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II. List of Figures 

Figure 1. The human genome is organized into a 3D hierarchy. At the nucleosomal scale 

(~1 bp - 10 kb), DNA loops around histone octamers, forming nucleosomes which lead to 

compact chromatin. At the supranucleosomal scale (~10 kb - 800 kb), chromatin loops form 

regions on the linear genome that are highly self-interacting called Topologically Associated 

Domains (TADs). TADs themselves organize into epigenomic “compartments” signifying 

transcriptionally (A) active and (B) inactive chromatin (~3 Mb). At the nuclear scale (~100 Mb - 

3000 Mb), chromosomes form “chromosome territories” (obtained from [1]). 

Figure 2. Overview of Hi-C sequencing. (A) An illustration depicting the steps in the Hi-C 

sequencing protocol (obtained from [2]). (B) An illustration of the structural formation of TADs. 

The Hi-C contact matrix is shown on the left. TADs and sub-TADs are outlined as triangles, with 

an example of the corresponding DNA structure depicted below (obtained from [3]). 

Figure 3. Resolution-specific data construction and feature engineering for random 

forest modeling. (A) The linear genome was binned into non-overlapping resolution-specific 

intervals using shifted binning (see Methods). The response vector Y was defined as 1/0 if a 

genomic bin overlapped/did not overlap with a TAD (or loop) boundary. (B) Four types of 

associations between bins (blue dashed lines) and genomic annotations (green shapes) were 

considered to build the predictor space, including Average Peak Signal (Signal), Overlap Counts 

(OC), Overlap Percent (OP), and 𝑙𝑜𝑔2 distance (Distance). 

Figure 4. A machine learning framework for building domain boundary region prediction 

models. Step 1 employs a range of feature engineering techniques to define the predictor 

matrix 𝐴𝑁×(𝑝+1), where 𝑁 is the number of genomic bins, 𝑝 is the number of genomic 

annotations, 𝑖 is a holdout chromosome. The response vector 𝑌𝑁 is defined as a boundary 

region (𝑌 = 1) if it overlaps with a genomic bin (else 𝑌 = 0). Step 2 reserves the predictor-
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response matrix for the holdout chromosome 𝑖 as the test data. Step 3 applies a resampling 

technique to the training data to address the class imbalance. Step 4 trains the random forest 

model and performs 3-fold cross-validation to tune the mtry parameter. Finally, step 5 validates 

the model on the separate test data composed of the binned data from the holdout chromosome 

𝑖 and evaluates model performance using balanced accuracy (BA). 

Figure 5. Determining optimal data level characteristics for building TAD boundary 

region prediction models on GM12878. Averaged balanced accuracies are compared across 

resolution, within each predictor-type: Signal, OC, OP, and Distance, and across resampling 

techniques: no resampling (None; red), random over-sampling (ROS; green), random under-

sampling (RUS; blue), and synthetic minority over-sampling (SMOTE; purple). Error bars 

indicate 1 standard deviation from the mean performance across each holdout chromosome 

used for testing. 

Figure 6. SMC3, RAD21, CTCF, and ZNF143 transcription factors accurately predict TAD 

and loop boundaries in GM12878. (A) Barplots comparing performances of TAD (Arrowhead) 

and loop (Peakachu) boundary prediction models using histone modifications (HM), chromatin 

states (BroadHMM), transcription factor binding sites (TFBS), in addition to a model containing 

all three classes (ALL). (B) Recursive feature elimination (RFE) analysis used to select the 

optimal number of predictors. Error bars represent 1 standard deviation from the mean cross-

validated accuracy across each holdout chromosome. (C) Clustered heatmap of the predictive 

importance for the union of the top 8 most predictive chromosome-specific TFBS. The columns 

represent the holdout chromosome excluded from the training data. Rows are sorted in 

decreasing order according to the columnwise average importance. 

Figure 7. The preciseTAD algorithm. 



 11 

Figure 8. A schematic illustrating how each of the diagnostic summaries are calculated in 

the preciseTAD algorithm. The illustration depicts blue regions as collections of base 

coordinates whose predictive probability exceeds a predefined threshold, t, organized into two 

clusters. The summary statistics include the following: PTBRWidth - PTBR width, 

PTBRCoverage - the ratio of base-level coordinates with probabilities that exceed the threshold 

to PTBRWidth, DistanceBetweenPTBR - the genomic distance between the end of the previous 

PTBR and the start of the subsequent PTBR, NumSubRegions - the number of elements in 

each PTBR cluster, SubRegionWidth - the genomic coordinates spanning the subregion 

associated with each PTBR, and DistBetweenSubRegions - the genomic distance between the 

end of the previous PTBR-specific region and the start of the subsequent PTBR-specific region. 

Figure 9. preciseTAD-predicted boundaries better reflect intra-chromosomal contacts. (A) 

The location of Arrowhead-called TAD boundaries (blue) vs. preciseTAD-predicted TAD 

boundaries (green) on GM12878 data (chr14:50085000-50800000). The black line represents 

the predicted probability of each base being a TAD boundary. (B) A zoomed-in portion of the 

genome shows the preciseTAD boundary region (PTBR, highlighted yellow), a cluster of bases 

with high probability of being a boundary, and the corresponding signal profiles of CTCF, 

RAD21, SMC3, and ZNF143. 

Figure 10. preciseTAD-predicted boundaries are enriched for known molecular drivers of 

3D chromatin. Signal profile plots comparing the strength of CTCF, RAD21, SMC3, and 

ZNF143 binding around Arrowhead-called boundaries (blue, C), Peakachu loop boundaries 

(red, D) vs. preciseTAD-predicted boundaries (green). 

Figure 11. preciseTAD-predicted boundaries are closer to CTCF sites and more 

conserved across cell lines. (A) 𝑙𝑜𝑔2 genomic distance distribution from called and predicted 

boundaries to the nearest CTCF sites. The p-values are from the Wilcoxon Rank Sum test. (B-

E) Venn diagrams illustrating the levels of conservation (overlap) between domain boundaries 
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for GM12878 (red) and K562 (blue) cell lines identified by Arrowhead (B), Peakachu (C), and 

preciseTAD-predicted boundaries using (D) Arrowhead- and (E) Peakachu-trained models. 

Boundaries involving Arrowhead/Peakachu were flanked by 5 kb/10 kb, respectively. 

Figure 12. The agreement between preciseTAD-predicted boundaries using Arrowhead- 

and Peakachu-trained models. Venn diagrams of boundary overlap using (A) GM12878 and 

(B) K562 data. Boundaries involving Arrowhead/Peakachu were flanked by 5 kb/10 kb, 

respectively. 

Figure 14. Training and testing across cell lines performs similarly to within the same cell 

line. Receiver operating characteristic (ROC) curves and the corresponding average area under 

the curves (AUCs) when (A) training and testing on GM12878 data (blue, Arrowhead ground 

truth; red, Peakachu ground truth) versus training on K562 and testing on GM12878 data (black, 

dashed), and (B) training and testing on K562 data (blue, Arrowhead ground truth; red, 

Peakachu ground truth) versus training on GM12878 and testing on K562 data (black, dashed). 

The curves represent the average sensitivities and specificities across each holdout 

chromosome. The shaded areas around each curve represent 1 standard deviation from the 

average. 

Figure 15. Cross-cell-line predicted boundaries strongly overlapped with same-cell-line 

predicted boundaries. Venn diagrams comparing flanked predicted boundaries using 

Arrowhead (A, B) and Peakachu (C, D) trained models. (A, C) Models trained on GM12878 and 

predicted on GM12878 (red, GM on GM) vs. models trained on K562 and predicted on 

GM12878 (blue, K on GM), (B, D) models trained on K562 and predicted on K562 (red, K on K) 

vs. models trained on GM12878 and predicted on K562 (blue, GM on K). Boundaries involving 

Arrowhead/Peakachu were flanked by 5 kb/10 kb, respectively. 
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Figure 16. Cross-cell-line predicted boundaries were as enriched for known drivers of 3D 

chromatin as same-cell-line predicted boundaries. Profile plots comparing enrichment levels 

of CTCF, RAD21, SMC3, and ZNF143 sites around flanked predicted boundaries using 

Arrowhead (A, B) and Peakachu (C, D) trained models. (A, C) Models trained on GM12878 and 

predicted on GM12878 (red, GM on GM) vs. models trained on K562 and predicted on 

GM12878 (blue, K on GM), (B, D) models trained on K562 and predicted on K562 (red, K on K) 

vs. models trained on GM12878 and predicted on K562 (blue, GM on K). Boundaries involving 

Arrowhead/Peakachu were flanked by 5 kb/10 kb, respectively. 
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IV. Abstract 

Methods for developing a machine learning framework for precise 3D domain boundary 

prediction at base-level resolution 

By Spiro C. Stilianoudakis 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2021 

Advisor: Mikhail G. Dozmorov, Ph.D., 

Assistant Professor, Blick scholar, Department of Biostatistics 

Co-Advisor: Le Kang, Ph.D. 

Assistant Professor, Department of Biostatistics 

High-throughput chromosome conformation capture technology (Hi-C) has revealed extensive 

DNA looping and folding into discrete 3D domains. These include Topologically Associating 

Domains (TADs) and chromatin loops, the 3D domains critical for cellular processes like gene 

regulation and cell differentiation. The relatively low resolution of Hi-C data (regions of several 

kilobases in size) prevents precise mapping of domain boundaries by conventional TAD/loop-

callers. However, high resolution genomic annotations associated with boundaries, such as 

CTCF and members of cohesin complex, suggest a computational approach for precise location 

of domain boundaries. 

We developed preciseTAD, an optimized machine learning framework that leverages a random 

forest model to improve the location of domain boundaries. Our method introduces three 

concepts - shifted binning, distance-type predictors, and random under-sampling - which we use 

to build classification models for predicting boundary regions. The algorithm then uses density-

based clustering (DBSCAN) and partitioning around medoids (PAM) to extract the most 

biologically meaningful domain boundary from models trained on high-resolution genome 
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annotation data and boundaries from low-resolution Hi-C data. We benchmarked our method 

against a popular TAD-caller and a novel chromatin loop prediction algorithm. 

Boundaries predicted by preciseTAD were more enriched for known molecular drivers of 3D 

chromatin including CTCF, RAD21, SMC3, and ZNF143. preciseTAD-predicted boundaries 

were more conserved across cell lines, highlighting their higher biological significance. 

Additionally, models pre-trained in one cell line accurately predict boundaries in another cell 

line. Using cell line-specific genomic annotations, the pre-trained models enable detecting 

domain boundaries in cells without Hi-C data. 

The research presented provides a unified approach for precisely predicting domain boundaries. 

This improved precision will provide insight into the association between genomic regulators 

and the 3D genome organization. Furthermore, our methods will provide researchers with 

flexible and easy-to-use tools to continue to annotate the 3D structure of the human genome 

without relying on costly high resolution Hi-C data. The preciseTAD R package and 

supplementary ExperimentHub package, preciseTADhub, are available on Bioconductor 

(version 3.13; https://bioconductor.org/packages/preciseTAD/; 

https://bioconductor.org/packages/preciseTADhub/). 

  

https://bioconductor.org/packages/preciseTAD/
https://bioconductor.org/packages/preciseTADhub/
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1. Chapter 1: Introduction 

1.1 The 3-dimensional architecture of the human genome 

The human genome contains approximately 3 billion nucleotides and, if stretched end-to-end, 

could reach nearly 2 meters in length. The nucleus, on the other hand, spans approximately 6 

micrometers. Therefore, the linear genome must undergo extensive layers of folding and 

looping to fit inside the nucleus of a cell. This folding does not occur at random, but instead 

makes up the 3-dimensional (3D) architecture of the human genome. In fact, this 3D 

architecture is hierarchical in nature (Figure 1). At the smallest scale (nucleosomal), DNA is 

folded into 11-nm nucleosomes, which in turn wraps around a histone octamer.  At the kilobase 

(kb) scale, chromatin loops connect gene promoters with distal enhancers, thereby regulating 

gene expression [4,5]. At the megabase (Mb) scale, chromatin is organized by spatial domains 

characterized by preferential contacts between loci in the same domain as opposed to across 

domain boundaries, referred to as Topologically Associating Domains (TADs). Emerging 

evidence has linked chromatin loops and TADs to critical roles in cell dynamics and cell 

differentiation. Studies have shown that TADs themselves are highly conserved across species 

and cell lines [6–11]. Furthermore, TADs have been shown to be divided into sub-chromosomal 

compartments, referred to as A and B compartments. A compartments are typically gene-rich, 

DNase I hypersensitive, and transcriptionally active, while B compartments are typically gene-

poor and transcriptionally repressed [2,6,10].  Disruption of boundaries demarcating loops and 

TADs promotes cancer [12,13] and other disorders [14–16]. Therefore, identifying the precise 

location of TAD and chromatin loop boundaries, referred to as domain boundaries, remains a 

top priority in our goal to fully understand the functionality of the human genome. 
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Figure 1. The human genome is organized into a 3D hierarchy. At the nucleosomal scale 

(~1 bp - 10 kb), DNA loops around histone octamers, forming nucleosomes which lead to 

compact chromatin. At the supranucleosomal scale (~10 kb - 800 kb), chromatin loops form 

regions on the linear genome that are highly self-interacting called Topologically Associated 

Domains (TADs). TADs themselves organize into epigenomic “compartments” signifying 

transcriptionally (A) active and (B) inactive chromatin (~3 Mb). At the nuclear scale (~100 Mb - 

3000 Mb), chromosomes form “chromosome territories” (obtained from [1]). 

1.2 Domain calling tools and their limitations 

In recent years, the development of novel strategies to probe the contacts among higher-order 

structures of the human genome have enabled analysis of the formation of chromatin loops and 

TADs. These strategies are based on Chromosome Conformation Capture (3C) sequencing 

techniques [17]. 3C methods can only capture the structure of a subset of the genome at a 
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single time (one vs. one). Its extension, 4C, allowed for comparing specific genomic loci with the 

rest of the genome (one vs. all). A further extension, 5C, allowed for comparing contacts 

between sets of genomic loci (many vs. many). Finally, the introduction of Hi-C sequencing by 

Lieberman-Aiden [2] allowed for the capture of all vs. all long-distance chromatin interactions 

across the entire genome. Generally speaking, Hi-C sequencing involves the following steps: 

crosslinking cells with formaldehyde, treatment with a restriction enzyme, filling in 5’-overhangs 

with a biotinylated residue, ligation of the blunt-end fragments, purifying and shearing the DNA, 

and paired-end sequencing (Figure 2A). The ligated DNA samples produced are the joined 

fragments of DNA that were in close spatial proximity inside of the nucleus. 

The results of a Hi-C sequencing experiment can be visualized via a Hi-C contact matrix, a 

square and symmetric matrix that measures the pairwise interaction frequencies (IFs) between 

genomic regions (Figure 2B). The linear genome is binned into non-overlapping regions of fixed 

width and the matrix entry 𝑀𝑖𝑗 represents the number of paired-end reads connecting loci 𝑖 and 

𝑗. Larger IFs represent pairs of regions that have high levels of interaction when sequenced 

while low IFs represent pairs of regions with low levels of interaction. The width of the bins is 

referred to as resolution and typically ranges from 5 kb-100 kb. Hi-C resolution is controlled by 

sequencing depth, with greater sequencing depth leading to smaller genomic bins (i.e., higher 

resolution). Because increasing the resolution of Hi-C data requires a quadratic increase in the 

total sequencing depth, obtaining high resolution remains difficult [18]. 

TADs form as triangular regions along the diagonal of a contact matrix (Figure 2B). Several 

methods have been proposed to identify genomic coordinates that demarcate TADs (reviewed 

in [19–21]), and chromatin loops [10,22–24], referred to as domain-callers. However, a key 

limitation of them is that they are heavily reliant on Hi-C data resolution. Conventional domain-

callers are restricted to providing genomic coordinates that are divisible by resolution, thereby 

limiting precise location of boundaries. Another limitation among domain callers is that they 
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disregard prior knowledge about functional genomic annotations associated with domain 

boundaries. The insulator binding protein, CTCF, and additional cofactors such as SMC3 and 

RAD21 have been identified as components of the loop extrusion model, whereby DNA is 

extruded through cohesin rings forming chromatin loops [25–30]. Furthermore, distinct patterns 

of histone modifications have also been shown to be present at boundaries [2,6,31]. These 

genomic annotations are obtained using chromatin immunoprecipitation followed by high-

throughput DNA sequencing (ChIP-seq). However, the full list of functional genomic annotations 

associated with boundary location remains unclear. 

 

Figure 2. Overview of Hi-C sequencing. (A) An illustration depicting the steps in the Hi-C 

sequencing protocol (obtained from [2]). (B) An illustration of the structural formation of TADs. 
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The Hi-C contact matrix is shown on the left. TADs and sub-TADs are outlined as triangles, with 

an example of the corresponding DNA structure depicted below (obtained from [3]). 

1.3 Motivation for research 

Computational approaches that integrate ChIP-seq data with Hi-C data may be well-suited to 

identify the key drivers of chromatin architecture. Moreover, the resolution of ChIP-seq 

experiments is typically on the order of tens to hundreds of bases [32], well below the resolution 

of Hi-C data (tens of kilobases; 750 bp is the highest resolution of Hi-C data to date [33]). 

Therefore, leveraging precisely mapped genomic annotations in a supervised machine learning 

framework enables the possibility for more precise prediction of the locations of domain 

boundaries. Our research can help bridge the resolution gap between 1D ChIP-seq annotations 

and 3D Hi-C sequencing data for more precise and biologically meaningful boundary 

identification. 

1.4 Aims 

Our goal is to establish a unified approach toward domain boundary prediction using ChIP-seq 

data. First, we focus on transforming TAD/loop-calling into a prediction problem. We propose a 

machine learning framework to determine the optimal combination of data-level characteristics 

necessary for optimal domain boundary prediction performance. Our framework will allow us to 

be the first to address several impacting factors of Hi-C data on domain boundary location 

including resolution, feature engineering, and class imbalance. Next, we extend this framework 

and develop a novel density-based clustering and partitioning technique that precisely predicts 

biologically meaningful domain boundaries at base-level resolution. Our method will alleviate the 

resolution limitations of conventional TAD/loop callers. Finally, we develop a novel technique 

that can be used to predict boundaries for cell lines that do not currently have Hi-C data 

available. This will circumvent the costly and time-consuming process of performing Hi-C 



 22 

sequencing at high resolution on many different cell lines. We will apply our methods on two 

well-studied cell lines, GM12878 and K562, and benchmark them against two popular domain 

boundary calling tools, Arrowhead [34], an established TAD-caller, and Peakachu [24] a recently 

published algorithm for predicting chromatin loops. These methods will be developed into an R 

package that will be freely available for the scientific community to use. The research presented 

in this dissertation is highlighted by the following aims: 

1.4.1 Aim 1: Develop a machine learning framework to establish an optimal domain boundary 

region prediction model 

Domain boundary prediction is a multi-faceted problem requiring consideration of multiple 

statistical and biological properties of genomic data. It is unclear what the complete set of 

genomic annotations are most influential to TAD/loop formation. Even more unclear, is if the 

mechanisms that lead to the formation of TADs and chromatin loops are the same, and how 

they might differ between cell lines. Thus, there is a need for a unified approach toward domain 

prediction that can shed light on these mechanisms. Here, we propose a machine learning 

framework that will transform domain calling into a supervised classification problem by 

leveraging many different high-resolution 1D ChIP-seq annotations, across multiple cell lines. 

We will be utilizing the random forest algorithm to predict domain boundary regions. In doing so, 

we will develop the concept of shifted binning, a novel technique for building domain data for 

predictive modeling. Additionally, we will develop a new technique for feature engineering based 

on the spatial associations between boundary regions and genomic annotations, known as 

distance-type features. We will compare our method to established feature engineering 

techniques such as overlap counts and overlap percents. These methods are, in part, compiled 

into an R package, preciseTAD, and available on Bioconductor. Additionally, pre-trained models 

will be provided in a public repository via an ExperimentHub R package on Bioconductor, 

referred to as preciseTADhub. 



 23 

1.4.2 Aim 2: Develop a density-based partitioning technique for precise boundary prediction at 

base-level resolution 

Accurate TAD/loop coordinate mapping remains difficult, as it is strongly reliant on the calling 

algorithm and Hi-C data resolution. Obtaining genome-wide chromatin interactions at high-

resolution is costly. In contrast, the resolution of ChIP-seq experiments remains much higher, 

and at much lower costs, compared to Hi-C data. Therefore, implementing computational 

approaches that leverage protein-binding data, as well as other functional genomic elements 

(histone modifications and cis-regulatory elements) may help to improve the precise location of 

domain boundaries. Thus, we propose a method that alleviates resolution restrictions by 

predicting domain boundary coordinates as base-level resolution. We will evaluate the biological 

significance of our base-level predicted boundaries using the peak signal strength around 

known molecular drivers of 3D chromatin including CTCF, RAD21, SMC3, and ZNF143 [25–30]. 

Additionally, we will evaluate the conservation of our predicted boundaries across cell lines and 

compare our results with Arrowhead and Peakachu. This method is primarily compiled into an R 

package, preciseTAD. 

1.4.3 Aim 3: Develop a technique for predicting boundaries on cell lines that do not have publicly 

available Hi-C data 

Currently, there are few cell lines with high-resolution Hi-C data available in the public domain 

[6,10]. However, high-resolution 1D ChIP-seq data in the form of histone modifications, cis-

regulatory elements, and transcription factors, are publicly available for various cell lines [35]. 

Thus, using genomic annotations most predictive of boundary regions, we will develop a 

technique that could precisely predict base-level boundary coordinates on one cell line using 

annotation data from another cell line. We will evaluate two scenarios: 1) training and predicting 

on the same cell line vs. training and predicting on different cell lines. Our method will expand 

our knowledge of the cell line specificity of domain boundary formation, while avoiding costly 



 24 

high-resolution Hi-C sequencing. We will compile this method into an R package and provide 

pre-trained cell-line specific models in a publicly available repository. 
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2. Chapter 2: Aim 1 - Develop a machine learning framework to establish an optimal TAD 

boundary region prediction model 

2.1 Introduction 

The advent of chromosome conformation capture (3C) sequencing technologies, and its 

successor Hi-C, have revealed a hierarchy of the 3-dimensional (3D) structure of the human 

genome such as chromatin loops [10], Topologically Associating Domains (TADs) [6,8], and A/B 

compartments [2]. At the kilobase scale, chromatin loops connect gene promoters with distal 

enhancers, thereby regulating gene expression [4,5]. At the megabase scale, TADs represent 

regions on the linear genome that are highly self-interacting.  Disruption of boundaries 

demarcating TADs and loops promotes cancer [12,13] and other disorders [14–16]. Therefore, 

determining the mechanisms that lead to the formation of TADs and loops is an instrumental 

step toward precisely identifying their locations throughout the linear genome. 

Functional genomic annotations have been shown to be associated with domain boundaries. 

Among these is the insulator binding protein, CTCF. As a regulator of 3D chromatin, CTCF 

mediates long-range contacts and the formation of insulated neighborhoods [36,37]. As a 

transcription factor, CTCF binds to enhancer-promotor regions by co-localizing with other DNA-

binding proteins to regulate gene expression [12,38]. These other factors include RAD21 and 

SMC3, whose recruitment form a cohesin ring under the proposed loop extrusion model, 

whereby loops are formed during interphase [26–28]. It has also been shown that chromatin 

interactions are associated with distinct patterns of histone modifications. Specifically, active 

H3K4 methylation marks have been observed at loop boundaries, likely acting as domain 

barriers to physically separate active and repressive chromatin domains [31,39,40]. The full list 

of elements associated with domain formation remains unclear. Moreover, it is unclear if all of 

these functional genomic elements, or specific combinations of them, play a role in 

distinguishing between TADs and chromatin loops. 



 26 

Recent methods have been developed to implement classification models to predict boundary 

location on the human genome using functional genomic annotations via ChIP-seq data. 

However, all ignore key characteristics of 3D genomic data that are detrimental to both model 

performance and precise boundary identification. A method developed by Mourad et al. [41], 

called HiCFeat, used the percentage of overlap between several ChIP-seq defined transcription 

factor binding site (TFBS) regions and 10 kb genomic bins to build an L1-regularized multiple 

logistic regression model to predict TAD boundary regions. However, such a high level of 

resolution is likely to introduce heavily imbalanced classes created from the proportionally much 

smaller number of TAD boundary regions compared to non-TAD boundary regions. HiCFeat did 

not address the class imbalance. Instead, model performance was evaluated using area under 

the receiver operating characteristic curve (AUROC) which is known to be insensitive to class 

imbalance, creating artificially inflated values influenced by the majority class [42,43].  

Furthermore, by only considering the percentage of overlap in defining the feature space, 

HiCFeat is limited in its granularity given that many regions on the linear genome will not be 

overlapped by any TFBS regions.  Two additional studies were proposed in 2015 and 2017 

respectively, one using histone modifications in a Bayesian Additive Regression Trees (BART) 

model [40] and the other using combined sets of TFBS, DNase I hypersensitive sites, and 

histone modifications together in an L2-based regularized linear model [44]. The BART model 

was built on relatively high-resolution Hi-C data at 5 kb, while the L2-regularized model used 

much lower 200 kb resolution Hi-C data. Both methods addressed class imbalance by 

performing random under-sampling (RUS), and used the elemental read count that appeared in 

each bin to describe the relationship between ChIP-seq regions and genomic bins. Firstly, given 

the large disparity between the number of TAD vs. non-TAD boundary regions, performing 

random under-sampling alone is likely to be unstable and introduce bias. Also, it is unclear how 

other resampling solutions compare to simple random under-sampling such as random over-

sampling or a weighted combination of both random under- and over-sampling together. 
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Secondly, using read count overlap as the feature space suffers from similar limitations as the 

percentage of overlap. Moreover, it is unclear how either of the currently established feature 

engineering procedures compares to enumerating the distance in base pairs between genomic 

elements and genomic bins in TAD boundary prediction, which offers a more spatial measure of 

association. Likewise, there does not appear to be a clear consensus in the optimal Hi-C data 

resolution to use when calling TADs for boundary prediction, as can be evidenced by the wide 

range of resolutions employed in the methods discussed above. Thus, much is left to be 

investigated and improved regarding boundary prediction to fully identify the complete set of 

genomic elements that influence domain formation. 

Here we propose a unified machine learning framework for optimal prediction of domain 

boundary regions. Our method utilizes the random forest (RF) algorithm trained on high-

resolution and cell-line-specific chromatin state (BroadHMM), histone modification (HM), and 

transcription factor binding site (TFBS) data. We introduce a systematic pipeline for building the 

optimal domain boundary region prediction classifier. We found that spatial associations (linear 

distance) between boundaries and annotations perform best, transcription factor binding sites 

improve prediction performance, and a simple random undersampling technique effectively 

addresses the negative effect of class imbalance. We show that binding of four transcription 

factors (SMC3, RAD21, CTCF, ZNF143) is sufficient for accurate boundary predictions in both 

TADs and chromatin loops. These methods and models are implemented and stored in publicly 

available R packages on Bioconductor, preciseTAD and preciseTADhub. 

2.2 Methods 

2.2.1 Data sources 

TAD and loop boundaries called by Arrowhead [34] and Peakachu [24] tools were used for 

training and testing. The autosomal genomic coordinates in the GRCh37/hg19 human genome 
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assembly were considered. Arrowhead-defined TAD boundaries were called from Hi-C data for 

the GM12878 and K562 cell lines (MAPQ>0) at 5 kb, 10 kb, 25 kb, 50 kb, and 100 kb 

resolutions using the default parameters (Additional file 1: Arrowhead Script). Peakachu 

chromatin loop boundaries called at 10 kb for the GM12878 and K562 cell lines were 

downloaded from the Yue lab website (Table 1). Unique boundaries were considered as the 

midpoints within the coordinate of each chromatin loop anchor. Chromosome 9 was excluded 

from all downstream analyses due to the sparsity of contact matrices at 5 kb and 10 kb 

resolutions for the K562 cell line. Cell-line-specific genomic annotations were obtained from the 

UCSC Genome Browser Database including 15 BroadHMM chromatin states (BroadHMM), 10 

histone modifications (HM), and 52 transcription factor binding sites (TFBS) [45] (Additional file 

2: Table S1). 

2.2.2 Shifted-binning for binary classification 

In Hi-C, each chromosome is binned into non-overlapping regions of length r. The r parameter is 

defined by the resolution of Hi-C data. Here, we designed a strategy called shifted binning that 

partitions the genome into regions of the same length r, but with middle points corresponding to 

boundaries defined by the original binning. 

To create shifted binning, the first shifted bin was set to start at half of the resolution r and 

continued in intervals of length r until the end of the chromosome (𝑟 − 𝑚𝑜𝑑(𝑟) + 𝑟/2). The 

shifted bins, referred hereafter as bins for simplicity, were then defined as boundary-containing 

regions (Y = 1) if they contained a TAD (or loop) boundary, and non-boundary regions (Y = 0) 

otherwise, thus establishing the binary response vector (Y) used for classification (Figure 3A). 

2.2.3 Feature engineering 

Cell line-specific genomic annotations were used to build the predictor space. Bins were 

annotated by one of either the average signal strength of the corresponding annotation (Peak 
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Signal Strength), the number of overlaps with an annotation (Overlap Count (OC)), the percent 

of overlap between the bin and the total width of genomic annotation regions overlapping it 

(Overlap Percent (OP)), or the genomic distance in bases from the center of the bin to the 

center of the nearest genomic annotation region (Distance) (Figure 3B). A (𝑙𝑜𝑔2 + 1)-

transformation of distance was used to account for the skewness of the distance distributions 

(Additional file 3: Figure S1). Models built using a Peak Signal Strength predictor space were 

only composed of histone modifications and transcription factor binding sites because 

BroadHMM chromatin states lack signal values. 

2.2.4 Addressing class imbalance 

To assess the impact of class imbalance (CI), defined as the proportion of boundary regions to 

non-boundary regions, we evaluated three resampling techniques: Random Over-Sampling 

(ROS), Random Under-Sampling (RUS), and Synthetic Minority Over-Sampling Technique 

(SMOTE). For ROS, the minority class was sampled with replacement to obtain the same 

number of data points in the majority class. For RUS, the majority class was sampled without 

replacement to obtain the same number of data points in the minority class. For SMOTE, under-

sampling was performed without replacement from the majority class, while over-sampling was 

performed by creating new synthetic observations using the 𝑘 = 5 minority class nearest 

neighbors [46] (implemented in the DMwR v.0.4.1 R package). We restricted the SMOTE 

algorithm to 100% over-sampling and 200% under-sampling to create perfectly balanced 

classes. 

2.2.5 Establishing optimal data level characteristics for TAD boundary region prediction 

Random forest (RF) classification models were built to compare performances between 

combinations of data resolutions, feature engineering procedures, and resampling techniques. 

Following recommendations to evaluate the model on unseen data [47], a holdout chromosome 
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technique was used for estimating model performance. The 𝑖𝑡ℎ holdout chromosome was 

identified and a data matrix, 𝐴𝑁×(𝑝+1), was constructed by combining the binned genome from 

the remaining chromosomes (1,2,⋯ , 𝑖 − 1, 𝑖 + 1,⋯ ,21,22), where 𝑁 = [𝑛1𝑛2⋯𝑛21𝑛22]′ and 𝑛𝑘 is 

the length of chromosome k after being binned into non-overlapping regions of resolution r, such 

that 𝑘 ≠ 𝑖. The number of annotations, 𝑝, and the response vector, Y, defined the column-wise 

dimension of the matrix 𝐴. Re-sampling was then performed on 𝐴, and an RF classifier was 

trained using 3-fold cross-validation to tune for the number of annotations to consider at each 

node (mtry). The number of trees (ntree) that were aggregated for each RF model was set to 

500. The minimum number of observations per root node (nodesize) was set to 0.1% of the 

rows in the data. The binned data for the holdout chromosome 𝑖 was reserved for testing. 

Models were evaluated using Balanced Accuracy (BA), defined as the average of sensitivity and 

specificity: 

𝐵𝐴 =
1

2
(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =

1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

where TP refers to the number of bins correctly identified as containing a boundary (true 

positives), FP refers to the number of bins incorrectly identified as containing a boundary (false 

positives), TN refers to the number of bins correctly identified as not containing a boundary (true 

negatives), and FN refers to the number of bins incorrectly identified as not containing a 

boundary (false negatives). Each of these quantities is obtained from the confusion matrix 

created by validating the model on the test data. The process was repeated for each 𝑖𝑡ℎ holdout 

chromosome, and performances were aggregated using the mean and standard deviation. 

2.2.6 Feature selection and predictive importance 

Many genomic annotations, notably architectural proteins, tend to exhibit an extensive pattern of 

colocalization (correlation) [48]. To avoid overfitting, improve computational efficiency, and 

maintain optimal performance, we implemented recursive feature elimination (RFE). We 
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estimated the near-optimal number of necessary features, ranging from 2 to the maximum 

number of features incremented by the power of 2. We then aggregated the predictive 

importance of the union of the optimal set of features across holdout chromosomes using the 

mean decrease in node impurity among permuted features in out-of-bag samples to determine 

the most common and top-ranked annotations for predicting boundary regions. 

2.3 Results 

2.3.1 Developing an ML framework for optimal TAD boundary prediction 

We developed a machine learning (ML) framework for determining the optimal set of data level 

characteristics to predict boundary regions of Topologically Associating Domains (TADs) and 

chromatin loops, collectively referred to as domain boundaries. We chose the random forest 

(RF) algorithm as our binary classification tool. The reason for it is two-fold: (1) to devise a 

tunable prediction rule in a supervised learning framework, and (2) to allow for an interpretable 

ranking of predictors [49]. We used Arrowhead-called TAD boundaries [50] and published 

Peakachu-predicted loop boundaries [24] as ground truth. Data from GM12878 and K562 cell 

lines at 5-100 kb resolution (Arrowhead) and 10 kb resolution (Peakachu) were used (Additional 

file 1: Arrowhead Script, Table 1). 

Publisher 

[Source] Tool Library Cell line Available Resolution(s) 

Rao et al [10] Arrowhead HIC001-

HIC018 

GM12878 5 kb, 10kb, 25 kb, 50 kb, 100 

kb 

Rao et al [10] Arrowhead HIC069-

HIC074 

K562 5 kb, 10kb, 25 kb, 50 kb, 100 

kb 

Salameh et al [24] Peakachu  GM12878 10 kb 
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Salameh et al [24] Peakachu  K562 10 kb 

Table 1: Data sources for Hi-C matrices used to call topologically associating domains with 

Arrowhead, as well as loop boundaries obtained by Peakachu. 

Boundary regions were defined as genomic bins containing a called boundary (𝑌 = 1), while 

non-boundary regions were defined as bins that did not contain a called boundary (𝑌 = 0) 

(Figure 3A, see Methods). The total number of called TADs, their unique boundaries, and the 

number of genomic bins expectedly decreased with the decreased resolution of Hi-C data 

(Table 2, Additional file 4: Table S2). The number of non-boundary regions highly outnumbered 

boundary regions. Such a disproportional presence of examples in one class is known as a 

“class imbalance” problem that negatively affects predictive modeling [42,43]. To address the 

class imbalance, we evaluated the effect of three resampling techniques. Random over-

sampling (ROS) was defined as sampling with replacement from the minority class (boundary 

regions). Random under-sampling (RUS) was defined as sampling with replacement from the 

majority class (non-boundary regions). Lastly, we tested Synthetic minority over-sampling 

technique (SMOTE), which is a combination of both random over- and under-sampling to create 

balanced classes [46] (see Methods). 
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Figure 3. Resolution-specific data construction and feature engineering for random 

forest modeling. (A) The linear genome was binned into non-overlapping resolution-specific 

intervals using shifted binning (see Methods). The response vector Y was defined as 1/0 if a 

genomic bin overlapped/did not overlap with a TAD (or loop) boundary. (B) Four types of 

associations between bins (blue dashed lines) and genomic annotations (green shapes) were 

considered to build the predictor space, including Average Peak Signal (Signal), Overlap Counts 

(OC), Overlap Percent (OP), and 𝑙𝑜𝑔2 distance (Distance). 

Tool 

Resolution/Bin 

size 

Total 

number of 

called 

domains 

Total number of 

unique domain 

boundaries 

Total 

number of 

genomic 

bins 

Class 

imbalance 

Arrowhead 5 kb 8052 15468 535363 0.03 
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Arrowhead 10 kb 7676 14253 267682 0.05 

Arrowhead 25 kb 4670 8363 107073 0.08 

Arrowhead 50 kb 2349 4224 53537 0.08 

Arrowhead 100 kb 1031 1883 26768 0.07 

Peakachu 10 kb 16185 21421 267682 0.14 

Table 2: Domain boundary data and class imbalance summaries across resolutions for 

Arrowhead and Peakachu on GM12878. 

A total of 77 cell line-specific genomic annotations were used to build the predictor space. 

These included 15 BroadHMM chromatin state data, 10 histone modifications (HM), and 52 

transcription factor binding sites (TFBS) (Additional file 2: Table S1). Four feature engineering 

procedures were developed to quantify the association between genomic annotations and bins 

(Figure 3B). These included signal strength association (Signal), direct (OC), proportional (OP), 

and spatial (𝑙𝑜𝑔2 + 1 Distance) relationships. A 𝑙𝑜𝑔2 transformation was implemented on the 

distance feature space to normalize genomic distances (see Methods, Additional file 3: Figure 

S1). 

In total, we considered combinations of data from two cell lines L = {GM12878, K562}, five 

resolution R = {5 kb, 10 kb, 25 kb, 50 kb, 100 kb}, four types of predictor spaces P = {Signal, 

OC, OP, Distance}, and three re-sampling techniques S = {None, RUS, ROS, SMOTE} (Figure 

4). Once the model inputs were established, a random forest classifier was trained on 𝑛 − 1 

autosomal chromosomes, while reserving the 𝑖𝑡ℎ chromosome for testing. Three-fold cross-

validation was used to tune the mtry hyperparameter, while ntree and nodesize were fixed at 

500 and at 0.1% of the rows in the training data, respectively. Model performance was 

evaluated by aggregating the mean balanced accuracy (BA) across each holdout chromosome 
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(see Methods). These strategies allowed us to select the best performing model in an unbiased 

manner. 

 

Figure 4. A machine learning framework for building domain boundary region prediction 

models. Step 1 employs a range of feature engineering techniques to define the predictor 

matrix 𝐴𝑁×(𝑝+1), where 𝑁 is the number of genomic bins, 𝑝 is the number of genomic 

annotations, 𝑖 is a holdout chromosome. The response vector 𝑌𝑁 is defined as a boundary 

region (𝑌 = 1) if it overlaps with a genomic bin (else 𝑌 = 0). Step 2 reserves the predictor-

response matrix for the holdout chromosome 𝑖 as the test data. Step 3 applies a resampling 

technique to the training data to address the class imbalance. Step 4 trains the random forest 
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model and performs 3-fold cross-validation to tune the mtry parameter. Finally, step 5 validates 

the model on the separate test data composed of the binned data from the holdout chromosome 

𝑖 and evaluates model performance using balanced accuracy (BA). 

2.3.2 Random under-sampling, distance-based predictors, and high-resolution Hi-C data provide 

optimal performance for boundary prediction 

Expectedly, when using data with class imbalance present, that is, no resampling, the models 

exhibited low balanced accuracies, with minimal variability among different resolutions (Figure 

5). Similarly, poor performances were found when using ROS. However, RUS and SMOTE re-

sampling led to a drastic improvement in performance, especially at higher resolutions. We 

found that RUS marginally outperformed SMOTE as the optimal class balancing technique for 

all resolutions and predictor types when predicting TAD boundary regions. 

Additionally, we found that using a distance-type predictor space yielded substantially higher 

balanced accuracies than the peak signal strength, overlap count, and overlap percent predictor 

types. As with class balancing techniques, this improvement was less evident at lower 

resolutions, with results consistent for K562 (Additional file 5: Figure S2A). Furthermore, 5 kb 

resolution genomic bins led to the optimal prediction for TAD boundary regions on both cell 

lines. Random forest models built on Peakachu-defined loop boundary regions yielded optimal 

prediction performance when using a distance-type predictor space, with SMOTE resampling 

and RUS performing comparatively similar to each other, for both cell lines (Additional file 5: 

Figure S2B, S2C). Our results indicate that random under-sampling, distance-type predictors, 

and high-resolution Hi-C data provide the optimal set of data level characteristics for both TAD 

and chromatin loop boundary prediction. 
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Figure 5. Determining optimal data level characteristics for building TAD boundary 

region prediction models on GM12878. Averaged balanced accuracies are compared across 

resolution, within each predictor-type: Signal, OC, OP, and Distance, and across resampling 

techniques: no resampling (None; red), random over-sampling (ROS; green), random under-

sampling (RUS; blue), and synthetic minority over-sampling (SMOTE; purple). Error bars 

indicate standard deviation from the mean performance across each holdout chromosome used 

for testing. 

2.3.3 Transcription factor binding sites outperform histone- and chromatin state-specific models 

We hypothesized that the type of genomic annotations may also affect predictive performance. 

Using the established optimal settings (RUS, Distance, 5 kb/10 kb (Arrowhead/Peakachu 

ground truth) genomic bins), we built separate random forest models using histone 
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modifications (HM), BroadHMM chromatin states (BroadHMM), and transcription factor binding 

sites (TFBS). We found that models built on TFBS outperformed other annotation-specific 

models, with results consistent for loop boundaries, on both cell lines (Figure 6A; Additional file 

6: Figure S3A). These results suggest that TFBS are the primary drivers of TAD and loop 

boundary formation in both GM12878 and K562. 
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Figure 6. SMC3, RAD21, CTCF, and ZNF143 transcription factors accurately predict TAD 

and loop boundaries in GM12878. (A) Barplots comparing performances of TAD (Arrowhead) 

and loop (Peakachu) boundary prediction models using histone modifications (HM), chromatin 

states (BroadHMM), transcription factor binding sites (TFBS), in addition to a model containing 
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all three classes (ALL). (B) Recursive feature elimination (RFE) analysis used to select the 

optimal number of predictors. Error bars represent 1 standard deviation from the mean cross-

validated accuracy across each holdout chromosome. (C) Clustered heatmap of the predictive 

importance for the union of the top 8 most predictive chromosome-specific TFBS. The columns 

represent the holdout chromosome excluded from the training data. Rows are sorted in 

decreasing order according to the columnwise average importance. 

2.3.4 Predictive importances confirmed the biological role of CTCF, RAD21, SMC3, and ZNF143 for 

boundary formation 

It is known that many elemental proteins colocalize together at binding sites along the linear 

genome, resulting in a correlated feature space (Additional file 7: Figure S4). Therefore, to avoid 

overfitting [51], we implemented recursive feature elimination (RFE) to select only the most 

influential TFBS across all autosomal chromosomes. We obtained near-optimal performance 

using approximately eight TFBS (Figure 6B; Additional file 6: Figure S3B). However, given that 

we trained our models on chromosome-specific data, the most significant annotations varied for 

each holdout chromosome. To determine transcription factors most important for boundary 

prediction across all chromosomes, we clustered the predictive importance (mean decrease in 

accuracy) of the top eight significant TFs across chromosomes. We found four transcription 

factors, CTCF, RAD21, SMC3, and ZNF143, being consistently predictive of TAD and loop 

boundaries (Figure 6C; Additional file 6: Figure S3C). We optimized our model by only 

considering these top four TFBS when building the random forest classifier, thereby decreasing 

computational burden while maintaining high predictive performance. In summary, our model 

was able to yield the known molecular drivers of the loop extrusion model [25–30]. 
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2.4 Discussion 

We present a machine learning approach for optimal prediction of TAD or loop boundary 

regions from functional genomic annotations. Our method leverages a random forest (RF) 

classification model built on low-resolution domain boundaries obtained from domain calling 

tools, and high-resolution genomic annotations as the predictor space. We first optimized our 

RF model by systematically comparing different combinations of genome binning (resolution), 

feature engineering procedures, and resampling techniques. These methods are implemented 

in part as an R package, preciseTAD, and pre-trained models are available as an 

ExperimentHub pacakges, preciseTADhub, both of which are available on Bioconductor. 

During preliminary research we investigated the performance of several different machine 

learning algorithms including multiple logistic regression (MLR), 𝑙1 and 𝑙2 regularized logistic 

regression (elastic-net; glmnet version 4.0.0), support vector machines (SVM; e1071 version 

1.7.3), gradient boosting machines (GBM; gbm version 2.1.5), and extreme gradient boosting 

(XGBOOST; xgboost version 1.0.0.2). In each case, the holdout chromosome framework with 3-

fold cross-validation was used. Additionally, we considered Arrowhead ground truth TAD 

boundaries on GM12878, 25 kb genomic bins, distance-type features, and random-

undersampling. For elastic-net we tuned the 𝛼 and 𝜆 parameters over values ranging from 0.1-1 

and 0-10, respectively. For SVM, we considered a linear kernal, while the cost parameter was 

tuned over values ranging from 0.25-4. For GBM, 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 was set to 1, 𝑛.𝑚𝑖𝑛𝑜𝑏𝑠𝑖𝑛𝑛𝑜𝑑𝑒 was 

set to 10, while 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑑𝑒𝑝𝑡ℎ and 𝑛. 𝑡𝑟𝑒𝑒𝑠 were tuned over values {1,2,3,4,5} and 

{50,100,150,200,250} respectively. For XGBOOST, 𝑛𝑟𝑜𝑢𝑛𝑑𝑠 was set to 50, while 

𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙. 𝑏𝑦𝑡𝑟𝑒𝑒 and 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 were set to 0.8, the learning rate was tuned over values 

{0.025,0.05,0.1,0.3}, 𝑚𝑎𝑥. 𝑑𝑒𝑝𝑡ℎ was tuned over values {2,4,6,8}, and 𝑔𝑎𝑚𝑚𝑎 was tuned over 

values {0, .3, .5}. These models were compared to RF models with 𝑛𝑡𝑟𝑒𝑒 and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 set to 50 

and . 01 × 𝑛𝑟𝑜𝑤(𝑑𝑎𝑡𝑎), while tuning over 10 values for the 𝑚𝑡𝑟𝑦 parameter. Results indicated 
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that, on average, RF out-performed all other predictive models (Additional file 16: Figure S10). 

We were not surprised that RF exhibited greater predictive performance than linear based 

approaches including MLR, ENET, and SVM, as has been seen in multiple comparative studies 

in the bioinformatics literature [52–54]. An additional benefit offered by RF is the availability of 

an interpretable ranking of predictors using variable importance measures [55,56]. A much more 

comparative performance was seen between bagging- (RF) and boosting-based (GBM & 

XGBOOST) approaches. There are other potential benefits aside from increased performance 

of RF. RF has fewer hyperparameters to tune, generates trees very rapidly, and does not need 

to make and store new training sets, saving time and memory over other methods, making RF 

the best choice for our purposes [57]. 

Our machine learning framework yielded several interesting observations. We first 

demonstrated that RF models built using distance-type predictors outperformed models built on 

previously published feature engineering techniques, including signal strength, overlap counts, 

and overlap percents [41,52–54]. We further demonstrated that class imbalance hinders 

boundary prediction, but can be effectively addressed by a simple random under-sampling 

(RUS) technique, an aspect of boundary prediction unaddressed in previous studies [41,52,53]. 

We find that random over-sampling (ROS) performed quite poorly compared to the other re-

sampling techniques, likely due to models overfitting the data as a result of duplicated minority 

class samples [55]. Additionally, we found that SMOTE’s synthetic observations created from 

the minority class did not lead to the out-performance of RUS, indicating some residual effects 

of overfitting. Likewise, instead of creating perfecting balanced classes, some more calibration 

might be needed between the percentage of over-sampling and under-sampling offered by the 

algorithm. 

We showed that information about only four transcription factors (CTCF, SMC3, RAD21, 

ZNF143) is necessary and sufficient for accurate TAD and loop boundary region prediction, 
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outperforming histone modification- and BroadHMM-built models [52,53]. These are known 

components of the loop extrusion model, an established theory of how loops are made by a 

ring-shaped adenosine triphosphatase-driven complex called cohesin [25–30]. Interestingly, the 

same transcription factors accurately predicted both TAD and loop boundaries, suggesting a 

similarity of the mechanisms of TAD and loop formation. This suggested that the random forest 

model, when tuned and feature engineered correctly, is highly effective in predicting biologically 

relevant domain boundary regions. 

We opted to only tune the mtry hyperparameter in our machine learning framework. This is 

because the other notable hyperparameters in random forests are not tunable in the classical 

sense, including ntrees and nodesize [56–58]. For ntrees, evidence suggests that the biggest 

performance gain is often be achieved after growing the first 100 trees [57,58]. Thus, we were 

comfortable with the default ntree=500 advised in the randomForest R package. For nodesize, 

computation time decreases approximately exponentially with increasing node size [59]. 

Therefore, we set the default value to 0.1% of the rowise dimension of the training data. 

Besides balanced accuracy (BA), we investigated five other performance metrics, including 

accuracy, area under the receiver operating characteristic curve (AUROC), precision, F1-score, 

and area under the precision-recall curve (AUPRC) (Additional File 8: Table S3). Our aim was to 

have a balanced metric sensitive to class imbalance such that it would not favor one component 

of the confusion matrix. The accuracy metric can be artificially inflated by true negatives (TN), 

the set of genomic bins correctly predicted as not containing a ground truth boundary. AUROC 

captures how a model generally performs across different thresholds. However, it doesn’t 

emphasize one class over the other, so it does not reflect the minority class well. Precision 

indicates the rate at which positive predictions are correct and can be artificially deflated by low 

proportions of true positives (TP), the set of genomic bins correctly predicted as containing a 

ground truth boundary. While F1-score is a composite metric, it can be susceptible to different 
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values for precision and recall. Lastly, AUPRC is insensitive toward class imbalance, preventing 

us from investigating its effect, and also omits from its calculation TN values. All of these are 

important considerations to make when choosing a performance metric. For these reasons, we 

opted to report balanced accuracy (BA). The BA benefits from incorporating all components of 

the confusion matrix, while also being sensitive to class imbalance, a necessary characteristic 

when comparing performances to models built using no data resampling. 

In summary, we demonstrate that domain boundary prediction is a multi-faceted problem 

requiring consideration of multiple statistical and biological properties of genomic data. Simply 

considering the properties of Hi-C contact matrices ignores the fundamental roles of known 

molecular drivers of 3D chromatin structures. Instead, we propose a supervised machine 

learning framework that leverages both Hi-C contact matrix information and genomic 

annotations. Our method introduces three concepts - shifted binning, distance-type predictors, 

and random undersampling - which we use to build random forest classification models for 

predicting boundary regions. Our method can bridge the resolution gap between 1D ChIP-seq 

annotations and 3D Hi-C sequencing data for more precise and biologically meaningful 

boundary identification. 
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3. Chapter 3: Aim 2 - Develop a density-based partitioning technique for precise 

boundary prediction at base-level resolution 

3.1 Introduction 

The introduction of high-throughput chromosome conformation capture sequencing (Hi-C) 

technologies have allowed researchers to analyze the spatial organization of the human 

genome. Studies have uncovered non-random 3-dimensional (3D) structures formed by folded 

genomic DNA [2,17,60]. Among these structures are chromatin loops and topologically 

associating domains (TADs). Chromatin loops form at kilobase (kb) scale as a result of distal 

promotors coming into contact with regulatory elements, such as enhancers [4,5]. TADs are 

higher-order structures that form at megabase (Mb) scale and are characterized by genomic loci 

with highly self-interacting DNA within a region compared to between regions [6,8,10]. TADs 

and loops have been reported as being highly conserved across species and cell lines [7,9–11]. 

The formation of these structural domains has been implicated in cell differentiation and 

development [61,62]. Importantly, it has been shown that disrupting the boundaries that 

demarcate both TADs and chromatin loops has been associated with developmental diseases 

[14–16] and cancer [12,13]. While some important functions of TADs and loops have been 

identified, their role in the 3D genome remains to be fully understood. 

Many different algorithms have been proposed to identify the boundaries of TADs and 

chromatin loops, referred to as domain boundaries [6,22–24,50,63,64]. However, initial 

assessments have shown that results vary widely between methods [19–21]. These are due to 

several impacting factors including the algorithm of choice and Hi-C data resolution. Resolution 

refers to the size of genomic regions (bins) used to segment the linear genome between which 

contacts are enumerated [65]. Typical Hi-C experiments are performed in the 10 kb-100 kb 

resolution range, with higher resolutions necessary to detect hierarchical TADs and loops. 
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However, it is unclear if higher resolutions lead to improved domain identification due to sparsity 

and high-dimensionality introduced in Hi-C contact matrices as a result [65]. 

In contrast to Hi-C data, chromatin immunoprecipitation followed by high-throughput DNA 

sequencing (ChIP-seq) is performed at much higher resolution, typically on the order of tens to 

hundreds of bases [32]. Likewise, it has been shown that TADs and chromatin loops are 

mediated by sets of architectural proteins that colocalize at boundaries. Notably, domain 

boundaries were enriched in CTCF and cohesin complex (RAD21 and SMC proteins), 

components of the loop extrusion model [25–30]. Therefore, these enrichment patterns suggest 

that computational predictions may allow researchers to circumvent the costly resolution 

restrictions of Hi-C sequencing. 

To this end, we have developed preciseTAD, a data-driven algorithm for precise domain 

boundary prediction using key ChIP-seq genomic annotations. Our method utilizes the random 

forest (RF) algorithm trained on high-resolution CTCF, RAD21, SMC3, and ZNF143 narrow 

peak sites to predict low-resolution domain boundaries. Translated from Hi-C data resolution 

level to base level (annotating each base and predicting its boundary probability), preciseTAD 

employs density-based clustering (DBSCAN) and partitioning around medoids (PAM) to detect 

genome annotation-guided boundary regions and points at a base-level resolution. This 

approach circumvents resolution restrictions of Hi-C data, allowing for the precise detection of 

biologically meaningful boundaries. We demonstrate that preciseTAD predictions are more 

enriched for known molecular drivers of 3D chromatin. Further, we show that preciseTAD-

predicted boundaries are more conserved across cell lines. This improved precision in the 

domain boundary location can provide insight into the association between genomic regulators 

and the 3D genome organization. The methods developed are implemented in the preciseTAD 

R package and are freely available on Bioconductor at 

https://bioconductor.org/packages/preciseTAD. 

https://bioconductor.org/packages/preciseTAD
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3.2 Methods 

3.2.1 Developing a boundary prediction tool at base-level resolution 

To investigate whether we could alleviate the resolution limitations of conventional domain 

calling tools, we developed preciseTAD. This algorithm leverages an optimized random forest 

model in conjunction with density-based and partitioning techniques to predict boundaries at 

base-level resolution (Figure 7). 
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Figure 7. The preciseTAD algorithm. 

First, a random forest classification model, 𝑀, is built on cell line-specific CTCF, RAD21, SMC3, 

and ZNF143 sites, for a set of binned chromosomes {𝑘|𝑘 ≠ 𝑖}, using (𝑙𝑜𝑔2 + 1) genomic 

distances, ground truth TAD and loop boundaries called from Arrowhead and Peakachu at 5 kb 
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and 10 kb resolutions respectively, with random under-sampling (See aim 1). A base-level 

resolution predictor space, 𝐴𝑛×𝑝, is then constructed for chromosome 𝑖, where 𝑛 is the length of 

chromosome 𝑖 and 𝑝 is the number of annotations. We evaluate 𝑀 on the base-level predictor 

space to extract the probability vector, 𝜋𝑛, denoting each base’s probability of being a boundary. 

A threshold 𝑡 specifies the probability at which a base with 𝜋𝑛 ≥ 𝑡 is designated as a potential 

boundary (the default 𝑡 = 1). Next, density-based spatial clustering of applications with noise 

(DBSCAN) is applied to the matrix of pairwise genomic distances between boundary-annotated 

bases, 𝐷, such that 𝜋𝑛 ≥ 𝑡. The minimum and maximum coordinates of each cluster, 𝑘, of 

spatially colocalized bases were termed preciseTAD boundary regions (PTBR). To precisely 

identify a single base among each PTBR, preciseTAD implements partitioning around medoids 

(PAM) on the distance matrix, 𝐷𝑘, derived from each cluster. The corresponding cluster medoid 

was defined as a preciseTAD boundary point (PTBP), making it the most representative base 

coordinate within each clustered PTBR. 

The DBSCAN algorithm has two parameters, MinPts and eps (𝜖). The MinPts parameter was 

set to the recommended value of 3, representing 1 + 𝑑𝑖𝑚(𝑑𝑎𝑡𝑎) [66]. To decide on the optimal 

value of 𝑡 and 𝜖 in preciseTAD, we considered the normalized enrichment 𝑁𝐸 of flanked 

predicted boundaries, defined as 

𝑁𝐸 =
1

𝑝
[𝛴𝑠=1

𝑝
[
1

𝑏
𝛴𝑘=1
𝑏 𝑒𝑘𝑠]] 

where 𝑒𝑘𝑠 = I{𝑟𝑠 ∈ (𝑏𝑘 − 𝑓, 𝑏𝑘 + 𝑓)} is the number of elemental regions 𝑟 of predictor 𝑝 that 

overlap with each flanked boundary. We evaluated 𝑁𝐸 for combinations of 𝑡 = {0.975,0.99,1.0} 

and 𝜖 = {1000,5000,10000,15000,20000,25000}. The heuristic of 𝜖 is that density-reachable 

bases with genomic distances less than 𝜖 should occupy the same designated cluster. The 

default combination was set to 𝑡 = 1.0 and 𝜖 = 10000 based on our tests (Additional File 9: 

Figure S5). 
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3.2.2 Methods for summarizing predicted boundaries and regions 

We devised a series of 6 summary measures to assess the quality of our predicted boundaries 

and the regions of clustered base coordinates that flanked them (Figure 8). The measures 

included: PTBRWidth - the width spanned by each cluster of bases such that 𝜋𝑛 ≥ 𝑡, 

PTBRCoverage - the ratio of base-level coordinates with probabilities that exceed the threshold 

to PTBRWidth, DistanceBetweenPTBR - the genomic distance between the end of the previous 

PTBR and the start of the subsequent PTBR, NumSubRegions - the number of elements in 

each PTBR cluster, SubRegionWidth - the genomic coordinates spanning the subregion 

associated with each PTBR, and DistBetweenSubRegions - the genomic distance between the 

end of the previous PTBR-specific region and the start of the subsequent PTBR-specific region. 

 

Figure 8. A schematic illustrating how each of the diagnostic summaries are calculated in 

the preciseTAD algorithm. The illustration depicts blue regions as collections of base 

coordinates whose predictive probability exceeds a predefined threshold, t, organized into two 

clusters. The summary statistics include the following: PTBRWidth - PTBR width, 

PTBRCoverage - the ratio of base-level coordinates with probabilities that exceed the threshold 
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to PTBRWidth, DistanceBetweenPTBR - the genomic distance between the end of the previous 

PTBR and the start of the subsequent PTBR, NumSubRegions - the number of elements in 

each PTBR cluster, SubRegionWidth - the genomic coordinates spanning the subregion 

associated with each PTBR, and DistBetweenSubRegions - the genomic distance between the 

end of the previous PTBR-specific region and the start of the subsequent PTBR-specific region. 

3.2.3 Evaluating signal strength of known molecular drivers of 3D chromatin around predicted 

vs. called boundaries 

We assessed the biological significance of our predicted boundaries by their association with 

the signal of CTCF, RAD21, SMC3, and ZNF143 using signal profiles and enriched heatmaps 

from deepTools (version 2.0) [67]. To do so, a matrix 𝑀𝑟×𝑐, is created where the rows, 𝑟, are 

given by the number of boundaries, either called or predicted. The column dimension, 𝑐, is 

created by flanking each boundary by 5 kb (10 kb for chromatin loop boundaries). The flanking 

is then broken up into 50 bp segments, for 100 windows on both sides of a given boundary, a 

total of 200 columns. The cells of the matrix are calculated as a mean coverage value for each 

window with respect to the signal from the respective ChIP-seq annotation, given by 

𝑣𝑐 =
𝛴𝑗
𝑚𝛴𝑖

𝑛𝑥𝑖𝑗𝑤𝑖𝑗

𝐿
 

where 𝑥𝑖𝑗 is the total number of bases of annotation 𝑖 in window 𝑗 and 𝑤𝑖𝑗 is the number of 

bases that overlap between annotation 𝑖 and window 𝑗. The denominator, 𝐿, is the width of the 

windows (here, 𝐿 = 50). For the profilePlot, the matrix is then summarized by row-wise 

averages and plotted as a density curve, where the center represents the boundary, and the 

curve represents the average ChIP-seq peak signal around a flanked region. For the enriched 

heatmap, the matrix is plotted as a heatmap. Here, the rows of the matrix are first ordered by 

enriched scores calculated as the sum of coverage values weighted by the distance to the 

flanked boundary, denoted by 
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𝑠𝑒 = 𝛴𝑑=1
𝑛1 (

𝑥1𝑑 ∗ 𝑑

𝑛1
) + 𝛴𝑢=1

𝑛2 (
𝑥2𝑢 ∗ (𝑛2 − 𝑢 + 1)

𝑛2
) 

where 𝑛1 and 𝑛2 represent the number of downstream and upstream coverage values to sum 

over, and 𝑛1 = 𝑛2 = 100. Additionally, we compared the median 𝑙𝑜𝑔2 genomic distances 

between boundaries and the same top predictive ChIP-seq annotations using Wilcoxon Rank-

Sum tests. 

3.2.4 Evaluating conservation of predicted vs. called boundaries 

Furthermore, we compared the overlap between predicted and called boundaries in GM12878 

and K562 cell lines. Boundaries were first flanked by resolution, r, and overlaps were visualized 

using Venn diagrams. Overlaps were further quantified using the Jaccard index defined as 

𝐽(𝐴,𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

where A and B represent genomic regions created by flanked called and predicted boundaries. 

That is, between cell lines, the number of overlapping flanked boundaries divided by the total 

number of flanked boundaries. Wilcoxon Rank-Sum tests were used to compare chromosome-

specific Jaccard indices across cell lines, between preciseTAD boundaries and both Arrowhead 

and Peakachu boundaries, respectively. All statistical analyses were performed in R (version 

4.0.1). The significance level was set to 0.05 for all statistical tests. 

3.3 Results 

We developed preciseTAD, a data-driven algorithm for precise domain boundary prediction 

using high-resolution ChIP-seq data. Our method employs density-based clustering (DBSCAN) 

and partitioning around medoids (PAM) to detect genome annotation-guided boundary regions 

and points at a base-level resolution (see Methods; Figure 7). This approach circumvents 
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resolution restrictions of Hi-C data, allowing for the precise detection of biologically meaningful 

boundaries. 

3.3.1 preciseTAD better reflects intra-chromosomal contacts 

When trained using Arrowhead and Peakachu ground truth boundaries at 5 kb and 10 kb 

resolutions, respectively, preciseTAD predicted a total of 12,258 TAD and 15,707 chromatin 

loop boundaries in GM12878, as well as 9,603 TAD and 11,154 chromatin loop boundaries in 

K562 cell line (Additional file 10: Table S4). We reported less predicted TAD boundaries at 5 kb 

than Arrowhead on both cell lines (Table 2, Additional file 10: Table S4). This can be attributed 

to Arrowhead’s inflation of called TADs at 5 kb, that, when visualized, often do not correspond to 

domains enriched in internal interactions (Figure 9A) and signal of known drivers of domain 

boundaries (Figure 9B). preciseTAD also predicted fewer chromatin loop boundaries than 

Peakachu (Table 2, Additional file 10: Table S4). This can be attributed to Peakachu’s use of 

only CTCF sites to call boundaries, while preciseTAD leverages four known drivers of 3D 

chromatin, including CTCF, RAD21, SMC3, and ZNF143.  In addition to predicting boundary 

locations, preciseTAD provides collections of base coordinates that exhibit high levels of 

predictability, these are termed preciseTAD boundary regions (PTBRs). Our preliminary 

observations indicated that, under most optimal settings, the width of PTBRs paralleled the 

resolution of Hi-C data (Table 3; Additional file 11: Table S5). 
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Figure 9. preciseTAD-predicted boundaries better reflect intra-chromosomal contacts. (A) 

The location of Arrowhead-called TAD boundaries (blue) vs. preciseTAD-predicted TAD 

boundaries (green) on GM12878 data (chr14:50085000-50800000). The black line represents 

the predicted probability of each base being a TAD boundary. (B) A zoomed-in portion of the 

genome shows the preciseTAD boundary region (PTBR, highlighted yellow), a cluster of bases 

with high probability of being a boundary, and the corresponding signal profiles of CTCF, 

RAD21, SMC3, and ZNF143. 
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Summary Predicted TAD boundaries Predicted loop boundaries 

PTBRWidth 13131.4 (10927.7) 14610.2 (10857.7) 

PTBRCoverage 0.2 (0.3) 0.1 (0.2) 

DistanceBetweenPTBR 205023.8 (440221.8) 153085.4 (344241.3) 

NumSubRegions 23.7 (19.6) 193.9 (198.3) 

SubRegionWidth 11.0 (30.0) 4.7 (11.0) 

DistBetweenSubRegions 572.4 (1191.5) 73.1 (308.3) 

Table 3: Summary measures evaluating the quality of preciseTAD-predicted TAD and 

chromatin loop boundaries for GM12878. Summaries are reported as means (standard 

deviations). 

3.3.2 preciseTAD identifies precise and biologically relevant domain boundaries 

Next, we evaluated the biological significance of preciseTAD boundary points (PTBPs). The 

signal of four known molecular drivers of 3D chromatin (CTCF, RAD21, SMC3, and ZNF143) 

colocalized more frequently around PTBPs, as compared to Arrowhead-called TAD and 

Peakachu loop boundaries, respectively (Figure 10A, 10B; Additional file 12: Figure S6A, S6B). 

Surprised by the poor signal distribution around Arrowhead boundaries, we compared signals 

centered on boundaries called by Arrowhead, Peakachu, and a recently published TAD-caller, 

SpectralTAD [64]. We confirmed the poor signal distribution around Arrowhead boundaries, in 

contrast to the relatively well-performing Peakachu- and SpectralTAD-called boundaries 

(Additional file 12: Figure S6C, S6D). Signal enrichment heatmaps confirmed that preciseTAD-

predicted boundaries were more enriched for the same genomic annotations than either 

Arrowhead or Peakachu boundaries alone (Additional file 13-14: Figure S7-S8). preciseTAD 

boundaries were statistically significantly closer to the top-ranked TFBS (Wilcoxon p-value < 

0.001 versus Arrowhead and Peakachu boundaries, respectively, Figure 11A, Additional file 15: 
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Figure S9). These results indicate that preciseTAD-predicted boundaries better reflected the 

known biology of boundary formation. 

 

Figure 10. preciseTAD-predicted boundaries are enriched for known molecular drivers of 

3D chromatin. Signal profile plots comparing the strength of CTCF, RAD21, SMC3, and 

ZNF143 binding around Arrowhead-called boundaries (blue, C), Peakachu loop boundaries 

(red, D) vs. preciseTAD-predicted boundaries (green). 

3.3.3 preciseTAD boundaries are more conserved across cell lines 

Previous studies suggest that TAD boundaries are conserved across cell lines [6–8,68]. To 

assess the level of cross-cell-line conservation, we evaluated the overlap between cell line-

specific boundaries detected by preciseTAD, Arrowhead, and Peakachu. Only 26% and 49% of 

boundaries were conserved between cell lines for Arrowhead and Peakachu boundaries 

(J=0.186 and J=0.388), respectively (Figure 11B, 11C). However, 45%/56% of preciseTAD-

predicted domain boundaries were conserved between GM12878 and K562 cell lines when 

using models trained on Arrowhead/Peakachu data (J=0.383 and J=0.444, respectively, Figure 

11D, 11E). The better conservation of preciseTAD-predicted boundaries further supports the 

notion of their higher biological relevance. 
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Figure 11. preciseTAD-predicted boundaries are closer to CTCF sites and more 

conserved across cell lines. (A) 𝑙𝑜𝑔2 genomic distance distribution from called and predicted 

boundaries to the nearest CTCF sites. The p-values are from the Wilcoxon Rank Sum test. (B-

E) Venn diagrams illustrating the levels of conservation (overlap) between domain boundaries 

for GM12878 (red) and K562 (blue) cell lines identified by Arrowhead (B), Peakachu (C), and 

preciseTAD-predicted boundaries using (D) Arrowhead- and (E) Peakachu-trained models. 

Boundaries involving Arrowhead/Peakachu were flanked by 5 kb/10 kb, respectively. 

3.3.4 Boundaries predicted by preciseTAD models trained on TAD and loop boundaries are highly 

overlapping 

The majority of boundaries predicted by the Arrowhead-trained preciseTAD model represented 

a subset of the larger group of boundaries predicted by the Peakachu-trained model. We found 

that 88.8% and 95.8% of our predicted TAD boundaries were overlapped by predicted loop 

boundaries for GM12878 and K562, respectively (Figure 13). This is expected as loop 

boundaries detected by Peakachu are more abundant, while comparatively wide TAD 
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boundaries detected by Arrowhead likely represent the higher level of the 3D chromatin 

organization. The high overlap between boundaries predicted by Arrowhead- and Peakachu-

trained models suggests that TAD and loop boundaries may be driven by similar molecular 

mechanisms. 

 

Figure 12. The agreement between preciseTAD-predicted boundaries using Arrowhead- 

and Peakachu-trained models. Venn diagrams of boundary overlap using (A) GM12878 and 

(B) K562 data. Boundaries involving Arrowhead/Peakachu were flanked by 5 kb/10 kb, 

respectively. 

3.4 Discussion 

We present preciseTAD, a data-driven approach toward domain boundary prediction. 

preciseTAD leverages a random forest (RF) classification model built on low-resolution domain 

boundaries obtained from domain calling tools, and high-resolution genomic annotations as the 

predictor space. preciseTAD predicts the probability of each base being a boundary, and 

identifies the precise location of boundary regions and the most likely boundary points among 
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them. preciseTAD was benchmarked against two boundary calling tools, Arrowhead [34], an 

established TAD-caller, and Peakachu [24] a recently published algorithm for predicting 

chromatin loops. preciseTAD is primarily implemented as an R package on Bioconductor 

(https://bioconductor.org/packages/preciseTAD/). 

Guided by both low-resolution Hi-C data and high-resolution genome annotation data, 

preciseTAD predicts base-level resolution boundaries, alleviating resolution limitations of Hi-C 

data. However, a natural question is how resolution (width) of boundary regions identified by 

preciseTAD (PTBRs) compares with that of Hi-C data. Our preliminary observations indicate 

that, under most optimal settings, the width of PTBRs parallels the resolution of Hi-C data 

(Table 3; Additional file 11: Table S5). Furthermore, each PTBR is formed by several sub-

regions with the probability of being a boundary defined by the threshold 𝑡 (𝑡 = 1 in the current 

study). Yet, the preciseTAD boundary points (PTBPs, medoids identified within each PTBR) had 

the highest density of CTCF and other transcription factor binding signals (Figure 5). Our results 

are in line with the emergent view that domain boundaries are flexible [69,70], and their well-

defined location arises as a consequence of the population average in bulk Hi-C data [27,71]. 

We show that, unlike Arrowhead, preciseTAD does not inflate the number of predicted 

boundaries, providing only the most biologically meaningful boundaries that demarcate regions 

of high inter-chromosomal interactions. preciseTAD boundaries predicted using models trained 

on either TAD or loop boundaries (Arrowhead and Peakachu data) were enriched for known 

architectural transcription factors including CTCF, RAD21, SMC3, and ZNF143, supporting 

recent observations that TADs and loops may be generated by similar mechanisms [25]. 

Additionally, preciseTAD is invariant to resolution, resulting in accurate boundary prediction 

even if implemented on low resolution ground truth boundaries. Furthermore, preciseTAD 

boundaries were more conserved between GM12878 and K562 cell lines, a known feature 

https://bioconductor.org/packages/preciseTAD/
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among the 3D architecture of the human genome, further highlighting their biological 

significance. 

preciseTAD offers flexibility in controlling both the number of predicted boundaries and the 

distance between them. The two primary parameters are the probability threshold 𝑡 and 𝜖 

(referred to as eps; parameter of DBSCAN). The combination of these two quantities changes 

the resulting number of predicted boundaries from preciseTAD. Lower values of 𝑡 and 𝜖 will 

result in more clusters of bases, and therefore, more boundaries. As a heuristic, we evaluated 

the pairwise combination of 3 different thresholds (𝑡 = (0.975,0.99,1.0)) and 6 different 𝜖 values 

(𝜖 = (1000,5000,10000,15000,20000,25000))). We found that the normalized overlaps - 

calculated as the total number of ChIP-seq peaks that overlapped within a given flanked 

boundary, divided by the number of boundaries - between top TFBS sites and flanked 

preciseTAD boundaries converged for combinations of 𝑡 = 1.0 and 𝜖 = 10000 (Additional File 9: 

Figure S5). 

In summary, we demonstrate that approaching domain calling from a computational and 

predictive perspective can alleviate resolution restrictions from conventional TAD/loop callers 

and improve boundary precision. Our method, preciseTAD, leverages a random forest 

classification model built on high-resolution genome annotation data, in addition to density-

based clustering (DBSCAN) and partitioning around medoids (PAM) to predict biologically 

meaningful TAD and loop boundaries. preciseTAD is available as an open source R package on 

Bioconductor. We hope that preciseTAD will serve as an efficient and easy-to-use tool to further 

explore the genome’s 3D organization. 
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4. Chapter 4: Aim 3 - Develop a technique for predicting boundaries on cell lines that do 

not have publicly available Hi-C data 

4.1 Introduction 

The 3-dimensional (3D) chromatin architecture of the human genome plays a critical role in 

cellular homeostasis and gene regulation [9,17,33]. High-throughput sequencing of long-range 

interactions (Hi-C) in multiple cell lines has revealed that the CCCTC-binding factor (CTCF) and 

other protein members of cohesin (RAD21 and SMC3) are enriched at boundaries of chromatin 

loops and topologically associating domains (TADs), suggesting a regulatory role [72,73]. 

Mechanistically, many CTCF-mediated chromatin loops define insulated neighborhoods that 

constrain promoter-enhancer interactions within the same TAD [10,74]. Likewise, disruption of 

individual CTCF-binding sites deregulates the expression of surrounding genes [12]. 

The CTCF- and cohesin-mediated interaction network has been considered to be largely 

invariant across cell lines [75]. CTCF- and cohesin-binding sites can be mapped at high 

resolution using chromatin immunoprecipitation followed by high-throughput DNA sequencing 

(ChIP-seq). The resolution of ChIP-seq experiments is typically on the order of tens to hundreds 

of bases [32], well below the resolution of Hi-C data (tens of kilobases) [33]. Despite technical 

advances, chromosome conformation capture sequencing remains difficult and costly, and few 

cell lines have been analyzed at high resolutions. However, members of the International 

Human Epigenome Consortium (IHEC) including ENCODE, NIH Roadmap Epigenomics, 

FANTOM5, and BLUEPRINT have been actively cataloging cell line-specific genome annotation 

datasets. Therefore, computational predictions that take advantage of the routinely available 

ChIP-seq data is a desirable approach to guide the systematic analysis of the 3D structure of 

the human genome. 
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Here, we develop a novel technique for leveraging a machine learning model built on cell-line-

specific functional genomic annotations to predict the precise locations of 3D domain 

boundaries across cell lines. Our method relies only on 4 transcription factor binding sites 

including CTCF, RAD21, SMC3, and ZNF143. We found that prediction performance between 

same-cell-line models and cross-cell-line models was not significantly different. Furthermore, 

predicted boundaries made across cell lines exhibited strong levels of conservation when 

compared to boundaries predicted on same cell line genomic data. Our approach highlights the 

opportunity for alleviating the costly and imprecise reliance on high-resolution Hi-C sequencing. 

Moreover, we envision the broader availability of cell line-specific genomic annotations will 

enable a more systematic analysis of domain boundaries using our method. 

4.2 Methods 

4.2.1 Framework for training and testing boundary region models across cell lines 

As a baseline, we first built and evaluated domain boundary region random forest (RF) 

classification models using called boundaries from Arrowhead and Peakachu at 5 kb resolution 

for one cell line. Random under-sampling was implemented to balance the data. Distance-type 

features were considered for only the top 4 transcription factors including CTCF, RAD21, SMC3, 

and ZNF143 from the same cell line (i.e., the optimal combination of data level characteristics 

from Chapter 2).  The same holdout chromosome strategy was used for training and testing 

(Figure 4). That is, models trained on cell line-specific data from 𝑛 − 1 chromosomes were 

evaluated on the 𝑖𝑡ℎ holdout chromosome data from the same cell line. 

For cross-cell-line training and testing, we adopted a similar strategy as above, except the 

training set was constructed from another cell line. This included both the ground truth domain 

boundaries (Y) and the distance-type feature space for the 𝑛 − 1 chromosomes. The same 

testing set was used as above. That is, models trained using K562 cell line-specific data were 
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evaluated on unseen chromosome data from the GM12878 cell line. This process was repeated 

for each holdout chromosome. 

4.2.2 Evaluating model performance across cell lines 

To evaluate performance, we constructed receiver operating characteristic (ROC) curves 

composed of the average sensitivities and specificities at different cutoffs, across each holdout 

chromosome. For each holdout chromosome, sensitivities and specificities were obtained at 502 

equally spaced cutoff values ranging from 0 to 1 by increments of 0.002 based on model based 

predicted probabilities for TAD boundary regions, using the roc function in the pROC R package 

(version 1.16.2), creating a 500 × 2 × 21 (omitting CHR9) array. The average (and standard 

deviation) of sensitivies and specificities was aggregated across the holdout chromosome. We 

reported the corresponding average area under the curve (AUC). These were compared to 

performances obtained using same cell line training and testing. We compared 2 separate 

cases for both Arrowhead and Peakachu ground truth: (1) models trained on GM12878 and 

tested on GM12878 vs. models trained on K562 and tested on GM12878, (2) models trained on 

K562 and tested on K562 vs. models trained on GM12878 and tested on K562. 

4.2.3 Predicting base-level boundaries across cell lines 

We extended the strategies outlined above by applying our boundary prediction tool, 

preciseTAD, developed in Chapter 3 (Figure 7). In the cross-cell-line case, the data that the RF 

model (𝑀) was built on is from a different cell line than the base-level resolution predictor space 

(𝐴𝑛×𝑝). As before, this strategy was compared to applying preciseTAD on models and base 

level annotation data from the same cell line. The default parameters for preciseTAD were set to 

𝑡 = 1 and 𝜖 = 10000. 
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4.2.4 Comparing boundary location for same cell line prediction vs. cross cell line prediction 

We assessed the positional significance of boundaries predicted using the same-cell-line 

strategy vs. the cross-cell-line strategy using signal profiles and enriched heatmaps from 

deepTools (version 2.0). Additionally, we evaluated the overlap of flanked boundary coordinates 

predicted by each strategy using Venn diagrams and Jaccard Indices. Boundaries were first 

flanked by 5 kb and 10 kb on either side for predicted TADs and chromatin loops, respectively. 

4.3 Results 

4.3.1 Training in one cell line accurately predicts boundary regions in other cell lines 

Having demonstrated the optimal performance in our machine learning framework for boundary 

region prediction developed in Chapter 2, we next attempted to predict boundary regions in one 

cell line using the model pre-trained on data from another cell line (See Methods). We found 

that training and testing using Arrowhead ground truth TAD boundaries and genomic annotation 

data from the GM12878 cell line resulted in an average AUC=0.792 (Figure 14A). Interestingly, 

when training on the K562 cell line and testing on GM12878, the average AUC increased 

slightly to 0.795. Likewise, the average performance of models trained using Peakachu 

boundaries and genomic annotation data from the GM12878 cell line was comparable to models 

trained on K562-specific Peakachu boundaries and genomic annotations (Avg. AUC=0.881 

vs. 0.874, respectively). These results were consistent when comparing training/testing 

strategies on K562 with training on GM12878 and testing on K562 data (Figure 14B). The 

average ROC curves were found to be within 1 standard deviation of each other, suggesting 

that a model trained on data from one cell line performs well when using the data from another 

cell line, allowing for the opportunity to predict boundaries for cell lines that do not currently 

have Hi-C data available. 
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Figure 14. Training and testing across cell lines performs similarly to within the same cell 

line. Receiver operating characteristic (ROC) curves and the corresponding average area under 

the curves (AUCs) when (A) training and testing on GM12878 data (blue, Arrowhead ground 

truth; red, Peakachu ground truth) versus training on K562 and testing on GM12878 data (black, 

dashed), and (B) training and testing on K562 data (blue, Arrowhead ground truth; red, 

Peakachu ground truth) versus training on GM12878 and testing on K562 data (black, dashed). 

The curves represent the average sensitivities and specificities across each holdout 

chromosome. The shaded areas around each curve represent 1 standard deviation from the 

average. 

4.3.2 Cell line-specific annotation data precisely predict domain boundaries across cell lines 

Guided by the high predictive performance when training and testing on different cell lines, we 

opted to evaluate whether models trained using Arrowhead/Peakachu ground truth data in one 

cell line could be leveraged to predict boundaries using annotation data from another cell line 

using preciseTAD. We evaluated two scenarios: 1) training on GM12878 and predicting 

boundaries on GM12878 (GM on GM) vs. training on K562 and predicting on GM12878 (K on 

GM), and 2) training on K562 and predicting boundaries on K562 (K on K) vs. training on 

GM12878 and predicting boundaries on K562 (GM on K). Using Arrowhead-trained models, 

76% (J=0.701) and 81% (J=0.751) of predicted boundaries overlapped in both cross-cell-line 

prediction scenarios (Figure 15A & B). Likewise, when using Peakachu-trained models, we 
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observed 85% (J=0.705) and 88% (J=0.759) overlap (Figure 15C & D). Furthermore, 

boundaries predicted on unseen annotation data exhibited a similar level of enrichment for 

CTCF, RAD21, SMC3, and ZNF143, as did those trained and predicted on the same cell line 

(Figure 16). These results indicate that preciseTAD pre-trained models can be successfully 

used to predict domain boundaries for cell lines lacking Hi-C data but for which genome 

annotation data is available. 

 

Figure 15. Cross-cell-line predicted boundaries strongly overlapped with same-cell-line 

predicted boundaries. Venn diagrams comparing flanked predicted boundaries using 

Arrowhead (A, B) and Peakachu (C, D) trained models. (A, C) Models trained on GM12878 and 

predicted on GM12878 (red, GM on GM) vs. models trained on K562 and predicted on 

GM12878 (blue, K on GM), (B, D) models trained on K562 and predicted on K562 (red, K on K) 

vs. models trained on GM12878 and predicted on K562 (blue, GM on K). Boundaries involving 

Arrowhead/Peakachu were flanked by 5 kb/10 kb, respectively. 
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Figure 16. Cross-cell-line predicted boundaries were as enriched for known drivers of 3D 

chromatin as same-cell-line predicted boundaries. Profile plots comparing enrichment levels 

of CTCF, RAD21, SMC3, and ZNF143 sites around flanked predicted boundaries using 

Arrowhead (A, B) and Peakachu (C, D) trained models. (A, C) Models trained on GM12878 and 

predicted on GM12878 (red, GM on GM) vs. models trained on K562 and predicted on 

GM12878 (blue, K on GM), (B, D) models trained on K562 and predicted on K562 (red, K on K) 

vs. models trained on GM12878 and predicted on K562 (blue, GM on K). Boundaries involving 

Arrowhead/Peakachu were flanked by 5 kb/10 kb, respectively. 
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4.4 Discussion 

Here we show that cell-line-specific functional genomic annotation data (ChIP-seq) can be used 

to precisely predict domain boundaries across cell lines. Genomic annotation data, which is 

sequenced at much higher resolution compared to Hi-C, has been made publicly available for a 

variety of cell lines. Studies have shown the functional importance of key architectural proteins 

in organizing the 3D structure of the human genome. These include CTCF and cohesin 

complex, components of the loop extrusion model, whereby the genome is extruded through 

cohesin rings forming chromatin loops and higher-order structures such as TADs [9,17,33]. 

Moreover, CTCF- and cohesin-mediated interaction are largely invariant across cell lines 

leading to opportunities for computational predictions to aid in the annotation of the differential 

3D architecture of multiple cell lines. While previous studies have utilized machine learning to 

draw conclusions about the most influential genomic elements associated with domain 

formation [40,41,44], none have extended this to be able to draw conclusions about the cell-line 

specificity of these binding sites and how they may be used to make predictions across cell 

lines. 

Therefore, we developed a novel technique for leveraging high-resolution cell-line-specific 

CTCF, RAD21, SMC3, and ZNF143 transcription factor binding sites to predict domain 

boundaries across cell-lines in a supervised machine learning framework. Using the random 

forest classifier, we built boundary region prediction models using TAD and chromatin loop 

ground truth boundaries from Arrowhead and Peakachu, and ChIP-seq data from one cell line, 

to make predictions on another cell line. Interestingly, we found that cross-cell-line predictive 

models exhibited average ROC curves within 1 standard deviation of models built using the 

same-cell-line strategy. We then extended our framework from model performance to precision 

by comparing the location of preciseTAD-predicted boundaries between cross-cell-line versus 

same-cell-line strategies. We found that there were exceedingly high amounts of overlap 
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between flanked boundaries predicted by either strategy (>75%). Likewise, cross-cell-line 

predicted boundaries were found to be equally enriched for known molecular drivers of 3D 

chromatin as compared to their same-cell-line counterparts. 

Detecting 3D domain structures from Hi-C contact matrices continues to be a costly and 

challenging problem with many cell lines not currently having Hi-C data publicly available. The 

reasons for this are due to the interplay between data resolution and the proposed TAD-calling 

algorithm [19–21]. Instead, we propose a method for predicting domain boundaries on one cell 

line using functional genomic annotations of another cell line. Thus, our method creates new 

opportunities for predicting domain boundaries on cell lines without using high-resolution Hi-C 

data for which there is none available. We have deposited pre-trained models in an 

ExperimentHub R package associated with Amazon Web Services (AWS), preciseTADhub, 

available on Bioconductor (https://bioconductor.org/packages/preciseTADhub/). Our hope is that 

as cell line-specific genomic annotations become more available, this will enable a more 

systematic analysis of domain boundaries using our method. 

  

https://bioconductor.org/packages/preciseTADhub/
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5. Chapter 5: Discussion 

5.1 Conclusions and limitations 

In this dissertation, we have outlined novel methods for transforming TAD- and chromatin loop-

calling into a supervised machine learning framework. Our proposed methods have allowed us 

to bridge the gap between high-resolution 1D ChIP-seq annotations and much lower resolution 

3D Hi-C sequencing data. We have developed and implemented the software associated with 

our methods as a publicly available R package on Bioconductor at 

https://bioconductor.org/packages/preciseTAD. Pre-trained models free to download are publicly 

available as an ExperimentHub package, preciseTADhub, on Bioconductor at 

(https://bioconductor.org/packages/preciseTADhub). Researchers will now have free and easy-

to-use tools for exploring the 3D architecture of the human genome. 

In Chapter 2, we introduce a novel machine learning framework for building domain boundary 

region prediction models. We use the random forest classification algorithm to leverage high-

resolution ChIP-seq data to find the optimal set of data-level characteristics for boundary 

prediction. We introduced new techniques for model building and feature engineering including 

shifted binning and distance-type predictors. By performing a comprehensive analysis involving 

two cell lines and both TAD- and loop-called boundaries, we were able to conclude the 

mechanisms that drive loop formation are similar between TADs and chromatin loops and 

invariant to cell-line-specificity. 

In Chapter 3, we introduce our own novel domain boundary prediction tool, preciseTAD. We 

demonstrate that preciseTAD is invariant toward boundary inflation. Likewise, we show that 

preciseTAD-predicted boundaries are more enriched for known molecular drivers of 3D 

chromatin, including CTCF, RAD21, SMC3, and ZNF143. Moreover, our predicted boundaries 

are more conserved across cell lines, highlighting their biological significance. preciseTAD has 

https://bioconductor.org/packages/preciseTAD
https://bioconductor.org/packages/preciseTADhub
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tunable parameters 𝑡 and 𝜖 that allow users the flexibility in the number of boundaries that are 

predicted, as well as the distances between them. We hope that preciseTAD will serve as an 

efficient and easy-to-use tool to further explore the genome’s 3D organization. 

Lastly, in Chapter 4, we present a technique for circumventing the costly and challenging task of 

performing high-resolution Hi-C sequencing on the vast number of different cell lines. We 

demonstrate that, using strategies outlined in Chapters 2 and 3, cell-line-specific functional 

genomic annotation data (ChIP-seq) can be used to precisely predict domain boundaries across 

cell lines. Our method capitalizes on the invariance of CTCF- and cohesin-mediated interactions 

across cell lines. We show that cross-cell-line predictive models exhibited average ROC curves 

within 1 standard deviation of models built using the same-cell-line strategy. Consequently, 

when we extended this, flanked preciseTAD-predicted boundaries between cross-cell-line 

versus same-cell-line strategies exhibited over 75% of overlap, and were equally enriched for 

architectural proteins. Our hope is that as the availability of cell line-specific genomic 

annotations increases, this will enable a more systematic analysis of domain boundaries on all 

cell lines using our method. 

There are limitations of our proposed methods. First, our methods are dependent on the 

“ground truth” boundaries provided by a domain caller. Given the wide variety of domain callers 

and their variable performance [19,20], defining “ground truth” boundaries is challenging. 

Ideally, we would benchmark preciseTAD against simulated boundaries. While methods for 

simulating Hi-C data sets with boundary annotations exist [20,76], methods for simulating the 

associated genomic annotations (the main component guiding preciseTAD predictions) are 

lacking. Moreover, simulated Hi-C contact matrices are not performed using any specific 

underlying chromosomal structure. Thus, building models using both components would only 

capture noise. However, we feel that the concept of shifted-binning is suitable for capturing true 

signal of domain boundaries while allowing for the underlying variability among domain callers. 
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Ultra-deep Hi-C sequencing [33] and newer technologies for precise mapping of chromatin 

interactions (e.g., Micro-C [77]), coupled with more precise technologies for genomic annotation 

profiling (e.g., CUT&RUN for precise mapping of transcription factor binding sites) will help to 

refine the location and the genomic signatures of the “ground truth” boundaries. In the current 

work, we feel that the total number of domain boundaries is sufficient to guide learning of the 

association between genomic annotations and boundaries for precise boundary predictions. 

Indeed, models trained on the larger number of Peakachu-predicted boundaries performed 

better than those trained on Arrowhead boundaries. Although we provide models trained on 

both boundary types, we recommend Peakachu-trained models for the base-level prediction of 

domain boundaries. 

A second limitation is that our methods do not distinguish boundary types. The hierarchical 

nature of TAD boundaries [3,64,78] is not considered by preciseTAD due to the lack of gold 

standard of TAD hierarchy. preciseTAD also does not consider the directionality of CTCF 

binding [79] as it predicts individual boundaries in contrast to pairs of convergent CTCF motifs 

marking individual domains. Recent research distinguishes CTCF-associated boundaries, 

CTCF-negative YY1-enriched boundaries, CTCF- and YY1- depleted promoter boundaries, and 

the fourth class of weak boundaries largely depleted of all three features [77]. Furthermore, 

actively transcribed regions can serve as TAD boundaries themselves, independently of CTCF 

binding [79]. This may lead to some TAD boundaries being undetected by preciseTAD despite 

being detected by domain callers. Our future work will involve incorporating the directionality of 

CTCF binding in predictive modeling, including additional predictor types, and defining separate 

models trained on different boundary types. 
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6. Appendix 

Additional File 1: Arrowhead Script. An example script for applying Arrowhead to in situ Hi-C 

data (HIC001-HIC018) to obtain chromosome-specific TAD boundaries on the GM12878 cell 

line at 5 kb, 10 kb, 25 kb, 50 kb, 100 kb resolutions. Not included but, available upon request. 

Additional File 2: Table S1. A complete list of genomic annotations used to build the predictor 

space for all downstream models. The GRCh37/hg19 human genome assembly was used. 

“Genomic Class” - broad category of genomic features, “Element” - names of genomic features, 

“Cell line-Specific Source” - download URL specific to the cell line (not all annotations were 

provided by the same institutions). Not included due to file size; available upon request. 
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Additional File 3: Figure S1. The 𝑙𝑜𝑔2 transformation of genomic distances normalizes 

their distributions. Distances are measured as the number of bases from the center of a 

genomic bin to the nearest genomic annotation center. Density curves of distances before (red) 

and after (blue) performing a 𝑙𝑜𝑔2 transformation across 5 kb, 10 kb, 25 kb, 50 kb, and 100 kb 

data resolutions for both the (A) GM12878 and (B) K562 cell lines. Each density curve 

represents an individual genomic annotation (77 total). 
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Additional File 4: Table S2. Domain boundary data and class imbalance summaries across 

resolutions for Arrowhead and Peakachu on K562. 

Tool 

Resolution/Bin 

size 

Total 

number of 

domains 

Total number of 

unique domain 

boundaries 

Total 

number of 

genomic 

bins 

Class 

Imbalance 

Arrowhead 5 kb 4751 9316 535363 0.02 

Arrowhead 10 kb 5828 10945 267682 0.04 

Arrowhead 25 kb 3935 7015 107073 0.07 

Arrowhead 50 kb 2115 3808 53537 0.07 

Arrowhead 100 kb 945 1759 26768 0.07 

Peakachu 10 kb 15651 22073 267682 0.14 
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Additional File 5: Figure S2. Determining optimal data level characteristics for building 

TAD boundary region prediction models on K562. (A) Averaged balanced accuracies are 

compared across resolution, within each predictor-type: Signal, OC, OP, and Distance, and 

across resampling techniques: no resampling (None; red), random over-sampling (ROS; green), 

random under-sampling (RUS; blue), and synthetic minority over-sampling (SMOTE; purple) 

when using Arrowhead ground truth boundaries for K562. Averaged balanced accuracies are 

compared for Peakachu-trained models built on (B) GM12878 and (C) K562 within each 

predictor-type: Signal, OC, OP, and Distance, and across resampling technique: no resampling 

(None; red), random over-sampling (ROS; green), random under-sampling (RUS; blue), and 

synthetic minority over-sampling (SMOTE; purple). Error bars indicate 1 standard deviation from 

the mean performance across each holdout chromosome used for testing. 
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Additional File 6: Figure S3. SMC3, RAD21, CTCF, and ZNF143 transcription factors 

accurately predict TAD and loop boundaries in K562. (A) Barplots comparing performances 

of TAD (Arrowhead) and loop (Peakachu) boundary prediction models using histone 

modifications (HM), chromatin states (BroadHMM), transcription factor binding sites (TFBS), in 

addition to a model containing all three classes (ALL). (B) Recursive feature elimination (RFE) 

analysis used to select the optimal number of predictors. Error bars represent 1 standard 

deviation from the mean cross-validated accuracy across each holdout chromosome. (C) 

Clustered heatmap of the predictive importance for the union of the top 8 most predictive 

chromosome-specific TFBS. The columns represent the holdout chromosome excluded from 

the training data. Rows are sorted in decreasing order according to the columnwise average 

importance. 
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Additional File 7: Figure S4. Transcription factor binding sites are highly correlated. 

Heatmaps of Jaccard indices illustrate how colocalized cell-line specific transcription factors for 

(A) GM12878 and (B) K562 are on the linear genome resulting in a correlated feature space. 
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Additional File 8: Table S4. Additional performance metrics when implementing a random 

forest using Arrowhead ground truth TAD boundaries at 5 kb for GM12878. Performances are 

averaged across each holdout chromosome that was reserved for testing. Performances were 

similar for K562. 

Resampling 

Technique 

Predictor 

Type Accuracy AUC Precision F1Score AUPRC 

None Signal 0.970 0.683 NA NA 0.101 

None OC 0.970 0.649 NA NA 0.100 

None OP 0.970 0.700 NA NA 0.106 

None Distance 0.970 0.822 NA NA 0.100 

ROS Signal 0.937 0.705 0.046 0.051 0.056 

ROS OC 0.875 0.692 0.040 0.061 0.050 

ROS OP 0.927 0.703 0.042 0.051 0.055 

ROS Distance 0.968 0.815 0.090 0.016 0.091 

RUS Signal 0.682 0.740 0.060 0.110 0.080 

RUS OC 0.728 0.752 0.068 0.122 0.095 

RUS OP 0.711 0.753 0.067 0.121 0.094 

RUS Distance 0.730 0.837 0.082 0.148 0.115 

SMOTE Signal 0.727 0.727 0.060 0.109 0.065 

SMOTE OC 0.799 0.742 0.077 0.135 0.071 

SMOTE OP 0.753 0.735 0.066 0.118 0.070 

SMOTE Distance 0.771 0.830 0.087 0.154 0.102 
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Additional File 9: Figure S5. Normalized Enrichment levels suggest t=1.0 and 𝜖=10000 as 

the most optimal parameters for biologically relevant preciseTAD-predicted boundaries. 

Linecharts illustrating the normalized enrichment (NE) between CTCF, RAD21, SMC3, ZNF143 

and resolution-flanked preciseTAD-predicted boundaries for different combinations of thresholds 

(t) and epsilon parameter values (eps). NE was calculated as the total number of ChIP-seq 

peaks that overlapped within a given flanked boundary, divided by the number of boundaries 

that were predicted, and averaged over the number of annotations included in the model. Data 

from GM12878 (A) and K562 (B) cell lines, chromosome 22, at 5 kb resolution were used. Error 

bars indicate 1 standard deviation from the mean. 
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Additional file 10: Table S4. hg19/GRCh37 genomic coordinates of preciseTAD-predicted 

boundary regions (PTBR) and points (PTBP) for GM12878 and K562 cell lines, using models 

trained on Arrowhead TAD and Peakachu chromatin loop boundaries as ground truth. For 

PTBRs, the start and end coordinates define the clusters of spatially proximal bases with the 

probability of being a boundary equal to 1. For PTBPs, the start and end (start+1) coordinates 

define the most likely boundary point within each PTBR. Not included due to file size; available 

upon request. 
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Additional file 11: Table S5. Summary measures evaluating the quality of preciseTAD-

predicted TAD and chromatin loop boundaries for K562. Summaries are reported as means 

(standard deviations). 

Summary Predicted TAD boundaries Predicted loop boundaries 

PTBRWidth 14452.1 (9230.3) 17964.6 (9989.5) 

PTBRCoverage 0.1 (0.2) 0.1 (0.1) 

DistanceBetweenPTBR 289559.6 (641839.6) 231956.8 (543192.5) 

NumSubRegions 44.3 (30.4) 216.8 (167.5) 

SubRegionWidth 11.3 (30.9) 5.5 (14.9) 

DistBetweenSubRegions 326.1 (800.8) 79.3 (287.9) 
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Additional file 12: Figure S6. preciseTAD-predicted boundaries are enriched for known 

molecular drivers of 3D chromatin. Signal profile plots comparing the binding strength of top 

TFBS around flanked (A) Arrowhead called TAD boundaries (blue) and preciseTAD-predicted 

TAD boundaries (green) on K562, (B) Peakachu chromatin loop boundaries (red) and 

preciseTAD predicted loop boundaries (green) on K562, (C) Arrowhead called TAD boundaries 

(blue), Peakachu chromatin loop boundaries (red), and SpectralTAD called TAD boundaries 

(green) on GM12878 and (D) on K562. 

 



 87 

Additional file 13: Figure S7. preciseTAD-predicted boundaries are more enriched for 

known molecular drivers of 3D chromatin, as compared with Arrowhead boundaries. 

Enrichment heatmaps comparing the signal distribution of CTCF, RAD21, SMC3, and ZNF143 

around Arrowhead-called TAD boundaries vs. preciseTAD-predicted TAD boundaries for (A) 

GM12878 and (B) K562 cell lines. 
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Additional file 14: Figure S8. preciseTAD-predicted boundaries are more enriched for 

known molecular drivers of 3D chromatin, as compared with Peakachu boundaries. 

Enrichment heatmaps comparing the signal distribution of CTCF, RAD21, SMC3, and ZNF143 

around Peakachu-predicted chromatin loop boundaries vs. preciseTAD-predicted TAD 

boundaries for (A) GM12878 and (B) K562 cell lines. 
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Additional file 15: Figure S9. preciseTAD-predicted boundaries are spatially closer to 

known molecular drivers of 3D chromatin. Boxplots comparing the 𝑙𝑜𝑔2 genomic distance 

distributions from predicted and called boundaries to the nearest (A) GM12878-specific and (B) 

K562-specific CTCF, RAD21, SMC3, and ZNF143 transcription factor binding sites. p-values 

are derived from the Wilcoxon Rank Sum test. 
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Additional file 16: Figure S10. Random forest models more accurately predict TAD 

boundary regions compared to other machine learning algorithms Barplots comparing the 

average balanced accuracy when predicting TAD boundary regions on GM12878 at 25 kb using 

Random Forests, extreme gradient boosting (XGBOOST), gradient boosting machines (GBM), 

support vector machines (SVM), 𝑙1 & 𝑙2 regularized logistic regression (Elastic-Net), and 

multiple logistic regression (MLR). Error bars represent 1 standard deviation from the mean 

balanced accuracy across each holdout chromosome. The models are sorted in decreasing 

mean performance. 
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