectively. 
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The full oxidative addition appears at m/z 475 while iodide appears at m/z 127, indicating aryl 

addition. Two other products are also observed in the spectrum. The peak at m/z 360 is an anion 

comprised of Pd ligated to two iodides while the peak at m/z 437 indicates an anion comprised of 

Pd coordinated with a phenyl ring and two iodides. These products are a result of secondary 

reactions of product ions with a second iodobenzene molecule. Similar secondary products were 

observed in many of the reactions in this study. However, most of these reactions occurred between 

insertion products and a second molecule of the polar reagent and therefore do not reflect the 

reactivity of the SAC model ions featuring the fluorenyl anion as a scaffold (Appendix B.5). It is 

important to remember that the fragmentation products are a consequence of the gas-phase ion-

molecule reactions. If graphene-supported SACs engage in oxidative additions, the excess energy 

imparted by the exothermicities of the reactions would likely dissipate through the many 

vibrational modes of the graphene lattice, resulting in simple oxidative addition. 

All four SAC model ions were allowed to react with fluorobenzene, chlorobenzene, 

bromobenzene, and iodobenzene. Product distributions for the oxidative addition reactions of these 

aryl halides by complexes II and III are shown in Figure 5.3. As shown in panel (a), complex II 

had very little reactivity with fluorobenzene leading only to the oxidative addition product (which 

might also be a simple adduct). These results are not surprising given the notorious difficulty of 

C-F bond activation under mild conditions.133 More significant reactivity was observed with 

chlorobenzene, with the insertion fragment appearing as the only product. Even more reactivity 

was observed in reactions with bromobenzene and iodobenzene. Both insertion and halogen 

addition products were observed in these reactions. This increasing trend in reactivity can be 

attributed to the relative bond strengths. C-X bonds weaken moving down the halogen group on 

the periodic table due to the increase in the halogen’s atomic size and decrease in electronegativity.  
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Figure 5.3. Product distributions for the oxidative addition reactions of fluorobenzene, 

chlorobenzene, bromobenzene, and iodobenzene by complex II, panel (a), and complex III, panel 

(b). Products of reactions between the SAC model ions and adventitious species in the ion trap are 

not shown. 
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These trends likely result in lower barriers for C-X bond activation by the SAC model ions. 

Complex III displayed very similar reactivity to complex II and both trended towards more 

halogen addition in the series from fluorine to iodine, but there are two main differences. Complex 

III did not react with fluorobenzene at all, meaning the metal complex was unable to activate the 

C-F bond. Also, compared to the Co SAC model ion, complex III had much more reactivity with 

chlorobenzene. The insertion fragment was the main product of this reaction, but the halogen 

addition product also appeared. 

Product distributions for the oxidative addition reactions of the aryl halides with complexes I and 

IV are shown in Figure 5.4. The insertion product was the most commonly observed product for 

complex I. The halogen addition product was observed as a minor product in the reactions with 

chlorobenzene, bromobenzene, and iodobenzene (along with the halide product in the reaction 

with iodobenzene). Oxidation addition products appeared more often in the reactions with complex 

I than in the reactions shown in Figure 5.3. This was the major product in the reaction with 

fluorobenzene and also appeared as a minor product in the reactions with bromobenzene and 

iodobenzene. While overall reactivity was relatively low compared to reactions with the other aryl 

halides and SAC model ions, complex I was the most capable of C-F bond activation. 

Reactions with complex IV resulted in a wide spread of products for the aryl halide reactions. In 

the reaction with iodobenzene, the halide appeared as the major product while the oxidative 

addition product appeared as the minor product. The major and minor products in the reaction with 

chlorobenzene were the oxidative addition and insertion products, respectively. In the reaction 

with bromobenzene, both products appeared in about equal amounts.  It is noteworthy that the 

product distributions for complex IV are tilted towards products with a Pd-C bond, with no 

evidence of halide additions.  
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Figure 5.4. Product distributions for the oxidative addition reactions of fluorobenzene, 

chlorobenzene, bromobenzene, and iodobenzene by complex I, panel (a), complex IV, panel (b). 

Products of reactions between the SAC model ions and adventitious species in the ion trap are not 

shown. 
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The only product observed in the reaction with fluorobenzene was an adduct. Since the adduct and 

oxidative addition products are isobaric and therefore indistinguishable using mass spectrometry 

alone, computational modelling was used in order to obtain insightful energetic information that 

led to this conclusion (see below).  

5.3 Computation Modelling for the Oxidative Addition of Aryl Halides 
 

DFT calculations were performed using the M06 functional with an effective core potential (ECP) 

basis set on Pd (lanl2dz) and a 6-311+G** basis set on the other atoms. Energies are reported from 

single-point calculations at the M06/QZVP level with thermal enthalpy corrections from the 

calculations with the mixed ECP/6-311+G** basis set for all reactions. Scheme 5.5 depicts the 

energetics for the reaction of fluorobenzene with the complex IV. Panel (a) depicts adduct 

formation and DFT calculations suggest the process is exothermic by 24.3 kcal/mol. Since the 

process does not involve bond breakage, there is no associated TS. Panel (b) depicts the oxidative 

addition of fluorobenzene by complex IV. While the overall reaction is exothermic by 15.7 

kcal/mol, there must be an associated TS in order to break the C-F bond. DFT calculations suggest 

a three-centered TS that is above the reactants by 10.2 kcal/mol. This three-centered TS is typical 

for oxidative addition reactions, especially when using unsaturated reagents such as aryl haldies.114 

Under our reaction conditions, this TS is too high to allow the oxidative addition to occur on the 

timescale of the experiment and the adduct would be preferred over the oxidative addition product 

at equilibrium. Therefore, the identity of the observed product ion is likely the adduct of 

fluorobenzene with the Pd SAC model ion. 
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Scheme 5.5. Energies for adduct formation and oxidative addition of fluorobenzene by complex 

IV. Panel (a) depicts adduct formation. Panel (b) depicts oxidative addition. Enthalpies in 

kcal/mol. Calculations were completed with M06 functional and a mixed lanl2dz/6-311+G** basis 

set. Detailed information on the structures of the calculated species are shown in Appendix C. 
 

As mentioned previously, complex I also produced an oxidative addition product in the reaction 

with fluorobenzene (Scheme 5.6). As shown in panel (a), DFT calculations suggest adduct 

formation is exothermic by 37.5 kcal/mol. The oxidative addition of fluorobenzene, shown in panel 

(b), occurs via a three-centered TS that is below the energy of the reactants by 10.8 kcal/mol, 

resulting in a reaction that is exothermic by 49.4 kcal/mol. The energetically accessible TS and 

overall reaction exothermicity indicate that the identity of the observed product is likely the 

oxidative addition of fluorobenzene by the Ni SAC model ion. DFT calculations also suggest a 

favorable TS for the reaction between fluorobenzene and the Co SAC model ion (Appendix B.6). 

Insertion TS 

(10.2) 
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Scheme 5.6. Energies for adduct formation and oxidative addition of fluorobenzene by complex 

I. Panel (a) depicts adduct formation. Panel (b) depicts oxidative addition. Enthalpies in kcal/mol. 

Calculations were completed at the M06/6-311+G** level. Detailed information on the structures 

of the calculated species are shown in Appendix C. 

 

As mentioned earlier, the weaker C-X bonds of the other aryl halides likely lead to lower activation 

barriers. In order to confirm and gain further insight into the observed reactivity of all four SAC 

model ions, energetic information on the reactions with chlorobenzene were also obtained via DFT 

calculations. Scheme 5.7 depicts the reaction between chlorobenzene and complex II. DFT 

calculations suggest the Co center is able to split the C-Cl bond via a three-centered insertion TS 

that is 26.2 kcal/mol below the reactants. Insertion into the C-Cl bond leads to the oxidative 

addition product but DFT calculations suggest two viable structures. If the Co center is coordinated 

to the aromatic 5-membered ring of the fluorenyl scaffold, the reaction is exothermic by 74.5 

kcal/mol.  

Insertion TS 

(-10.8) 
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Scheme 5.7. Enthalpies for the TS and oxidative addition products of the reaction between 

chlorobenzene and complex II. Enthalpies in kcal/mol. Calculations suggest that two binding 

modes are favorable for the formation of the oxidative addition product. Calculations were 

completed at the M06/6-311+G** level. Detailed information on the structures of the calculated 

species are shown in Appendix C. 

 

However, Co can also coordinate to a pyramidalized 9-carbon on the fluorenyl scaffold (η1), 

resulting in a reaction that is exothermic by 72.2 kcal/mol. Since these products are so close in 

energy, it is not clear which structure is the actual product or if the product is fluxional. If there is 

a small barrier to interconvert between the two structures, it may be that both structures are present. 

However, it is important to note that in both possibilities, chlorobenzene has been separated and 

added to Co as two distinct ligands. 

Insertion TS 

(-26.2) 
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Scheme 5.8. Enthalpies for the TS and oxidative addition products of the reaction between 

chlorobenzene and complex I. Enthalpies in kcal/mol. Calculations suggest that two binding 

modes are favorable for the formation of the oxidative addition product. Calculations were 

completed at the M06/6-311+G** level. Detailed information on the structures of the calculated 

species are shown in Appendix C. 

 

Similar results were found for the reactions with complexes I and IV. As shown in Scheme 5.8, 

complex I carries out oxidative addition of chlorobenzene via a three-centered TS that is below 

the reactants by 31.8 kcal/mol. The metal center can either be coordinated to the fluorenyl scaffold 

or solely the 9-carbon of the fluorenyl anion, resulting in reactions that are exothermic by 70.7 

kcal/mol and 72.9 kcal/mol, respectively. The reaction with complex IV features a similar TS that 

is below the reactants by 17.6 kcal/mol (Scheme 5.9). This results in a reaction that is exothermic 

by 38.3 kcal/mol when the Pd center is coordinated to the fluorenyl scaffold. If the metal center is 

bonded to just the 9-carbon of the fluorenyl anion, the oxidative addition product is exothermic by 

46.6 kcal/mol. The exothermicities associated with the oxidative addition products for the 

Insertion TS 

(-31.8) 
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chlorobenzene reactions discussed thus far likely lead to the fragmentation products observed in 

experiments. 

 

 

Scheme 5.9. Enthalpies for the TS and oxidative addition products of the reaction between 

chlorobenzene and complex IV. Enthalpies in kcal/mol. Calculation suggest that two binding 

modes are favorable for the formation of the oxidative addition product. Calculations were 

completed with M06 functional and a mixed lanl2dz/6-311+G** basis set. Detailed information 

on the structures of the calculated species are shown in Appendix C. 

 

Unlike the other SAC model ions, the Cu SAC model ion seems to follow a different mechanism 

(Scheme 5.10). In attempts to locate a typical oxidative addition TS, DFT calculations indicated 

that the Cu SAC model ion abstracts Cl from the phenyl ring via a one-electron transfer TS that is 

1.6 kcal/mol below the reactants. This TS leads directly to the halogen addition product and the 

release of a phenyl radical. The overall reaction is exothermic by 27.1 kcal/mol. The difference in 

mechanism may be due to the high electron count of the initial Cu complex (17-electron species). 

If the ion were to engage in a classic oxidative addition, the resulting complex would be a 19-

Insertion TS 

(-17.6) 
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electron species, surpassing the often stable 18-electron count. However, by engaging in the one-

electron transfer of Cl, the Cu complex becomes an 18-electron complex. This rationale aligns 

well with previous reports about halogen atom abstraction by 17-electron metal complexes.114,134 

Organometallic systems that employ this mechanism use a second metal complex to retrieve the 

organic radical or to add a new moiety to the radical. Therefore, oxidative addition likely would 

not occur by a Cu graphene-supported SAC on its own. However, the other SAC model ions have 

lower electron counts which likely allow for two-electron processes, such as oxidative addition, to 

occur. 

 

Scheme 5.10. Enthalpies for TS and product of the halogen addition pathway of the reaction 

between chlorobenzene and the Cu SAC model ion. Enthalpies in kcal/mol. Calculations were 

completed at the M06/6-311+G** level. Detailed information on the structures of the calculated 

species are shown in Appendix C.  

 

DFT calculations were also performed to gain information on the overall energetics of product 

formation. Scheme 5.11 depicts the energies for the fragment products formed in the reaction 

between chlorobenzene and complex II. The insertion product was considered in both the singlet 

and triplet states and DFT calculations suggest both spin states give favorable reactions. The 

reaction is exothermic by 8.7 kcal/mol and 30.5 kcal/mol when forming the product in the singlet 

and triplet states, respectively. 

Cl Transfer TS 

(-1.6) 
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Scheme 5.11. Enthalpies for the reaction between chlorobenzene and complex II. The insertion 

product was considered in both the singlet and triplet spin states. (s) = singlet, (t) = triplet. The 

reactant ion was calculated in the doublet spin state. Calculations were completed at the M06/6-

311+G** level. Detailed information on the structures of the calculated species are shown in 

Appendix C. 

 

Formation of the products observed in the reactions between chlorobenzene and complexes I and 

IV were also favorable. Products in these reactions were calculated in the lowest possible spin 

state since higher spin states (e.g. triplet or quartet) would require the promotion of an electron out 

of the d-shell. The insertion product for the reaction with complex I is exothermic by 45.7 kcal/mol 

while the halogen addition product is exothermic by 28.7 kcal/mol (Scheme 5.12). While both 

fragment pathways are viable, the insertion product is favored by 17.0 kcal/mol. This energetic 

preference supports the observed experimental product preference (Figure 5.4). The reaction with 

complex IV resulted in oxidative addition and insertion products. The insertion product is depicted 

in Scheme 5.13. Instead of releasing the fluorenyl radical, the fluorenyl scaffold appears to abstract 

a hydrogen from the phenyl ring, resulting in the release of fluorene and the formation of Pd 

complexed with Cl and benzyne. DFT calculations suggest the reaction is exothermic by 20.8 

kcal/mol, meaning the oxidative addition products (Scheme 5.9) are favored by at least 17.5 

kcal/mol. This energetic preference is in accordance with the preference observed in experiments 

(Figure 5.4).  
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Scheme 5.12. Enthalpies for the reaction between chlorobenzene and complex I. Ion products 

calculated in the doublet, (d), spin state. The reactant ion was calculated in the singlet spin state. 

Calculations were completed at the M06/6-311+G** level. Detailed information on the structures 

of the calculated species are shown in Appendix C.  

 

 

 

Scheme 5.13. Enthalpies for the reaction between chlorobenzene and complex IV. The insertion 

product is comprised of Pd complexed with Cl and benzyne. The reactant and product ions were 

calculated in the singlet, (s), spin state. Energetic information for the oxidative addition product 

(not shown) is depicted in Scheme 5.9. Calculations were completed with M06 functional and a 

mixed lanl2dz/6-311+G** basis set. Detailed information on the structures of the calculated 

species are shown in Appendix C. 

 

Of all the reactions with chlorobenzene, the Pd SAC model ion was the only metal complex to 

produce an experimentally observed oxidative addition product. This may be due to the relatively 

larger size of the Pd atom which allows for more effective cooling via vibrational modes. This is 

reflected in the calculations as the exothermicity for forming the Pd oxidative addition product is 

~40-50 kcal/mol while the Co and Ni oxidative addition products are ~70-75 kcal/mol. The lower 

energy associated with the Pd reactions likely reduces the probability that a fragment ion would 
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be produced from every reaction collision. DFT calculations also suggested lower energies for the 

reaction between fluorobenzene and the Ni SAC model ion which featured an observed oxidative 

addition product (Scheme 5.6). 

 

Scheme 5.14. Enthalpies for the reaction between chlorobenzene and complex III. Enthalpies The 

insertion product was calculated in the doublet, (d), spin state. Energetic information for the 

halogen addition product, (d), is depicted in Scheme 5.10. Calculations were completed at the 

M06/6-311+G** level. Detailed information on the structures of the calculated species are shown 

in Appendix C. 

 

Formation of the insertion product in the reaction between chlorobenzene and complex III is 

depicted in Scheme 5.14. DFT calculations suggest the reaction is exothermic by 44.7 kcal/mol. 

Compared to the halogen addition product (Scheme 5.10, -27.1 kcal/mol) the insertion product is 

favored by 17.6 kcal/mol, which supports the preference for the insertion product observed in 

experiments. However, as mentioned earlier, complex III likely does not enact C-X insertion like 

the other metal complexes. Halogen addition occurs via the TS depicted in Scheme 5.10 while the 

insertion product likely forms via a TS which involves Cu insertion into the C-Cl bond with 

concerted loss of the fluorenyl radical. Since these products do not share a rate-limiting TS, the 

processes that form the products are fundamentally different. This means that differences in the 

energies of the TSs may also affect product preference. 

5.4 Oxidative addition of Non-Aromatic Reagents by the SAC Model Complexes 
 

The SAC model ions were also receptive to oxidative additions with non-aromatic reagents as 

shown in Figure 5.5. As can be seen in in panel (a), complex II has very little reactivity with 
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chlorobutane, which only allowed for the halogen addition product. More competitive reactions 

were observed with the other neutral reagents. Reactions with unsaturated carbon chains, propargyl 

and allyl chloride, displayed both insertion and oxidative addition products. Reagents with two 

halides were also tested. The sole product for the reaction with 1,2-dichloroethane was halogen 

addition while a di-halide addition peak appeared in the reaction with cis-1,2-dichloroethylene, 

along with the insertion and halogen addition products. Similar to the insertion product, the di-

halogen addition product occurs with the loss of the support scaffold as the fluorenyl radical and 

presumably releases acetylene (Scheme 5.15). The reaction with the most competitive pathways 

was the iodomethane reaction, where a mix of the insertion, halogen addition, and halide products 

were observed. In addition to the halide reagents, allyl and propargyl acetate reagents were also 

included due their common use in C-C coupling reactions.135 Both reagents resulted in the insertion 

ion as the sole product. As shown in Figure 5.5 (b), complex III displayed similar reactivity. The 

most notable difference is the appearance of the acetate addition and carbon-centered addition 

products in the reactions with allyl and propargyl acetate. Acetate addition products are formed in 

the same manner as halogen addition products. The carbon-centered addition product forms due 

to cleavage of the metal-oxygen bond and results in an acetoxy radical that will likely decompose 

via CO2 loss (Scheme 5.16).  
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Figure 5.5. Product distributions for the oxidative addition reactions of various polar reagents by 

complexes II, panel (a), and III, panel (b). Products of reactions between the SAC model ions and 

adventitious species in the ion trap are not shown. 
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Scheme 5.15. Reaction of the SAC model ions with cis-1,2-dichloroethylene to produce the di-

halogen addition product. The product ion is formed with the release of acetylene and the fluorenyl 

radical.  

 

 

Scheme 5.16. Formation of the alkyl addition product. 

 

Figure 5.6 depicts the product distributions for the reactions of complexes I and IV with the non-

aromatic reagents. As shown in panel (a), complex I had little reactivity with chlorobutane and 

formed the insertion and halogen addition products. Once again more competitive reactions were 

observed with the rest of the neutral reagents listed in Figure 5.6. Reactions with the unsaturated 

halides, propargyl chloride and allyl chloride resulted in the insertion and halogen addition 

products. Insertion, halogen addition, and di-halogen addition products were observed in the 

reaction with 1,2-dichloroethane. The reaction with cis-1,2-dichloroethylene resulted in di-halogen 

addition and halogen addition products. The reaction with iodomethane resulted in a mix of 

insertion, halogen addition, and halide products. The only product observed in the reactions with 

allyl and propargyl acetates was the insertion product.  
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Figure 5.6. Product distributions for the oxidative addition reactions of various polar reagents by 

complexes I and IV. Products of reactions between the SAC model ions and adventitious species 

in the ion trap are not shown. 
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Similar results were observed with complex IV. One of the most notable differences was the 

appearance of the oxidative addition product in the reactions with propargyl chloride and allyl 

chloride. Also, the reaction with allyl acetate resulted in the insertion product but the reaction 

was relatively more competitive compared to the allyl acetate reaction with complex I. Of all the 

SAC model ions, the majority of the non-aromatic neutral reagents were most reactive with 

complexes II and III, similar to the reactions with aromatic reagents. 

5.5 Computational Modelling for the Oxidative Addition of Non-Aromatic 

Reagents 
 

Using allyl chloride as a sample reactant, computational modelling of reactions with the SAC 

model ions was carried out in order to gain more information on the thermodynamics of the 

oxidative additions. The reaction with complex II is shown in Scheme 5.17. DFT calculations 

suggest the metal center inserts into the C-Cl bond via a three-centered TS that is 43.7 kcal/mol 

below the reactants, resulting in a reaction that is exothermic by 92.3 kcal/mol.  

 
Scheme 5.17. Enthalpies for the TS state and oxidative addition product of the reaction between 

allyl chloride and complex II. Enthalpies in kcal/mol. Calculations were completed at the M06/6-

311+G** level. Detailed information on the structures of the calculated species are shown in 

Appendix C. 

 

In this case, as opposed to the results for the calculations of the chlorobenzene reaction, DFT 

calculations only suggested the η1 structure where the metal is bound to the 9-carbon of the 

Insertion TS 
(-43.7) 



 

107 
 

fluorenyl scaffold, despite efforts to optimize the η5 structure where the metal is bound to the 

center ring of the fluorenyl scaffold. 

 The calculated transition states for the oxidative addition of allyl chloride by complexes I and IV 

are similar. Scheme 5.18 depicts the oxidative addition of allyl chloride to complex I. DFT 

calculations suggest the Ni center inserts into the C-Cl bond via a typical three-centered TS that is 

46.7 kcal/mol below the reactants. As was the case with the aromatic reagents, DFT calculations 

indicate there are two possible oxidative addition products. Formation of the 9-fluorenyl complex 

is exothermic by 77.5 kcal/mol while forming the η5-fluorenyl product is exothermic by 75.2 

kcal/mol. A similar TS that is 25.1 kcal/mol below the reactants was found for the reaction with 

complex IV, as shown in Scheme 5.19. Oxidative addition products with the η5-fluorenyl and 9-

fluorenyl ligand structure are both possible and result in reactions that are exothermic by 44.7 and 

50.8 kcal/mol, respectively. Once again, formation of the oxidative addition products of the 

reaction with complex IV are less exothermic than formation of the oxidative addition products 

for complexes I and II. Since complex IV was the only SAC model ion to display the intact 

oxidative addition product in the experiments with allyl chloride, exothermicites of ~50 kcal/mol 

or below may be required in order for the oxidative addition product to avoid fragmentation. 

DFT calculations suggest a one-electron process for the reaction between complex III and allyl 

chloride. As shown in Scheme 5.20, complex III performs Cl abstraction via a one-electron 

transfer TS that is 0.8 kcal/mol above the reactants. This pathway directly leads to the halogen 

addition product and is exothermic by -54.4 kcal/mol. These results are similar to the pathway 

suggested for the chlorobenzene reaction and reinforces the rationale that the process is driven by 

the nature of the metal complex rather than the choice of polar reagent.  
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Scheme 5.18. Enthalpies for the TS and oxidative addition product of the reaction between allyl 

chloride and complex I. Calculations suggest formation of the oxidative addition product is 

favored in two different bonding schemes. Enthalpies are in kcal/mol. Calculations were 

completed at the M06/6-311+G** level. Detailed information on the structures of the calculated 

species are shown in Appendix C. 

 

 

Scheme 5.19. Enthalpies for the TS and oxidative addition product of the reaction between allyl 

chloride and complex IV. Calculations suggest formation of the oxidative addition product is 

favored in two different bonding schemes. Enthalpies are in kcal/mol. Calculations were 

completed with M06 functional and a mixed lanl2dz/6-311+G** basis set. Detailed information 

on the structures of the calculated species are shown in Appendix C. 

 

Insertion TS 
 (-46.7) 

Insertion TS 

(-25.1) 
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Scheme 5.20. Enthalpies for the TS and halogen addition product of the reaction between allyl 

chloride and complex III. The TS is a one-electron process that leads to the halogen addition 

product. Enthalpies in kcal/mol. Calculations were completed at the M06/6-311+G** level. 

Detailed information on the structures of the calculated species are shown in Appendix C. 

 

In addition to the transition states, the overall energetics for these reactions provide additional data 

for rationalizing the product distributions. Scheme 5.21 depicts the energetics for the reaction of 

allyl chloride with complex II. The insertion and halogen addition products were considered in 

both the singlet and triplet states. DFT calculations suggest that both products are more stable in 

the triplet state. Formation of the singlet and triplet states of the insertion product were exothermic 

by 35.3 kcal/mol and 48.4 kcal/mol, respectively. The Co center is bound to the allyl moiety in an 

η3 fashion for both spin states. Formation of the halogen addition product is exothermic by 27.4 

kcal/mol in the singlet state, while forming the triplet state is exothermic by 54.9 kcal/mol. When 

comparing the triplet states of each product, the halogen addition product is favored by 6.5 

kcal/mol, which aligns with the product distribution for complex II, shown in Figure 5.5 (a). 

Cl Transfer TS 
(0.8) 
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Scheme 5.21. Enthalpies for the reaction of allyl chloride with the Co SAC model ion. Complex 

II was calculated in the doublet, (d), spin state Both singlet and triplet states were considered for 

the resulting product ion. (s) = singlet, (t) = triplet. Calculations were completed at the M06/6-

311+G** level. Detailed information on the structures of the calculated species are shown in 

Appendix C. 

 

The overall energetics for the reactions of allyl chloride with complex I is depicted in Scheme 

5.22.  DFT calculations suggest that the insertion product can exist in two binding modes. When 

producing the η1-allyl insertion product, the reaction is exothermic by 47.7 kcal/mol while forming 

the η3-allyl insertion product results in a reaction that is exothermic by 53.4 kcal/mol. While the 

η3-binding mode is energetically favorable, both binding modes are possible. Formation of the 

halogen addition product was exothermic by 55.9 kcal/mol. Of the two observed products, the 

calculations suggest halogen addition is favored over the most stable insertion product by 2.5 

kcal/mol. The small difference supports the almost equal formation of these products, as displayed 

in Figure 5.6 (a), and also suggests the insertion product mainly exists in the η3-binding mode. 

The insertion product for the reaction with complex IV is depicted in Scheme 5.23. In this case, 

the fluorenyl anion was observed in the product spectrum. DFT calculations suggest formation of 

this ion is exothermic by 22.0 kcal/mol with the release of the neutral Pd(Cl)(η3-CH2CH=CH2) 

complex. The η3-binding mode was the only option in this case since computational optimization 
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of the end-on η1 binding mode led to the η3 structure. Formation of the oxidative addition product 

(Scheme 5.19) is favored over the insertion product from an enthalpic perspective. However, 

formation of the insertion product leads to two products while the oxidative addition pathway only 

leads to the one product ion. Therefore, the insertion product is favored entropically and this may 

explain the preference for the insertion product observed in experiments (Figure 5.6), but it also 

depends on the efficiency of the oxidative product collisional cooling. 

 

Scheme 5.22. Enthalpies for the reaction of allyl chloride with complex I. Ion reactants and 

products were calculated in the singlet state. DFT calculations suggest exothermic η1 and η3 
binding modes for the insertion product. Calculations were completed at the M06/6-311+G** 

level. Detailed information on the structures of the calculated species are shown in Appendix C. 

 

 

Scheme 5.23 Enthalpies for the reaction of allyl chloride with complex IV. Energetic information 

for the oxidative addition product (not shown) is depicted in Scheme 5.19. Ion reactants and 

products were calculated in the singlet (s), spin state. Calculations were completed with M06 

functional and a mixed lanl2dz/6-311+G** basis set. Detailed information on the structures of the 

calculated species are shown in Appendix C. 
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DFT calculations also suggest favorable reactions leading to both products in the allyl chloride 

reaction with complex III. The insertion product was exothermic by 41.9 kcal/mol (Scheme 5.24), 

while the halogen addition product was exothermic by 54.4 kcal/mol (Scheme 5.20). In this case, 

the halogen addition product is favored by 12.5 kcal/mol. However, it is important to remember 

that the insertion and halogen addition products are formed via pathways with different TSs. As 

mentioned earlier, the differences in the energies of the TS will affect the product preference. 

Experimentally, halogen addition is favored over the insertion product (Figure 5.5) and therefore 

suggests that the TS leading to the insertion product may be higher in energy than the TS for 

halogen addition. 

 

Scheme 5.24. Enthalpies for the reaction of allyl chloride with complex III. The reactant ion was 

calculated in the doublet, (d), spin state. Product ions were considered in the singlet spin state, (s). 

Calculations were completed at the M06/6-311+G** level. Detailed information on the structures 

of the calculated species are shown in Appendix C. 

 

In this study, the oxidative addition reactivity of all four of our SAC model ions was tested. In 

most cases, experiments with various polar reagents led to fragmentation products that are 

indicative of oxidative addition. However, products that correlate to the full oxidative addition 

products were also observed and are supported by DFT calculations. Typical oxidative addition 

TSs for reactions with Co, Ni, and Pd SAC model ions were obtained via DFT calculations and 

provide further evidence of oxidative addition reactivity. However, it seems that the Cu SAC 

model ion preferentially activated polar bonds via a one-electron atom transfer process, due to the 

high 17-electron count of the metal complex. Our results suggest that graphene-supported SACs 
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that employ Co, Ni, or Pd may be able to engage in oxidative addition, a key step in many chemical 

transformations. Graphene-supported SACs that employ Cu likely cannot engage in oxidative 

additions on their own and may need a co-catalyst in order to complete desired transformations.  

 

 

5.6 Experimental Section 
 

All experiments were executed in a modified linear triple quadrupole ion trap mass spectrometer 

(modified Thermo Electron LTQ XLTM) equipped with an electrospray ionization (ESI) source. 

Precursor complexes for all SAC model ions were introduced via ESI. Precursor complex solutions 

were made as follows: 

Nickel precursor complex – Nickel(II) acetate tetrahydrate and fluorene-9-carboxylic acid were 

each dissolved in methanol at 10-4 M. Potassium oxalate monohydrate was dissolved in a 

water/methanol mixture at 10-4 M. These solutions were mixed in a 1:5:2.5 ratio by volume, 

respectively. 

Cobalt precursor complex – Cobalt(II) benzoate and fluorene-9-carboxylic acid were each 

dissolved in methanol at 10-4 M. Potassium oxalate monohydrate was dissolved in a 

water/methanol mixture at 10-4 M. These solutions were mixed in a 1:4:0.6 ratio by volume, 

respectively. 

Copper precursor complex – Copper(II) acetate and fluorene-9-carboxylic acid were each 

dissolved in methanol at 10-4 M. Potassium oxalate monohydrate was dissolved in a 

water/methanol mixture at 10-4 M. These solutions were mixed in a 1:4:1.5 ratio by volume, 

respectively.  
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Palladium precursor complex – Potassium tetrachloropalladate(II) and fluorene-9-carboxylic acid 

were each dissolved in methanol at 10-4 M. Potassium oxalate monohydrate was dissolved in a 

water/methanol mixture at 10-4 M. These solutions were mixed in a 1:1.5:0.5 ratio by volume, 

respectively. 

 Typical ESI conditions involved flow rates of 5μL/min, needle potentials between 4-5 kV and 

heated capillary temperatures between 230-275 °C. A notched waveform was used to isolate the 

precursor complexes. The precursor complexes were subjected to sequential rounds of CID to form 

the respective SAC model ions. Once a steady signal of the ion of interest was achieved, neutral 

reagents were introduced into the ion trap via the external manifold, as previously described.36,68 

Temperatures of the ion trap environment have been shown to be near room temperature.68,69 

Reaction spectra were averaged over 200 scans in order to minimize noise. All neutral reagents 

were purchased commercially in the highest purity available and used without further purification. 

Density functional calculations were completed using the Gaussian16101 and Gaussian 09136 suites 

of quantum mechanical programs. Calculations were completed using the M06 functional with an 

ECP basis set on Pd (lanl2dz) and a 6-311+G** basis set on all other atoms. Single point 

calculations at the M06/QZVP level with thermal enthalpy corrections from the calculations with 

the mixed ECP/6-311+G** basis set were performed for reported reaction energies. All transitions 

states were verified using intrinsic reaction coordinate (IRC) calculations. 
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Chapter 6 - Conclusion 
 

 

6.1 Highlights 
 

SACs are considered to be the ultimate-limit in heterogenous catalysis since the atomic distribution 

can result in a catalyst with both homogeneous and heterogeneous characteristics.14 Understanding 

the underlying mechanisms of these catalysts is crucial to the advancement of SACs. However, as 

mentioned previously, surface analysis tools can become less effective for mechanistic studies at 

the atomic level. The goal of the work presented in this dissertation was to create an experimental 

model system that can be used to study the reactions and underlying mechanisms of graphene-

supported SACs. We successfully generated a model ion in the gas-phase via sequential 

decarboxylative CID using a modified linear triple quadrupole ion trap mass spectrometer 

(modified Thermo Electron LTQ XLTM). The model ion consists of a zero-valent metal atom 

coordinated to the fluorenyl anion. Once again, the rationale is that if SACs operate through a 

single metal atom, the reactivity of these catalysts mainly depends on the local environment and 

therefore, metals supported on a simple polycyclic aromatic molecule, such as the fluorenyl anion, 

can serve as a model system for SACs supported on graphene. 

The method for creating our model system is general and can be applied using a variety of metal 

centers. We generated the SAC model ion using Ni, Co, Cu and Pd. Three studies using our SAC 

model ions were detailed in Chapters 3, 4, and 5. The Ni SAC model was capable of the 

dehydrogenation of alkanes via C-H activation. Experiments and computational modelling suggest 

this process occurs via two C-H activations: C-H insertion followed by β-hydride elimination. 

Both the Ni and Co SAC model ions were capable of the amine and alcohol dehydrogenation via 
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similar mechanisms. Although not highlighted in those chapters, the potential energy surfaces 

suggest that the SAC models could also catalyze hydrogenations because the barriers in the reverse 

direction are modest and would be surmountable under mild conditions and hydrogen pressures. 

A study on the oxidative addition reactivity of the SAC model ions was also completed and 

suggests that the Ni, Co, and Pd SAC model ions can enact oxidative addition of polar reagents 

via a typical two-electron insertion process. Computational modelling suggest the Cu SAC model 

ion activates polar reagents via a one-electron transfer process. As mentioned previously, the 

structure of the fluorenyl anion, which serves as the carbon scaffold for our model ion, most closely 

resembles a Stone-Wales graphene defect.46  

 

 

6.2 Impact and Future Directions 
 

 As the field of single-atom catalysis continues, a wide variety of SACs are being created and 

studied.8,14–17 Our work with the model ions serves as a guide for condensed-phase chemists and 

suggests that if graphene containing Stone-Wales defects are used to trap atomic Ni, Co, or Pd, 

interesting and useful transformations can potentially be achieved. Simple alkanes can be made 

into valuable unsaturated feed stocks using a Ni active center. Amines and alcohols can be 

transformed into imine, aldehydes, and ketones using Ni and Co as the active centers. Introduction 

of co-catalysts may prove useful for achieving sequential transformations. Oxidative addition 

using the Ni, Co, and Pd active centers can act as a stepping stone in many important syntheses, 

including carbon coupling cycles. The suggested mechanisms for these processes can also help 

guide reagent choices and synthetic directions for the reactions that these SACs employ. 
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Of course, the most important question regarding any model is – Does the model accurately 

describe its target? Structural similarities, electronic similarities based on theoretical calculations, 

and our previously mentioned rationale give us good reason to believe our novel reactant system 

can serve as a reasonable model for graphene-supported SACs. In addition, we have demonstrated 

that the SAC models engage in mechanistic steps that are similar to those seen in condensed phase 

systems, e.g., oxidative addition, C-H activation. However, the only way to definitively test the 

efficacy of our model system is to compare our work to graphene-supported single-atom catalysts 

engaging in similar reaction systems. In order to accomplish this comparison several steps must 

be taken: (1) a graphene scaffold with sufficient Stone-Wales defects needs to be fabricated. (2) a 

method to stably anchor atomic distributions of metal atoms to the Stone-Wales defects on the 

graphene lattice must be developed. (3) alkane, amine, and alcohol dehydrogenation reactivity 

using Ni and Co graphene-supported SACs must be explored, as well as the oxidative addition 

reactivity of Ni, Co, Cu, and Pd graphene-supported SACs. As mention previously, Zhang et al. 

were able to trap Ni atoms on the defects of a graphene scaffold.34 The major portion of these 

defects were Stone-Wales defects but a significant portion of the defects were not. Much more 

work and novel studies are needed to accomplish the goal of comparing our model system to an 

appropriate catalyst. However, if fabrication of an appropriate catalyst can be achieved, it is likely 

that many exciting discoveries await on the other side.  
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Appendix A – Spectra 
 

A.1. Mass spectrum for reaction of complex I with cyclohexane-d12. 
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The dehydrogenation and alkane adduct peaks (C6D10 complex and C6D12 adduct) appear at m/z 

315 and 319, respectively. Peak broadening is observed for the alkane adduct peak due to the 

relative instability of the product ion during the instrument scans. Complex I appears at m/z 223. 

Adduct formation products of complex I with water and nitrogen appear at m/z 241 and 251, 

respectively. The peak at m/z 227 may be an adduct of fluorene-9-carboxylate and water formed 

through secondary reactions. There are also peaks (not shown) at m/z 90, an oxide from reaction 

with adventitious oxygen, and m/z 107, an unidentified adduct that is independent of the neutral 

reagent. 
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A.2. Mass spectrum for reaction of complex I with a 50% by volume solution of 

cyclohexane-d12 in cyclohexane. 
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The dehydrogenation products of cyclohexane and cyclohexane-d12 (C6H10 and C6D10 

complexes) appear at m/z 305 and 315, respectively. Relative kinetic analysis of these peaks 

provides a KIE value. The alkane adduct products (C6H12 and C6D12 adducts) appear at m/z 307 

and 319, respectively. Peak broadening for the alkane adduct products is observed due to the 

relative instability of the product ions during the instrument scans. Complex I appears at m/z 

223. Adduct formation products of complex I with water, nitrogen and methanol appear at m/z 

241, 251 and 255, respectively. The peak at m/z 227 may be an adduct of fluorene-9-carboxylate 

and water formed through secondary reactions. There are also peaks (not shown) at m/z 90, an 

oxide from reaction with adventitious oxygen, and m/z 107, an unidentified adduct that is 

independent of the neutral reagent. 

 

Relative Intensity of m/z 305 = 86.89 
 
Relative Intensity of m/z 315 = 36.77 
 

𝐾𝐼𝐸 =
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶 − 𝐻 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶 − 𝐷 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
=

86.89

36.77
= 2.4 
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A.3. Mass Spectra of the CID of the cyclohexene adduct. 
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Panels (a) and (b) depict CID of the cyclohexene adduct (m/z 305) using 15 and 25 eV, 

respectively. The peaks at m/z 301, 303 and 225 correspond to the benzene adduct, 

cyclohexadiene adduct, and H2 adduct, respectively. The peak at m/z 165 corresponds to the 

fluorenyl anion. This anion is relatively stable and is lost easily due to the energy introduced by 

CID. The peak at m/z 223 corresponds to complex I, which indicates the loss of cyclohexene and 

recovery of the reactant ion. Adduct formation with adventitious water, nitrogen and methanol 

appear at m/z 241, 251 and 255, respectively 
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A.4. Product spectrum for piperidine reaction with complex I. 
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A.5. Product spectrum for diethylamine reaction with complex I. 
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A.6. Product spectrum for piperidine reaction with complex II. 
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A.7. Product spectrum for diethylamine reaction with complex II. 
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A.8. Product spectrum for n-butylamine-d9 reaction with complex I. 
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A.9. Product spectrum for n-butylamine-d9 reaction with complex II. 
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A.10. Product spectrum for n-butanol-1,1,2,2-d4 reaction with complex I. 
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A.11. Product spectrum for n-butanol-3,3,4,4,4-d5 reaction with complex I. 
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A.12. Product spectrum for n-butanol-OD reaction with complex II. 
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A.13. Product spectrum for isopropanol reaction with complex I. 
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A.14. Product spectrum for isopropanol reaction with complex II. 
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A.15. 1H-NMR spectrum for piperidine-ND. 
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A.16. 1H-NMR spectrum for butylamine-ND2. 
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Appendix B – Thermodynamic data 
 

B.1. Reaction enthalpies for the dehydrogenation of ethane and butane by complex 

I. 
 

 
 

 

DFT calculations suggest exothermic enthalpies for the dehydrogenations of ethane and butane. 

Calculations were completed at the M06/6-311 + G** level. Detailed information on the 

structure and frequencies of the calculated species are shown in Appendix C. 
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B.2. Potential energy surface for the dehydrogenation of ethane by complex I. 
 

 
 

DFT calculations suggest the dehydrogenation of ethane by complex I occurs via the same 

mechanism as the dehydrogenation of cyclohexane. The overall reaction is exothermic by 14.5 

kcal/mol. These computational results suggest that complex I can also dehydrogenate smaller 

alkanes. Calculations were completed at the M06/6-311 + G** level. Detailed information on the 

structure and frequencies of the calculated species are shown in Appendix C. 
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B.3. Potential energy surface for the dehydrogenation of cyclohexene. 
 

 
 

The dehydrogenation of cyclohexene occurs via the same mechanism as that of the 

dehydrogenation of cyclohexane. CID provides the cyclohexene adduct complex with the energy 

required to proceed with the reaction. Calculations were completed at the M06/6-311 + G** 

level. Detailed information on the structure and frequencies of the calculated species are shown 

in Appendix C. 
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B.4. Reaction enthalpies for the formation of the H2 adduct and the metal dihydride 

species. 
 

 
 

 

The H2 adduct and the metal dihydride ions are isobaric and therefore indistinguishable using 

mass spectrometry. Comparisons of the energies of formation acquired via DFT calculations 

indicate formation of the H2 adduct is favorable by 21.7 kcal/mol. Detailed information on the 

structure and frequencies of the calculated species are shown in Appendix C. 
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B.5. Reaction pathways commonly observed for the secondary reactions between 

insertion products and polar neutral reagents. 

 
 

 

Insertion products often react with the neutral reagents resulting two secondary products. Panel 

(a) depicts the general reactions. A second halogen group can add to the insertion product, 

presumably releasing an organic radical. Alternatively, the metal center can swap the organic 

ligand with the halogen group of the reagent, presumably releasing a carbon-coupled product. 

The secondary reactions of the insertion product from the reaction between propargyl chloride 

and complex IV are shown as an example in panel (b). DFT calculations suggest the second 

halogen addition is exothermic by 40.2 kcal/mol while the carbon coupling is exothermic by 15.8 

kcal/mol. The possibility of forming the dihalide anion via the release of two propargyl radicals 

was also explored computationally, as shown in panel (c). DFT calculations suggest this process 

is endothermic by 20.7 kcal/mol. Therefore, formation of the dihalide anion via the carbon 

coupling pathway is favored by 36.5 kcal/mol. Detailed information on the structure and 

frequencies of the calculated species are shown in Appendix C. 
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B.6. Comparison of adduct formation and oxidative addition of fluorobenzene by 

complex II. 
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Appendix C – Computational Data 
 

C.1. Gas-phase dehydrogenation of alkanes 
 

Complex I (s) 

M06/6-311+G** Enthalpy = -2008.56485 

C          0.00000        0.97574        0.80445 

C         -0.72273       -1.10703       -0.03491 

C         -1.15689        0.13142        0.50938 

C         -2.52458        0.34980        0.69500 

C         -3.43278       -0.62352        0.31251 

C         -3.00185       -1.82506       -0.26579 

C         -1.64738       -2.06779       -0.43805 

C          1.15688        0.13142        0.50933 

C          0.72269       -1.10703       -0.03494 

C          3.43275       -0.62360        0.31252 

C          2.52457        0.34975        0.69498 

C          1.64732       -2.06785       -0.43802 

C          3.00180       -1.82514       -0.26577 

Ni         0.00005        2.27549       -0.57527 

H          0.00004        1.60663        1.70175 

H         -2.86512        1.29354        1.11581 

H         -4.49797       -0.44935        0.44984 

H         -3.73269       -2.56954       -0.57259 

H         -1.31040       -3.00802       -0.87232 

H          4.49794       -0.44946        0.44987 

H          2.86513        1.29349        1.11578 

H          1.31031       -3.00808       -0.87225 

H          3.73261       -2.56965       -0.57254 

 

Cyclohexane (s) 

M06/6-311+G** Enthalpy = -235.566343 

C         -0.98166       -1.06811        0.23219 

C          0.43424       -1.38409       -0.23219 

C          1.41590       -0.31604        0.23220 

C          0.98166        1.06811       -0.23219 

C         -0.43424        1.38409        0.23219 

C         -1.41590        0.31604       -0.23220 

H         -1.68288       -1.83108       -0.12632 

H         -1.01631       -1.10572        1.33229 

H          0.44959       -1.43296       -1.33228 

H          0.74435       -2.37287        0.12634 

H          1.46601       -0.32716        1.33230 

H          2.42722       -0.54187       -0.12643 

H          1.01631        1.10572       -1.33229 
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H          1.68288        1.83108        0.12632 

H         -0.74435        2.37287       -0.12634 

H         -0.44959        1.43296        1.33228 

H         -2.42722        0.54187        0.12643 

H         -1.46601        0.32716       -1.33230 

 

Hydrogen molecule (s) 

M06/6-311+G** Enthlapy = -1.157449 

H          0.00000       -0.00000        0.37368 

H          0.00000       -0.00000       -0.37368 

 

Collision complex of I with cyclohexane (s) 

M06/6-311+G** Enthlapy = -2244.155879 

C          1.94437       -2.98951       -1.17572 

C          1.99662       -1.63416       -1.45846 

C          1.73914       -0.70671       -0.44891 

C          1.37907       -1.14384        0.86574 

C          1.36350       -2.52259        1.13657 

C          1.64005       -3.42449        0.12638 

C          1.36171        1.16207        0.86627 

C          1.72823        0.73099       -0.44859 

C          1.97135        1.66262       -1.45786 

C          1.89889        3.01692       -1.17459 

C          1.58857        3.44671        0.12783 

C          1.32576        2.54037        1.13770 

C          1.10316        0.00691        1.70082 

H          1.23655        0.00764        2.78339 

Ni        -0.80649       -0.00653        1.38127 

H          1.10190       -2.87079        2.13398 

H          1.61068       -4.49172        0.33734 

H          2.14362       -3.71950       -1.95647 

H          2.24296       -1.29384       -2.46390 

H          2.22174        1.32622       -2.46362 

H          2.08675        3.75016       -1.95512 

H          1.54333        4.51330        0.33928 

H          1.05928        2.88426        2.13532 

C         -1.89165       -0.01039       -2.11367 

C         -1.87336       -1.27072       -1.25865 

C         -3.02632       -1.28640       -0.26472 

C         -3.09721       -0.02297        0.58772 

C         -3.04507        1.24364       -0.26131 

C         -1.89200        1.24780       -1.25531 

H         -1.90926       -2.16683       -1.89345 

H         -2.79275       -0.01620       -2.75223 

H         -3.97708       -1.36934       -0.82220 

H         -2.95830       -2.16962        0.38210 
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H         -0.92533       -1.31572       -0.70103 

H         -1.02630       -0.00308       -2.79000 

H         -0.94464        1.30537       -0.69764 

H         -1.94129        2.14499       -1.88770 

H         -2.99026        2.12607        0.38785 

H         -3.99691        1.31391       -0.81869 

H         -2.43259       -0.01939        1.51469 

H         -4.05940       -0.03083        1.12502 

 

Insertion TS for the dehydrogenation of cyclohexane (s) 

M06/6-311+G** Enthlapy = -2244.152541 

Imaginary frequency = -585.98 

H          1.10265        3.81894       -0.19633 

C          0.34110        3.06842        0.00634 

C         -1.60158        1.14873        0.57809 

C         -0.10068        2.25561       -1.02635 

C         -0.15597        2.92944        1.31127 

C         -1.12176        1.97176        1.59314 

C         -1.09256        1.27377       -0.76911 

H          0.28484        2.38773       -2.03518 

H          0.22270        3.57095        2.10305 

C         -2.56390        0.08222        0.56822 

C         -4.29694       -2.00588       -0.02889 

C         -2.59257       -0.46378       -0.75495 

C         -3.38158       -0.44118        1.56811 

C         -4.24680       -1.48216        1.27384 

C         -3.48572       -1.50950       -1.03232 

H         -3.34411       -0.02580        2.57451 

H         -4.89195       -1.89287        2.04668 

H         -3.52862       -1.93526       -2.03328 

H         -4.98503       -2.81997       -0.24870 

C         -1.64630        0.22772       -1.58197 

H         -1.65003        0.20025       -2.66653 

Ni         0.29649       -0.20454       -0.86556 

H         -1.49870        1.85684        2.60878 

H          1.72375        0.06001        0.65630 

C          2.05271       -0.62134       -0.16718 

H          1.20646       -1.29105       -1.26761 

C          2.48295       -1.93574        0.47849 

H          1.63489       -2.37914        1.01455 

H          2.75973       -2.65709       -0.30988 

C          3.22432        0.02866       -0.89241 

H          3.51926       -0.60663       -1.74489 

H          2.91430        0.99130       -1.31748 

C          4.42680        0.21722        0.02937 

H          4.15809        0.93582        0.81950 
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H          5.27218        0.65629       -0.52002 

C          3.67525       -1.74516        1.40972 

H          3.37669       -1.09769        2.24899 

H          3.98393       -2.70519        1.84747 

H          5.18918       -1.78770       -0.11519 

H          5.69389       -0.94839        1.35095 

C          4.84229       -1.09950        0.67326 

 

C-H insertion of cyclohexane with I (s) 

M06/6-311+G** Enthlapy = -2244.156108 

C          1.28469       -0.06471        1.48877 

C          1.61448       -0.80332       -0.70394 

C          1.41249       -1.22526        0.64575 

C          1.33154       -2.59821        0.92224 

C          1.41351       -3.51033       -0.11292 

C          1.57482       -3.08957       -1.44343 

C          1.67532       -1.73923       -1.73589 

C          1.53279        1.07542        0.64484 

C          1.68977        0.63375       -0.70453 

C          1.77117        3.34741       -0.11551 

C          1.59509        2.44953        0.92033 

C          1.84806        1.55742       -1.73714 

C          1.88821        2.91118       -1.44565 

Ni        -0.72220        0.03917        1.96402 

C         -2.85117        1.39816       -1.30502 

C         -2.68025        0.13218       -2.13317 

C         -2.98439       -1.10367       -1.29761 

C         -2.08567       -1.15499       -0.05972 

C         -2.19733        0.11502        0.77406 

C         -1.95131        1.36078       -0.06738 

H         -1.80469        0.09430        2.96031 

H          1.51531       -0.07607        2.56165 

H          1.17285       -2.93554        1.94502 

H          1.33988       -4.57415        0.10300 

H          1.62171       -3.82682       -2.24079 

H          1.80454       -1.41024       -2.76623 

H          1.80822        4.41327        0.09964 

H          1.47222        2.80229        1.94284 

H          1.94248        1.21594       -2.76721 

H          2.01128        3.63905       -2.24353 

H         -2.62787        2.28830       -1.90978 

H         -3.90471        1.48200       -0.99039 

H         -3.31616        0.16343       -3.02934 

H         -1.63707        0.07569       -2.48552 

H         -4.04087       -1.07359       -0.98312 

H         -2.85689       -2.01599       -1.89708 
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H         -1.04817       -1.29075       -0.40231 

H         -2.32436       -2.03510        0.55141 

H         -3.19737        0.17003        1.22746 

H         -2.09405        2.26519        0.53819 

H         -0.90570        1.38271       -0.41130 

 

Elimination TS for the dehydrogenation of cyclohexane (s) 

M06/6-311+G** Enthlapy = -2244.144737 

Imaginary frequency = -579.14 

C          0.47707       -0.12210        0.83891 

C          2.66763       -0.23146       -0.03002 

C          1.61851       -0.98555        0.55835 

C          1.79941       -2.35454        0.76730 

C          2.98282       -2.95816        0.37261 

C          4.00038       -2.21677       -0.23990 

C          3.84289       -0.85319       -0.44204 

C          0.94842        1.21893        0.50819 

C          2.24774        1.15134       -0.06050 

C          0.98901        3.60694        0.21526 

C          0.33610        2.46557        0.65366 

C          2.88471        2.30209       -0.51535 

C          2.25508        3.53068       -0.37660 

Ni        -0.88311       -0.62014       -0.57988 

C         -3.98008        0.81449       -0.56620 

C         -3.88083       -0.51919       -1.28763 

C         -2.74705       -1.36567       -0.73486 

C         -2.34876       -1.20747        0.63286 

C         -2.90596       -0.10268        1.51287 

C         -4.14323        0.57127        0.92662 

H         -1.68584       -0.93084       -1.77950 

H         -0.01132       -0.21074       -1.74361 

H         -0.05669       -0.26475        1.78150 

H          1.00153       -2.94093        1.22070 

H          3.12197       -4.02565        0.53095 

H          4.91571       -2.71268       -0.55376 

H          4.63797       -0.27386       -0.90927 

H          3.87391        2.24178       -0.96698 

H          2.74454        4.43724       -0.72413 

H          0.50834        4.57706        0.32374 

H         -0.65834        2.53493        1.09270 

H         -2.76629       -2.39507       -1.10307 

H         -2.01775       -2.10600        1.15613 

H         -4.82877       -1.06509       -1.14449 

H         -3.76074       -0.36842       -2.36817 

H         -3.06277        1.39566       -0.75156 

H         -4.82142        1.39984       -0.96070 
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H         -3.15124       -0.50488        2.50659 

H         -2.14599        0.67489        1.69538 

H         -4.35026        1.51033        1.45742 

H         -5.02278       -0.07609        1.07572 

 

β-hydride elimination of cyclohexane with I (s) 

M06/6-311+G** Enthlapy = -2244.167832 

C         -0.54260       -0.16399       -0.99551 

C         -2.09363        1.25422        0.05278 

C         -0.83552        1.20009       -0.62254 

C         -0.11372        2.38993       -0.79844 

C         -0.61189        3.57752       -0.29276 

C         -1.83212        3.61814        0.39885 

C         -2.56965        2.45686        0.57045 

C         -1.71462       -0.92227       -0.62856 

C         -2.64541       -0.07641        0.04727 

C         -3.23200       -2.76706       -0.31724 

C         -2.03802       -2.27421       -0.81210 

C         -3.83411       -0.59600        0.55613 

C         -4.12960       -1.93815        0.37366 

Ni         0.84867       -0.74959        0.45863 

C          2.63883       -1.47629        0.76528 

C          2.35508       -1.33957       -0.62211 

C          3.00935       -0.26775       -1.47803 

C          4.14482        0.45352       -0.75609 

C          3.78952        0.74991        0.69383 

C          3.62167       -0.55801        1.45375 

H          0.48016       -0.60439        2.01555 

H         -0.20399       -0.32457        1.61920 

H          0.03173       -0.40442       -1.88935 

H          0.84136        2.37413       -1.32186 

H         -0.04581        4.49698       -0.42811 

H         -2.19814        4.56231        0.79452 

H         -3.52306        2.48730        1.09669 

H         -3.47860       -3.81766       -0.45764 

H         -1.33799       -2.93036       -1.32712 

H         -4.53385        0.05107        1.08388 

H         -5.05721       -2.35143        0.76202 

H          2.56529       -2.47649        1.20111 

H          2.04280       -2.23669       -1.16467 

H          2.26498        0.47641       -1.80272 

H          3.40000       -0.71210       -2.40613 

H          4.41063        1.37445       -1.29294 

H          5.04368       -0.18469       -0.76299 

H          2.84787        1.31976        0.73466 

H          4.56635        1.37012        1.16222 
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H          3.30735       -0.36160        2.48835 

H          4.61528       -1.04238        1.52193 

 

Cyclohexene adduct with I (s) 

M06/6-311+G** Enthlapy = -2243.004322 

C         -0.81077       -2.86751        0.25952 

C          0.12516       -2.54298       -0.89051 

C          1.44060       -2.08213       -0.67597 

C          2.00266       -1.88139        0.71015 

C          0.90903       -1.81958        1.76910 

C         -0.06960       -2.97129        1.58912 

C         -0.32949        1.21590       -1.65023 

C         -1.12173        1.37324        0.55419 

C         -1.48730        1.09044       -0.80467 

C         -2.82888        0.77577       -1.09230 

C         -3.74746        0.69138       -0.06592 

C         -3.37084        0.91549        1.27159 

C         -2.06396        1.25675        1.57627 

C          0.75520        1.59952       -0.78202 

C          0.27509        1.69229        0.56961 

C          2.94938        2.22534        0.00173 

C          2.10799        1.90180       -1.04219 

C          1.15287        2.00214        1.60828 

C          2.48392        2.26339        1.33012 

Ni         0.27104       -0.64274       -1.24139 

H         -1.33877       -3.81255        0.05961 

H         -1.59491       -2.09839        0.34336 

H         -0.09878       -3.03488       -1.84098 

H          2.18312       -2.24956       -1.46186 

H          2.68475       -2.71721        0.95797 

H          2.61210       -0.96639        0.74496 

H          1.35567       -1.84305        2.77281 

H          0.36952       -0.86510        1.68199 

H          0.49562       -3.91806        1.61586 

H         -0.78711       -3.00712        2.42005 

H         -0.35830        1.38551       -2.72336 

H         -3.12724        0.57192       -2.11904 

H         -4.78050        0.43328       -0.29061 

H         -4.11088        0.82433        2.06272 

H         -1.77160        1.43599        2.61047 

H          3.99685        2.44011       -0.20025 

H          2.48520        1.84711       -2.06157 

H          0.79187        2.03539        2.63580 

H          3.17312        2.50379        2.13579 
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Insertion TS for dehydrogenation of cyclohexene (s) 

M06/6-311+G** Enthalpy = -2242.96826 

Imaginary frequency = -762.78 

C         -0.20949        2.41248       -1.40917 

C         -0.16334        3.58081       -0.66747 

C          0.65248        3.68598        0.46849 

C          1.44995        2.61679        0.85151 

C          2.28474       -1.94696       -0.90296 

C          3.23281       -2.34784        0.02109 

C          3.63005       -1.50418        1.06967 

C          3.08775       -0.23150        1.17946 

H          0.52366       -0.22352       -2.63056 

H          1.96882       -2.61689       -1.70056 

H          3.67536       -3.33885       -0.06059 

H          4.36946       -1.84743        1.78909 

H          3.40542        0.43064        1.98422 

H          2.09127        2.70010        1.72818 

H          0.66088        4.60807        1.04443 

H         -0.77794        4.42912       -0.96249 

H         -0.86884        2.33159       -2.27235 

Ni        -0.76568       -1.00258       -0.53428 

C         -1.64962       -1.73341        1.01907 

C         -1.27055       -0.44904        1.42666 

C         -2.24208        0.70000        1.24872 

C         -3.63265        0.16937        0.91310 

C         -3.61458       -0.78473       -0.27908 

C         -2.53233       -1.86397       -0.13774 

H         -2.89304       -2.87981       -0.31204 

H         -1.13779       -2.61399        1.40783 

H         -0.51571       -0.34839        2.20585 

H         -2.29222        1.29525        2.17321 

H         -4.02199       -0.36640        1.79154 

H         -4.32384        0.99928        0.71192 

H         -4.60264       -1.25584       -0.38866 

H         -3.44274       -0.20434       -1.19575 

H         -1.91100        1.40095        0.46615 

C          0.57108        1.31382       -1.02588 

C          1.43575        1.44244        0.10338 

C          1.70069       -0.67431       -0.79131 

C          2.14721        0.19965        0.24894 

C          0.67385       -0.02021       -1.57231 

H         -1.77832       -1.81849       -1.40486 

 

C-H insertion of cyclohexene with I (s) 

M06/6-311+G** Enthalpy = -2242.96835 

C         -0.86921       -0.12360       -1.56750 
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C         -2.15507        0.48550        0.30457 

C         -1.97640       -0.49791       -0.71176 

C         -2.80952       -1.62324       -0.72018 

C         -3.77264       -1.76988        0.26297 

C         -3.92670       -0.81279        1.27614 

C         -3.11667        0.31227        1.29799 

C         -0.45686        1.18585       -1.10352 

C         -1.20118        1.54047        0.05990 

C          0.75951        3.25408       -0.89988 

C          0.52518        2.06791       -1.57355 

C         -0.93660        2.72925        0.73782 

C          0.03864        3.58831        0.25589 

Ni         0.70979       -1.23760       -0.85033 

C          2.81458        0.61927        1.24538 

C          1.95136       -0.29913        2.10340 

C          1.24649       -1.36192        1.26444 

C          2.10281       -2.01893        0.21476 

C          3.39195       -1.39717       -0.05509 

C          3.74952       -0.18168        0.39110 

H          1.14293       -1.77072       -2.16289 

H         -0.85094       -0.38795       -2.62189 

H         -2.68052       -2.38355       -1.48796 

H         -4.41692       -2.64666        0.25722 

H         -4.68386       -0.95511        2.04317 

H         -3.23923        1.06038        2.08007 

H          1.52660        3.93412       -1.26408 

H          1.11341        1.80110       -2.44937 

H         -1.49949        2.98732        1.63386 

H          0.25099        4.51994        0.77410 

H          3.36901        1.31509        1.88980 

H          2.15897        1.24713        0.61689 

H          2.59791       -0.81368        2.83017 

H          1.21690        0.28575        2.67218 

H          0.34314       -0.81582        0.79428 

H          0.74463       -2.10062        1.90000 

H          2.09980       -3.11034        0.20822 

H          4.07780       -1.95088       -0.69648 

H          4.69979        0.25736        0.09487 

 

Elimination TS for dehydrogenation of cyclohexene (s) 

M06/6-311+G** Enthalpy = -2242.953089 

Imaginary frequency = -714.54 

C         -0.50326       -0.27666       -0.89241 

C         -2.62711        0.06923        0.07382 

C         -1.78379       -0.88639       -0.55085 

C         -2.25318       -2.18793       -0.73619 
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C         -3.51719       -2.53307       -0.28392 

C         -4.33140       -1.59614        0.36304 

C         -3.88622       -0.29435        0.54281 

C         -0.67165        1.13415       -0.55364 

C         -1.92868        1.33476        0.07535 

C         -0.20242        3.47603       -0.27472 

C          0.18127        2.22623       -0.73502 

C         -2.29311        2.59197        0.54931 

C         -1.42954        3.66311        0.37285 

Ni         0.88119       -0.90508        0.45246 

C          3.75595        0.71515        0.65446 

C          3.83030       -0.70684        1.20407 

C          2.73443       -1.59495        0.64765 

C          2.40217       -1.41418       -0.73918 

C          2.98626       -0.28941       -1.45502 

C          3.63933        0.71013       -0.84190 

H          0.01316       -0.66086        1.65658 

H          1.52956       -1.23143        1.72411 

H          2.10791       -2.28243       -1.32866 

H          2.86036       -0.25894       -2.53775 

H          2.79556       -2.62827        0.99748 

H          3.80405       -0.69087        2.30101 

H          4.79884       -1.14676        0.91067 

H          2.87574        1.21728        1.09014 

H          4.63360        1.28891        0.98172 

H          4.02358        1.55541       -1.40830 

H         -1.61581       -2.92899       -1.21595 

H         -3.88060       -3.54906       -0.42421 

H         -5.31492       -1.89085        0.72091 

H         -4.52269        0.43854        1.03662 

H         -0.05144       -0.52951       -1.85408 

H          1.14956        2.08148       -1.21189 

H         -3.25203        2.73710        1.04486 

H         -1.70458        4.65089        0.73474 

H          0.46376        4.32566       -0.40999 

 

β-hydride elimination of cyclohexene with I (s) 

M06/6-311+G** Enthalpy = -2242.968418 

C         -0.58047        0.28908       -0.96514 

C         -1.92388       -1.35789        0.03894 

C         -0.67953       -1.11332       -0.61444 

C          0.21931       -2.17687       -0.78151 

C         -0.10888       -3.43085       -0.29776 

C         -1.32379       -3.66056        0.36571 

C         -2.22771       -2.62403        0.53584 

C         -1.85833        0.86212       -0.60517 
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C         -2.66393       -0.12055        0.04247 

C         -3.63341        2.45991       -0.29395 

C         -2.37255        2.15364       -0.77572 

C         -3.92319        0.21071        0.53878 

C         -4.40912        1.49835        0.37017 

Ni         0.80113        0.87949        0.47206 

C          4.57495       -0.14408        0.36911 

C          3.50086        0.25664        1.37908 

C          2.64911        1.41145        0.86443 

C          2.37215        1.44346       -0.53289 

C          2.94623        0.41145       -1.39486 

C          3.97191       -0.35165       -0.99308 

H          0.39511        0.82475        2.02656 

H         -0.29256        0.55722        1.63134 

H         -0.05845        0.61264       -1.86536 

H          1.17881       -2.00341       -1.26576 

H          0.59224       -4.25335       -0.42380 

H         -1.55295       -4.65332        0.74521 

H         -3.17401       -2.80094        1.04565 

H         -4.02904        3.46519       -0.42460 

H         -1.77018        2.91343       -1.27087 

H         -4.52845       -0.54043        1.04481 

H         -5.39287        1.76499        0.74855 

H          5.09671       -1.05034        0.70549 

H          5.34156        0.65016        0.31589 

H          2.87241       -0.62868        1.56399 

H          3.95791        0.51655        2.34361 

H          2.73011        2.35397        1.40814 

H          2.11793        2.39271       -1.01138 

H          2.51990        0.26877       -2.38880 

H          4.38593       -1.11763       -1.64625 

 

Cyclohexadiene adduct with I (s) 

M06/6-311+G** Enthalpy = -2241.803149 

C          0.76247       -0.49067       -1.26438 

C          1.78287        1.23193       -0.02969 

C          0.69124        0.90076       -0.92339 

C         -0.32969        1.86508       -1.14252 

C         -0.20694        3.12216       -0.54004 

C          0.86953        3.43707        0.28460 

C          1.86061        2.48717        0.54611 

C          1.96923       -0.98693       -0.66600 

C          2.59281        0.04928        0.09652 

C          3.76182       -2.46708       -0.03152 

C          2.58604       -2.24432       -0.72567 

C          3.77052       -0.19853        0.79723 
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C          4.35647       -1.45339        0.73546 

C         -4.21650       -1.72372       -0.08014 

C         -4.39836       -0.23210       -0.14606 

C         -3.53579        0.57459        0.49036 

C         -2.37616        0.04523        1.20325 

C         -1.93687       -1.27869        0.91438 

C         -2.73699       -2.10778       -0.08236 

Ni        -0.80091        0.05636        0.08043 

H          0.26562       -0.96539       -2.10554 

H         -1.12468        1.68516       -1.86421 

H         -0.97283        3.87202       -0.72803 

H          0.92660        4.42021        0.74482 

H          2.68263        2.73016        1.21829 

H          4.23428       -3.44639       -0.07693 

H          2.13237       -3.04447       -1.30764 

H          4.23295        0.59315        1.38524 

H          5.27808       -1.65413        1.27594 

H         -4.68523       -2.10571        0.84502 

H         -4.73872       -2.21843       -0.91043 

H         -5.25068        0.17575       -0.68630 

H         -3.68123        1.65530        0.47478 

H         -2.10688        0.52038        2.14895 

H         -1.39255       -1.83162        1.68119 

H         -2.62762       -3.17881        0.13709 

H         -2.34450       -1.96567       -1.10092 

 

Insertion TS for the dehydrogenation of cyclohexadiene (s) 

M06/6-311+G** Enthalpy = -2241.762524 

Imaginary Frequency = -699.60 

C          1.74374        2.22097       -1.16171 

C          2.23621        2.99687       -0.13589 

C          2.49656        2.45261        1.13883 

C          2.26607        1.11391        1.38443 

C          0.64375       -2.72845       -1.32218 

C          0.74878       -3.71223       -0.35688 

C          1.21568       -3.42071        0.93394 

C          1.59766       -2.12813        1.26033 

H          0.75747       -0.12617       -2.83303 

H          0.25540       -2.96465       -2.31054 

H          0.45504       -4.73188       -0.59729 

H          1.27932       -4.21225        1.67614 

H          1.95601       -1.89767        2.26265 

H          2.46051        0.69379        2.37012 

H          2.86969        3.09626        1.93117 

H          2.41080        4.05717       -0.30485 

H          1.52883        2.65794       -2.13438 
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C         -1.77987       -0.14035        1.41047 

C         -1.66101        1.20738        0.96103 

C         -2.90920        1.77994        0.34038 

H         -1.03528       -0.53130        2.10383 

H         -1.04818        1.88434        1.56579 

H         -3.67489        2.02381        1.10972 

H         -4.02669        1.04442       -1.45999 

H         -2.68408        2.70628       -0.20090 

C          1.50865        0.84071       -0.94728 

C          1.78163        0.29184        0.35780 

C          1.00739       -1.40984       -1.00914 

C          1.51077       -1.12345        0.30066 

C          0.94043       -0.19026       -1.76714 

C         -2.80668       -0.97413        0.97925 

C         -3.61433       -0.54715       -0.08931 

H         -4.22245       -1.27320       -0.62626 

H         -2.84562       -2.00494        1.32179 

H         -1.81124        0.55173       -1.24817 

Ni        -0.48410        0.55350       -0.45302 

C         -3.43789        0.72518       -0.60114 

 

C-H insertion of cyclohexadiene with I (s) 

M06/6-311+G** Enthalpy = -2241.770718 

C         -1.21121       -0.45503        1.74984 

C         -1.08010       -1.28597       -0.41932 

C         -0.72261       -1.53663        0.95313 

C          0.05042       -2.68049        1.25755 

C          0.42615       -3.53367        0.24792 

C          0.07655       -3.28137       -1.09820 

C         -0.66041       -2.16768       -1.43127 

C         -2.02037        0.37251        0.90165 

C         -1.91198       -0.10787       -0.44600 

C         -3.41885        2.16355        0.10857 

C         -2.78662        1.52405        1.15502 

C         -2.54020        0.57550       -1.49226 

C         -3.29579        1.69850       -1.21307 

Ni         0.24306        0.33235        0.49255 

C          3.94918        1.17447        0.43945 

C          3.20052        2.27950        0.28440 

C          2.12378        2.30908       -0.76258 

C          1.47185        0.94543       -0.90874 

C          2.42277       -0.15035       -0.88123 

C          3.63070       -0.04558       -0.26443 

H          1.00683        1.15704        1.44466 

H         -1.14169       -0.37798        2.82728 

H          0.34640       -2.87236        2.28615 
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H          1.02150       -4.41274        0.48320 

H          0.40553       -3.96820       -1.87362 

H         -0.92024       -1.96702       -2.46929 

H         -4.01240        3.05374        0.30433 

H         -2.86485        1.90991        2.16883 

H         -2.43214        0.22342       -2.51666 

H         -3.79349        2.23260       -2.01831 

H          4.77603        1.17207        1.14923 

H          3.41961        3.18155        0.85237 

H          1.37399        3.07547       -0.53448 

H          2.59117        2.61065       -1.72769 

H          0.79391        0.90582       -1.77450 

H          2.11770       -1.10790       -1.30461 

H          4.28384       -0.90961       -0.17067 

 

Elimination TS for dehydrogenation of cyclohexadiene (s) 

M06/6-311+G** Enthalpy = -2241.769174 

Imaginary frequency = -609.43 

C          0.47514       -0.23534        0.88457 

C          2.61491       -0.00417       -0.07930 

C          1.72876       -0.90853        0.56050 

C          2.13793       -2.22596        0.77191 

C          3.38563       -2.63687        0.32953 

C          4.24196       -1.75022       -0.33343 

C          3.85666       -0.43325       -0.53889 

C          0.70967        1.16128        0.52577 

C          1.97547        1.29223       -0.10387 

C          0.35638        3.51975        0.21389 

C         -0.08896        2.29624        0.68865 

C          2.40203        2.52343       -0.59337 

C          1.59217        3.63803       -0.43240 

Ni        -0.91903       -0.81971       -0.46551 

C         -4.36388        0.38834       -0.54402 

C         -3.94651       -0.73357       -1.17838 

C         -2.85165       -1.54080       -0.64202 

C         -2.46887       -1.25771        0.73698 

C         -2.94723       -0.06849        1.34743 

C         -3.82416        0.77163        0.71906 

H         -0.04464       -0.70593       -1.68019 

H         -1.75747       -1.24439       -1.62461 

H         -2.08013       -2.05556        1.36837 

H         -2.59884        0.16829        2.35231 

H         -2.87672       -2.59429       -0.92915 

H         -4.39461       -1.03032       -2.12420 

H         -5.14795        0.99624       -0.99153 

H         -4.14713        1.69388        1.19314 
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H          1.46656       -2.92864        1.26325 

H          3.70214       -3.66548        0.48965 

H          5.21124       -2.09614       -0.68419 

H          4.52614        0.26012       -1.04580 

H          0.01211       -0.45449        1.85018 

H         -1.06537        2.20982        1.16146 

H          3.36783        2.61446       -1.08830 

H          1.91598        4.60630       -0.80628 

H         -0.26889        4.40185        0.33455 

 

β-hydride elimination of cyclohexadiene with I (s) 

M06/6-311+G** Enthalpy = -2241.800892 

C         -0.70858       -0.02161        1.52286 

C         -2.11385        0.16081       -0.35045 

C         -1.70126       -0.69561        0.71683 

C         -2.27255       -1.97513        0.81340 

C         -3.18406       -2.39402       -0.13863 

C         -3.55216       -1.56341       -1.20832 

C         -3.01730       -0.28818       -1.31081 

C         -0.62253        1.31425        0.98748 

C         -1.43968        1.42214       -0.17702 

C          0.05028        3.60551        0.67595 

C          0.11041        2.43177        1.40627 

C         -1.47092        2.60488       -0.91328 

C         -0.72910        3.69681       -0.48757 

Ni         0.84789       -1.19213        0.71667 

H          1.39537       -2.46221        1.53719 

H          0.81307       -2.12220        2.04208 

C          4.06901       -0.48961       -0.52845 

C          3.40264        0.76037       -0.64218 

C          2.06255        0.80818       -0.90946 

C          1.28425       -0.38351       -1.03813 

C          1.95399       -1.64671       -0.88640 

C          3.36623       -1.65336       -0.66407 

H         -0.61251       -0.20370        2.59234 

H         -1.98451       -2.63660        1.62883 

H         -3.61921       -3.38855       -0.06287 

H         -4.26140       -1.92032       -1.95089 

H         -3.31263        0.36426       -2.13170 

H          0.62616        4.47008        0.99999 

H          0.74464        2.36284        2.28840 

H         -2.08251        2.67610       -1.81190 

H         -0.75077        4.62568       -1.05205 

H          5.14069       -0.51602       -0.34380 

H          3.96704        1.68374       -0.53446 

H          1.56646        1.76892       -1.02973 
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H          0.32498       -0.31934       -1.55517 

H          1.49680       -2.55390       -1.28316 

H          3.88299       -2.61064       -0.60812 

 

Benzene adduct of I (s) 

M06/6-311+G** Enthalpy = -2240.634598 

C          0.06778        0.89853       -1.72114 

C         -0.61756        1.65591        0.39418 

C         -1.06824        1.25926       -0.90791 

C         -2.44717        1.29129       -1.18555 

C         -3.33713        1.65051       -0.19323 

C         -2.89202        1.99077        1.09699 

C         -1.53727        1.99603        1.38453 

C          1.22959        1.12097       -0.89450 

C          0.81460        1.57082        0.40225 

C          3.52113        1.24080       -0.15444 

C          2.60592        0.98826       -1.15657 

C          1.75727        1.80145        1.40241 

C          3.10500        1.63414        1.13034 

Ni        -0.02779       -0.98283       -1.06738 

C          0.48640       -2.13732        1.95594 

C          1.22181       -2.44024        0.83744 

C          0.58817       -2.71493       -0.40963 

C         -0.84100       -2.65662       -0.47940 

C         -1.56929       -2.32707        0.70093 

C         -0.92474       -2.07945        1.88684 

H          0.07546        0.91773       -2.80860 

H         -2.80572        1.00239       -2.17203 

H         -4.40420        1.65983       -0.40717 

H         -3.61513        2.25462        1.86484 

H         -1.19078        2.26485        2.38171 

H          4.58405        1.12255       -0.35616 

H          2.93830        0.65733       -2.13900 

H          1.43442        2.11298        2.39510 

H          3.84572        1.81237        1.90600 

H          0.99138       -1.90733        2.89058 

H          2.30800       -2.46818        0.89370 

H          1.16530       -3.20052       -1.19694 

H         -1.37581       -3.09700       -1.32134 

H         -2.65449       -2.26743        0.65080 

H         -1.49801       -1.80354        2.76809 

 

 

H2 adduct of I (s) 

M06/6-311+G** Enthalpy = -2009.766017 

C          0.00133        0.89815        1.05959 
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C         -0.70313       -1.06791       -0.01664 

C         -1.14473        0.11624        0.65772 

C         -2.52390        0.30886        0.85255 

C         -3.42212       -0.61816        0.36166 

C         -2.98456       -1.75656       -0.33766 

C         -1.63015       -1.97788       -0.52405 

C          1.15771        0.13366        0.65454 

C          0.73255       -1.05699       -0.01835 

C          3.44518       -0.56524        0.35234 

C          2.53389        0.34792        0.84526 

C          1.67209       -1.95285       -0.52796 

C          3.02340       -1.71064       -0.34523 

Ni        -0.03385        1.96945       -0.59134 

H         -0.49129        2.81909       -1.79307 

H          0.37470        2.84500       -1.79190 

H         -0.00235        1.59152        1.89943 

H         -2.87455        1.19928        1.37106 

H         -4.48911       -0.46033        0.50679 

H         -3.71279       -2.46430       -0.72637 

H         -1.28923       -2.86595       -1.05495 

H          4.50998       -0.39096        0.49464 

H          2.87218        1.24395        1.36237 

H          1.34344       -2.84625       -1.05767 

H          3.76141       -2.40732       -0.73547 

 

Cyclohexene (s) 

M06/6-311+G** Enthalpy = -234.360263 

C         -1.48548        0.04230       -0.11119 

C         -0.66261        1.29329       -0.05983 

C          0.66260        1.29331        0.05978 

C          1.48546        0.04231        0.11134 

C          0.68620       -1.17714       -0.32814 

C         -0.68615       -1.17721        0.32802 

H         -1.86434       -0.10477       -1.13504 

H         -2.37937        0.16116        0.51468 

H         -1.19208        2.24253       -0.11939 

H          1.19206        2.24257        0.11908 

H          1.86397       -0.10486        1.13532 

H          2.37955        0.16119       -0.51423 

H          0.55962       -1.15192       -1.42050 

H          1.23356       -2.09743       -0.09581 

H         -1.23351       -2.09746        0.09554 

H         -0.55954       -1.15221        1.42037 
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1,3-Cyclohexadiene (s) 

M06/6-311+G** Enthalpy = -233.156888 

C          0.10742        1.41311        0.06511 

C          1.24886        0.71925        0.11540 

C          1.24756       -0.72145       -0.11549 

C          0.10490       -1.41328       -0.06497 

C         -1.18114       -0.71401        0.26152 

C         -1.17980        0.71612       -0.26156 

H          0.10762        2.49185        0.19616 

H          2.19401        1.22047        0.30498 

H          2.19182       -1.22437       -0.30500 

H          0.10326       -2.49208       -0.19563 

H         -2.04114       -1.26442       -0.13399 

H         -1.30255       -0.70458        1.35869 

H         -2.03895        1.26808        0.13359 

H         -1.30090        0.70666       -1.35877 

 

Benzene (s) 

M06/6-311+G** Enthalpy = -232.007738 

C         -0.63772        1.23357       -0.00000 

C         -1.38720        0.06455       -0.00001 

C         -0.74953       -1.16903        0.00001 

C          0.63772       -1.23357       -0.00000 

C          1.38721       -0.06454       -0.00000 

C          0.74953        1.16903        0.00001 

H         -1.13651        2.19816       -0.00003 

H         -2.47195        0.11488        0.00001 

H         -1.33545       -2.08332        0.00004 

H          1.13652       -2.19815        0.00001 

H          2.47195       -0.11490       -0.00006 

H          1.33546        2.08331        0.00006 

 

Dihydride species of I (s) 

M06/6-311+G** Enthalpy = -2009.731424 

C          3.55177       -0.25355        0.28227 

H          4.58711        0.05678        0.40484 

C          3.27144       -1.50631       -0.26965 

H          4.08809       -2.15815       -0.57045 

C          1.95616       -1.92161       -0.43005 

H          1.73789       -2.90202       -0.85013 

C          0.92539       -1.07511       -0.03714 

C          1.20512        0.20458        0.49109 

C          2.52680        0.60200        0.66092 

H          2.74627        1.58999        1.06022 

C         -0.51532       -1.24998       -0.03636 

C         -0.04630        0.91730        0.78583 
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C         -1.09505       -0.07748        0.50261 

H         -0.09917        1.45475        1.73460 

C         -1.31058       -2.32422       -0.42214 

H         -0.86082       -3.21984       -0.84756 

C         -2.68487       -2.24776       -0.24467 

H         -3.31893       -3.08058       -0.53915 

C         -3.25826       -1.10314        0.31780 

H         -4.33643       -1.05937        0.45586 

C         -2.47550       -0.01961        0.68861 

H         -2.92127        0.88449        1.09533 

Ni        -0.46240        2.28793       -0.51945 

H         -1.35749        3.08323        0.50705 

H          0.37707        1.61781       -1.64056 

 

Ethane (s) 

M06/6-311+G** Enthalpy = -79.697777 

C         -0.75853       -0.00000        0.00000 

C          0.75853        0.00000       -0.00000 

H         -1.16023        0.71079        0.72886 

H         -1.16023       -0.98662        0.25111 

H         -1.16022        0.27583       -0.97998 

H          1.16023       -0.71084       -0.72881 

H          1.16022       -0.27576        0.98000 

H          1.16023        0.98660       -0.25118 

 

Collision complex of I with ethane (s) 

M06/6-311+G** Enthalpy = -2088.29103 

C          0.42308       -0.38738       -1.44987 

C          0.40026        1.35932        0.12923 

C         -0.33096        0.73704       -0.94605 

C         -1.55568        1.31989       -1.35196 

C         -2.06021        2.40348       -0.66014 

C         -1.37567        2.95533        0.43861 

C         -0.14742        2.43613        0.82223 

C          1.65556       -0.40063       -0.70085 

C          1.63858        0.64855        0.27310 

C          3.86002       -1.01477        0.05614 

C          2.79446       -1.21092       -0.80387 

C          2.71489        0.81531        1.14467 

C          3.82158       -0.01220        1.03907 

Ni        -0.91874       -1.21619       -0.25291 

C         -2.33177       -2.08887        1.00761 

C         -3.67413       -1.40872        1.22149 

H          0.33044       -0.79402       -2.45500 

H         -2.10013        0.89701       -2.19406 

H         -3.01296        2.83427       -0.96354 
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H         -1.80478        3.79832        0.97474 

H          0.39422        2.87893        1.65778 

H          4.73940       -1.65128       -0.02243 

H          2.82738       -2.00391       -1.54923 

H          2.69087        1.60212        1.89784 

H          4.66659        0.11765        1.71129 

H         -1.49371       -1.44012        1.40143 

H         -2.19459       -2.37730       -0.08449 

H         -2.24844       -3.03233        1.55798 

H         -3.84740       -1.19255        2.28251 

H         -3.71279       -0.45916        0.67895 

H         -4.50483       -2.03368        0.87126 

 

Insertion TS for dehydrogenation of ethane (s) 

M06/6-311+G** Enthalpy = -2088.280881 

Imaginary frequency = -583.35 

C         -1.90628        1.02096       -1.40121 

C         -2.57880        2.02025       -0.72510 

C         -1.97545        2.70924        0.34135 

C         -0.67850        2.40524        0.72186 

C          2.78667       -0.77818       -0.85173 

C          3.80471       -0.40546        0.00305 

C          3.61534        0.59648        0.97099 

C          2.39554        1.24426        1.06670 

Ni        -0.62656       -1.60633       -0.26324 

C         -0.59641        0.67887       -1.01876 

C          0.02659        1.41066        0.04531 

C          1.53545       -0.14495       -0.76350 

C          1.35966        0.90007        0.19869 

C          0.31723       -0.32589       -1.50828 

H         -0.62607       -2.85210        0.47335 

C         -2.07673       -1.29089        2.07910 

H         -1.90938       -0.23745        1.82577 

H         -3.02766       -1.35061        2.63354 

H         -1.27617       -1.58480        2.76777 

C         -2.08546       -2.17409        0.83799 

H         -2.37346       -3.19934        1.10671 

H         -2.83746       -1.83087        0.10036 

H          4.77053       -0.90248       -0.06502 

H          2.93926       -1.57252       -1.57986 

H          4.43009        0.86179        1.64013 

H          2.24816        2.02686        1.80995 

H          0.27167       -0.75832       -2.50533 

H         -0.20952        2.94398        1.54420 

H         -2.53065        3.48305        0.86571 

H         -3.59660        2.27342       -1.01456 
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H         -2.39046        0.47735       -2.21066 

 

 

C-H insertion of ethane with I (s) 

M06/6-311+G** Enthalpy = -2088.291636 

C          0.08955        1.43761       -1.24607 

C          0.86459        0.54141        0.76290 

C          1.26417        1.09630       -0.49781 

C          2.63248        1.16532       -0.80750 

C          3.56172        0.70679        0.10624 

C          3.16515        0.15915        1.33718 

C          1.82244        0.07069        1.66246 

C         -1.03681        1.21719       -0.39789 

C         -0.57739        0.57476        0.80878 

C         -3.29968        1.02958        0.41352 

C         -2.42643        1.42431       -0.57073 

C         -1.50116        0.17490        1.79134 

C         -2.84362        0.40115        1.59561 

Ni        -0.26978       -0.62900       -1.09052 

H         -0.03711       -1.08684       -2.46890 

C         -0.70213       -2.45710       -0.65752 

C          0.22236       -3.01546        0.41686 

H          0.07645        1.94091       -2.20454 

H          2.95115        1.56545       -1.76751 

H          4.62146        0.76068       -0.13409 

H          3.91817       -0.20211        2.03288 

H          1.51322       -0.36814        2.60957 

H         -4.36739        1.18555        0.27625 

H         -2.79125        1.88866       -1.48419 

H         -1.15101       -0.31774        2.69689 

H         -3.56412        0.08668        2.34616 

H         -0.72162       -3.12954       -1.52363 

H         -1.73821       -2.39262       -0.27758 

H          1.27120       -3.00715        0.09130 

H         -0.02055       -4.05523        0.70164 

H          0.18195       -2.41594        1.33611 

 

Elimination TS for dehydrogenation of ethane (s) 

M06/6-311+G** Enthalpy = -2088.27558 

Imaginary frequency = -672.33 

C          0.25580        0.30997        0.90489 

C         -1.87127       -0.02976       -0.05467 

C         -1.02142        0.92390        0.56423 

C         -1.48588        2.22744        0.74846 

C         -2.74915        2.57644        0.29805 

C         -3.56911        1.64156       -0.34530 
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C         -3.12970        0.33759       -0.52240 

C          0.07994       -1.10047        0.57637 

C         -1.17924       -1.29808       -0.05272 

C          0.52169       -3.45457        0.33050 

C          0.91653       -2.20313        0.77521 

C         -1.55408       -2.55686       -0.51398 

C         -0.70335       -3.63574       -0.32302 

Ni         1.64952        0.83085       -0.47708 

C          3.58962        1.21990       -0.66100 

C          3.23910        0.92230        0.68883 

H          3.16863        1.73078        1.41602 

H          3.50011       -0.04885        1.10920 

H          4.17859        0.49260       -1.22232 

H          3.85692        2.24606       -0.91976 

H          2.36602        1.17847       -1.71359 

H          0.70087        0.87293       -1.65292 

H          0.72431        0.57527        1.85451 

H         -0.84392        2.96779        1.22269 

H         -3.10778        3.59452        0.43625 

H         -4.55208        1.93975       -0.70197 

H         -3.77014       -0.39408       -1.01304 

H         -2.51364       -2.69737       -1.00970 

H         -0.98735       -4.62443       -0.67529 

H          1.87946       -2.06988        1.26458 

H          1.17651       -4.31018        0.48297 

 

β-hydride elimination of ethane with I (s) 

M06/6-311+G** Enthalpy = -2088.297324 

C         -0.04969        0.28556       -1.34255 

C          0.91808       -1.32992        0.06219 

C          1.19065       -0.27359       -0.85489 

C          2.52323        0.06530       -1.11928 

C          3.54424       -0.59882       -0.46207 

C          3.26936       -1.61303        0.46755 

C          1.95692       -1.97642        0.72804 

C         -1.08985       -0.54999       -0.78157 

C         -0.51178       -1.50343        0.10999 

C         -3.26313       -1.45595       -0.26366 

C         -2.48030       -0.55734       -0.96684 

C         -1.31801       -2.38461        0.82589 

C         -2.69238       -2.36331        0.64083 

Ni        -0.45932        1.95577       -0.14725 

C         -0.22887        2.87431        1.57521 

C          0.44522        1.63499        1.53759 

H         -1.31772        2.57157       -1.37242 

H         -1.36904        3.12728       -0.73628 
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H         -0.12091        0.67239       -2.35898 

H          2.74808        0.86991       -1.81770 

H          4.57881       -0.32647       -0.66221 

H          4.08747       -2.11236        0.98086 

H          1.74079       -2.76854        1.44401 

H         -4.34194       -1.45423       -0.40711 

H         -2.93883        0.15509       -1.65099 

H         -0.87060       -3.09721        1.51788 

H         -3.32933       -3.05113        1.19155 

H          0.33138        3.80785        1.49460 

H         -1.16857        2.97116        2.12185 

H          1.52847        1.59210        1.40743 

H          0.02069        0.75874        2.03181 

 

Ethene adduct of I (s) 

M06/6-311+G** Enthalpy = -2087.128228 

C          0.20233       -0.36300       -1.42941 

C          1.41126        0.85561        0.16947 

C          1.47388       -0.22093       -0.77311 

C          2.68611       -0.91330       -0.92826 

C          3.77733       -0.56783       -0.15546 

C          3.69997        0.46634        0.79422 

C          2.52016        1.17278        0.95396 

C         -0.63419        0.69080       -0.90413 

C          0.09473        1.41947        0.09775 

C         -2.53771        2.11686       -0.49402 

C         -1.95697        1.08111       -1.19929 

C         -0.52260        2.44960        0.80520 

C         -1.83197        2.79638        0.51425 

Ni        -0.90267       -1.36182       -0.06587 

C         -1.46035       -2.77886        1.12250 

C         -2.38155       -1.71374        1.11045 

H          0.06609       -0.83495       -2.39931 

H          2.75532       -1.72856       -1.64620 

H          4.71347       -1.10961       -0.27632 

H          4.57039        0.71126        1.39794 

H          2.46027        1.98036        1.68256 

H         -3.56440        2.40392       -0.71140 

H         -2.51873        0.54626       -1.96250 

H          0.02356        2.98189        1.58294 

H         -2.31857        3.59794        1.06460 

H         -1.68094       -3.70517        0.58829 

H         -0.75709       -2.89478        1.94935 

H         -3.31954       -1.79231        0.55596 

H         -2.39794       -0.97308        1.91378 
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Butane (s) 

M06/6-311+G** Enthalpy = -158.220605 

C          1.93837       -0.11771        0.00009 

C          0.55918        0.51452       -0.00010 

C         -0.55918       -0.51452       -0.00010 

C         -1.93837        0.11771        0.00009 

H          2.07919       -0.75204        0.88296 

H          2.73521        0.63186        0.00001 

H          2.07928       -0.75233       -0.88256 

H          0.44606        1.16853       -0.87680 

H          0.44590        1.16872        0.87645 

H         -0.44590       -1.16870        0.87647 

H         -0.44605       -1.16856       -0.87678 

H         -2.73521       -0.63186       -0.00053 

H         -2.07909        0.75275       -0.88229 

H         -2.07938        0.75163        0.88322 

 

But-1-ene adduct of I (s) 

M06/6-311+G** Enthalpy = -2165.655091 

C         -0.37051       -0.30634       -1.41384 

C         -1.08253        1.45040       -0.03530 

C         -0.14293        1.07133       -1.04180 

C          0.80091        2.01567       -1.47487 

C          0.82129        3.27592       -0.90720 

C         -0.08878        3.63504        0.10099 

C         -1.03756        2.72328        0.53309 

C         -1.53672       -0.72801       -0.67373 

C         -1.95162        0.32579        0.19502 

C         -3.35261       -2.07263        0.16100 

C         -2.26786       -1.92457       -0.68307 

C         -3.03515        0.14902        1.05463 

C         -3.73563       -1.04597        1.03905 

Ni         1.20589       -1.19924       -0.57861 

C          1.87452        0.56962        2.23140 

C          2.93280       -0.23398        1.49153 

C          2.38502       -1.51290        0.91326 

C          2.88482       -2.11645       -0.25434 

H         -0.12654       -0.69796       -2.40873 

H          1.52765        1.74081       -2.23744 

H          1.56051        4.00177       -1.24005 

H         -0.04501        4.62881        0.53957 

H         -1.74743        2.99974        1.31172 

H         -3.91436       -3.00462        0.15434 

H         -1.96353       -2.73721       -1.34033 

H         -3.33639        0.95097        1.72744 

H         -4.58435       -1.19132        1.70284 
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H          1.05555        0.84846        1.55875 

H          2.28440        1.48985        2.66403 

H          1.43958       -0.02237        3.04705 

H          3.76604       -0.46164        2.18135 

H          3.36308        0.37346        0.68218 

H          1.86733       -2.14514        1.64567 

H          2.79010       -3.19341       -0.40525 

H          3.71377       -1.65286       -0.79703 

 

But-2-ene adduct of I (s) 

M06/6-311+G** Enthalpy = -2165.656834 

C         -0.32577        0.32039       -1.69221 

C         -1.58607        0.87090        0.21204 

C         -1.56359        0.09405       -0.99499 

C         -2.68363       -0.69737       -1.31147 

C         -3.75628       -0.74402       -0.44490 

C         -3.75522       -0.01283        0.75794 

C         -2.67478        0.79000        1.08084 

C          0.41232        1.26590       -0.89119 

C         -0.35334        1.59830        0.28172 

C          2.16317        2.73149       -0.10936 

C          1.67103        1.87784       -1.07454 

C          0.17821        2.45150        1.24858 

C          1.42932        3.01445        1.05838 

Ni         0.68677       -0.92980       -0.50853 

C          3.40756       -1.79998       -0.07793 

C          2.12874       -1.49454        0.65110 

C          1.04684       -2.39349        0.71391 

C          0.04709       -2.38233        1.83942 

H         -0.16300        0.12879       -2.74891 

H         -2.68732       -1.28571       -2.22720 

H         -4.61604       -1.36535       -0.68809 

H         -4.60740       -0.07868        1.42982 

H         -2.67500        1.36072        2.00869 

H          3.14340        3.18453       -0.24372 

H          2.25983        1.64210       -1.95928 

H         -0.38981        2.67364        2.15117 

H          1.84890        3.67864        1.80990 

H          4.18878       -2.18858        0.59658 

H          3.81501       -0.90411       -0.56384 

H          3.24094       -2.55064       -0.85946 

H          2.21956       -0.74240        1.44538 

H          1.14706       -3.34775        0.18374 

H         -0.97146       -2.58018        1.48157 

H          0.27780       -3.13355        2.61367 

H          0.02567       -1.39871        2.32480 
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C.2. Gas-phase dehydrogenation of amines and alcohols 

 
Complex I (s) 

M06/6-311+G** Enthalpy = -2008.56485 

C          0.00000        0.97574        0.80445 

C         -0.72273       -1.10703       -0.03491 

C         -1.15689        0.13142        0.50938 

C         -2.52458        0.34980        0.69500 

C         -3.43278       -0.62352        0.31251 

C         -3.00185       -1.82506       -0.26579 

C         -1.64738       -2.06779       -0.43805 

C          1.15688        0.13142        0.50933 

C          0.72269       -1.10703       -0.03494 

C          3.43275       -0.62360        0.31252 

C          2.52457        0.34975        0.69498 

C          1.64732       -2.06785       -0.43802 

C          3.00180       -1.82514       -0.26577 

Ni         0.00005        2.27549       -0.57527 

H          0.00004        1.60663        1.70175 

H         -2.86512        1.29354        1.11581 

H         -4.49797       -0.44935        0.44984 

H         -3.73269       -2.56954       -0.57259 

H         -1.31040       -3.00802       -0.87232 

H          4.49794       -0.44946        0.44987 

H          2.86513        1.29349        1.11578 

H          1.31031       -3.00808       -0.87225 

H          3.73261       -2.56965       -0.57254 

 
Complex II (d) 

M06/6-311+G** Enthalpy = -1883.009415 

C         -0.00000        0.93981        0.92100 

C         -0.72219       -1.08675       -0.02366 

C         -1.15265        0.11945        0.59537 

C         -2.52357        0.34631        0.76268 

C         -3.43264       -0.59728        0.31553 

C         -3.00436       -1.77341       -0.31388 

C         -1.64994       -2.01600       -0.48708 

C          1.15266        0.11947        0.59537 

C          0.72222       -1.08674       -0.02366 
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C          3.43266       -0.59722        0.31553 

C          2.52357        0.34635        0.76268 

C          1.64998       -2.01598       -0.48708 

C          3.00440       -1.77336       -0.31389 

Co        -0.00004        2.29667       -0.65077 

H         -0.00001        1.59415        1.79379 

H         -2.86591        1.26916        1.22678 

H         -4.49816       -0.41920        0.44392 

H         -3.73740       -2.49413       -0.66755 

H         -1.31479       -2.93192       -0.97138 

H          4.49818       -0.41913        0.44391 

H          2.86590        1.26920        1.22678 

H          1.31485       -2.93190       -0.97138 

H          3.73746       -2.49407       -0.66756 

 

Butylamine (s) 

M06/6-311+G** Enthalpy = -213.532389 

C         -2.50870       -0.30693       -0.01540 

C         -1.24051        0.52431        0.04278 

C          0.01598       -0.32437       -0.03923 

C          1.28984        0.49330        0.01242 

N          2.45729       -0.37017       -0.08902 

H         -2.55904       -0.88102       -0.94756 

H         -3.40876        0.31225        0.04246 

H         -2.54568       -1.02509        0.81188 

H         -1.23598        1.25572       -0.77804 

H         -1.22323        1.11428        0.97025 

H          0.01419       -0.91830       -0.96370 

H          0.01905       -1.05205        0.78834 

H          1.30469        1.18852       -0.83793 

H          1.27538        1.11968        0.92398 

H          2.50074       -1.00637        0.70136 

H          3.31793        0.16571       -0.09131 

 

Collision complex of I with butylamine (s) 

M06/6-311+G** Enthalpy = -2222.148875 

C         -1.15565        1.48034        1.16223 

C         -0.89624        0.79374       -1.07734 

C         -1.81497        0.86255        0.03790 

C         -3.14976        0.42889       -0.17314 

C         -3.50719       -0.12726       -1.38336 

C         -2.57962       -0.26553       -2.43637 

C         -1.28337        0.20411       -2.27934 

C          0.17117        1.81624        0.70817 

C          0.33692        1.39092       -0.65323 

C          2.44201        2.63556        0.68149 
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C          1.24150        2.45791        1.34824 

C          1.55816        1.57275       -1.30333 

C          2.60894        2.19014       -0.64063 

Ni        -0.93276       -0.46074        1.43315 

C          3.78772       -1.51948       -1.01348 

C          2.42447       -2.18643       -1.02039 

C          1.68487       -1.98305        0.28955 

C          0.35569       -2.70955        0.32296 

N         -0.43150       -2.33318        1.51137 

H         -1.30100       -2.86271        1.55771 

H         -1.65361        1.96764        1.99733 

H         -3.87427        0.51221        0.63425 

H         -4.52687       -0.48155       -1.52662 

H         -2.88887       -0.72044       -3.37433 

H         -0.57152        0.12622       -3.10186 

H          3.27230        3.12292        1.18914 

H          1.13071        2.79171        2.37868 

H          1.68589        1.23276       -2.33154 

H          3.56167        2.33763       -1.14492 

H          4.30825       -1.63603       -1.97051 

H          4.42866       -1.94392       -0.23031 

H          3.68272       -0.44680       -0.81107 

H          2.52715       -3.26212       -1.23565 

H          1.81224       -1.76795       -1.83270 

H          2.31271       -2.32038        1.13129 

H          1.50195       -0.90965        0.45105 

H          0.52750       -3.80134        0.28399 

H         -0.23675       -2.43147       -0.55777 

H          0.09101       -2.52502        2.36625 

 

N-H Insertion TS for the dehydrogenation of butylamine by complex I (s) 

M06/6-311+G** Enthalpy = -2222.121498 

Imaginary frequency = -993.78 

H         -5.52139       -1.63513       -0.09056 

C         -4.63616       -1.00432       -0.14289 

C         -2.39753        0.63946       -0.30054 

C         -3.61700       -1.17857        0.77614 

C         -4.54411       -0.03147       -1.15073 

C         -3.42789        0.78584       -1.22885 

C         -2.47299       -0.37200        0.70852 

H         -3.69237       -1.94740        1.54303 

H         -5.35399        0.08149       -1.86749 

C         -1.16066        1.34871       -0.11502 

C          1.25965        2.40988        0.76593 

C         -0.49697        0.76875        1.02328 

C         -0.57397        2.40471       -0.81192 
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C          0.62988        2.93587       -0.37814 

C          0.71847        1.34734        1.46041 

H         -1.06820        2.81803       -1.69033 

H          1.08859        3.76271       -0.91464 

H          1.22668        0.93635        2.33097 

H          2.20089        2.84267        1.10050 

C         -1.27197       -0.34714        1.50403 

H         -1.19732       -0.77344        2.49998 

Ni         0.06922       -1.16039        0.22706 

H         -3.35986        1.54664       -2.00530 

H          1.18106       -2.08821        0.57848 

C          2.56727       -1.10610       -1.10517 

H          2.30543       -0.04045       -1.05607 

N          1.35318       -1.86912       -0.88189 

H          2.92880       -1.28312       -2.13568 

C          3.71266       -1.39306       -0.13811 

H          3.97055       -2.46097       -0.20674 

H          3.34316       -1.22938        0.88593 

C          4.94926       -0.53819       -0.38327 

H          5.79763       -0.94637        0.18396 

H          5.23520       -0.60909       -1.44452 

C          4.75103        0.92117       -0.00282 

H          4.47000        1.00847        1.05386 

H          3.94731        1.38963       -0.58010 

H          5.66269        1.50903       -0.15889 

H          1.49092       -2.85201       -1.09587 

 

N-H insertion of butylamine by complex I (s) 

M06/6-311+G** Enthalpy = -2222.146214 

C          1.32604        0.07296       -1.59334 

C          1.85202        0.90031        0.53863 

C          2.30472        0.06781       -0.52645 

C          3.51893       -0.61554       -0.38540 

C          4.24617       -0.48440        0.78458 

C          3.78437        0.31715        1.83782 

C          2.58799        1.00640        1.71585 

C          0.33003        1.04732       -1.19948 

C          0.61353        1.51320        0.11847 

C         -1.64289        2.42636       -1.21591 

C         -0.80803        1.53176       -1.86040 

C         -0.25098        2.39777        0.75924 

C         -1.37713        2.85521        0.09321 

Ni         0.18155       -1.40584       -0.82483 

N         -0.66862       -2.46988        0.36617 

C         -2.06681       -2.36852        0.70340 

C         -2.56469       -0.93924        0.60056 



 

182 
 

C         -3.98626       -0.74801        1.09753 

C         -4.47488        0.67905        0.91620 

H         -0.16676       -1.83073       -2.18000 

H          1.58724       -0.11968       -2.62975 

H          3.87504       -1.25697       -1.18916 

H          5.18757       -1.01855        0.89488 

H          4.36811        0.39587        2.75156 

H          2.22861        1.63215        2.53138 

H         -2.53064        2.79536       -1.72591 

H         -1.03973        1.17833       -2.86306 

H         -0.03861        2.73109        1.77406 

H         -2.05852        3.54680        0.58280 

H         -0.36609       -3.43778        0.44388 

H         -2.24688       -2.72022        1.74108 

H         -2.71844       -3.00359        0.06417 

H         -2.48507       -0.61055       -0.44735 

H         -1.87964       -0.28535        1.16257 

H         -4.65869       -1.44183        0.56929 

H         -4.04271       -1.02831        2.16071 

H         -5.48229        0.83039        1.32199 

H         -4.49249        0.95225       -0.14559 

H         -3.79583        1.38644        1.40758 

 

α-C elimination TS for the dehydrogenation of butylamine by complex I 

M06/6-311+G** Enthalpy = -2222.128333 

Imaginary frequency = -488.48 

C         -0.67753       -0.07604        1.02583 

C         -2.51023        0.63481       -0.27736 

C         -1.41333        1.07593        0.50821 

C         -1.18368        2.44761        0.65316 

C         -2.02208        3.34787        0.01592 

C         -3.08809        2.90861       -0.77965 

C         -3.33142        1.55164       -0.92906 

C         -1.47454       -1.22821        0.61957 

C         -2.55197       -0.80892       -0.20236 

C         -2.21415       -3.50262        0.36271 

C         -1.32703       -2.58564        0.90503 

C         -3.42472       -1.73993       -0.75893 

C         -3.25560       -3.08745       -0.47509 

Ni         1.02034        0.15733       -0.04220 

C          2.83336        0.93470        0.23610 

H          2.07902        0.18877       -1.07270 

H          0.49963       -0.59303       -1.21177 

H         -0.30602       -0.03804        2.05260 

H         -0.33188        2.78443        1.23970 

H         -1.84365        4.41587        0.12386 



 

183 
 

H         -3.72430        3.63503       -1.27969 

H         -4.16387        1.20793       -1.54152 

H         -4.24061       -1.41408       -1.40251 

H         -3.93354       -3.82388       -0.89982 

H         -2.09522       -4.56184        0.58156 

H         -0.50272       -2.91944        1.53302 

H          3.02813        1.82743       -0.37367 

N          2.02334        1.15566        1.31028 

C          4.03539        0.01637        0.31826 

H          4.77672        0.49099        0.98382 

H          3.73373       -0.92131        0.80896 

C          4.69305       -0.29185       -1.01499 

H          3.97616       -0.82652       -1.65105 

H          4.91464        0.65196       -1.53473 

C          5.96436       -1.10732       -0.86127 

H          6.42551       -1.33935       -1.82733 

H          5.75816       -2.05864       -0.35600 

H          6.70803       -0.57303       -0.25685 

H          2.19846        0.43450        2.01736 

 

β-hydride elimination of butylamine complex I (s) 

M06/6-311+G** Enthalpy = -2222.143431 

C         -0.56967        0.38945        1.57675 

C          0.47250        1.71502       -0.06302 

C          0.65904        1.04376        1.17935 

C          1.90368        1.13028        1.81323 

C          2.93732        1.82583        1.20773 

C          2.75871        2.45081       -0.03480 

C          1.52592        2.39656       -0.66736 

C         -1.54976        0.79872        0.58871 

C         -0.90674        1.54747       -0.44373 

C         -3.62504        1.01849       -0.62030 

C         -2.93425        0.57714        0.49490 

C         -1.61588        1.96992       -1.56401 

C         -2.97296        1.69960       -1.65868 

Ni        -0.85358       -1.57165        0.87187 

H         -1.57279       -1.82180        2.33164 

H         -1.80791       -2.45628        1.85588 

N         -0.97908       -2.90948       -0.49910 

C         -0.13079       -1.91917       -0.90104 

C          1.32594       -2.29070       -1.02624 

C          2.28359       -1.11685       -1.07710 

C          3.72101       -1.54055       -1.31543 

H         -0.82214        0.33692        2.63562 

H          2.06051        0.63436        2.76979 

H          3.90635        1.88472        1.69925 



 

184 
 

H          3.58701        2.98333       -0.49566 

H          1.37795        2.89431       -1.62510 

H         -4.69444        0.83181       -0.69578 

H         -3.45408        0.04251        1.28804 

H         -1.10848        2.51777       -2.35721 

H         -3.53673        2.02555       -2.52912 

H         -1.92214       -2.71832       -0.84931 

H         -0.47117       -1.15421       -1.61866 

H          1.45290       -2.89792       -1.94340 

H          1.58807       -2.95853       -0.19186 

H          2.21303       -0.55734       -0.13841 

H          1.96707       -0.41456       -1.86228 

H          4.06165       -2.22721       -0.52951 

H          4.40202       -0.68149       -1.32247 

H          3.83138       -2.06572       -2.27389 

 

Butan-1-imine adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2220.981595 

C         -0.85555       -0.37386       -1.39212 

C         -0.70812        1.62418       -0.16877 

C         -0.10440        0.85087       -1.20471 

C          1.04601        1.34621       -1.83595 

C          1.58710        2.55193       -1.42855 

C          1.00722        3.29387       -0.38732 

C         -0.13726        2.82909        0.24002 

C         -1.99781       -0.26626       -0.50877 

C         -1.89087        0.92510        0.26615 

C         -4.06466       -0.76668        0.62035 

C         -3.11020       -1.09707       -0.32443 

C         -2.85091        1.23075        1.23010 

C         -3.93614        0.38776        1.40765 

Ni         0.38930       -1.70106       -0.59807 

C          3.54643        1.14371        1.58471 

C          2.39318        0.15829        1.55940 

C          2.75720       -1.15069        0.87779 

C          1.60568       -2.11871        0.81864 

N          1.58379       -3.09206       -0.12752 

H         -0.93023       -0.85728       -2.37344 

H          1.52061        0.76495       -2.62466 

H          2.48483        2.92830       -1.91495 

H          1.46052        4.23121       -0.07463 

H         -0.59281        3.40564        1.04402 

H         -4.92544       -1.41650        0.76473 

H         -3.20617       -2.00878       -0.91157 

H         -2.75539        2.13388        1.83146 

H         -4.69243        0.62046        2.15321 



 

185 
 

H          4.42106        0.72428        2.10054 

H          3.27360        2.07930        2.08520 

H          3.85267        1.39894        0.56272 

H          1.53391        0.60616        1.04242 

H          2.05387       -0.05098        2.58547 

H          3.60335       -1.61698        1.41805 

H          3.11588       -0.96084       -0.14435 

H          1.10676       -2.26944        1.79075 

H          0.96708       -3.84918        0.17843 

 

C-H insertion TS for the dehydrogenation of butylamine by complex I (s) 

M06/6-311+G** Enthalpy = -2222.124968 

Imaginary frequency = -575.50 

H         -3.24103       -3.03885        0.94745 

C         -2.24472       -2.60529        0.88958 

C          0.30090       -1.47131        0.79319 

C         -1.66606       -2.40413       -0.34922 

C         -1.58666       -2.23636        2.07669 

C         -0.32246       -1.67022        2.02477 

C         -0.36977       -1.83323       -0.43600 

H         -2.19245       -2.68812       -1.25780 

H         -2.07667       -2.39102        3.03457 

C          1.57593       -0.91516        0.43589 

C          3.83986        0.10268       -0.81368 

C          1.65604       -0.90102       -0.99443 

C          2.61557       -0.40006        1.20843 

C          3.74505        0.10916        0.58824 

C          2.81708       -0.39489       -1.59943 

H          2.53741       -0.39444        2.29511 

H          4.56039        0.51354        1.18286 

H          2.89810       -0.37439       -2.68461 

H          4.73370        0.50335       -1.28778 

C          0.43954       -1.42225       -1.54754 

H          0.31261       -1.73228       -2.57879 

Ni        -0.91244        0.07089       -0.95489 

H          0.18284       -1.37438        2.94354 

H         -2.08098        0.87448        0.59884 

C         -1.95782        1.55205       -0.28600 

H         -1.23267        1.34476       -1.62051 

C         -1.24229        2.80402        0.18799 

H         -1.08280        3.47529       -0.67038 

N         -3.25739        1.89691       -0.88027 

H         -3.60923        1.09271       -1.39072 

H         -1.89507        3.35900        0.88862 

C          0.08399        2.50489        0.86531 

H          0.72657        1.95032        0.16551 



 

186 
 

H         -0.08367        1.81759        1.70825 

C          0.79621        3.75466        1.34852 

H          0.18919        4.30284        2.08150 

H          0.99547        4.43928        0.51446 

H          1.75710        3.51755        1.81830 

H         -3.93116        2.09819       -0.14338 

 

N-H elimination TS for the dehydrogenation of butylamine by complex I (s) 

M06/6-311+G** Enthalpy = -2222.109855 

Imaginary frequency = -1106.53 

C         -0.33576       -0.32781       -0.84632 

C         -2.48719        0.33867       -0.16161 

C         -1.73683       -0.70982       -0.75779 

C         -2.39308       -1.88159       -1.14179 

C         -3.75169       -2.01452       -0.90662 

C         -4.48008       -0.99278       -0.28449 

C         -3.84775        0.18394        0.08846 

C         -0.29974        1.05918       -0.40220 

C         -1.58763        1.44464        0.06818 

C          0.50884        3.26000        0.15599 

C          0.73887        1.99889       -0.36893 

C         -1.79701        2.70876        0.61069 

C         -0.74914        3.61658        0.65750 

Ni         0.57241       -1.05718        0.78665 

C          2.39705       -1.60397        0.53063 

C          3.45847       -0.57907        0.22923 

H          0.76841       -1.77924        2.17653 

H         -0.39781       -1.27895        2.06217 

H          0.26026       -0.65203       -1.70053 

H         -1.82990       -2.69149       -1.60180 

H         -4.26144       -2.92995       -1.20004 

H         -5.54331       -1.12365       -0.09861 

H         -4.41456        0.98353        0.56322 

H         -2.78074        2.98888        0.98462 

H         -0.90350        4.60848        1.07489 

H          1.31938        3.98540        0.18319 

H          1.72522        1.73478       -0.74724 

H          2.52148       -2.54268       -0.02430 

H          4.43885       -0.86524        0.66057 

N          2.02586       -1.79978        1.88242 

H          3.18951        0.38144        0.70138 

C          3.64199       -0.36447       -1.26452 

H          2.67589       -0.07960       -1.70223 

H          3.91138       -1.32236       -1.73342 

C          4.69391        0.68214       -1.58404 

H          4.82585        0.82152       -2.66256 



 

187 
 

H          5.66814        0.40524       -1.16154 

H          4.41950        1.65438       -1.15591 

H          2.35952       -1.01158        2.44436 

 

β-C elimination TS for the dehydrogenation of butylamine by complex I (s) 

M06/6-311+G** Enthalpy = -2222.115428 

Imaginary frequency = -575.99 

C         -0.44730       -0.00466        0.96923 

C         -2.40534        0.60708       -0.19479 

C         -1.31580        1.09810        0.57212 

C         -1.22210        2.46947        0.82051 

C         -2.17191        3.32859        0.29112 

C         -3.22340        2.84349       -0.49570 

C         -3.34026        1.48259       -0.73917 

C         -1.14978       -1.19963        0.51632 

C         -2.30202       -0.83418       -0.22823 

C         -1.67888       -3.51402        0.12637 

C         -0.86114       -2.55292        0.69981 

C         -3.10348       -1.80742       -0.81725 

C         -2.79157       -3.14782       -0.63970 

Ni         1.15139        0.26128       -0.25351 

C          3.12592        0.67758       -0.05161 

H          2.20621        0.49929       -1.27063 

H          0.41289        0.02568       -1.56438 

H         -0.04588        0.00061        1.98648 

H         -0.39285        2.85542        1.41183 

H         -2.09629        4.39742        0.48034 

H         -3.95031        3.53660       -0.91211 

H         -4.16407        1.10328       -1.34209 

H         -3.97553       -1.52156       -1.40363 

H         -3.41314       -3.91712       -1.09137 

H         -1.44979       -4.56870        0.26464 

H          0.01514       -2.84705        1.27621 

H          3.34658        1.73097       -0.25187 

C          2.47860        0.44082        1.19698 

C          4.22285       -0.24469       -0.54815 

H          5.04419       -0.23706        0.18476 

H          3.85375       -1.27811       -0.57981 

C          4.73843        0.14111       -1.92186 

H          3.92839        0.10970       -2.65965 

H          5.14006        1.16203       -1.91680 

N          2.76972       -0.76265        1.95002 

H          2.00326       -0.93464        2.59730 

H          2.76665       -1.56393        1.32198 

H          2.29244        1.29801        1.84551 

H          5.53434       -0.52896       -2.26461 



 

188 
 

 

Diethylamine (s) 

M06/6-311+G** Enthalpy = -213.526877 

C         -2.43857       -0.36746       -0.02731 

C         -1.21259        0.51598        0.02173 

N          0.00000       -0.27140       -0.08306 

C          1.21258        0.51595        0.02194 

C          2.43859       -0.36745       -0.02740 

H         -2.45467       -0.95154       -0.95219 

H         -2.44809       -1.07142        0.81345 

H         -3.35762        0.22276        0.02759 

H         -1.22895        1.13587        0.94068 

H         -1.22557        1.22330       -0.81952 

H         -0.00008       -1.00031        0.62731 

H          1.22897        1.13558        0.94108 

H          1.22552        1.22353       -0.81909 

H          3.35763        0.22277        0.02769 

H          2.45468       -0.95123       -0.95248 

H          2.44812       -1.07170        0.81312 

 

Collision complex of II with diethylamine (d) 

M06/6-311+G** Enthalpy = -2096.567244 

C         -0.00146       -1.55842       -1.57871 

C         -0.71738       -1.30135        0.63910 

C         -1.15601       -1.46233       -0.73345 

C         -2.54509       -1.45041       -1.00656 

C         -3.45228       -1.30314        0.02818 

C         -3.01939       -1.12409        1.35823 

C         -1.66747       -1.10225        1.65896 

C          1.15341       -1.46364       -0.73367 

C          0.71513       -1.30200        0.63895 

C          3.44999       -1.30710        0.02764 

C          2.54252       -1.45300       -1.00699 

C          1.66569       -1.10410        1.65876 

C          3.01746       -1.12774        1.35784 

Co         0.00131        0.31588       -0.71726 

C          1.21494        2.65049        0.54832 

N          0.00154        2.26056       -0.19176 

C         -1.21225        2.65113        0.54736 

H          0.00206        2.75989       -1.08730 

H         -0.00174       -1.76626       -2.64232 

H         -2.88980       -1.55562       -2.03425 

H         -4.51855       -1.29451       -0.19035 

H         -3.75423       -0.98600        2.14849 

H         -1.33387       -0.94448        2.68461 

H          4.51624       -1.29960       -0.19102 



 

189 
 

H          2.88693       -1.55846       -2.03475 

H          1.33243       -0.94598        2.68446 

H          3.75259       -0.99065        2.14800 

H          1.13926        3.71209        0.85433 

H         -1.13630        3.71267        0.85347 

H         -1.23351        2.04349        1.46092 

H          1.23511        2.04292        1.46194 

C         -2.46997        2.42297       -0.25677 

H         -3.34911        2.73017        0.32105 

H         -2.56741        1.36298       -0.52027 

H         -2.45450        3.00756       -1.18599 

C          2.47330        2.42173       -0.25466 

H          3.35197        2.72898        0.32384 

H          2.45877        3.00601       -1.18409 

H          2.57069        1.36165       -0.51780 

 

N-H insertion TS for the dehydrogenation of diethylamine by complex II (d) 

M06/6-311+G** Enthalpy = -2096.555342 

Imaginary frequency = -1010.10 

H         -2.47867       -3.72539       -0.15589 

C         -1.59499       -3.10955        0.00277 

C          0.67927       -1.56261        0.46004 

C         -1.12010       -2.33553       -1.03408 

C         -0.97443       -3.11666        1.26805 

C          0.15506       -2.34342        1.48868 

C          0.02481       -1.51473       -0.83093 

H         -1.61566       -2.34011       -2.00296 

H         -1.38479       -3.72806        2.06736 

C          1.84149       -0.72261        0.37852 

C          3.91545        0.98906       -0.34508 

C          1.88752       -0.16860       -0.94249 

C          2.82185       -0.39008        1.31384 

C          3.85413        0.46173        0.95478 

C          2.94797        0.68064       -1.28567 

H          2.77618       -0.80050        2.32162 

H          4.62167        0.72346        1.67917 

H          2.99610        1.10913       -2.28541 

H          4.73341        1.65477       -0.61283 

C          0.73740       -0.60944       -1.68755 

H          0.65129       -0.54928       -2.76717 

H          0.64009       -2.35147        2.46429 

C         -1.23524        2.97058        0.73835 

H         -1.59326        3.81331        0.10348 

C         -3.22281        1.68419        0.37426 

H         -3.68146        2.44774       -0.29495 

N         -1.78130        1.70831        0.28911 



 

190 
 

H         -1.50148        1.69760       -1.06785 

Co        -0.74005        0.40440       -0.62470 

H         -3.51810        1.97486        1.39888 

H         -1.62594        3.17736        1.75132 

C         -3.79301        0.32032        0.05160 

H         -4.88518        0.31586        0.15397 

H         -3.36757       -0.44112        0.71509 

H         -3.54130        0.02981       -0.97550 

C          0.27830        2.97001        0.76765 

H          0.66216        3.92896        1.13671 

H          0.69007        2.79889       -0.23377 

H          0.65686        2.16756        1.41096 

 

N-H insertion of diethylamine by complex II (d) 

M06/6-311+G** Enthalpy = -2096.586764 

C          0.29712        1.55671       -1.59250 

C          1.17128        1.00552        0.49398 

C          1.46807        1.09571       -0.91098 

C          2.74486        0.70028       -1.36931 

C          3.67913        0.25385       -0.46693 

C          3.38171        0.16027        0.91251 

C          2.14326        0.52167        1.38858 

C         -0.67432        1.89642       -0.59186 

C         -0.15970        1.50928        0.69122 

C         -2.72216        2.58453        0.46675 

C         -1.97444        2.43092       -0.67892 

C         -0.95464        1.65414        1.83924 

C         -2.21724        2.19415        1.72418 

Co        -0.23482       -0.29726       -0.86358 

H         -0.77795       -0.71947       -2.18932 

N         -0.59142       -1.94081       -0.11310 

C         -0.29844       -2.20205        1.27347 

C         -1.33824       -3.00047       -0.74022 

H          0.22334        1.78409       -2.64808 

H          2.97337        0.74450       -2.43162 

H          4.66194       -0.05241       -0.81766 

H          4.13739       -0.21621        1.59716 

H          1.91183        0.43198        2.44870 

H         -3.72715        2.99492        0.40263 

H         -2.38149        2.70368       -1.64989 

H         -0.57426        1.34063        2.80960 

H         -2.83852        2.31212        2.60838 

H         -0.19847       -1.25068        1.81760 

H         -1.07600       -3.05531       -1.80544 

H         -1.06542       -3.98560       -0.30869 

H         -1.13486       -2.73538        1.77288 
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C          0.98486       -3.00563        1.47056 

H          0.92419       -3.97191        0.95416 

H          1.19018       -3.20055        2.53366 

H          1.82998       -2.45215        1.04439 

C         -2.84863       -2.81901       -0.62104 

H         -3.40434       -3.64901       -1.08213 

H         -3.13624       -1.88196       -1.11139 

H         -3.15219       -2.74744        0.43113 

 

 

α-C elimination TS for the dehydrogenation of diethylamine by complex II (d) 

M06/6-311+G** Enthalpy = -2096.562689 

Imaginary frequency = -461.82 

C         -0.27542       -0.51145        0.71890 

C         -1.75100        1.25250        0.21635 

C         -0.45699        0.93227        0.71694 

C          0.41458        1.97084        1.06906 

C          0.00638        3.28600        0.90739 

C         -1.25863        3.59495        0.39242 

C         -2.13653        2.57805        0.04494 

C         -1.57095       -1.04892        0.34091 

C         -2.45267        0.00980       -0.00450 

C         -3.32487       -2.61653       -0.16139 

C         -2.03177       -2.36492        0.26832 

C         -3.74238       -0.25646       -0.45384 

C         -4.17976       -1.57052       -0.53055 

C          3.04304       -0.01757       -1.05492 

C          3.00719       -1.81833        0.45805 

H          0.29755       -0.98821        1.51450 

H          1.40492        1.72956        1.44955 

H          0.68233        4.09386        1.18083 

H         -1.55128        4.63462        0.26689 

H         -3.12364        2.81499       -0.34984 

H         -4.40641        0.56116       -0.73111 

H         -5.18743       -1.79181       -0.87386 

H         -3.68180       -3.64275       -0.22134 

H         -1.36735       -3.18702        0.53021 

H          2.26738       -2.45666       -0.07911 

N          2.76692       -0.40303        0.22403 

H          1.81042       -0.23342       -2.16468 

H         -0.01742       -0.53547       -1.89912 

Co         1.07848       -0.39086       -0.85470 

H          3.68034       -0.68779       -1.65710 

H          3.99163       -2.11613        0.04954 

C          2.96002       -2.13760        1.93712 

H          3.71624       -1.55138        2.47061 
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H          3.14123       -3.20231        2.12741 

H          1.98561       -1.87356        2.35943 

C          3.34791        1.44338       -1.27839 

H          4.36021        1.67645       -0.92110 

H          2.64083        2.06939       -0.72481 

H          3.28044        1.70815       -2.33903 

 

β-hydride elimination of diethylamine by complex II (d) 

M06/6-311+G** Enthalpy = -2096.568495 

C         -0.72948       -0.60924        1.08933 

C         -2.58546        0.25542       -0.05763 

C         -2.03371       -0.90882        0.56170 

C         -2.78960       -2.08891        0.57259 

C         -4.03339       -2.11525       -0.03316 

C         -4.55820       -0.97697       -0.66349 

C         -3.83298        0.20429       -0.67534 

C         -0.51717        0.78520        0.83827 

C         -1.63555        1.32662        0.09514 

C          0.61195        2.91597        0.56913 

C          0.62838        1.60041        1.05321 

C         -1.61213        2.63387       -0.35157 

C         -0.48509        3.42955       -0.11443 

Co         0.89666       -0.18026       -0.28467 

H         -0.11535       -0.64477       -1.67132 

H          0.01094        0.13035       -1.82389 

C          2.55251       -2.48168        0.58707 

C          2.19682       -1.62325       -0.60377 

N          2.73037       -0.38436       -0.86704 

C          3.73703        0.15722        0.01748 

H         -0.25501       -1.19342        1.87391 

H         -2.39155       -2.98363        1.04781 

H         -4.61423       -3.03543       -0.02615 

H         -5.53481       -1.02409       -1.13866 

H         -4.24036        1.09252       -1.15627 

H          1.47607        3.55308        0.74734 

H          1.42485        1.27976        1.72598 

H         -2.45522        3.03775       -0.91061 

H         -0.45872        4.45246       -0.48124 

H          3.54862       -2.95040        0.50461 

H          1.81684       -3.28770        0.68767 

H          1.93251       -2.20761       -1.49485 

H          3.67535        1.25415       -0.03217 

H          2.53765       -1.91827        1.52876 

H          3.59966       -0.10243        1.08786 

C          5.13120       -0.28519       -0.40801 

H          5.31128        0.00100       -1.44998 
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H          5.22768       -1.37542       -0.34389 

H          5.91065        0.16408        0.22145 

 

 

N-ethylethanimine adduct of complex II (d) 

M06/6-311+G** Enthalpy = -2095.388263 
C          0.97127        0.78009       -1.63358 

C          0.50569        1.48356        0.56798 

C          0.08594        1.56604       -0.80641 

C         -1.04310        2.35030       -1.13082 

C         -1.73798        2.98823       -0.11922 

C         -1.34019        2.87897        1.22270 

C         -0.22174        2.12819        1.56330 

C          1.95422        0.23084       -0.73528 

C          1.67239        0.64616        0.60714 

C          3.85448       -0.99948        0.09269 

C          3.06936       -0.59075       -0.96963 

C          2.46977        0.20902        1.66331 

C          3.55810       -0.61054        1.40920 

Co        -0.50189       -0.54378       -1.15335 

C         -2.67954       -0.85245        0.55392 

N         -2.04695       -1.50059       -0.58331 

C         -0.94457       -2.28472       -0.35273 

H          1.11843        0.92074       -2.70153 

H         -1.36702        2.43156       -2.16658 

H         -2.61644        3.58113       -0.36576 

H         -1.91317        3.38366        1.99634 

H          0.08165        2.04046        2.60578 

H          4.71483       -1.63977       -0.09163 

H          3.30097       -0.91286       -1.98309 

H          2.23768        0.51200        2.68344 

H          4.18582       -0.95425        2.22750 

H         -3.15549        0.06983        0.19235 

H         -0.78724       -3.07034       -1.10325 

H         -1.97146       -0.52842        1.33813 

C         -0.34308       -2.59977        0.99384 

H          0.68231       -2.96151        0.85697 

H         -0.89952       -3.38551        1.53262 

H         -0.28260       -1.72386        1.64867 

C         -3.73658       -1.75642        1.17084 

H         -3.28142       -2.66979        1.57162 

H         -4.46582       -2.05682        0.41017 

H         -4.26842       -1.25387        1.98845 

 

α-C insertion TS for the dehydrogenation of diethylamine by complex II (d) 

M06/6-311+G** Enthalpy = -2096.549096 
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Imaginary frequency = -737.25 

H         -3.10105       -3.21780        0.81135 

C         -2.12496       -2.73781        0.77773 

C          0.36526       -1.47581        0.74460 

C         -1.55215       -2.45928       -0.45178 

C         -1.49026       -2.38984        1.98211 

C         -0.25680       -1.75091        1.96082 

C         -0.27363       -1.83579       -0.50722 

H         -2.05591       -2.74512       -1.37280 

H         -1.97596       -2.60689        2.92990 

C          1.61375       -0.84695        0.41626 

C          3.84545        0.30574       -0.77845 

C          1.71732       -0.80383       -1.01325 

C          2.61605       -0.29487        1.21442 

C          3.72765        0.28171        0.62194 

C          2.86091       -0.22971       -1.58874 

H          2.52209       -0.31513        2.29980 

H          4.51254        0.71454        1.23742 

H          2.95860       -0.18706       -2.67213 

H          4.72548        0.75866       -1.23086 

C          0.53231       -1.36334       -1.59580 

H          0.43892       -1.65159       -2.63666 

H          0.22473       -1.46200        2.89471 

H         -2.14705        0.84367        0.63352 

C         -2.05027        1.56094       -0.21588 

C         -3.44319        1.94507       -0.66906 

H         -3.40576        2.64783       -1.51326 

H         -3.98646        1.05708       -1.00977 

H         -1.46453        1.32808       -1.50038 

Co        -0.97083        0.01759       -0.91359 

N         -1.34412        2.73027        0.29879 

H         -1.22582        3.39303       -0.46838 

H         -4.00609        2.42323        0.14344 

C         -0.02672        2.41300        0.82989 

H          0.59912        1.86579        0.09750 

H         -0.16181        1.72463        1.67657 

C          0.69372        3.66237        1.28418 

H          0.12112        4.18708        2.05726 

H          0.83926        4.35626        0.44620 

H          1.68341        3.41476        1.68141 

 

N-H elimination TS for the dehydrogenation of diethylamine by complex II (d) 

M06/6-311+G** Enthalpy = -2096.529526 

Imaginary frequency = -1078.24 

C          0.46250       -0.16041       -1.07594 

C          2.14492        0.90868        0.17727 
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C          0.98830        1.11933       -0.62846 

C          0.52943        2.42757       -0.82824 

C          1.19081        3.48489       -0.22184 

C          2.30917        3.26819        0.58998 

C          2.78609        1.97957        0.78906 

C          1.42966       -1.14020       -0.61748 

C          2.42598       -0.50714        0.17282 

C          2.52508       -3.24806       -0.23911 

C          1.50420       -2.51928       -0.82693 

C          3.43465       -1.25387        0.77464 

C          3.48503       -2.62449        0.56804 

C         -3.87129       -0.76463        0.66194 

N         -3.08082        0.41056        0.30151 

C         -2.96639       -0.52270       -2.05978 

H          0.01017       -0.26347       -2.06303 

H         -0.34362        2.60739       -1.45213 

H          0.83155        4.50026       -0.37544 

H          2.80480        4.11219        1.06328 

H          3.66076        1.81075        1.41551 

H          4.18465       -0.76589        1.39541 

H          4.27075       -3.21784        1.02918 

H          2.57973       -4.32313       -0.39841 

H          0.74889       -3.01686       -1.43352 

H         -4.78059       -0.74772        0.04229 

H         -2.39247       -0.31805       -2.97109 

H         -2.71838       -1.54810       -1.75644 

C         -2.60765        0.49459       -1.00871 

H         -2.07848        0.35707        1.34897 

H         -0.46360       -0.51635        1.53985 

Co        -1.14622        0.00143        0.22770 

H         -3.36301       -1.71998        0.43676 

H         -2.56711        1.52592       -1.38010 

H         -4.03411       -0.51399       -2.34237 

C         -4.24338       -0.72920        2.12815 

H         -4.88022       -1.57929        2.39619 

H         -4.77635        0.19782        2.36398 

H         -3.34229       -0.77025        2.75010 

 

Butanol (s) 

M06/6-311+G** Enthalpy = -233.421458 

C         -2.49089       -0.29317        0.00003 

C         -1.21550        0.52871       -0.00003 

C          0.03087       -0.33919       -0.00009 

C          1.30218        0.47094        0.00007 

O          2.39684       -0.42184        0.00011 

H         -2.53968       -0.94092       -0.88260 
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H         -3.38498        0.33692        0.00007 

H         -2.53959       -0.94091        0.88267 

H         -1.19988        1.19136       -0.87728 

H         -1.19979        1.19135        0.87722 

H          0.03299       -0.99795       -0.87950 

H          0.03290       -0.99813        0.87919 

H          1.32424        1.12547        0.88783 

H          1.32439        1.12561       -0.88757 

H          3.21475        0.07811       -0.00078 

 

Collision complex of I with butanol (s) 

M06/6-311+G** Enthalpy = -2242.02351 

C          1.29826       -0.10596       -1.59457 

C          2.01278        0.75687        0.47199 

C          2.33826       -0.14262       -0.59184 

C          3.54128       -0.85626       -0.53262 

C          4.37326       -0.71681        0.56512 

C          4.02909        0.13335        1.62800 

C          2.85390        0.86752        1.57937 

C          0.35319        0.88847       -1.14415 

C          0.77550        1.40407        0.13660 

C         -1.51689        2.42339       -1.07527 

C         -0.79353        1.45985       -1.74963 

C          0.01056        2.35931        0.80136 

C         -1.13680        2.86658        0.20652 

Ni        -0.17466       -1.16690       -0.86599 

C         -4.36947        0.73079        0.78291 

C         -3.69503       -0.60126        0.51085 

C         -2.48284       -0.81093        1.40279 

C         -1.85375       -2.17296        1.25408 

O         -1.52422       -2.39975       -0.12203 

H         -0.88931       -3.13281       -0.19397 

H          1.46692       -0.37521       -2.63605 

H          3.80648       -1.53394       -1.34254 

H          5.30342       -1.28005        0.61140 

H          4.69219        0.22128        2.48562 

H          2.59491        1.53853        2.39772 

H         -2.40894        2.84252       -1.53874 

H         -1.10434        1.12295       -2.73631 

H          0.32236        2.72179        1.78088 

H         -1.73316        3.61842        0.71848 

H         -5.22382        0.90052        0.11854 

H         -3.65749        1.55140        0.63434 

H         -4.73321        0.78848        1.81733 

H         -3.36865       -0.64914       -0.53571 

H         -4.40745       -1.42929        0.65510 
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H         -1.72622       -0.04332        1.18235 

H         -2.77043       -0.68900        2.45953 

H         -0.94508       -2.24332        1.86633 

H         -2.56062       -2.95914        1.57044 

 

O-H insertion TS for the dehydrogenation of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.005957 

Imaginary frequency = -1205.86 

H         -0.79142        3.89754        0.89038 

C         -0.08090        3.14492        0.55470 

C          1.74528        1.24454       -0.34346 

C          0.18232        2.05434        1.36041 

C          0.53758        3.29417       -0.69898 

C          1.44379        2.34604       -1.14400 

C          1.09496        1.06659        0.92585 

H         -0.31275        1.94328        2.32287 

H          0.29835        4.15425       -1.31919 

C          2.65586        0.14358       -0.51953 

C          4.24490       -2.12615       -0.30244 

C          2.52911       -0.71005        0.61820 

C          3.55178       -0.16961       -1.54004 

C          4.34562       -1.30063       -1.43211 

C          3.34880       -1.84116        0.71286 

H          3.63478        0.47616       -2.41301 

H          5.05133       -1.54925       -2.22096 

H          3.26669       -2.49876        1.57613 

H          4.87765       -3.00832       -0.22881 

C          1.51318       -0.18844        1.50094 

H          1.45123       -0.43665        2.55659 

H          1.92579        2.46271       -2.11370 

C         -2.92602       -0.45395        0.18168 

H         -3.09411       -0.41307        1.27524 

H         -2.75963        0.59240       -0.13508 

O         -1.82367       -1.26193       -0.13098 

C         -4.16919       -0.99418       -0.49922 

H         -4.34041       -2.02627       -0.15912 

H         -3.97804       -1.05574       -1.58037 

C         -5.40131       -0.14611       -0.23696 

H         -5.57197       -0.07670        0.84754 

H         -5.21148        0.88281       -0.57508 

C         -6.64435       -0.68971       -0.91848 

H         -7.52809       -0.07071       -0.72809 

H         -6.86786       -1.70600       -0.57209 

H         -6.50203       -0.74269       -2.00453 

H         -1.18839       -1.67879        0.96508 

Ni        -0.19995       -0.61057        0.54812 
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O-H insertion of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.039687 

C         -1.83636        0.40072        1.43533 

C         -2.12063       -0.02832       -0.84923 

C         -2.46303       -0.46845        0.46273 

C         -3.25326       -1.61499        0.61340 

C         -3.67787       -2.30216       -0.50925 

C         -3.32159       -1.87671       -1.79671 

C         -2.54125       -0.74518       -1.96749 

C         -1.23243        1.47479        0.67638 

C         -1.34575        1.18557       -0.71665 

C          0.00951        3.46001        0.12224 

C         -0.54940        2.63351        1.07827 

C         -0.75615        2.02162       -1.66322 

C         -0.08440        3.15789       -1.24474 

Ni        -0.07639       -0.50433        1.18768 

H          0.06266       -0.64441        2.62950 

O          1.44724       -1.24767        0.54384 

C          2.62122       -0.53833        0.63261 

C          3.67328       -1.11495       -0.30534 

C          4.99852       -0.37634       -0.25175 

C          6.04255       -0.96588       -1.18386 

H         -2.17808        0.50122        2.45980 

H         -3.51545       -1.96475        1.60941 

H         -4.28963       -3.19400       -0.39351 

H         -3.65763       -2.44160       -2.66238 

H         -2.26337       -0.41532       -2.96675 

H          0.54445        4.35437        0.43368 

H         -0.44681        2.85921        2.13728 

H         -0.82644        1.78422       -2.72313 

H          0.37826        3.81685       -1.97473 

H          3.04052       -0.55240        1.66482 

H          2.50104        0.54188        0.38336 

H          3.27191       -1.09665       -1.32969 

H          3.81954       -2.17614       -0.05256 

H          4.83378        0.68227       -0.50095 

H          5.37735       -0.38383        0.78136 

H          6.99567       -0.42587       -1.14092 

H          5.69355       -0.94406       -2.22348 

H          6.24191       -2.01511       -0.93332 

 

α-C elimination TS for the dehydrogenation of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.031766 

Imaginary Frequency = -546.11 

C         -0.64631        0.07261       -0.98922 
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C         -2.53062       -0.61406        0.24812 

C         -1.41406       -1.06881       -0.50234 

C         -1.20010       -2.44355       -0.64342 

C         -2.07047       -3.33363       -0.03576 

C         -3.15541       -2.88104        0.72611 

C         -3.38507       -1.52114        0.87015 

C         -1.43805        1.23514       -0.60938 

C         -2.54861        0.83000        0.17583 

C         -2.15048        3.51978       -0.36835 

C         -1.25987        2.59176       -0.88440 

C         -3.42512        1.77304        0.70639 

C         -3.22601        3.11831        0.43302 

Ni         1.04630       -0.16098        0.08800 

C          3.98665       -0.04545       -0.34584 

C          2.80598       -0.98570       -0.19469 

H          2.00531       -0.13550        1.20089 

H          0.53722        0.59857        1.23357 

H         -0.19960        0.03047       -1.98518 

H         -0.34002       -2.79511       -1.20889 

H         -1.90448       -4.40368       -0.14232 

H         -3.81784       -3.59958        1.20278 

H         -4.23288       -1.16730        1.45512 

H         -4.26693        1.45784        1.32122 

H         -3.90659        3.86386        0.83698 

H         -2.00866        4.57762       -0.57990 

H         -0.41127        2.91441       -1.48488 

H          3.02808       -1.84867        0.46655 

H          4.70649       -0.53693       -1.02293 

H          3.64577        0.86082       -0.86504 

O          2.03693       -1.19261       -1.21392 

C          4.67958        0.30846        0.95563 

H          3.98232        0.87037        1.59053 

H          4.91148       -0.61544        1.50666 

C          5.95006        1.11160        0.74052 

H          6.43453        1.38013        1.68574 

H          5.73550        2.04231        0.20165 

H          6.67722        0.55017        0.14081 

 

β-hydride elimination of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.044551 

C         -0.82032       -0.13242       -1.43264 

C         -1.50260        1.31115        0.30187 

C         -1.91837        0.25461       -0.55804 

C         -3.23076       -0.22413       -0.45082 

C         -4.07943        0.30481        0.50623 

C         -3.64898        1.31324        1.37864 
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C         -2.36126        1.81674        1.27420 

C          0.22454        0.83830       -1.16078 

C         -0.16377        1.68711       -0.08659 

C          2.28738        2.06931       -1.33004 

C          1.45869        1.05448       -1.78141 

C          0.68677        2.69137        0.36823 

C          1.91272        2.88343       -0.25361 

Ni        -0.44205       -1.92033       -0.49510 

H         -1.31910       -3.17987       -1.06257 

H         -1.43012       -2.59231       -1.63166 

C          4.34382       -0.01643        0.96672 

C          2.90158       -0.28776        1.35218 

C          2.28850       -1.43216        0.56352 

C          0.83176       -1.68822        0.91569 

O          0.36969       -2.90809        0.88075 

H         -1.02071       -0.40146       -2.47179 

H         -3.57503       -1.01841       -1.11087 

H         -5.09595       -0.07397        0.58961 

H         -4.32899        1.70333        2.13170 

H         -2.02946        2.61335        1.93859 

H          3.24882        2.23373       -1.81269 

H          1.76672        0.41797       -2.60988 

H          0.38722        3.33208        1.19636 

H          2.58388        3.66613        0.09114 

H          4.97696       -0.89536        1.14722 

H          4.76875        0.82531        1.52636 

H          4.41525        0.22817       -0.10020 

H          2.30444        0.62028        1.19417 

H          2.83472       -0.51335        2.42739 

H          2.84356       -2.36498        0.75290 

H          2.40030       -1.22154       -0.51181 

H          0.42693       -1.00589        1.69261 

 

Butanal adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2240.880468 

C         -0.80528       -0.41346       -1.40870 

C         -0.64094        1.62666       -0.25297 

C         -0.05482        0.82462       -1.27270 

C          1.09007        1.29474       -1.92822 

C          1.64406        2.50765       -1.55768 

C          1.08091        3.27838       -0.52979 

C         -0.06017        2.83771        0.12075 

C         -1.93757       -0.27276       -0.50834 

C         -1.81692        0.94034        0.22462 

C         -3.98149       -0.73550        0.67459 

C         -3.04394       -1.09745       -0.27635 
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C         -2.75737        1.27943        1.19613 

C         -3.83925        0.44350        1.42025 

Ni         0.40729       -1.77665       -0.67173 

C          3.17218        1.22083        1.90866 

C          2.11799        0.13612        1.78831 

C          2.60909       -1.07838        1.01829 

C          1.51978       -2.10608        0.81681 

O          1.63728       -3.05542       -0.05838 

H         -0.93298       -0.88351       -2.39331 

H          1.55372        0.68953       -2.70533 

H          2.53873        2.86528       -2.06315 

H          1.54420        4.21965       -0.24477 

H         -0.50190        3.43532        0.91692 

H         -4.83826       -1.38080        0.85698 

H         -3.14805       -2.02953       -0.82871 

H         -2.64967        2.20111        1.76618 

H         -4.58136        0.70006        2.17213 

H          4.07866        0.84536        2.40263 

H          2.80826        2.08329        2.47836 

H          3.45789        1.58650        0.91483 

H          1.22970        0.54161        1.28488 

H          1.78363       -0.17938        2.78818 

H          2.99808       -0.77559        0.03515 

H          3.45564       -1.54224        1.55870 

H          0.92351       -2.30511        1.73385 

 

C-H insertion TS for the dehydrogenation of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.01632 

Imaginary Frequency = -589.70 

H          1.57629        3.56958       -0.66474 

C          0.74648        2.92219       -0.38897 

C         -1.37662        1.27781        0.37081 

C          0.27370        1.99945       -1.30548 

C          0.19271        3.02588        0.89814 

C         -0.86300        2.20718        1.27291 

C         -0.80304        1.14692       -0.94892 

H          0.71004        1.93412       -2.29972 

H          0.59756        3.74896        1.60147 

C         -2.43213        0.30874        0.47302 

C         -4.32273       -1.69634        0.10593 

C         -2.46176       -0.42976       -0.75315 

C         -3.32857        0.01052        1.49844 

C         -4.27168       -0.98811        1.31802 

C         -3.43449       -1.42678       -0.91841 

H         -3.29239        0.56666        2.43426 

H         -4.97778       -1.22256        2.11074 
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H         -3.47723       -1.99382       -1.84650 

H         -5.07311       -2.47361       -0.02476 

C         -1.42245        0.04078       -1.62319 

H         -1.38327       -0.15524       -2.68944 

Ni         0.38771       -0.50382       -0.70328 

H         -1.28646        2.28623        2.27327 

H          1.70928       -0.06998        0.84906 

C          1.96378       -1.00095        0.27615 

H          1.29556       -1.64706       -0.92059 

C          3.37162       -0.85918       -0.25022 

H          3.64786       -1.77067       -0.80301 

H          3.37255       -0.03549       -0.98048 

C          4.40712       -0.58942        0.83217 

H          4.12834        0.32899        1.36883 

H          4.36983       -1.39844        1.57207 

O          1.92576       -2.11202        1.17255 

H          0.99844       -2.34746        1.26405 

C          5.80989       -0.45665        0.26625 

H          6.55516       -0.25434        1.04373 

H          5.86268        0.35905       -0.46583 

H          6.11161       -1.37558       -0.25174 

 

O-H elimination TS for the dehydrogenation of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.004001 

Imaginary Frequency = -1607.41 

C         -0.24525        0.12731       -0.91212 

C         -1.89659       -1.28741       -0.01988 

C         -0.56726       -1.23906       -0.52629 

C          0.18831       -2.41648       -0.56978 

C         -0.35746       -3.59544       -0.09251 

C         -1.65380       -3.63043        0.43778 

C         -2.42293       -2.47801        0.47468 

C         -1.48632        0.87034       -0.75419 

C         -2.47040        0.03200       -0.16101 

C         -3.07560        2.67417       -0.76399 

C         -1.81217        2.19612       -1.06210 

C         -3.73104        0.53569        0.15294 

C         -4.03241        1.85356       -0.15041 

Ni         0.44793        0.67819        0.84681 

H          1.50712        1.36957        2.12187 

H          0.61002        0.98825        2.48107 

H          0.44714        0.34682       -1.72328 

H          1.20269       -2.39684       -0.96267 

H          0.23138       -4.50945       -0.12120 

H         -2.05632       -4.56643        0.81641 

H         -3.43442       -2.50649        0.87627 
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H         -4.47699       -0.10317        0.62257 

H         -5.01413        2.25573        0.08624 

H         -1.06409        2.84476       -1.51397 

H         -3.32913        3.70568       -0.99745 

O          2.52068        1.74066        1.45267 

C          2.17849        1.24397        0.25497 

H          2.00736        2.00523       -0.53870 

C          3.03160        0.09467       -0.24292 

H          2.62195       -0.30087       -1.18550 

H          2.99670       -0.72300        0.49390 

C          4.48155        0.51604       -0.45535 

H          4.86038        0.92765        0.48844 

H          4.51169        1.34182       -1.18220 

C          5.35848       -0.62811       -0.93112 

H          5.35562       -1.44903       -0.20362 

H          6.40006       -0.32058       -1.08120 

H          4.99240       -1.03791       -1.88112 

 

β-C elimination TS for the dehydrogenation of butanol by complex I (s) 

M06/6-311+G** Enthalpy = -2242.007527 

Imaginary Frequency = -594.07 

C         -0.42621        0.04208       -0.97028 

C         -2.34064       -0.68839        0.20099 

C         -1.21192       -1.11541       -0.54703 

C         -1.01334       -2.48225       -0.75727 

C         -1.89867       -3.39585       -0.20732 

C         -2.98839       -2.97104        0.56144 

C         -3.21008       -1.61684        0.76560 

C         -1.22420        1.19108       -0.55132 

C         -2.35050        0.75730        0.19355 

C         -1.93050        3.46661       -0.22477 

C         -1.03604        2.55637       -0.76609 

C         -3.23012        1.68034        0.75115 

C         -3.01967        3.03558        0.54071 

Ni         1.16473       -0.16188        0.26961 

C          3.12713       -0.61850        0.13917 

C          2.47487       -0.58293       -1.12682 

H          2.28865       -1.52459       -1.65055 

H          3.35478       -1.62475        0.50671 

H          2.15793       -0.28832        1.35750 

H          0.43341        0.24100        1.53401 

H         -0.03885        0.03978       -1.99419 

H         -0.15695       -2.82116       -1.33745 

H         -1.74127       -4.46042       -0.36732 

H         -3.66316       -3.70563        0.99398 

H         -4.06463       -1.28443        1.35306 
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H         -4.08302        1.34352        1.33847 

H         -3.70237        3.76631        0.96733 

H         -0.17546        2.90354       -1.33714 

H         -1.77993        4.53177       -0.38696 

O          2.77945        0.48297       -2.00273 

H          1.97725        1.00265       -2.10420 

C          4.19226        0.39867        0.48734 

H          5.05637        0.22997       -0.17326 

H          3.82290        1.40022        0.24223 

C          4.62803        0.33767        1.93937 

H          5.42536        1.05750        2.15514 

H          5.00223       -0.66104        2.19836 

H          3.78656        0.55590        2.60662 

 

 

Collision complex of II with butanol (d) 

M06/6-311+G** Enthalpy = -2116.4539 

C         -1.40283        0.42969       -1.60934 

C         -0.72310        1.39682        0.42122 

C         -0.54132        1.41419       -1.00912 

C          0.37087        2.35131       -1.55510 

C          1.09431        3.17168       -0.71423 

C          0.94357        3.11308        0.68448 

C          0.03397        2.22840        1.24238 

C         -2.16914       -0.14171       -0.52618 

C         -1.73798        0.42387        0.71314 

C         -3.72588       -1.52138        0.68808 

C         -3.18234       -1.10853       -0.51579 

C         -2.27986       -0.02421        1.91841 

C         -3.27156       -0.99179        1.90604 

Co         0.38132       -0.55935       -1.48301 

C          2.90030        0.07920        2.53018 

C          2.11941       -0.63041        1.44061 

C          2.86046       -1.83967        0.89421 

C          2.12257       -2.60473       -0.17701 

O          2.02265       -1.79847       -1.35761 

H          1.64900       -2.33356       -2.09019 

H         -1.73798        0.44042       -2.64307 

H          0.50675        2.40579       -2.63320 

H          1.80542        3.87588       -1.14164 

H          1.53746        3.76429        1.32093 

H         -0.09836        2.18777        2.32415 

H         -4.50719       -2.27855        0.69430 

H         -3.51874       -1.54797       -1.45293 

H         -1.93005        0.39248        2.86243 

H         -3.70401       -1.34130        2.84062 
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H          2.35726        0.95591        2.89744 

H          3.87043        0.42755        2.15380 

H          3.09608       -0.58400        3.38351 

H          1.90027        0.07316        0.62510 

H          1.13618       -0.94568        1.82015 

H          3.83684       -1.52807        0.49454 

H          3.07151       -2.54053        1.71811 

H          2.66952       -3.52528       -0.43077 

H          1.11424       -2.88293        0.16686 

 

O-H insertion TS for the dehydrogenation of butanol by complex II (d) 

M06/6-311+G** Enthalpy = -2116.440413 

Imaginary Frequency = -1204.15 

H          0.93053        3.71728       -0.91809 

C          0.18599        3.00117       -0.57553 

C         -1.73615        1.20086        0.33880 

C         -0.14817        1.93604       -1.39147 

C         -0.40518        3.17858        0.68626 

C         -1.35808        2.27573        1.13800 

C         -1.11674        0.99393       -0.95058 

H          0.31391        1.82134       -2.36952 

H         -0.10855        4.01833        1.30885 

C         -2.70458        0.15252        0.51910 

C         -4.42106       -2.02539        0.30496 

C         -2.64460       -0.69528       -0.62982 

C         -3.60444       -0.12025        1.54853 

C         -4.46057       -1.20502        1.44193 

C         -3.52558       -1.77890       -0.72159 

H         -3.64011        0.52098        2.42804 

H         -5.16816       -1.42093        2.23873 

H         -3.49428       -2.43065       -1.59269 

H         -5.10180       -2.87115        0.23364 

C         -1.61450       -0.22688       -1.52220 

H         -1.55712       -0.50156       -2.57047 

H         -1.81831        2.41283        2.11585 

C          2.96600       -0.37465       -0.02327 

H          3.07242       -0.10033       -1.09130 

H          2.81033        0.57694        0.51708 

O          1.87237       -1.23215        0.16201 

C          4.24506       -1.03283        0.45727 

H          4.39166       -1.96903       -0.10138 

H          4.11951       -1.32158        1.51097 

C          5.46260       -0.13840        0.30353 

H          5.56601        0.15634       -0.75110 

H          5.29906        0.79624        0.85935 

C          6.74264       -0.80207        0.77906 
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H          7.61632       -0.15082        0.66579 

H          6.93773       -1.72282        0.21613 

H          6.66866       -1.07998        1.83732 

H          1.36845       -1.59374       -0.97569 

Co         0.20885       -0.55687       -0.55835 

 

O-H insertion of butanol by complex II (d) 

M06/6-311+G** Enthalpy = -2116.488508 

C         -2.52219        0.04762       -0.88550 

C         -1.20057        0.74298        0.90277 

C         -2.04593        1.19571       -0.16580 

C         -2.22017        2.58123       -0.36472 

C         -1.57769        3.46872        0.46592 

C         -0.72777        3.01947        1.50068 

C         -0.53373        1.67358        1.71593 

C         -2.09884       -1.11534       -0.15691 

C         -1.22971       -0.69299        0.90526 

C         -1.72037       -3.40282        0.48244 

C         -2.33051       -2.49300       -0.34884 

C         -0.59520       -1.64691        1.71754 

C         -0.84587       -2.98428        1.50938 

Co        -0.51149        0.00272       -1.26146 

O          1.31118       -0.07225       -1.47626 

H         -0.73713        0.01016       -2.73211 

C          2.08486       -0.21268       -0.34783 

C          3.55808        0.00133       -0.66877 

C          4.46412       -0.12589        0.54249 

C          5.93179        0.07562        0.20789 

H         -3.24521        0.06123       -1.69098 

H         -2.84600        2.93488       -1.18077 

H         -1.70641        4.53782        0.31403 

H         -0.21854        3.74790        2.12642 

H          0.12934        1.32735        2.50656 

H         -1.89293       -4.46640        0.33532 

H         -2.97408       -2.82426       -1.16051 

H          0.09066       -1.32503        2.49905 

H         -0.36057       -3.73052        2.13320 

H          1.98028       -1.22094        0.11656 

H          1.81186        0.50593        0.46132 

H          3.67103        0.99682       -1.12380 

H          3.85415       -0.72399       -1.44159 

H          4.15462        0.60396        1.30522 

H          4.32091       -1.11554        1.00177 

H          6.57906       -0.01299        1.08832 

H          6.09893        1.06719       -0.23054 

H          6.26911       -0.66310       -0.52961 
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α-C elimination TS for the dehydrogenation of butanol by complex II (d) 

M06/6-311+G** Enthalpy = -2116.472284 

Imaginary Frequency = -416.44 

C         -0.73829       -0.18578        1.08363 

C         -2.36680        0.83148       -0.27807 

C         -1.25346        1.07644        0.57423 

C         -0.79995        2.39078        0.74502 

C         -1.44074        3.42322        0.07752 

C         -2.52608        3.17460       -0.77119 

C         -2.98758        1.87849       -0.95163 

C         -1.67676       -1.18879        0.61082 

C         -2.63929       -0.58657       -0.24260 

C         -2.74952       -3.31120        0.25123 

C         -1.75611       -2.56052        0.85908 

C         -3.62053       -1.35462       -0.86295 

C         -3.67649       -2.71803       -0.61485 

C          3.98947       -0.29529        0.31501 

C          2.82101        0.66871        0.39221 

H         -0.32053       -0.24814        2.08905 

H          0.05509        2.58176        1.39012 

H         -1.09048        4.44492        0.20890 

H         -3.00565        4.00099       -1.29018 

H         -3.83360        1.68270       -1.60905 

H         -4.34424       -0.88626       -1.52861 

H         -4.44120       -3.32879       -1.08843 

H         -2.80826       -4.38080        0.44256 

H         -1.02882       -3.03596        1.51448 

H          3.05914        1.66287       -0.03884 

H          4.69479       -0.01967        1.11734 

H          3.62496       -1.30305        0.56222 

O          2.08148        0.64718        1.46731 

C          4.71387       -0.30464       -1.01724 

H          4.01757       -0.63084       -1.80098 

H          5.00529        0.72320       -1.28038 

C          5.94061       -1.19921       -1.00577 

H          6.45112       -1.21342       -1.97504 

H          5.66688       -2.23228       -0.75985 

H          6.66540       -0.86771       -0.25189 

H          2.03059        0.12554       -1.09048 

H          0.39972       -0.68604       -1.20826 

Co         1.00556       -0.00003       -0.00473 
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β-hydride elimination of butanol by complex II (d) 

M06/6-311+G** Enthalpy = -2116.482982 

C         -1.21899       -0.27342        1.57008 

C         -1.99897        0.82314       -0.35104 

C         -2.29004       -0.18885        0.60815 

C         -3.48798       -0.90451        0.49137 

C         -4.35049       -0.63035       -0.55482 

C         -4.04587        0.34994       -1.51071 

C         -2.86808        1.07222       -1.40931 

C         -0.30903        0.79499        1.23157 

C         -0.74820        1.43051        0.02239 

C          1.64304        2.21704        1.20795 

C          0.89490        1.22170        1.82187 

C          0.02161        2.41807       -0.57475 

C          1.22022        2.80871        0.01345 

Co         0.43660       -1.38459        0.74662 

H          1.56887       -1.92361        1.73624 

H          0.89543       -1.75951        2.25087 

O          0.14672       -1.62107       -1.09196 

C          1.43057       -1.79128       -0.87437 

C          2.39840       -0.72439       -1.33648 

C          3.72558       -0.74195       -0.59970 

C          4.67908        0.33011       -1.09661 

H         -1.38142       -0.62089        2.58727 

H         -3.73146       -1.68057        1.21484 

H         -5.27993       -1.18948       -0.64427 

H         -4.73463        0.53773       -2.33060 

H         -2.62570        1.83563       -2.14713 

H          2.57818        2.53951        1.66177 

H          1.23275        0.77919        2.75709 

H         -0.30839        2.87985       -1.50413 

H          1.83135        3.57733       -0.45349 

H          1.83347       -2.82254       -0.95463 

H          1.91665        0.25780       -1.21345 

H          2.58603       -0.84146       -2.42061 

H          4.18972       -1.73627       -0.69484 

H          3.52962       -0.59946        0.47236 

H          4.90177        0.19966       -2.16343 

H          5.63206        0.32567       -0.55439 

H          4.22918        1.32371       -0.97674 

 

Butanal adduct of complex II (d) 

M06/6-311+G** Enthalpy = -2115.310158 

C          0.36750        0.66617       -1.72816 

C          0.21795        1.67668        0.38606 

C         -0.45957        1.47677       -0.85768 
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C         -1.72260        2.06869       -1.04454 

C         -2.30694        2.77075       -0.01023 

C         -1.66267        2.91042        1.23228 

C         -0.40392        2.36829        1.42560 

C          1.59524        0.43065       -0.99545 

C          1.49458        1.02334        0.29874 

C          3.79004       -0.37134       -0.41879 

C          2.76863       -0.25157       -1.34316 

C          2.52566        0.86857        1.22631 

C          3.66918        0.17509        0.86871 

Co        -0.73031       -0.93948       -1.20674 

C         -2.15032       -1.70671       -0.07394 

C         -2.03232       -1.61846        1.43183 

C         -0.63765       -1.48215        2.03501 

C          0.28991       -2.66252        1.79794 

O         -1.48425       -2.59143       -0.77504 

H          0.32056        0.71563       -2.81682 

H         -2.24598        1.93623       -1.98945 

H         -3.29174        3.21105       -0.15107 

H         -2.15481        3.45014        2.03726 

H          0.09986        2.48088        2.38484 

H          4.69573       -0.91141       -0.68578 

H          2.85948       -0.70604       -2.32792 

H          2.43136        1.29334        2.22477 

H          4.47772        0.05063        1.58465 

H         -3.15547       -1.41681       -0.44094 

H         -2.63503       -0.75311        1.74634 

H         -2.52309       -2.51159        1.86619 

H         -0.75197       -1.32232        3.11848 

H         -0.17269       -0.56897        1.64250 

H         -0.15633       -3.59702        2.16524 

H          1.24795       -2.51379        2.31010 

H          0.49059       -2.79541        0.73078 

 

α-C insertion TS for the dehydrogenation of butanol by complex II (d) 

M06/6-311+G** Enthalpy = -2116.446042 

Imaginary Frequency = -667.57 

H          1.80256        3.24883       -0.80397 

C          0.92217        2.68556       -0.50052 

C         -1.33858        1.26782        0.32505 

C          0.36815        1.76690       -1.38471 

C          0.38754        2.88733        0.77772 

C         -0.73829        2.17686        1.18795 

C         -0.78873        1.03573       -0.99389 

H          0.77508        1.65460       -2.38699 

H          0.85784        3.59791        1.45242 



 

210 
 

C         -2.46752        0.38983        0.47117 

C         -4.51844       -1.46565        0.19809 

C         -2.56361       -0.39677       -0.72012 

C         -3.37956        0.21351        1.51011 

C         -4.40295       -0.71112        1.37644 

C         -3.61571       -1.31585       -0.83908 

H         -3.29297        0.80672        2.41942 

H         -5.12198       -0.85067        2.17986 

H         -3.71080       -1.91759       -1.74115 

H         -5.33101       -2.18322        0.10284 

C         -1.49250       -0.05119       -1.61203 

H         -1.48293       -0.29478       -2.66917 

H         -1.14329        2.32808        2.18768 

H          1.64910       -0.23361        0.88661 

C          1.99550       -1.10843        0.26392 

C          3.38981       -0.80900       -0.23147 

H          3.75142       -1.66283       -0.82484 

H          3.32590        0.04784       -0.91866 

C          4.38367       -0.50187        0.88002 

H          4.01438        0.36012        1.45466 

H          4.41317       -1.34641        1.57939 

O          2.05524       -2.25880        1.10930 

H          1.15554       -2.59235        1.16969 

C          5.77410       -0.21163        0.34341 

H          6.48829        0.01889        1.14188 

H          5.75861        0.64188       -0.34594 

H          6.16594       -1.07116       -0.21466 

H          1.33797       -1.75030       -0.89763 

Co         0.39463       -0.58681       -0.70216 

 

O-H elimination TS for the dehydrogenation of butanol by complex II (d) 

M06/6-311+G** Enthalpy = -2116.441915 

Imaginary Frequency = -1572.76 

C          0.34230       -0.06351        1.30040 

C          1.93322       -1.14127       -0.03435 

C          0.77102       -1.33731        0.77792 

C          0.23681       -2.62803        0.91383 

C          0.83628       -3.68507        0.25788 

C          1.96617       -3.48605       -0.55413 

C          2.50933       -2.22329       -0.70421 

C          1.32127        0.90282        0.87735 

C          2.27641        0.25375        0.02089 

C          2.52842        2.96825        0.59253 

C          1.48073        2.27889        1.15826 

C          3.31978        0.98794       -0.55304 

C          3.44847        2.33224       -0.26707 



 

211 
 

H         -1.40175        0.94405       -1.91865 

H         -0.75424        0.21262       -2.19851 

H         -0.36387        0.06745        2.11438 

H         -0.65008       -2.78503        1.52467 

H          0.42265       -4.68578        0.35894 

H          2.41192       -4.33323       -1.06925 

H          3.38211       -2.07244       -1.33681 

H          4.03051        0.49662       -1.21544 

H          4.25700        2.90882       -0.70845 

H          0.76300        2.78380        1.80162 

H          2.64463        4.02948        0.80068 

O         -2.09015        1.77721       -1.21814 

C         -2.08944        1.04242       -0.07932 

H         -2.04459        1.66604        0.83790 

C         -3.13255       -0.04672        0.03592 

H         -2.91314       -0.66850        0.91992 

H         -3.06220       -0.70687       -0.84166 

C         -4.54963        0.50883        0.13599 

H         -4.72666        1.15545       -0.73345 

H         -4.61768        1.16172        1.01921 

C         -5.60405       -0.58077        0.21243 

H         -5.56476       -1.22311       -0.67586 

H         -6.62045       -0.17585        0.28536 

H         -5.43974       -1.22702        1.08420 

Co        -0.31847        0.43464       -0.55005 

 

Piperidine (s) 

M06/6-311+G** Enthalpy = -251.61086 

C          1.43920        0.10003        0.23553 

C          0.79574       -1.19954       -0.22984 

C         -0.65864       -1.25477        0.20536 

N         -1.36700       -0.09504       -0.31078 

C         -0.82603        1.15158        0.20532 

C          0.62198        1.29809       -0.22981 

H          2.47286        0.17186       -0.12169 

H          1.48719        0.10331        1.33564 

H          1.33848       -2.06583        0.16608 

H          0.83607       -1.25931       -1.32598 

H         -1.14090       -2.16215       -0.17429 

H         -0.69475       -1.30317        1.31417 

H         -2.35940       -0.16401       -0.11771 

H         -1.42905        1.98360       -0.17441 

H         -0.86851        1.19463        1.31413 

H          0.65380        1.36285       -1.32594 

H          1.03974        2.23108        0.16617 

 



 

212 
 

2,3,4,5-tetrahydropyridine adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2259.056693 

C         -0.83812        0.93583       -1.64869 

C         -1.57370        0.85788        0.58188 

C         -1.86031        0.43912       -0.75979 

C         -3.01804       -0.32335       -1.00005 

C         -3.82466       -0.69392        0.05675 

C         -3.51074       -0.32392        1.37734 

C         -2.39201        0.44902        1.63584 

C          0.07488        1.68034       -0.82005 

C         -0.37044        1.63494        0.54674 

C          1.94699        3.02755       -0.11294 

C          1.23168        2.42757       -1.12764 

C          0.38398        2.23312        1.55468 

C          1.54228        2.92133        1.23205 

Ni         0.31486       -0.63195       -1.24743 

C          2.37400       -1.67618        1.66110 

C          0.86880       -1.87773        1.70383 

C          0.44525       -2.74129        0.52407 

N          0.95242       -2.33510       -0.78214 

C          1.99621       -1.47224       -0.82846 

C          2.76999       -0.96066        0.37515 

H         -0.96501        1.07601       -2.71902 

H         -3.25433       -0.64061       -2.01389 

H         -4.71134       -1.29622       -0.13003 

H         -4.15303       -0.64469        2.19371 

H         -2.15077        0.73906        2.65790 

H          2.85107        3.58413       -0.35199 

H          1.57325        2.49183       -2.15900 

H          0.06305        2.15856        2.59335 

H          2.13615        3.38984        2.01265 

H          2.72903       -1.11576        2.53553 

H          2.86020       -2.66507        1.69752 

H          0.55893       -2.35813        2.64246 

H          0.36056       -0.90417        1.65343 

H         -0.65133       -2.78277        0.45811 

H          0.78412       -3.77901        0.70969 

H          2.56026       -1.47906       -1.77058 

H          3.84892       -1.07934        0.19537 

H          2.60087        0.12111        0.48694 

 

3,4-dihydropyridine adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2257.865654 

C          0.83479       -0.45318       -1.69935 

C          0.90641       -1.49296        0.40612 

C          0.28181       -1.51267       -0.88676 



 

213 
 

C         -0.69057       -2.49872       -1.15300 

C         -1.06557       -3.37653       -0.15644 

C         -0.49106       -3.31166        1.12647 

C          0.49453       -2.37764        1.40142 

C          1.85308        0.17087       -0.89295 

C          1.88719       -0.44638        0.39737 

C          3.63631        1.63067       -0.19293 

C          2.75974        1.20591       -1.17176 

C          2.76471        0.01556        1.37933 

C          3.63707        1.04927        1.08691 

Ni        -0.83523        0.47717       -1.07732 

C         -2.45250        0.21115        1.28463 

C         -2.53853        0.46919       -0.19525 

C         -2.24177        1.77385       -0.66475 

N         -1.93513        2.83690        0.22608 

C         -1.58087        2.53653        1.41251 

C         -1.40835        1.13361        1.90921 

H          0.83497       -0.45337       -2.78715 

H         -1.16242       -2.53869       -2.13286 

H         -1.83004       -4.12343       -0.35968 

H         -0.81692       -4.00462        1.89812 

H          0.94790       -2.33643        2.39114 

H          4.33211        2.43849       -0.40997 

H          2.75382        1.68193       -2.15037 

H          2.76936       -0.44266        2.36759 

H          4.32733        1.41276        1.84398 

H         -3.43674        0.39500        1.75476 

H         -2.19567       -0.83811        1.48519 

H         -3.24789       -0.14516       -0.75679 

H         -2.66543        2.12183       -1.60849 

H         -1.35678        3.36244        2.09711 

H         -1.43453        1.10092        3.00558 

H         -0.40510        0.78878        1.59955 

 

2,3-dihydropyridine adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2257.874823 

C          0.65498       -0.48703       -1.21585 

C          1.69685        1.28284       -0.07021 

C          0.57946        0.91378       -0.91457 

C         -0.46664        1.85298       -1.11551 

C         -0.34207        3.12690       -0.54911 

C          0.75904        3.47947        0.22381 

C          1.77538        2.55177        0.47120 

C          1.89252       -0.95102       -0.64770 

C          2.52838        0.11382        0.05965 

C          3.72309       -2.39075       -0.03499 



 

214 
 

C          2.51991       -2.20218       -0.69269 

C          3.73339       -0.09806        0.72411 

C          4.33189       -1.34789        0.67804 

Ni        -0.85827        0.03929        0.15364 

C         -1.81337       -1.36830        1.03412 

C         -2.65159       -2.25313        0.14799 

C         -3.45820       -1.41219       -0.83464 

N         -4.22960       -0.33409       -0.23158 

C         -3.65546        0.25442        0.75378 

C         -2.38330       -0.09531        1.36425 

H          0.14317       -0.98934       -2.03218 

H         -1.28722        1.64167       -1.79919 

H         -1.12760        3.85848       -0.72485 

H          0.81754        4.47483        0.65626 

H          2.61746        2.82435        1.10597 

H          4.20533       -3.36559       -0.06765 

H          2.05496       -3.02416       -1.23368 

H          4.20686        0.71613        1.27084 

H          5.27483       -1.52161        1.19011 

H         -1.20530       -1.87886        1.78422 

H         -2.02654       -2.96453       -0.40910 

H         -3.34670       -2.85493        0.76285 

H         -4.13975       -2.04388       -1.42028 

H         -2.75102       -0.95614       -1.55272 

H         -4.19590        1.10637        1.18818 

H         -2.14698        0.39497        2.31013 

 

Pyridine adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2256.695172 

C         -0.69150       -0.22817       -1.45852 

C         -1.58378        1.29386        0.09625 

C         -0.58886        1.11222       -0.92483 

C          0.27361        2.18585       -1.23083 

C          0.18494        3.35952       -0.50950 

C         -0.75730        3.51120        0.52341 

C         -1.63865        2.48408        0.81986 

C         -1.81644       -0.83084       -0.79131 

C         -2.35295        0.08450        0.16921 

C         -3.51262       -2.42084       -0.15970 

C         -2.43050       -2.08326       -0.94924 

C         -3.43333       -0.28596        0.97037 

C         -4.01274       -1.53278        0.80833 

Ni         0.79490       -0.44245       -0.11389 

C          1.94497       -1.40008        1.12357 

C          2.90548       -2.13670        0.36793 

C          3.95036       -1.49066       -0.23357 



 

215 
 

N          4.14557       -0.14336       -0.18075 

C          3.26701        0.55290        0.50194 

C          2.15195        0.01604        1.20480 

H         -0.33795       -0.52616       -2.44230 

H          1.02662        2.06784       -2.00745 

H          0.86521        4.17829       -0.73388 

H         -0.79519        4.44119        1.08507 

H         -2.37509        2.60772        1.61283 

H         -3.98412       -3.39377       -0.28306 

H         -2.04258       -2.78739       -1.68300 

H         -3.82624        0.40783        1.71239 

H         -4.85925       -1.82657        1.42390 

H          1.30879       -1.92573        1.83540 

H          2.81866       -3.21760        0.28447 

H          4.68783       -2.05268       -0.80548 

H          3.42514        1.63405        0.53777 

H          1.65410        0.63970        1.94849 

 

Pyridine (s) 

M06/6-311+G** Enthalpy = -248.060176 

C          0.00001        1.37613       -0.00001 

C          1.19220        0.66873        0.00001 

C          1.13552       -0.71869       -0.00000 

N         -0.00001       -1.41003       -0.00000 

C         -1.13553       -0.71867       -0.00001 

C         -1.19219        0.66875        0.00002 

H          0.00002        2.46210       -0.00005 

H          2.15026        1.17811        0.00001 

H          2.05471       -1.30281        0.00003 

H         -2.05472       -1.30279        0.00001 

H         -2.15025        1.17813        0.00003 

 

Fluorenyl anion (s) 

M06/6-311+G** Enthalpy = -500.386466 

C         -0.00000        1.76290        0.00000 

C          0.71565       -0.44908       -0.00000 

C          1.13845        0.93036        0.00000 

C          2.52338        1.20321        0.00000 

C          3.43320        0.16517        0.00000 

C          3.01171       -1.17981        0.00000 

C          1.65728       -1.47647       -0.00000 

C         -1.13844        0.93038       -0.00000 

C         -0.71564       -0.44910        0.00000 

C         -3.43319        0.16517        0.00000 

C         -2.52338        1.20321       -0.00000 

C         -1.65728       -1.47648        0.00000 



 

216 
 

C         -3.01171       -1.17981        0.00000 

H          0.00000        2.84808       -0.00000 

H          2.87303        2.23532        0.00000 

H          4.49982        0.38676        0.00000 

H          3.74973       -1.97913        0.00000 

H          1.32819       -2.51597       -0.00000 

H         -4.49981        0.38676        0.00000 

H         -2.87306        2.23533       -0.00000 

H         -1.32820       -2.51599        0.00000 

H         -3.74973       -1.97913       -0.00000 

 

2,3,4,5-tetrahydropyridine complex with nickel (s) 

M06/6-311+G** Enthalpy = -1758.58921 

C          1.09640        1.45313       -0.01625 

C          2.21477        0.43759       -0.20829 

C          1.63351       -0.90149       -0.62865 

C          0.71578       -1.41048        0.46946 

N         -0.28485       -0.45847        0.94538 

C         -0.10963        0.85446        0.67758 

Ni        -1.55660        0.00821       -0.29288 

H          1.45397        2.31693        0.55847 

H          0.78507        1.85286       -0.99215 

H          2.94704        0.80638       -0.93440 

H          2.75417        0.30289        0.74072 

H          1.06383       -0.78375       -1.56307 

H          2.42493       -1.63537       -0.82188 

H          0.18824       -2.32093        0.15979 

H          1.32275       -1.69903        1.34351 

H         -0.66608        1.54030        1.32870 

 

Fluorene (s) 

M06/6-311+G** Enthalpy = -500.941638 

C         -0.00000        1.81796        0.00012 

C         -0.73049       -0.44807        0.00010 

C         -1.17548        0.88102        0.00006 

C         -2.52910        1.16749       -0.00005 

C         -3.44040        0.11600       -0.00011 

C         -2.99867       -1.20431       -0.00006 

C         -1.64134       -1.49708        0.00003 

C          1.17548        0.88102        0.00001 

C          0.73049       -0.44807        0.00007 

C          3.44040        0.11600       -0.00011 

C          2.52910        1.16750       -0.00008 

C          1.64134       -1.49708        0.00007 

C          2.99867       -1.20430       -0.00003 

H         -0.00003        2.47477       -0.87962 



 

217 
 

H          0.00003        2.47438        0.88016 

H         -2.87853        2.19687       -0.00007 

H         -4.50573        0.32545       -0.00021 

H         -3.72437       -2.01198       -0.00011 

H         -1.30135       -2.52922        0.00008 

H          4.50573        0.32546       -0.00021 

H          2.87853        2.19687       -0.00015 

H          1.30135       -2.52922        0.00013 

H          3.72437       -2.01198       -0.00003 

 

Ni complex with imine ring (s) 

M06/6-311+G** Enthalpy = -1756.833025 

C         -0.54936        1.13839        0.77632 

N         -1.56414        1.31844        0.00998 

C         -1.84240        0.17980       -0.86368 

C         -1.68909       -1.14352       -0.18127 

C         -0.64715       -1.27964        0.65126 

C          0.19201       -0.11282        0.94544 

Ni         1.58611       -0.00336       -0.32411 

H         -0.25046        1.98591        1.40503 

H         -2.83959        0.30115       -1.30725 

H         -1.10381        0.23353       -1.69841 

H         -2.37581       -1.95856       -0.40046 

H         -0.44152       -2.22326        1.15438 

H          0.76493       -0.16703        1.88368 

 

Hydrogen abstraction product from CID of butan-1-imine adduct of complex I (d) 

M06/6-311+G** Enthalpy = -1719.945394 

C         -2.29525        0.42714       -0.56610 

C         -1.48922        0.66046        0.70428 

C          0.01448        0.42961        0.57675 

C          0.72401        1.34877       -0.31016 

N          1.91323        1.83337       -0.21638 

Ni         0.46228       -1.29799       -0.06356 

H         -2.16169       -0.60676       -0.90536 

H         -3.36585        0.61778       -0.40477 

H         -1.96561        1.07880       -1.38373 

H         -1.86990       -0.01227        1.48469 

H         -1.69485        1.68754        1.06667 

H          0.49139        0.42364        1.57467 

H          0.15798        1.68350       -1.19440 

H          2.34797        1.44210        0.62792 

 

Dehydrogenation product of hydrogen abstraction product from CID of butan-1-imine adduct of 

complex I (d) 

M06/6-311+G** Enthalpy = -1718.755244 



 

218 
 

C          1.09171        1.23074        0.40754 

C         -0.20119        0.61765        0.45131 

C         -1.21442        0.70556       -0.50411 

C         -2.48001        0.06501       -0.40715 

N         -2.97233       -0.76123        0.46942 

Ni         1.48836       -0.52037       -0.13844 

H          1.28323        1.96631       -0.38123 

H          1.59051        1.44977        1.35565 

H         -0.47739        0.14530        1.39987 

H         -1.01460        1.27113       -1.41502 

H         -3.16967        0.31846       -1.22867 

H         -2.25634       -0.96577        1.17411 

 

Butan-1-imine adduct of complex II (d) 

M06/6-311+G** Enthalpy = -2095.416763 

C         -0.83382        0.26086       -1.66244 

C         -1.75182        0.74671        0.44446 

C         -1.88083       -0.07351       -0.71845 

C         -2.91818       -1.01831       -0.76970 

C         -3.76362       -1.16657        0.31307 

C         -3.60132       -0.39098        1.47321 

C         -2.59852        0.56163        1.53704 

C         -0.11622        1.36888       -1.06862 

C         -0.65391        1.64677        0.22493 

C          1.47565        3.14667       -0.74365 

C          0.94700        2.15227       -1.54363 

C         -0.08868        2.63870        1.02686 

C          0.97174        3.38693        0.54572 

Co         0.37127       -1.22006       -0.98782 

C          0.88785       -1.98556        0.72027 

C          1.65094       -1.06902        1.64727 

C          2.81251       -0.28643        1.04487 

C          4.04903       -1.13424        0.79389 

N          1.49768       -2.61957       -0.33726 

H         -0.92633        0.11515       -2.73973 

H         -3.03044       -1.64860       -1.64994 

H         -4.55941       -1.90749        0.27485 

H         -4.26715       -0.54082        2.31937 

H         -2.47527        1.16790        2.43341 

H          2.30694        3.74514       -1.11013 

H          1.36736        1.95310       -2.52781 

H         -0.48472        2.82753        2.02379 

H          1.41798        4.16229        1.16324 

H          0.03017       -2.46477        1.22261 

H          0.92134       -0.36343        2.07341 

H          2.03368       -1.65625        2.50609 
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H          3.06414        0.54416        1.72031 

H          2.47884        0.18037        0.10681 

H          4.40088       -1.59391        1.72815 

H          4.87392       -0.53556        0.38832 

H          3.81513       -1.93877        0.09076 

H          0.99821       -3.47614       -0.58222 

 

1st dehydrogenation of the butan-1-imine adduct with complex II (s) 

M06/6-311+G** Enthalpy = -2094.242395 

C         -0.72981        0.08274       -1.63394 

C         -1.63850        0.88117        0.37951 

C         -1.81581       -0.05456       -0.68271 

C         -2.93209       -0.90259       -0.65975 

C         -3.81739       -0.84057        0.40009 

C         -3.61480        0.05230        1.46421 

C         -2.52756        0.90973        1.45358 

C          0.06180        1.19894       -1.15774 

C         -0.47023        1.66493        0.08194 

C          1.75234        2.91017       -1.02443 

C          1.17630        1.85362       -1.70403 

C          0.14113        2.71614        0.76529 

C          1.24829        3.33904        0.21458 

Co         0.45345       -1.44253       -1.02378 

C          1.43609       -2.27021        0.30898 

C          1.89905       -2.07298        1.70913 

C          1.92158       -0.60569        2.11933 

C          2.95168        0.19270        1.34214 

N          1.47435       -3.03564       -0.64735 

H         -0.84820       -0.14193       -2.69733 

H         -3.08179       -1.62064       -1.46380 

H         -4.67890       -1.50462        0.41909 

H         -4.31661        0.07057        2.29428 

H         -2.37446        1.61088        2.27286 

H          2.62010        3.41089       -1.44852 

H          1.59371        1.51021       -2.64886 

H         -0.25785        3.05291        1.72129 

H          1.72893        4.16260        0.73684 

H          1.21413       -2.63667        2.35702 

H          2.89675       -2.52487        1.83036 

H          2.12072       -0.53526        3.19793 

H          0.92333       -0.17872        1.94809 

H          3.96496       -0.19353        1.51760 

H          2.93122        1.25337        1.61368 

H          2.74809        0.13331        0.26590 

 

2nd dehydrogenation of the butan-1-imine adduct with complex II (d) 
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M06/6-311+G** Enthalpy = -2093.063894 

C          0.50102       -0.76249       -1.84788 

C          1.20497       -0.95742        0.37263 

C          1.60952       -0.58044       -0.96227 

C          2.91741       -0.06430       -1.15217 

C          3.76709        0.04636       -0.07892 

C          3.35890       -0.31044        1.22708 

C          2.08961       -0.78911        1.45474 

C         -0.55828       -1.34998       -1.08428 

C         -0.14496       -1.45845        0.29086 

C         -2.71913       -2.20728       -0.45446 

C         -1.86733       -1.75414       -1.43297 

C         -1.05039       -1.89463        1.26957 

C         -2.32227       -2.27078        0.89907 

Co         0.01098        0.69660       -0.39016 

C         -1.47303        2.96487       -1.59549 

C         -1.47709        1.93593       -0.49709 

C         -0.69454        2.18459        0.70109 

C         -1.11894        1.76151        1.98427 

N         -1.45507        1.41539        3.04228 

H          0.50871       -0.62419       -2.92203 

H          3.24102        0.23098       -2.14824 

H          4.77076        0.43783       -0.22997 

H          4.04696       -0.17752        2.05747 

H          1.76215       -1.04002        2.46167 

H         -3.72945       -2.50869       -0.72297 

H         -2.19676       -1.68501       -2.46755 

H         -0.75176       -1.91340        2.31513 

H         -3.03311       -2.59823        1.65219 

H         -0.47467        3.40773       -1.71020 

H         -2.17717        3.79389       -1.40980 

H         -1.73870        2.51726       -2.56088 

H         -2.43195        1.41826       -0.35769 

H         -0.04235        3.06223        0.71863 

 

Nitrile complex with II (d) 

M06/6-311+G** Enthalpy = -1975.853287 

C          0.00004        1.36285        1.27476 

C          0.72634        0.45731       -0.73055 

C          1.16379        1.09580        0.48289 

C          2.54433        1.22936        0.73664 

C          3.44906        0.79277       -0.20792 

C          3.01761        0.17273       -1.39804 

C          1.67810       -0.01709       -1.65458 

C         -1.16376        1.09561        0.48300 

C         -0.72628        0.45709       -0.73042 
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C         -3.44902        0.79286       -0.20793 

C         -2.54432        1.22927        0.73669 

C         -1.67807       -0.01701       -1.65465 

C         -3.01752        0.17291       -1.39815 

Co        -0.00004       -0.65375        0.88590 

C         -0.00009       -2.51618        0.49316 

N         -0.00005       -3.67663        0.35781 

H          0.00008        1.81448        2.26110 

H          2.88361        1.68283        1.66566 

H          4.51481        0.90314       -0.02314 

H          3.75803       -0.18724       -2.10771 

H          1.35124       -0.53729       -2.55182 

H         -4.51477        0.90328       -0.02324 

H         -2.88358        1.68277        1.66571 

H         -1.35121       -0.53713       -2.55195 

H         -3.75797       -0.18686       -2.10790 

 

 

Methane (s) 

M06/6-311+G** Enthalpy = -40.440289 

C          0.00000       -0.00000       -0.00000 

H         -0.39491        0.32237        0.96433 

H          0.93448       -0.54160        0.15245 

H          0.18390        0.87288       -0.62774 

H         -0.72348       -0.65363       -0.48903 

 

Methyl radical (d) 

M06/6-311+G** Enthalpy = -39.777625 

C          0.00000        0.00000        0.00000 

H         -0.24999       -1.05138       -0.00000 

H         -0.78555        0.74217       -0.00000 

H          1.03552        0.30920       -0.00000 

 

Ethyl radical (d) 

M06/6-311+G** Enthalpy = -79.042613 

C          0.68839        0.00008       -0.00108 

C         -0.78886       -0.00000       -0.02275 

H          1.10521       -0.88353       -0.49603 

H          1.08950       -0.00525        1.02625 

H          1.10503        0.88856       -0.48720 

H         -1.34867        0.92571        0.04999 

H         -1.34829       -0.92597        0.04992 

 

Propane (s) 

M06/6-311+G** Enthalpy = -118.95915 

C          1.25959       -0.25900        0.00000 
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C         -0.00000        0.58948       -0.00000 

C         -1.25959       -0.25900       -0.00000 

H          2.16782        0.35110       -0.00036 

H          1.29404       -0.90838       -0.88256 

H          1.29440       -0.90786        0.88292 

H         -0.00000        1.25074       -0.87614 

H         -0.00002        1.25069        0.87618 

H         -1.29413       -0.90825        0.88264 

H         -1.29429       -0.90800       -0.88283 

H         -2.16782        0.35108        0.00018 

 

 

 

Carbon monoxide complex with I (s) 

M06/6-311+G** Enthalpy = -2121.942283 

C         -0.00029       -0.15462       -1.72865 

C          0.71737       -1.05494        0.30650 

C          1.14919       -0.51831       -0.96151 

C          2.53796       -0.43355       -1.22250 

C          3.43634       -0.87496       -0.28092 

C          3.00717       -1.39420        0.96098 

C          1.66296       -1.47104        1.25538 

C         -1.14992       -0.51772       -0.96145 

C         -0.71833       -1.05459        0.30651 

C         -3.43723       -0.87284       -0.28066 

C         -2.53864       -0.43207       -1.22235 

C         -1.66410       -1.46998        1.25551 

C         -3.00829       -1.39227        0.96123 

Ni         0.00044        1.14142       -0.07241 

C          0.00142        2.70543        0.60079 

O          0.00228        3.78222        1.04220 

H         -0.00023        0.20295       -2.75052 

H          2.88387       -0.01871       -2.16693 

H          4.50275       -0.80937       -0.48641 

H          3.74480       -1.71856        1.69040 

H          1.33001       -1.86042        2.21599 

H         -4.50361       -0.80654       -0.48607 

H         -2.88437       -0.01706       -2.16677 

H         -1.33132       -1.85951        2.21612 

H         -3.74606       -1.71608        1.69075 

 

Carbon monoxide complex with II (d) 

M06/6-311+G** Enthalpy = -1996.372711 

C          0.00002       -0.07540        1.76426 

C         -0.72030       -1.04930       -0.22787 

C         -1.14761       -0.45793        1.01895 
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C         -2.53553       -0.33289        1.26505 

C         -3.43777       -0.81385        0.34486 

C         -3.01536       -1.39639       -0.86931 

C         -1.67242       -1.49329       -1.16377 

C          1.14762       -0.45796        1.01894 

C          0.72031       -1.04933       -0.22787 

C          3.43777       -0.81397        0.34486 

C          2.53555       -0.33299        1.26505 

C          1.67240       -1.49339       -1.16376 

C          3.01534       -1.39651       -0.86931 

Co        -0.00014        1.02715       -0.25258 

C          0.00012        2.71992       -0.55969 

O          0.00036        3.87915       -0.70416 

H          0.00003        0.40380        2.73501 

H         -2.87894        0.13200        2.18669 

H         -4.50337       -0.72323        0.54451 

H         -3.75649       -1.74092       -1.58562 

H         -1.34148       -1.92268       -2.10771 

H          4.50338       -0.72340        0.54452 

H          2.87898        0.13188        2.18669 

H          1.34145       -1.92279       -2.10768 

H          3.75646       -1.74109       -1.58560 

 

Acetone adduct of complex I (s) 

M06/6-311+G** Enthalpy = -2201.626384 

C         -0.00052        0.21999       -1.60114 

C          0.71844        1.58315        0.17403 

C          1.15310        0.78910       -0.92721 

C          2.52719        0.66965       -1.17390 

C          3.43221        1.28597       -0.32875 

C          2.99994        2.03332        0.77734 

C          1.64481        2.18235        1.02583 

C         -1.15554        0.78633       -0.92734 

C         -0.72294        1.58143        0.17392 

C         -3.43594        1.27746       -0.32917 

C         -2.52926        0.66340       -1.17419 

C         -1.65091        2.17827        1.02564 

C         -3.00564        2.02589        0.77695 

Ni         0.00323       -1.58225       -0.80694 

O          0.00558       -3.22287        0.13039 

C          0.00269       -2.22465        0.96628 

C          1.27161       -1.87405        1.70965 

C         -1.26935       -1.87867        1.70658 

H         -0.00036        0.02978       -2.67872 

H          2.87519        0.06715       -2.01104 

H          4.49875        1.18112       -0.51655 
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H          3.73086        2.49687        1.43507 

H          1.30579        2.76994        1.87800 

H         -4.50220        1.16993       -0.51707 

H         -2.87563        0.05998       -2.01136 

H         -1.31349        2.76666        1.87789 

H         -3.73778        2.48760        1.43462 

H          2.14723       -2.13774        1.11002 

H          1.31196       -0.80112        1.93565 

H          1.32271       -2.42087        2.66680 

H         -1.31467       -0.80569        1.93140 

H         -1.32023       -2.42466        2.66422 

H         -2.14252       -2.14667        1.10529 

 

Acetone adduct of complex II (d) 

M06/6-311+G** Enthalpy = -2076.065968 

C         -0.00015       -1.40105       -1.56321 

C          0.71932       -1.08738        0.63821 

C          1.14965       -1.30686       -0.72389 

C          2.54145       -1.34663       -0.99310 

C          3.43915       -1.18418        0.03216 

C          3.01083       -0.95562        1.36204 

C          1.66934       -0.89626        1.65852 

C         -1.14993       -1.30674       -0.72387 

C         -0.71955       -1.08730        0.63823 

C         -3.43940       -1.18373        0.03222 

C         -2.54173       -1.34633       -0.99305 

C         -1.66952       -0.89598        1.65854 

C         -3.01103       -0.95517        1.36208 

Co         0.00000        0.54770       -0.62985 

C          0.00027        2.37785       -0.06222 

O          0.00031        2.25119       -1.38749 

H         -0.00017       -1.59368       -2.62871 

H          2.88772       -1.50211       -2.01259 

H          4.50552       -1.21224       -0.18126 

H          3.74987       -0.80777        2.14499 

H          1.33535       -0.70462        2.67705 

H         -4.50577       -1.21164       -0.18119 

H         -2.88803       -1.50177       -2.01254 

H         -1.33549       -0.70434        2.67705 

H         -3.75003       -0.80718        2.14503 

C          1.26889        2.88314        0.58553 

H          2.14622        2.43278        0.10814 

H          1.29445        2.63370        1.65449 

H          1.35473        3.98180        0.49631 

C         -1.26821        2.88375        0.58532 

H         -1.35379        3.98238        0.49541 
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H         -1.29375        2.63498        1.65443 

H         -2.14568        2.43333        0.10826 

 

 

Ethane adduct with complex I (s) 

M06/6-311+G** Enthalpy = -2088.291295 

C         -0.45306       -0.40336       -1.46510 

C         -0.31365        1.34268        0.10873 

C          0.36505        0.68621       -0.98036 

C          1.60667        1.21272       -1.41121 

C          2.17259        2.27554       -0.73446 

C          1.53627        2.86009        0.37648 

C          0.29552        2.39555        0.78755 

C         -1.67238       -0.35180       -0.69485 

C         -1.58355        0.69562        0.27683 

C         -3.89145       -0.84963        0.10481 

C         -2.85345       -1.10199       -0.77464 

C         -2.63316        0.91969        1.16768 

C         -3.78331        0.15106        1.08428 

Ni         0.86896       -1.29337       -0.29706 

C          2.29260       -2.14833        0.96984 

C          3.39453       -1.25048        1.50666 

H         -0.40159       -0.81461       -2.47157 

H          2.11502        0.76333       -2.26202 

H          3.13699        2.66246       -1.05915 

H          2.01334        3.68483        0.90034 

H         -0.20896        2.86350        1.63260 

H         -4.80384       -1.43997        0.04413 

H         -2.94141       -1.89330       -1.51732 

H         -2.55411        1.70530        1.91837 

H         -4.60785        0.32560        1.77165 

H          2.38779       -3.18464        1.31240 

H          1.27977       -1.80819        1.34228 

H          2.34031       -2.21143       -0.16377 

H          4.38441       -1.57808        1.16639 

H          3.24633       -0.22025        1.16699 

H          3.40741       -1.24170        2.60304 

 

Dimethyl complex with II (d) 

M06/6-311+G** Enthalpy = -1962.737458 

C         -0.15337        0.33126        1.64573 

C         -0.80706       -1.09840       -0.07620 

C         -1.28160       -0.22092        0.95888 

C         -2.66791       -0.00318        1.08813 

C         -3.53976       -0.65248        0.24253 

C         -3.07016       -1.51647       -0.76753 
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C         -1.71733       -1.72961       -0.93508 

C          1.01616       -0.27618        1.10577 

C          0.62637       -1.10916       -0.00567 

C          3.31895       -0.83025        0.66693 

C          2.39355       -0.15299        1.41630 

C          1.60704       -1.78293       -0.76048 

C          2.93060       -1.64539       -0.42789 

Co         0.10252        1.09427       -0.32694 

H         -0.19450        1.00631        2.49206 

H         -3.03850        0.68256        1.84719 

H         -4.60994       -0.48613        0.34301 

H         -3.78279       -2.00655       -1.42617 

H         -1.35497       -2.38178       -1.72748 

H          4.37650       -0.72994        0.90038 

H          2.70443        0.48494        2.24064 

H          1.31075       -2.39953       -1.60709 

H          3.69458       -2.15326       -1.01084 

C          1.22144        1.66255       -1.83511 

H          1.62691        2.67733       -1.72739 

H          0.58390        1.65073       -2.73427 

H          2.04963        0.95312       -1.98673 

C         -0.55740        2.91266       -0.09049 

H         -1.39263        2.93213        0.62812 

H         -0.90673        3.33339       -1.04498 

H          0.24809        3.56015        0.28590 

 

Carbon monoxide 

M06/6-311+G** Enthalpy = -113.277543 

C          0.00000       -0.00000       -0.64360 

O          0.00000        0.00000        0.48270 

 

C.3. Oxidative addition of polar reagents 

 

DFT calculations were performed using the M06 functional with an effective core 

potential (ECP) basis set on Pd (lanl2dz) and a 6-311+G** basis set on the other 

atoms. Energies are reported from single-point calculations at the M06/QZVP level 

with thermal enthalpy corrections from the calculations with the mixed ECP/6-

311+G** basis set for all reactions. 
 

Complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -628.626077031 

C         -0.00000       -0.49553        0.95691 

C          0.72003        1.49168       -0.07737 

C          1.15154        0.30233        0.58257 

C          2.52142        0.11413        0.80972 
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C          3.42979        1.04929        0.34987 

C          3.00351        2.19211       -0.34784 

C          1.65109        2.41141       -0.55743 

C         -1.15154        0.30234        0.58256 

C         -0.72002        1.49169       -0.07737 

C         -3.42978        1.04932        0.34987 

C         -2.52142        0.11415        0.80972 

C         -1.65106        2.41143       -0.55743 

C         -3.00349        2.19214       -0.34784 

Pd        -0.00001       -2.15928       -0.36597 

H         -0.00001       -1.08294        1.88026 

H          2.86126       -0.78415        1.32234 

H          4.49361        0.89486        0.52008 

H          3.73670        2.90660       -0.71458 

H          1.31702        3.30809       -1.07847 

H         -4.49359        0.89490        0.52008 

H         -2.86126       -0.78412        1.32234 

H         -1.31700        3.30810       -1.07847 

H         -3.73667        2.90663       -0.71458 

 

Fluorobenzene (s) 

M06/6-311+G** Enthalpy = -331.422792819 

C          0.00000        1.21043        0.26003 

C          0.00000        0.00000        0.92554 

C         -0.00000       -1.21043        0.26003 

C          0.00000       -1.20158       -1.12793 

C          0.00000       -0.00000       -1.82403 

C          0.00000        1.20158       -1.12793 

F          0.00000        0.00000        2.26554 

H          0.00000        2.13330        0.83015 

H         -0.00000       -2.13330        0.83015 

H          0.00000       -2.14353       -1.66765 

H          0.00000       -0.00000       -2.90916 

H          0.00000        2.14353       -1.66765 

 

Fluorobenzene adduct with complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -958.440018 

C          1.02475       -0.15012       -1.36561 

C          2.28759        1.14541        0.13074 

C          1.31398        1.19174       -0.91215 

C          0.82356        2.43964       -1.32404 

C          1.26218        3.59076       -0.69782 

C          2.19184        3.53658        0.35407 

C          2.70128        2.31595        0.76542 

C          1.92878       -1.00799       -0.63386 

C          2.67296       -0.22999        0.30443 



 

228 
 

C          3.11328       -2.96733        0.11687 

C          2.18305       -2.38475       -0.72293 

C          3.59024       -0.84015        1.15892 

C          3.81124       -2.20483        1.06809 

Pd        -0.92969       -0.56677       -0.41154 

C         -2.40390       -0.56919        2.06544 

C         -2.72549        0.76662        2.19920 

C         -3.22305        1.48400        1.10187 

C         -3.40629        0.86331       -0.11543 

C         -3.09000       -0.50395       -0.24991 

C         -2.60195       -1.25231        0.84265 

F         -3.63954       -1.16175       -1.30877 

H          0.73584       -0.36271       -2.39562 

H          0.07871        2.49099       -2.11663 

H          0.87414        4.55637       -1.01609 

H          2.51192        4.45495        0.84020 

H          3.43142        2.27220        1.57276 

H          3.30337       -4.03667        0.04820 

H          1.62826       -2.98981       -1.43813 

H          4.14231       -0.24411        1.88468 

H          4.52909       -2.68784        1.72656 

H         -2.02325       -1.12651        2.91668 

H         -2.56700        1.26945        3.14815 

H         -3.44841        2.54159        1.20246 

H         -3.81205        1.38629       -0.97554 

H         -2.58706       -2.33723        0.79602 

 

Insertion TS for oxidative addition of fluorobenzene by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -960.031194858 

Imaginary frequency = -329.17 

H          1.86462        2.48635       -1.89194 

C          0.93998        2.16648       -1.41772 

C         -1.41623        1.36818       -0.14235 

C          0.30103        1.02473       -1.88191 

C          0.43402        2.89525       -0.33640 

C         -0.74151        2.49984        0.29380 

C         -0.89329        0.58571       -1.24543 

H          0.68212        0.49424       -2.75193 

H          0.96951        3.77293        0.01538 

C         -2.63433        0.73606        0.27948 

C         -4.88365       -0.85282        0.64053 

C         -2.82588       -0.42415       -0.53875 

C         -3.55789        1.06577        1.26940 

C         -4.68110        0.27632        1.45193 

C         -3.97626       -1.20462       -0.34023 

H         -3.39946        1.94519        1.89218 



 

229 
 

H         -5.40875        0.52846        2.21899 

H         -4.14610       -2.08844       -0.95234 

H         -5.77241       -1.46231        0.79155 

C         -1.73751       -0.54844       -1.45385 

H         -1.71588       -1.20271       -2.31785 

H         -1.13064        3.07729        1.13112 

C          3.30571       -0.94979       -0.38158 

H          3.24623       -1.69638       -1.16828 

C          4.39959       -0.11007       -0.25472 

H          5.21741       -0.19268       -0.96769 

C          4.46443        0.83234        0.77108 

H          5.32758        1.48484        0.86340 

C          3.41643        0.91665        1.68364 

H          3.45669        1.64518        2.49059 

C          2.30913        0.08772        1.58052 

H          1.48655        0.14568        2.28761 

C          2.23684       -0.79695        0.50466 

F          1.61088       -2.38636        0.96357 

Pd         0.39277       -0.97543       -0.28708 

 

C-F insertion of fluorobenzene by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -960.074967684 

C         -1.70489       -0.53852       -1.33753 

C         -1.68955        1.41420       -0.04799 

C         -1.07523        0.71678       -1.16125 

C          0.13086        1.22817       -1.71453 

C          0.60230        2.47370       -1.24837 

C         -0.03439        3.15232       -0.23130 

C         -1.18226        2.61381        0.38388 

C         -2.78794       -0.59580       -0.38494 

C         -2.78749        0.58673        0.40601 

C         -4.70381       -1.36288        0.84522 

C         -3.76474       -1.56571       -0.15457 

C         -3.73139        0.77398        1.40635 

C         -4.69336       -0.20321        1.62611 

Pd         0.50692       -0.66453       -0.43817 

F          0.77084       -2.61929        0.10584 

C          2.38881       -0.32867        0.20971 

C          3.36170       -1.31439        0.05619 

C          4.65473       -1.10316        0.52282 

C          4.98850        0.08368        1.16691 

C          4.01472        1.05829        1.34334 

C          2.72340        0.85425        0.86190 

H         -1.60139       -1.18931       -2.19759 

H          0.54232        0.80997       -2.63016 

H          1.50013        2.89415       -1.69375 



 

230 
 

H          0.36461        4.10128        0.11650 

H         -1.64750        3.13897        1.21606 

H         -5.45914       -2.12291        1.03118 

H         -3.77541       -2.47960       -0.74319 

H         -3.71935        1.67870        2.01142 

H         -5.43771       -0.07034        2.40643 

H          3.08050       -2.26214       -0.39515 

H          5.40693       -1.88003        0.39591 

H          5.99851        0.24317        1.53746 

H          4.25888        1.98620        1.85802 

H          1.97304        1.63249        1.00243 

 

Complex I (s) 

M06/6-311+G** Enthalpy = -2008.96933413 

C         -0.00000        0.97574        0.80445 

C         -0.72273       -1.10703       -0.03491 

C         -1.15689        0.13142        0.50938 

C         -2.52458        0.34980        0.69500 

C         -3.43278       -0.62352        0.31251 

C         -3.00185       -1.82506       -0.26579 

C         -1.64738       -2.06779       -0.43805 

C          1.15688        0.13142        0.50933 

C          0.72269       -1.10703       -0.03494 

C          3.43275       -0.62360        0.31252 

C          2.52457        0.34975        0.69498 

C          1.64732       -2.06785       -0.43802 

C          3.00180       -1.82514       -0.26577 

Ni         0.00005        2.27549       -0.57527 

H          0.00004        1.60663        1.70175 

H         -2.86512        1.29354        1.11581 

H         -4.49797       -0.44935        0.44984 

H         -3.73269       -2.56954       -0.57259 

H         -1.31040       -3.00802       -0.87232 

H          4.49794       -0.44945        0.44987 

H          2.86513        1.29349        1.11578 

H          1.31031       -3.00808       -0.87225 

H          3.73261       -2.56965       -0.57254 

 

Fluorobenzene adduct with complex I (s) 

M06/6-311+G** Enthalpy = -2340.45181297 

C          0.71883        0.39116       -1.76292 

C          1.98066        0.29763        0.21607 

C          1.68499       -0.37778       -1.01277 

C          2.33309       -1.59551       -1.28912 

C          3.19737       -2.13746       -0.35870 

C          3.44579       -1.49333        0.86641 



 

231 
 

C          2.84090       -0.27999        1.14810 

C          0.46981        1.57877       -0.98062 

C          1.22374        1.51665        0.23558 

C         -0.42403        3.69936       -0.26670 

C         -0.33650        2.70538       -1.22076 

C          1.10406        2.52379        1.19206 

C          0.28242        3.61068        0.94605 

Ni        -0.74830       -0.61403       -0.85224 

C         -2.48801       -0.86926       -0.09018 

C         -1.70723       -2.05667        0.04018 

C         -0.99494       -2.23859        1.26211 

C         -1.06647       -1.31811        2.27907 

C         -1.85520       -0.15481        2.13014 

C         -2.56824        0.06266        0.97818 

F         -3.52310       -0.84663       -0.99896 

H          0.59399        0.33100       -2.84156 

H          2.12600       -2.11726       -2.22177 

H          3.68679       -3.08617       -0.56988 

H          4.11853       -1.94956        1.58841 

H          3.03714        0.22220        2.09457 

H         -1.05979        4.56345       -0.44945 

H         -0.91173        2.77142       -2.14237 

H          1.65687        2.45616        2.12826 

H          0.18440        4.40084        1.68636 

H         -1.87008       -2.89721       -0.63256 

H         -0.38937       -3.13409        1.38260 

H         -0.49141       -1.46862        3.18815 

H         -1.87701        0.58893        2.92172 

H         -3.19023        0.94399        0.84790 

 

Insertion TS of fluorobenzene by complex I (s) 

M06/6-311+G** Enthalpy = -2340.40729146 

Imaginary frequency = -220.52 

H         -2.23066        2.26727        1.67045 

C         -1.25750        1.98966        1.27247 

C          1.21623        1.28670        0.17088 

C         -0.62206        0.85641        1.76447 

C         -0.69392        2.75009        0.24183 

C          0.53768        2.40198       -0.30384 

C          0.63846        0.47871        1.22685 

H         -1.05947        0.29466        2.58719 

H         -1.23127        3.61413       -0.14053 

C          2.46667        0.67754       -0.18683 

C          4.75319       -0.88222       -0.44643 

C          2.61845       -0.50472        0.60673 

C          3.44833        1.04060       -1.10801 



 

232 
 

C          4.58894        0.26566       -1.23893 

C          3.78669       -1.26746        0.46426 

H          3.32126        1.93527       -1.71609 

H          5.36106        0.54544       -1.95123 

H          3.92515       -2.16576        1.06341 

H          5.65684       -1.47871       -0.55486 

C          1.46670       -0.67616        1.44209 

H          1.43778       -1.31845        2.31653 

Ni        -0.34790       -0.95719        0.28519 

H          0.96375        2.99730       -1.11041 

C         -3.07917       -1.38776        0.27614 

H         -2.95360       -2.24577        0.93088 

C         -4.20195       -0.58671        0.32831 

H         -4.98838       -0.82340        1.04279 

C         -4.34703        0.51467       -0.51990 

H         -5.23653        1.13528       -0.47118 

C         -3.34941        0.77622       -1.46433 

H         -3.45923        1.61904       -2.14418 

C         -2.21441       -0.00337       -1.55015 

H         -1.42678        0.20996       -2.26729 

C         -2.01741       -1.01750       -0.58561 

F         -1.19661       -2.22878       -1.06454 

 

C-F insertion of fluorobenzene by complex I (s) 

M06/6-311+G** Enthalpy = -2340.4716168 

C          2.06636        0.66359        1.14101 

C          1.00558        0.90204       -0.89794 

C          1.44887        1.60777        0.27875 

C          1.12130        2.97485        0.42780 

C          0.43734        3.61362       -0.57457 

C          0.03065        2.92695       -1.74442 

C          0.30273        1.59387       -1.90890 

C          2.22655       -0.56521        0.42497 

C          1.53537       -0.44463       -0.82555 

C          2.76564       -2.83996       -0.12523 

C          2.81887       -1.79056        0.76875 

C          1.49173       -1.52736       -1.71294 

C          2.11162       -2.70978       -1.36308 

Ni         0.04400        0.06157        0.85253 

C         -1.71022       -0.40177        0.26563 

F         -0.35625       -0.13305        2.62925 

C         -2.00952       -0.90739       -1.00480 

C         -3.31220       -1.21261       -1.39053 

C         -4.36647       -1.01250       -0.50914 

C         -4.09444       -0.51670        0.76155 

C         -2.78876       -0.22579        1.14127 



 

233 
 

H          2.41568        0.85716        2.14701 

H          1.41664        3.50536        1.32931 

H          0.18708        4.66612       -0.46736 

H         -0.52001        3.46516       -2.51103 

H         -0.02892        1.06786       -2.80096 

H          3.22957       -3.78879        0.13239 

H          3.30778       -1.90504        1.73269 

H          0.97731       -1.43518       -2.66710 

H          2.08767       -3.55492       -2.04585 

H         -1.20756       -1.08598       -1.72064 

H         -3.50312       -1.61114       -2.38618 

H         -5.38683       -1.24530       -0.80620 

H         -4.90971       -0.36192        1.46732 

H         -2.57721        0.12967        2.14673 

 

Complex II (d) 

M06/6-311+G** Enthalpy = -1883.39625103 

C         -0.00000        0.93981        0.92100 

C         -0.72219       -1.08675       -0.02366 

C         -1.15265        0.11945        0.59537 

C         -2.52357        0.34631        0.76268 

C         -3.43264       -0.59728        0.31553 

C         -3.00436       -1.77342       -0.31388 

C         -1.64994       -2.01600       -0.48708 

C          1.15266        0.11947        0.59537 

C          0.72222       -1.08674       -0.02366 

C          3.43266       -0.59722        0.31553 

C          2.52357        0.34635        0.76268 

C          1.64998       -2.01598       -0.48708 

C          3.00440       -1.77336       -0.31389 

Co        -0.00004        2.29667       -0.65077 

H         -0.00001        1.59415        1.79379 

H         -2.86591        1.26916        1.22678 

H         -4.49816       -0.41921        0.44392 

H         -3.73740       -2.49414       -0.66755 

H         -1.31479       -2.93192       -0.97138 

H          4.49818       -0.41913        0.44391 

H          2.86590        1.26920        1.22678 

H          1.31485       -2.93190       -0.97138 

H          3.73746       -2.49407       -0.66756 

 

Chlorobenzene (s) 

M06/6-311+G** Enthalpy = -691.776106302 

C          0.00000        1.20902       -0.17651 

C          0.00000        1.20099       -1.56427 

C          0.00000        0.00000       -2.26040 



 

234 
 

C         -0.00000       -1.20099       -1.56427 

C         -0.00000       -1.20902       -0.17651 

C         -0.00000        0.00000        0.50126 

Cl        -0.00000        0.00000        2.24915 

H          0.00000        2.14031        0.37987 

H          0.00000        2.14382       -2.10264 

H          0.00000        0.00000       -3.34570 

H         -0.00000       -2.14382       -2.10264 

H         -0.00000       -2.14031        0.37987 

 

 

Insertion TS for oxidative addition of chlorobenzene by complex II (d) 

M06/6-311+G** Enthalpy = -2575.21211857 

Imaginary frequency = -219.22 

H          1.63168        3.76719       -0.49858 

C          0.79548        3.10088       -0.29894 

C         -1.34223        1.39830        0.26871 

C          0.41691        2.18947       -1.26515 

C          0.14204        3.17295        0.94276 

C         -0.91283        2.31928        1.22397 

C         -0.67382        1.31194       -1.01187 

H          0.93469        2.14962       -2.22118 

H          0.47766        3.88914        1.68761 

C         -2.42129        0.44592        0.25089 

C         -4.30586       -1.50919       -0.33105 

C         -2.36942       -0.24431       -1.00031 

C         -3.39616        0.12936        1.19362 

C         -4.33862       -0.84382        0.90329 

C         -3.33650       -1.21984       -1.27517 

H         -3.41767        0.64500        2.15222 

H         -5.10457       -1.09638        1.63201 

H         -3.31523       -1.75501       -2.22268 

H         -5.05319       -2.27022       -0.54569 

C         -1.24317        0.22642       -1.75984 

H         -1.10593        0.05713       -2.82259 

Co         0.44649       -0.32861       -0.51203 

H         -1.41543        2.37108        2.18862 

C          2.35293       -1.53961       -0.67615 

H          1.75031       -2.30904       -1.15403 

C          3.64336       -1.24817       -1.13550 

H          3.99741       -1.70633       -2.05751 

C          4.48187       -0.42193       -0.41195 

H          5.48681       -0.21209       -0.76688 

C          4.04295        0.11560        0.81900 

H          4.70804        0.76675        1.38304 

C          2.78604       -0.14116        1.30309 



 

235 
 

H          2.43408        0.28666        2.23800 

C          1.89270       -0.90409        0.51207 

Cl         0.50881       -1.98464        1.48962 

 

η5 C-Cl insertion of chlorobenzene by complex II (d) 

M06/6-311+G** Enthalpy = -2575.292339 

C          2.38604       -0.23940        0.67253 

C          1.17913        0.80707       -1.01300 

C          2.05009        1.02525        0.11288 

C          2.32209        2.35397        0.51740 

C          1.79135        3.39738       -0.19757 

C          0.95619        3.17661       -1.31875 

C          0.64359        1.90191       -1.71913 

C          1.85357       -1.25409       -0.17861 

C          1.06267       -0.62400       -1.19949 

C          1.17688       -3.39811       -1.02976 

C          1.87442       -2.66503       -0.10277 

C          0.34468       -1.40407       -2.12465 

C          0.41451       -2.77296       -2.04323 

Co         0.24599       -0.06111        0.75867 

C         -1.61232        0.14809        0.30476 

Cl        -0.12212       -0.71478        2.84461 

C         -2.43778       -0.97111        0.14065 

C         -3.76914       -0.85060       -0.24121 

C         -4.32569        0.40575       -0.45926 

C         -3.53055        1.53274       -0.29170 

C         -2.19519        1.39998        0.08131 

H          2.97076       -0.40603        1.56802 

H          2.95027        2.53540        1.38571 

H          2.00309        4.41877        0.10894 

H          0.54328        4.02903       -1.85111 

H         -0.02541        1.73032       -2.55923 

H          1.19002       -4.48375       -0.97369 

H          2.43052       -3.15361        0.69295 

H         -0.27464       -0.92119       -2.87708 

H         -0.14196       -3.38657       -2.74620 

H         -2.02501       -1.96444        0.32053 

H         -4.38140       -1.74304       -0.36399 

H         -5.36859        0.50446       -0.75244 

H         -3.95264        2.52384       -0.45379 

H         -1.59121        2.30157        0.19645 

 

η1 C-Cl insertion of chlorobenzene by complex II (d) 

M06/6-311+G** Enthalpy = -2575.28859277 

C          0.01067        0.64364       -1.57942 

C          1.83772       -0.55503       -0.70353 



 

236 
 

C          0.71446       -0.63868       -1.55939 

C          0.41433       -1.84915       -2.18033 

C          1.20827       -2.95757       -1.92955 

C          2.29658       -2.88026       -1.05452 

C          2.61254       -1.67989       -0.43718 

C          0.87697        1.54801       -0.81742 

C          1.94249        0.81356       -0.24226 

C          1.68944        3.52598        0.27905 

C          0.76570        2.91346       -0.55537 

C          2.85513        1.43509        0.60438 

C          2.72641        2.79161        0.86320 

Co        -1.73407        0.57637       -0.55428 

C         -1.06305       -0.38117        0.91260 

Cl        -3.90968        0.63572       -0.39988 

C         -0.38743        0.25903        1.95321 

C          0.12933       -0.46665        3.02201 

C         -0.02595       -1.84634        3.07500 

C         -0.71393       -2.49199        2.05323 

C         -1.23146       -1.76559        0.98786 

H         -0.39194        0.99698       -2.53815 

H         -0.45423       -1.92516       -2.83202 

H          0.97400       -3.90607       -2.40730 

H          2.89166       -3.76772       -0.85565 

H          3.45655       -1.61917        0.24718 

H          1.60279        4.58939        0.48882 

H         -0.05093        3.48763       -0.98973 

H          3.66024        0.86274        1.06121 

H          3.43272        3.28884        1.52302 

H         -0.23543        1.33777        1.92301 

H          0.66582        0.05183        3.81479 

H          0.38668       -2.41497        3.90493 

H         -0.84224       -3.57242        2.08272 

H         -1.76076       -2.28729        0.19136 

 

Insertion TS for oxidative addition of chlorobenzene by complex I (s) 

M06/6-311+G** Enthalpy = -2700.79494209 

Imaginary frequency = -179.62 

H          2.03717        3.36551       -0.70107 

C          1.11954        2.82908       -0.46912 

C         -1.21767        1.45342        0.18875 

C          0.65935        1.86725       -1.34709 

C          0.44795        3.10240        0.73476 

C         -0.71353        2.41756        1.05990 

C         -0.51922        1.14401       -1.03515 

H          1.19695        1.65509       -2.26914 

H          0.84450        3.85409        1.41271 



 

237 
 

C         -2.39585        0.62694        0.22975 

C         -4.48242       -1.15056       -0.22539 

C         -2.38652       -0.20038       -0.93708 

C         -3.43205        0.53057        1.15544 

C         -4.47512       -0.35405        0.92886 

C         -3.45436       -1.08065       -1.14996 

H         -3.42535        1.15258        2.04937 

H         -5.28998       -0.43200        1.64430 

H         -3.46733       -1.71561       -2.03407 

H         -5.30904       -1.83820       -0.39272 

C         -1.19067        0.05368       -1.69580 

H         -1.06805       -0.20889       -2.74219 

Ni         0.38739       -0.61664       -0.48258 

H         -1.23234        2.63299        1.99302 

C          2.48649       -1.57704       -0.59176 

H          2.05949       -2.43297       -1.10589 

C          3.72070       -1.04107       -0.97135 

H          4.21706       -1.42452       -1.86073 

C          4.32466       -0.04894       -0.21759 

H          5.28750        0.35483       -0.51757 

C          3.70189        0.41893        0.95244 

H          4.17285        1.20981        1.53215 

C          2.48266       -0.07398        1.35488 

H          1.96795        0.31429        2.22906 

C          1.84359       -1.03249        0.54316 

Cl         0.47324       -2.14878        1.36643 

 

 

η5 C-Cl insertion of chlorobenzene by complex I (s) 

M06/6-311+G** Enthalpy = -2700.85970191 

C          2.23462        0.66763        0.73889 

C          0.90237        0.87877       -1.14020 

C          1.54062        1.60746       -0.07751 

C          1.28050        2.98672        0.06370 

C          0.46579        3.61249       -0.84910 

C         -0.14186        2.89667       -1.90561 

C          0.05998        1.54585       -2.04994 

C          2.22268       -0.59933        0.07953 

C          1.34267       -0.50052       -1.05085 

C          2.51148       -2.93718       -0.38994 

C          2.77915       -1.84874        0.41015 

C          1.07762       -1.62925       -1.84216 

C          1.66898       -2.82944       -1.51526 

Ni         0.18593        0.08199        0.74683 

C         -1.58746       -0.39504        0.27562 

Cl        -0.17242        0.11021        2.90849 
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C         -1.92231       -1.67342       -0.17604 

C         -3.21983       -1.98655       -0.57393 

C         -4.21772       -1.02084       -0.53143 

C         -3.90392        0.25681       -0.07971 

C         -2.60792        0.55948        0.32286 

H          2.74710        0.89220        1.66568 

H          1.71846        3.53737        0.89210 

H          0.26552        4.67625       -0.74861 

H         -0.79590        3.42231       -2.59597 

H         -0.44291        0.98717       -2.83592 

H          2.94410       -3.90352       -0.14346 

H          3.40608       -1.94582        1.29265 

H          0.39697       -1.55556       -2.68719 

H          1.47245       -3.71114       -2.11956 

H         -1.15445       -2.44659       -0.21992 

H         -3.45276       -2.99302       -0.91888 

H         -5.23182       -1.26189       -0.84231 

H         -4.67782        1.02171       -0.03594 

H         -2.38247        1.56168        0.68720 

 

η1 C-Cl insertion of chlorobenzene by complex I (s) 

M06/6-311+G** Enthalpy = -2700.86319131 

C         -0.05000        0.44893       -1.54585 

C          1.89779       -0.55347       -0.67505 

C          0.74519       -0.78263       -1.46002 

C          0.49569       -2.05812       -1.95730 

C          1.37063       -3.09107       -1.65226 

C          2.49053       -2.86820       -0.84694 

C          2.75749       -1.59881       -0.35500 

C          0.79590        1.46892       -0.91425 

C          1.93183        0.85714       -0.33703 

C          1.52276        3.58114       -0.03441 

C          0.60412        2.84006       -0.76433 

C          2.83857        1.60418        0.40771 

C          2.63098        2.96771        0.55688 

Ni        -1.78541        0.30614       -0.63051 

C         -1.03629       -0.31632        0.94231 

Cl        -3.93325        0.41746       -0.45487 

C         -0.50018        0.54794        1.89569 

C          0.05948        0.04906        3.06783 

C          0.08929       -1.31927        3.30662 

C         -0.45816       -2.18547        2.36701 

C         -1.01958       -1.68794        1.19688 

H         -0.48974        0.69580       -2.52526 

H         -0.39576       -2.24431       -2.55355 

H          1.17623       -4.09129       -2.03217 
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H          3.15223       -3.69550       -0.60382 

H          3.62835       -1.42520        0.27406 

H          1.37410        4.65111        0.08974 

H         -0.27431        3.31663       -1.19535 

H          3.69927        1.12568        0.87092 

H          3.33071        3.56402        1.13677 

H         -0.49349        1.62189        1.71729 

H          0.48532        0.73825        3.79467 

H          0.53746       -1.70871        4.21756 

H         -0.43960       -3.25957        2.54110 

H         -1.43029       -2.38023        0.46417 

 

 

Insertion TS for oxidative addition of chlorobenzene by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -1320.43033185 

Imaginary frequency = -87.02 

H          1.13649        4.03481       -0.96991 

C          0.33997        3.35588       -0.67148 

C         -1.69666        1.64173        0.12322 

C          0.20217        2.14323       -1.31905 

C         -0.51065        3.71591        0.38586 

C         -1.52531        2.85869        0.78173 

C         -0.80730        1.25472       -0.92331 

H          0.89639        1.85702       -2.10748 

H         -0.37263        4.66927        0.89028 

C         -2.67491        0.59528        0.27190 

C         -4.33330       -1.62006        0.02651 

C         -2.36509       -0.42346       -0.67955 

C         -3.77989        0.46676        1.11096 

C         -4.60809       -0.63829        0.99216 

C         -3.22854       -1.52184       -0.79852 

H         -4.00140        1.23942        1.84621 

H         -5.47545       -0.74406        1.63901 

H         -3.01043       -2.30362       -1.52419 

H         -4.99704       -2.47744       -0.06533 

C         -1.15863       -0.06820       -1.39505 

H         -0.99299       -0.37520       -2.42778 

H         -2.19501        3.14123        1.59317 

C          3.22633       -0.51007       -0.59200 

H          3.44120       -1.28848       -1.31668 

C          3.81629        0.74140       -0.67438 

H          4.50344        0.94946       -1.49122 

C          3.53369        1.72774        0.26476 

H          3.98705        2.71088        0.18145 

C          2.65315        1.44867        1.30631 

H          2.40705        2.21978        2.03145 
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C          2.06265        0.20239        1.42463 

H          1.38148       -0.02623        2.23772 

C          2.30087       -0.76014        0.43143 

Cl         2.09184       -2.59255        0.93411 

Pd         0.41413       -1.24338       -0.36507 

 

η5 C-Cl insertion of chlorobenzene by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -1320.4648284 

C          2.11551        0.91908        1.04428 

C          0.97734        1.08693       -0.96808 

C          1.26881        1.75939        0.27844 

C          0.64368        3.00336        0.54457 

C         -0.16385        3.56838       -0.40875 

C         -0.41496        2.92449       -1.64517 

C          0.14431        1.70463       -1.92578 

C          2.56582       -0.14802        0.19014 

C          1.85551       -0.07032       -1.04856 

C          3.67440       -2.11927       -0.61856 

C          3.46907       -1.19405        0.39250 

C          2.06669       -1.01292       -2.04824 

C          2.98275       -2.03319       -1.83190 

Pd        -0.08501       -0.04023        0.79309 

C         -1.82464       -0.58240       -0.04281 

Cl        -0.69634       -1.02462        2.86877 

C         -1.82153       -1.41941       -1.15779 

C         -3.00709       -1.71579       -1.82374 

C         -4.21161       -1.18018       -1.38403 

C         -4.22006       -0.35388       -0.26654 

C         -3.03679       -0.06182        0.40436 

H          2.49293        1.13457        2.03579 

H          0.82253        3.50235        1.49355 

H         -0.63697        4.52641       -0.20843 

H         -1.07454        3.39798       -2.36671 

H         -0.06451        1.20088       -2.86701 

H          4.38062       -2.93161       -0.46556 

H          3.99515       -1.28475        1.33947 

H          1.51742       -0.95156       -2.98577 

H          3.16202       -2.77369       -2.60674 

H         -0.88522       -1.84764       -1.51413 

H         -2.98765       -2.37068       -2.69311 

H         -5.13800       -1.41037       -1.90458 

H         -5.15911        0.06311        0.09280 

H         -3.05654        0.56406        1.29309 

 

η1 C-Cl insertion of chlorobenzene by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -1320.47855209 
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C          0.18643        0.44515       -1.55510 

C          2.11997       -0.56236       -0.65226 

C          0.97237       -0.79112       -1.44432 

C          0.72883       -2.06604       -1.94654 

C          1.60347       -3.09802       -1.63861 

C          2.71964       -2.87476       -0.82770 

C          2.98153       -1.60607       -0.33173 

C          1.02262        1.46063       -0.90353 

C          2.15283        0.84863       -0.31575 

C          1.74822        3.57393       -0.02452 

C          0.83479        2.83305       -0.76069 

C          3.05606        1.59536        0.43354 

C          2.85044        2.95959        0.57755 

Pd        -1.72782        0.28292       -0.61762 

C         -0.81859       -0.35126        1.01514 

Cl        -4.03461        0.19171        0.01275 

C         -0.26630        0.54844        1.91850 

C          0.35789        0.07495        3.06855 

C          0.42953       -1.28869        3.32158 

C         -0.13995       -2.18119        2.42109 

C         -0.76685       -1.71716        1.27045 

H         -0.21113        0.69147       -2.54864 

H         -0.15928       -2.25250       -2.54740 

H          1.41274       -4.09763       -2.02176 

H          3.38217       -3.70114       -0.58395 

H          3.85023       -1.43125        0.29997 

H          1.60074        4.64445        0.09559 

H         -0.03971        3.31022       -1.19870 

H          3.91265        1.11604        0.90347 

H          3.54652        3.55587        1.16174 

H         -0.29768        1.61739        1.72228 

H          0.79946        0.78406        3.76550 

H          0.92680       -1.65506        4.21607 

H         -0.09109       -3.25150        2.60880 

H         -1.20176       -2.42221        0.56698 

 

Complex III (d) 

M06/6-311+G** Enthalpy = -2141.19650422 

C          0.86971        0.88973        0.00000 

C         -1.16008       -0.04096        0.72117 

C          0.05190        0.57173        1.15151 

C          0.27902        0.74026        2.52303 

C         -0.66962        0.30744        3.43214 

C         -1.85500       -0.30910        3.00463 

C         -2.09688       -0.48588        1.65093 

C          0.05190        0.57173       -1.15151 
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C         -1.16008       -0.04096       -0.72117 

C         -0.66962        0.30744       -3.43214 

C          0.27902        0.74026       -2.52303 

C         -2.09688       -0.48588       -1.65093 

C         -1.85500       -0.30910       -3.00463 

Cu         2.35895       -0.56987       -0.00000 

H          1.54809        1.74300        0.00000 

H          1.20732        1.19348        2.86579 

H         -0.49118        0.43766        4.49749 

H         -2.58145       -0.64966        3.73826 

H         -3.01863       -0.96006        1.31676 

H         -0.49118        0.43766       -4.49749 

H          1.20732        1.19348       -2.86579 

H         -3.01863       -0.96006       -1.31676 

H         -2.58145       -0.64966       -3.73826 

 

Cl Transfer TS for halogen abstraction of chlorobenzene by complex III (d) 

M06/6-311+G** Enthalpy = -2832.97456964 

Imaginary frequency = -261.52 

H         -0.92483       -3.76326        2.29041 

C         -0.56874       -2.76236        2.05554 

C          0.30469       -0.19405        1.46938 

C          0.67629       -2.60098        1.47447 

C         -1.38972       -1.65901        2.33030 

C         -0.95473       -0.37710        2.03583 

C          1.12984       -1.31306        1.15909 

H          1.29035       -3.46655        1.23266 

H         -2.37587       -1.81264        2.76174 

C          1.01236        0.99583        1.06778 

C          2.80926        2.90762        0.15871 

C          2.25471        0.59032        0.50002 

C          0.67890        2.34596        1.15166 

C          1.57562        3.30134        0.69890 

C          3.15069        1.57115        0.05488 

H         -0.27805        2.64654        1.57570 

H          1.32775        4.35782        0.76428 

H          4.10036        1.27677       -0.38805 

H          3.50442        3.66789       -0.19120 

C          2.32774       -0.85794        0.47564 

H          3.27484       -1.38982        0.54535 

H         -1.59882        0.47868        2.23354 

Cl        -0.59928       -0.70884       -2.18192 

Cu         1.63079       -1.25551       -1.40797 

C         -3.09795       -0.53906       -0.82555 

C         -4.04067        0.09762       -0.02969 

H         -4.87521       -0.47035        0.37677 
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C         -3.91475        1.45321        0.25911 

H         -4.64751        1.94570        0.89233 

C         -2.83709        2.17094       -0.24938 

H         -2.72445        3.22721       -0.01228 

C         -1.89326        1.54604       -1.05478 

H         -1.03350        2.09034       -1.43898 

H         -3.16579       -1.60461       -1.03214 

C         -2.05302        0.20295       -1.34628 

 

 

 

Chlorine addition product of complex III (s) 

M06/6-311+G** Enthalpy = -2601.53662625 

C          0.16034       -0.00077        1.11590 

C         -1.67644        0.72461       -0.17347 

C         -0.59881        1.15568        0.64313 

C         -0.41733        2.52364        0.86287 

C         -1.27600        3.43271        0.26841 

C         -2.31993        3.00383       -0.56108 

C         -2.51978        1.65090       -0.78396 

C         -0.60224       -1.15487        0.64299 

C         -1.67859       -0.72051       -0.17355 

C         -1.28611       -3.42984        0.26793 

C         -0.42474       -2.52338        0.86250 

C         -2.52470       -1.64423       -0.78412 

C         -2.32881       -2.99778       -0.56144 

Cu         1.86993       -0.00240        0.12200 

Cl         3.78290       -0.00390       -0.84588 

H          0.52199       -0.00138        2.14885 

H          0.40895        2.86735        1.48222 

H         -1.13157        4.49746        0.43688 

H         -2.97306        3.73613       -1.02874 

H         -3.33618        1.31505       -1.42122 

H         -1.14480       -4.49504        0.43622 

H          0.40055       -2.86961        1.48175 

H         -3.34013       -1.30590       -1.42131 

H         -2.98411       -3.72810       -1.02918 

 

Phenyl radical (d) 

M06/6-311+G** Enthalpy = -231.478175565 

C         -0.00000        1.20778       -0.62840 

C         -0.00000        1.21909        0.76725 

C          0.00000        0.00000        1.39100 

C         -0.00000       -1.21909        0.76725 

C         -0.00000       -1.20778       -0.62840 

C         -0.00000       -0.00000       -1.31607 
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H         -0.00000        2.14646       -1.17567 

H         -0.00000        2.15483        1.31865 

H         -0.00000       -2.15483        1.31865 

H         -0.00000       -2.14646       -1.17567 

H         -0.00000       -0.00000       -2.40172 

 

C-Cl insertion of chlorobenzene by cobalt (s) 

M06/6-311+G** Enthalpy = -2074.57720962 

Co         1.05842       -0.34852        0.00009 

C         -0.56251        0.46628       -0.00064 

C         -0.95999       -0.86179       -0.00026 

C         -2.28316       -1.26225        0.00002 

C         -3.26158       -0.25780        0.00007 

C         -2.88524        1.07979        0.00021 

C         -1.53623        1.45731       -0.00018 

Cl         3.07726        0.34145        0.00001 

H         -0.14207       -1.64647        0.00060 

H         -2.57118       -2.31266        0.00022 

H         -4.31540       -0.52662       -0.00010 

H         -3.65807        1.84777        0.00045 

H         -1.27196        2.51397        0.00092 

 

C-Cl insertion of chlorobenzene by cobalt (t) 

M06/6-311+G** Enthalpy = -2074.61296068 

Co        -1.24100       -0.00002       -0.00007 

C          0.73342       -0.00003       -0.00004 

C          1.49412        1.18624        0.00001 

C          2.88549        1.19506        0.00012 

C          3.59572        0.00003        0.00018 

C          2.88554       -1.19502        0.00012 

C          1.49417       -1.18626        0.00001 

Cl        -3.44181        0.00002       -0.00006 

H          0.97976        2.14762       -0.00003 

H          3.42177        2.14357        0.00016 

H          4.68370        0.00005        0.00027 

H          3.42186       -2.14351        0.00016 

H          0.97984       -2.14766       -0.00004 

 

Fluorenyl radical (d) 

M06/6-311+G** Enthalpy = -500.607194889 

C         -0.00000        1.73948       -0.00019 

C          0.72970       -0.45317       -0.00006 

C          1.15515        0.90498        0.00003 

C          2.51757        1.21056        0.00001 

C          3.43783        0.17166        0.00000 

C          3.01396       -1.15701        0.00003 
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C          1.65512       -1.47680        0.00002 

C         -1.15515        0.90499        0.00001 

C         -0.72970       -0.45317       -0.00008 

C         -3.43783        0.17166        0.00002 

C         -2.51757        1.21056        0.00003 

C         -1.65512       -1.47680       -0.00001 

C         -3.01396       -1.15701        0.00003 

H         -0.00000        2.82388        0.00098 

H          2.85051        2.24489       -0.00012 

H          4.50065        0.39270       -0.00007 

H          3.75231       -1.95304        0.00004 

H          1.33737       -2.51624        0.00015 

H         -4.50065        0.39270       -0.00006 

H         -2.85051        2.24488       -0.00006 

H         -1.33737       -2.51624        0.00009 

H         -3.75230       -1.95305        0.00001 

 

C-Cl insertion of chlorobenzene by nickel (d) 

M06/6-311+G** Enthalpy = -2200.21044365 

Ni        -1.21629       -0.08174       -0.00000 

C          0.72395       -0.03425        0.00002 

C          1.43805        1.17908        0.00001 

C          2.82791        1.24079       -0.00000 

C          3.58249        0.07312       -0.00001 

C          2.91910       -1.14786       -0.00000 

C          1.52783       -1.19087        0.00001 

Cl        -3.38150        0.08082       -0.00001 

H          0.88578        2.11898        0.00003 

H          3.32841        2.20869       -0.00001 

H          4.66967        0.11429       -0.00003 

H          3.49093       -2.07543       -0.00000 

H          1.05109       -2.17178        0.00002 

 

Chlorine addition product of complex I (d) 

M06/6-311+G** Enthalpy = -2469.31154699 

C          0.29503       -0.40581        1.40929 

C          0.46132        1.36037       -0.13059 

C         -0.34940        0.77931        0.91152 

C         -1.62088        1.33914        1.18314 

C         -2.04050        2.44577        0.45592 

C         -1.24116        3.00662       -0.54472 

C          0.00269        2.46131       -0.84213 

C          1.57264       -0.46858        0.75239 

C          1.67353        0.58817       -0.20192 

C          3.77705       -1.19553        0.11555 

C          2.65004       -1.35098        0.90205 



 

246 
 

C          2.81225        0.72055       -0.99428 

C          3.86276       -0.16771       -0.83569 

Ni        -1.29018       -0.85106        0.08138 

Cl        -2.56961       -2.23227       -0.96004 

H          0.07998       -0.88129        2.36111 

H         -2.23627        0.94007        1.98602 

H         -3.01450        2.88080        0.66653 

H         -1.60408        3.86502       -1.10369 

H          0.61279        2.89256       -1.63411 

H          4.61108       -1.88437        0.23142 

H          2.59274       -2.16094        1.62637 

H          2.87758        1.52166       -1.72877 

H          4.75685       -0.07097       -1.44617 

 

 

Palladium complex with chlorine and benzyne (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -819.192506035 

C         -2.20265        1.43643       -0.00004 

C         -1.06854        0.65670       -0.00005 

C         -1.07342       -0.66201       -0.00023 

C         -2.21547       -1.43046        0.00002 

C         -3.41242       -0.68715        0.00008 

C         -3.40624        0.70393        0.00003 

Pd         0.83747       -0.00658        0.00001 

Cl         3.23039        0.00979        0.00001 

H         -2.21155        2.52439        0.00011 

H         -2.23487       -2.51835        0.00005 

H         -4.36618       -1.21226        0.00013 

H         -4.35524        1.23757        0.00003 

 

Fluorene (s) 

M06/6-311+G** Enthalpy = -501.243597684 

C          0.00000        1.81796        0.00012 

C         -0.73049       -0.44807        0.00010 

C         -1.17548        0.88102        0.00006 

C         -2.52910        1.16749       -0.00005 

C         -3.44040        0.11601       -0.00011 

C         -2.99867       -1.20431       -0.00006 

C         -1.64134       -1.49708        0.00003 

C          1.17548        0.88102        0.00001 

C          0.73049       -0.44807        0.00007 

C          3.44040        0.11600       -0.00011 

C          2.52910        1.16750       -0.00008 

C          1.64134       -1.49708        0.00007 

C          2.99867       -1.20430       -0.00003 

H         -0.00003        2.47477       -0.87962 
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H          0.00003        2.47438        0.88016 

H         -2.87853        2.19687       -0.00007 

H         -4.50573        0.32546       -0.00021 

H         -3.72437       -2.01197       -0.00011 

H         -1.30135       -2.52922        0.00008 

H          4.50573        0.32546       -0.00021 

H          2.87853        2.19687       -0.00015 

H          1.30135       -2.52922        0.00013 

H          3.72437       -2.01198       -0.00003 

 

 

C-Cl insertion of chlorobenzene by copper (s) 

M06/6-311+G** Enthalpy = -2332.43608783 

Cu        -1.19376       -0.00024       -0.00001 

C          0.72507       -0.00024        0.00001 

C          1.48423       -1.18523        0.00001 

C          2.87614       -1.19511       -0.00000 

C          3.58482        0.00033       -0.00000 

C          2.87566        1.19551       -0.00000 

C          1.48377        1.18507        0.00001 

Cl        -3.35251        0.00024        0.00001 

H          0.96821       -2.14562        0.00001 

H          3.41303       -2.14330       -0.00000 

H          4.67286        0.00056       -0.00001 

H          3.41220        2.14390       -0.00000 

H          0.96736        2.14525        0.00001 

 

Allyl Chloride (s) 

M06/6-311+G** Enthalpy = -577.471325939 

C         -2.20670       -0.20324       -0.30554 

C         -1.12214       -0.12139        0.45198 

C          0.03113        0.74917        0.12752 

Cl         1.53100       -0.24243       -0.11109 

H         -3.04408       -0.83742       -0.03570 

H         -2.29721        0.36546       -1.22789 

H         -1.03843       -0.70720        1.36586 

H         -0.12919        1.31066       -0.79498 

H          0.26818        1.44249        0.93747 

 

Insertion TS for oxidative addition of allyl chloride by complex II (d) 

M06/6-311+G** Enthalpy = -2460.93532908 

Imaginary frequency = -275.33 

C         -1.09370        1.63194       -1.50209 

C         -1.44789        2.77409       -0.77662 

C         -0.66453        3.24352        0.27206 

C          0.50501        2.57245        0.63710 
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C          2.79312       -1.54208       -0.88987 

C          3.85041       -1.53271        0.00482 

C          3.97614       -0.52169        0.96668 

C          3.03941        0.49860        1.02772 

H          0.50361       -0.71079       -2.61690 

H          2.69978       -2.34180       -1.62215 

H          4.59315       -2.32702       -0.03375 

H          4.80901       -0.54112        1.66505 

H          3.13438        1.28689        1.77260 

H          1.09390        2.92435        1.48257 

H         -0.97789        4.12485        0.82543 

H         -2.35503        3.31071       -1.04683 

H         -1.65969        1.35422       -2.38898 

C          0.10397        0.95458       -1.16243 

C          0.88840        1.43914       -0.05247 

C          1.83166       -0.52737       -0.83653 

C          1.97914        0.51268        0.12683 

C          0.64075       -0.29850       -1.61987 

C         -2.84120       -1.55428        0.00413 

H         -3.67513       -1.09513       -0.52682 

C         -1.89087       -2.40322       -0.66625 

H         -2.12263       -2.74666       -1.67688 

H         -1.34631       -3.14028       -0.07038 

C         -2.81826       -1.41173        1.42035 

H         -2.51643       -2.27404        2.01303 

H         -3.61340       -0.83040        1.87980 

Cl        -1.17049       -0.25847        2.06953 

Co        -1.17698       -0.57824       -0.61330 

 

η1 C-Cl insertion of allyl chloride by complex II (d) 

M06/6-311+G** Enthalpy = -2461.01529286 

C         -0.14272       -0.38008       -1.19177 

C         -2.11528        0.35452       -0.14268 

C         -1.48737       -0.74323       -0.79236 

C         -2.18534       -1.94782       -0.91496 

C         -3.45921       -2.05838       -0.38259 

C         -4.06453       -0.98087        0.27779 

C         -3.39251        0.22577        0.39819 

C         -0.01523        1.02618       -0.85020 

C         -1.18372        1.45760       -0.15393 

C          0.96471        3.18911       -0.45624 

C          1.05750        1.91769       -1.00338 

C         -1.24993        2.73275        0.39738 

C         -0.17463        3.59793        0.24554 

Co         1.34283       -0.71999        0.24406 

Cl         2.94955       -1.14282       -1.29546 
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C          0.15936       -1.04348        1.87094 

C          1.33307       -0.33905        2.19145 

C          2.57638       -0.90371        1.86814 

H          0.32691       -0.80559       -2.07488 

H         -1.71845       -2.79672       -1.41017 

H         -3.99976       -2.99813       -0.47348 

H         -5.06283       -1.09363        0.69280 

H         -3.86177        1.06602        0.90783 

H          1.79672        3.88018       -0.57046 

H          1.95098        1.59936       -1.53479 

H         -2.13749        3.05194        0.94168 

H         -0.21625        4.59715        0.67176 

H          0.14617       -2.13361        1.93839 

H         -0.81207       -0.56382        1.95741 

H          1.26605        0.73313        2.39345 

H          3.48631       -0.31340        1.90641 

H          2.71346       -1.98486        1.91945 

 

Insertion TS for oxidative addition of allyl chloride by complex I (s) 

M06/6-311+G** Enthalpy = -2586.514317 

Imaginary frequency = -222.28 

C         -1.37392       -2.12084       -1.40223 

C         -2.25123       -2.88413       -0.65277 

C         -2.93348       -2.33587        0.44290 

C         -2.74148       -1.00879        0.79074 

C         -0.04244        2.73777       -1.01677 

C         -0.44502        3.72222       -0.13226 

C         -1.34685        3.44148        0.90495 

C         -1.86416        2.16332        1.04768 

H          0.01853        0.22925       -2.67029 

H          0.67960        2.95899       -1.80113 

H         -0.04882        4.73062       -0.23480 

H         -1.63649        4.22864        1.59655 

H         -2.56391        1.94228        1.85216 

H         -3.26548       -0.58513        1.64595 

H         -3.60737       -2.95967        1.02478 

H         -2.40882       -3.92941       -0.91005 

H         -0.83409       -2.55888       -2.23983 

Ni         1.33324       -0.41617       -0.60161 

C         -1.16465       -0.77573       -1.06596 

C         -1.87033       -0.22092        0.04183 

C         -0.54700        1.43718       -0.88241 

C         -1.48816        1.16527        0.15289 

C         -0.27514        0.22256       -1.62196 

C          3.13219       -0.83187        0.09232 

H          3.46469       -1.83958       -0.16020 
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C          3.09681        0.18741       -0.92071 

H          3.56288       -0.03659       -1.88129 

H          3.19434        1.23677       -0.62042 

C          2.85886       -0.55992        1.47090 

H          2.85645        0.49064        1.75784 

H          3.31950       -1.20123        2.22076 

Cl         0.91024       -1.00522        1.98647 

 

η5 C-Cl insertion of allyl chloride by complex I (s) 

M06/6-311+G** Enthalpy = -2586.56109951 

C         -0.73555       -0.17634       -1.79310 

C          0.23801       -1.38823       -0.08140 

C          0.44796       -0.86243       -1.40632 

C          1.72308       -0.98838       -2.00281 

C          2.71718       -1.65013       -1.32783 

C          2.49963       -2.18663       -0.03685 

C          1.28150       -2.06284        0.58209 

C         -1.75535       -0.45627       -0.82695 

C         -1.15216       -1.16168        0.26545 

C         -3.83033       -0.42284        0.38164 

C         -3.10277       -0.07154       -0.73651 

C         -1.90739       -1.48937        1.39811 

C         -3.24011       -1.13196        1.44338 

Ni         0.01343        0.75823       -0.03966 

Cl        -0.11317        2.86216       -0.70374 

C          0.74850        1.18003        1.72207 

C          2.16953        1.41119        1.49682 

C          3.18236        0.60988        1.86155 

H         -0.86959        0.39589       -2.70228 

H          1.90363       -0.55898       -2.98490 

H          3.70095       -1.74714       -1.77978 

H          3.31817       -2.68587        0.47472 

H          1.12656       -2.45393        1.58578 

H         -4.87569       -0.13315        0.45416 

H         -3.55551        0.50817       -1.53672 

H         -1.44341       -2.01109        2.23262 

H         -3.83862       -1.38459        2.31467 

H          0.55283        0.34950        2.41501 

H          0.20174        2.08042        2.01744 

H          2.40594        2.31585        0.93191 

H          4.21253        0.83034        1.59467 

H          3.00373       -0.30710        2.42074 

 

η1 C-Cl insertion of allyl chloride by complex I (s) 

M06/6-311+G** Enthalpy = -2586.56495127 

C          0.08004       -0.33960       -1.12582 
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C          1.92179        0.76411       -0.15287 

C          0.74775        0.94716       -0.92206 

C          0.38012        2.23216       -1.31381 

C          1.17049        3.31061       -0.94584 

C          2.32040        3.12795       -0.17200 

C          2.69685        1.85482        0.23140 

C          1.00843       -1.32375       -0.56068 

C          2.08472       -0.65956        0.07405 

C          1.94988       -3.42684        0.11724 

C          0.95447       -2.71631       -0.53610 

C          3.06927       -1.38086        0.74453 

C          3.00039       -2.76569        0.76182 

Ni        -1.70415       -0.45675       -0.31564 

Cl        -3.84994       -0.84205       -0.23597 

C         -1.19484        0.01501        1.46245 

C         -1.80927        1.32286        1.67840 

C         -1.15214        2.48726        1.75734 

H         -0.31610       -0.54463       -2.13423 

H         -0.53518        2.38427       -1.88207 

H          0.88309        4.31514       -1.24674 

H          2.91758        3.98874        0.11774 

H          3.59187        1.71209        0.83427 

H          1.90878       -4.51324        0.13961 

H          0.12443       -3.23481       -1.01167 

H          3.88884       -0.86566        1.24225 

H          3.76367       -3.34194        1.27839 

H         -0.10893        0.00995        1.60302 

H         -1.67774       -0.79585        2.02177 

H         -2.89874        1.33009        1.74086 

H         -1.67866        3.42950        1.88312 

H         -0.06779        2.53429        1.67480 

 

Insertion TS for oxidative addition of allyl chloride by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -1206.13727102 

Imaginary frequency = -271.21 

C          0.54736        2.45768       -1.17996 

C          1.04985        3.57669       -0.54004 

C          2.07358        3.46849        0.41309 

C          2.61516        2.22833        0.71196 

C          1.89637       -2.39782       -0.91384 

C          2.90139       -3.02394       -0.19774 

C          3.70370       -2.30711        0.70135 

C          3.51329       -0.94395        0.86764 

H          0.33835       -0.29090       -2.35536 

H          1.26368       -2.96854       -1.59121 

H          3.06809       -4.09114       -0.32689 
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H          4.48009       -2.82220        1.26132 

H          4.14718       -0.38223        1.55225 

H          3.41803        2.14332        1.44290 

H          2.44246        4.36042        0.91304 

H          0.63876        4.55687       -0.77148 

H         -0.27091        2.54751       -1.89169 

C          1.06713        1.19461       -0.87458 

C          2.13537        1.09378        0.06014 

C          1.67526       -1.02671       -0.74377 

C          2.52056       -0.29482        0.13708 

C          0.69564       -0.13282       -1.33527 

C         -2.29781       -0.40150        1.79339 

H         -2.33513       -1.40634        2.20900 

C         -1.05091        0.27038        1.71932 

H         -0.19477       -0.13834        2.25500 

H         -1.03068        1.35731        1.60080 

C         -3.51115        0.20384        1.42193 

H         -3.49981        1.26963        1.21312 

H         -4.44223       -0.17526        1.82502 

Cl        -4.30042       -0.32034       -0.63541 

Pd        -1.13315       -0.48489       -0.19083 

 

η5 C-Cl insertion of allyl chloride by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -1206.16946453 

C          1.02089       -0.04283        1.71674 

C          0.32055       -1.51008        0.06099 

C          0.01408       -0.98052        1.37083 

C         -1.17616       -1.40351        2.01616 

C         -1.98104       -2.32980        1.40512 

C         -1.66573       -2.85654        0.13050 

C         -0.52267       -2.46550       -0.52780 

C          2.08146       -0.16394        0.74886 

C          1.65619       -1.04898       -0.28811 

C          4.15486        0.14431       -0.42422 

C          3.33834        0.43726        0.65771 

C          2.48322       -1.32567       -1.36794 

C          3.73781       -0.73189       -1.43085 

Pd        -0.39873        0.80309        0.01211 

Cl        -0.64345        3.15902        0.41113 

C         -1.61421        0.98636       -1.67920 

C         -2.88877        0.49793       -1.19994 

C         -3.42077       -0.70744       -1.46983 

H          1.07556        0.51621        2.64226 

H         -1.43203       -0.99480        2.99034 

H         -2.89574       -2.65231        1.89610 

H         -2.33477       -3.58128       -0.32532 
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H         -0.28048       -2.87466       -1.50697 

H          5.13615        0.60752       -0.49472 

H          3.66629        1.13461        1.42445 

H          2.15138       -1.99805       -2.15663 

H          4.39713       -0.94364       -2.26836 

H         -1.14780        0.35987       -2.44933 

H         -1.57449        2.05145       -1.90981 

H         -3.43005        1.17234       -0.53306 

H         -4.35935       -1.03374       -1.03096 

H         -2.91976       -1.40381       -2.13827 

 

η1 C-Cl insertion of allyl chloride by complex IV (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -1206.18004172 

C         -0.45891       -0.29388       -1.22336 

C         -2.18121        0.80967       -0.05278 

C         -1.09642        0.99248       -0.94444 

C         -0.78439        2.27719       -1.38776 

C         -1.52463        3.35567       -0.93019 

C         -2.57661        3.17428       -0.02495 

C         -2.90689        1.90166        0.41632 

C         -1.32278       -1.27700       -0.56843 

C         -2.32386       -0.61448        0.18211 

C         -2.19607       -3.38235        0.18831 

C         -1.27383       -2.67036       -0.56166 

C         -3.23489       -1.33830        0.94796 

C         -3.17001       -2.72293        0.94696 

Pd         1.54966       -0.37958       -0.47065 

Cl         3.90109       -0.64124        0.02081 

C          0.98229       -0.01344        1.46679 

C          1.03376        1.43401        1.64432 

C          2.07228        2.09068        2.17271 

H         -0.15645       -0.49556       -2.25914 

H          0.05560        2.42784       -2.06268 

H         -1.27836        4.35926       -1.26830 

H         -3.13495        4.03580        0.33178 

H         -3.72950        1.75912        1.11467 

H         -2.15680       -4.46890        0.19853 

H         -0.49859       -3.18729       -1.12321 

H         -3.99493       -0.82448        1.53370 

H         -3.87525       -3.30108        1.53829 

H          1.74595       -0.55615        2.03069 

H         -0.01182       -0.45542        1.57118 

H          0.16214        2.00043        1.31363 

H          2.06975        3.17173        2.27596 

H          2.97352        1.55886        2.46984 
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Cl Transfer TS for halogen abstraction from allyl chloride by complex III (d) 

M06/6-311+G** Enthalpy = -2718.66566036 

Imaginary frequency = -808.60 

H          2.46309        3.99579        0.29643 

C          1.59894        3.33597        0.32735 

C         -0.60693        1.65597        0.44707 

C          1.29188        2.56125       -0.77656 

C          0.82178        3.27581        1.49479 

C         -0.27711        2.43395        1.55575 

C          0.18411        1.70456       -0.73426 

H          1.91879        2.59254       -1.66567 

H          1.09068        3.88532        2.35357 

C         -1.67724        0.71552        0.21906 

C         -3.48931       -1.14713       -0.75214 

C         -1.52366        0.19656       -1.09561 

C         -2.72437        0.29003        1.03362 

C         -3.63054       -0.63830        0.54856 

C         -2.44925       -0.74124       -1.56899 

H         -2.82151        0.67448        2.04752 

H         -4.44879       -0.98194        1.17602 

H         -2.32966       -1.16486       -2.56431 

H         -4.20430       -1.88076       -1.11783 

C         -0.31299        0.73399       -1.69761 

H         -0.26610        0.93632       -2.76747 

H         -0.87841        2.37900        2.46177 

C         -0.16914       -2.40637        2.78150 

C          0.15809       -1.71674        1.67729 

H         -0.50913       -1.73240        0.81496 

C          1.40044       -0.99287        1.51980 

Cl         2.64017       -2.06343        0.32265 

Cu         1.06188       -0.78777       -1.59609 

H          0.47160       -2.40139        3.66114 

H         -1.09360       -2.97198        2.84301 

H          1.35564       -0.05953        0.96214 

H          2.00614       -0.91269        2.42242 

 

C-Cl insertion of allyl chloride by cobalt (s) 

M06/6-311+G** Enthalpy = -1960.31577242 

Co        -0.05950       -0.00019       -0.04107 

Cl        -2.14684        0.00003        0.00071 

C          1.53031        1.21384        0.23418 

C          1.89641        0.00024       -0.37415 

C          1.53091       -1.21349        0.23417 

H          1.57899        2.13692       -0.33425 

H          1.53160        1.32307        1.31837 

H          2.13454        0.00028       -1.43687 



 

255 
 

H          1.57999       -2.13665       -0.33409 

H          1.53188       -1.32260        1.31838 

 

C-Cl insertion of allyl chloride by cobalt (t) 

M06/6-311+G** Enthalpy = -1960.33472821 

Co        -0.06238       -0.00019       -0.08677 

Cl        -2.26249        0.00005        0.04161 

C          1.63287        1.26606        0.25120 

C          1.90055        0.00021       -0.32836 

C          1.63329       -1.26573        0.25124 

H          1.83203        2.15837       -0.33642 

H          1.68036        1.40162        1.33247 

H          2.12015        0.00023       -1.40122 

H          1.83286       -2.15797       -0.33634 

H          1.68096       -1.40125        1.33252 

 

Chlorine addition product of complex II (s) 

M06/6-311+G** Enthalpy = -2343.69283139 

C         -0.13698        0.06394        1.63434 

C          0.44360       -1.07973       -0.28183 

C          0.95100       -0.62135        0.99155 

C          2.32878       -0.77484        1.28971 

C          3.14757       -1.40333        0.38461 

C          2.64623       -1.86952       -0.85784 

C          1.32682       -1.70870       -1.19539 

C         -1.36004       -0.30429        0.94950 

C         -1.00598       -0.97764       -0.25659 

C         -3.67162       -0.42946        0.30407 

C         -2.69931       -0.03222        1.21707 

C         -1.98722       -1.35813       -1.16418 

C         -3.32156       -1.08593       -0.87527 

Co         0.51123        0.99809       -0.01666 

Cl         0.50775        3.01860       -0.77065 

H         -0.09984        0.52325        2.61665 

H          2.71914       -0.40868        2.23661 

H          4.20524       -1.52162        0.60643 

H          3.32832       -2.34631       -1.55758 

H          0.95341       -2.06678       -2.15298 

H         -4.71889       -0.22017        0.50935 

H         -2.97795        0.50213        2.12253 

H         -1.71446       -1.85555       -2.09259 

H         -4.09772       -1.38354       -1.57600 

 

Chlorine addition product of complex II (t) 

M06/6-311+G** Enthalpy = -2343.7364343 

C         -0.00002       -0.28888        1.75611 
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C          0.71925       -1.10876       -0.31073 

C          1.14906       -0.62596        0.97797 

C          2.53748       -0.53680        1.23718 

C          3.43637       -0.91520        0.26900 

C          3.00930       -1.37772       -0.99430 

C          1.66479       -1.46302       -1.28408 

C         -1.14912       -0.62591        0.97797 

C         -0.71933       -1.10873       -0.31073 

C         -3.43644       -0.91504        0.26899 

C         -2.53754       -0.53667        1.23717 

C         -1.66488       -1.46295       -1.28408 

C         -3.00939       -1.37758       -0.99430 

Co         0.00005        1.09579        0.08636 

Cl         0.00011        3.14012       -0.69031 

H         -0.00002        0.03142        2.79024 

H          2.88346       -0.16740        2.19999 

H          4.50248       -0.84310        0.47262 

H          3.74725       -1.65028       -1.74380 

H          1.33190       -1.80977       -2.26064 

H         -4.50255       -0.84290        0.47260 

H         -2.88350       -0.16726        2.19998 

H         -1.33200       -1.80972       -2.26065 

H         -3.74735       -1.65010       -1.74381 

 

Allyl radical (d) 

M06/6-311+G** Enthalpy = -117.214980533 

C          1.21928       -0.19622       -0.00000 

C         -0.00010        0.44674       -0.00000 

C         -1.21926       -0.19641       -0.00000 

H          2.15482        0.35110       -0.00000 

H          1.27326       -1.28184       -0.00000 

H         -0.00017        1.53664        0.00001 

H         -1.27300       -1.28198        0.00001 

H         -2.15447        0.35147       -0.00000 

 

η1 C-Cl insertion of allyl chloride by nickel (d) 

M06/6-311+G** Enthalpy = -2085.90885746 

Ni        -0.43126        0.25727       -0.06030 

Cl        -2.49722       -0.42726        0.03527 

C          1.43445        0.91636       -0.04379 

C          2.35536       -0.09956        0.45922 

C          3.21277       -0.86648       -0.23523 

H          1.69024        1.23449       -1.06553 

H          1.39623        1.80196        0.60594 

H          2.31501       -0.26765        1.54061 

H          3.80921       -1.63818        0.24372 
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H          3.30197       -0.77277       -1.31711 

 

η5 C-Cl insertion of allyl chloride by nickel (d) 

M06/6-311+G** Enthalpy = -2085.9161639 

C         -1.61403       -1.24773        0.24254 

C         -1.88400        0.00038       -0.35401 

C         -1.61170        1.24812        0.24263 

Ni         0.05758        0.00004       -0.06431 

Cl         2.23688       -0.00043        0.02495 

H         -1.63564       -1.35560        1.32751 

H         -1.78831       -2.15904       -0.32347 

H         -2.13812        0.00061       -1.41888 

H         -1.63436        1.35598        1.32762 

H         -1.78448        2.15975       -0.32336 

 

C-Cl insertion of allyl chloride by palladium (s) 

M06 function with mixed lanl2dz/6-311+G** basis set Enthalpy = -705.461510892 

Pd        -0.02549       -0.24940       -0.04143 

Cl        -2.29039        0.14250        0.02736 

C          1.15152        1.45204        0.23168 

C          1.95360        0.45894       -0.39271 

C          2.10852       -0.74392        0.28620 

H          0.81357        2.31458       -0.33388 

H          1.17649        1.57577        1.31286 

H          2.21880        0.54405       -1.44308 

H          2.52074       -1.61109       -0.21936 

H          2.09749       -0.77589        1.37324 

 

Fluorenyl anion (s) 

M06/6-311+G** Enthalpy = -500.669784424 

C         -1.76290        0.00000        0.00000 

C          0.44908       -0.71565       -0.00000 

C         -0.93036       -1.13845       -0.00000 

C         -1.20321       -2.52338       -0.00000 

C         -0.16517       -3.43320       -0.00000 

C          1.17981       -3.01171       -0.00000 

C          1.47647       -1.65728       -0.00000 

C         -0.93038        1.13844        0.00000 

C          0.44910        0.71564        0.00000 

C         -0.16517        3.43319        0.00000 

C         -1.20321        2.52338        0.00000 

C          1.47648        1.65728        0.00000 

C          1.17981        3.01171        0.00000 

H         -2.84808        0.00000        0.00000 

H         -2.23532       -2.87303       -0.00000 

H         -0.38676       -4.49982       -0.00000 
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H          1.97913       -3.74973       -0.00000 

H          2.51597       -1.32819       -0.00000 

H         -0.38676        4.49981        0.00000 

H         -2.23533        2.87306        0.00000 

H          2.51599        1.32820        0.00000 

H          1.97913        3.74973        0.00000 

 

C-Cl insertion of allyl chloride by copper (d) 

M06/6-311+G** Enthalpy = -2218.12427584 

Cu         0.35295       -0.30727        0.00019 

Cl         2.40424        0.40765       -0.00044 

C         -1.47054       -0.98911        0.00079 

C         -2.59456       -0.00754       -0.00166 

C         -2.49827        1.32130        0.00069 

H         -1.60345       -1.66176       -0.86569 

H         -1.60376       -1.65728        0.87072 

H         -3.61900       -0.41314       -0.00545 

H         -3.37986        1.96125       -0.00071 

H         -1.52148        1.80361        0.00413 
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