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Barrier islands are critical landforms that protect mainland coasts from major 

disturbances. As dynamic systems, barrier islands have ecological mechanisms that aid in 

sustainable recovery after coastal disturbances. However, as the climate continues to change it is 

difficult to predict how barrier island function will respond to global change drivers that 

accompany predicted climate change. Disturbance frequency and nutrient enrichment in coastal 

regions are drivers of plant community change that are increasing with climate change. Plant 

communities on barrier islands are not only tightly connected to barrier island function but are 

also some of the first communities affected by environmental change, making them a critical 

piece in understanding how current drivers of global change will impact the future of barrier 

islands. The objective of my dissertation was to observe and manipulate coastal plant 

communities at local and large-scales to inform community-level species and trait-based 



 xv 

alterations caused by differences in response to disturbance and nutrient enrichment. Results 

presented here indicate that barrier island trait-based communities can vary over local spatial 

scales depending on overarching topography and historic disturbance response. However, there 

is scale dependency in relationships between dominant stability domains, barrier island 

elevation, and dune plant community structure. I show that at large spatial scales, climatic 

differences among islands contributes more to dune community richness and composition than 

elevation differences, but at local scales, impacts of elevation, island stability, and local 

ecological processes on dune plant communities comes into focus. I also show that nutrient 

enrichment expected to accompany climate change significantly alters both trait-based and 

species community composition. I show that species composition, trait-based composition, and 

lifeform abundance all produce conflicting results in response to nutrient additions, but these 

complexities can be clarified with detailed trait and species analyses when used cooperatively. 

These results highlight the importance of considering multiple aspects of plant communities in 

coastal systems if we are to use them to decipher how environmental change will impact large 

scale ecological processes. 
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Introduction 
 
 Barrier islands have emerged as systems highly vulnerable to disturbances associated 

with future climate change (Mcfalls et al. 2010, Feagin et al. 2015, Stallins and Corenblit 2018, 

Zinnert et al. 2019). We are still learning about the many ways disturbances produce feedbacks 

with barrier island topography, plant community composition, and ecosystem functioning. The 

dynamic nature of barrier island systems allows for rapid response over short temporal scales 

depending on plant community composition and function as well as the intensity of press and 

pulse disturbance events experienced by the system (Stallins 2005, Zinnert et al. 2017). Press 

disturbances, like nutrient enrichment and sea-level rise, are those that occur over longer time 

scales and result in gradual change of ecological systems (Bender et al. 1984). Pulse disturbance 

events, like hurricanes or nor’easters, occur at high intensity and can cause dramatic changes to 

ecological systems over short time scales (Bender et al. 1984).  

Physical processes responsible for shaping barrier islands can influence plant distribution 

by altering environmental filters and has dominated the literature (Oosting and Billings 1942, 

Ehrenfeld 1990, Wolner et al. 2013, Durán Vinent and Moore 2014, Fenster et al. 2016, Hsu and 

Stallins 2020, Stallins et al. 2020). However, recent insights highlight that understanding 

interactions among plant communities is critical for predicting barrier island response after 

different disturbance types and can aid in demystifying cross-scale complexities (Young et al. 

2011, Brantley et al. 2014, Zinnert et al. 2017, 2019). Further understanding of the interplay 

between biotic interactions and abiotic conditions is needed to better understand the multiple 

ways community patterns are affected by environmental factors (Kraft et al. 2015), especially in 

coastal systems where nature-based solutions are promoted to mitigate climate change.  
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Considering the important roles barrier islands play in protecting mainland coastal 

systems from disturbance (Feagin et al. 2015), it is critical that we implement observation and 

manipulation studies of species and trait-based plant communities to clarify mechanisms of 

complex biotic/abiotic interactions that may influence barrier island disturbance response. For 

example, nutrient deposition is an abiotic condition that significantly contributes to biotic 

interactions as well as community structure and function and is increasing with climate change 

and anthropogenic influence, especially in coastal systems (Vitousek et al. 1997, Fay et al. 2015, 

Flores-Moreno et al. 2016, Koerner et al. 2016, Sinha et al. 2017, Firn et al. 2019). Seitzinger et 

al. (2002) suggest that rates of nutrient inputs are expected to significantly increase in coastal 

systems by 2050, making it critical to better understand the effects these additions have on plant 

trait and species community composition and ecosystem functioning on barrier islands.  

It is also important that we examine the individualism of barrier island systems and how 

they form plant communities differently across spatial scales (Stallins 2005, Zinnert et al. 2017, 

Hsu and Stallins 2020, Stallins et al. 2020). Previous research has highlighted how 

environmental factors influence species populations in different barrier island habitats (Oosting 

and Billings 1942, Silander and Antonovics 1982, Carboni et al. 2010, Young et al. 2011, Conti 

et al. 2017). However, knowledge gaps still remain when considering important community-level 

plant functional trait patterns that inform mechanisms of habitat maintenance and new 

community emergence given differences in disturbance responses of coastal systems (De Battisti 

2021). Such knowledge gaps are especially obvious across spatial scales, which is a crucial next 

step in the study of coastal ecology, as we begin to question interactions between barrier island 

stability and plant community formation in the face of climate change (Zinnert et al. 2017, Hsu 

and Stallins 2020). 
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My overall objective was to use observation and manipulation experiments to investigate 

how species and trait defined plant communities can inform plant community dissimilarity across 

scales and how disturbances associated with climate change affect these communities. My goals 

were carried out in four parts: 1) Synthesize large-scale dune plant community composition and 

structure to identify the influence of barrier island stability across spatial scales, 2) Determine 

differences in species and trait-based community compositions and ecosystem function existing 

at local scales among barrier islands with contrasting topography and disturbance responses, 3) 

Manipulate nutrient deposition to investigate impacts on ecosystem function, community 

structure, composition, and organization, 4) Quantify nutrient enrichment impacts on trait-based 

community composition and diversity.  
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Abstract 
 

Although previous research has identified dune plant communities as important for assessing 

coastal vulnerability to disturbance, most studies focused on community-level dynamics are 

often conducted at local-scales. Connections between barrier island stability domains and dune 

plant community structure are not well-defined at large spatial extents and a knowledge gap 

remains in identifying the scale dependency of barrier island disturbance response and elevation 

as drivers of dune plant community difference. Here, we used census and elevation data from 

five barrier islands along the mid-Atlantic and Gulf coasts (Hog Island, Metompkin Island, South 

Core, Sapelo Island, and St. George Island) that differ in dominant stability domains to 

synthesize determinants of plant community dissimilarity among sites. We found that barrier 

island stability domain classification was not consistently linked to elevation across sites, 

suggesting that disturbance-resisting and disturbance-reinforcing stability domains can be 

dominant at high or low elevations. Based on our vegetation analysis we found, at large spatial 

extents, species richness increased along a decreasing latitudinal gradient, rather than in line with 

a priori stability domains. However, at smaller spatial scales, the influence of dominant stability 

domains and elevation comes into focus, whereby disturbance-resisting islands are more species 

rich in the north and have different dune plant community composition in the south compared to 

disturbance-reinforcing islands. Based on our findings, we conclude that variability of dune plant 

community structure on barrier islands is dependent on both large-scale climatic patterns that 

change gradually over a latitudinal gradient and local-scale elevation and ecological processes 

that influence plant distributions.  
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Introduction 
 

Coastal ecosystems across the globe are impacted by the changing climate. Increasing 

rates of sea-level rise with expected increases in frequency and intensity of coastal storms 

threaten some of the most populated coastlines in the world (Scavia et al. 2002, Mann and 

Emanuel 2006, Sallenger et al. 2012, Houser 2018). Coastal sand dunes function as a critical 

geomorphologic formation in coastal systems by dissipating disturbance from wind and waves 

during high intensity storms (Cowles 1899, Leatherman 1979, Fucella and Dolan 1996, Wolner 

et al. 2013, Sigren et al. 2014, Feagin et al. 2015, Houser et al. 2015). Dune building dynamics, 

including initial construction and recovery from disturbance, are often highlighted as relying on 

feedbacks between physiological/functional-trait responses of a few key species and dominant 

abiotic factors (i.e., overwash frequency, sediment supply, and aeolian transport) that vary across 

spatio-temporal scales (Stallins 2003, de Vries et al. 2012, Duran and Moore 2013, Harris et al. 

2017, Brown et al. 2018, Hacker et al. 2019, Reijers et al. 2020, Charbonneau et al. 2021). 

However, dune plant communities as a whole have been noted to function as responsive parts of 

biogeomophic systems, rather than as collections of a few influential species (Stallins 2003, 

Stallins and Parker 2003, Acosta et al. 2007, 2009, Gornish and Miller 2010, Miller et al. 2010, 

Brown and Zinnert 2020). 

Plant community composition and diversity of coastal dunes have been identified as 

critical pieces in assessing coastal dune vulnerability to storm disturbance (García-Mora et al. 

2000). Furthermore, previous research has used plant community composition and diversity to 

disentangle how coastal habitats function as well as how they respond to, and recover from, 

disturbance events (Acosta et al. 2009, Gornish and Miller 2010, 2013, Young et al. 2011, 

Brantley et al. 2014, Miller 2015, Brown and Zinnert 2020). Plant community metrics have also 
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been tied to understanding complexities of various biogeomorphic feedbacks in coastal systems 

that result in differing geographic topography (Stallins 2003, 2006). Such previous work has 

informed more recent perspectives emphasizing the importance in linking interactions between 

plant communities and the physical environment to better understand mechanisms driving 

differences in topographic complexity and stability of coastal systems, specifically barrier islands 

(Zinnert et al. 2017, Stallins and Corenblit 2018).  

Nearly 39% of the global barrier island distribution exists along coastlines in North 

America (5784 km) (Stutz and Pilkey 2001). Within North America, over 60% of barrier islands 

are distributed along the Atlantic and Gulf coasts, making them the most heavily barrier island 

dominated coastlines in the world (Stutz and Pilkey 2001). Due to increased rates of sea-level 

rise and predicted increase in coastal storms, it is important that we better understand how these 

vulnerable systems respond to imminent disturbances (Scavia et al. 2002, Schuerch et al. 2018, 

Nienhuis and Lorenzo-Trueba 2019). Seminal works by Stallins (2005, 2006) aimed to unify 

ecological and geomorphic patterns to elicit mechanisms of resilience and resistance in barrier 

island disturbance response. These works applied a refined stability domain framework to 

concepts originally introduced by Godfrey and Godfrey (1976), linking certain species to 

specific disturbance response mechanisms (Stallins 2005).  

Stability domains on barrier islands are disturbance dependent and have been described 

as disturbance-reinforcing and disturbance-resisting (Stallins 2005, Zinnert et al. 2017, Stallins 

and Corenblit 2018). A disturbance-reinforcing stability domain is hypothesized as containing 

higher abundance of stabilizing species that do not build large dunes, but rather produce dune 

hummocks and/or stabilize sediment at low elevations that maintain low topography (Stallins 

2005, Monge and Stallins 2016, Zinnert et al. 2017). As a result, the probability of overwash 
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events increases and resistance to disturbance decreases (Zinnert et al. 2017). Conversely, a 

disturbance-resisting stability domain contains higher abundance of species promoting the 

development of dune-swale complexes, which produces topographic roughness and are less 

vulnerable to disturbance impacts, but can be more prone to erosional processes (Stallins 2005, 

Monge and Stallins 2016, Zinnert et al. 2017, 2019, Stallins et al. 2020).  

Barrier islands serve as model systems for introducing similar stability-domain 

hypotheses and as sites for quantifying how differences in elevation and topographic complexity 

impact island habitats, dune morphology, and disturbance response (Stallins 2003, Young et al. 

2011, Vinent and Moore 2015, Goldstein and Moore 2016, Monge and Stallins 2016, Brown and 

Zinnert 2020). Recently, empirical evidence has suggested that barrier islands populate regions 

within a multidimensional stability domain space that demarcates similarities in elevation and 

topographic roughness among different barrier islands at varying scales (Hsu and Stallins 2020, 

Stallins et al. 2020). For example, at large spatial extents, Virginia barrier islands have been 

grouped as low-resilience and low-resistance compared to other barrier island systems along the 

mid- and southern-Atlantic coast (Hsu and Stallins 2020). However, at a more localized scale, 

the Virginia barrier island system separates into groups of low, flat topography (disturbance-

reinforcing) islands and erosion remnant islands, which provides evidence of a disturbance-

resisting stability domain (Stallins et al. 2020).  

Despite such progress in understanding elevational and topographic determinants of 

barrier island stability domains, there is a still a considerable knowledge gap regarding 

connections between dune plant communities and barrier island stability across spatial scales 

(Zinnert et al. 2017). It is particularly important to investigate stability domains across spatial 

scales because barrier islands have a propensity to exist in multiple stability domain states 
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depending on localized physical conditions and differential plant community presence (Hayden 

et al. 1991, 1995, Stallins 2005, Guofan et al. 2006, Young et al. 2007, Zinnert et al. 2016). 

Stability domains are not instantaneously expressed, but rather propagate and shift to create a 

more complex mosaic of dynamical states (Van De Leemput et al. 2015). Plant communities are 

important for understanding local scale stability at the sub-island level. For example, Zinnert et 

al. (2019) and Woods et al. (2019) show connections between dune elevation and shrub 

expansion on the Virginia barrier islands, which increased local-scale island stability and 

response to sea-level rise. These shrub expansion processes can impact stability of entire islands, 

as well as sub-island sections (Zinnert et al. 2019).  

In this study we synthesize elevation and dune vegetation data from five barrier islands 

along the Atlantic and Gulf coasts to 1) investigate large-scale and local-scale relationships 

between island elevation and a priori classifications of stability domains for each barrier island 

while highlighting the dune plant communities each island supports, 2) inform our understanding 

of how large-scale climatic patterns vs. local-scale physical processes impact dune plant 

communities, and 3) detail scale-dependency when classifying barrier island stability domains, 

especially when using common topographic and vegetation metrics cooperatively.  

Methods 
Island/Site Descriptions 

 Vegetation data from five different islands with low direct anthropogenic disturbance 

along the Atlantic and Gulf coasts were used. Island stability domain type was designated based 

on quantitative site characterizations from previous studies as well as elevation ranges (Table 

1.1). The islands represent a range from mixed-energy microtidal islands dominated by wave 

energy to mixed-energy mesotidal islands influenced by tidal processes (Stallins 2003, Miller et 

al. 2010, Wolner et al. 2013, Brantley et al. 2014). Noted differences in accretion rates and 
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landward migration also existed among islands (Miller et al. 2010, Deaton et al. 2017, Haluska 

2017, Zinnert et al. 2019). Furthermore, islands varied in mean annual precipitation, temperature 

patterns, and rates of relative sea-level rise driven by regional differences in climate and 

geography (Table 1.2). 

 The northernmost islands included in this study were Metompkin (Lat. 37.74 N, Lon. 

75.56 W) and Hog (Lat. 37.42 N, Lon. 75.686 W) Islands; part of the Virginia Coast Reserve 

Long-term Ecological Research site. Previous research has shown these islands recover from 

disturbance differently and exist in different states of topographic complexity (Wolner et al. 

2013, Brantley et al. 2014, Stallins et al. 2020). Due to differences in topographic complexity 

and disturbance response, these islands also have substantial vegetation differences in both dune 

and swale plant communities (Brantley et al. 2014, Brown and Zinnert 2020). 

Metompkin Island has a simple topography with low elevations (Wolner et al. 2013, 

Brantley et al. 2014, Stallins et al. 2020). Low elevation and modest topographic complexity 

allow for overwash events to occur on this island, even during low energy storms (Wolner et al. 

2013, Brantley et al. 2014). Woody shrub expansion is negligible compared to other VCR barrier 

islands (Zinnert et al. 2016). Metompkin Island also lacks stability on the island scale and has 

retreated rapidly (~11 m yr-1) in a counter-clockwise rotation, due to higher migration on the 

north compared to south end of the island (Wolner et al. 2013, Haluska 2017, Zinnert et al. 

2019). The geomorphologic characteristics and processes that dominate on Metompkin represent 

aspects of low-relief on the northern half and disturbance-reinforcing stability domain on the 

southern end (Table 1.1) (Wolner et al. 2013, Zinnert et al. 2019, Hsu and Stallins 2020, Stallins 

et al. 2020). The combination of low, simple topography and rapid island migration results in 
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dune and swale plant communities that are similar in plant functional trait composition with low 

vegetative productivity (Brown and Zinnert 2020). 

Hog Island offers a stark contrast to Metompkin in overall elevation, island retreat 

patterns, and plant community complexity. While Hog Island has exhibited parallel retreat in the 

past (Stallins et al. 2020), it has been relatively stable in recent years and has experienced 

extensive shrub expansion in the last 40 years (Zinnert et al. 2016). Shrub expansion may be a 

cause of modest shoreline erosion on the northern end of the island (Zinnert et al. 2019), but the 

overall stability of Hog Island has resulted in few overwash events with a net shoreline accretion 

rate of ~13 m yr-1 (Haluska 2017, Stallins et al. 2020). Extended temporal periods between 

substantial disturbances allows for development of dune swale complexes consistent with 

disturbance-resisting stability domains (Table 1.1) (Stallins 2005, Houser et al. 2008, Wolner et 

al. 2013, Zinnert et al. 2017). The resulting heterogenous landscape promotes development of 

distinct dune and swale communities that differ in species and functional trait composition with 

high vegetative productivity (Brown and Zinnert 2020). 

The next compartment of barrier islands we investigated include South Core Banks 

(North Carolina; Lat. 34.41 N, Lon. 76.28 W) and Sapelo Island (Georgia; Lat. 31.23 N, Lon. 

81.15 W). Both exist as part of a chain of islands in the Georgia Bight, but represent different 

tidal regimes (Stallins 2003, Stallins and Parker 2003). The average precipitation on South Core 

in 2010 was approximately double that of Sapelo Island (Table 1.2).  This pattern is influenced 

by increased exposure to seasonal storms with increased latitude, which also results in 

differences in shoreline disturbance vulnerability (Davis et al. 1993). 

South Core exists on the northern margin of the Georgia Bight and is representative of a 

barrier island dominated by microtidal processes causing long, linear island morphology (Stallins 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Appendix 
 

Supplemental Tables and Figures 

Table S4.1 Directional correlations of each functional trait along PC1 and PC2 (Figure 3). 
Goodness-of-fit is represented as r2 and correlates with vector lengths in Figure 2. Bold 
indicates p < 0.05. Traits include height, specific leaf area (SLA), leaf carbon content (%C), 
leaf nitrogen content (%N), and leaf nitrogen isotope ratio (d15N). 

Trait PC 1  PC 2 r2 p – value 
Height  -0.94 0.34 0.80 0.001 
Specific leaf area (SLA) -0.18 0.98 0.71 0.001 
Leaf N content (%N) -0.33 -0.94 0.61 0.001 
Leaf C content (%C) -0.86 -0.51 0.71 0.001 
Leaf 15N  -0.99 0.15 0.61 0.001 
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Figure S4.1 Non-metric multidimensional scaling (NMDS) of species composition grouped in 

convex hulls by nutrient treatment type on a barrier island grassland community. Points represent 

individual experimental plots in species space with stars indicating calculated centroids for each 

group. Colors and symbols are matched to nutrient treatment (C = control, P = phosphorus, N = 

nitrogen, and NP = nitrogen + phosphorus). Centroids can be viewed as mean community 

compositions. 
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Table S4.2 Pairwise comparisons via perMANOVA results for 
species composition between nutrient enrichment treatments in 
coastal grassland. Bold indicates p < 0.05, using FDR 
correction. 

Comparison F – value  p – value 
C vs P 3.14 0.033 
C vs N 4.32 0.021 
C vs. NP 8.89 0.026 
P vs N 2.52 0.033 
P vs NP 4.35 0.021 
N vs NP 2.77 0.033 

 
  



 183 

 

 
Figure S4.2 Mean percent cover ± SE of forb and graminoid lifeforms in each nutrient treatment 

group on a barrier island grassland community.  Bars are grouped by lifeform type as well as 

nutrient treatment level (C = control, P = phosphorus, N = nitrogen, and NP = nitrogen + 

phosphorus). Letter codes represent significant differences, such that bars with different letter 

codes are significantly different (Tukey HSD, p < 0.05). 
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Conclusions and Significance 
 

Barrier islands are dynamic coastal systems with the ability to actively respond to 

disturbances that are expected to increase and cause global change. These can exist as press and 

pulse events which impact ecological systems in different ways (Bender et al. 1984). Disturbance 

response of barrier island systems can vary depending on the type of disturbance event and pre-

exiting feedbacks between island morphology and established plant communities (Godfrey and 

Godfrey 1976, Stallins 2005, Zinnert et al. 2017). Stability domains (i.e., disturbance resisting 

vs. disturbance-reinforcing) are mechanisms by which barrier islands respond to pulse storm 

events that vary across spatial scales, thus impacting environmental filters that act as partial 

determinants of plant community composition and structure (Stallins and Parker 2003, Stallins 

2005, Kraft et al. 2015, Zinnert et al. 2017). Similarly, nutrient enrichment, acting as a press 

disturbance, effectively alters nutrient limitation in coastal environments (Minchinton and 

Bertness 2003, Heyel and Day 2006). Resulting plant communities can ultimately influence 

feedbacks with ecosystem productivity and disturbance response.  

 This research uses species and trait-based investigation to determine plant community 

response as different climate change disturbances influence barrier island function. Plant 

functional traits played a critical role in understanding differences in plant community structure 

as disturbance response was observed and as novel abiotic factors were introduced (Kraft et al. 

2015). By providing a mechanistic understanding to ecosystem function, trait-based approaches 

in cooperation with species-defined analyses are beneficial for investigating emergence of novel 

community patterns (Tilman et al. 1997, Lavorel and Garnier 2002, Suding et al. 2008, De 

Battisti 2021). For example, species-defined and trait-based investigation revealed scale 

dependency of elevation and dominant barrier island stability domains on plant community 



 185 

structure and function (Chapter 1 and Chapter 2). Vegetation at large spatial scales was impacted 

more by gradual changes in climatic variables and relative sea-level rise along a latitudinal 

gradient, rather than in line with a priori stability domain characterization (Chapter 1). The effect 

elevation and dominant stability domain differences have on plant community structure and 

resulting ecosystem function (i.e., productivity and habitat formation) only comes into focus at 

smaller spatial extents, which are relevant for coastal management. Within islands that differ in 

topography and disturbance response (i.e., Hog and Metompkin Islands), local-scale habitat 

development at disturbance-resisting sites translates to dune-swale habitats that are distinct in 

trait-based community composition, with swales producing higher productivity levels (Chapter 

2). Conversely, at the disturbance-reinforcing site, distinct dune-swale habitats are not 

developed, and ecosystem productivity is comparatively reduced (Chapter 2). This research 

highlights how plant community structure and the ways in which plant communities impact 

ecosystem function are linked to different ecological processes depending on the spatial scale in 

question.  

Species and trait-based community investigations can also be used to better understand 

how coastal systems will respond to global change drivers that are expected to couple with 

climate change, like nutrient enrichment. Nitrogen (N) and phosphorus (P) additions have 

significant impacts on ecosystem productivity and plant composition structure at global scales 

(Fay et al. 2015, Hautier et al. 2015, Komatsu et al. 2019). Altering aspects of coastal grassland 

communities can subsequently influence the stability of barrier islands and thus the vulnerability 

to erosive physical processes (Zinnert et al. 2017, 2019). Nutrient manipulation in this study 

uncovered the impacts enrichment has on vegetative productivity, species-defined community 

structure, and trait-based community composition (Chapter 3 and Chapter 4). A synergistic 
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nutrient co-limitation from NP enrichment increased productivity more than N or P did 

individually (Chapter 4). Complexities at the community-level were highlighted as species-

defined community composition differences caused by nutrient enrichment were not replicated in 

a trait-based investigation, indicating that species and traits can respond independently to 

nutrient additions (Chapter 3 and Chapter 4). Community difference based on species-defined 

investigation was driven by in increased dominance of graminoid perennial species with re-

organization and, in certain cases, loss of key subordinate species (Chapter 3). Trait-based 

investigation found that increased productivity in N and NP treated communities likely drove the 

dominance completive functional traits (Chapter 4). These responses to nutrient enrichment can 

limit the success of annual forb species by limiting resources required for seedling establishment 

and success. Plant community reorganization and altered functional trait expressions also explain 

increased functional alpha-diversity as plants with limiting trait similarities can aid co-existence 

of species in highly productive plant communities (Laliberté and Legendre 2010, Chapter 4). 

Implications of the research presented here can be applied to many other systems 

experiencing novel change. Understanding connections between topographic patterns and plant 

community metrics across spatial scales will contribute to disentangling how barrier island plant 

communities respond to global change drivers while concurrently affecting barrier island spatial 

heterogeneity. Cooperative research practices using both plant trait-based and species-defined 

community ecology can benefit investigations of complex questions that involve multiple scales 

and co-occurring phenomena, helping to inform how plant community structuring processes and 

future plant community trajectories are influenced by relationships between changing abiotic 

conditions and biotic interactions.  
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