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Abstract

ON THE DETECTION OF GW190814

By Matthew E. Gill

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2020.

Director: Dr. Robert Gowdy,

Associate Professor, Associate Chair, Department of Physics

The field of gravitational wave astronomy is currently at an all time high. The

first half of the most recent observing run (April 1, 2019 - September 30, 2019) yielded

a total of 39 gravitational wave detections, including 13 from sources which had not

been identified by other astronomical observation methods before. This is three times

as many detections than were measured in the first two observing runs combined.

In this paper, the design sensitivity decisions leading to this unprecedented rate of

detection are explored. In particular, we detail the nature of the LIGO and VIRGO

gravitational wave interferometers. One recently detected event of particular interest,

GW190814, was shown to possess a number of extraordinary properties relative to

previous gravitational wave detections. It exhibits the greatest mass asymmetry of any

system observed to date, leading to evidence of waveform contributions from higher

order multipoles. The mass of the smaller object has generated curiosity in the field

over whether the system is a binary black hole or neutron star-black hole merger. The

nature of this component and the resulting properties of the system will be explored.
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CHAPTER 1

INTRODUCTION

Its been over a century since general relativity was first theorized by Albert

Einstein in a series of papers published over the course of a decade [7]. In this time,

the theory has held up to experimental tests on numerous fronts, though it still only

gives a classical theory of gravity. Early tests of the theory sought to verify the

Newtonian limit of the results which were able to be tested at the time. This helped

to explain phenomena such as the precession of Mercury[8] and deflection of light

during a total solar eclipse[9].

Even with the many experiments confirming the post-Newtonian consequences of

general relativity, gravitational waves, an early prediction, remained undetected[1].

They were initially brought forward by Poincare[10] when he showed gravitational fields

would observe similar propagation limits to those recently derived for electromagnetic

fields. They were also then predicted by Einstein in 1916 after the initial development

of GR. The evasiveness of gravitational waves can not be understated- the path

deviations as one reaches the Earth from very far sources are imperceptible to the

naked eye, and require complex equipment to validate. The indirect observation of

energy transfer by gravitational waves could not occur until the detection of the pulsar

PSR-1913+16 in 1974 [11].

However, in 2015, after nearly a century of theorizing, and 2 decades of construc-

tion and tuning, the two LIGO gravitational wave observatories achieved the first

direct detection of a gravitational wave[12]. This event was the accumulation of a

massive number of projects that truly began in 1994 [13]. The project technically was
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first proposed in 1984 but due to the typical issues of organization in bureaucracy, it

took 10 years to get moving. The two sites in Hanford, Washington and Livingston,

Louisiana began construction in 1994 and 1995, respectively, and were completed in

1997. The first run at full initial LIGO design sensitivity occurred from 2005-2007 [2].

In addition to the LIGO detectors, the VIRGO detector began construction in the

mid-90’s near Pisa, Italy, with the intention of matching LIGO’s sensitivity progression.

From the beginning, each detector was designed to grow through a series of evolution-

ary stages in which their techniques and thus the detector sensitivity increases. These

detectors are all highly advanced versions of Michelson interferometers, designed to

reach dimensionless strain sensitivities of order of magnitude 10−21 and beyond.

The advanced LIGO detectors began their first run on September 12, 2015,

running until January 19, 2016 [14]. The first gravitational wave was detected just

two days later, only 3 detections were made in total, and all were binary black hole

(BBH) systems. The second observation run occurred from November 30, 2016 and

August 25, 2017, resulting in another 8 detections, of which 1 was a binary neutron

star (BNS) system. VIRGO was added to the detection system on August 1, 2017,

after finalizing its upgrade to the advanced state. This addition rapidly improved data

quality, and in the first half of the third run led to a total of 39 detections [15], one of

which is most like a BNS [16]. A handful of these detections exhibit extraordinary

properties unlike previously measured detections.

One detection of particular intrigue is that of GW190814, first measured on August

14th, 2019. While only the second binary system ever observed with a significant mass

asymmetry between its components, it is the most asymmetric yet, with a mass ratio

of about q = 0.112 [17]. This property contributes to the production of radiation that

is governed by higher order terms in the multipole expansion, analogous to that found

in electromagnetism. Furthermore, the secondary mass component of the system is
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found to be approximately M2 = 2.59M�, where M� signifies one solar mass. The

system, which given its mass components, is assumed to be either a BBH or a neutron

star black hole (NSBH) binary system, making this secondary mass either the lightest

black hole or the heaviest neutron star (NS) observed to date.

To reach this point of the conversation however, Chapters 2-5 of this thesis will

be used to construct a solid mathematical bases in which to understand gravitational

waves. First, we review some of the fundamental aspects of special relativity, and the

base mathematical framework for working in four dimensional spacetime. Then, we

provide a review of the construction of differential geometry along with motivation

for Einstein’s equations in curved spacetime. This gives way to the simpler linearized

theory of gravity through transformation to the transverse traceless (TT) gauge. The

mathematics behind this will be explored.

Chapter 6 is then devoted to bringing these idea to application- focusing first on

the simple idea of the interferometer. We then examine how the ideas behind this

machine can be used to make accurate measurements of the strain effects of passing

gravitational waves. After this, the general setup of the advanced stages of LIGO

and VIRGO will be described, along with an explanation of the signal parameters

generated by these setups. Then, some of the design choices of the advanced LIGO

(aLIGO) and advanced VIRGO (aVIRGO) upgrades leading to the most recent run will

be reviewed. This includes a discussion of their design sensitivities both individually,

and when the 3 observatories are in conjunction.

Finally, the results and methods of detection GW190814 are covered in Chapter

7. This includes the initial detection and the analytical methods of handling the

waveform to deduce the system’s physical parameters. These parameters are discussed

and compared to previous results. Some of the more exotic features of the system are

explored in detail, namely, the nature of the secondary components and the energy
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contributions from higher order multipoles. It turns out that the classification of this

binary system is inconclusive, due to issues with the explored parameter space in

the models of numerical relativity. We explore the capability of the next generation

of planned gravitational wave detectors to expand this parameter space, through its

ability to obtain better strain sensitivity to systems of this frequency.

5



CHAPTER 2

REVIEW OF SPECIAL RELATIVITY

In order to build up mathematically to the idea of gravitational waves, we first begin

with the theory of special relativity. Throughout this thesis, it is assumed the reader

has a thorough understanding of special relativity, though not necessarily tensor

algebra; and a solid grasp on linear algebra and mathematical reasoning. This chapter

provides a summary of special relativity as covered by [18] [1] [19].

To begin the coverage of modern relativity, the two postulates fundamental to

the theory of special relativity should be mentioned:

1. The speed of light is a constant c = 3× 108 m/s relative to any non-accelerating

observers.

2. The results of all experiments in one reference frame are independent of its speed

relative to other reference frames.

2.1 Spacetime

Setting up the physical structure to accommodate these postulates first requires

a well-defined description of space and time. Anyone who has taken a physics class

has experience with constructing a coordinate space in conjunction with a time stamp.

In classical non-relativistic physics, it is trivial to take a real physical object and

define a coordinate system about it such that one can analyze its dynamics. The

coordinates chosen, regardless of how complicated, were naturally independent of the

actual physics at hand, and yielded the same results. In such a case, gravity was

thought of as an instantaneous force across a distance.

However, with the introduction of relativity, it was discovered that nothing could
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propagate faster than the speed of light. This changed the nature of physics entirely,

requiring a redefined structure of reality to appropriately model gravity. Where before,

the absolute time was used to keep track of a system’s development, in relativistic

physics, the time becomes part of a 4-dimensional spacetime coordinate system. In

special relativity, this is best done using the standard Cartesian coordinates and a time

coordinate, which yields what is known as Minkowski spacetime. Then any event, P ,

may be represented by the 4 coordinates P = (t, x, y, z). Furthermore, by describing

a particle at a continuous string of these events, one can form a particle’s world-line.

At first glance, this may look counter productive, as it bears a close resemblance to

the old pre-relativity coordinate systems. However, the importance in this construction

is not in the coordinates themselves, but the way in which they are related to one

another.

2.2 Mathematics

A reference frame is defined loosely [collier] as the 4-dimensional coordinate

system in which each event can be located by a time and its position. Each reference

frame corresponds to a specific set of basis vectors e0, e1, e2, e3 [gowdy notes], with

e1, e2, e3 the basis vectors of a Cartesian coordinate system (x,y,z). It is helpful to

think of the time in each frame as being measured by infinitely many, evenly spaced

clocks. The time coordinate of an event in any given frame can then be found by

checking the nearest clock in that frame.

For a reference frame to be inertial, it must satisfy the following 3 properties, per

[18].

1. ”The distance between points (x1, y1, z1) and (x2, y2, z2) are independent of

time.”
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2. ”The clocks that sit at every point are synchronized, and run at the same rate.”

3. ”The geometry of space at any time t is Euclidean.”

Once established, reference frames and their basis vectors are used to describe

the location of events in spacetime. As one has 3-dimensional vectors in pre-relativity

physics, one now has 4-dimensional vectors in spacetime. In Minkowski spacetime,

these vectors are not really any more abstract than their old counterparts. A vector is

most simply defined as an arrow extending between two events in spacetime [19][18].

However for later extensions into curved spacetime, it will be useful to have an alternate

representation of this idea.

2.2.1 Vectors

Suppose that, instead of an arrow, there is a line segment connecting the two

events in spacetime. Let the position on the line segment be describable by some

parameter, λ. Then this line between the two events, P1 and P2, can be described

by

A (λ) = P1 + λ(P2 −P1) (2.1)

One can see that at λ = 1, the event A (0) turns out to be P1, and on the other

hand, A (1) turns out to be P2. Taking the derivative with respect to λ, one finds

dA

dλ
=

d

dλ
(P1 + λ(P2 −P1)) = P2 −P1 (2.2)

Note that this derivative is an equivalent representation of the original vector

in mind. In flat spacetime, these two representations turn out to be equivalent

representations of the same idea. Thus, by creating this line segment, parameterizing

it, and producing a tangent vector, the number of points being considered can be
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reduced from 2 to 1. This use of the tangent space to simplify the dimensions of our

calculation will be essential when the transition to curved space is made. Furthermore,

by choosing the parameter λ to be the absolute time τ , the line A (τ) becomes

representative of the worldline of a particle, and its tangent vector is the 4-velocity, u.

Let this particle be observed from a reference frame, S, with basis vectors

e0, e1, e2, e3 as described above. Then the particle at time τ has coordinate vector

xµ(τ)eµ = x0(τ)e0 + x1(τ)e1 + x2(τ)e2 + x3(τ)e3 (2.3)

and four-velocity

uµ(τ)eµ = u0(τ)e0 + u1(τ)e1 + u2(τ)e2 + u3(τ)e3. (2.4)

2.2.2 Lorentz Frames

Lorentz frames are the inertial frames of special relativity. In some appropriate

coordinate system, a piece of spacetime can be described as Lorentzian if for any two

events, A and B, in the same neighborhood, the proper distance and proper time

between the two events is related by

∆s2 = −∆τ 2

= −(x0(A)− x0(B))2 + (x1(A)− x1(B))2

+ (x2(A)− x2(B))2 + (x3(A)− x3(B))2

(2.5)

Meeting this condition ensures that the coordinate system has a locally Lorentz

geometry. Then, Lorentz transformations preserve the Lorentzian nature of a reference

frame, describing transformations from one Lorentz frame into another Lorentz frame.

These can be understood simply as a transformation between two frames that are

moving at relative velocities to one another, but it also includes rotations in some
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spatial plane. Lorentz velocity boosts lead to the well known effects of time dilation

and length contractions. For more information on these transformations and their

general forms, see [1]. These Lorentz transformations, are typically of the form

xµ
′
= Λµ′

µx
µ (2.6)

where this uses the standard Einstein index summation notation to express the linear

transformations of the components. In this notation, any indices that are identical

are summed over by default

ajb
j =

∑
j

ajbj (2.7)

The sum on the right is shown in terms of a ”traditional” sum over indices, where

the object on the left is what we will use to denote a sum in the Einstein convention.

The motivation of the position of the indices in these expressions will be explained

later on.

2.2.3 Metric tensor

To measure the length of a four-vector in some reference frame, one must introduce

the metric tensor, g. This object acts as a function which takes 2 vectors as inputs

and returns their scalar product. If one inserts the same vector twice, the metric

tensor yields the scalar squared length of that vector. It is both linear and symmetric,

and as such, one can define the metric coefficients in a Lorentz frame by the relation

ηµν := g(eµ, eν) (2.8)

It should be noted that this holds in any dimension, the value of which is determined

by the range of the indices µ of the basis vectors. One can then write the spacetime
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interval between any two events as

(∆s)2 = ∆xµ∆xµ = ∆x ·∆x

= g(∆x,∆x) = g(∆xµeµ,∆x
νeν) = ∆xµ∆xνg(eµ, eν)

= ∆xµ∆xνηµν

(2.9)

In any Lorentz frame, these coefficients are

η00 = −1 ηkk = 1. (2.10)

One can also choose to insert only one vector into the metric tensor, in which case

the object becomes a geometrical object known as a one-form. In particular we

are concerned with the one-forms that correspond to the tangent vectors described

previously. These describe a ”pattern of surfaces” [19] in spacetime. If one then

introduces a vector v, the scalar output is measured by the number of surfaces which

the vector passes through. The pattern of the surfaces is defined by the corresponding

four-vector and the metric.

It should be clear from the above that the number of basis one-forms will be

equivalent to the dimension of the spacetime in mind. They abide by the relation

ωβ(eα) = δβα (2.11)

For example the one-form corresponding to the position vector can be represented as

a linear combination of the basis forms

xµ(τ)ωµ = x0(τ)ω0 + x1(τ)ω1 + x2(τ)ω2 + x3(τ)ω3 (2.12)

We will minimize the amount of derivation here and provide a few facts. One forms

undergoing a Lorentz transformation like those described for vectors will obey the

same transformation law. Furthermore these can be described as existing at singular
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points rather than ”in spacetime.” Using the prior delta function relation, one can

write the squared length of a vector as

g(x,x) = xµeµ(xνω
ν) = xµxνeµ(ων) = xµxνδ

µ
ν

= xµxµ

(2.13)

An alternative way of expressing this can be achieved by raising (or lowering) the

indices of vector components with the components of the metric, such as xµ = gµνxν .

Thus, an equivalent way of writing the above expression would be

g(x,x) = xµxµ

= gµνx
µxν

(2.14)

2.2.4 Tensors

In general, these relations between the bases of a frame are essential for under-

standing the nature of tensors. A tensor is a linear function which takes arguments of

vectors and one-forms and returns a scalar function when provided with all arguments.

However, depending on the arguments required, and the fraction of these which are

provided, the function can produce a scalar, a one-form, a vector, or another tensor.

In general, tensors are constructed from using tensor products. A general tensor,

T, which takes m one-forms and n vectors for arguments, will be constructed from m

basis vectors, eβi , and n basis one-forms, ωαi , by taking the tensor product between

them.

T = Tα1...αm
β1...βmeβ1 ⊗ ...⊗ eβn ⊗ ωα1 ⊗ ...⊗ ωαm (2.15)

Tensors can be described according to their rank, such that a rank
(
m
n

)
tensor

would require m one-forms and n vectors to output a scalar. Both one-forms and

vectors are themselves tensors, of type
(

0
1

)
and

(
1
0

)
respectively. Additionally, the
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metric, in the form described thus far, is a type
(

0
2

)
. With some bases of a Lorentz

frame defined, one can find the components of an
(
m
n

)
tensor in that basis according

to

Tα1...αm
β1...βm = T(ωα1 , ...,ωαm , eβ1 , ..., eβn). (2.16)

The tensor components obey the Lorentz transformation law between reference

frames just as vectors and one-forms. The indices are raised and lowered just as

seen in equation (2.11). This is a limited overview of the nature of an immense

class of geometric objects. Some of their properties, such as their symmetries (and

anti-symmetries), may be applied without proof through the construction of these

mathematics. For further information one should see the resources [1] [19] [18] [20]. It

should be noted before proceeding that Lorentz transformations, though with indices

that look like a tensor for the purpose of our notation, are not tensorial.

2.3 Energy and Momentum

With all of this in mind, we now take a moment to capture some of the notions

of special relativity in the primitive version of component notation that has been

constructed thus far. Namely, we wish to describe briefly the core components of

the stress-energy tensor. For this section forward, we will use God-given units in

which the fundamental constants, such as the speed of light, c, Planck’s constant, h̄,

Boltzmann’s constant, k, and the gravitational constant, G, are all set equal to 1.

This creates the following unit scaling

[(energy)] = [mass] = [length−1] = [time−1] (2.17)

The four-momentum effectively combines the rest mass-energy, p0 = E = m and
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three-momentum pi into the form

pµ = mUµ. (2.18)

The square length of these two vectors, pµpµ = −m2, is shown to yield the standard

relativistic energy relation E2 =
√
pipi +m2. However this is all for one particle, and

only gives so much insight into a system. To avoid this in moving to more complex

systems, one wishes to also define the stress-energy (or energy-momentum) tensor, Tµν .

This gives a description of the density of energy and momentum in a large collection

of particles, or dust, using the total velocity of the system. More accurately, One can

think of this as some flux of the four-momentum across some surface, though the idea

of a surface does not necessarily hold in curved space, so this should be taken lightly.

This tensor is symmetric, meaning that for the indices µ, ν, Tµν = Tνµ. The time

based components represent the energy and momentum densities where T00 = ρ the

energy density, and T0i = Ti0 are the momentum densities in the xi directions. The

spatial components of this tensor, Tij, make up the stress part of the stress-energy

tensor name, describing how a volume element in the dust exerts force in the space

around it. Thus for some cubic volume element in the fluid, the diagonal components,

Tii, describe the pressure, P the faces exert in the direction they face. In contrast,

the off diagonal components Tij, i 6= j describe how the faces exert shear force along

their edges, effectively warping them.

One is typically interested in the form of the stress-energy tensor for a perfect

fluid, as these can be generalized to most astrophysical situations quite well. These

are fluids that can be represented entirely by an isotropic rest frame pressure, Tii = P ,

and its rest frame energy density, T00 = ρ, thus making it diagonal. The general form
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for the stress energy tensor of a perfect fluid is expressed as

T µν = (ρ+ P )UµUν + Pηµν , (2.19)

where it should be noted that the four-velocity is typically normalized according to

the condition ηµνU
µUν = −1. The evolution of matter can then be determined by

considering an equation of state defined by the relation P = P (ρ)

One final property of the stress energy tensor is that it is conserved, meaning its

divergence is required to vanish

∂µT
µν = 0 (2.20)

The ν = 0 equation describes the conservation of energy, while the spatial equations

ν = k describe the conservation of the kth component of momentum.
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CHAPTER 3

DIFFERENTIAL GEOMETRY

This chapter reviews the basic tools of differential geometry which will be used to

develop the theory of general relativity from special relativity. This begins with

a review of differentiable manifolds, and how vectors, one-forms, and tensors are

described in these spaces. Afterwards, the consequences of the metric are explored in

the form of the covariant derivative, the connection coefficients, and the curvature

tensor. The content of this chapter is primarily a summary of [1].

3.1 Manifolds and Maps

Before proceeding into the physics of curved spacetime, the final touches must

be made on the mathematical framework thus far. From a topological point of view,

a manifold can be defined as a set of points, M, in which each point has an open

neighborhood which can be mapped onto an open set of Rn, with the map being

continuous and one to one. [20]. In order for this to be possible, the points in M must

be continuous and differentiable. This ensures a space that is locally Lorentz.

In introductory classical physics, system dynamics are often modeled using

Euclidean coordinate systems. Trivially, these spaces can all be considered manifolds.

However, when doing analysis in curved spacetime, the manifolds are more complex,

and the resemblance to Euclidean space may vary across it. In these instances, it

is necessary to smoothly ”patch” these Lorentz-like spaces into a comprehensive

manifold.

To make this a little more precise, one can consider some number of sets Ai

with maps ψij:Ai 7→ Aj between them. Given three sets for i = 1, 2, 3, with maps
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ψ12andψ23 as defined above, the map ψ13 can also be expressed using the composition

ψ13 = ψ23 ◦ ψ12. These maps can also be considered as functions of elements, so that

an alternative way of writing this for a map from an element x ∈ Ai to y ∈ Aj would

be y = ψij(x).

To describe the makeup of the different mappings, note that ψij is defined as

one-to-one if there is no more than one map into each element of Aj from the set

Ai. ψij is defined as onto if there is a minimum of one map into each element of Aj.

If ψij is both one-to-one and onto, each element of Ai maps into each element of Aj

exactly once. In such a case, the map ψij is invertible, and the inverse map ψij
−1 is

defined by the function relation x = ψ12
−1(y).

To consider continuity and differentiability over manifolds, examine the map

φ : Rn 7→ Rm, which maps vectors v ∈ Rn with components (v1, v2, ..., vn) to a vector

u ∈ Rm with components (u1, u2, ..., um). It is assumed here that the reader has a

sufficient understanding of continuity and differentiability of a single variable function.

Then, consider the m functions φj that define this map, which describe the resulting

m components of the vector u as uj = φj(v
1, v2, ..., vn). One of these function is

considered Cp if its pth derivative exists and is continuous, while the overall map φ is

called Cp if all of its component functions are at least Cp. If a map has a collection of

functions that are all infinitely differentiable and continuous, then the map is denoted

C∞ and referred to as smooth. Finally, two sets A and B are diffeomorphic if there

exists a C∞ map φ:A 7→ B, along with an inverse map that is also C∞.

A chart (alternatively, a coordinate system) is made up of a set U ⊆M and a

one-to-one map φ:U 7→ Rn, such that φ(U) is open in Rn. A C∞ atlas can then be

constructed by taking a collection of these charts and indexing them as (Uα, φα) and

enforcing the conditions:
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Fig. 1.
A schematic of the mapping between charts that are smoothly sewn together[1]

1. The union of the Uα is equal to M.

2. The charts are smoothly sewn together, so that if two charts, Uα and Uβ, intersect,

then the map φα ◦φ−1
β takes points in φβ(Uα ∩Uβ) onto an open set φβ(Uα ∩Uβ)

(both of which are in Rn. All of these maps are required to be C∞.

This second point may be better illuminated by Figure 1. Finally, a C∞ n-

dimensional manifold is a set M , along with an atlas containing every compatible

chart. The differentiability does not always have to be infinite however, and it can

always be assumed that the manifold is as differentiable as need be for the task at

hand. The use of an atlas to define the manifold is due to the large variations in the

topology of curved spacetimes, and is a formal method for ”patching” these locally
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Lorentz spaces, as mentioned.

This describes ”wrapping” the real physical world with a mathematical coordinate

system in order to do calculations. To illustrate this idea, consider a curve on a

manifold can then be described as a one-to-one map C:R 7→M , for some parameter

λ ∈ R. To make calculations on this curve, one must refer to the specific chart (φ, U)

of the constructed atlas, which yields a mathematical representation of the curve in

φ(U) ∈ Rn, defined by the function (φ ◦ C)(λ) = (x1(λ), x2(λ), ..., xn(λ)).

3.2 Vectors

Return to the idea of the tangent vector, dA
dλ

, of the line A connecting two events

in flat spacetime, which was established in the previous chapter. This enforced that

vectors can be described as existing at singular points in spacetime, rather than

extending between two points. This idea will be necessary in the transition to curved

spacetime, as it will be required for all vectors to be described locally in order to

appropriately give them meaning.

Topologically speaking, the tangent vector u to a curve A (λ) is the directional

derivative operator along that curve,

u = ∂u =
d

dλ
(3.1)

where the final derivative is to be evaluated along the curve A at some particular

event, P [1][19]. This last derivative can also be expanded using the chain rule as

d

dλ
=
dxµ

dλ

∂

∂xµ
(3.2)

It should be noted that the partial derivative with respect to the curve xµ can be
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written as ∂µ = ∂
∂xµ

. Then, this initial tangent vector u now has the expansion

u =
dxµ

dλ
∂µ (3.3)

Thus, it can be seen that the tangent vector u can be expressed with the directional

derivatives ∂µ chosen as its set of basis vectors. The component notation of vectors

described previously for special relativity will not change, as all of the geometrical

changes will be contained by the metric. One can also build this idea up by considering

all of the curves passing through some point, P . The collection of the tangent vectors

at P from all of these curves makes up the tangent vector space at P, Tp.

Choosing the basis vectors for this space to be e(α) = ∂α defines a coordinate

basis. By constructing a tangent vector space in this manner at each point in a

manifold, one can define a vector field that gives the value of a vector v(P) ∈ Tp

at each point p. Note that since the tangent space at each point in the manifold is

constructed from the curves that pass through it, vector fields can also be thought of

as a map from Ck functions to Ck functions. More accurately however, it should be

said that a vector field is a linear, Leibnizian operator on functions. Notationally,

vector fields, v will be referred to without giving it a specific argument of a point, P

on the manifold.

The commutator of two vector fields v, w is then defined by its action on some

function, f

[u, v]f = (uv − vu)f = u(vf)− v(uf). (3.4)

This tells us how the resulting function changes as a result of the ordering of the vector

field actions. It can easily be shown that this is also a vector field, the components of

20



which can be expressed as

[u, v]µ = uµ∂λv
λ − vµ∂λuλ (3.5)

3.3 One-forms & General Tensors

One also wishes to define similar field frameworks for one-forms, and therefore

give the ability to form tensor fields. We skimmed past the idea of one-forms last

chapter but attempt to give further definition here. One forms are linear functions that

take vector arguments and return a real number, but in particular we are interested

only in the maps from the tangent vector space. This in particular can be called the

dual vector space [1], among other things.

First, it should be noted that the gradient of a function, is a one-form with the

function’s partial derivatives as its components,

dφ =
∂φ

∂xµ
ωµ (3.6)

The action of the gradient on a vector turns out to be the directional derivative in

the direction of the vector. Furthermore, it can be shown that the gradient of the

coordinate expressions xµ are a natural basis to use. In this case, the components of

the gradient of the coordinate functions acting on the basis of the function’s tangent

vectors, note that are written as

(dx)µ∂nu = ∂nux
µ =

xµ

xν
= δµν (3.7)

Thus, choosing these as our basis vectors and one-forms satisfies the same requirement

from flat spacetime. One can then follow similar logic as that which was applied for

vector fields to reach form fields. To do this one defines the form field at each point

corresponding to the curves passing through that point. This is then extended to all
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the points with curves passing through them on the manifold, and the collection of

these make up the form field.

Then, once again, we can go through this same process to arrive at tensor fields

across the manifold. The first step in this will be to write the tensor in terms of basis

tensors constructed from the defined basis vectors and basis forms,

T = Tα1...αm
β1...βm∂β1 ⊗ ...⊗ ∂βn ⊗ (dx)α1 ⊗ ...⊗ (dx)αm (3.8)

Doing this for every point on the field (or where ever our interests require it), create a

tensor field on the manifold on which one can have some semblance of comparison.

The actual comparison process will be cleared up moving forward. Throughout this

thesis, the choice of notational convention should be obvious. Nonetheless, it should

be noted that the math will primarily be covered using component notation, unless

otherwise stated.

3.4 The Metric Tensor

The metric tensor in curved spacetime will contain most of the geometric data

about the manifold in consideration. As such, we will need a more dynamic metric

than the flat spacetime metric, ηµν . However, this metric will still be a symmetric,

type
(

0
2

)
tensor. The covariant components of the metric will now denoted by

gµν = g(eµ, eν). (3.9)

where the basis vectors eα can be orthonormal, such as those described above, but are

not necessarily. The contravariant components of the metric tensor are the matrix

inverse of its covariant components. These are related by the condition

gµνg
νσ = δµ

σ. (3.10)
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The metric in curved spacetime is responsible for providing calculations of path length

and proper time. This relation is similar to that of flat spacetime, where the flat

metric, ηµν , is replaced by the general metric, gµν , to give the spacetime interval

ds2 = gµνdx
µdxν (3.11)

Furthermore, it is also responsible for giving a reference for the construction of

locally Lorentz frames, as well as defining the motion of test particles by replacing

the outdated notion of the gravitational field. To accomplish this first goal, define

a local Lorentz frame at a given event P0 as ”the closest thing there is to a

global Lorentz frame at that event.” An equivalent representation of this is that at

P0, the metric breaks down into the component form gµν(P0) = ηµν , where these

components vary minimally in the neighborhood of the event, as ∂αgµν = 0. This is

the basic expression of the Principle of Equivalence, the motivating principles behind

relativity, and will be further addressed in the next chapter.

3.5 Connection Coefficients & Covariant Derivatives

In one of these locally lorentz frames, calculations can be done between neighboring

events as if one was still in flat spacetime. Between any of these events, one can move

tensors and vectors trivially- the changes of an object between two events can be

described purely by the partial derivatives constituting the basis vectors of the space.

However, it is important to remember that the basis components of these tangent

spaces do not have to be constant. In fact, they usually change over a manifold. This

should be clear, as this chapter has spent many words describing why these tangent

vectors should be restricted to single points on a manifold, or to their neighbors in

locally flat spaces.

As such, in the transition to curved spacetime, there is no immediate way to
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define how a vector changes when the spacetime contains this ambiguity. With this in

mind, it would be nice to construct a derivative operator, ∇ that will appropriately

account for geometrical variations between points. This operator should be required

to be linear and obey the Leibniz rule for all field arguments. So that for some tensor

fields v,w,

1. ∇(v + w) = ∇v +∇w

2. ∇(v ⊗w) = ∇v ⊗w + v ⊗∇w

Note that just as the partial derivative in flat spacetime, this covariant derivative

should act on general tensors in such a way that transforms a type
(
k
l

)
tensor into a

type
(
k
l+1

)
tensor. Furthermore, it should be enforced that on scalar functions, the

covariant derivative operator reduces to the partial derivative operator. Then, let

us consider the action of this derivative on a vector field u which is written in some

arbitrary basis eα in the vector space VP across the manifold. This behaves as

∇µu = ∇µ(uαeα)

= (∇µu
α)eα + uα(∇µeα)

(3.12)

Since the components uα are just scalar functions, this first term will reduce to a

partial derivative,

∇µu = (∂µu
α)eα + uα(∇µeα) (3.13)

Now comes the tricky part, the covariant derivative of the basis vectors eα. To

treat this, note that the desired geometrical object should express how the vector

changes across the manifold. To get a real sense for what is happening, then, it

should be clear that any results would be greatly simplified by expressing them in

the same space which the original vector was expressed in. As such, we will expand

24



this derivative as some linear combination of the same basis vectors. Thus, with some

brief haphazard notation, the result of this derivative in the second term above can

be written in the form

∇µeα = (∇µeα)νeν (3.14)

The factor on the right hand side is obviously too clunky to seriously consider

working with every time a derivative is taken. Instead, this term is replaced by the

connection coefficient, Γνµα, such that this can instead be written as

∇µeα = Γνµαeν (3.15)

Note that the chosen convention here is to place the differentiating index- µ,

in this case -as the inside index. Then, with this definition in hand, the covariant

derivative of a vector, u, is thus given by the relation

∇µu = (∂µu
α)eα + uαΓνµαeν . (3.16)

By switching the dummy indices in the equation, it should be easy to see that the

components of this derivative take the form

∇µu
α = ∂µu

α + Γαµνu
ν . (3.17)

The covariant derivative of a general type
(
n
m

)
tensor can be shown to also be

a tensor, though this is a fact that will not be proven here. For further reading, see

[[1]/wald/].

Through similar arguments, one can easily arrive at an expression for the compo-

nents of the covariant derivative of some one-form ωα. The only difference ends up

being the

Similarly for some general type
(
m
n

)
tensor Tα1...αn

β1...βm , the number of additional
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correction terms will be equal to m+n. The covariant indices will yield correction

terms added on, while the corrections for the contravariant indices will be subtracted,

as was the case for the derivative of a single one-form.

Two additional properties that should be demanded of the covariant derivative

and its resulting connection are

1. Torsion-free: Γνµα = −Γναµ

2. Metric-compatible: ∇αgµν = 0

3.5.1 Christoffel Connection

These properties are not essential to all theories of gravity, but they will be

treated here as certain. Together, they yield a unique connection on which general

relativity is based, known as the Christoffel Connection. This connection can be

derived by the following method:

1. First, take three cyclic permutations of the metric-compatible connection:

∇αgµν = 0,∇µgνα = 0,∇νgαµ = 0

2. Expand these using the definition of the covariant derivative acting on a type(
0
2

)
tensor. The expansion for the first permutation behaves then as

0 = ∇αgµν = ∂αgµν − Γλαµgλν − Γλανgµλ. (Equation1) (3.18)

3. This should be easily generalizable to the other two required derivatives, so that

it is also seen that

0 = ∂µgνα − Γλµνgλα − Γλµαgνλ; (Equation2)

0 = ∂νgαµ − Γλναgλµ − Γλνµgαλ. (Equation3)

(3.19)
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4. First subtract equation 2 from equation 1. Due to metric compatibility, both

of these terms are required to be 0, so their difference will clearly be the same.

This leads to the value

0 = [∂αgµν − Γλαµgλν − Γλανgµλ]− [∂µgνα − Γλµνgλα − Γλµαgνλ]

= ∂αgµν − Γλαµgλν − Γλανgµλ − ∂µgνα + Γλµνgλα + Γλµαgνλ

(3.20)

5. Note that the last term, when the torsion-free property of the connection

coefficient is applied along with the metric tensor symmetry, can be rewritten

Γλµαgνλ = Γλαµgλν . This can be seen to be equivalent to the second term such

that they will cancel out. Doing this and then subtracting equation 3, we get

0 = ∂αgµν − Γλανgµλ − ∂µgνα + Γλµνgλα

= ∂αgµν − Γλανgµλ − ∂µgνα + Γλµνgλα − [∂νgαµ − Γλναgλµ − Γλνµgαλ]

= ∂αgµν − Γλανgµλ − ∂µgνα + Γλµνgλα − ∂νgαµ + Γλναgλµ + Γλνµgαλ

(3.21)

6. Note that by applying the torsion-free and symmetry of the metric tensor

as before, the second and second to last terms are seen to be similar, since

Γλναgλµ = Γλανgµλ. Then, cancelling these terms leaves the expression

0 = ∂αgµν − ∂µgνα + Γλµνgλα − ∂νgαµ + Γλνµgαλ

= ∂αgµν − ∂µgνα − ∂νgαµ + 2Γλνµgαλ

(3.22)

7. This can be rearranged to isolate the connection coefficient on a side by it self

as

2Γλνµgαλ = ∂µgνα + ∂νgαµ − ∂αgµν (3.23)
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8. Multiplying through by a factor of gαβ

2
, the left hand side becomes

2Γλνµgαλ(
gαβ

2
) = Γλνµδ

β
λ = Γβνµ (3.24)

Adjusting some of the indices on the right hand side due to symmetry, one

arrives at a nice, final form of the Christoffel connections,

Γβνµ =
1

2
gαβ(∂νgµα + ∂µgαν − ∂αgνµ). (3.25)

3.6 Parallel Transport

However, the notion of the change of general tensorial objects across a manifold

is not yet solidified. To properly discuss this, recall that tensors in flat spacetime

do not change as they are moved across the manifold- its Cartesian components are

simply constant. While not an absolute truth for all tensors by any means, this is a

distinguishing feature of curves that should be highlighted. Moving a tensor along a

path while keeping it constant is known as parallel transport. The metric, when

the covariant derivative is forced to be metric compatible, is a perfect example of a

tensor that is parallel transported.

With the concept of parallel transport in place, the covariant derivative can be

defined as the change of a vectors components compared to if the vector were parallel

transported there. In such a case the vector has the same components it did before,

and a comparison is easy to make. However, one must be careful when speaking

of the orientation of the final vectors components. While working in flat spacetime,

it was all fine and dandy to move a vector in any which direction to reach another

point. However, in curved spacetime, the path one takes is absolutely crucial to

the orientation of the parallel transported vector. This is most easily examined by

considering the parallel transport of a vector Figure 2, first in flat spacetime, and then
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in curved spacetime.

Fig. 2.: How vectors behave when parallel transported
along paths on the surface of a sphere. The two result-
ing final vectors will have different orientations depending
on their path through spacetime.

It will be nice to examine this con-

cept a little further before proceeding.

In particular, we wish to fix the orienta-

tion of the vectors in the vector space,

VP as it is moved along the curve x(λ).

To this end, define a covariant direc-

tional derivative analogous to the di-

rectional derivative, d
dλ

= dxµ

dλ
∂
∂xµ

in flat

spacetime. It should be clear that the

covariant derivative must replace the par-

tial derivative in curved space to get the

relation

D

dλ
=
dxµ

dλ
∇µ. (3.26)

With this in mind, the parallel transport of a type
(
n
m

)
tensor T is defined as the

covariant directional derivative being zero, as

0 =
dxµ

dλ
∇µTα1...αm

β1...βn (3.27)

Applying this to a vector uα, it can be seen that a vector is parallel transported

according to the relation

0 =
dxµ

dλ
∇µu

α

=
dxµ

dλ
(∂µu

α + Γαµνu
ν)

=
dxµ

dλ
∂µu

α +
dxµ

dλ
Γαµνu

ν

=
dxµ

dλ

∂

∂xµ
uα +

dxµ

dλ
Γαµνu

ν

(3.28)
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Using the chain rule to simplify the derivative in the first term yields

0 =
duα

dλ
+ Γαµν

dxµ

dλ
uν . (3.29)

3.6.1 Geodesics

If one narrows their vision further, and focuses only on the curves that have

covariantly constant tangent vectors, a group of particularly important geometric

structures is formed. Consider, again, a curve x(λ) as described in the preceding

section. The vector of interest in this case is going to be the tangent vector to the

curve. Making the substitution uα = dxα

dλ
into Eq. (3.29), one arrives at the geodesic

equation:

0 =
d

dλ

dxα

dλ
+ Γαµν

dxµ

dλ

dxν

dλ
. (3.30)

A geodesic are the curved-space generalization of a straight line, being the

shortest path between points in spacetime, and as such, their importance cannot be

understated. It should be clear that in context of flat spacetime, when the connection

coefficients vanish, this becomes 0 = d2xµ

dλ2
, which is the usual straight line in a

Cartesian system. This points to the fact that this is a proper generalization into

curved spacetime.

It should be noted that in considering timelike paths, parallel transport of the

tangent vectors to a curve xµ(λ) actually constrains the parameterization, λ, of the

curve to one associated with that of proper time, τ , by the relation λ = aτ + b,

for some constants a and b. An alternative derivation of the geodesic equation can

be achieved by varying timelike paths between stationary points on a manifold and

finding the shortest path. This method should be familiar to anyone who has taken a

graduate level mechanics course. Such a derivation gives a proper look at why the
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parameterization of the curve must be constrained to proper time, though it will not

be done here. This method also leads to connection coefficients which are precisely

that of the Christoffel connection. See [1] for more information.

Geodesics are particularly important in their description of the movement of

unaccelerated test particles through spacetime as a result of the geometry of the

manifold. This will be shown to lead to the manifestation of the gravitational force in

the coming chapters. For a timelike path, the parameter in Eq.(3.30) undergoes the

transformation λ 7→ τ , such that the geodesic equation is written as

0 =
d

dτ

dxα

dτ
+ Γαµν

dxµ

dτ

dxν

dτ
, (3.31)

or by writing it directly using the directional covariant derivative, i.e., the first relation

in Eq. (3.28), where uα = dxα

dτ
, one finds

0 =
dxµ

dτ
∇µ

dxα

dτ

= Uµ∇µU
α

(3.32)

where in the second line, the substitution for the four-velocity Uµ = dxµ

dτ
has been

made.

This can also be rewritten in terms of the four momentum, by multiplying through

both sides of the equation by the squared mass, as

0 = m2Uµ∇µU
α

= (mUµ)∇µ(mUα)

= pµ∇µp
α

(3.33)

This expression is enlightening as it highlights the motion of inertial bodies, i.e.,

that time-like test particles in free fall move in the direction that their momentum is

oriented.
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For null-like geodesics, it should be clear that the proper time will no longer be an

appropriate parameterization. One could make this deduction on nomenclature alone,

but to be technical, this is because there is no notion of proper time on these paths.

Nonetheless, it is still possible to define the geodesic equation of null vectors in terms

of the parameter, λ. If a curve x(λ) satisfies the geodesic equation for the parameter λ,

it will also be such for any related affine parameter by the transformation λ 7→ aλ+ b.

It should be noted that any of these affine parameters can be chosen, though they will

lead to different constructions for continuing the null-like path. It is thus conventional

to choose the normalized parameter, λ, along the path such that the rate of change of

the curve with respect to the parameter is equal to the momentum four-vector as

pα =
dxα

dλ
(3.34)

This in particular will be important to the topic of this thesis, as it applies to the

motion of photons in particular. An expression for the photons energy, as seen from a

reference frame with velocity Uµ is then given by

E = pαU
α (3.35)

This equation also applies to those curves which are time-like, where the mo-

mentum is instead defined as pα = mUα. Returning mentally to earlier concepts of

gravitation, it should be noted that for time-like paths in particular, this energy is

only the energy of the particle as a product of inertia. There is no broad curved space

generalization of the idea of a gravitational potential energy.

3.7 Curvature Tensor Structures

Recall the path a vector follows as it is parallel transported on a manifold

determines its orientation at its final point. This is an important descriptor of how
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the curved space behaves ”between” these two points, i.e. how paths curve between

two points. As such, it will greatly simplify the language of the manifold to create

tensorial objects that codify this curvature.

3.7.1 Riemann Curvature Tensor

To get to this point, consider the figure, where there are two points with two

separate path combinations connecting them. Let there be a vector vα ∈ Vp. Taking

its covariant derivative first along the path Aµ and then the path Bν , at point q yields

the new vector ∇ν∇µv
α. Evaluated at the proper points along the path, this new

tensor gives the change of the vector relative to if it had been parallel transported

(which would have been zero). One can do the same along the opposite path- taking

the covariant derivative first along Aµ and then Bν . This yields the vector ∇µ∇νv
α,

which if you’ve been following will be different than the first result we achieved, since

the covariant derivatives do not commute.

Fig. 3.: A setup of an infinitesimal loop cre-
ated by the commutator of covariant deriva-
tives, used to distinguish the curvature on a
manifold

This being the case, notice that by taking

the difference between the resulting vectors, one

arrives at the commutator of the covariant deriva-

tives acting on the vector vα

[∇ν ,∇µ]vα = (∇ν∇µ −∇ν∇µ)vα

= ∇ν∇µv
α −∇ν∇µv

α

(3.36)

This commutator describes the difference in

a vector being parallel transported by one route (i.e., first curve A then curve B) as

opposed to moving it along an inverted route (i.e., B then A). Expanding the first
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term above,

∇ν∇µv
α = ∇ν(∂µv

α + Γαµβv
β)

= ∂ν(∂µv
α + Γαµβv

β) + Γανρ(∂µv
ρ + Γρµβv

β)− Γρνµ(∂ρv
α + Γαρβv

β)

= ∂ν(∂µv
α) + ∂ν(Γ

α
µβv

β) + Γανρ∂µv
ρ + ΓανρΓ

ρ
µβv

β

− Γρνµ∂ρv
α + Γαρβv

β)

= ∂ν∂µv
α + (∂νΓ

α
µβ)vβ + Γαµβ∂ν(v

β) + Γανρ∂µv
ρ + ΓανρΓ

ρ
µβv

β

− Γρνµ(∂ρv
α + Γαρβv

β)

(3.37)

This is easily generalizable to the second term in Eq. (3.36) by interchanging the

indices µ, ν on the covariant derivatives as

∇µ∇νv
α = ∂µ∂νv

α + (∂µΓανβ)vβ + Γανβ∂µ(vβ) + Γαµρ∂νv
ρ + ΓαµρΓ

ρ
νβv

β

− Γρµν(∂ρv
α + Γαρβv

β)

Subtracting this second equation from the first, by focusing on coefficients of the

vector vα and its derivatives, one finds that

[∇ν ,∇µ]vα = (∂ν∂µ − ∂µ∂ν)vα + (Γανρ∂µ − Γαµρ∂ν)v
ρ

+ (∂νΓ
α
µβ + Γαµβ∂ν + ΓανρΓ

ρ
µβ − ∂µΓανβ − Γανβ∂µ − ΓαµρΓ

ρ
νβ)vβ

+ Γρµν(∂ρv
α + Γαρβv

β)− Γρνµ(∂ρv
α + Γαρβv

β)

= (Γανρ∂µ − Γαµρ∂ν)v
ρ + (Γρµν − Γρνµ)(∂ρv

α + Γαρβv
β)

+ (∂νΓ
α
µβ + Γαµβ∂ν + ΓανρΓ

ρ
µβ − ∂µΓανβ − Γανβ∂µ − ΓαµρΓ

ρ
νβ)vβ

(3.38)

In the last term here, it will be necessary to interchange the dummy indices ρ and β.
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Doing so and factoring again yields the expression

[∇ν ,∇µ]vα = (Γρµν − Γρνµ)(∂ρv
α + Γαρβv

β)

+ (Γανρ∂µ − Γαµρ∂ν + ∂νΓ
α
µρ + Γαµρ∂ν

+ ΓανβΓβµρ − ∂µΓανρ − Γανρ∂µ − ΓαµβΓβνρ)v
ρ

(3.39)

Note that in the second term, the terms with partial derivatives acting on the vector

components vρ cancel each other out, leaving only the expression

[∇ν ,∇µ]vα = (Γρµν − Γρνµ)(∂ρv
α + Γαρβv

β)

+ (∂νΓ
α
µρ + ΓανβΓβµρ − ∂µΓανρ − ΓαµβΓβνρ)v

ρ

(3.40)

One then defines the Riemann Curvature Tensor to be the factor of the first

term,

Rα
ρνµ = ∂νΓ

α
µρ − ∂µΓανρ + ΓανβΓβµρ − ΓαµβΓβνρ (3.41)

This tensor is clearly antisymmetric in the indices µ and ν. The last term in

Eq.(3.40), contains the factor, 2Γρ[νµ] = Γρνµ − Γρµν , known as the torsion tensor- an

antisymmetric type
(

1
2

)
tensor. However, this will always disappear with the Christoffel

connection which has been described for the purpose at hand. It is only mentioned

here to point out that this commutator of covariant derivatives should not be explicitly

taken as a definition of the Riemann Curvature tensor, as part of this derivation has

been assumed on a particular connection. Because the covariant derivative of a tensor

is itself a tensor, taking two covariant derivatives of a tensor will also yield a tensor.

The difference between two tensors will also be tensorial, so it should be no surprise

that the above expression behaves as a tensor.

One can generalize this derivation in order to find that the action of the commu-
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tator of covariant derivatives on a tensor T behaves as

[∇ν ,∇µ]Tα1···αm
β1···βn = −2Γρ[νµ] +Rα1

ρνµT
ρ···αm
β1···βn + · · ·+Rαm

ρνµT
ρ···αm
β1βn

+Rρ
β1νµ

Tα1···αm
ρ···βn + · · ·+Rρ

βnνµ
Tα1···αm
β1···ρ

(3.42)

3.7.2 Extensions of Curvature

The Riemann curvature tensor is an extremely powerful tool for calculations

due to the fact it has a handful of symmetries which greatly reduces the number

of independent components. The symmetries in particular will be highlighted here;

the reader is encouraged to read further about deriving the number of independent

components in [1]. A number of new symmetries pop up when one restricts the

connection defining the curvature to the Christoffel connection, as is the standard

procedure in general relativity. These symmetries are more easily reconciled by first

lowering all of the Riemann tensor indices as Rαβµν = gαλR
λ
βµν .

Then the immediate symmetries of this tensor are as follows:

1. Rαβµν = −Rβαµν

2. Rαβµν = −Rαβνµ

3. 0 = Rαβµν +Rαµνβ +Rανβµ

One can get the Ricci tensor by contracting the first and third indices according to

Rµν = Rα
µαν = gαβRβµαν (3.43)

By the symmetries given above, it should be clear that this is the only independent

contraction that can be made on this tensor. The Ricci tensor can then in turn be

contracted over, to yield the Ricci Scalar

R = Rα
α = gµαRµα (3.44)
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These objects, the Ricci scalar and tensor, contain all of the information about

the possible traces one can take over the curvature tensor. The trace free parts of

the metric can then be decomposed to form the Weyl Tensor, though we will not

need this detail further. It is an interesting subject in its own right, as it is invariant

under conformal transformations. However, again, this will not be covered here and

for further reading see [1].

Consider next the covariant derivative of the curvature tensor evaluated in locally

Lorentz coordinates. In such a coordinate system, we will only need to consider

the partial derivative term. Substituting the relevant expressions for the curvature

tensor and the Christoffel connections. Working in local Lorentz coordinates, it will be

appropriate to drop terms in the curvature components that have first order derivatives

of the metric as factors. The first step will be to get the curvature itself expressed in

terms of the metric. Starting with the expansion,

Rβρνµ = gβαR
α
ρνµ

= gβα(∂νΓ
α
µρ − ∂µΓανρ + ΓανβΓβµρ − ΓαµβΓβνρ)

(3.45)

note that the Christoffel connections of particular interest will be of the form

Γαµρ =
1

2
gατ (∂µgρτ + ∂ρgτµ − ∂τgµρ). (3.46)

It can then be seen that the last two terms in the curvature expression will reduce

to 0, since these will contain first order metric derivatives will all go to zero in the

neighboring flat space. The first two terms will contain some first order derivatives of

the metric, but these will not be dropped until they are reached. Thus,

Rβρνµ = gβα(∂νΓ
α
µρ − ∂µΓανρ) (3.47)

Only one of these terms will need to be considered, as these will be the same upon
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switching the µ, ν indices in the second term. With this in mind, the first term expands

as

∂νΓ
α
µρ = ∂ν [

1

2
gατ (∂µgρτ + ∂ρgτµ − ∂τgµρ)]

=
1

2
[(∂νg

ατ )(∂µgρτ + ∂ρgτµ − ∂τgµρ)

+ gατ∂ν(∂µgρτ + ∂ρgτµ − ∂τgµρ)]

(3.48)

where the first term will be dropped as it only contains factors that are first partial

derivatives of the metric. Thus, this leaves only

∂νΓ
α
µρ =

1

2
[gατ∂ν(∂µgρτ + ∂ρgτµ − ∂τgµρ)] (3.49)

Then, this is easily generalizable to both of the terms in the curvature expression,

so that

Rβρνµ = gβα
1

2
[gατ∂ν(∂µgρτ + ∂ρgτµ − ∂τgµρ)

− gατ∂µ(∂νgρτ + ∂ρgτν − ∂τgνρ)]
(3.50)

Taking partial derivatives to commute with one another, it should be easy to see the

first terms within the parentheses on either line will cancel one another. Thus, this

simplifies further with this step and by contracting over the index α. Then,

Rβρνµ =
1

2
gβαg

ατ [∂ν(∂ρgτµ − ∂τgµρ)− ∂µ(∂ρgτν − ∂τgνρ)]

=
1

2
δτβ[∂ν(∂ρgτµ − ∂τgµρ)− ∂µ(∂ρgτν − ∂τgνρ)]

=
1

2
[∂ν∂ρgβµ − ∂ν∂βgµρ − ∂µ∂ρgβν + ∂µ∂βgνρ]

(3.51)

Then, finally, one can get the covariant derivative of the Riemann curvature tensor in

locally inertial coordinates.

∇λRβρνµ = ∂λRβρνµ

=
1

2
∂λ[∂ν∂ρgτµ − ∂ν∂τgµρ − ∂µ∂ρgτν + ∂µ∂τgνρ]

(3.52)
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Note that even though we have chosen a particular coordinate system, this fact will

generalize everywhere on a manifold due to the tensorial nature of this derivative.

Then, one can take the cyclic permutation of the first 3 indices, λ, β, ρ to yield the

Bianchi Identity, though only the identity itself will be given here.

0 = ∇λRβρµν +∇ρRλβµν +∇βRρλµν (3.53)

3.7.3 Einstein Tensor

Suppose then that one examines Eq. (3.53) further by contracting twice with the

metric components gλµ and gνρ. This yields the relation

0 = gνρgλµ[∇λRβρµν +∇ρRλβµν +∇βRρλµν ]

= gνρ[∇µRβρµν +∇ρR
µ
βµν +∇βg

λµRρλµν ]

= gνρ[∇µRβρµν +∇ρR
µ
βµν −∇βg

λµRλρµν ]

= gνρ[∇µRβρµν +∇ρR
µ
βµν −∇βR

µ
ρµν ]

(3.54)

Then, contracting over the curvature components finds the expression

0 = gνρ[∇µRβρµν +∇ρRβν −∇βRρν ] (3.55)

The action of the second metric then behaves as

0 = gνρ[∇µRβρµν +∇ρRβν −∇βRρν ]

= ∇µgνρRβρµν +∇νRβν −∇βR
ν
ν

= ∇µgνρRρβνµ +∇νRβν −∇βR

= ∇µRβµ +∇νRβν −∇βR

(3.56)
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The dummy indices of the first two terms µ and ν can be interchanged in order to

combine these terms to yield

0 = 2∇µRβµ −∇βR (3.57)

This can be rewritten then as

0 = ∇µRβµ −
1

2
∇µgβµR = ∇µ(Rβµ −

1

2
gβµR) (3.58)

The tensor in parentheses on the far right hand side of this equation is then defined

as the Einstein Tensor,

Gβµ = Rβµ −
1

2
gβµR, (3.59)

so that the twice contracted Bianchi identity can be written as just ∇βGβµ = 0.

3.8 Geodesic Deviation

The effects of curvature on a manifold show themselves through the Riemann

curvature tensor in a number of different applications. One particularly important

discussion that induces the use of this tensor is the calculation of the geodesic deviation.

It has been mentioned previously, in curved spacetime, that moving the same vector

along different paths of a manifold. It should be expected, then, that these resulting

vectors cross at some point in a way that they are no longer oriented identically. To

quantify this, it will be necessary to consider the curvature tensor introduced above.

This will be necessary for the purpose at hand as this describes how test particles are

affected by the passing of metric perturbations - i.e. gravitational waves.

It will be useful to examine geodesics which are initially parallel in order to

determine their evolution as a function of the parameter, λ. In particular, we wish

to determine how the spacing between two geodesics change as one continues down
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the two curves. With this in mind, consider a collection of one-parameter geodesics,

γs(t), which do not cross, where s denotes the curve in the collection and t is an affine

parameter on each curve. Assume that the curves are in increasing order in their index

s. These curves make up a 2 dimensional manifold embedded into some arbitrary

higher manifold, M , with coordinates chosen to be s and t. The surface made by

these coordinates consists of the points xµ(s, t) ∈M .

From the image it can be seen that along the curves, we have a simple choice of

tangent vectors along the curves, defined by the family

T µ =
∂xµ

∂t
(3.60)

This particular derivative defines the tangent vector on the manifold M at xµ for

some value t along some fixed curve γs0(t). Furthermore, we can define the separation

vector between any two geodesics as

Sµ =
∂xµ

∂s
. (3.61)

This derivative then gives the change in relative position on the manifold M at xµ

between one geodesic γs0(t0) and anotherr γs1(t0) in the family γs(t) for some fixed t0.

One can now define the notion of the instantaneous change of the separation

vector as it moves along the geodesic. Note that the change of the tangent vector will

be zero since only geodesics are in question. Then, the only covariant derivative it

makes sense to take will be that of Sµ in the direction of the tangent vector T ν . Thus,

V µ = T ν∇νS
µ (3.62)

This expression then gives the relative velocity of geodesics. Furthermore, the relative

acceleration of the geodesics can be defined by again taking the covariant derivative
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in the direction of the tangent vector. This yields

Aµ = T ν∇νV
µ (3.63)

One could also calculate the relative acceleration of some path away from a geodesic

by taking the directional derivative of the tangent vector itself, from which one would

get instead the expression, aµ = T ν∇νT
µ, which should be straightforward. It can be

shown fairly easily that the components of the commutator of the basis vectors S and

T yields the expression

[S, T ]µ = Sρ∇ρT
µ − T ρ∇ρS

µ = 0, (3.64)

where since the basis vectors have been adapted to the coordinate system at hand,

their commutator goes to 0. Thus, it is found Sρ∇ρT
µ = T ρ∇ρS

µ. Replacing this

for a definition of the velocity such that V µ = Sρ∇ρT
µ, the acceleration can now be

calculated. It is found that

Aµ = T ν∇ν(S
ρ∇ρT

µ)

= T ν(∇νS
ρ)(∇ρT

µ) + T νSρ∇ν(∇ρT
µ)

= Sν(∇νT
ρ)(∇ρT

µ) + T νSρ∇ν(∇ρT
µ).

(3.65)

Noting then that the commutator of two covariant derivatives is related to the curvature

by ∇µ∇ν −∇ν∇µ = Rα
βµν , this can be written instead as

Aµ = Sν(∇νT
ρ)(∇ρT

µ) + T νSρ(Rµ
βνρT

β +∇ρ∇νT
µ)

= Sν(∇νT
ρ)(∇ρT

µ) + T νSρ∇ρ∇νT
µ + T νSρRµ

βνρT
β.

(3.66)

Applying the Leibniz product rule to the second term according to the relation

T ν∇ρ∇νT
µ = ∇ρ(T

ν∇νT
µ)− (∇ρT

ν)(∇νT
µ) (3.67)
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, the relative acceleration is seen to simplify as

Aµ = Sν(∇νT
ρ)(∇ρT

µ) + Sρ[∇ρ(T
ν∇νT

µ)

− (∇ρT
ν)(∇νT

µ)] + T νSρRµ
βνρT

β

= Sν(∇νT
ρ)(∇ρT

µ) + Sρ∇ρ(T
ν∇νT

µ)

− Sρ(∇ρT
ν)(∇νT

µ) + T νSρRµ
βνρT

β

= T νSρRµ
βνρT

β.

(3.68)

In the second to last line, the first and third terms are seen to cancel, while the second

term contains the expression T ν∇νT
µ, which for geodesics are known to disappear.

Thus, one arrives at this last line, known as the geodesic deviation equation. It can

then be seen that the relative acceleration of two neighboring geodesics is directly

proportional to the curvature. Furthermore, this acceleration itself can be interpretted

physically as the appearance of gravitational tidal forces.
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CHAPTER 4

GENERAL RELATIVITY

General relativity is most concerned with the behavior on manifolds which are metric-

compatible and torsion-free. These specific properties have been shown to correlate

in particular with the Christoffel connection. This will be used exclusively from here

on out. The abstraction of a manifold which has been built up thus far must now

be peeled back in order to consider the consequences of this framework. The main

components of gravitation that will be encountered and need to be decoded with the

tools of differential geometry are:

1. How spacetime curvature manifests as gravity

2. How momentum and energy change the spacetime geometry.

This, as one can imagine, has many consequences- all of which we will be unable

to cover in the span of this thesis. Thus, we try to remain brief in this chapter. For

more information on the full implications of GR, see [1] [19] [18], and the like.

4.1 The Equivalence Principle(s)

The primary motivation of general relativity, though we have not mentioned it

explicitly thus far, is the equivalence principle. In particular, we now wish to consider

the Einstein Equivalence Principle (EEP), which states that in small enough regions

of spacetime, basic physics reduces to that of flat spacetime, making the gravitational

field unobservable. This, in essence, is the physical equivalent of the manifolds defined

earlier, which reduced to Rn in the local neighborhood of a point.

To actually make the transition, one must apply the minimal coupling principle,
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which essentially states that if one takes a valid measurement of physics in a Lorentz

frame, one can assert that this measurement will be the same in curved space at some

point, as it should look locally Lorentz. In the established framework, if an expression

can be derived for a physical observable in local Lorentz spacetime, one must only

make the transformations

ηµν 7→ gµν ; ∂µ 7→ ∇µ

to generalize this to curved manifolds.

A prime example in the standard graduate text is the stress energy tensor Tαβ

discussed previously in the context of flat spacetime. Recall that this tensor contained

all the density-flux relations of mass-energy and momentum, and that it was required

to ultimately be conserved. While the flux across some surface in curved space is more

complex, it turns out that it can be done with the right positioning. Thus, in curved

spacetime this law should still apply, and to make this transition one simply makes

the transformation

∂µT
µν 7→ ∇µT

µν . (4.1)

From there, the connection coefficients, once acquired, along with the concept

of parallel transport, are capable of doing all the heavy lifting of how this behaves

across curved spaces. Intuitively, due to the method of construction of the Christoffel

connections in the context of GR, this same information is also inherently contained

in the metric, albeit in a different form. This principle thus generates the ability to

calculate in curved space in the same way one would in flat space. Furthermore, this

can be verified against the Newtonian predictions for the behavior of the gravitational

field (i.e., the connection, the metric, etc) in its weak field limit, with which it is found

to agree.
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4.2 Einstein’s Equations

Having now discussed how matter couples and responds to the geometry of

spacetime, the inverse must be considered. It has long been known that mass creates

gravity- early cosmological calculations involved the mass of both bodies bound to

one another by a gravitational force. With this in mind, note that the density of

mass-energy as seen by observers with velocity vα is the scalar

ρ = vαTαβv
β (4.2)

This mass energy density is expected to be the source of gravity. However, as seen

here the stress energy tensor must be the coordinate independent object which induces

changes in the geometrical structure. This now generalizes to the curved space relation

∇αTµν = 0, which in turn satisfies a conservation of energy-momentum law.

The goal now is to construct an equality that on one side, has this stress-energy

tensor describing how the fields are generated by the mass energy density. On the

other side of the equation, it is desired that there is another symmetric, divergence-

free tensor which actually characterizes gravity itself. To appropriately characterize

geometry it should be constructed purely of the geometrical objects which were

discussed throughout the previous chapter (i.e., the metric, christoffel connections,

the curvature tensor and its traces).

To ensure that this tensor gives a consistent picture of the spacetime curvature,

enforce the properties:

1. The tensor vanishes in flat spacetime

2. The tensor is constructed from the Riemann curvature tensor and the metric,

and from nothing else
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3. The tensor be specifically linear in the Riemann tensor,

4. Again, that this be a rank 2 symmetric tensor and divergence free

It can be shown that the unique tensor satisfying all of these properties simul-

taneously is in fact the Einstein tensor, Gµν . This will simply be taken for granted

here. Simply equating these tensors and their components would assume to much

about the ratio between these two objects. This far, they have been kept very distinct

from one another in the discussion. As such, when building this equality, a constant

of proportionality κ will be introduced, and then solved for under limiting conditions.

Then, this leaves the component relation

Gµν = κTµν (4.3)

To get the value for κ, consider a perfect fluid in the limit of Newtonian gravity.

The limiting conditions on general relativity to get Newtonian mechanics require

obsevation of this perfect fluid in a weak-field, time-independent, low velocity state.

Recall that a perfect fluid then has a stress energy tensor of the form

Tµν = (ρ+ p)UµUν + pgµν (4.4)

In this expression, the pressure, p, can be neglected as this quantity is negligible for

velocities not approaching the speed of light. Therefore, this expression is better

approximated in this limit as

Tµν = ρUµUν , (4.5)

which is more accurately the stress energy of ideal dust, but alas. Nonetheless, even if

this is the stress energy of ideal dust, it would be nice for this ideal dust to still be

representative of some massive body in the manifold.
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Working in the rest frame of this massive body, the relative velocity vector

component Uα can be expressed as only having a time component, U i = 0 for latin

indices representing the spatial components, as i=1,2,3. In the weak field limit, the

metric should be expressed as some perturbation about flat spacetime,according to

the relation given in preceding section. However, it has already been assumed that

the energy density ρ, and as such,by previous arguments, the local space should be

expected to reduce to the linear theory described by the metric in the preceding

section, gµν = ηµν + hµν

Therefore by the construction of this system, the only covariant components

of the metric which need to be considered as the Lorentzian metric of flat space,

g00 = −1. Then, the covariant component(s) of the velocity can be found by enforcing

the normalization connection, gµνU
µUν = −1. Only the timelike components need to

be considered, since only U0 is nonzero. Thus, it can be seen that −1 = g00U
0U0 =

(−1)(U0)2.

Then, it should be clear that the approximation at hand takes the form U0 = 1.

By the metric component, the covariant form of this vector is just U0 = g00U
α = −1.

Then, it should be easy to look back at the current expressin for the stress energy

tensor, and see that the only nonzero component in this limit is T00 = ρ. It should

also be clear from this fact that the trace of this stress energy tensor will behave as

T = gµνTµν = g00T00 = −ρ, (4.6)

since the contravariant metric component here will just be that of flat space in this

limit, as has been mentioned.

Return to equation which was constructed to relate mass energy density to the

curvature. Let the left hand side of the equation be expanded so that it is expressed

in terms of the metric Gαβ, the Ricci tensor,Rαβ, and the Ricci curvature scalar, R.

48



Thus, this equation should be expressed as

Rµν −
1

2
Rgµν = κTµν (4.7)

Note then that contracting both sides of the equation by multiplying through a factor

of gµν , the left hand side becomes

gµν(Rµν −
1

2
Rgµν) = gµνRµν −

1

2
Rgµνg

µν

= Rµ
µ −

1

2
R(4) = −R

(4.8)

and the right hand side can be written using the standard definition of the trace as T ,

such that one finds the relation −R = κT . Substitute this back into Eq. (4.7) to find

it rewritten instead as

Rµν +
1

2
(κT )gµν = κTµν , (4.9)

which is rearranged to yield instead,

Rµν = κTµν −
1

2
(κT )gµν (4.10)

Then, to calculate R00 substitution of the stress energy component T00 = ρ, its

trace T = −ρ, and the derived relevant metric component, g00 = −1 yields

R00 = κρ− 1

2
κ(−ρ)(−1)

= κρ− 1

2
κρ

=
1

2
κρ.

(4.11)

Then, this expression relates derivatives of the metric to the stress-energy tensor-

giving a good representation of how the energy in a given space changes the metric
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around it. As such, it would be nice to expand this term on the left out. Then, note

R00 = Rα
0α0 = ∂αΓα00 − ∂0Γαα0 + ΓααλΓ

λ
00 − Γα0λΓ

λ
α0 (4.12)

The last two terms are second order in the christoffel connections, but it should

be noted that all of the terms which arise from these will be first order derivatives of

the metric. Then, these two terms can be dropped as they will certainly go to zero.

The second term is a time derivative, and since the metric is approximately constant

in this limit, the christoffel connection will be also.

Thus, this term can be dropped, and the first term can be contracted over, giving

a time derivative in it’s first term where α = 0. As such, this term can be ignored

from the beginning, so that only the spatial components need to be considered. This

can then be expanded using the definition of the christoffel connection as

R00 = ∂iΓ
i
00

= ∂i(
1

2
giρ)[∂0g0ρ + ∂0gρ0 − ∂ρg00]

=
1

2
∂ig

iρ[−∂ρg00]

= −1

2
(giρ∂i∂ρ)g00

= −1

2
(gij∂i∂j)g00

(4.13)

where the time derivatives have been dropped as they appear, including the one

contained in the partial derivative ∂ρ.

Now, to a certain level of approximation in this calculation, it was possible to say

that the metric component g00 = −1. However, now it would nice to be more precise

by applying the full perturbation g00 = −1 + h00. Then, also noting that the operator

gij∂i∂j) is just the Laplacian, ∇2, in euclidean coordinates, this expression simplifies
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to

R00 = −1

2
∇2h00 (4.14)

Note the constant background flatness from the metric disappears upon taking the

derivative here. Returning to the definition from section 1 of this chapter, h00 = 2Φ,

this leaves the relation

R00 =
1

2
κρ = −∇2Φ. (4.15)

where this must, in our limiting condition, be the relativistic generalization of the

poisson equation.

As such, the definition κ = 8π, where the gravitational constant G is set equal to

1 to avoid confusion with the trace of the Einstein tensor. This leads to Einstein’s

field equations, which are the fundamental equations governing the theory of general

relativity

Gµν = 8πTµν . (4.16)

These equations have been tested extensively in the past century, and are still

held to be experimentally valid. Many of these experiments are important discussions

in their own right for observing the power of the theory. One of the most recent

validations, of course, is the topic of this thesis; gravitational waves. With Einstein’s

field equations in hand, this bear of a topic can now be appropriately poked at.
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CHAPTER 5

GRAVITATIONAL RADIATION

With a better understanding of the role matter plays into spacetime curvature, as

it is governed by Einstein’s equations, one can then shift the vision to the small

perturbations about the metric. This is particularly important as it will give us

a simpler set of governing equations, from which gravitational waves can easily be

derived. The best approach to accomplish this is by considering a weak field situation

in which spacetime is assumed to be almost flat, as in the weak field discussion of the

last chapter. However, this time, it would be nice to generalize the solution to include

time-dependencies and the un-restricted motion of particles. This chapter summarizes

information from [1] [19].

5.1 The Linearized Theory of Gravity

With the weak field situation in mind, the choice of new metric will be the same

which was considered last chapter,

gµν = ηµν + hµν ; |hµν |<< 1 (5.1)

This can be substituted into the Einstein field equations, which, from Eq. (4.2) is,

Gµν = 8κTµν . Expanding using the definitions

Gµν = Rµν −
1

2
gµνR (5.2)

and

Rµν = Rα
µαν = Γανµ,α − Γααµ,ν , (5.3)
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Note that in the Ricci tensor, the terms that are second order in the connection

coefficients have been dropped, since they contain only terms that are first order

derivatives in the metric. Then, one finds that the left hand side of Einstein’s field

equations simplify as

Gµν = Rµν −
1

2
gµνR

= Rµν −
1

2
gµνR

= Rµν −
1

2
gµνg

ρβRρβ

= Γανµ,α − Γααµ,ν −
1

2
gµνg

ρβ(Γσβρ,σ − Γσσρ,β)

(5.4)

The connection coefficients may be linearized independently. Recalling the

definitions for metric compatible coordinates and substituting in the new metric

definition, we find that

Γαµν =
1

2
(gαµ,ν + gαν,µ − gµν,α)

=
1

2
(∂νgαµ + ∂µgαν − ∂αgµν)

=
1

2
(∂ν(ηαµ + hαµ) + ∂µ(ηαν + hαν)− ∂α(ηµν + hµν))

=
1

2
(∂νhαµ + ∂µhαν − ∂αhµν)

=
1

2
(hαµ,ν + hαν,µ − hµν,α)

(5.5)

Then, the appearance of the connection coefficients in EQ are of the form
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Γαµν,α − Γαµα,ν . Using the above definition, this difference simplifies as

Γαµν,α − Γαµα,ν = gατ (Γτµν,α − Γταµ,ν)

= gατ (∂αΓτµν − ∂νΓταµ)

= gατ (∂α[
1

2
(hτµ,ν + hτν,µ − hµν,τ )]

− ∂ν [
1

2
(hτα,µ + hτµ,α − hµα,τ )])

=
1

2
gατ (hτµ,να + hτν,µα − hµν,τα − hτµ,αν − hτα,µν + hµα,τν)

(5.6)

The first and fourth terms will cancel, at which point the new form of the metric

may be substituted, and terms not to first order in hµν , can be dropped.

Γαµν,α − Γαµα,ν =
1

2
ηατ (hτν,µα − hµν,τα − hτα,µν + hµα,τν). (5.7)

In linearized theory, the indices of hµν are raised and lowered using the flat spacetime

metric ηµν , and as such this difference simplifies to

Γαµν,α − Γαµα,ν =
1

2
(hαν,µα − hµν,αα − hαα,µν + hµα,ν

α)

=
1

2
(hαν,µα − hµν,αα − h,µν + hµα,ν

α)

(5.8)

Therefore,

Gµν =
1

2
(hαν,µα − hµν,αα − h,µν + hµα,ν

α)

− 1

2
gµνg

αβ(
1

2
(hσβ,ασ − hαβ,σσ − h,αβ + hασ,β

σ))

=
1

2
(hαν,µα − hµν,αα − h,µν + hµα,ν

α)

− 1

2
(
1

2
)gµν (hσα,ασ − h,σσ − h,αα + hασ,

ασ)

(5.9)

It does not take much to show that −hασ,ασandhασ
,ασ are the same. The same is

also true for h,α
α and h,σ

σ, trivially.

Gµν =
1

2
(hαν,µα − hµν,αα − h,µν + hµα,ν

α)− 1

2
gµν(hασ

,ασ − h,αα) (5.10)
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Finally, this equation must be linearized as before.

Gµν =
1

2
(hαν,µα − hµν,αα − h,µν + hµα,ν

α)− 1

2
gµν(hασ

,ασ − h,αα) (5.11)

This is further simplified by defining h̄µν = hµν − 1
2
ηµνh. Noting that the trace h̄

is given by

h̄ = ηµν h̄µν

= ηµν(hµν −
1

2
ηµνh)

= h− 1

2
(4)h

= −h

(5.12)

According to this relation, the definition of h̄ can be transformed to yield the

relation h̄µν = hµν + 1
2
ηµν h̄. Thus it is found that

hµν = h̄µν −
1

2
ηµν h̄ (5.13)

These relations can be applied to the definition of Gµν to yield the following.

Gµν =
1

2
(ηατ (h̄ντ −

1

2
ηντ h̄),µα − (h̄µν −

1

2
ηµν h̄),α

α + h̄,µν + (h̄µα −
1

2
ηµαh̄),ν

α)

− 1

2
ηµν((h̄ασ −

1

2
ηασh̄),ασ + h̄,α

α)

=
1

2
(ηατ (h̄ντ −

1

2
ηντ h̄),µα − (h̄µν −

1

2
ηµν h̄),α

α + h̄,µν + (h̄µα −
1

2
ηµαh̄),ν

α

− ηµν(h̄ασ −
1

2
ηασh̄),ασ − ηµν h̄,αα)

=
1

2
(ηατ h̄ντ,µα −

1

2
ηατηντ h̄,µα − h̄µν,αα +

1

2
ηµν h̄,α

α + h̄,µν

+ h̄µα,ν
α − 1

2
ηµαh̄,ν

α − ηµν h̄ασ,ασ +
1

2
ηµνηασh̄

,ασ − ηµν h̄,αα)

(5.14)
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Raising and lowering indices appropriately, this can be further simplified.

Gµν =
1

2
(h̄ν

α
,µα −

1

2
δαν h̄,µα − h̄µν,αα +

1

2
ηµν h̄,α

α + h̄,µν

+ h̄µα,ν
α − 1

2
h̄,νµ − ηµν h̄ασ,ασ +

1

2
ηµν h̄,α

α − ηµν h̄,αα)

=
1

2
(h̄ν

α
,µα + (1− 1

2
− 1

2
)h̄,µν − h̄µν,αα + (−1 +

1

2
+

1

2
)ηµν h̄,α

α

+ h̄µα,ν
α − ηµν h̄ασ,ασ)

=
1

2
(h̄ν

α
,µα − h̄µν,αα + h̄µα,ν

α − ηµν h̄ασ,ασ).

(5.15)

Then, using this the weak field equations are found to take the form,

16κTµν = h̄ν
α
,µα − h̄µν,αα + h̄µα,ν

α − ηµν h̄ασ,ασ (5.16)

One important property of the weak field equations is that it is always possible to

find a gauge transformation which forces hµα,α = 0 [19]. This gauge condition yields

the linearized field equations,

16κTµν = −h̄µν,αα (5.17)

Before proceeding, it should be noted that the stress-energy tensor in Eq.(5.17)

needs to also be considered in the weak field limit. It should not be surprising that

the momentum and energy contained in a weak field situation will be small. For the

goal at hand, only the vacuum equations Rµν = 0 will be needed, which is due to the

condition Tµν = 0. Therefore, the linearized field equations in vacuum are simply

0 = h̄µν,α
α = ∂α∂αh̄µν . (5.18)

5.1.1 Gauge Transformations

A quick aside should be made on gauge transformations before proceeding, as

this will be an important notion in how gravitational waves are chosen to be viewed.
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It was mentioned in passing that ”gauge conditions” could always be found to force

the partial derivative of the metric perturbation to disappear. It should be noted this

fact implies that the metric chosen to consider the weak-field previously is not in fact

unique!

A gauge transformation can be thought of as an infinitesimal coordinate transfor-

mation [19] which leaves the system and its observables apparently unchanged. One

could always change lorentz frames locally, but because the metric is not truly local,

even changing coordinate systems. nearby will result in the perturbations taking a

different form in the new frame. To consider this a bit deeper, a bit more precision

would be nice.

Fig. 4.
The pullback of the metric to a background spacetime

Suppose then that there are

two spacetimes, Mb and Mp. Let

Mb be the spacetime with the

background metric, ηµν, and

equip this manifold with coor-

dinates xµ. On the other hand,

let Mp describe the spacetime

containing the full metric, gαβ,

which, after constructing the curvature tensors and connections, is a valid solution

to Einstein’s equations. Let this physical spacetime be armed with the coordinates

yα. Suppose there exists a diffeomorphism between these two spacetimes, φ. Then,

the transition which we modeled in the previous section through the linearization

of einstein’s equations is in fact the diffeomorphism φ : Mp 7→ Mb. This, in general,

permits the mapping of tensors between these two coordinate systems. In particular,

the interest here is in retaining the metric tensor, and thus the validity of the con-

structions of Einstein’s equations, as these tensorial objects are mapped from Mp to
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Mb (Fig. 4.

In particular, it would be nice to redefine the metric gαβ on the background

spacetime by taking the pullback of the metric (φ∗g)µν ∈ Mb. Doing such will

in fact retain the Einstein equation solvability of the metric, due to the fact that

diffeomorphism require an inverse map to be properly defined. In doing so, one can

then have some well defined notion of the physical perturbation in the background

spacetime by the relation

hµν = (φ∗g)µν − ηµν (5.19)

Fig. 5.
A mapping between the full metric and the coordinate

transformations allowing for the proper conditions on the
perturbation.[1]

With this in mind, it will be

in fact necessary to restrict our

consideration above strictly to

those where hµν is small, which

was enforced earlier but had not

yet been for the purpose hand.

By this requirement, a space has

been created on which the linear

theory can be analyzed. Further-

more, the relation created above, along with the smallness condition on hµν , ensures

that it will be a solution to the linearized equations on the background spacetime.

This still leaves a number of diffeomorphisms, i.e. solutions to the system of equations,

as there are plenty of perturbations that can exist below some arbitrary smallness

threshold. Thus, it is necessary to examine further and impose gauge conditions,

which in essence allows for a unique coordinate system for the perturbations to be

viewed from.

Consider a vector field χµ(x) ∈Mb which generates a single parameter collection
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of diffeomorphisms, ψε, from Mb back onto itself. If φ is a diffeomorphism which yields

a sufficiently small pertubation, as described above, then for some sufficiently small ε,

(φ ◦ψε) will also be a diffeomorphism between Mb and Mp that generates a sufficiently

small perturbation, though it will take on some different value. Then, in turn, define

a collection of perturbations defined by this diffeomorphism as

h(ε)
µν = (φ ◦ ψε)∗(g)µν − ηµν = [ψ∗ε (φ

∗(g))]µν − ηµν (5.20)

It can then be shown by substitution of the previously defined metric pullback that

this equation simplifies down into the form

h(ε)
µν = hµν + εLεηµν , (5.21)

where Lε is the Lie derivative discussed in chapter 3. It can be shown, see [1], that

the Lie derivative of the metric in the direction of some vector field χµ can be written

as Lχgµν = 2∇(µεν). This will carry over to the background metric, ηµν , at hand.

Furthermore, in this case the covariant derivative must be translated back to a partial

derivative, and the perturbation becomes

h(ε)
µν = hµν + 2ε∂(µεν). (5.22)

This gives the gauge transformation, which represents ”the change in the perturbation

under an infinitesimal diffeomorphism”[1]. By utilizing this gauge transformation,

one can, without loss of generality in our previous derivation, change the coordinate

system without losing physical meaning. This is analogous to the invariance of the

Lorentz gauge described earlier for electromagnetism in special relativity, which left

the field strength tensor invariant. For the gauge transformation of linearized theory,

as described here for weak field situations of general relativity, it can be shown that

the resulting invariant property is the Riemannian curvature (and thus the physical
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spacetime),

δRα
βµν = 0. (5.23)

5.2 The Transverse Traceless Gauge

The particular gauge transformation for the observation of gravitational waves

is that into the transverse traceless (TT) gauge. This will actually be in addition to

the gauge conditions imposed during the linear theory derivation. In order to see the

necessity of this, consider the linearized field equations which were found previously,

0 = h̄µν,α
α = ∂α∂αh̄µν . (5.24)

The simplest solution to these field equations is the plane wave solution with constant

amplitude Aµν and wave vector kα

h̄µν = Re[Aµνexp(ikαx
α)] (5.25)

The amplitude and wave vectors are restricted by the conditions that the wave vector

is null, i.e., kαk
α = 0, and that it is orthogonal to the amplitude, i.e., Aµνk

ν = 0. The

time component of the wave four vector is the frequency, ω, of the wave. To ensure

the vector is null, the frequency must be related to the spatial components by

ω2 = δijkik
j. (5.26)

Furthermore, this wave will propogate with the speed of light. Note that by the

symmetry of the metric perturbations, it must be the case that Aµν is also symmetric.

Therefore, in 4 dimensions it will have 10 independent components. Furthermore, by

the orthogonality condition imposed above between the wave vector and the amplitude,

the independence of 4 more components is lost, leaving 6 independent components.
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It will not be shown in this thesis, but it can be taken for granted that the solutions

to the nonlinearized field equations of general relativity have only 2 independent

components. In linearizing the field equations, one should expect to find the same

number of independent components, which is clearly not the case.

Furthermore, it should also be noted that one could introduce an arbitrary plane-

wave vector field which generates a gauge transformation. This would arbitrarily

change four of the independent components of Aµν , which would eliminate the need

for discussing gauge transformations at all earlier. To remedy this, one can in fact

find a specific gauge to work in- the transverse traceless gauge.

Choose a global reference frame with four-velocity uα, which is appropriate for

the near vacuum conditions being considered. Then, one can impose the conditions

that

Aµνu
ν = 0; Aµµ = 0. (5.27)

These two conditions together eliminate 4 more independent components, leaving a

solution in which the amplitude has 2 independent components, as desired. The gauge

is thus fixed by the 8 constraints 0 = Aµνu
ν = Aµµ = Aµνk

ν , and the two independent

components physically manifest as the degrees of freedom of the plane wave. This

latter statement will be further examined in the next section. For now, turn attention

to the constraints on the amplitude of the plane wave. It would be better to instead

examine this situation from a static Lorentz frame, i.e., only u0 = 1 is nonzero. Then,

these properties are

1. Only spatial components are nonzero: hµ0 = 0

2. Spatial components divergence free: ∂jhjk = 0

3. Spatial components are trace-free: hkk = 0
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Therefore, the metric perturbation components have the properties of a TT tensor.

The term transverse means that this tensor is both purely spatial and divergence

free, i.e., wave face is orthogonal to direction of propagation. Any symmetric tensor

satisfying these constraints is known as a transverse-traceless tensor, for the reasons

which should be clear. Another way of saying all this is that the TT gauge is that in

which hµν reduces to a TT tensor. For calculations done in this gauge, the metric is

referred to notationally by hTTµν .

Before proceeding, consider how some of the key geometric components behave.

The christoffel connections themselves will disappear on the space, since it globally

lorentz, but will take the form they had in the EQ. when found in derivatives.

Furthermore, recall the expression for the curvature which was found in the derivation

of the bianchi identity,

Rαβµν =
1

2
[gαν,βµ + gβµ,αν − gαµ,βν − gβν,αµ] (5.28)

Then, this can be generally linearized by making the substitution for the metric

in the TT gauge, so that

Rαβµν =
1

2
[hTTνα,βµ − hTTβν,αµ − hTTµα,βν + hTTβµ,αν ] (5.29)

It is important to note that only time derivatives of quantities will remain. As

such, it can be seen that the index pairings on each term must be (1)β = 0, µ = 0; (2)

ρ = 0, µ = 0; (3)β = 0, ν = 0; and (4)ρ = 0, ν = 0; respectively. Furthermore, only the

spatial components of the perturbation will be retained in this gauge. This gives a

number of underlying conditions.

Then, due to the high number of symmetries in the Riemann curvature tensor,

one can simplify this expression greatly by considering it in cases. In fact, it can be

seen that the only nonzero components are those in which one of the four cases above
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applies. To simplify this consider first the case α = 0, where the above becomes

R0βµν =
1

2
[hTTν0,βµ − hTTβν,0µ − hTTµ0,βν + hTTβµ,0ν ]

=
1

2
η00[−hTTβν,0µ + hTTβµ,0ν ]

(5.30)

Consider then the indices µ and ν. It is important to note that only one of these

terms will remain at the same time, as if both these indices are 0, both terms will

have non spatial perturbations- which are 0 in the gauge. Again, by the symmetries

of the curvature tensor, only one of these cases need to be considered, as they will

just be additive inverses of one another. Then, this expression can be generalized by

fixing further ν = 0 and forcing µ and β to be purely spatial indices, one finds

R0jk0 =
1

2
[−hTTj0,0k + hTTjk,00] =

1

2
hTTjk,00. (5.31)

Furthermore, with the curvature symmetries in mind, it should be clear that this

solution can be in turn generalized into the solutions R0jk0 = 1
2
hTTjk,00 = −R0jk0 =

R0k0j =

In turn, the case where α is some spatial component should also be considered.

This leaves the curvature tensor in the form

Rjβµν =
1

2
[hTTνj,βµ − hTTβν,jµ − hTTµj,βν + hTTβµ,jν ]

=
1

2
[hTTνj,βµ − hTTµj,βν ],

(5.32)

Again, due to the divergence-free property of the perturbation, the two divergence

terms (second and fourth) will disappear by default. It should further be noted that

this is an almost identical pattern to the case α = 0, as one should expect from the

gauge conditions and the symmetries arising from the curvature tensor. Then, it can

be seen that one must again either choose µ or ν to be the index k, but not both, as

this would force both terms to disappear. It will be chosen here that ν = k, and thus
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it must be the case µ = 0. Finally since only time derivatives should be popping up,

it should be clear the only possible value for β is its temporal index, β = 0. Thus,

Rj00k =
1

2
[hTTkj,00 − hTT0j,0k]

=
1

2
hTTkj,00

(5.33)

Therefore, one in fact finds the form of the curvature tensor in both cases of

α leads to the same result, due to the symmetries of the Riemann curvature tensor.

Thus, the nonzero components can simply be written in general as

R0jk0 =
1

2
hTTjk,00 =

1

2

∂2

∂t2
hTTjk . (5.34)

5.3 Gravitational Waves

Only pure wave solutions can be reduced into the TT gauge, not just general

solutions to the linear equations. As per usual, it would be nice to generalize this specific

solution to a more general gravitational wave. Luckily, just as in electromagnetism,

any gravitational wave can be expressed as some linear combination of these plane

waves. If one applies the gauge above to each plane wave in the superposition, the

arbitrary wave will also satisfy these conditions, since the gauge conditions are all

linear in hµν . This being the case only the spatial components of the arbitrary wave

are nonzero also. As such, notice that the 10 field equations in 0 = ∂α∂αhµν reduce to

only 6 equations.

0 = ∂α∂αh
TT
jk . (5.35)

Then, the obvious question to ask is what influence do gravitational waves have

on matter and spacetime geometry? To answer this question, consider the geodesic

deviation of two particles as a gravitational wave passes by. Consider particle A
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from the reference frame described previously- the comoving frame in which the only

nonzero component of the spacetime position is given by x0 = t. This gives the same

nonzero four-velocity component of u0 = 1. It should be noted that in the literature,

it is often the case that this ”proper reference frame” is denoted with a hat on its

components, as xµ̂. Then, recall that the geodesic deviation of a four vector was found

to take the form

Aµ = T νSρRµ
βνρT

β. (5.36)

For the current consideration, the basis vector T will be the four-velocity of the

comoving frame. Since there is only one nonzero component of the four-velocity, the

above system of equations reduces to

Aµ = u0SρRµ
00ρu

0

= u0SρηµσRσ00ρu
0.

(5.37)

Then consider the coordinate system which is at play here. The frame has both

been described as comoving with particle A and globally Lorentz. It should then

be noted that one can always find a TT gauge transformation that moves with this

coordinate system, to a good approximation. Thus, the previously derived expression

for the curvature can be used. Furthermore, from the previous consideration of the

curvature in the TT gauge, it should be clear that the only nonzero cases of the

Riemann curvature tensor are those in which the indices σ and ρ are spatial indices.

furthermore, imposing the diagonality of the background metric, this expression
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simplifies to

Aj = u0SkηjmRm00ku
0

= SkηjmRm00k

=
1

2
SkηjmhTTmk,00

(5.38)

Furthermore, the separation vector can just be described by the position of the

other particle, which can be referred to as particle B. Only the spatial coordinates

will be needed, and so these will be written xjB. In general, the vector components

Aj reference the relative acceleration of the two geodesics, so that this should be

the second derivative of the separation vector with respect to the absolute time.

However, in a weak field situation with low enough energy, the absolute time can be

approximated as the relative time, t. In the current situation it can be assumed that

the mixed tensor components of the metric perturbation are identical to those of the

lower indices, since they are both spatial. Then, it is assumed that this raising of

indices with the metric does nothing. Most references will keep these spatial indices

lowered from this point on and state that all identical indices can be summed over

regardless of index placement. Therefore, the above equation is rewritten as

d2xjB
dt2

=
1

2
hTTjk,00(xkB). (5.39)

Then, one can enforce the further conditions that the particles are at rest before

the wave perturbs the local space. In doing so, it is possible to integrate the equations

above to get

xjB(τ) = xkB(0)(δjk +
1

2
hTTjk ), (5.40)

where the term in parentheses is evaluated at the position of particle A. This gives the

oscillations of particle B’s location relative to A, as the wave passes by. Consider in
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particular a plane wave, it is important to note that if the separation vector is parallel

to the direction of the wave, then the particles are unaffected. This in other words

says that gravitational waves only oscillate separations which are transverse to its

direction. Thus this gauge property is not only an abstract naming, but physically

appropriate.

5.3.1 Polarization & Properties

This gives an okay picture of how two particles are affected but what does this

say about how the waves affect local spacetime? To consider this, examine the

gravitational plane wave propagating along the z-axis as it hits a ring of particles lying

in the xy-plane, so that the wave vector can be written as kα = (ω, 0, 0, ω). Then,

recall the solution that gave the plane gravitational wave, and substtitute this into

the exponential as,

h̄µν = Re[Aµν exp(ikαx
α)]

= Re[Aµν exp(i(k0x
0 − k3x

3))]

= Re[Aµν exp(iω(t− z))]

(5.41)

It can be explicitly shown that the conditions imposed in the tranverse traceless

gauge along with the orientation of the setup described here leads to the gravitational

plane wave amplitude in matrix form as

(Aµν) =



0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0


(5.42)

These components in combination with the frequency ω are capable of giving a
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complete picture of the wave behavior. This is because the only independent, nonzero

perturbations are now

1. hTT11 = −hTT22 = Re[A+ exp(iω(t− z))]

2. hTT12 = hTT21 = Re[A× exp(iω(t− z))]

A generalized integrated equation of motion was obtained previously (Eq. 5.40), and

now the corresponding wave solutions can be substituted in for the two components,

x1
N(τ), x2

N(τ) . This yields the oscillations of the Nth particle of the ring

x1
N(τ) = xkN(0)(δ1k +

1

2
hTT1k )

= x1
N(0)(δ11 +

1

2
hTT11 ) + x2

N(0)(δ12 +
1

2
hTT12 )

= x1
N(0)(1 +

1

2
Re[A+ exp(iω(t− z))])

+ x2
N(0)

1

2
Re[A× exp(iω(t− z))]

(5.43)

and

x2
N(τ) = xkN(0)(δ2k +

1

2
hTT2k )

= x1
N(0)(δ21 +

1

2
hTT21 ) + x2

N(0)(δ22 +
1

2
hTT22 )

= x1
N(0)

1

2
Re[A× exp(iω(t− z))]

+ x2
N(0)(1−

1

2
Re[A+ exp(iω(t− z))]).

(5.44)

Any gravitational wave can be expressed as a linear combination of these coefficients.

It should be noted here that in order to consider a ring of particles, as mentioned, it

will ultimately be beneficial to create a characterization to refer back to. In particular,

it is nice to draw parallels to the electromagnetic wave in order to resolve some of

behaviors of this wave. As such, it is more accurate to say that there exists two

independent polarizations of the gravitational wave solutions corresponding to the

two independent components A+ and A×.

68



Note that the work being considered in this chapter has done calculations almost

exclusively in some form of component notation. However nice this decision has made

the calculations, a moment should be taken to consider the linear polarization basis

tensors. Notice that by default, the tensor amplitude describing the gravitational

wave differs from the vector description of the amplitude of an EM wave in its nature,

being type
(

0
2

)
for gravity, and

(
0
1

)
for EM.

In EM, one talks about how a light wave with some polarization vector hits a

charged particle at a point in space, resulting in oscillations along a single axis, parallel

to the electric field of the wave. However, when speaking of gravitational waves, the

tensorial nature leads to the effects being dependent also on the orientation of their

separation. This applies specifically to the plane orthogonal to the direction of the

wave’s propagation, since it has already been seen that

It will become more clear once the position of the particles in a ring are evaluated

for the individual, independent components, but for now it will suffice to simply give

the definition of the linearly-polarized basis tensors,

e+ = ex ⊗ ex − ey ⊗ ey, (5.45)

and

e+ = ex ⊗ ey + ey ⊗ ex. (5.46)

Then, suppose A× = 0, so that only the terms with components A+ remain in

the solution. Then, the component solutions above behave as

x1
N(τ) = x1

N(0)(1 +
1

2
Re[A+ exp(iω(t− z))]) (5.47)
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Fig. 6.
The phases of a ring of particles centered on a plus polarized gravitational wave propagating into the page.[1]

and

x2
N(τ) = x2

N(0)(1−
1

2
Re[A+ exp(iω(t− z))]). (5.48)

This gives the first of the linearly polarized states. It can be shown that a ring of

8 particles around the origin will respond to the passing of a linearized gravitational

wave by jittering back and forth in a ”+” shape. More descriptively particles along

the x axis move away from the origin along the x axis, while particles along the y axis

move toward the origin along the y axis. The complex exponential in the wave form

then ensures that each of these particles bounces back and forth like this. Note, this

is in accordance with the the basis tensor described above: particles with a nonzero

position component in the direction of the basis vector ex is moved in direction which

the basis vector ex is oriented, and also for the ey direction. These oscillations are

then shown explicitly in Fig. 6, below.

Then, suppose that A+ = 0 instead in the general component equations. In such

a case, it can be seen that the components of the perturbed particles simplify to

x1
N(τ) = x1

N(0) +
1

2
x2
N(0)Re[A× exp(iω(t− z))] (5.49)

and

x2
N(τ) =

1

2
x1
N(0)Re[A× exp(iω(t− z))] + x2

N(0)
(5.50)
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Fig. 7.
The phases of a ring of particles centered on a times polarized gravitational wave propagating into the page.

In this case, the gravitational wave creates the same ”+” pattern in the oscillations

of the particles, but as if it had been rotated at an angle of 45 deg, which would

instead resemble the shape ”×” if the different deformations are imposed on top of

one another. The basis tensors in this case should also make appropriate sense now:

the relative position of particles with a nonzero (positive) ex component are moved in

the positive ey direction, and vise versa. This leads to the deformation of the ring

shown in Figure 7.

Then, it is also important to consider the circularly polarized states. It should be

noted that, again, in analogy with electromagnetism, these ”circular” waves are the

possibly linear combinations of the polarization state tensors. The equations of motion

for these equations are those given above for simultaneously nonzero A+ and A×. For

electromagnetism, these took the form of the left and right circular polarizations,

êR =
1√
2

(êx + iêy); êL =
1√
2

(êx − iêy).

It should be noted that each of the particles in the ring (and otherwise nearby)

will themselves be moved around in small circles, and not rotate entirely around the

origin of the coordinate system. This is better seen by the red loop superimposed over

particle in the center of the ring.
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5.4 Gravitational Wave Energy

To appropriately consider the energy of gravitational waves, one must step outside

the realm of linearized theory. The shortwave approximation is beyond the scope of

this thesis, but it is encouraged that the reader refer to [19] for more information on

this subject if a deeper understanding is desired. It should be noted briefly that the

energy of a gravitational field in consideration can not be localized and evaluated with

any sort of meaning.

The simplest explanation for this is that the equivalence principle permits one

to isolate a region in spacetime in which one cannot detect gravitational fields. This

clearly implies an inability to measure any sort of local stress energy tensor, as

how would one notice it? This is not to say that it does not exist, but that the

equivalence principle forces the curvature here to appear flat, and the laws of physics

behave accordingly- as if there were no gravitational field. Similarly, this applies to

gravitational waves- one can not localize the energy contained in any one part of a

wave. However in asymptotically flat spaces away from a source, volume and surface

integrals can be constructed in a manner that allows one to calculate the energy

flux over some region. The same can be done for an arbitrary gravitational wave in

asymptotically flat space. In this case, one may describe an effective stress energy

tensor over some macroscopic region, in the tranverse traceless gauge,

T (GW )
µν =

1

32π
〈hTTjk,µhTTjk,ν〉. (5.51)

This is gauge invariant and divergence free in vacuum. One important property of the

stress energy tensor of a gravitational wave is that it can be shown to contribute to

the large scale background curvature- an effect that is overlooked in the linearized
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theory derivation. These are related according to

G(B)
µν = 8π(T (GW )

µν + T (matter)
µν + T (otherfields)

µν ) (5.52)

This, in turn, cannot be easily put back into the field equations to view the

contribution to the large scale curvature, as it leads to the possibility of over counting

the contributions of the gravitational wave. The nonzero components of the stress

energy of a general linear combination of the possible plane wave, hµν = Re[(A+(e+)µν+

A×(e×)µν) exp(iω(t− z))] can be shown to take the following form

T
(GW )
tt = T (GW )

zz = −T (GW )
tz =

1

2
ω2(|A+|2 + |A×|2). (5.53)

Then, the background radius of the curvature R is related to the magnitude of

the components of the background Riemann tensor by 1
R2 ∼ R

(B)
αβγµ. In turn it can

be shown that the amplitude of a gravitational wave, A, is related to its average

wavelength λ, and the background curvature radius as

A .
λ

R
(5.54)

This forces the amplitude to be small relative to this scaled wavelength. Now

it should be noted that the if the wavelengths are comparable to the magnitude of

the curvature components, too much leeway will be given to the amplitude term. In

fact this leads to the metric perturbation being significant relative to the background

curvature, which is in stark contradiction to the whole linearized theory definition in

the first place. In such a case, the concept of a gravitational wave falls apart, and one

is once again looking at a generally curved space. Therefore, this condition must be

met in order for gravitational waves to be witnessed in the first place.
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5.4.1 Multipole Expansion

This means we will typically be thinking about the perturbations from radiation

emanated far away its source. In classical theory, if one has an arbitrary moment

density describing a source object, such that the potential around the field has an

angular dependence. Then, one can describe the potential sufficiently far away from

the source using a multipole series expansion of Green’s function. If done in an

spherical coordinate, this splits the contributions to a field into terms made up of

spherical harmonics contributions. Since GR is inherently classical, it can in turn be

shown that, from asymptotically flat regions far away, the gravitational field produced

by a source is

hij =
2G

r

d2

dt2
Iij(t− r) (5.55)

This is known as the quadrupole formula, where Iij is a tensor evaluated at t-r. In

electromagnetic theory, one makes particular use of the dipole moment to describe

variations in the internal polarization states of a material. In this context, the dipole

moment physically describes the motion of the center of charge density in response to an

existing EM field. However, one does not get this term for gravitational fields, because

oscillations of an isolated object’s center of mass density violate the conservation of

energy (i.e., there would need to be some force outside of the isolated system which is

conserving the energy changes resulting from the oscillation).

However, the higher order terms, which each describe specific levels of the

mass density’s dynamics, are still fair game. In particular, for gravity, the reduced

quadrupole moment, Iij, which is the general quadrupole moment tensor given in a
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trace free form,

Ijk(t) =

∫
ρ(xjxk −

1

3
r2δjk)d

3x

is the first nonvanishing moment of the multipole expansion. As can be seen in the

preceding term, if Iij is time-dependent, it is responsible for producing gravitational

radiation. Because of the nature of the multipole expansion, quadrupole terms are

smaller than dipole terms. As such, gravitational radiation is going to be generally

much weaker than the electromagnetic radiation. This can be physically explained by

the fact that gravitational waves are produced in the bulk motion of objects, while

any accelerating charged particle can produce EM waves. Furthermore, it should be

noted that this quadrupole term is not the only one which can arise in the multipole

expansion. Certainly, higher order terms are responsible for gravitational radiation as

well, and they can arise as a consequence of asymmetric mass distribution, such as

with GW190412 [21] and GW190814 [17]. The radiation from the individual multipole

terms of quadrupole or higher will take on quite different plane fronts and, in general,

will be much weaker than the quadrupole contributions.

5.5 Sources

It is shown in [18] that one can derive the amplitudes of gravitational waves

emitted from a variety of sources in terms of this quadrupole tensor. As mentioned,

in order to ”feel” the effects of a passing gravitational wave, one must be appreciably

far from the source. If one is too close, the spacetime is heavily disrupted, on length

scales much larger than that of a detector. As such, we wish to briefly discuss the

transformation to a TT gauge in which, appreciably far from the source, one gets a

nice form of the wave characteristics.

Radiation from a binary system is emitted radially, and so its normal unit vector
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describing the direction of its travel can be written as nj = xj/r (r is the spherical

radial coordinate from some central observation point of the source). Then, at some

point in space we wish to define a TT gauge that has a plane transverse to this

direction of travel- particularly a wave that is travelling along the z-axis of the TT

gauge transformed frame. Then the waveform restrictions imposed previously can be

expanded to include hµjn
j = 0, and then the circularly polarized waveform from a

binary system can be shown have nonzero components

h11 = −h22 = −2ml20ω
2 e

iω(r−t)

r
(5.56)

and

h12 = h21 = −2iml20ω
2 e

iω(r−t)

r
(5.57)

As usual, the real part of these functions are taken to get the appropriate strain at

some time t. This is a highly idealized case, in which m describes the mass of a

single component of the binary system, and thus the 2m factor accounts for the total

mass. Furthermore, l0 describes the distance between the two mass components and

ω describes the angular frequency of the orbital. Nonetheless, these are considered to

be good approximations for systems in newtonian gravitational fields. The details of

the full transformation are given in [18], though it should be noted that this method

omits higher order multipoles.

Furthermore, it should be noted that the lifetime of a GW emitted by an inspi-

ralling binary system is relatively short, described by the relation

τGW = 2.43(
M

M�
)−5/3(

f

100Hz
)−8/3sec (5.58)

for systems describing equally massive components.

As the massive bodies spiral toward one another, the frequency of the orbital
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will increase dramatically, before dying off, producing a ”chirp”. This can be seen to

correspond to the masses involved in the system, and so we find that one can generally

describe the mass of an object in a binary system by its orbital frequency, f = ω
2π

, and

the life time of it’s inspiral. We will find that this the frequency and approximate life

time are generally measurable in the modern detector setup. In systems with larger

mass asymmetry, where there is more variation of the internal mass-energy density, a

more diverse equation will have to be applied to account for things like its eccentricity

and the individual behavior of the mass components.

As is the case with EM waves, these waves can be classified in terms of their

expected frequencies, corresponding to specific mass-energy density of the source. This

will make it easier to visualize which systems will be observable by which detectors

later on. While there are not necessarily well-defined analogs to infrared and ultraviolet

light in the categorization of the gravitational wave spectrum, there are 4 particular

frequency bands of interest in the gravitational wave astronomy[22], which are as

follows.

1. Extremely Low Frequency (ELF) Band: 10−15 − 10−18 Hz

This covers gravitational waves that are emitted by primordial quantum fluc-

tuations in the gravitational field. These aim to be detected by their cosmic

microwave background imprint.

2. Very Low Frequency (VLF) Band: 10−7 − 10−9 Hz

In this band, gravitational waves are expected to be emitted by processes from

the early universe and supermassive BBHs

3. Low Frequency (LF) Band: 10−4 − 1 Hz

This is expected to be able to observe a wide bandwidth range of frequency, in

which we expect (a) GWs from supermassive BBHs in the mass range 105−107M�;
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(b) the early inspiral of smaller objects (such as BHs, NSs, and white dwarfs

(WDs) eventual merge with massive black holes, along with (c) even earlier

descriptions of the inspirals of binary compact systems than are available from

ground systems.

4. High Frequency (HF) Band: 1− 104 Hz

This includes GWs emitted in the final moments of the merger of binary compact

objects, and maybe a few brief seconds of the inspiral just before, depending on

the system. At full sensitivity, these are expected to detect some spinning NSs.

Ground based detectors will never achieve a sensitivity outside of the HF band. Thus,

in the context of the advanced state LIGO/VIRGO observatories, the most important

situations to consider will usually be those of BBHs, BNSs, and NSBHs. In the most

recent publication from the LIGO/VIRGO collaboration, the majority of results fall

into these categorizations[15].

Black holes can, in theory, take on any given mass above 0, up to the limit of

the total matter of the universe. However, this is a somewhat impractical search

range to impose on the masses. In particular, we want to consider stellar mass

black holes, which at one point were expected to fall in the general range of about

MBH = 2.5− 20M� [23]. Similiarly, NSs could be expected to fall in the range from

1.2− 3.0M�, though the probabilities fall off significantly above 2.0M�. In some early

calculations of expected intensity values of GWs observed from binary systems, the

masses were often approximated near mNS ≈ 1.4M� and mBH ≈ 10M� [22]. However,

since observation of the first GW, we have detected systems that appear to have high

confidence mass probabilities near MBH = 30M�. In consideration of this, calculations

determined the expected stellar mass black hole upper limit should be adjusted to

around 40M� [24], which was the general search range for the O3A detection run [17].
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CHAPTER 6

GRAVITATIONAL WAVE DETECTORS

We now wish to consider gravitational waves as they are observed by an experimenter

here on earth. The entire discussion presented thus far has been entirely in terms of the

classical theory of general relativity. It is has been mostly computational, yet tied into

the essence of the physical spacetime behavior. Gravitational waves are very finicky,

hence the elaborate construction which one must apply to conclude their existence in

the first place (which was still up for debate long after their initial proposal). Thus, it

should be no surprise that laying the requirements to detect them has been no small

task.

This chapter aims to serve multiple purposes. First, we give a brief overview of

Michelson interferometry, and then detail the setup of the LIGO/VIRGO collabora-

tion. This includes an overview of the modifications required for a simple Michelson

interferometer to reach a sensitivity capable of detecting strain from gravitational

waves in general.

Then, the detector’s output signal is described in order to get a feel for the signal

parameters and the ways in which it is interpreted. This will build up the knowledge

base required to consider the recent data from the detectors in the next chapter. We

then aim to use this information along with the immense literature from the past

decade, to consider the nature of modern day detectors. Finally, we conclude with

the advanced upgrades made in the transition to the detector states used in the most

recent observing run, O3A.
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6.1 Michelson Interferometry

The primary means of detection driving the field is the interferometer [1], which,

in general, uses the coherence (and decoherence) of light to measure minute changes

in distance to some surface. At it’s core, an interferometer splits a laser beam, of

wavelength λ, so that two paths are created, directed down two orthogonal arms,

with one path in the direction of the original beam, and one in some perpendicular

direction. One of these beams is directed at some fixed reference mirror, which

reflects the first beam back toward the beam splitter. The second beam is directed

at another reflective surface, which is at rest in some starting position, and returned

to the beam splitter. When the two waves interfere as they recombine, they in-

duce some pre-defined phase shift in the linear superposition that is the new wave.

Fig. 8.
The simple working mechanism behind a basic michelson

interferometer

After the beams are recom-

bined, they are sent to a photode-

tector, which collect the light

to determine the phase of the

incoming light wave. Then, as

the second mirror is moved, this

phase shift will fluctuate be-

tween decoherence and coher-

ence, indicating a change in the

surface position being covered by

the wave face. This characterizes the general nature of an interferometer, but things

behave a little differently when a gravitational wave passes, which causes the arm

lengths, and the shape of the waveform itself to morph. One can no longer talk about
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a fixed reference mirror, and so the design must be changed slightly. These advanced

decisions are discussed in more detail shortly. The general setup of the interferometer

is shown in the Fig. 8

6.2 The LIGO-VIRGO Collaboration

The LIGO-VIRGO collaboration (LVC) is the state of the art technology of

gravitational wave observatories to this date. The two LIGO observatories are located

in Hanford, Washington, USA and Livingston, Lousisian, USA, while the VIRGO

facility is outside of Pisa, Italy. All 3 locations in the collaboration went through an

initial phase in which design sensitivities were tested over the course of science runs

[25]. After these science runs, upgrades to the interferometers were made to transition

them into their ”advanced” states, aLIGO and aVIRGO[2] [3]. Here we consider the

observatories at the time of their upgrades to their advanced states.

6.2.1 LIGO

The aLIGO detectors deserve the bulk of the attention, as these detectors are the

most sensitive piece in this collaboration. The Hanford and Livingston sites each run

a single aLIGO detector. These two detectors are the most developed to date, and in

joint operation with one another, were capable of detecting the first ever gravitational

waves observed by the scientific community [12]. What follows in this section is a

summary of the detector setup given in the initial publication.

The LIGO detectors are Michelson interferometers that have had advanced

modifications applied in order to achieve a sufficient sensitivity to the strain effects of

a gravitational wave. The orthogonal arms of are made of 1.2 diameter tubes that are

4 km long. At both ends of each arm are mirrors designed to behave as test masses,

forming Fabry-Perot cavities in the arms, designed to increase the storage time of the
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laser, and in effect lengthening the arms. These mirrors, suspended by pendulums,

undergo differential changes in their position when a gravitational wave passes nearby.

This effectively changes the length of the arms in the detectors corresponding to the

orientation and phase of the passing wave.

The changes in the length of the arms, Lx and Ly correspond to the dimensionless

strain amplitude of the gravitational wave, h, according to the relation

∆L = δLx − δLy = h(t)L (6.1)

The differential changes of the arms has an effect on the phases of the two traveling

waves as described before. In this way, the phase of the optical signal reaching the

photodiode is directly proportional to the strain of a passing gravitational wave. In

the case of LIGO and VIRGO, the standard is to set up the pendulum mirrors such

that when at rest, the two beam phases are in decoherence upon returning to the

beam splitter [13]. Thus, when there are no local spacetime perturbations, no light

reaches the photodiode. The main enhancements required to reach the sensitivity

requirements involve amplification and recycling of the laser and overall signal. These

techniques are meant to maximize the quality of the phase shift signals that are

reaching the photodiode- to most accurately interpret the strain felt along the length

of the arms. In particular, the modifications are as follows:

1. Partially transmitting, power recycling mirrors at input arm.

This produces a resonant buildup of laser light in the interferometer, increasing

the laser light incident on the beam splitter from 20W to 700W.

2. Resonant optical cavities formed by test mirrors in arms.

This modification magnifies the phase differences between the two beams by a

factor of 300. This increases the laser light in the arms to about 100kW each.

82



3. Partially transmitting, signal recycling mirrors at output node.

This broadens the bandwidth of the signal from the arm cavities in order to

optimize extraction of the signal.

These adjustments cumulatively have a huge improvement on data quality and precision

in high frequency strain amplitude oscillations through the reduction of photon shot

noise. Further enhancements were made to ensure low displacement noise of test

masses, corresponding to other frequency ranges of interest.

Low frequency data was clouded by seismic disturbances, while intermediate

frequency noise arose mostly from thermal excitation. To reduce the impact of the

former, test masses were suspended from seismic isolation platforms at the end of

a quadruple pendulum chain. This provided the incoming signal up to 10 orders

magnitude of freedom from ground noise above frequencies of 10 Hz.

The thermal noise was then reduced by using fused silica fibers for the suspension

and pendulum systems. The thermal noise from the test masses themselves were

reduced by using 40 kg fused silica substrates with dielectric optical coating. The

general diagram description of the LIGO detectors is shown in Fig. 9. This is shown

with diagram labels for the highest possible laser output, which is constrained to

reduce optical noise.

Additional systematic disturbances were eliminated by mounting all the compo-

nents in the detector to vibration isolation stages in vacuum, with the exception of the

laser. The tubes making up the arms were pressurized to predetermined constraints

to control optical phase fluctuations as the result of Rayleigh scattering. Finally servo

motors control the alignment of the optical components of the arms, to keep the laser

light in resonance as it is in the cavities.

The detector output is calibrated to the strain response of the mirror test masses
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Fig. 9.
Schematic diagram of the LIGO’s advanced modifications, displaying the Fabry-Perot cavities in the arms (where

the power is greatly increased), along with the power (PRM) and signal recycling mirrors (SRM) [2].

by introducing a calibration laser. This calibration laser continuously monitors the

system to validate the current position of the mirrors, to some predefined degree of

certainty. The pressure of photons from laser pulses at selected frequency is used to

induce the motion of the test masses, which is in turn used to calculate the intensity

changes of the laser as they are perturbed. Furthermore, the overall detector response

was simulated in early science runs by using this calibration laser to inject a simulated

waveform.

Finally, each detector is equipped with seismometers, accelerometers, microphones,

magnetometers, radio receivers, weather sensors, power monitors, and a cosmic ray

detector designed to monitor the status of the detectors as they are influenced by these
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environmental fluctuations. The time at each detector is synchronized to a GPS clock

and accurate to within 10 microseconds- this is verified by the use of an atomic clock

and secondary GPS at each observatory. This information takes up a huge amount of

data space, upwards of 105 channels of information from the noise sources alone.

Detector validation requires extensive analyses of these detectors to ensure no

significant parts of the waveform arise as the result of instrumentation. A valid

result will yield analysis that (in the case of some specific data) shows that no

external disturbances would be large enough to contribute significantly to the detected

waveform. This factor determines the false alarm rate of a system, which will be

discussed further later. Much of the data received at the detector output is laced with

noise of particular signatures, making them easy to distinguish and remove from the

signal[26].

The design factors listed above give the aLIGO detectors their highest sensitivities

over the frequency range 100-300 Hz, which is 3-5 times more sensitive than the

Initial LIGO setups. In observation of systems with lower frequencies, the sensitivity

improvement is almost 10x greater than the initial setup at frequencies below 60 Hz.

6.2.2 VIRGO

We now change the focus to consider the setup of the VIRGO detector, located

near the town of Pisa, Italy. Though the initial construction and initial science runs

match the timelines of LIGO, this detector was not at full design sensitivity when

LIGO began its observing runs in 2015 [3]. As such, it was required to undergo further

upgrades before going online in collaboration with LIGO. We here consider the setup

of the Advanced VIRGO (aVIRGO) detector as it stood in 2015.

The general setup of VIRGO bears a close resemblance to LIGO- a Michelson

interferometer with advanced modifications to reach the required sensitivity. These
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Fig. 10.: A schematic representation of the VIRGO detector.[3]

similarities can be seen in comparing the nature of the diagram in Fig 10 to 9. However,

there of course will be some differences. For instance, VIRGO’s interferometer scheme

uses 3 km arms, both containing Fabry-Perot cavities made from 42 kg test mass

mirrors [3]. This system in particular uses a 7-tier pendulum suspension for the masses

from metallic material. The setup includes signal and power recycling methods akin

to those described for the aLIGO detector. The tuning of the signal recycling mirrors

allows for optimization of search methods by changing the shape of the sensitivity

curve.
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As of the final stages of the aVIRGO upgrade[3], the detector was still using the

initial VIRGO laser 60 W of power, though there were already plans to install a high

powered 200 W laser. Some of the techniques applied to enhance sensitivity in the

aVIRGO detector include the increase of beam size, control of optical alignment, an

improved system for vibration isolation, and control of environmental parameters.

The laser beam’s spot size was increased to reduce thermal noise fluctuations in the

mid frequency range due to the mirror coating [27]. Optical losses are avoided by

using low-loss and absorption coatings on the mirror of test masses. Furthermore,

diaphragms are suspended near the mirror to avoid the accidental backscattering of

light.

The payload system was upgraded to account for the installment of heavier test

masses, due to the sensitivity of a 7 part pendulum and the surrounding support needs.

Furthermore, to properly account for vacuum states in the arm chambers, cryogenic

chambers were installed at the ends near the mirrors. Much of the experimental

validation and systematic tuning process of aVIRGO is similar to that of aLIGO.

Even more so, the validation of the detector ability of aLIGO made it easier for

troubleshooting and systematic adjustments in the aVIRGO detector. At the time

of publication of [3], the expected design sensitivity range of VIRGO were described

by the maximum BNS (1.4 M� each) and BBH (30M� each) inspiral ranges at

approximately 140Mpc and 1Gpc, respectively.

6.2.3 Collaboration

Finally, when all three detectors are operational and combined to transfer data

between them, the precision of results goes through the roof. These three observatories

are designed to undergo simultaneous searches, boosting likelihood of detection in the

case of other detectors being offline. This is even more noticeable in the 11 results of
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the first two runs when compared to the 39 observations in 03A. This is the result of

this run having the highest detector online rate by far, with all 3 detectors running

simultaneously at least 44.5% of the time, and 2 detectors running 81.9% of the time.

This is in comparison to run O2, in which 2 detectors were running only 46.4% of the

overall run, while 1 detector was in use for 75.6% of the run [15].

VIRGO was not added until the last month of this run, on August 1, 2017. The

first detection using all 3 detectors was made on August 14th, 2017 [28], just 3 days

before the detection of the first BNS [29]. The addition of the VIRGO detector data

helped greatly in identifying this relatively low energy system [26]. This was a huge

step up in data quality even without the most recent upgrades. For one, it allowed for

the orientation of a passing gravitational wave to be determined by considering the

minuscule difference in origin time of the waves first perturbation at each detector[17].

Furthermore, this gives insight into the phase evolution of the wave far beyond what

was previously attainable [28].

6.3 Signal Detection and Comprehension

We then turn attention to the way a signal is actually perceived as it is detected.

The general ”pure” signal from a gravitational wave can be written as a superposition

of its polarization states [5]

h = A+h+ + A×h×, (6.2)

where the factors of h+ and h+ contain a description of the wave in terms of its

frequency and wave vector (i.e., they are the exponential factors in our previous

treatment of gravitational waves). The effects of such a passing wave are dependent on

the orientation of the detector, consistent with the fact that there are no perturbations

parallel to the direction of the wave’s propagation. The output signal of a working
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detector, s(t), is then generally expressible in the form

s(t) = n(t) + h(t), (6.3)

where n(t) is the noise of the signal. If there is no strain felt by the detector, then

h(t) will be zero, and the output signal will be just noise. Furthermore, if these fall

below the acceptable sensitivity range, predefined by some signal-to-noise ratio (SNR)

cutoff, the signal will be much more difficult to extract. Besides this signal description

of the strain, there are a few parameters defining detector sensitivity as well as the

loudness of sources.

Signal theory requires quite a bit of Fourier Analysis to transition between time

and frequency dependent functions. The nature of this math will not be exhibited in

full here, as it requires substantial pre-treatment that is not anywhere near the scope

of this thesis. Instead we note simply that the Fourier transform of a signal h(t) into

the frequency space is given by the relation

x̃ = {{x(t)}(f) =

∫ ∞
−∞

dtx(t) exp−2πift (6.4)

and the noise power spectral density (PSD) defined by

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)Sn(f) (6.5)

The noise PSD is capable of fully characterizing the noise in the detector under the

assumption that the noise is Gaussian and stationary, which can be made. The angular

bracket represent an average over many noise realizations. Due to the nature of the

detector and signal, there will only be one realization. As such, a time average over

stationary stochastic noise is sufficient [5]. Then, with this in mind we jump straight

to a general governing relation for each of the 3 main signal parameterizations:
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1. Characteristic Noise, hc(f)

This is designed to give a signal parameterization describing the integral over the

accumulated signal, boosting the SNR in the case the instantaneous amplitude of

the true signal h is orders of magnitude below the noise value. The characteristic

equations of this parameterization are

|hc(f)|2 = 4f 2|h̃(f)|2 (6.6)

and

|hn(f)|2 = fSn(f) (6.7)

2. Root Power Spectral Density (PSD),
√
Sn(f)

From the form of the noise power spectral density defined above, one can define

a similar quantity for the signal power spectral density,

〈h̃(f)h̃∗(f ′)〉 =
1

2
δ(f − f ′)Sh(f). (6.8)

. Then, the root PSD is expressed as

√
Sh(f) = hc(f)f−1/2 = 2f 1/2|h̃(f)|, (6.9)

with the corresponding root noise PSD

√
Sn(f) = hn(f)f−1/2. (6.10)

Both of these quantities have units of Hz−1/2. The root noise PSD is frequently

encountered in the literature to represent the known strain noise at a detector.

The noise root PSD in particular is consistently used in noise evaluation at the

detectors in almost every LVC publication stumbled upon so far.
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3. Energy Density

The energy density of the system can actually be parameterized using the

Isaacson stress energy tensor defined in the previous chapter, given by the

averaging derivatives of the perturbations hµν over several periods. In doing so

and looking at the energy density, one derives an integral representation, which

is taken over the full frequency range. The integrand of this expression defines

the spectral energy density, given in units of energy per unit spatial volume per

unit frequency,

SE(f) =
πc2

4G
f 2Sh(f) (6.11)

This can also be calculated as it applies to the noise signal. The general notational

standard of cosmological studies is to use a dimensionless quantity describing

the energy density per logarithmic frequency interval, normalized to the critical

density of the universe

ΩGW (f) =
fSE(f)

ρcc2
. (6.12)

We will not work explicitly with any of these expressions, though it is beneficial to

understand how the signal corresponds to the physical aspects of the system. We

will certainly see the parameter description by the PSD. The 2 figures here display

the detector sensitivities in terms of the characteristic strain and root PSD, where

areas are shaded to indicate the areas in which one expects to detect compact binaries,

followed by the 3 standard data plots that are usually included in the LVC detection

publications after the data is released to the public [28].
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Fig. 11.: Plot of the Characteristic Noise Strain at the aLIGO and aVIRGO (AdV) detectors. [4]. The likelihood of
detections may be assessed by considering the colored area of expected source parameters on a log-log scale by an
”eye integration” technique[5].

Fig. 12.: Plot of the Root Power Spectral Density at the aLIGO and aVIRGO (AdV) detectors. [4]
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Fig. 13.: Plot of the SNR, the Energy Density, and a cleaned-up version of the characteristic strain which were
measured in the detection of GW170814, the first detection with all 3 detectors in operation.

6.3.1 Source Parameters

We should also touch on the matter of data analysis and hypothesis formation

in modern detection. Initially, the BW signals of a binary at a single detectors were

expected to be determinable through the 4 parameters (i) amplitude, (ii) chirp mass,

(iii) time, (iv) phase [30]. However, as the state of technology and gravitational wave

theory has advanced, the waveforms were capable of being solved numerically with the

addition of extra parameters, for well-defined waveform ”families.” The parameters

governing the system from which a signal is detected will end up being determined by

comparison with well-understood waveforms. These waveform models are organized

into specific physical categories defining system dynamics such as those with and

without both spin and precession. These models produce time or frequency dependent

numerical solutions of waveform signals when given the necessary parameterized
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inputs.

In particular, each studied waveform is given a vector input that describes its

parameter space, which generally includes at least the following 9 parameters [31]

1. Component Masses, m1,m2.

The ”mass plane” between these parameters can be reparameterized to be

represented instead by the chirp mass,M and mass ratio, q, which are less

correlated, making this particular space easier to sample over.

M = (m1m2)
3
5 (m1 +m2)

−1
5 ; q =

m1

m2

(6.13)

The chirp mass corresponds to the ”chirp” described previously as the frequency

of the inspiral increases.

2. The Luminosity Distance to Source, dL

A measure of the relative brightness of an object that is determined by the path

deviation of the light on its way to earth through curvature, redshifting, etc.

3. The right ascension and declination of source, α, δ

Astronomical coordinates specifying an event’s location with longitude and

latitude coordinates on a sphere centered around the earth.

4. The inclination angle, ι

The angle between the system’s orbital angular momentum and the line of sight.

5. The polarisation angle, ψ.

A description of the orientation of the orbital’s momentum vector projection

onto the sky plane.

6. Arbitrary Reference Time, tc

Such as the time of coalescence.
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7. The orbital phase of binary at tc, φc

Note that with the exception of the strain amplitude, a direct measurement by the

detector, these parameters contain perfect analogs to those described in 1993. However,

the first paper [30] is concerned with detections from single interferometers. Once the

LVC was established, the use of 3+ detectors gave the ability to determine the sky

location and expected distance of a system. This, in turn, allowed for the addition of

parameters to this space describing the relative orientation of the system.

For our purposes, we only need to be aware that these parameters govern the

underlying waveform templates that are matched to incoming data in a detector. A

parameter space as defined above is needed to describe a circular binary consisting of

2 point mass objects without spin. To include spin, one must also introduce to the

model, the dimensionless spin magnitudes of the components, ai = |si|
m2
i
, along with two

angles corresponding to each spin, specifying orientation with respect to the initial

inclination angle. To fully describe the matter effects of a system, an equation of state

(EOS) is necessary, though this is not always an achievable task.

After comparing the generated waveform of many models to the waveform detected,

one is capable of deducing most likely parameters. This involves varying the parameters

and underlying assumptions of a general waveform family to find a closest match. If a

close enough match is found for a GW signal that can be separated from the noise

signals, the signal is sent along the search pipeline for closer analysis. These parameters

can be then appropriately decomposed into an understanding of the physical nature of

this system (i.e., these can be compared to well known parameter ranges from which

the objects in the system are deduced). With a strong enough signal, these models

can determine the source parameters with high precision and accuracy. However,

the overall accuracy of the detection will be based on the cumulative exploration of
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solutions in the field of numerical relativity (NR).

6.4 Design Sensitivity

Having covered the general setup of the detector’s advanced states, we now explore

briefly the adjustments that were made for their most recent observing run, O3A [15].

This will lead us to the first real discussion of the design sensitivity during this run.

The magic number for noise threshold in a system was 10−21 as detection methods

were coming to fruition. This is the expected amount of strain that was expected to

be felt by the interferometer arms in a wave by a high-frequency system

The operating power of the aLIGO detectors between the second and third runs

were greatly improved by an increase in the input laser power at both the Hanford and

Livingston sites. Furthermore, more circulating power was added by replacing the test

mass mirrors in both facilities (Hanford and Livingston) with lower scattering mirrors.

This helped improve sensitivities for high frequency systems. Beam diaphragms such

as the one described in aVIRGO upgrades were also installed in the LIGO detectors

to reduce scattered light.

VIRGO was only involved in 2 detections before also receiving some major

upgrades between the runs. One of the major upgrades was the replacement of the

metal wire suspensions for the test masses with silica-fused fibers, as was already the

case for LIGO. HF noise was corrected by improved suspension of the external laser

injection bench, reducing beam jitter and improving seismic disturbance. Furthermore,

small upgrades in the control strategies of the suspensions were also made to improve

sensitivities below 30 Hz. Some of the upgrades were applied to all 3 facilities, such as

the installation of squeezed light states at the output detector, resulting in increased

sensitivity in the HF range.

The median BNS inspiral detection range for the Hanford and Livingston LIGO
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Fig. 14.: The strain noise of the aLIGO and aVIRGO detectors at various expected milestones

sites increased from 66 and 88 Mpc, respectively, to 108 and 135 Mpc. For the aVIRGO

detector, the median BNS inspiral increased from 26 Mpc to 45 Mpc at the start of

the 3rd observing run. These values define the median distance in which one expects

to have the sensitivity to measure The previous and projected sensitivity curves of

the detectors during future observing runs is given in the figure above.

.
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CHAPTER 7

GW190814

In the first two observing runs, only 11 confirmed events were detected by LIGO.

Many of these were binary black hole (BBH) systems, while one was a binary neutron

star (BNS) system [14]. In the first half of the third observing run alone (April 1,

2019 - October 1, 2019), a total of 39 systems had already been detected [15]. One

system yielded what is assumed to be the second detected BNS coalescence, with two

NSs with masses in the range mNS = 1.46− 1.87 M� under expected spin conditions

[16]. This BNSC detection was determined to have the largest chirp and total mass of

any BNS to date, though this is stated alongside the fact that these objects may yet

be determined to be black holes.

A particularly interesting detection, GW190521, was determined to be produced

by a BBH with a total mass of 150M� [32], implying with 99% credibility that the

primary black hole in the system was at least 65 solar masses. This result was the

first to implicate a black hole being in the upper mass gap, between 65− 120M� [32].

Another system which has been heavily emphasized in the literature is GW190412[21],

which contained the first conclusively asymmetric BBH, having a mass ratio of

q = 0.28+0.12
−0.07 . Such an asymmetry in the mass distribution results in detectable

radiation contributions from multipole terms other than the standard quadrupole [21].

This detection opened up new discussion on the expected explorable binary system

populations.

Months later, gravitational radiation was detected from a source that had even

more asymmetry in its masses. In fact, the system was found to be asymmetrical

to the point that the nature of the secondary component mass has yet to be fully
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concluded. The secondary mass was first observed to fall into the ”lower mass gap” of

2.5− 5M� where previous EM observations had found a particular lack of BHs and

NSs in the galaxy [33]. After undergoing proper waveform analysis, GW190814 was

determined to have been produced by the mass components M1 = 23.2+1.1
−1.0M� and

M2 = 2.59+0.08
−0.09M�, resulting in a mass ratio of q = .112+0.009

−0.008 [17]. The first of these

is certainly a black hole, while the second has been put through consideration as both

a black hole and a NS, though not through any more exotic assumptions.

Early studies lean in the direction that the system is in fact a BBH, though this

can not be entirely confirmed in the current framework of the known parameter space.

In either case, it is an astronomical event of great interest, as it is an extreme of the

collection of direct astronomical observations, i.e., it will most likely be the smallest

black hole detected to date. This observation will hopefully lead to expansion of the

explored parameter space, and thus make it easier for planned detectors in the future

to analyze systems with lower energy.

7.1 Detection

On August 14, 2019, there were only 2 detectors in the LVC that were in a fully

operational mode: the Livingston LIGO detector and VIRGO. The Hanford based

LIGO detector was undergoing a routine upgrade at the time, but was still taking in

some data at a nominal state. This data ended up being worthwhile when matched

with the results from the fully operational detectors, and was used in subsequent

analysis. At 21:11:00 UTC, a loud event was identified in a matched-filter search

algorithm for coalescing binaries [17] from banks of modeled gravitational waveforms.

The time-frequency analysis of the strain data for the 3 observatories is given in Fig

15.
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Fig. 15.
The normalized energy plotted on its time-frequency curve

One of the immediate notifications

sent out to the scientific community indi-

cated that at least one of the mass com-

ponents falls into the lower mass gap,

3− 5M�. Comparing the arrival time of

the wave at all 3 detectors yields the abil-

ity to estimate the location of the system

[17]. Upon initial detection the system’s

location was constrained to a sky area of

38 deg2, about 220-330 Mpc away. This

was updated a few hours later to 23 deg2

and 215-325 Mpc, respectively. This up-

date came with the new classification of a

neutron star-black hole (NSBH), meaning

that the secondary mass was now expected to be less than 3 solar masses. Follow-up

searches across the EM spectrum and neutrino observations yielded no counterpart

candidates [34]. These low-latent analyses, though nice, do not give the full picture

of the wave and data must be further processed to eliminate noise and get better

parameter constraints.

The significance of the input was calculated once the parameter data had been

properly refined. Well-defined algorithms are used to estimate the noise background of

a waveform, generating the likelihood of the event being due to a statistical error. This

false alarm rate (FAR) is given in terms of the years per each event. After a procedure

designed to yield an unbiased average of the noise over course of the observing run,

the FARs for GW190814, for two different algorithms, GSTLAL and PYCBC, were

found to be less than 1 per 105 yr and less than 1 per 4.3 × 104 yr. This indicates
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that any waveform of this form (given all of its parameters) was highly likely to be

the result of an actual system, and not systematically driven noise.

7.2 Waveform Analysis

The physical parameters of the system are inferred though a Bayesian analysis

of the waveform collected by the detector. This uses prior knowledge of events with

related conditions to assess the conditions of an event at hand. In particular, the

waveform collected by the detectors is compared to state of the art waveforms modeled

similar to that of the detected data (i.e. similar signal frequency, intensity, etc.) [35]

as determined by the low latent analyses. From these waveforms and their similarities,

one (or rather one’s machine) is capable of deducing the likelihood of the binary

system’s individual properties, such as tidal deformability, the component masses,

spin, and orbital precession, etc. These probability values are referred to as the

posteriors of the system’s parameters.

The incoming data is assumed to be noise-free during some interval in which

there is a nonzero power spectral density (i.e., there is characteristic strain). At this

point the model waveform is inserted for comparison. This ”zero-noise realization” of

the detection is statistically equivalent to a waveform with many random Gaussian

fluctuations being averaged over a long period of time[36] [37]. Here, the time interval

of the data chosen for use in analysis of GW190814 was about 16 seconds near the

time of detection[17].

To test for possible systematic errors, the same analysis is done, instead choosing

the model waveforms generated by numerical relativity, with signal parameters similar

to GW190814, as mock signals. From this, one deduces the source properties with

the same methods described above[36]. No evidence was found for systematic bias in

the recovery of the system parameters relative to usual statistical errors in estimation.

101



However, these models are inherently limited by the current availability of high quality

data to provide a strong basis for waveform models of certain systems, resulting in

less understanding of the parameter space coverage of some numerical solutions.

It was discussed previously that in the 3rd run, a frequency sensitivity as low

as 10Hz could be measured in the LIGO detectors. Though there was no evidence

of instrumental or environmental disturbances in the primary detector at LIGO

Livingston, the usual scattered light noise at low frequency was encountered. The data

from LIGO Livingston was also clouded by further noise from a local thunderstorm at

the time, requiring the low-end frequency cutoff to be shifted up to 30 Hz to achieve

a usable signal. This data was ran through Bayesian analysis under both the two

possible assumptions that it was a BBH and a NSBH, the choice of which comes from

the physical interpretation of the deduced parameters.

The model waveforms chosen for the BBH analysis were based off effective-one

body(EOBNR) and phenomenological (Phenom) approaches. There were about 300

usable cycles at frequencies above 20 Hz, from which source properties could be

deduced with well defined parameters. These models each produced distinct, similar

posteriors in which there exists a peak probability for each parameter. The Bayes factor

is used to compare the likelihood of the results found by two competing assumptions

in the model. For the parameters estimated by the models EOBNR and Phenom, this

Bayesian factor is 1. This tells us the models produce similar results, and thus can be

averaged over without giving too much variation in the parameters. The averaged

system parameters corresponding to those in the previous chapter (give or take) are

given by the first table below, including the SNR ratios both at each detector and

cumulatively.

The waveform parameter space of NSBHs has not been explored as extensively

as that of BBHs. As such, to model these waveforms, the same BBH models were
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Table 1.: The averaged deduced parametters from the waveform model families EOBNR and Phenom [17]

Primary Mass, m1 23.2+1.1
−1.0M� Secondary Mass, m2 2.59+0.08

−0.09M�

Chirp Mass, M 6.09+0.06
−0.06M� Mass Ratio, q 0.112+0.009

−0.008

Total Mass, MTOT 25.8+1.0
−0.9M� Remnant Mass, MR 25.6+1.1

−0.9M�

Constraint on Primary Spin, χ1 χ1 ≤ 0.07 Final Spin, χF 0.28+0.02
0.02

Luminosity Distance, dL 241+41
−45 Mpc Inclination Angle, ι 0.8+0.3

−0.2 rad

LIGO Livingston SNR 22.18+.10
−.17 LIGO Hanford SNR 10.7+0.1

−0.2

VIRGO SNR 4.2+0.2
−0.6 Cumulative SNR 25.0+0.1

−0.2

applied after being supplemented with the proper tidal effects. There is literature

to suggest that the system as an NSBH would merge prior to any noticeable tidal

effects. The assumptions of the model yielded an uninformative, wide ranging posterior

distribution describing the would be NSs tidal deformability. This is a potential effect

of Bayesian statistics that leads to insignificant posteriors. This tells us that these

models can not decipher the significant matter effects of the signal that are required

to sufficiently describe the system as a NSBH. As such, the Bayesian analysis on this

system[17] was done as if it were a BBH, and we will proceed through this discussion

with the results from these particular analyses.

7.3 Properties

The binary system was found to have the greatest mass asymmetry of any

gravitational wave observed to date, with a mass ratio q = 0.112+0.009
−0.008 [17]. The

frequency evolution of the system allowed for a tight constraint on the chirp mass of

the system. The mass of the larger object in the system is found to be m1 = 23.2+1.1
−1.0M�,

which makes it easy to deduce that it is most likely a black hole, consistent with

the lack of EM counterparts from the system. The generated posteriors of the mass

103



parameters are given in Fig 16.

Fig. 16.
The mass posterior space, in which the most likely

magntiudes of the two components are compared to each
other. Along the top and right sides are the probability

densities corresponding to the individual parameter
spaces.

The magnitude and orientation of

the spin in a system provide further in-

sight into the origins of the binary. The

effective spin parameter, describing the

amount of spin perpendicular to the or-

bital plane, is χeff = 0.002+0.060
−0.061.

The system GW190814 was found to

have an orbital precession χP = 0.04+0.04
−.01 ,

which is the closest precession to zero

detected in the small sample size of

the LVC. This describes the amount of significant spin in the orbital plane.

However, a Bayes factor of 0.5 was computed for the ratio of precessing to

non-precessing models, showing no evidence in favor of spin precession in the

model. Thus, the effective precession parameter is constrained to χP ≤ 0.07.

Fig. 17.
A plot of the posterior probabilities of the spin

components of the system. The purple shaded areas
indicate regions of high probability for both the spin and

magnitude.

Furthermore, this precession has the

smallest estimated variation of any binary

system observed by the LVC so far. While

in general, the system is found to have

near-zero precession and the models show

no favor for using the precessing mod-

els, they are found to yield much tighter

constraints on the secondary mass esti-

mation. Thus, they are still used as a

prior assumption in analysis, where the

models are assumed to have isotropically distributed spin components.
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The asymmetric mass distribution of the system implies that the larger mass

component is going to dominate the effective spin contributions to the system. Due

to the constraints on the orbital precession and the effective spin parameter, the spin

of the primary mass in the system is constrained to the upper bound χ1 ≤ 0.07 . The

spin posteriors are given in Fig. 17, with the primary mass shown on the left and the

secondary mass on the right, where deviations from uniform shading indicate a spin

property.

As mentioned, the spin of the primary mass is tightly constrained in the purple

shaded area. The orientation deduced was unchanged from the information given in

the model assumptions, indicating that the signal gave no true information on the

actual orientation. The spin magnitude and orientation of the smaller object is seen

to be unconstrained, producing posteriors that are similar to the assumptions of the

model.

Finally, the black hole remnant after the merger was analyzed as if it were

definitively a BBH. NR calibrated fits to the system are used to infer a remnant with

mass MR = 25.6+1.1
−0.9M� with spin χR = 0.28+0.02

−0.02. This spin is lower than previous

mergers, consistent with the asymmetry of the mass components. This merger is

indicated in the figure above, for comparison with other astronomical events up to

this date.

7.3.1 Secondary Mass Component

The less massive object in the binary system is deduced to have a mass in the

range 2.50− 2.67M�. Though the initial flag with the detection notification specified

the binary system as a NSBH, this was only because of the assumed existence of

a 2.5 − 5.0M� lower mass gap observed in BHs and NSs. This is present in some
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Fig. 18.
A graphic to visualize the compact binaries observed in total thus far, with the merger of GW190814 highlighted

population models [33], as the result of a lack of detections in this mass range. The

assumed existence of this mass gap for black holes can be found programmed into quite

a few waveform models[38], even though there is belief that they are purely products

of the population models not having detections in this range (a good belief). These

are the models used as filters against the incoming signal to find matches without

much analysis. This is unfortunate, as it could lead to foregone conclusions of the

nature of this component after only a brief analysis of the signal. There has been much

discussion on the nature of this object in the literature, as a NS, as a BH, and even

as a NS pulsar [39]. We assume moving forward that it is either a NS or a BH, and

leave the more complex assumptions for those getting their doctorates in cosmology

somewhere.

Though a precise categorization has yet to be determined, this would either be
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the most massive NS or the least massive BH observed to date. The lack of EM

counterparts, the high asymmetry, indistinguishable tidal signatures, and low spin-

induced quadrupole effects all leave this matter inconclusive. While the parameter

space has not yet been explored in full, the possible nature of the mass can be explored

by comparison to the literature to identify possible candidates that match the known

physical properties of the system. Here, we consider some of the estimates on the

mass ranges of NSs and BHs in an attempt to, at the very least, skew likelihood in

favor of one system over another.

The merger corresponding to GW170817 [29], with massMGW170817 = 2.74+0.04
0.01 M�,

is suggested to have left a black hole remnant. This suggests that NSs may not be

capable of sustaining tidal forces from a mass of such magnitude, collapsing at some

inherent upper limit below this mass value. The TOV (Tolman-Oppenheimer-Volkoff)

limit, when first established numerically, generally recognized the maximum mass of

the NS between 2.2− 2.9M� [40]. Recently, the sample events available from recent

detections has led to the estimation of expected BNS populations that have forced an

adjustment to MNSMAX ≤ 2.6M�[41], while for cold NSs the limit is much smaller,

generally accepted around MCOLD NS MAX ≤ 2.3M�[42].

In terms of purely observational constraints, on the other hand, the most massive

known NS detected within a pulsar is of mass MPULSAR NS = 2.27+0.17
−0.15M� [43]. From

this point of view, it seems unlikely that the secondary mass is a neutron star, even if

it must violate the assumed mass gap of some population models.

In some EOS of nuclear theory, there are nonrotating NSs for which the limit is

theoretically estimated to reach upwards of 3.0. This was considered but was expected

to lead to measurable tidal deformation in the NS, which was not observed. Thus, the

notion was dropped. Further attempts were made to determine a likely EOS, p = p(ρ)

as if it were a NS, with little success.
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It should be noted that deciding on a category to fit this binary system into

creates an issue due to the inability to rely on this particular parameter space when

looking at waveform models. There have not been any systems yet that resemble this

system, and thus they have had no need to model its many parameter variations and

their effects numerically to account for all possible states. The discovery of the two

mass asymmetric compact binaries in this half of the observing run is expected to

force more focus on calculating accurate waveform models for such mass distributions.

Furthermore, the possibility of this being an exotic stellar object was not explored at

all in the original paper, thus leaving many possibilities still up in the air.

7.3.2 Higher Order Multipoles

The high mass asymmetry present in the system produces a signal which provides

significant evidence for higher order multipoles. In fact, the Bayesian factors used in

determining the posteriors show stronger support for the existence of higher order

multipoles than the support for a simple quadrupolar radiation. Measurements of

these can yield greater system constraints on the system’s deduced parameters, as

each multipole moment higher than the quadrupole moment has a unique angular

dependence. Evidence of higher order multipoles were also explored in the case of

GW190412[21].

These are interesting physical effects in their own regard and deserve to be

explored a little further. The contributions of the higher order multipole moments

scales as the mass ratio q moves away from 1- i.e., the more skewed the mass symmetry

is, the greater the multipole contribution to the energy and thus the waveform. For a

general field, the multipole radiation can be expressed as some spherical harmonics
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expansion, according to the relation

Φ(r) =
∞∑
m=0

m∑
k=−m

Ck
mY

k
m(θ, φ) (7.1)

where Y k
m(θ, φ) are the spherical harmonics functions and the parameters (θ, φ) denote

the angular orientation relative to the source. The factor Ck
m is a constant term that

depends on the scalar density (such as the mass density) that generates the field. If

rewritten appropriately,

Φ(r) = Φmono + Φdipole + Φquadrupole + Φoctupole + ..., (7.2)

gives the general definition of each of these multipole terms corresponding to the m

index in the spherical harmonics expansion. While the ideal of a gravitational potential

is not explicitly defined in curved spacetime, one can generalize this derivation to

find the expansion for the gravitational field perturbations far way from a source

corresponding to the metric hµν . This will not be done here but it is in this way that

one reaches the multipole representations of the gravitational field.

The means of derivation of this equation lead to constraints on the indices (m,n)

naturally, such that n takes on integer values between −m and m. The dipole states,

which describe EM polarization, are defined by m = 1, while the quadrupole states are

defined by m = 2 The higher order (m > 2) solutions of spherical harmonics naturally

have more angular dependence. This corresponds to GWs that are ”beaming” off

the compact system in the orbital plane, with additional multipole order increases

effectively narrowing the width of the wave.

In particular, the comparison of the original waveform models (EOBNR/Phenom)

to their counterpart families including higher order multipole (EOBNR PHM/Phenom

PHM), the Bayesian factors show the strongest support (log1 0B ≈ 9.6) for a model in
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(a) Quadrupolar contribution [6]

(b) Octupolar contribution [6]

(c) Hexadecupolar contribution [6]

(d) 32-polar contribution [6]

Fig. 19.: The scaled radiation con-
tributions from the first 4 terms in
the multipole expansion as seen in
the simulation in [6]

which the (3,3) multipole exists along with the (2,2) multi-

pole. The higher order multipoles observed in this system

are further evidenced by exploring time-frequency tracks.

This method is further detailed in [21].

We show here the simulated physical appearance of

these beams in the last 10s of the merger, as they are

shown in the simulation of GW190814 [6]. The images used

here can be found at https://www.aei.mpg.de/263744/

gw190814 or from image captures of the video simulation.

The simulation covers the last 160 orbits of the binary

inspiral, and assumes they are both black holes with the

masses defined by the relevant posteriors. This is consistent

with the data from the frequency range above 20Hz in the

detection of GW190814.

The simulation uses results combined between the wave-

form families SEOBNRv4HM and numerical relativity sim-

ulations. The colors in the images represent the real part

of the GW strain, though for visualization purposes the

radial inverse scaling of radiation is removed, so that the

waves do not die off and render the simulation useless. In

particular, the waves shown have colors that correspond to

the multipole solutions l = 2, 3, 4, 5, the m index in each

case is considered for m = ±l.

The individual modes are normalized to their respec-

tive maximum amplitude, where brighter colors indicate

stronger radiation (strain) within the mode itself. In the
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simulation itself there is also a side panel which displays the simulated total contribu-

tion from the system all at once, though this image will not be looked at here. The

simulated radiation from the quadrupolar contributions are shown first in Fig 19(a).

These contributions have dominated the discussion in the literature until the asym-

metric mass detections this year. Here the heavy warping around the system is clear.

As the frequency increases, (Fig. 20), the contributions from the multipole moments

become brighter, displaying the increased energy density as the massive objects get

closer together. One may notice the increased energy density that is beginning

to develop in center of the system from the quadrupole contributions. The higher

order multipoles are shown beneath the quadrupole in order (b) octupole moment

(c)hexadecupole moment (d) 32-pole moment. The variation in angular dependence

can be seen from the shape of the waveforms.

Fig. 20.: The simulated distinct contributions from the multipole
moments both early in the inspiral (first column) and close to the
merger (second column). The top row shows the system from a
side view, while the bottom row shows the images perpendicular
to its orbital plane [6].

The final .7 seconds of the sim-

ulation were calculated with NR to

demonstrate the horizons of the ring-

down with identical mass ratio (Fig

21. We see the apparent change in

magnitude of the lower order multi-

poles, including the 32-pole contri-

bution, increasing relatively as the

objects join together. The calcula-

tion of this simulation deviates from

the original waveform, but is still an

accurate initial guess in the case that

the system at hand is indeed a BBH.
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Fig. 21.: On the left, the final seconds of the merger simulation are shown, with masses appropriately scaled. On the
right, again the contributions from each multipole term just moments before the merger.

7.3.3 Tests of GR

The large mass asymmetry provides a nice event to probe the robustness of the

strong field theory of general relativity. Multiple tests with the assumed posteriors

were performed, allowing for this new parameter space to be explored in NR.

1. A consistency test of the signal reconstruction.

This analysis is done by removing the shape of the most like CB waveforms to

analyze 4s of residual data near the merger. This helps to give a realization

of the noise PSD from which non-Gaussian and non-stationary noises can be

determined through analysis [44]. If the non-Gaussian noises are found to be

insignificant compared to the original waveform, it shows evidence of a true

signal, and thus verifying the expectations of GR. This test in particular showed

no evidence of general deviations from GR.

2. Test of the spin-induced quadrupole moments]
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The spin-induced multipole moments of a Kerr black hole are completely de-

scribed by its spin angular momentum and mass, according to the no-hair

conjecture. One can define a scalar value corresponding to the quadrupole

moment tensor, Q = −κa2m3, for a single compact object, where Kerr BHs have

κ = 1 and NSs have κ = [2− 14]. This in particular describes the variations of

the spin-induced quadrupole moment.

In assuming that both objects are both black holes we shall have κ1 = κ2 = 1,

which is a degenerate system. The parameter κs = (κ1 + κ2)/2 is then deduced

from the GW signal. For BBHs, this parameter should be equal to 1. The

program was fed the a priori interval [0, 500], and though there was a small

increase in likelihood near κs = 0, the output returned nonzero posteriors over

most of the interval.

• This indicates the results are consistent with GR if GW190814 generated

by a BBH source, as we have assumed. This still does not rule out any

consistency if the waveform is generated by other sources, leaving this open

as a possibility.

3. Parameterized test of source’s ability to generate waveform

An aligned spin EOB waveform without higher order multipoles is used to model

wave generation from an evolving source with identical parameter priors as

the deduced posteriors. In this source model the Post-Newtonian coefficients

describing the early orbit inspiral [45]. These models are varied from their

GR predicted values in an attempt to find a better fit for the model. These

coefficients showed no deviation from their standard values in GR.

In summary, the overall GW signal is concluded to be consistent with GR and the

expected description of a CB merger.
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CHAPTER 8

FUTURE

In the future, it is extremely likely that systems similar GW190814 will be detected.

Hopefully the detection of GW190814 allows for an expanded exploration of the

parameter space before that time. We believe furthermore that the noise at aLIGO

Livingston, along with the reduced state of operation at aLIGO Handford, led to

suboptimal detections of the system below 30 Hz. In the frequency range below

this imposed cutoff, it should be possible to get a better understanding of the early

dynamics of compact binary’s evolutions [22]. This could lead to earlier ”follow up”

searches for EM counterparts, and if detected early enough in the inspiral, this could

translate into a better determination of the component’s individual properties.

Thus, it would be beneficial to make detections that allow us to understand what

is happening in the lower frequency range, and thus earlier on in the evolution of the

orbital. Though aLIGO and aVIRGO are expected to reach design sensitivities as low

as 10 Hz in the coming years, we wish to briefly consider the design of some of the

ground based detectors which may help add extra layers of consideration to the data.

One proposal that has received funding and is currently in the design stage is the

Einstein Telescope [46]. This has still not begun construction, and is site-planning

but its design is interesting enough to warrant some discussion. The plan is to build

it underground in such a way that isolates it from seismic noise much more efficiently

than the LVC detectors. Furthermore, it is a triangular interferometer, designed to

have an arm length of 10 km. The interferometer is expected to reach close to the

LF band border at 1 Hz. This can be seen in Fig 22, which is seen to penetrate
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the frequency-strain area covered by compact binary inspirals. This will give a nice

collection of data to be analyzed in the coming decades.

However, as mentioned, putting this system online is still a ways off. Fortunately,

in the meantime, the field of gravitational wave astronomy still has something to look

forward to from Tokyo. KAGRA, having started observing runs in February 2020,

is expected to be pushing toward its design sensitivity soon which is projected to be

near that of aLIGO and aVIRGO [47]. This will be the first ever fully operational

underground gravitational wave observatory. This 3 km arm interferometer will use

much of the same advanced techniques make modifications to the Michelson setup,

along with cryogenic chambers surrounding the test masses themselves. This setup

will simultaneously eliminate noise and thermal noises that aLIGO and aVIRGO

cannot, leading to the expected sensitivity of KAGRA being particularly lower (from

a characteristic strain perspective) than aLIGO and aVIRGO near the low frequency

edges of its broadband.

Fig. 22.: A plot of the characteristic strain sensitivities of all 4 discussed detectors so far: (1) aVIRGO (2) KAGRA
(3) aLIGO (4) Einstein Telescope

115



The characteristic strain and root PSDs of KAGRA and the ET are shown in

comparison with the current aLIGO and aVIRGO sensitivities.

Fig. 23.: A plot of the root Power Spectral Density sensitivities of the discussed detectors: (1) aVIRGO (2) KAGRA
(3) aLIGO (4) Einstein Telescope

In total, we have presented here a relatively brief development of a surface level

interpretation of Einstein’s field equations. The particularly important aspects of the

current detector state and the ways in which GW signals are analyzed were considered.

This was followed finally by the results obtained by the LVC in the detection of

GW190814.

Though we have given a glance here into the future of two detectors, it should

be noted this is nowhere near the full state of the developments in process within

gravitational wave astronomy. We have not even begun to discuss the space interfer-

ometer LISA, which has already shown proof of concept and is expected to be up by

2030, or the other planned detectors aimed to reach into the ELF and VLF bands.

We were unable to touch on numerous aspects of the LVC alone due to the number

of collaborators involved in this process, and hope that nothing too crucial to the
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subject has been omitted

Though the value of the gravitational wave astronomy field is at an all time high

in terms of detections, the current methods of parameter estimation remain insufficient,

namely the lack of fully explored numerical solutions to the complex combinations of

parameter space that emit GWs in the first place. Not only in this corner, but also an

expansion in the waveform modeling for both heavy NSs and light BHS in systems

radiating GWs. Nonetheless, we expect in the coming years to see much growth in

the parameter vector space used for comparison in the Bayesian analysis, particularly

the components describing asymmetric mass ratios of compact binary systems.
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Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia

EM Electromagnetism

GR General Relativity

SR Special Relativity

GW Gravitational Wave

LIGO Laser Interferometer Gravitational-Wave Observatory

VIRGO
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