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Abstract 

 

 Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 

Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter.  Warm 

dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many 

planets, white dwarfs, and other stars in our universe.  The existence of warm dense matter (WDM) 

on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear 

explosion.  In such an event, theoretical and computational models that accurately predict the 

response of certain materials are thus very important.  Unfortunately, given both the impracticality 

of producing WDM on Earth and the inherent complexity of the matter itself (partial ionization, 

non-negligible electron-nuclei interactions, etc.), modeling WDM has proved strenuous and 

problematic.  Despite this difficulty and complexity, advances in Density Functional Theory 

Molecular Dynamics (DFT-MD) have made such simulations possible.  In this thesis, elemental 

carbon was modeled because of its low atomic number and its relative abundance of experimental 

data.  The Car-Parrinello MD package implemented in the code Quantum ESPRESSO was used 

to simulate warm dense carbon.  Carbon cells were comprised of 24 atoms assigned random 

positions and were modeled at densities typical of WDM.  System temperature was set with the 

Nosé-Hoover thermostat and by rescaling ionic velocities, and each cell was run at temperatures 

up to 10,000 Kelvin.  Simulation results were plotted, analyzed, and compared to those presented 

in the literature.  Overall, results show pressure divergence that differs substantially with current 

DFT models of warm dense carbon.  This work continues the application of MD simulations to 

WDM and provides a basis for future research into thermodynamic properties of warm dense 

plasmas.  
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Introduction 

 

 Warm dense matter (WDM) describes the state of material that exists at high pressure and 

temperature regimes.  Technically, WDM is matter that lies “between cold condensed matter and 

hot plasmas” (Redmer, Nettelmann, Holst, Kietzmann, & French, 2008).  The density of WDM is 

on the order of traditional solids, but the temperature range extends to several thousand Kelvin 

(K).  In this range, the amounts of an electron’s kinetic and potential energies are comparable due 

to partial ionization created by the extreme temperature, a phenomenon which results in a fluid-

like plasma phase (Redmer, Nettelmann, Holst, Kietzmann, & French, 2008). 

 Interest in WDM largely derives from the field of astrophysics, where it is widely believed 

to compose the cores of giant planets and small stars in the universe.  Further research into and 

subsequent enlarged comprehension of warm dense gases like hydrogen, helium, and carbon may 

uncover the secrets of the origin and inner workings of our universe.  More practical is the process 

occurring within these stars, nuclear fusion.  Thus an understanding of WDM is “of high 

importance” in learning the process of achieving conditions that facilitate nuclear fusion (Militzer, 

González-Cataldo, Zhang, Driver, & Soubiran, 2021).  WDM is likewise expected to exist within 

Earth’s interior (Bonitz, et al., 2020).  On Earth’s surface, however, it is much more elusive, as 

generation of WDM requires extreme amounts of energy and or very powerful radiation fields.  

Thus the need for such significant energetic quantities restricts the physical analysis and 

characterization of WDM, as only high-energy lasers, X-ray sources and nuclear blasts meet this 

substantial requirement (Bonitz, et al., 2020). 

 Therefore, man’s knowledge of WDM and its behavior must come from the formulation of 

theoretical models.  Unfortunately, modelling WDM has several challenges.  First, warm dense 
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systems are very diverse, characterized by “electronic quantum effects, moderate to strong 

Coulomb correlations, and finite temperature effects” (Bonitz, et al., 2020).  In simpler terms, there 

are very complex interactions between electrons and nuclei and other electrons that occur in the 

warm dense region.  Additionally, warm dense systems which are likely to be studied will 

themselves be very intricate – heterogeneous mixtures with large numbers of atoms.  The resulting 

high densities and strong interactions render typical plasma theory models inapplicable (Militzer, 

González-Cataldo, Zhang, Driver, & Soubiran, 2021). 

 Fortunately, progress in various fields has improved the models of plasma states.  

Developments in quantum kinetic theory are an example (Bonitz, et al., 2020), but perhaps the 

greatest breakthrough was produced by the advent of density functional theory (DFT) and its 

growing role in molecular dynamics (MD) simulations.  In applying the Kohn-Sham equations, 

DFT first allowed “self-consistent simulation of realistic warm dense matter [including] both 

plasma and condensed matter phases” (Bonitz, et al., 2020).  However, at the high temperatures 

characteristic of WDM, DFT-MD simulations are “extremely challenging to perform” as there is 

a large number of diverse electron states to account for (Benedict, et al., 2014).  Another issue 

arises from the unknown accuracy in DFT’s calculation of the exchange-correlation functional1 

(Bonitz, et al., 2020).  Despite such obstacles, advances in DFT-MD simulations will continue to 

facilitate the production of accurate equations of state (EOS) which describe WDM. 

 Generally, the larger the size of the modelled system, the greater the required effort, 

computer time, and inherent difficulty in both forming and running a simulation.  Therefore, pure 

systems comprised of low-atomic number elements are used as a simpler starting point and are a 

                                                 
1In quantum mechanics, the exchange-correlation derives from two sources:  i) Exchange interactions between 

indistinguishable, identical electrons and ii) correlation interactions due to the effect one electron’s motion has on 

another’s. 
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more practical basis of modeling WDM (Bonitz, et al., 2020).  Carbon is particularly appropriate, 

as it is a well-studied and well-understood element that is abundant in the universe, on Earth, and 

in the human body.  Both carbon’s fit to the criteria described previously and its relative abundance 

of available experimental and simulation data make it an ideal candidate for exploring the warm 

dense phase. 

 This thesis utilizes the DFT-MD approach and the computer code Quantum ESPRESSO 

(QE) to model elemental carbon in the warm dense region.  In the first two Chapters, an 

introduction to the carbon EOS and an overview of fundamental DFT-MD theory are provided.  

Chapter 3 provides a summary and construction of the particular QE code relevant to the project, 

the results of which are given in Chapter 4.  In short, carbon cells of varying density are tested at 

temperatures between 0 and 10,000 K, and a discussion follows of how this thesis’ results compare 

to those of previous works.  Although carbon is the focus here, the overall goal of this thesis is to 

further the development of effective EOS and DFT models for warm dense plasmas. 
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Chapter 1:  Warm Dense Carbon Plasmas 

1.1 Carbon Phase Diagram 

 

 In practical, everyday settings, ambient temperature and pressure conditions manifest two 

phases of solid carbon:  Diamond and graphite.  Diamond, unsurprisingly, exhibits a diamond 

cubic crystal structure and is the hardest material known to man (Grumbach & Martin, 1996).  

Although creation of diamond requires large values of both temperature and pressure, it exists and 

is stable at lower pressure-temperature regimes (Grumbach & Martin, 1996).  In contrast, 

graphite’s hexagonal geometry is the preferred crystal structure under ambient conditions.  Despite 

its weak inter-planar bonding, graphite sheets are the “strongest two-dimensional material known 

[to man]” (Grumbach & Martin, 1996).  For the majority of humans’ existence, these were the 

only carbon phases encountered in nature. 

 Technically known in science as 

carbon “allotropes,” both graphite and 

diamond possess remarkable properties which 

provide them a wide variety of practical uses 

(Pierson, 1993).  Our ancient ancestors and 

schoolchildren alike know of graphite’s 

ubiquitous function as pencil lead; in fact, the word 

graphite actually stems from the Greek word meaning “to write” (Pierson, 1993).  Both graphite’s 

abundance and structure make it the building block of a “large variety” of complex materials such 

as those used in gas adsorption (typically called ‘activated’ carbon), “extremely strong” fibers, and 

lubricants (Pierson, 1993).  Furthermore its strong ability to absorb neutrons facilitates graphite’s 

Figure 1-1.  Reduced sphere depictions of 

diamond (right) and graphite unit cells. 

Reproduced from (Kokalj, 1999). 
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role as control rods in nuclear reactors.  Beyond comprising the ideal wedding ring, diamond’s use 

in industry is very diverse.  In addition to its superior hardness, diamond also exhibits the greatest 

room-temperature thermal conductivity of any solid and is the model optical material for light 

transmission (Pierson, 1993).  Diamond is scarce and thus very expensive and in high demand, 

three facts motivating its man-made synthesis (Pierson, 1993). 

 Given these reasons and considering the relative abundance of each allotrope, physically 

manufacturing the transition from graphite to diamond has long been a goal of science.  However, 

the “dramatically different” bonding in their structures renders the transition very difficult to 

achieve at room temperature (Grumbach & Martin, 1996).  When first accomplished in the 1950s, 

the graphite-diamond transition required the use of transition-metal catalysts (Grumbach & Martin, 

1996).  Furthermore,  continuing to raise carbon’s temperature and pressure beyond the diamond 

phase produces several other solid phases that are considered “diverse [and] unique among the 

elements” (Grumbach & Martin, 1996)  However, phase boundaries and melting properties at these 

extreme conditions are “poorly known,” and experimental investigation of such transitions is 

limited, as the largest pressures 

humanly attainable are much lower than 

those observed in the transition (Correa, 

Bonev, & Galli, 2006).  Regardless, 

based on DFT simulations, it is widely 

expected that carbon transitions from 

diamond to a solid with BC-8 symmetry 

at ~1,000 GPa and from this BC-8 
Figure 1-2.  Proposed pressure-temperature phase 

diagram of carbon showing solid and liquid phases. 

Adapted from (Grumbach & Martin, 1996). 
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phase to a solid simple cubic (SC) phase at ~3,000 GPa (Correa, Bonev, & Galli, 2006; Martinez-

Canales, Pickard, & Needs, 2012). 

 Interestingly enough, the slope of carbon’s high-pressure phase boundary has actually 

sparked historical controversy between scientists.  The dispute centered on whether carbon’s 

behavior mimicked that of its same-period elements silicon and germanium – that is, whether its 

pressure decreased with a corresponding increase in melting temperature (Redmer, Nettelmann, 

Holst, Kietzmann, & French, 2008).  This so-called melting slope is negative in both silicon and 

germanium.  However, as later shown with DFT MD, an increase in the melting point of carbon 

produced an increase in the overall pressure and thus a positive melting slope (Parrinello, 1990).  

This behavior has interesting implications for the Earth’s interior, as the positive slope of the 

melting line suggests that all free carbon existing within the Earth is in fact solid diamond and not 

liquid carbon (Grumbach & Martin, 1996).  Similarly, this knowledge also improves our models 

of planetary and stellar bodies, as warm dense carbon is thought to comprise the majority of 

Uranus, Neptune, and white dwarf stars (Correa, Bonev, & Galli, 2006). 
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1.2 Equations of State 

 

 In molecular dynamics simulations, electrons and nuclei are considered separately, and 

nuclei are thus treated as distinct particles with corresponding positive charges.  Therefore, the 

terms ‘nuclei’ and ‘ions’ are used interchangeably in DFT-MD and throughout this work.  Forming 

EOS for WDM requires a few “basic” parameters termed “degeneracy parameters,” which exist 

for both electrons and ions. (Bonitz, et al., 2020).  Electron degeneracy arises from the application 

of the Pauli Exclusion Principle, the inhibition of any two same-spin particles from occupying the 

same quantum state, to matter under intense pressure.  As matter is compressed into smaller 

volumes of space, resulting electronic repulsions generates a pressure acting counter to the 

compression.  Such pressure is termed degeneracy pressure and is thought to be what enables the 

existence of white dwarves, and other extremely dense bodies, by preventing total gravitational 

collapse (Akbari-Moghanjoughi, 2013). 

 Although degeneracy exists for both ions and electrons, ion degeneracy is “typically 

negligible” for WDM (Bonitz, et al., 2020).  Electron degeneracy parameters are given below. 

θ = 
kBT

EF
  (Equation 1-1) 

χ = nλ3  (Equation 1-2) 

Above, θ and χ are degeneracy parameters, kB the Boltzmann constant (1.38·10-23 joules per 

Kelvin – J/K), T temperature, EF the Fermi energy, n the electron density, and 𝜆 the thermal de 

Broglie wavelength.  Equation 1-1 gives the reduced temperature, which compares the statistical 

kinetic (thermal) energy of electrons to their Fermi energy – the difference in energy between the 

highest and lowest occupied single-particle states in a system of non-interacting electrons at zero 

temperature (Akbari-Moghanjoughi, 2013).  The greater this ratio, the greater the electron 
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degeneracy.  Equation 1-2 relates the electron density and their de Broglie wavelength; it is 

effectively a measure of the number of electrons within the system (Akbari-Moghanjoughi, 2013)  

Similar to the first parameter, the higher the number of electrons in a given amount of space, the 

greater the resulting degeneracy pressure. 

 Additionally, two parameters are used to account for classical and quantum coupling 

between nuclei and electrons, respectively (Bonitz, et al., 2020).  Accounting for ion-ion 

interactions, the ionic coupling parameter is the ratio of ionic potential and kinetic energies: 

ΓI=
QI

2

aIkBT
  (Equation 1-3) 

where the variable ΓI represents the coupling parameter, QI the ionic charge, and aI the mean inter-

ionic distance.  The squared charge assumes a homogeneous system of ions.  Electron coupling is 

given by Equation 1-4. 

rs=
a

aB
   (Equation 1-4) 

Above, rs is the electron coupling parameter, a the average distance between electrons, and aB the 

Bohr radius – the most probable distance between the proton and electron in a ground state 

hydrogen atom –5.29·10-11 meters (Akbari-Moghanjoughi, 2013).  Known as the Wigner-Seitz 

(WS) radius, the value of rs is the radius of a sphere whose volume is equal to the mean volume 

per free electron in condensed matter systems (Bonitz, et al., 2020) and as such is effectively a 

measure of the electron density of the system.  The lower the WS radius, the greater the electron 

coupling.  Both degeneracy and coupling parameters are combined with traditional EOS variables 

– specific volume, atomic radii, and the like – to form EOS for complex systems like WDM. 

 Since DFT first allowed the simulation of warm dense plasmas, a variety of technical 

methods employing DFT have been, and continue to be, utilized to improve the carbon phase 

diagram and its corresponding EOS.  In 2012, Martinez-Canales, et al. used the DFT code 
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CASTEP to model carbon cells at extreme pressures by relaxing “randomly chosen structures” to 

their minimum in enthalpy.  Their results support both the existence of the BC-8 and SC phases 

and their proposed transition pressures (Martinez-Canales, Pickard, & Needs, 2012).  Despite a 

lack of “direct experimental evidence” for such stability at high pressures, they note that, because 

of trends observed in similar metals, the existence of multiple phase transitions in solid carbon is 

likely.  In fact, their simulations also support the existence of at least four more solid phases:  (i) a 

simple hexagonal (SH) transition at ~6,000 GPa, (ii) face-centered cubic (FCC) at ~21,000 GPa, 

(iii) double hexagonal close packed (DHCP) at ~270,000 GPa, and (iv) body-centered cubic (BCC) 

at ~640,000 GPa (Martinez-Canales, Pickard, & Needs, 2012). 

 Beyond the solid phases, both liquid and vapor phases of carbon exist, albeit at extreme 

combinations of temperature and pressure.  Furthermore, DFT simulations support the existence 

of multiple distinct liquid phases as well as several corresponding triple points between solid, 

liquid and or vapor phases (Grumbach & Martin, 1996).  Formation of an applicable EOS for liquid 

carbon occurs entirely via the application of theory to computer simulations.  Benedict, et al. fitted 

available data from DFT MD and path integral Monte Carlo (PIMC) simulations to present an EOS 

for four solid phases of carbon (diamond, BC-8, SC, SH) and the liquid phase.  Their EOS uses 24 

variables to readily “account for the effects of ionization due to temperature and pressure in the 

plasma state” (Benedict, et al., 2014).  However, their study notes a limit in the application of DFT 

methods posed by its lower accuracy at very high temperatures (Benedict, et al., 2014). 

 Most exchange-correlation potentials utilized in DFT calculations were first proposed by 

Perdew and Wang (the PW functional) and Perdew, Burke, and Ernzerhof (PBE).  However, these 

calculations, and their corresponding potentials, assume zero temperature, an assumption which 

provokes opposition to their utilization in finite- (non-zero) temperature simulations (Bonitz, et 
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al., 2020).  Recently, Bonitz, et al. modeled warm dense carbon using both PW and PBE 

functionals, DFT MD, and Quantum-ESPRESSO code.  They compared their results to those 

generated using a finite-temperature functional (Bonitz, et al., 2020).  In their conclusions, they 

note relatively small deviation between the zero- and finite-temperature functionals (Bonitz, et al., 

2020).  Although it is possible that, as the temperature is increased further, the specific exchange-

correlation potential chosen may become insignificant, as the closer the system’s temperature to 

the classical plasma regime, the less prominent the many-body effects that cause such deviation 

(Bonitz, et al., 2020).  Nevertheless, improvements in DFT, its assumptions, and core calculations 

represent both the initial breakthrough that made possible simulations of WDM and the current 

obstacles preventing the generation of consistent and reliable WDM EOS.  
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Chapter 2:  Physics Models 

2.1 Density Functional Theory 

 

 The history of DFT coincides with the growth of both interest in and knowledge of the 

atom and interatomic forces.  In particular, both the “discovery” of quantum mechanics in the early 

1900s and the advent of atomic and molecular orbital theories in the second half of the 20th century 

facilitated greater understanding of the atom, atomic bonding and, eventually, the development of 

DFT (Haunschild, Barth, & French, 2019).  However, it was not until the 1960s that the 

“foundational publications for modern DFT” were established (Haunschild, Barth, & French, 

2019).  Two publications, Hohenberg and Kohn (1964) and Kohn and Sham (1965), laid the 

groundwork of modern DFT by applying the Hartree-Fock method of determining electronic 

wavefunctions to molecules and solids (Haunschild, Barth, & French, 2019). 

 Since then, DFT has grown in complexity and application.  Building on DFT’s foundation, 

modern works have produced improvements in self-consistency calculations, increased 

understanding of atomic and molecular orbitals, created iterative methods of simulating molecular 

dynamics, included time-dependent variables in DFT calculations, and, ultimately, used DFT in a 

smorgasbord of different applications (Haunschild, Barth, & French, 2019).  Examples of this 

variety include the bonding within halogen systems (Ang, Ser, & Wong, 2019) and limiting 

corrosion in electrochemical systems (Obot, Macdonald, & Gasem, 2015).  However, DFT remains 

a work in progress as improvements to its accuracy and capabilities are continually ongoing.  As 

such, alternative methodologies stemming from traditional DFT that apply similar principles to 

model atomic systems have arisen as well.  One such methodology, subsystem DFT, changes the 

typical representation of and subsequent calculation of the ground state electron density (Jacob & 

Neugebauer, 2014).  Simply summarized, DFT is a computational method which blends physics, 
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mathematics, and computer science to analyze the structure of atoms, molecules and crystals and 

the interactions within them. 

 Condensed matter physics and materials science predict material properties through an 

understanding of systems’ interacting electrons and atomic nuclei (Singh, 1994).  Schrodinger’s 

equation (Equation 2-1) is the quantum representation of classical energy conservation – at atomic 

and molecular scales, interatomic potential forces are non-negligible, and thus the kinetic energy 

alone is insufficient in defining a system. 

HopΨ(r,t)=EΨ(r,t)=(K+Φ)Ψ(r,t)  (Equation 2-1) 

Here Hop is the Hamiltonian operator, E the total energy of the electron, K and Φ the electron’s 

kinetic and potential energies, respectively, and Ψ the (electron) wavefunction, which itself is a 

function of both its position, r, and time, t.  Qualitatively, Hop (the sum of kinetic and potential 

energy) is performed on a given electron, or wavefunction, to determine its total energy.  Electronic 

configurations that minimize the energy are the most stable. 

 The majority of materials, however, have systems with multiple, discrete levels of many 

electrons that constantly interact.  Modelling such systems via a solution to Schrodinger’s equation 

is extremely difficult and instead requires “sufficiently accurate, but tractable [and] approximate 

techniques,” (Singh, 1994).  DFT is an example of such a technique.  The primary theorem upon 

which DFT is based is the first Hohenberg-Kohn theorem, which states that the total energy, E, of 

a system of interacting electrons is purely a function of the ground state electron density, ρ (Obot, 

Macdonald, & Gasem, 2015). 

E=E(ρ)  (Equation 2-2) 

 The “true” ground state density is the one that minimizes the total energy of the system, 

and other ground state properties are likewise functions (called ‘functionals’) of this true ground 
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state (Singh, 1994).  Thus the origin of the term ‘density functional theory.’  Finding the ground 

state density is typically done through iteration.  These ‘self-consistent,’ or Hartree-Fock, 

calculations iterate through different arrangements of atoms and electrons until a desired level of 

convergence is achieved.  In practice, reaching the ground state energy is difficult.  It was first 

modeled as the sum of the total Hartree (or Coulomb) energy and an unknown, smaller density 

functional called the “exchange-correlation functional” (Singh, 1994).  This sum is given in 

Equation 2-3. 

E(ρ)=KS(ρ)+Eei(ρ)+Eii(ρ)+EH(ρ)+Exc(ρ)  (Equation 2-3) 

The total of the particle’s kinetic energy is given by KS, Coulombic interactions between electrons 

and nuclei by Eei, repulsive interactions between nuclei by Eii, interactions between electrons by 

EH, and the unknown exchange-correlation (xc) energy by Exc. 

 Actually predating DFT is the local-density approximation (LDA).  First developed by 

Slater in 1951, the LDA’s use in solid state physics was initially “limited” before becoming more 

commonplace in the 1970s (Singh, 1994).  Considered the “simplest form of DFT,” the LDA first 

declared the exchange-correlation energy a functional of electron density (Obot, Macdonald, & 

Gasem, 2015).  The approximation is given in Equation 2-4, where the variable εxc is the exchange-

correlation energy per particle. 

Exc
LDA(ρ)= ∫ ρ(r)εxc(ρ)dr  (Equation 2-4) 

 However, in 1965, Kohn and Sham modified this approach, instead deriving the electron 

density as a “self-consistent solution of a set of single particle Schrodinger-like equations” (Singh, 

1994).  Known as the Kohn-Sham (KS) equations, these density-dependent single particle 

equations utilize individual particle orbitals and potentials (Singh, 1994).  

[K+Vei(r)+VH(r)+Vxc(r)]φi(r)=ϵiφi(r)   (Equation 2-5) 
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In Equation 2-5 above, K is the particle’s kinetic energy, Vei the Coulomb potential between the 

particle and any nuclei, VH the Hartree potential due to electron-electron interactions, Vxc the 

exchange-correlation potential, φi the orbital of particle i, and ϵi their corresponding eigenvalues.  

The electron density is estimated and used to predict the value of Vxc, the only unknown in Equation 

2-4 (Singh, 1994).  This value is then in turn used to predict the unknown exchange-correlation 

energy via Equation 2-6 (Parrinello, 1990). 

Vxc(r)=
δExc(ρ)

δρ(r)
  (Equation 2-6) 

Next, the value of Exc is inserted into the original set of single particle equations (Equation 2-5) 

and the resulting electron density, ρ, is determined.  The value of ρ must reproduce the initial 

estimate of the electron density within a desired level of convergence (Singh, 1994).  This iterative 

process describes the self-consistent nature of the Kohn-Sham method. 

 An understanding of other, more complex features of DFT, such as fast Fourier transforms 

and the differences between spin-polarized and non-spin systems, was not required in this work.  

Rather, the above simplification of DFT enabled a basic knowledge of DFT and its central theory 

that proved helpful in understanding, visualizing, and altering Quantum ESPRESSO input and 

output.  
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2.2 Pseudopotentials & Planewaves 

 

 As mentioned previously, matter is made of complex, many-electron systems that interact 

strongly with atomic nuclei via Coulombic potential forces.  Electrons are classified as either ‘core’ 

(inner orbital) or ‘valence’ (those lying in the outermost orbital).  In most cases, core electrons are 

strongly bound by the positively-charged nucleus and do not respond to the motion of valence 

electrons; thus they are considered essentially fixed (Singh, 1994).  This is known as the ‘frozen 

core’ approximation, which is generally reliable and lies at the heart of pseudopotential methods. 

 Therefore the complex effect of core electron 

motion and the nucleus on valence electrons is 

replaced with an effective potential, called a 

pseudopotential.  Similarly, the valence electron 

wavefunctions are expanded using a set of basis 

functions to account for the pseudopotential and are 

correspondingly called pseudo-wavefunctions.  In 

general, such basis sets are quantitative 

representations of atomic and molecular orbitals.  

Quantum ESPRESSO code utilizes planewave basis 

sets (Giannozzi, et al., 2009), which represent orbital 

wavefunctions by linear combinations of expanded 

Fourier series (Stuart & Mosey, 2020). 

 Construction of pseudopotentials is done so 

in as practical a manner as possible.  They are often required to be both “soft” and “transferable” 

(Singh, 1994).  A soft pseudopotential allows “expansion of the valence pseudo-wavefunctions 

Figure 1-1.  Illustration of how the all-

electron wave function, V(r), and core 

potential, φ(r), are replaced by the 

pseudo-wavefunction, Vp(r), and the 

pseudopotential, φps(r).  Here, rc is the 

core (or “cut-off”) radius. 

Adapted from (Singh, 1994). 
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using as few planewaves as possible” (Singh, 1994).  However, for first-row elements, like carbon, 

a large number of planewaves is needed to effectively “describe ‘localized’ 2p valence states” 

(Kresse & Hafner, 1994).  Additionally, a pseudopotential is said to be transferable if, when 

generated for a given atomic configuration, it accurately reproduces other configurations (Singh, 

1994).  Such a pseudopotential is considered reliable in solid state applications.  Finally, a 

pseudopotential should produce an electron “pseudo-charge density” that accurately mimics the 

actual charge density (Singh, 1994). 

 The principle of ‘norm-conservation’ (NC) helped make possible meeting these dual 

requirements of softness and transferability (Singh, 1994).  The NC constraint requires that, while 

outside the core radius, pseudo-wavefunctions (and potential) are equal to the actual valence 

wavefunctions, within the core radius, the pseudo-wavefunctions may differ from the true 

wavefunctions so long as the overall enclosed charge (the ‘norm’) is the same (Kresse & Hafner, 

1994).  This constraint provides for consistent transferable pseudopotentials (Singh, 1994) which 

are frequently employed in MD simulations. 

 Due to the requirements of the Car-Parrinello package in Quantum ESPRESSO, only 

ultrasoft (US) pseudopotentials are utilized in this work.  First proposed by Vanderbilt in 1990 for 

utilization in large-scale simulations, US pseudopotentials and accompanying pseudo-

wavefunctions within the core are made soft by “relaxing the norm-conservation constraint” 

(Kresse & Hafner, 1994).  While removing the NC requirement complicates calculations by 

allowing the pseudopotential itself to change during the calculation, the accuracy of the calculation 

itself is not sacrificed (Singh, 1994).  The primary benefits of US pseudopotentials are their 

reduction in the minimum energy cutoff of the planewave basis set and a corresponding decrease 

in the overall “cost” of the calculation (Singh, 1994).  
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2.3 Car-Parrinello Molecular Dynamics 

 

 The theory behind Car-Parrinello MD (CPMD) is similar to that of Born-Oppenheimer MD 

(BOMD), although they differ in calculation of the electron ground state density.  First consider 

the Born-Oppenheimer (BO) potential energy surface, Φ, of a multiatomic system.  MD models 

of the BO system follow Newton’s equation of motion below. 

MIRI
̈ = -

∂Φ

∂RÏ
  (Equation 2-7) 

The variables MI and RI represent, respectively, the mass of nucleus I and the corresponding ionic 

positions (Car & Parrinello, 1985).  Additionally, a dot above a variable ( ˙ ) denotes its time 

derivative, so the variable RI
̈  represents the second time derivative of an ion’s position (its 

acceleration). 

 The Born-Oppenheimer method solves Equation 2-7 for a given ionic configuration and 

performs a full electronic structure calculation at every time step (Redmer, Nettelmann, Holst, 

Kietzmann, & French, 2008).  In real systems, this procedure produces reliable physical dynamics 

but, unfortunately, it is also considered “computationally very demanding” (Car & Parrinello, 

1985).  Instead, Car-Parrinello calculations assume a “fictitious” dynamical system that removes 

this expensive requirement (Car & Parrinello, 1985).  Doing so provides a more efficient and 

convenient method of achieving self-consistency and modeling atomic motion and the resulting 

forces.  CPMD treats the energy functional, E(ρ), as “the potential energy surface of a fictitious 

classical dynamic system consisting of the nuclear plus the electronic degrees of freedom” 

(Parrinello, 1990).  The corresponding equations of motion are shown on the next page.  
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MIRI
̈ = -

∂E

∂RI(t)
  (Equation 2-8) 

μφï (r,t)= -
1

2

δE

δφi
*(r,t)

+ ∑ Λijφj(r,t)j   (Equation 2-9) 

The ionic configurations, RI, and the electron orbitals, φi, represent the aforementioned degrees 

of freedom. 

 The variable μ is an adjustable parameter considered the fictitious electron mass, and Λij 

are Lagrangian multipliers inserted to preserve the orthonormality of the KS electron orbitals 

(Singh, 1994).  The motion predicted by Equations 2-7 and 2-8 will differ.  In other words, the 

surface produced in CPMD will deviate from the Born-Oppenheimer surface.  To account for this, 

the value of μ is carefully selected to ensure that electron dynamics are “sufficiently faster” than 

those of the ions (Parrinello, 1990).  An appropriate value of μ, therefore, provides a “negligible” 

error in the modeled forces (Kühne, 2014) and thus yields a surface “sufficiently close” to that of 

the BO method (Singh, 1994).  Generally, the higher the value of μ, the more efficient and quicker 

the calculation.  However, the deviation from the BO surface likewise increases (Singh, 1994), so 

a compromise must be made between accuracy and computational cost. 

 An additional parameter that affects the calculation’s efficiency is the time step, δt, at 

which each iteration of the simulation is executed.  Increasing the time step will affect system 

dynamics in the same way as decreasing the value of μ.  Given this inverse relationship, “judicious 

choices” of both δt and μ are required in CPMD simulations (Singh, 1994).  Large values of μ 

(small δt) require a very large number of steps while a small μ (long δt) can produce an unstable 

solution (Singh, 1994).  Similar disadvantages are faced when applying CPMD to systems of 

nonzero temperature as “thermal equilibration requires a very long time” (Parrinello, 1990).  
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Chapter 3:  Quantum Espresso Code 

3.1 Introduction 

 

 The suite of computer code that comprises Quantum ESPRESSO is based on DFT, 

planewaves, and pseudopotentials.  In other words, QE seeks to build “chemically realistic” 

models of materials that are based on DFT by using a “plane waves basis set and pseudopotentials 

to represent electron-ion interactions,” (Giannozzi, et al., 2009).  The name itself is an acronym 

which stands for:  opEn Source Package for Research in Electronic Structure, Simulation, and 

Optimization (Giannozzi, et al., 2009).  The software is free and available to researchers 

throughout the world.  Despite containing a variety of packages and possessing widespread 

capabilities in MD calculations, this work makes use of only two:  PWscf and CP. 

 

3.1.1 PWscf 

 

 The package PWscf is used for self-consistency calculations.  It can accommodate both 

norm-conserving and ultrasoft pseudopotentials in a variety of applications (Giannozzi, et al., 

2009).  In this work, however, the PWscf package is used only to produce figures of the ground 

state configuration of the input carbon cells.  This was done with XCrySDen, a program built to 

visualize crystal structures (Kokalj, 1999).  When used with QE, the XCrySDen program is 

compatible only with PWscf input and output.  
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3.1.2 CP 

 

 The CP package performs Car-Parrinello ab initio MD.  As described earlier, ab initio 

dynamics allow for detailed calculations of atomic motion and interatomic forces without the 

expensive self-consistent minimization at every time step (Parrinello, 1990).  CP performs 

simulations of both the NVE and NVT ensembles (Giannozzi, et al., 2009).  The NVE, or 

microcanonical, ensemble performs calculations for which the number of atoms within, volume 

of, and total energy of the system are constant.  The variables traditionally assigned to these 

parameters are N, V, and E, respectively.  Similarly, the NVT, or canonical, ensemble allows for 

calculations at constant temperature, T, while energy is allowed to fluctuate.  Simulations of both 

ensembles were utilized in this work. 

 Ultrasoft pseudopotentials are the only type used in the CP package.  The QE program 

provides pseudopotentials for a variety of elements, including carbon – only one of which is 

utilized in this work.  Shown results are for only the QE pseudopotential ‘C.pbe.rrkjus’ which 

makes use of the PBE generalized gradient approximation (GGA)1. 

 Running a CPMD simulation in QE consists of four primary steps.  Each step was formed 

and carried out via the guidelines outlined in the “CP User’s Guide” for Quantum ESPRESSO 

provided by Giannozzi, et al.  Sample input files for select steps are provided in the Appendix.  

The steps are summarized on the following page. 

 Apply Gram-Schmidt process:  The system is first defined using the various input 

parameters in the CP package.  Due to complex dynamics of electron wavefunctions within 

                                                 
1 In DFT, the GGA is a density functional used to estimate the exchange-correlation potential, Vxc.  It assumes the 

value of Vxc depends upon both the electron density, ρ, and its gradient, ∇ρ.  The GGA differs from the local density 

approximation (LDA), which assumes the electron density is uniform (zero gradient).  Both approximations entail 

complex mathematics which require the use of computers.  (Singh, 1994) 
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the 24-atom model, a brief (~50 time step) stage applies Gram-Schmidt orthonormalization 

to help the wavefunctions converge. 

 Reach the electronic ground state:  The system then reaches its electronic ground state.  

This is accomplished by applying steepest descent or damped dynamics to the electrons. 

 Relax the system:  Next, the nuclei, referred to as “ions,” are relaxed.  This is done by 

minimizing the forces on each ion using steepest descent, damping, or both until an 

equilibrium is reached. 

 Randomize ion positions:  Before molecular dynamics can be run, the ions are moved 

slightly from their equilibrium positions.  If not, no dynamics will occur, as the ions, and 

subsequently the system, are at equilibrium. 

 Run CPMD NVE Ensemble:  Prior to setting the temperature, the system is allowed to 

move via the Verlet algorithm under the constant energy NVE ensemble.  This step is 

carried out long enough to show convergence in system pressure. 

 Set the temperature and run CPMD:  The desired temperature is then ‘controlled’ by 

rescaling of ionic velocities.  This step is run long enough for the system to ‘thermalize’ at 

the given temperature.  Due to inherent coupling in the system, many steps are required to 

achieve thermal equilibration, especially at greater temperatures.  Similarly, the run will 

not end when a desired level of convergence is reached; rather the system will oscillate 

around the set temperature.  Similar to the previous step, the dynamics occur via the Verlet 

algorithm.  
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3.2 Input Data 

 

 Carbon unit cells were comprised of 24 atoms assigned arbitrary positions (via a random 

number generator).  The density of the cell is manipulated in one of two ways:  either the number 

of carbon atoms in the unit cell or the size of the cell lattice parameter was altered.  For consistency, 

only the lattice parameter was changed in this work.  Simulations were run at densities 1, 2.26, and 

10 grams per cubic centimeter (g/cm3), values which correspond to lattice parameters of 8.1, 7.4, 

and 6.9 Bohr, respectively.  Images of each unit cell, produced with the software XCrySDen, are 

shown below in Figure 3-1.  Included in the Appendix are hard-sphere depictions and descriptions 

of each unit cell. 

 Although an arbitrary QE input file has several subsections, called “namelists,” and 

subfields, “cards,” only those with parameters relevant to the work are discussed here.  Input files 

consist of the following namelists:  Control, System, Electrons, and Ions.  The Control namelist is 

used to define important convergence thresholds, the specific calculation being performed, and 

other logistical variables.  The structure of the unit cell is defined in the System namelist.  Desired 

dynamics for the electrons and nuclei are chosen in the Electrons and Ions namelists, respectively.  

Figure 3-1.  Reduced sphere unit cell depictions of carbon systems modeled in QE.  Shown are 

densities 1 (left), 2.26 (center), and 10 g/cm3.  Reproduced from (Kokalj, 1999). 
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The number, type, and position of atoms in the simulation are also defined in the Atomic Species 

and Atomic Positions cards.  (Giannozzi, et al., 2009) 

 Each step in a CP simulation runs the same calculation (“cp”), however each employs a 

different combination of variables to accomplish its goal.  Those especially relevant to each 

specific step are as follows: 

Gram-Schmidt ortho To apply Gram-Schmidt 

orthonormalization, the value is set to 

“Gram-Schmidt.”  Running a brief stage 

with these dynamics is sometimes necessary 

to facilitate convergence of electron 

wavefunctions. 

Electron 

relaxation1 

restart_mode Initially, the value is set to “from_scratch” 

to denote the beginning of a new trial.2 

 ndr, ndw The specific values of these variables are 

arbitrary and default to “50, 50.”  They are 

the memory slots from which input is read 

(ndr) and output is written (ndw).  While 

arbitrary, their sequence relative to 

succeeding runs is important.3 

 dt Due to the large system, 24 atoms, given 

random positions, a relatively small time 

step is required to run the simulation.  Given 

in picoseconds, time steps of “2.5d0” and 

“5.0d0” are used in this work. 

 celldm(1) This variable is the lattice parameter of the 

unit cell, aforementioned in this chapter. 

 ecutwfc The kinetic energy cutoff value for the 

electron wave function, ecutwfc, is 

determined within the suggested range of 

the pseudopotential used. 

 ecutrho Due to the use of ultrasoft pseudopotentials, 

the value of the kinetic energy cutoff for 

charge density and potential is set to 8-12 

times that of ecutwfc.  In this work, 12 was 

used. 

                                                 
1 An input file for a sample electron relaxation step is included in the Appendix.  For clarity, all variables relevant to 

this work are included. 
2 If Gram-Schmidt (GS) is applied beforehand, then the value is “restart.” 
3 Similarly, given GS is run initially, the value of “ndr” for the electron relaxation is equal to “ndw” of the GS step. 
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Electron 

relaxation 

(continued…) 

electron_dynamics Steepest descent dynamics are applied to 

reach the electronic ground state.  This 

variable is set to “sd” and unchanged until 

molecular dynamics are run. 

Cell (ion) 

relaxation 

restart_mode Because this step is a carry-over from the 

first, its restart mode is set to “restart,” 

meaning it reads its input from the output of 

the previous step. 

 ndr, ndw For the same reasons above, this step reads 

from the written slot of the electron 

relaxation and must write to a different slot.  

For example, if “50, 50” is used in the 

electron relaxation, “50, 51” is used in the 

cell relaxation.  This trend continues in each 

successive step. 

 ion_dynamics Nuclei are required to reach their 

equilibrium positions.  This is done by 

applying steepest descent (“sd”) or damped 

(“damp”) dynamics to the ions. 

 atomic mass The atomic masses used in the cell 

relaxation are lowered.  This does not affect 

the accuracy of the calculation but rather is 

used to accelerate it.  For example, the 

carbon atomic mass, 12.01 in all other steps, 

is lowered to 1.201 or 0.1201 to speed up 

ionic relaxation. 

Random 

displacement of 

ions 

ion_dynamics After the cell is relaxed, dynamics are 

returned to “none.” 

 tranp() To dictate that the ions be displaced, this 

variable is set to “.TRUE.”  The specific 

amplitude of the displacement is set using 

the variable amprp(). 

NVE ensemble electron_dynamics CP molecular dynamics is run by setting 

this variable to “verlet.” 

 electron_velocities At the start of a new molecular dynamics 

run, electron velocities are set to “zero.” 

 ion_dynamics Same as above, “verlet.” 

 ion_velocities Same as above, “zero.” 

NVT ensemble ion_temperature The temperature is set by rescaling ionic 

velocities, so a value of “rescaling” is 

assigned to this variable. 
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NVT ensemble 

(continued…) 

tolp The tolerance of velocity rescaling is 

measured in Kelvin.  When ionic 

temperatures differ from the value of 

“tempw” by more than the value of “tolp,” 

rescaling is applied.  The default value of 

100 K was used. 

 tempw The temperature of the system, in Kelvin.  

Important to note:  The term average 

implies that the temperature of the system 

oscillates about this assigned value while 

the overall average measured will equal that 

of tempw. 
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3.3 Post-Processing 

 

 Equation of state parameters are set by defining the input mass, volume, and temperature 

and, the resulting system pressure is in turn calculated.  A single CP run produces a variety of 

output .txt files that display given variables at every time step of the simulation.  Such files provide 

a wealth of information, including atomic positions (.pos), atomic forces (.for), energies (.evp), 

and relevant Nosé-Hoover variables (.nos).  The energies output file gives the potential, kinetic, 

and total energies of the system as well as the temperature of and pressure within the system.  

Results were quickly plotted with the helpful software package gnuplot, although more detailed 

charts were produced using Microsoft Excel.  Examples of which are given in Chapter 4.  
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Chapter 4:  Results 

4.1 Carbon Isochores 

 

 Each carbon isochore was simulated at temperatures up to 10,000 K, although the 10 g/cm3 

cell was also modeled up to 20,000 K.  Figures 4-1 and 4-2 show plots of cell temperature and 

pressure versus simulation time – given in picoseconds (ps) (1 ps = 10-12 s) – of the 10 g/cm3 cell 

modeled at 10,000 K.  The applied temperature is instantaneously reached, and oscillations about 

it (controlled via the value of parameter “tolp”) are clearly observed in the plots.  In contrast, the 

pressure increases drastically before slowing its increase and not completely converging.  As with 

the temperature, pressure oscillations are also present and easily observed.  Each trial was executed 

in the following manner: following the microcanonical NVE stage (conducted at 0 K), the desired 

temperature was applied and the system allowed approximately 50 picoseconds to equilibrate. 

Figure 4-1.  Temperature versus time for carbon cell of density 10 g/cm3 modeled at 10,000 K.  

Produced using QE CPMD output .evp files and Microsoft Excel. 

0

2,500

5,000

7,500

10,000

12,500

0 10 20 30 40 50

T
em

p
er

at
u
re

 (
K

)

Time (ps)



31 

 

Similar results were observed across all simulated temperatures and for both 1 and 2.26 g/cm3 

isochores.  

Figure 4-2.  Pressure versus time for carbon cell of density 10 g/cm3 at 10,000 K. 
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4.2 Discussion 

 

 Because the pressure continues to rise (diverge), reliable estimates cannot be made.  Thus 

estimations of system pressure are not provided in this work.  However, the results of this work 

may still be compared to those encountered in the literature1, from which they substantially differ.  

For example, in their work, Bonitz, et al. presented quantum MD results for a carbon cell of density 

10 g/cm3.  Their 32-atom system employed a projector augmented-wave (PAW) pseudopotential 

and the Andersen thermostat in the PWscf package of QE.  At 10,000 K, Bonitz, et al. predicts a 

pressure of ~1,700 GPa, while this work shows pressures increasing beyond 33,000 GPa, differing 

by a factor of about 20.  This deviation factor increases with temperature and is consistent for all 

of the isochores simulated in this work.  Furthermore, results similar to those of Bonitz, et al. were 

produced by Militzer, et al. and Benedict, et al., both of which utilized the Vienna Ab initio 

Simulation Package (VASP) code and PAW pseudopotentials to model their systems. 

 There are several procedural differences between this work and those of the literature, but 

it is difficult to ascertain the exact cause of the stark difference in pressure behavior.  While the 

numbers of atoms in each unit cell are not the same across each work, it is unlikely that this variable 

would create such different results, as the systems used various numbers of atoms (32 in Bonitz, 

et al. and 64 in Benedict, et al.) but generated similar data.  Additionally, results in literature are 

produced using various DFT-MD codes, with consistent EOS data produced in both VASP and 

QE.  Perhaps the deviation arises from the type of MD executed.  Bonitz, et al. follows the method 

outlined by Zhang, et al. which applies Born-Oppenheimer MD to systems at WDM-like 

temperatures.  The deviation of Car-Parrinello MD from the BO method is discussed in Chapter 

                                                 
1 MD simulation results from this work are compared to warm dense carbon EOS data given by Militzer, et al. 

(2021), Bonitz, et al (2020), and Benedict, et al. (2014). 
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2, and it is possible that the fictitious parameters used by CPMD in this work produce results that 

so significantly differ from those by traditional BOMD.  However, the VASP code utilizes ab 

initio MD, which are similar to those in the CP package of QE, and yields consistent data. 

 Furthermore, Bonitz, et al. sets the temperature by applying the Andersen thermostat, 

which is not an option for temperature control in the CP package.  Although CPMD in QE offers 

application of the Nosé-Hoover (NH) thermostat, rescaling of ion velocities was employed as the 

chief means of temperature control in this work.  Preliminary simulations utilizing the NH 

thermostat showed smooth thermal equilibration at temperatures below 500 K but severe 

fluctuations (up to ±25 percent of the target temperature) at higher temperatures.  In contrast, 

velocity rescaling works by applying some factor to all particle velocities.  Dubbed the “rescaling 

factor,” it is calculated by forcing the total kinetic energy to equal the average kinetic energy of 

the system at the target temperature (Bussi, Donadio, & Parrinello, 2007).  Figure 4-4 depicts two 

simulations of carbon at 10 g/cm3 and 20,000 K, one which applied the NH thermostat, and the 

other velocity rescaling.  Figure 4-5 shows the corresponding pressures of both systems.  
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Figure 4-4.  Temperature of 10 g/cm3 isochore simulated at 20,000 K controlled via velocity rescaling 

(red) and the Nosé-Hoover thermostat.  The simulation, actually carried out for ~50 ps, is magnified to 

better show the fluctuation. 
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 As is observed, despite the much different temperature fluctuation between the two 

methods, both velocity rescaling and the NH thermostat produce comparable results.  The figure 

shows only the initial 0.5 ps of the simulation, but the trends in both temperature and pressure are 

consistent throughout its entirety.  Therefore, given this and for other, aforementioned reasons, it 

is more probable that the discrepancy between this work and the accepted literature arises from 

either the setup of the carbon unit cell and or the procedure used in each simulation.  As already 

noted, the number of atoms chosen in this work, 24, is lower than that of any of the carbon cells 

encountered in the literature.  Similarly, unlike the PAW pseudopotentials used in the literature, a 

US pseudopotential was used.  Interestingly, the systems were successfully modeled at 

temperatures as high as 500 K, showing smooth convergence in both temperature and pressure.  

Each carbon isochore successfully relaxed and experienced issues only at high temperatures set in 

the canonical NVT ensembles.  Therefore, the instability likely arises from large, diverging 

electronic kinetic energies, and resulting pressures, produced during this stage. 
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Figure 4-4.  Temperature of 10 g/cm3 isochore simulated at 20,000 K, controlled via velocity rescaling 

(red) and the Nosé-Hoover thermostat. 
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 As mentioned previously, the computation time required by the simulations placed further 

limits on the completeness of the results.  Due to time constraints, carbon was not simulated at 

greater temperatures within both a larger representative range of typical WDM (up to 10 million 

K) and the applicable range of DFT-MD codes (up to 100,000 K).  Part of this limitation is 

attributed to the small time steps needed to model the 24-atom cell.  Generally, the larger the 

system, the less noise present in DFT-MD simulations of WDM.  Simpler models, say of 8 or 16 

atoms, can be modeled at larger time steps and, as such, enable quicker simulations but also 

produce larger variation in results.  However, this effect is reversed for systems which contain 

more atoms.  In such cases, much smaller time steps, usually on the order of femtoseconds (fs; 

equal to 10-12 s or 10-3 ps), are required and were observed in the aforementioned literature.  

Unfortunately, modeling systems of increasing sizes, say 32, 64, or even 100+ carbon atoms, with 

such miniscule time steps necessitated greater computing power and resources that were beyond 

the ability of this work.  
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Conclusions 

 

 The results presented in this work, EOS data of warm dense carbon, do not reproduce those 

presented in the literature.  This work utilized a different procedure – 24-atom cell using Car-

Parrinello MD in Quantum ESPRESSO’s CP package – than various encountered in the literature 

used to model such carbon systems.  Whether from errors in unit cell setup, errors in the CPMD 

procedure in QE, or errors from other sources, resulting system pressure does not converge and is 

shown to be at least 20 to 30 times greater than that accepted in literature for solid carbon in the 

warm dense range.  Furthermore, the results of this work also show the significance of the 

considerable computational power required by DFT-MD simulations.  The calculations executed 

by DFT-MD software are themselves very complex and, when needed for systems with a large 

number of atoms, place a substantial burden on processing ability.  Not only does increased 

computational power make quicker execution of simulations and generation of results, but likewise 

the formation of cause-and-effect relationships between variables and the experimental process as 

a whole. 

 Future goals of this research are to design and simulate carbon systems that replicate the 

results observed in the literature.  Although it will continue to modify the 24-atom model 

introduced here, future work will also utilize the different cells described in the literature.  In 

particular, the carbon system modeled by Bonitz, et al. – a 32-atom cell using Born-Oppenheimer 

MD in QE’s PWscf package – is a fitting candidate.  Assuming comparable results are consistently 

reproduced, further simulations will be carried out to continue the formation of an accurate EOS 

for carbon in the warm dense region. 
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 Similar DFT-MD simulations for more, increasingly complex elements and substances will 

develop from the groundwork of simulations of carbon, like those entailed in this work, and other 

simple systems.  Likewise, reliable EOS parameters will enable better, more effective design of 

materials to be utilized in the warm dense range, particularly those employed in the defense, 

mitigation, and or handling of nuclear weapons and other highly energetic sources.  
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Appendix 

Sample input file for ground state relaxation: 

# Derek J Schauss 

# Equations of State for Warm Dense Carbon from Quantum ESPRESSO 

# 

# Virginia Commonwealth University 

# MS Mechanical and Nuclear Engineering - Graduate Thesis 

# via DTRA Grant No. DTRA1-19-1-0019 

# 

######################################################################## 

# Step 0 - Electron Ground State Relaxation 

# Cell is comprised of 24 carbon atoms assigned random positions 

# Time step set sufficiently low enough to enable electron orthogonalization 

# Lattice parameter is 14.782… (density of 1.0 g/cc) 

# 

 &CONTROL 

    title = 'Carbon Electron Relaxation', 

 calculation = 'cp', 

 restart_mode = ‘restart, 

 ndr = 50, 

 ndw = 51, 

 nstep = 50000, 

 iprint = 10, 

 isave = 100, 

 tstress = .TRUE., 

 tprnfor = .TRUE., 

 dt = 5.0d0, 

 etot_conv_thr = 1.0d-9, 

 ekin_conv_thr = 1.0d-7, 

 prefix = 'C', 

 pseudo_dir = './pseudopotentials/', 

 outdir = './out/' 

 / 

 &SYSTEM     

    ibrav = 0, 

 celldm(1) = 14.78242, 

 nat = 24, 

 ntyp = 1, 

 ecutwfc = 18.0, 

 ecutrho = 216.0, 

 nr1b = 10, 

 nr2b = 10, 

 nr3b = 10 

 / 

 &ELECTRONS 

 emass = 300.d0, 

 emass_cutoff = 2.5d0, 

 electron_dynamics = 'sd', 

 electron_velocities = 'zero', 

 electron_temperature = 'not_controlled' 

 / 

 &IONS 

 ion_dynamics = 'none', 
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 tranp(1) = .FALSE., 

 ion_velocities = 'zero', 

 ion_temperature = 'not_controlled' 

/ 

ATOMIC_SPECIES 

 C 12.011 C.pbe-rrkjus.UPF 

ATOMIC_POSITIONS alat 

 C 0.280356011203167 0.367021423871150 0.455867571703236 

 C 0.776916976099006 0.765280414054604 0.297958039650056 

 C 0.676946851594121 0.513295011505302 0.061234084722128 

 C 0.215082535890976 0.320584711916316 0.398555882769342 

 C 0.606970164909349 0.658492396428358 0.807595782063456 

 C 0.317943310664410 0.227495130558507 0.464578409614677 

 C 0.461762899690624 0.908511069868140 0.092519199795500 

 C 0.912901986514936 0.381194802707033 0.627956426319524 

 C 0.071581124549913 0.810918315311952 0.147686651376392 

 C 0.189392103541370 0.956470220865591 0.041701966115306 

 C 0.958193366252041 0.714436712042692 0.238590222336978 

 C 0.905803343249211 0.657343796156498 0.518771923981562 

 C 0.204823877108311 0.494477333823638 0.088897747003837 

 C 0.048615394358920 0.073993890211909 0.943099528170713 

 C 0.086553133178863 0.382447151696649 0.703534312926406 

 C 0.883729508070553 0.458197731289196 0.673109210203189 

 C 0.238417298040238 0.683838667051464 0.074207380965819 

 C 0.528051565911777 0.717464897124428 0.504761115973874 

 C 0.922369822310433 0.686708382133930 0.218126046993025 

 C 0.434976004582511 0.575436894076801 0.576627134251442 

 C 0.140691447446752 0.647416847084907 0.700314067403315 

 C 0.304339895842419 0.169526164398671 0.909813176343646 

 C 0.210251179400597 0.799140578151249 0.034574193559873 

 C 0.126089923272393 0.654274212177481 0.869317392598200 

CELL_PARAMETERS alat 

 1.0 0.0 0.0 

 0.0 1.0 0.0 

 0.0 0.0 1.0 
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Hard-sphere unit cell depictions of diamond (top left), graphite, and carbon cells of density 6.0 

(bottom left), 8.0 (bottom center), and 10.0 g/cm3: 

 

 

Relevant parameters for each 24-atom carbon unit cell. 

Density (g/cm3) Lattice parameter (bohr) Lattice parameter (Å or10-8 cm) 

1.0 14.78242 7.82256 

2.26 11.26443 5.96091 

10.0 6.86139 3.63091 
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