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GENETICS AND ALCOHOL INTERVENTIONS IN YOUTH 

Zoe Elizabeth Neale, M.S. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University 
 
Virginia Commonwealth University, 2021 
 
Director: Danielle Dick, Ph.D. 
Commonwealth Professor 
Departments of Psychology, and Human & Molecular Genetics 
 
 
 
 Alcohol is the most commonly used substance among youth, and risky alcohol use is 

associated with harmful consequences such as accidents, academic consequences, and physical 

and emotional health problems. Alcohol use disorders are approximately 50% heritable, yet most 

efforts to prevent and intervene upon youth alcohol use focus only on environmental factors. 

Furthermore, current prevention and intervention programs tend to have modest effects and are 

not uniformly effective for all individuals. Gene-by-intervention (GxI) studies offer an 

opportunity to expand current understanding of interventions by examining whether underlying 

genetic risk may contribute to differential program effects. Much of the current GxI literature on 

alcohol and substance use outcomes is limited in scope due to reliance on candidate gene 

methods, focus on youth prevention samples, and lack of understanding of mediators or 

mechanisms through which genetics may contribute to differential intervention effects. To 



 

	 viii 

address these gaps in the research, the present study aimed to 1) determine if polygenic risk for 

externalizing problems moderated the effectiveness of an alcohol intervention, and 2) to examine 

whether peer deviance and drinking motives mediated intervention effects for those at greater 

genetic risk. To explore whether findings were consistent across different types of interventions 

and developmental timing, the present study used data from two samples: a college prevention 

intervention program conducted with a genetically informed sample (Spit for Science; S4S), and 

a middle school-based prevention program targeting adolescent problem behavior with 

longitudinal follow up and genetic data (Project Alliance; PAL). In the S4S sample, multilevel 

growth curve analyses showed no evidence of interactions between polygenic risk for 

externalizing problems (EXT PRS) and the intervention on alcohol consumption and alcohol use 

disorder (AUD) symptoms across time; however, there was evidence of short-term GxI effects 

on AUD symptoms in post-hoc analyses. Individuals with lower EXT PRS in the intervention 

condition reported significantly greater reduction in AUD symptoms than individuals with higher 

EXT PRS and control. In the PAL sample, we observed no significant GxI effects on trajectories 

of alcohol consumption across time or AD symptoms. There was also no evidence of mediation 

via peer deviance or drinking motives in either sample. Due to limitations of statistical power, 

the lack of replication across studies, and the possibility of measurement error, the significant 

GxI effects in S4S are viewed conservatively. Larger, more well-powered studies in diverse 

samples are needed to explore the presence or absence of very small (f2 = .005) GxI effects and 

determine whether genetics can be harnessed to develop novel interventions to better address 

alcohol-related problems. Opportunities for attaining larger, more diverse samples are discussed. 
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Introduction to the Study 

Alcohol is one of the most easily accessible and commonly used substances in the United 

States (Schulenberg et al., 2017). Despite known associations between alcohol consumption and 

costly health consequences, alcohol use and misuse remains prevalent (Griswold et al., 2018). 

Alcohol misuse is particularly concerning in emerging adulthood, during which peak use of 

alcohol occurs and heavy drinking is often normalized (Grant et al., 2017).  Emerging adulthood 

represents a period of substantial transition and increasing independence, as well as a confluence 

of psychosocial and biological factors that predispose individuals in this age group to risky 

behavior (Arnett, 2000; Sussman & Arnett, 2014).  Among individuals 18-25 years old, 57% 

report drinking alcohol in the past month and more than a third (38.4%) endorsed past month 

binge drinking (Schulenberg et al., 2018). Most college and non-college attending young adults 

report having been drunk, and an estimated 10.7% of individuals age 18-25 met criteria for an 

alcohol use disorder (AUD) in 2016 (Schulenberg et al., 2017; Substance Abuse and Mental 

Health Services Administration, 2017). Rates of AUDs are highest among emerging adults, with 

approximately 7% of 18-29 year-olds meeting criteria for a severe AUD (Grant et al., 2004, 

2015).  Risky alcohol use is associated with immediate and long-term consequences to the 

individual and the larger community, including costly personal effects (health, emotional 

wellbeing, relationship problems, and academic success) and community problems (accidents, 

assault, crime) (Arria et al., 2013; Hingson et al., 2009; Wechsler et al., 2002; White & Hingson, 

2013). Alcohol use behaviors that develop in young adulthood set the stage for patterns that last 

throughout adulthood (Gotham et al., 1997; Jackson et al., 2001). Thus, adolescence and young 
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adulthood are important developmental periods in which to focus prevention and intervention 

efforts.  

Prevention and Intervention Methods 

Existing methods for prevention and intervention. Evidence-based methods for 

preventing AUDs and alcohol-related harms typically involve school-based, family-based, or 

multi-component interventions for adolescents and brief, motivational interventions with 

normative feedback for young adults (Smit et al., 2008; Spoth et al., 2008; Stigler et al., 2011). 

Schools provide an efficient means of accessing large numbers of youth through universal 

intervention programs, as well as targeted programs for high-risk students. School-based 

programs for youth are most commonly delivered during middle school, capitalizing on the 

period during which many youth have their first experiences with alcohol and other substance 

use. The most effective programs are delivered across multiple years, target multiple behaviors, 

and incorporate social norms surrounding peer substance use, skill-building, interactive activities 

(e.g., role play), peer leaders, and culturally and developmentally appropriate content 

(MacArthur et al., 2018; Stigler et al., 2011). Fewer programs are delivered in elementary school, 

but those that do typically focus on the prevention of externalizing behaviors and other risk 

factors for future substance misuse (Spoth et al., 2008; Stigler et al., 2011).  Despite the 

prevalence of alcohol use among high school students, there are also few programs that address 

alcohol misuse among high schoolers (Spoth et al., 2008).   

Family-based interventions work with either parental figures exclusively or parental 

figures and children together to enhance family management, improve bonding, build prosocial 

skills, increase monitoring and communication, and minimize aggressive/problem behaviors 

(Griffin & Botvin, 2010; Lochman & van den Steenhoven, 2002). Parenting skills and family 
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bonding appear to be important active ingredients in family-based interventions, but 

effectiveness is often limited by challenges engaging parental figures of the most high-risk youth 

(Griffin & Botvin, 2010). Two recent systematic reviews of family-based prevention programs 

observed little to no effect on frequency, quantity, or prevalence of alcohol use in youth, with 

small effects emerging only for universal programs and those that target racial/ethnic minority 

groups (Gilligan et al., 2019; MacArthur et al., 2018).  

Multi-component programs deliver intervention content across multiple settings, 

combining elements of school and family-based interventions to broaden the impact of 

programming. One such program, named FAST (Families and Schools Together) Track, targets 

disruptive/aggressive students to prevent conduct problems and externalizing behavior into 

adulthood (Conduct Problems Prevention Research Group, 1992). FAST Track implements a 

comprehensive program comprised of universal school curriculum, tutoring, home visits, group 

skills training, mentoring and individual services for children in FAST Track.  Systematic review 

of multi-component interventions suggest small effects that decrease the burden of alcohol use 

problems over time (Foxcroft & Tsertsvadze, 2011). 

Among college students brief motivational interventions (BMIs), personalized normative 

feedback (PNF), and skills training are the most commonly used empirically-supported 

approaches for preventing risky alcohol use (Cronce & Larimer, 2011; Larimer & Cronce, 2007).  

BMIs typically involve an assessment of alcohol use behaviors, beliefs about risks and benefits 

of alcohol, and goals for college, followed by the delivery of in-person or computerized feedback 

in a motivational interviewing (MI) style.  The feedback aims to elucidate discrepancies between 

drinking behaviors and student goals for college, and to increase motivation to change using a 

non-judgmental, client-centered tone. PNF involves collecting information about an individual’s 
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alcohol use behaviors and providing feedback about how one’s own drinking compares to others 

in their population and healthy standards for alcohol use (Lewis & Neighbors, 2006).  PNF 

operates by correcting misperceptions (usually overestimates) of peer rates of drinking, which 

results in small but consistent reductions in alcohol use behaviors in college students (Carey et 

al., 2007; Larimer & Cronce, 2007; Lewis & Neighbors, 2006). Skills training employs strategies 

from cognitive behavioral therapy to help individuals identify personal drinking cues, build drink 

refusal skills, set limits, and manage triggers such as stress and depression (Baer et al., 1992; 

Kivlahan et al., 1990). Across reviews, brief alcohol interventions demonstrate small effects on 

alcohol consumption in the short-term (less than 1 year), but most effects dissipate over time 

(Cronce & Larimer, 2011; Huh et al., 2015; Larimer & Cronce, 2007; Samson & Tanner-Smith, 

2015).  

 Limitations of prevention and intervention.  Substantial resources have been dedicated 

to the design, evaluation, and implementation of alcohol prevention programs, yet small effect 

sizes persist in both adolescent and young adult samples (Huh et al., 2015; MacArthur et al., 

2018; Sandler et al., 2014; Strøm et al., 2014). Alcohol prevention and intervention programs 

also are not equally effective for all individuals, but the reasons driving differential response 

have not yet been resolved.  A prominent example of this was Project MATCH (Matching 

Alcoholism Treatments to Client Heterogeneity), a longitudinal, multi-site clinical trial of three 

psychosocial interventions for alcohol use disorders that attempted to identify factors to match 

patients to the most effective program (Project MATCH Research Group, 1993). Results showed 

little evidence that any specific patient-level factors (e.g., sex, anger, alcohol dependence versus 

abuse) predicted better response in one treatment over another (Project MATCH Research 

Group, 1997).  In prevention research, much of the research on improving outcomes has focused 
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on implementation and program fidelity, with less attention to individual, person-level factors 

that may differentially influence both susceptibility to alcohol-related problems and 

prevention/intervention outcomes (Belsky & van Ijzendoorn, 2015).  The incorporation of 

biological factors, such as genetic risk, represents an opportunity to increase understanding of 

why some individuals respond to prevention programming and others do not (Dick & Hancock, 

2015).   

The Genetics of Alcohol Use and Dependence 

History of the genetics of alcohol use and dependence. Genetics play an important role 

in the development of alcohol problems. The genetics of alcohol were first explored through twin 

and family data, which allow researchers to parse the effect of genetics versus environmental 

influences on alcohol use behaviors (Schuckit, 2009). Through twin studies, which compare 

concordance rates for a given outcome between monozygotic twins (who share all of their 

genetic variance) and dizygotic twins (who share on average 50% of their genetics), researchers 

have established that the development of AUDs is partly due to genetics rather than environment 

alone (Tawa et al., 2016). Alcohol use disorders are approximately 50% heritable, meaning at 

least half of the liability for AUDs is due to genetic factors (Verhulst et al., 2015).  Furthermore, 

twin and family studies demonstrated that the genetic risk for substance use disorders (including 

AUDs) is largely conveyed through a broad vulnerability to all SUDs (and related behaviors) 

with much smaller contributions for single substances  (Kendler et al., 2003; Kendler, Jaffee, et 

al., 2011).  Extensive efforts are now underway to identify the specific genetic factors that 

contribute to risk for alcohol misuse and AUDs (Clarke et al., 2017; Hart & Kranzler, 2015; 

Kranzler et al., 2019; Liu et al., 2019; Walters et al., 2018).  
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Methods for gene identification have progressed substantially over the past two decades, 

due in part to advancements in genetic technology and our understanding of the human genome 

(International HapMap Consortium, 2003; Lander et al., 2001).  Genotyping was previously very 

expensive and there were very few known genetic markers across the genome.  This limited 

genetic analyses to linkage and candidate gene studies of known polymorphisms.  As the science 

progressed, it became clear that thousands of genetic variants (rather than individual candidate 

genes) influence alcohol misuse and related emotional and behavioral traits (Kendler et al., 2003; 

Krueger et al., 2002). Genome-wide association studies (GWAS) were developed to better 

address the polygenic nature of complex traits and behaviors. In GWAS, researchers test for 

associations between millions of SNPs and an outcome of interest, encompassing genetic 

influence across the entire genome.  To accommodate multiple testing effects, very large samples 

and stringent p-value thresholds are used to obtain adequate statistical power (Hong & Park, 

2012). 

Polygenic scores capitalize on genome-wide data from GWAS to account for the many 

variants involved in genetic risk for alcohol and substance use (Salvatore et al., 2014). These 

scores are created by using large, independent samples to identify the genome-wide SNPs 

associated with an outcome of interest at a more liberal p-value threshold than typically required 

for GWAS significance (International Schizophrenia Consortium et al., 2009). The standard 

significant p-value threshold for GWAS is p < 5 × 10−8, whereas for polygenic scores the p-value 

threshold is adjusted based on posterior effect sizes for each SNP in the GWAS summary 

statistics (Ge et al., 2019; So & Sham, 2017).  Given that polygenic scores include a mixture of 

true genetic signals and noise, using a more liberal p-value threshold allows for inclusion of a 

larger amount of the true genetic signals (Maher, 2015). The number of alleles for each identified 
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SNP is weighted according to effect size for a given outcome established in the GWAS. 

Researchers then use the weighted values from the independent sample to create polygenic 

scores in their own samples. Higher polygenic scores indicate a greater genetic predisposition for 

the outcome of interest. As sample sizes for GWAS discovery samples increase, the reliability of 

polygenic risk prediction also increases (Maher, 2015). With the decreasing cost of genotyping 

and collaborative efforts of consortia to combine samples, polygenic scores are likely to have 

increasing utility in understanding how genetic predispositions may relate to differential 

response to prevention and intervention programming. 

Gene-environment interaction. Although an individual’s genetic code is set at 

conception, the relative impact of genetic influence on behavioral outcomes can vary as a 

function of the environment. Gene-environment interaction (GxE) studies emerged as a way to 

understand how genes and environment dynamically interact to contribute to the development of 

various outcomes (Kendler, Jaffee, et al., 2011). The nature of GxE interactions can be 

challenging to interpret, and thus are often illustrated through graphical depictions. As discussed 

by Dick & Kendler (2012), a “fan-shaped” GxE interaction (Figure 1A) might occur when there 

is little difference in a given outcome under protective environments as a function of genotype; 

however, under increasingly harmful environments, the difference between genotypes becomes 

more apparent.  Fan-shaped GxE interactions are often associated with the diathesis-stress 

framework, which posits that genetic influences are more pronounced under increasingly harmful 

environments (Dick, 2011; Monroe & Simons, 1991).  Fan-shaped interactions might also result 

from differing effect of genotype under increasingly positive environmental experiences, a 

phenomenon characterized in the vantage sensitivity model (Pluess & Belsky, 2013).  Another 

type of interaction is the “cross-over” interaction (Figure 1B), in which those who are most at 
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risk at one end of the environmental spectrum are least at risk at the other end of the spectrum, 

and vice versa.  Cross-over interactions underscore the importance of measuring GxE 

interactions because the effect of genetic risk might otherwise be masked (Belsky et al., 2007; 

Dick & Kendler, 2012).  The differential susceptibility hypothesis provides a framework for 

understanding cross-over interactions, suggesting that some individuals are more sensitive to 

both promotive and harmful environments based on their genotype (Belsky & Pluess, 2009). 

 

Figure 1. Graphical depiction of gene-by-environment interactions. 

 

Note:  Graphical depiction of gene-by-environment interactions. A) Fan-shaped interaction of the 

effect of genetic risk on an outcome in intervention and control participants. B) Cross-over 

interaction of the effect of genetic risk on an outcome in intervention and control participants. 

Although GxE models are useful for understanding the way biological and contextual 

factors come together to influence alcohol use outcomes, they also present some challenges. A 

common concern with GxE research is that genes and environment are often correlated (rGE), 

which confounds the interpretation of an interaction relationship between these factors (Jaffee & 

Price, 2007). Gene-environment correlation can occur through three different processes: passive, 
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evocative, and active rGE (Plomin et al., 1977; Scarr & McCartney, 1983). Passive rGE refers to 

the relationship between the genotype passed on from a biological parent and the rearing 

environment determined by the biological parent. Evocative rGE refers to the relationship 

between an individual’s behavior (influenced by genetics) and the response evoked from 

individuals in their environment. Active rGE occurs when individuals self-select into their 

environments as a function of their genotype. For example, individuals with greater genetic 

predisposition for sensation-seeking self-select into peer groups with higher alcohol use, and in 

turn consume more alcohol (Yanovitzky, 2006). The question becomes whether genetic 

predisposition for sensation-seeking or exposure to heavy-drinking peers is the causal factor 

driving increased alcohol use. Ultimately, both are important, but the influence of heritable traits 

on both risky environments and the outcome of interest can reduce the ability to discern causal 

effects in GxE models. Scientific designs that permit random assignment to environments (i.e., 

GxE experiments) can resolve issues of rGE, and provide a clearer understanding of the way 

genetic and environmental factors come together to influence complex behaviors (van Ijzendoorn 

et al., 2011).   

Gene-by-Intervention Studies 

Gene by intervention (GxI) interaction studies offer one way to circumvent the 

limitations of rGE by experimentally manipulating the environment through random assignment 

to treatment conditions. When individuals are randomly assigned to conditions, their 

environment and genotype are inherently uncorrelated. Thus, GxI studies offer a strong design 

through which to understand how genetic factors may play a role in differential response to 

prevention and intervention. Although there are other epidemiological approaches to account for 

rGE, such as Mendelian Randomization (Davey Smith & Ebrahim, 2003), incorporating genetics 
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into randomized-controlled designs offer the most feasible opportunity to bring together genetics 

and interventions. Given the heritability of about 50% for AUD, it seems that genetics may 

indeed be important to consider in the emergence of alcohol-related problems after exposure to 

preventive programming. Some researchers have suggested that without the inclusion of genetics 

into intervention research, intervention findings may be misinterpreted by “overestimating it for 

some (less susceptible) individuals and underestimating it for other (more susceptible) 

individuals,” (van Ijzendoorn et al., 2011).   

The earliest GxI studies emerged in the mid-2000s, when candidate gene studies were 

growing in popularity.  One of the first GxI studies found that a parenting intervention was 

effective for reducing externalizing behavior in children with the dopamine D4 receptor (DRD4) 

7-repeat allele, but not in children without the DRD4 7-repeat allele (Bakermans-Kranenburg, 

Van IJzendoorn, Pijlman, Mesman, & Juffer, 2008).  Subsequently, a series of papers found a 

similar pattern of results with individuals carrying specific polymorphisms on SLC6A4(5HTT) 

and DRD4 that conveyed risk for higher alcohol use under control conditions, but predicted 

enhanced preventive effects (i.e., lower alcohol use) under intervention conditions (Beach et al., 

2010; Brody, Beach, et al., 2009; Brody, Chen, et al., 2009). The evolving popularity of the GxI 

design spurred two meta-analyses of GxE experimental studies (including GxI) focused on 

evidence for the differential susceptibility hypothesis. The authors of these papers observed 

relatively consistent evidence that certain genotypes predicted poorer outcomes under control 

conditions and improved outcomes under intervention conditions across a range of psychological 

outcomes (Bakermans-Kranenburg & van IJzendoorn, 2015; van Ijzendoorn & Bakermans-

Kranenburg, 2015). However, most of these studies relied on candidate gene methods, which are 

no longer consistent with the state of the science for genetic research (Auwera et al., 2018; 
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Border et al., 2019; Johnson et al., 2017). The limitations of candidate gene methods are 

discussed further below.     

GxI studies of alcohol use. Although GxI studies have grown in popularity, there are to 

date fewer than 20 GxI studies that focus on substance use outcomes (Neale et al., 2020).  

Systematic review of GxI studies on substance use outcomes identified total of 14 papers with 

significant GxI effects on alcohol use outcomes, including studies that used composite substance 

use scores.  Among these studies, a variety of different genetic markers (e.g., SNPs, variable 

number tandem repeats) were found to moderate the effects of prevention and intervention 

programs.  Most studies reported that individuals with higher genetic risk had higher alcohol use 

in control conditions and lower use in intervention conditions. The most commonly studied 

genetic variants were on DRD4 and the 5-HTT linked polymorphic region on SCL6A (5-

HTTLPR). DRD4 is responsible for coding amino acids in the dopamine D4 receptor (McGeary, 

2009a). 5-HTTLPR is a promoter sequence involved in the expression of SCL6A, which codes 

for serotonin transporters (Heils et al., 1996; Homberg & van den Hove, 2012).  Improved 

intervention response was observed in individuals with the DRD4 7-repeat allele in four studies 

(Beach et al., 2010; Brody et al., 2014, 2015; Cleveland et al., 2015).  The pattern of results for 

5-HTTLPR studies was less consistent, with some studies showing the highest rates of substance 

misuse among short allele carriers in the control condition (Schlomer et al., 2017), while another 

study found that long allele carriers in the control had the highest rates of alcohol initiation and 

drunkenness (Cleveland et al., 2015). A third study found that individuals with higher cumulative 

genetic risk (including higher risk for short allele carriers on 5-HTTLPR) had more days 

abstinent after a combined batterer intervention program + brief alcohol intervention compared 

to standard batter intervention alone (Stuart et al., 2016). However, given that the 5-HTTLPR 
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genotype was collapsed into a cumulative genetic score along with a variant on MAOA, it is 

difficult to determine the degree to which 5-HTTLPR drove the GxI effects. The differing 

findings and lack of replication across 5-HTTLPR studies are characteristics of some of the 

broader limitations of candidate gene studies.  

Limitations and opportunities in GxI research. 

Measurement of genotype. Almost all GxI studies of alcohol and other substance use 

outcomes have used candidate gene methods for measurement of genotype.  Although once 

believed to be the key to understanding genetic influences on complex behaviors, candidate gene 

studies are now known to be quite problematic (Latendresse et al., 2018a; Musci & Schlomer, 

2018a).  Across review studies, candidate gene studies have been characterized as difficult to 

interpret, underpowered, susceptible to publication bias, and rarely replicable across studies 

(Dick et al., 2015; Duncan & Keller, 2011). Candidate genes were often selected for studies 

based on hypotheses about their biological role in substance use and/or addictive behaviors. 

However, results of genome-wide association studies have rarely supported the hypothesized role 

of these genes (Dick et al., 2015; Duncan & Keller, 2011). Alcohol dehydrogenase (ADH) gene 

variants are to date one of the only candidate genes with reliable evidence for a relationship with 

alcohol dependence in genome-wide association studies (Clarke et al., 2017; Tawa et al., 2016; 

Walters et al., 2018). Substance use behaviors are also polygenic in nature, such that they are 

influenced by a variety of genetic markers (Kendler et al., 2003; Krueger et al., 2002). Aside 

from the ADH genes, which code for metabolism of alcohol, it was overly optimistic to hope that 

individual genetic variants would produce large effects (Dick et al., 2018). As such, candidate 

gene studies are insufficient to address the questions about the relationships between genetic 

predispositions and response to prevention and intervention programs. 
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Three existing GxI studies of substance use outcomes have used polygenic scores, and 

only one of those studies examined alcohol use behaviors as an outcome (Kuo et al., 2019; Musci 

et al., 2015, 2018).  Musci et al. examined whether polygenic scores for smoking quit success 

(Uhl et al., 2010) affected the results of a school-based prevention program on age of first 

tobacco use (Musci et al., 2015) and marijuana use (Musci et al., 2018). However, these studies 

used a discovery sample of 550 European-Americans to derive their polygenic scores, which we 

now know is severely underpowered (Hong & Park, 2012).  Current standards estimate that 

samples in the hundreds of thousands are necessary to reliably identify genetic variants 

associated with complex behaviors (Dudbridge et al., 2018).  

Kuo et al. (2019) published first paper to examine alcohol use outcomes in a GxI 

framework using polygenic scores derived scores from a published GWAS study of alcohol 

dependence in of 16,087 European American subjects was published in 2019 (Gelernter et al., 

2014a; Kuo et al., 2019). Findings indicated that a preventive intervention moderated the effect 

of polygenic risk for alcohol dependence, such that higher polygenic scores were associated with 

increased risk of alcohol dependence diagnosis in the control condition but not in the 

intervention condition. Further research is needed to determine if similar findings are observed in 

other samples and across other alcohol use outcomes (e.g., alcohol consumption).  

Developmental factors.  Most GxI studies of alcohol have focused on samples that 

delivered prevention intervention programs to children and adolescents (Neale et al., 2020). Only 

two studies tested GxI effects in adult clinical samples (Bauer et al., 2007; Stuart et al., 2016), 

and only one prior study focused on college-aged students (Feldstein Ewing et al., 2009). 

Emerging adulthood is a known period of elevated risk for the development of substance use 

problems (Skidmore et al., 2016; Sussman & Arnett, 2014). Although substantial resources have 
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been dedicated to the prevention and intervention of substance use problems in college students, 

the influence genetic predispositions have not yet been incorporated. The relative influence of 

genetic risk for alcohol and substance use varies across the lifespan, with robust evidence that 

genetic factors affecting substance dependence are less influential in early adolescence and 

become more influential across adolescence into adulthood  (Dick et al., 2007; Dick, Cho, et al., 

2014; Edwards & Kendler, 2013; Kendler, Schmitt, et al., 2008; Meyers et al., 2014).  Additional 

research in emerging adults will help to clarify the relationship between genetic predispositions 

and response to prevention during this important developmental period.  

Mechanisms of GxI effects.  There is considerable need to further identify mechanisms 

through which genetic risk influences intervention outcomes. Studying mediators of GxI effects 

allows researchers to identify factors that could be harnessed to enhance intervention effects. For 

example, selection of peers is influenced by genetics (Kendler et al., 2007; Kendler & Baker, 

2007; Tarantino et al., 2014), but can also be targeted in prevention programming (Dodge et al., 

2006; Hansen & Graham, 1991; Larimer & Cronce, 2007). Two existing GxI studies have 

integrated mediators into their analyses (Brody et al., 2014, 2015). The first study tested 

mediated moderation by parenting practices targeted in the Strengthening African American 

Families-Teen program, and found that increased positive parenting partially mediated the GxI 

effect on substance use. The second study found that changing thoughts related to susceptibility 

to drug use through the Adults in the Making program also partially accounted for the GxI 

effects on youth substance use. These papers took an important step toward answering the 

question of how the intervention differentially affects individuals with different genotypes. The 

inclusion of mediators such as these is increasingly important, particularly as prevention trials 

begin to integrate more genome-wide methods (e.g., polygenic scores), which are by design 
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hypothesis-free. Polygenic scores tap into all known genetic factors observed in GWAS that 

predispose an individual for substance use problems, such as sensation seeking, sociability, 

internalizing, etc. Therefore, mediators are necessary to uncover the specific mechanisms driving 

the relationship between polygenic scores and prevention/intervention outcomes.  

Peer deviance and drinking motives are possible mechanisms of GxI interaction effects. 

Peer group deviance significantly predicts alcohol and substance use (Leung et al., 2014; Stone 

et al., 2012). It was initially thought that this effect was largely environmentally driven; however, 

GxE research suggests a correlated genetic liability for substance use and peer group deviance, 

such that individuals carrying genetic risk for substance use problems may self-select into higher 

risk peer groups (Gillespie et al., 2009). Therefore, it is critical to understand the way that peers 

may mediate genetic risk in the context of a prevention program. Similarly, drinking motives are 

also heritable (specifically drinking to cope with negative emotions, drinking to enhance positive 

feelings) and there is evidence that they mediate genetic risk (as measured by family history) for 

alcoholism (Agrawal et al., 2008; Beseler et al., 2008). Examining peer deviance and drinking 

motives, which have environmental and genetic influences on substance use, may shed light on 

the mechanisms by which interventions influence alcohol use outcomes for those who are 

genetically at risk.  

Statement of the Problem 

Alcohol use and alcohol-related problems are common, and the efficacy of current 

alcohol prevention and intervention programs is limited (Huh et al., 2015; Schulenberg et al., 

2017; Spoth et al., 2008).  Across alcohol prevention programs for youth and emerging adults, 

some participants respond positively while others do not (Smit et al., 2008; Stigler et al., 2011; 

Tanner-Smith & Risser, 2016).  Alcohol use and dependence are influenced by both genes and 
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environment, with heritability estimated at about 50% (Verhulst et al., 2015). As genes explain 

some of the risk for AUDs, GxI studies have the potential to improve understanding of why 

prevention intervention programs are differentially effective across individuals (Belsky & van 

Ijzendoorn, 2015).  Existing GxI studies are limited in scope by predominantly using candidate 

gene methods, which are inconsistent with the state of the science (Dick et al., 2015; Duncan & 

Keller, 2011; Neale et al., 2020).  Most GxI studies have been conducted in adolescent samples, 

and few examined mediators of GxI effects to help explain mechanisms through which genetics 

differentially affect prevention outcomes. Additional research that integrates genome-wide 

methods, emerging adult samples, and mediators of GxI effects may help to expand 

understanding of both genetic factors associated with outcomes and mechanisms that contribute 

to intervention effects.  Completion of this research may lead to improvements of prevention and 

intervention programs by presenting opportunities to develop more effective, tailored programs.   

Current Study 

The present study investigated whether intervention outcomes vary as a function of 

genetic risk for alcohol problems and explored factors that may explain how those differences 

may occur. The present study also examined whether findings generalized across samples, which 

differed on treatment modality and developmental timing. This research capitalized on data from 

two existing resources: a college prevention intervention program focused on level of response to 

alcohol conducted with a genetically-informed sample (Study One: Spit for Science), and a 

middle school-based prevention program targeting adolescent problem behavior with 

longitudinal follow up and genetic data (Study Two: Project Alliance). Alcohol misuse is 

influenced by genetic and environmental factors and these factors are correlated. In order to 

develop more effective, tailored prevention intervention programs, it is important to understand 
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how response to programs may differ according to genetic predispositions. Completion of this 

research may result in improvement of prevention and intervention programs through increased 

understanding of both individual factors associated with outcomes and mechanisms that 

contribute to intervention effects. The following sections of the paper are organized by study, 

beginning with the research aims and hypotheses, methods, results, and discussion for Study One 

(Spit for Science). The research aims and hypotheses, methods, results, and discussion for Study 

Two (PAL) are then presented, and the paper concludes with a global discussion section. 
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Research Aims and Hypotheses: Study One 

Guided by the extant literature and relevant theoretical models, the proposed research has 

the following aims and hypotheses:  

1. The first aim is to determine if genetic predispositions toward alcohol misuse moderate 

the effectiveness of an alcohol intervention in a college student sample using polygenic 

risk scores (PRS) associated with externalizing behaviors. 

a. Informed by the differential susceptibility hypothesis, I hypothesized that 

individuals with higher PRS will show greater reductions in alcohol use and 

alcohol use disorder symptoms post-intervention.  

2. The second aim is to examine whether peer deviance and drinking motives mediate 

changes in alcohol use for those at greater genetic risk in a college student intervention 

sample.  

a. I hypothesize that the intervention will lead to lower peer deviance among those 

genetically at risk, which will partially account for lower levels of alcohol use and 

problems in intervention participants. 

b. Secondly, I hypothesize that the intervention will lead to lower levels of drinking 

to cope and drinking to enhance positive feelings among those genetically at risk, 

which will partially account for lower alcohol use and problems among 

intervention participants. 
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Methods: Study One 

Spit for Science Sample 

Parent study participants. Spit for Science is a longitudinal study of genetic and 

environmental factors that influence alcohol use, other substance use, and emotional health 

outcomes in college students at a large, mid-Atlantic university (Dick, Nasim, et al., 2014). The 

study invited all first-time freshman college students aged 18 and older to complete an online 

survey at the start of fall semester. New cohorts were recruited each year in 2011-2014 and 2017. 

The overall participation rate in the study was 64% (N= 12,370). Of those who picked up survey 

compensation, 97% (N=11,147) also provided a DNA sample. Every spring semester, 

participants were invited to complete a follow-up survey to assess changes in alcohol use, other 

substance use, and emotional health across the college years and beyond. Participants were 

compensated $10 for each survey and an additional $10 for providing a DNA sample. Genotypic 

data is currently available for cohorts 1-3.  

Prevention study subsample. In collaboration with researchers at the University of 

California, San Diego, we designed a spin-off study to measure the effectiveness of tailoring an 

alcohol prevention program to low level of response (LR) to alcohol (Schuckit et al., 2012, 

2015). Low LR predisposes an individual to heavy drinking because he/she must consume more 

alcohol to feel the same effects as the average drinker (Schuckit et al., 1997). To carry out the 

study, we recruited a subset of the 2013 cohort of S4S participants to take part in an alcohol 

prevention study (referred to as S4S-LR) in September of their freshman year. Eligibility was 

limited to students who 1) completed the S4S survey within the first two weeks of data collection 

(83% of 2,022 individuals), 2) endorsed drinking alcohol at least five or more times in their life 

(72.7%), and 3) scored 0.25 standard deviations above or below the mean for the Self-Rating of 
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the Effects of Alcohol (SRE) scale (44.6%). The SRE score is calculated by taking the average of 

four items asking how many drinks it takes to feel certain intoxication effects of alcohol 

(Schuckit et al., 1997). Higher SRE scores equate to a lower level of response to alcohol. Of the 

572 students invited to participate, 231 (56.5%) enrolled in the S4S-LR prevention study (n=104 

with low LR and n=127 with high LR). The sample was mostly female (n=165, 71.4%), and 

0.4% American Indian/Native American, 6.9% Asian, 11.3% Black/African American, 5.6% 

Hispanic/Latino, and 75.8% White.  

Prevention program and procedure.  

Prevention program. The S4S parent study and the S4S-LR spin-off study were 

approved by the university’s Institutional Review Board. Following electronic informed consent, 

S4S-LR participants (n=231) were paired according to similar alcohol use and demographic 

characteristics but mismatched SRE classification (i.e., high or low LR). Pairs were then 

randomly assigned to one of two online alcohol prevention programs: a standard, “one size fits 

all” approach (“state of the art”, or SOTA) and a tailored approach based on level of response to 

alcohol (“level of response based” or LRB). Participation in the study involved completion of 

online video modules (SOTA or LRB) once a week for four weeks, as well as a 30-day follow up 

assessment for up to $100 in compensation (Schuckit et al., 2012). The annual S4S spring 

semester follow-up surveys were used to further assess long-term effects of the SOTA and LRB 

programs. The primary goal of the study was to determine if the tailored approach was more 

effective in reducing alcohol consumption and problems among college students who differed in 

their LR to alcohol. Initial findings showed that students with low LR who completed the 

tailored LRB program reported lower levels of maximum drinks in 24 hours than low LR 

students in the SOTA program approximately five months after the intervention (Savage et al., 
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2015). Our results provided robust evidence that overall, individuals with the riskier, low LR 

showed greater reductions in alcohol use over time than high LR individuals in either program. 

Compared with students who received no alcohol prevention, we observed strong effects of 

either prevention program (LRB or SOTA) on risky outcomes (maximum drinks and AUD 

symptoms). Based on these findings, we plan to collapse across S4S-LR prevention groups to 

compare any prevention (LRB or SOTA) to a no prevention control group in the proposed 

analyses. 

Creation of comparison group. Both conditions of S4S-LR sample (LRB and SOTA) 

received a relatively intensive alcohol prevention program, the results of which were fairly 

similar. To address the research questions of the present study, a comparison group of 

participants who received no intervention was needed. The comparison group was derived from 

the pool of S4S participants with genotypic data who were not invited to the LR study. 

Propensity score matching (PSM) was used to derive scores that imitate the similarity of baseline 

characteristics between treatment groups achieved in a randomized controlled trial (Austin, 2011; 

Guo & Fraser, 2010). The propensity score is considered the probability of consenting to a 

treatment based upon a set of baseline covariates (Austin, 2011; Rosenbaum & Rubin, 1983).  

When individuals are matched using the propensity score, the effects of selection bias should be 

mitigated. Following calculation of the propensity score for treated and untreated groups, 

individuals can be matched using a one-to-one approach or one-to-many, in which one treated 

individual is matched to several control individuals with similar propensity scores (Austin, 

2011). Although the one-to-many matching approach can result in a small increase in bias, it also 

yields greater precision relative to one-to-one matching and increased sample size (Rassen et al., 

2012). Given these relative strengths and the abundance of potential controls available through 
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the parent S4S sample (N=4199 with genotypic data available), the one-to-many PSM approach 

was used to derive a comparison group.  

Measures. Processed and cleaned genotypic data as well as longitudinal phenotypic data 

from the S4S surveys are included in the analyses. Phenotypic data is accessed through secure 

data sharing procedures managed by the S4S Registry Coordinator. Relevant measures for the 

present study include alcohol use behaviors, peer deviance, drinking motives, and covariates. 

Genotypic data is housed on a secure server at Virginia Commonwealth University. The sections 

below provide further detail on the data available and how it was used for the present study. 

Alcohol use and problems.  Typical quantity and frequency of alcohol consumption in 

the past 30 days was measured at each wave using two items from the Alcohol Use Disorder 

Identification Test (DeMartini & Carey, 2012). Alcohol consumption will be measured by grams 

of ethanol per month, which is calculated by multiplying typical quantity * typical frequency * 

14 (the number of grams of ethanol in a standard drink).  See Salvatore et al. (2016) for 

additional information about creation of the grams of ethanol per month measure. The Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA) was adapted to measure DSM-5 

criteria for AUD at each wave of the S4S survey (Bucholz et al., 1994). SSAGA items assess 

how often students have experienced alcohol-related consequences (e.g., drinking in dangerous 

situations, alcohol-related arrests), symptoms of dependence (e.g., withdrawal, tolerance, desire 

to quit), and impact on daily functioning (e.g., interference with work/school, relationship 

problems). Response options were “Never,” “1–2 times,” “three or more times,” or “don’t 

know.” 

Peer deviance. Peer deviance was measured using a set of six items previously 

operationalized in the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders 
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(Kendler, Jacobson, et al., 2008). Participants reported on the proportion of high school friends 

(at baseline) and college friends (at follow-up) who engaged in certain deviant and problem 

behaviors, such as getting drunk, getting in trouble with the law, or using marijuana.  Response 

options ranged from “none” (0) to “all” (5).  A mean score is computed for all participants who 

responded to 50% or more of the items.  For inclusion in mediation analyses, change scores were 

calculated by subtracting the baseline measure (pre-intervention) from the first follow-up 

measure of peer deviance (post-intervention). 

Drinking motives. Four subscales of drinking motives (Social, Coping, Enhancement, 

Conformation) were measured using the Drinking Motives Questionnaire at each wave of S4S 

data collection (Cooper, 1994). Responses were coded such that higher scores conveyed greater 

motivation to drink for that reason. A mean score for each subscale was created by averaging the 

score for each item within each scale. 

Covariates. Covariates include sex, ancestry principal components, prevention program 

(LRB or SOTA), and LR to alcohol. Ancestry principal components (PCs) account for variation 

in allele frequency across different population structures. They are derived through Principal 

Components Analysis (PCA), which is further detailed below.  LR was measured using the Self-

Rating of the Effects of Alcohol (SRE) scale (Schuckit et al., 1997). The SRE score is calculated 

as an average of four items measuring how many drinks it takes to 1) feel tipsy or have a buzz, 2) 

dizzy or slur speech, 3) stumble or find it hard to walk properly, and 4) pass out. Prevention 

program (LRB or SOTA) was collinear with intervention group; after confirming that it was not 

significantly associated with the outcomes of interest, prevention program was removed from 

analyses. 

Genotypic data. DNA samples were collected using Oragene kits and extracted using 
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standard procedures. Samples were then sent to the Rutgers University Cell and DNA Repository 

where genotyping was completed. Samples from the first three cohorts were genotyped on the 

Affymetrix Axiom BioBank Array Version 2, which includes a 296K single nucleotide 

polymorphisms (SNPs) GWAS imputation grid, 197K non-synonymous coding SNPs, 18K 

insertions/deletions, novel exome/loss of function variants, and 16K eQTL markers. Quality 

control procedures removed SNPs missing more than 5% of genotype, samples missing greater 

than 2% of genotypes, and SNPs missing more than 2% of genotypes after filtering. Genotypes 

were imputed using SHAPEIT2/IMPUTE2 (Delaneau et al., 2013; Howie et al., 2009) and the 

1000 genomes phase 3 reference panel (Sudmant et al., 2015; The 1000 Genomes Project 

Consortium, 2015). Additional details about genotyping the Spit for Science sample are available 

in Webb (2017). 

Data Analysis Plan: Study One 

All analyses were conducted using R, which is a flexible statistical computing program 

with several available methods for handling missing data.  R’s functionality is expanded through 

various packages built to run advanced statistical techniques described below. 

Data preparation. All phenotypic variables were examined for normality. Log+1-

transformations were computed when appropriate to reduce the effects of non-normality. Due to 

the longitudinal nature of the study, some missing data is expected. However, the inclusion 

criteria for the intervention sample and comparison group required complete data on key baseline 

variables: gender, alcohol use, and LR to alcohol. For the growth curve models, individuals 

missing greater than one time point were excluded list-wise. Complete data was required for 

mediation analyses.  
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Creation of comparison group.  Propensity score matching (PSM) was conducted using 

the MatchIt package in R (D. Ho et al., 2011).  Following procedures outlined by Guo & Fraser 

(2014), the first step in PSM was to identify covariates that may influence the likelihood of 

receiving treatment.  Informed by existing research on factors that influence research 

participation and relevance to the present study, the following covariates were included in the 

propensity score calculation: sex, race/ethnicity, age, socioeconomic status, participant 

occupational status, SRE score, alcohol consumption, AUD symptoms, family history of alcohol 

or substance use problems, depression, anxiety, and antisocial behavior (Kelpin et al., 2018; 

Krueger et al., 2002; Patel et al., 2003; Savage et al., 2015). These variables were entered into a 

multivariate logistic regression predicting intervention participation, and then used to derive a 

probability of intervention participation for each individual. The estimated propensity scores are 

the predicted probability of treatment given the observed covariates. The second step of PSM 

involves resampling to obtain a set of control participants that optimally balances the covariates. 

The matching procedure conducted pair matching based on similar propensity scores with a 

variable ratio of one intervention participant to two control participants.  Post-matching analysis 

compared intervention and control participants on key demographic and baseline variable. Any 

significant differences between intervention and control participants are reported and controlled 

for accordingly.  

Creation of polygenic risk scores (PRS).  PRS were calculated using prioritized SNPs 

identified in an independent genome-wide association study (GWAS) of externalizing behavior 

in approximately 1.5 million subjects (Karlsson Linnér et al., 2020).  The GWAS of 

externalizing behaviors measures genetic factors associated with a collection of related 

phenotypes (ADHD, alcohol dependence, alcohol consumption, cannabis use, age at first sex, 
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number of sexual partners, general risk tolerance, and tobacco use) characterized by behavioral 

disinhibition, impulsive behaviors, and/or deficits in self-regulation (Karlsson Linnér et al., 

2020). In adolescence, broader externalizing risk has a greater influence on alcohol misuse than 

genetic risk specific to alcohol and genetic risk for externalizing behaviors is more likely to 

manifest earlier than alcohol-specific risk (Kendler, Gardner, et al., 2011; Meyers et al., 2014). 

As a result, the Karlsson Linnér et al., (2020) externalizing GWAS was selected for use in this 

study.  

Polygenic scores for this study were derived with PRS-CS, which uses continuous 

shrinkage priors within a Bayesian regression framework to adjust shrinkage based on the 

strength of a SNP’s association in GWAS (Ge et al., 2019). Scores are calculated by multiplying 

the number of score alleles by the log10 of the weighted SNP effect (beta). For example, consider 

SNP 1 (A/G). If the externalizing GWAS summary statistics indicate that increasing copies of 

the A allele are associated with externalizing behavior (OR = 1.80) then a S4S participant 

carrying two copies of the A allele will have a score of 2 * log10(1.80) = 0.51 for SNP 1. The 

values of all prioritized alleles are then summed to create the polygenic score, with higher 

polygenic scores indicating greater predisposition for risky behaviors. PRS-CS then uses linkage 

disequilibrium (LD) patterns observed in the 1000 Genome Phase 3 European Ancestry reference 

panel with 500kb physical distance and an LD threshold of r2 >= 0.25 (The 1000 Genomes 

Project Consortium, 2015). The final PRS scores were calculated using the PLINK 1.9 score 

procedures, averaging across the total number of non-missing SNPs in the sample (Chang et al., 

2015; Purcell et al., 2007).  PRS-CS has been shown to improve prediction over other pruning 

and clumping methods for polygenic score calculation, with the added benefit of providing a 

single p-value threshold to optimize prediction in the target sample. Of note, the discovery 
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sample for the PRS was composed of individuals of European-descent, so additional steps are 

needed to accommodate other ancestry groups in analyses. The recommended approach is to 

conduct analyses separately within adequately sized ancestry groups (Tian et al., 2008); 

however, the S4S-LR study sample is 75% White. The other ancestry groups were inadequately 

powered to conduct growth curve analyses, and as a result they were excluded from the analyses.  

Principal Components Analysis (PCA). Principal components (PCs) were included as 

covariates to account for population stratification as well as admixture. Following quality control 

procedures, PCA was conducted for ancestry-specific PCs using EIGENSOFT and SmartPCA.  

Regions of high LD were excluded using PLINK 1.9, so as to ensure relative independence of 

SNPs. The 1000 Genome Project phase 3 reference panel was used in the PCA for European 

ancestry. Ancestry group assignment for S4S participants is described in detail in Peterson et al., 

(2017).  

Evaluation of Externalizing PRS in S4S. To evaluate the association between the 

externalizing genome-wide polygenic score (EXT PRS) and relevant outcomes (alcohol 

consumption, AUD symptoms, peer deviance, and antisocial behavior), a hierarchical multiple 

regression was conducted estimating the effect of the EXT PRS on alcohol consumption and 

AUD symptoms over and above the effect of ancestry PCs. The purpose of these analyses was to 

validate use of the EXT PRS in the S4S sample by ensuring that the polygenic score was 

predictive of relevant phenotypes in the expected direction of effect. To account for multiple 

testing, p-values were adjusted using the Benjamini-Hochberg correction (Benjamini & 

Hochberg, 1995). 

Aim 1: Tests of GxI effects on Alcohol Consumption and AUD Symptoms. Aim 1 

analyses were conducted using growth curve modeling within a multilevel framework to estimate 
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the effect of intervention and PRS on trajectories of alcohol consumption and AUD symptoms 

across time. The multilevel framework accommodated the nested structure of repeated measures 

within individuals, while also allowing for between individual and between-group variation in 

intercepts and slopes of the dependent variables. A model building approach was employed to 

compare the goodness of fit between the unconditional (null) model, unconditional growth 

model, and conditional growth model with time-invariant covariates (ancestry PCs, LR to 

alcohol, propensity score, and sex). Analyses were conducted using the lme4 package for R, with 

maximum likelihood estimation. Model fit was evaluated using AIC, intraclass correlation (ICC), 

and pseudo R2. Alcohol consumption and AUD symptoms were examined in separate models.  

Unconditional models. First, we constructed an unconditional null model to provide an 

estimate of the within-person (Level 1) and between-person (Level 2) variance components. The 

unconditional null model serves as a base model with no predictors to test whether model fit 

improves with the addition of Level-2 effects in subsequent models. Next, an unconditional 

growth model was fit. The unconditional growth model estimates the trajectory of the outcome 

across four time points, with Time as a predictor at Level 1. As there were no significant 

differences between intervention and control groups at baseline, Time was centered at first 

follow-up (Time 1), with each successive follow-up coded to account for approximately equal 

time between follow-up assessments (Time 1=0, Time 2=1, Time 3=2, and Time 4=3). Linear 

and curvilinear effects for time were tested, with the quadratic effect providing a better fit for the 

data. A comparison of model fit between the unconditional null model and the unconditional 

growth model confirmed there was sufficient individual variability to warrant advancing to 

conditional models, which include predictors to estimate variation in intercept and/or slope.  
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Conditional models. The first conditional growth model included Time as the Level 1 

variable, and intervention group and EXT PRS as Level 2 variables. Fixed and random effects 

for slope and intercept were tested, with random slope and intercept providing the best fit for the 

data. In the second conditional model, 2-way and 3-way interaction terms were added to examine 

the degree to which interactions between Time, EXT PRS, and intervention group contributed to 

variation in the outcomes. In the final model, sex, LR to alcohol, propensity score, and ancestry 

PCs were added as covariates to account for their potential impact on the resulting models. The 

p-values for the Level 1 variables (intercept, Time), Level 2 variables (intervention group, EXT 

PRS), and Interaction components were adjusted for multiple testing using the Benjamini-

Hochberg correction (Benjamini & Hochberg, 1995).  

Post-hoc analyses. Visual examination of the data suggested potential differences 

between intervention and control on AUD symptoms at the first follow-up when intervention 

effects were most robust. Post-hoc analyses were conducted to explore more proximal effects of 

GxI interaction on change in AUD symptoms from baseline (Time 0) to the first follow-up 

assessment (Time 1). Hierarchical multiple regression was used to estimate the effects of 

polygenic risk, intervention group, and their interaction on change in alcohol consumption and 

AUD symptoms from baseline to first follow-up. Hierarchical multiple regression analyses were 

conducted using the lm function in the stats package for R, and regions of significance were 

explored using the interactions package for R. Analyses controlled for sex, LR to alcohol, 

propensity score, and ancestry PCs.  

Aim 2: Examining peer deviance and drinking motives as mediators of gene-by-

intervention effects in the S4S-LR sample. Aim 2 analyses test whether changes in peer 

deviance and drinking motives mediated an effect of the intervention on AUD symptoms at Time 
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1 for those at varying levels of genetic risk.  For peer deviance, drinking to cope, and drinking to 

enhance, change scores were calculated by subtracting the Time 0 score from the Time 1 (first 

follow-up) score. Correlations of all mediating, moderating, predictor, and outcome variables 

were conducted to determine whether a multiple mediator model was warranted. Observing no 

significant correlation between mediators, we proceeded in constructing three separate mediated 

moderation models to estimate the direct and indirect effect of peer deviance, drinking to cope, 

and drinking to enhance on AUD symptoms varying levels of EXT PRS and intervention status. 

Analyses were conducted using the mediation package in R. In the first step, we regressed the 

effect of EXT PRS * intervention and covariates (gender, LR to alcohol, ancestry PCs, and 

propensity score) onto the centered mediating variable. Next, we estimated the effect of EXT 

PRS * mediator, EXT PRS * intervention, and covariates on the outcome variable (change in 

AUD symptoms). In the final step, we specified the levels of the moderator (EXT PRS) at which 

to calculate the mediation function, setting the values of EXT PRS at 1 standard deviation above 

and below mean. Finally, we tested for significant differences in the total, direct and indirect 

moderating effects of EXT PRS and intervention status on AUD symptoms through peer 

deviance, drinking to cope, and drinking to enhance, using a bias-corrected and accelerated 

bootstrap resample of 2,000 to calculate the 95% confidence interval for the indirect effects.  
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Results: Study One 

Preliminary Analyses 

 Propensity Score Matching. In order to approximate the effect of random assignment, 

we conducted propensity score matching to identify a group of untreated “controls” with similar 

propensity to participate in the intervention. We included the following variables in the 

propensity score calculation: gender, socioeconomic status (as measured by parental education), 

occupation status, level of response to alcohol, grams of ethanol consumed per month, alcohol 

use disorder symptoms, familial risk for alcohol or substance use problems, depression 

symptoms, anxiety symptoms, and high school antisocial behavior. The matching procedure was 

limited to individuals of European ancestry with genotypic data to align with the characteristics 

of the intervention study participants included in analyses. Individuals were eligible for the 

intervention study if they had initiated alcohol use and responded to two or more items in the 

Self-Rating of the Effects of Alcohol scale. After applying these limitations, there were a total of 

740 available controls for 161 treated individuals. Using a 2:1 ratio of controls to treated 

individuals, the propensity score matching successfully matched 322 untreated controls to 161 

treated individuals. Figure 2 shows the distribution of propensity scores for unmatched treated 

participants, matched treated participants, matched control participants, and unmatched control 

participants. All treated individuals were successfully matched; thus, the distribution of 

unmatched treated participants is empty. The unmatched controls have higher density in the 

lower range of propensity scores, and as a result were not matched to the treated individuals.   
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Figure 2.  
 
Distribution of Propensity Scores for Unmatched Treated, Matched Treated, Matched Control, 
and Unmatched Control Participants.  
 

 
 

T-tests were conducted to compare the difference between means for the matched treated 

participants and matched control participants. There were no significant differences between the 

matched treated and matched controls on the variables displayed in the table.  
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Table 1.  
 
T-tests comparing matched treated participants and matched control participants. 
 

Predictor t df p  Mean 
Diff 

SE 95% CI 

Gender (female) .000 481 1.00 .000 .044 [-.086, .086]  
College educated parent -.374 481 .709 -.016 .042 [-.097, .066] 

Full-time employed .451 481 .652 .006 .014 [-.021, .033] 

Part-time employed -.236 481 .814 -.009 .039 [-.087, .068] 
 LR to Alcohol .017 481 .986 .004 .258 [-.502, .511] 

Time 0 Alcohol consumption .220 481 .826 8.416 38.33 [-66.92, 83.75] 
Time 0 AUD symptoms -.117 481 .907 -.025 .212 [-.442, .392] 

Familial risk for alcohol/drug 
problems 

.491 481 .624 .0318 .0648 [-.096, .159] 

Depression -.496 481 .620 -.171 .344 [-.847, .506] 
Anxiety .298 481 .766 .087 .292 [-.487, .661] 

Antisocial Behavior (HS) .000 481 1.00 .000 .220 [-.432, .432] 

Age -.474 481 .635 -.0157 .033 [-.080, .049] 
 

 Evaluation of Externalizing PRS in S4S. Results of hierarchical multiple regression 

analyses indicated that the EXT PRS was significantly associated with alcohol consumption, 

AUD symptoms, peer deviance, and antisocial behavior at baseline in the S4S sample. After 

controlling for ancestry PCs and correcting for multiple testing, the externalizing PRS 

significantly predicted AUD symptoms and alcohol consumption at most time points, accounting 

for approximately 1-1.5% of the variance in baseline measures of all phenotypes examined 

(Table 2, Figure 3). The strength of the effect diminished across follow-up time points for all 

phenotypes examined, which may be in part due to sample attrition. Baseline (Time 0) measures 

of Peer Deviance and Antisocial Behavior indexed lifetime report of these constructs, whereas 

Time 1-4 indexed report of these behaviors in the time since last assessment. Accordingly, 

Baseline (Time 0) measures account for a longer period of time than subsequent follow-up 
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assessments of the same measures. One possible alternative approach to assessing EXT PRS at 

each wave would be to take the highest value of each outcome across waves, which would 

provide the benefit of using all of the available information for each individual participant. 

However, that approach would also result in censoring of data, which can occur when there are 

incomplete observations due to attrition. Prior analyses in the Spit for Science sample have 

indicated that students who consumed more alcohol were more likely to withdraw early from the 

university and thus were not retained for follow-up data collection efforts (Ho et al., 2016).  

Taking the highest value across waves would compare alcohol use behaviors for individuals who 

were retained across all four years, to those who only have baseline measures despite possible 

unmeasured escalation of use across the following years. After comparing the relative benefits 

and drawbacks of each approach, we proceeded with assessing EXT PRS at each wave for the 

four outcomes of interest to reduce the impact of attrition of these analyses.   
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Table 2.  

Variance in relevant phenotypes accounted for by the externalizing PRS across five time points.   
 

Outcome N Change 
in R2 

p p a Ancestry  
PCs R2 

Time 0 (Baseline) AUD symptoms 2622 .012 <.001 <.001 .005 
Time 1 AUD symptoms 1698 .004 0.009 .019 .016 
Time 2 AUD symptoms 1335 .006 0.006 .015 .008 
Time 3 AUD symptoms 1033 .004 0.051 .071 .014 
Time 4 AUD symptoms 843 .007 0.017 .030 .029 

Time 0 (Baseline) Grams of ethanol per month 2037 .012 <.001 <.001 .006 
Time 1 Grams of ethanol per month 2038 .008 <.001 <.001 .013 
Time 2 Grams of ethanol per month 1282 .006 0.005 .013 .008 
Time 3 Grams of ethanol per month 1024 .011 0.001 .004 .020 
Time 4 Grams of ethanol per month 837 .005 0.043 .063 .032 

Time 0 (Baseline) Peer Deviance 2965 .010 <.001 <.001 .002 
Time 1 Peer Deviance 2241 .013 <.001 <.001 .005 
Time 2 Peer Deviance 1393 .005 0.009 .019 .006 
Time 3 Peer Deviance 1077 .006 0.011 .021 .008 
Time 4 Peer Deviance 872 .001 0.264 .292 .020 

Time 0 (Baseline) Antisocial Behavior 2967 .015 <.001 <.001 .007 
Time 1 Antisocial Behavior 2241 .002 0.042 .063 .006 
Time 2 Antisocial Behavior 1391 8.34E-04 0.28 .292 .014 
Time 3 Antisocial Behavior 1075 2.35E-04 0.614 .614 .014 
Time 4 Antisocial Behavior 876 .003 0.088 .116 .017 

Note: Change in R2 represents the variance accounted for by EXT PRS over and above the effect 
of Ancestry PCs. Bolded values indicate significant p-values less than .05.  
ap-values have been adjusted for multiple testing using the Benjamini–Hochberg procedure.  
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Figure 3.  
 
Plot of variance in relevant phenotypes explained by externalizing PRS across waves 
 

 
 
 
Aim 1: Results of Multilevel Models Examining GxI Effects on Alcohol Consumption and 

AUD Symptoms Across Time. 

Alcohol Consumption. Results of the multilevel models (MLM) for alcohol 

consumption are displayed in Table 3. The MLM was first constructed as an unconditional 

means model (Null Model; Table 3), with an estimated Intra-Class Correlation (ICC) coefficient 

of .55, indicating that slightly more than half (55%) of the variance in alcohol consumption was 

due to differences between individuals based on parameters in the model. In the unconditional 

growth model (Unconditional Growth Model; Table 3), the significant effects for intercept, time, 

and time2 indicated there was sufficient within-person variation in trajectories of alcohol 
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consumption to warrant a multilevel framework. The intercept value for the Unconditional 

Growth Model indicates that the average value for log-transformed alcohol consumption at Time 

1 was 5.21. The positive linear slope, represented by Time (7.04), indicated that on average, 

alcohol consumption increased over time; however, the quadratic equation provided a 

significantly better fit for the data. The negative quadratic slope, represented by Time2 of -3.11, 

indicated that the slope of alcohol consumption was curvilinear in nature with alcohol 

consumption increasing over time for Times 1-3 before dropping slightly at Time 4 (Figure 4). 

Results of a likelihood ratio chi-square difference test comparing the Unconditional Growth 

Model with random intercept and slope (AIC=2928.7, ICC=.64) to the Null Model (AIC=2955.2, 

ICC=.55) showed significantly improved model fit with the Unconditional Growth Model [X2(4, 

375) = 34.46, p<.001].  

Next, we constructed the Conditional Growth Model with fixed effects for time, 

intervention group, and EXT PRS, and random effects for slope and intercept at Level 1. The 

Conditional Growth Model adds to the unconditional growth model through the inclusion of 

main effect predictors of change in the outcome over time. We compared conditional models 

with random intercept only, random slopes only, and a combined model with random intercept 

and slopes, with the latter providing the overall best fit for the data structure (AIC=2701.69, 

ICC=.63). In the Conditional Model, the intercept, linear slope, and quadratic slope remained 

significant; however, there was no evidence of significant main effects for intervention group or 

EXT PRS. Next, an Interaction Model was constructed to evaluate whether there were variations 

in the slope and intercept of alcohol consumption across time as a function of the interaction 

between intervention group, EXT PRS, and time. In the Interaction Model, the intercept and 

linear slope remained significant, but the quadratic slope was no longer significant, suggesting 
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that the interaction terms may account for some of the variance in the quadratic effect of time. 

We also observed no significant two-way or three-way interactions Time, Time2, intervention 

group, or EXT PRS, indicating there is no evidence suggest that trajectories of alcohol 

consumption vary as a function of the interaction between intervention group or EXT PRS. We 

proceeded with the addition of covariates to fully evaluate the final model. The effects for 

intercept and linear slope remained significant after the addition of covariates and multiple 

testing corrections. There were also significant main effects for two covariates, propensity score 

and LR to alcohol, suggesting that these factors significantly influenced trajectories of alcohol 

consumption among college students. The significant positive association between LR to alcohol 

and alcohol consumption suggests that individuals with higher LR consumed more alcohol, 

whereas the significant negative association between propensity score and alcohol consumption 

suggest that individuals with higher propensity scores consumed less alcohol on average. The 

propensity score includes a number of indicators used to estimate the likelihood of agreeing to 

participate in the intervention, which means that this effect indicates individuals with higher 

likelihood of agreeing to participate in an intervention tended to drink less alcohol on average.  

No significant main effects for intervention group or EXT PRS were observed, and there 

remained no evidence to suggest an interaction between intervention group and EXT PRS on the 

slope of alcohol consumption. 
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Table 3.  
 
Multilevel Growth Curve Analysis of Alcohol Consumption from Time 1 to Time 4 
 
 Model 
 
Level and Variable 

Null Unconditional 
Growth 

Conditional 
Growth 

Interaction 
Model 

Interaction Model 
with Covariates1 

Level 1      
     Intercept 5.12 (.07)** 5.21 (.07)** 5.27 (.09)** 5.26 (.09)** 5.20 (.27)** 
     Time  7.04 (.1.82)** 6.77 (1.82)** 6.05 (2.33)**  6.27 (2.37)** 
     Time2  -3.11 (1.50)* -3.35 (1.54)* -3.74 (1.99) -4.01 (2.02) 
Level 2      
     Intervention (control=0)   -.15 (.14) -.15 (.15) -.13 (.16) 
     EXT PRS   -.02 (.07) -.02 (.09) .03 (.09) 
Interaction components      
     Time * EXT PRS    -.09 (2.34) .02 (.03) 
     Time * Intervention    .82 (3.78) .00 (.06) 
     Time2 * EXT PRS    -.22 (1.99) -.18 (1.99) 
     Time2 * Intervention    .67 (3.21) .18 (3.22) 
     EXT PRS * Intervention    -.06 (.15) .05 (.12) 
     Time * EXT PRS * Intervention    -5.53(3.92) -5.31 (3.93) 
     Time2 * EXT PRS * Intervention    -.18 (3.30) -.74 (3.31) 
Covariates      
     Gender (female=1)     .02 (.21) 
     LR to Alcohol     .13 (.03)** 
     Propensity Score     -3.27 (1.02)** 
Additional Information      
     ICC .55 .64 .63 .63 .59 
     -2 log likelihood (FIML) -1474.6 -1457.4 -1341.8 -1240.1 -1317.6 
     AIC 2955.2 2928.7 2701.69 2712.15 2693.16 
     Pseudo R2 (fixed effects) .00 - - - - 
     Pseudo R2 (total) .55 - - - - 
     Number of individuals 483 375 345 345 344 
     Observations 879 879 816 816 814 
Note: Estimates of unstandardized coefficients are presented for fixed effects. Values in parentheses are standard errors. Alcohol 
consumption was log-transformed to account for skewness and kurtosis. Pseudo R2 cannot be calculated for models with a quadratic 
slope. The Interaction Model with Covariates also controlled for the effect of Ancestry PCs 1-10. *p < .05, **p < .01. 
1 p-values for Level 1, Level 2, and Interaction components were adjusted for multiple testing using the Benjamini–Hochberg 
procedure in the Interaction Model with Covariates. 
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AUD Symptoms. Model building procedures for the MLM for AUD symptoms mirrored 

those described for alcohol consumption. The results are displayed in Table 4. The Null Model 

estimated an ICC of .54, indicating that slightly more than half (54%) of the variance in alcohol 

use disorder symptoms was due to differences between individuals. In the Unconditional Growth 

Model, significant effects for intercept, linear time, and quadratic time indicated sufficient 

within-person variation in trajectories of AUD symptoms to warrant a multilevel framework. The 

intercept value of 1.22 for the Unconditional Growth Model indicated that at Time 1, the group 

mean for log-transformed AUD symptoms was 1.22. The positive linear slope (Time = 3.34) 

indicated that on average, the slope of AUD symptoms increased over time; however, the 

significant negative quadratic slope (Time2 = -1.85) suggested a curvilinear slope with rising and 

leveling off over time (Figure 4).  Results of a likelihood ratio chi-square different test 

comparing the Unconditional Growth Model with random intercept and slope (AIC=1552.5, 

ICC=.61) to the Null Model (AIC=1590.0, ICC=.54) showed that the Unconditional Model 

significantly improved model fit [X2(4, 377) = 45.54, p<.001]. 

Next, we constructed the Conditional Growth Model, which adds to the Unconditional 

Growth Model through the inclusion of intervention and EXT PRS as main effect predictors of 

change in the outcome over time. We compared conditional models with random intercept only, 

random slopes only, and a combined model with random intercept and slopes, with the latter 

providing the best fit for the structure of the data (AIC=1418.9, ICC=.60). In the Conditional 

Growth Model, the intercept, linear slope, and quadratic slope remained significant, but there 

was no evidence of significant main effects for intervention group or EXT PRS. Next, the 

Interaction Model evaluated whether the intercept and slopes varied as a function of the 

interaction between intervention group, EXT PRS, and time. There was slightly improved model 
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fit, as indicated by lower AIC, but there was no evidence that trajectories of AUD symptoms 

varied as a function of two-way or three-way interactions between Time, Time2, intervention 

group, and EXT PRS. We proceeded with the addition of covariates to fully evaluate the final 

model. The effects for intercept and linear and quadratic slope remained significant after the 

addition of covariates and multiple testing corrections. However, consistent with the alcohol 

consumption model, no significant main effects for intervention group or EXT PRS were 

observed, and there remained no evidence to suggest an interaction between intervention group 

and EXT PRS on the slope of AUD symptoms. 
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Table 4.  
 
Multilevel Growth Curve Analysis of Alcohol Use Disorder Symptoms from Time 1 to Time 4 
 
 Model 
 
Level and Variable 

Null Unconditional 
Growth 

Conditional 
Growth 

Interaction 
Model 

Interaction Model 
with Covariates1 

Level 1      
     Intercept 1.18 (.03)** 1.22 (.03)** 1.27 (.04)** 1.27 (.04)** 1.14 (.12)** 
     Time  3.34 (.84)** 3.28 (.84)** 3.11 (1.08)** 3.20 (1.09)** 
     Time2  -1.85 (.67)** -1.92(.69)** -1.11 (.87)** -1.21 (.88) 
Level 2      
     Intervention (control=0)   -.11 (.06) -.09 (.07) -.07 (.07) 
     EXT PRS   .02 (.03) .02 (.04) .02 (.04) 
Interaction components      
     Time * EXT PRS    1.30 (1.07) 1.42 (1.07) 
     Time * Intervention    .70 (1.71) .75 (1.74) 
     Time2 * EXT PRS    1.61 (.87) 1.58 (.87) 
     Time2 * Intervention    -1.31 (1.40) -1.37 (1.41) 
     EXT PRS * Intervention    -.01 (.07) -.01 (.07) 
     Time * EXT PRS * Intervention    -1.75 (1.78) -1.77 (1.79) 
     Time2 * EXT PRS * Intervention    1.82 (1.44) 1.75 (1.44) 
Covariates      
     Gender (female=1)     -.03 (.09) 
     LR to Alcohol     .03 (.01) 
     Propensity Score     -.03 (.46) 
Additional Information      
     ICC .54 .61 .60 .61 .59 
     -2 log likelihood (FIML) -792.0 -769.2 -700.4 -692.4 -682.4 
     AIC 1590.0 1552.5 1418.9 1416.8 1422.7 
     Pseudo R2 (fixed effects) 0.00 - - - - 
     Pseudo R2 (total) 0.54 - - - - 
     Number of individuals 377 377 346 346 345 
     Observations 901 901 834 834 832 
Note: Estimates of unstandardized coefficients are presented for fixed effects. Values in parentheses are standard errors. AUD 
symptoms was log-transformed to account for skewness and kurtosis. Pseudo R2 cannot be calculated for models with quadratic 
growth. The Interaction Model with Covariates also controlled for the effect of Ancestry PCs 1-10. *p < .05, **p < .01.  
1 p-values for Level 1, Level 2, and Interaction components were adjusted for multiple testing using the Benjamini–Hochberg 
procedure in the Interaction Model with Covariates. 
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Post-hoc Examination of GxI Effects on Proximal Outcomes.  Although the primary 

MLM growth curve analyses described above indicated no evidence an interaction between EXT 

PRS, intervention group, and time on trajectories of alcohol consumption and AUD symptoms, 

visual examination of the data suggested that there may have been more proximal, short-term 

effects of the intervention on alcohol use behaviors. As shown in the second panel of Figure 4, 

there appeared to be a notable difference in AUD symptoms between intervention and control 

participants at Time 1.  

Figure 4.  

 
Plotted Means and Standard Errors of Alcohol Consumption and AUD Symptoms across Time 
for Intervention and Control Participants. 
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To probe these variations further, a hierarchical multiple regression was conducted to test 

for an interaction between EXT PRS and intervention group on change in AUD symptoms from 

baseline (Time 0) to the first follow-up assessment (Time 1). Results of these analyses are 

displayed in Table 5. We observed a significant main effect of intervention on change in AUD 

symptoms after accounting for covariates (gender, LR to alcohol, propensity score, and ancestry 

PCs). There was also a significant GxI interaction between EXT PRS and intervention on change 

in AUD symptoms over and above the main effects and covariates, ΔR2 = .04, β = .21, t(297) = 

2.6, p = .01. The nature of this interaction, displayed in Figure 5, was such that individuals with 

lower EXT PRS reported significantly greater reductions in AUD symptoms in the intervention 

group compared to those with similar EXT PRS scores in the control condition, t(297) = -3.44, p 
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< .001. Simple slopes analyses identified that the moderation effect was present for individuals 

with EXT PRS below values of .02. EXT PRS was mean centered at zero, accordingly 

intervention participants with low to approximately average polygenic risk associated with 

externalizing behaviors demonstrated significantly greater reduction in AUD symptoms from 

Time 0 to Time 1 than control participants with similar EXT PRS scores. These results suggest 

that the intervention may have been differentially effective for individuals based on their genetic 

risk; however, the direction of this effect was opposite from that which was hypothesized. Prior 

literature has indicated that individuals with greater genetic risk may respond better to 

intervention (Bakermans-Kranenburg & van IJzendoorn, 2015; van Ijzendoorn & Bakermans-

Kranenburg, 2015), whereas our results indicated that the intervention was more effective for 

individuals with lower genetic predisposition for alcohol use problems, as measured by EXT 

PRS. Implications of these findings are explored in the discussion section.  
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Table 5.  

  

Results of hierarchical multiple regression examining the interactions 
between Externalizing PRS and Intervention on change in log-transformed 
AUD symptoms from Time 0 to Time 1 

 
Predictor b 

b 
95% CI 

sr2 
sr2 

95% CI 
AUD Symptoms   

(Intercept) 0.38** [0.10, 0.66]   
EXT PRS -0.02 [-0.11, 0.07] .00 [-.00, .01] 

Intervention Group -0.17* [-0.33, -0.01] .01 [-.01, .04] 
Gender (female) -0.09 [-0.30, 0.13] .00 [-.01, .01] 

LR to alcohol -0.02 [-0.05, 0.01] .00 [-.01, .02] 
Propensity Score -0.46 [-1.50, 0.58] .00 [-.01, .01] 

Ancestry PC1 0.27 [-4.10, 4.65] .00 [-.00, .00] 
Ancestry PC2 -1.02 [-5.39, 3.35] .00 [-.00, .01] 
Ancestry PC3 0.39 [-3.48, 4.27] .00 [-.00, .00] 
Ancestry PC4 -0.33 [-4.16, 3.50] .00 [-.00, .00] 
Ancestry PC5 2.16 [-1.64, 5.95] .00 [-.01, .02] 
Ancestry PC6 -0.85 [-5.24, 3.54] .00 [-.00, .00] 
Ancestry PC7 -3.80 [-7.83, 0.23] .01 [-.01, .03] 
Ancestry PC8 3.52 [-0.23, 7.27] .01 [-.01, .03] 
Ancestry PC9 -2.02 [-5.69, 1.66] .00 [-.01, .02] 

Ancestry PC10 0.10 [-4.04, 4.24] .00 [-.00, .00] 
EXT PRS * Intervention 0.21** [0.05, 0.36] .02 [-.01, .05] 

Model Fit: Multiple R2   = .087*, 95% CI[.00, .10], ∆R2 = .038 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b 
represents unstandardized regression weights. sr2 represents the semi-partial correlation 
squared.  * indicates p < .05. ** indicates p < .01. 

 

  



 

	 47 

Figure 5. 

 

 

Interaction between externalizing polygenic risk score and intervention group on change in 
Alcohol Use Disorder symptoms 
 

 

 

Aim 2: Results of examining peer deviance and drinking motives as mediators of gene-by-

intervention effects on AUD symptoms.  

In preparation for Aim 2 analyses, we calculated correlations between all independent, 

dependent, mediating, and moderating variables, displayed in Table 6. We observed several 

significant correlations between covariates and outcome variables. In addition, drinking to 

enhance was significantly correlated with both drinking to cope and peer deviance. We 

proceeded with the mediated moderation analyses using separate models to examine each 

mediator in succession, while controlling for significantly correlated mediators in each respective 
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model.  Results of the mediation analyses are displayed in Table 7. Analyses covaried for the 

effects of gender, LR to alcohol, propensity score, and the first two ancestry PCs. We observed 

no evidence that changes in peer deviance, drinking to cope, or drinking to enhance mediated the 

effect of the intervention on AUD symptoms at Time 1 for those at varying levels of genetic risk. 

However, we did observe significant direct effects of peer deviance and drinking to cope on 

AUD symptoms among both the intervention and control groups for individuals with lower EXT 

PRS (1 SD below the mean). The total effect, which is the sum of the indirect and direct effects, 

was also significant for both peer deviance and drinking to cope; however, in the absence of a 

significant indirect effect, this result was likely driven by the strength of the direct effect. For 

drinking to enhance, there was evidence of a significant direct effect on AUD symptoms in 

intervention participants, but not in control participants. To further examine these variations, we 

conducted post-hoc moderation analyses to determine if there was an interaction between 

drinking to enhance and the intervention. Results suggested that while there is a significant 

positive association between drinking to enhance and Time 1 AUD symptoms [t(299) = 2.61, 

p<.001], there was no evidence of an interaction between drinking to enhance and the 

intervention [t(299) = -1.35, p = .18]. In summary, drinking to cope, drinking to enhance, and 

peer deviance significantly influenced change in AUD symptoms; however, they did not explain 

the variation in intervention effects on AUD symptoms for individuals with high versus low EXT 

PRS.  
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Table 6  

  
Means, standard deviations, and correlations of variables included in Mediated Moderation models 
  

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 
1. Δ Peer Deviance 0 4.1            
2. Δ Drinking to Enhance 0 0.56 .16*           
3. Δ Drinking to Cope 0 0.89 .05 .15*          
4. EXT PRS 0 1 .12* -.03 .03         
5. Intervention 0.33 0.47 -.02 .00 -.07 -.01        
6. Propensity Score 0.22 0.08 -.02 .07 -.03 -.04 .00       
7. Gender (female=1) 0.71 0.46 -.06 -.01 -.00 .04 -.00 .37**      
8. LR to Alcohol 6.06 2.67 -.05 -.01 -.02 -.03 .00 .25** -.45**     
9. AUD Symptoms (T0) 1.04 0.66 -.01 -.18** -.07 -.00 -.00 .04 -.03 .12**    
10. AUD Symptoms (T1) 1.07 0.65 .17** -.01 .08 .08 .11* -.08 -.07 .05 .50**   
11. Alcohol Consumption (T0) 4.63 1.44 -.00 -.15** -.06 .01 -.02 -.23** -.24** .40** .40** .32**  
12. Alcohol Consumption (T1) 4.94 1.47 .26 -.12 -.19 -.09 -.17 -.43 -.59* .45 .46 .62* .76** 
Note. M and SD are used to represent mean and standard deviation, respectively. T0 = Time 0 (baseline assessment). 
T1 = Time 1 (first follow-up assessment). * indicates p < .05. ** indicates p < .01. 
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Table 7  
  
Results of Mediated Moderation Analyses when the Moderator is Set to Low PRS 
 

 Δ Peer Deviance 
n =301 

Δ Drinking to Enhance 
n = 313 

Δ Drinking to Cope 
n = 312 

Variable Estimate 95% CI p Estimate 95% CI p Estimate 95% CI p 
ACME (control) -.01 [-.11, .04] .99 -.00 [-.02, .01] .93 -.00 [-.03, .01] .99 
ACME (intervention) .00 [-.05, .25] .98 -.01 [-.05, .00] .19 .00 [-.03, .05] .98 
ADE (control) -.16 [-.38, .01] .03* -.13 [-.26, .01] .08 -.16 [-.30, -.02] .03* 
ADE (intervention) -.16 [-.33, .04] .03* -.14 [-.27, .00] .05* -.16 [-.30, -.02] .03* 
Total Effect -0.16 [-.33, .02] .03* -.14 [-.27, .00] .05* -.16 [-.30, -.02] .03* 
Proportion Mediated (control) .00 [-1.86, .37] .99 .00 [-.01, 1.73] .92 .00 [-.02, -.07] .99 
Proportion Mediated (intervention) -.00 [-6.50, .72] .98 .10 [-.04, 5.57] .22 -.00 [.16, 293.74] .98 
ACME (average) .00 [-.02, .13] .98 -.01 [-.03, .00] .23 .00 [-.02, .02] .98 
ADE (average) -.16 [-.32, .00] .03* -.14 [-.26, .00] .06 -.16 [-.30, -.02] .03* 
Proportion Mediated (average) -.00 [-4.61,.11] .99 .05 [.03, 5.48] .25 -.00 [-.02, 32.00] .99 
Note. ACME is the Average Causal Mediated Effect (i.e., the indirect effect of mediator on the outcome), ADE is the Average Direct Effect 
(i.e., the direct effect of mediator on the outcome), and Total Effect represents the sum of the ACME and ADE. The moderator (EXT PRS) was 
set to 1 SD below the mean for the analyses reported in the table. Estimates and CI were calculated using a bias-corrected and accelerated 
bootstrap resample of 2,000 simulations. Analyses covaried for the effects of gender, LR to alcohol, propensity score, and the first two ancestry 
PCs * indicates p < .05. ** indicates p < .01.  
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Discussion: Study One 

 The present study examined the moderating effect of polygenic risk associated with 

externalizing problems on the effect of a brief alcohol prevention program for college students, 

with the goal of understanding whether underlying genetic predispositions contribute to 

differential response to prevention and intervention. In addition, change in peer deviance and 

drinking motives were explored as potential mediators of gene-by-intervention effects, with the 

goal of understanding potential pathways through which genetic risk may contribute to 

differential prevention and intervention effects. The following discussion section will provide a 

brief review of study results and discussion of findings within the context of the broader 

literature.  

The first aim of this study was to evaluate the underlying genetic risk for externalizing 

behaviors as a moderator of a brief, web-based alcohol intervention program for college students. 

Preliminary analyses examined the degree to which the EXT PRS was associated with relevant 

outcomes in our sample of interest. The EXT PRS performed adequately in the larger Spit for 

Science EA sample (Ns ranging from 837 to 2967), significantly predicting alcohol consumption, 

AUD symptoms, peer deviance, and antisocial behavior (Table 2, Figure 3). After controlling for 

ancestry PCs, the EXT PRS accounted for approximately 1-1.5% of the variance in baseline 

measures of all phenotypes examined. The variances accounted for in the Spit for Science EA 

sample are similar to those observed in the Karlsson Linnér et al. (2020) validation of the EXT 

PRS when applied to target samples. For example, Karlsson Linnér et al. (2020) found that the 

EXT PRS accounted for 2.28% of the variance in AUD symptoms and 2.52% of the variance in 

antisocial personality disorder symptoms in the Collaborative Studies on the Genetics of 
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Alcoholism (COGA) Study sample. Although the values are higher in the Karlsson Linnér et al. 

(2020) paper compared to the present study, the COGA study sample is both larger and includes 

families densely affected by AUD, thus it is expected that the variance accounted for by EXT 

PRS may be slightly higher than those observed in a population-based study like Spit for 

Science. Indeed, the estimate of variance in AUD symptoms accounted for by EXT PRS in Spit 

for Science exceeded the effect observed in the population based sample Add Health (ΔR2 = 

0.66%) in the Karlsson Linnér et al. (2020) paper.  

Despite the significant effect of the EXT PRS in the broader Spit for Science sample, the 

primary growth curve analyses in the S4S-LR intervention sample showed no differences in 

AUD symptoms or alcohol consumption based on intervention group, EXT PRS or their 

interaction on trajectories of these outcomes across time. The second aim, which tested peer 

deviance and drinking motives as mediators of GxI effects, also produced non-significant results. 

The only significant finding in the Spit for Science sample resulted from post-hoc analyses 

focused on short-term GxI effects on AUD symptoms. We observed a significant interaction 

between EXT PRS and the intervention, such that individuals with lower PRS in the intervention 

group reported greater reduction in AUD symptoms at the first follow-up compared to 

individuals in the control group and those with higher PRS. These results suggest that short-term 

effects of a web-based alcohol intervention for college students may vary for individuals with 

different levels of underlying genetic risk for externalizing problems; however, the majority of 

the analyses, including those focused on longitudinal GxI effects and mediators of GxI effects, 

were not supported by the study findings. The implications of this single significant finding, in 

the context of predominantly null results, are discussed in further detail in the sections to follow. 
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It is notable that the direction of the significant moderation effect (individuals with lower 

PRS had improved intervention response) was opposite from that which was hypothesized 

(individuals with higher PRS will respond better to the intervention). The initial hypothesis was 

based on the differential susceptibility hypothesis, which suggests that some individuals are more 

sensitive to both promotive and harmful environments based on their genotype (Belsky & Pluess, 

2009). The theory emerged from Belsky and colleagues as a response to the limitations of 

diathesis-stress, which stipulates that certain biological factors place an individual at elevated 

risk for disorder in the presence of environmental stressors. Differential susceptibility extends 

diathesis-stress to include enhanced response to positive environments, which Belsky and Pluess 

posit provides evolutionary advantages that allow these variants to persist in the population 

across time (Belsky & Pluess, 2009; Pluess, 2017; Pluess & Belsky, 2013). Prior GxI studies that 

examined the differential susceptibility hypothesis were predicated on the belief that certain 

genetic factors influence susceptibility to environmental exposure, otherwise referred to as 

“plasticity” genes. Studies that sought to test the differential susceptibility hypothesis using GxI 

focused on certain genetic variants, typically candidate genes, which were believed to play a role 

in the sensitivity to the environment as well as the outcome of interest. For example, Cleveland 

et al. (2015) focused their analyses on the dopamine receptor D4 gene (DRD4) due to literature 

indicating that DRD4 may not only be associated with increased risk for negative outcomes 

(Daurio et al., 2020; McGeary, 2009b; Ptáček et al., 2011), but also increased receptiveness to 

environmental changes due to the role of dopamine neurons in transmitting signals related to 

both rewarding and aversive events (Bromberg-Martin et al., 2010). Cleveland et al. (2015), as 

well as a number of other alcohol-related GxI studies (Beach et al., 2010; Brody et al., 2013, 
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2014, 2015; Ewing et al., 2009), observed findings that suggested the 7-repeat allele predicted 

poorer outcomes under control conditions and improved outcomes under intervention conditions 

(Bakermans-Kranenburg & van IJzendoorn, 2015; van Ijzendoorn & Bakermans-Kranenburg, 

2015). In contrast, the present study findings suggest that individuals with greater polygenic risk 

for externalizing behaviors are less likely to benefit from a brief alcohol intervention for college 

students. The shape of this interaction aligns more with the vantage resistance model, or a 

diminished ability to benefit from promotive environmental conditions (i.e., intervention) than 

those at lower risk (Pluess & Belsky, 2013).  

There are a few possible reasons why the present study’s findings did not align with 

previous GxI research supporting the differential susceptibility hypothesis. First, most prior GxI 

studies used candidate gene methods for the measurement of genotype, which involve the study 

of a marker or markers located in a single gene selected a priori for its hypothesized role in a 

given phenotype. Subsequent well-powered GWAS have not supported the hypothesized role of 

most candidate genes, suggesting that many significant candidate gene findings may have been 

the result of false positives or spurious effects (Auwera et al., 2018; Border et al., 2019; Johnson 

et al., 2017). In the case of DRD4, a recent meta-analysis of the role of DRD4 in alcohol-related 

outcomes identified mixed results, with some evidence that the 7-repeat allele was associated 

with increased drinking days, binge drinking days, and AUD symptom severity but no 

differences in typical drinks per day and maximum drinks per occasion. However, the reliability 

of these findings was limited by small sample sizes and the inability to account for population 

stratification in most studies due to the lack of ancestry data, both of which increase the 

likelihood of Type I error. Thus, it is likely that candidate GxI studies encountered similar 



 

 55	

problems observed in the broader candidate gene study literature, including publication bias, 

false positives, and limitations of power due to the very small effect sizes of single variants 

examined in small samples (Border et al., 2019; Duncan & Keller, 2011; Neale et al., 2020).  

In contrast to previous candidate gene work, the present study used a polygenic score to 

index underlying genetic risk, which provides an estimate of the accumulation of thousands of 

very small genetic effects that contribute to complex behaviors. Polygenic scores serve as indices 

of aggregate genetic vulnerability, in this case indexing risk for externalizing behaviors across 

the genome. Although the polygenic score for externalizing behavior likely includes some 

markers that may play a role in sensitivity to environment, the impact of those individual variants 

cannot be discerned due to the cumulative nature of polygenic scores. Furthermore, single 

variants explain very little variance in any given complex behavior, and extremely large samples 

would be needed to detect the effect of individual variants (Timpson et al., 2018). In order to test 

for the impact of sensitivity to the environment using a polygenic score, one would need to 

measure sensitivity to the environment and use that phenotype to create a polygenic score. Keers 

et al. (2016) pursued this approach by creating a polygenic score for environmental sensitivity 

based on a measure of within twin-pair differences in emotional problems. They found that 

polygenic risk for environmental sensitivity moderated the effect of a cognitive behavioral 

therapy (CBT) intervention on childhood anxiety symptoms, such that individuals with higher 

polygenic scores for environmental sensitivity responded significantly better to individual CBT 

compared to parent-led or group CBT. The environmental sensitivity polygenic score has also 

been used to assess gene-by-intervention effects of the Family Check-Up on childhood 

internalizing psychopathology (Lemery-Chalfant et al., 2018).  Lemery-Chalfant et al. (2018) 
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found that children with higher polygenic scores assigned to the intervention reported 

approximately 5-10 fewer total internalizing symptoms than those with similar genetic risk 

assigned to the control condition. The effect of polygenic risk for environmental sensitivity has 

yet to be tested in studies of alcohol and substance use outcomes, this future research is 

warranted to explore this area of research further. However, it is important to note that research 

studying the genetics of environmental sensitivity asks a different question than studies of 

underlying genetic risk for externalizing behaviors, as examined in the present study. 

Accordingly, patterns of findings for studies of polygenetic risk associated with given outcome 

(i.e., alcohol consumption, externalizing behaviors) may differ from those which study 

environmental sensitivity.  

Another question that arises from the GxI analyses in the present study is the following: 

why were the GxI effects significant in the immediate post-intervention period (Time 0 to Time 

1), but not in the primary growth curve analyses assessing trajectories of AUD symptoms from 

Time 1 to Time 4? One possible explanation for these findings is that the intervention effects 

were not sufficiently robust to generate discernible differences in the slope of alcohol 

consumption and AUD symptoms across the four-year follow-up period. The intervention 

involved only 4-weeks of one-hour videos delivered online, which may be insufficient to create 

lasting effects on college student drinking given the wide array of other influential individual and 

environmental factors contributing to drinking outcomes. Another possible explanation for the 

null results for the growth curve analyses involves statistical power. Power was calculated using 

an adapted version of the mlm_test function from the paramtest package in R. Simulated values 

of the dependent variable were generated using the model specified in mlm_test, expanded to 
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include fixed effects for all predictors of interest in this analysis using coefficients for each fixed 

effect drawn from the growth curve model. The values of the coefficients used in the simulation 

pipeline are displayed in Table 4, under the Interaction Model. After simulating the dependent 

variable as a function of the predictors, the model was fit in the simulated data and the p-value 

was saved. This pipeline was repeated 1000 times. Power is calculated as the proportion of p-

values below .05. Results indicated that the model achieved approximately 74% power to detect 

an effect in a sample of 344, meaning 74% of the time, models with these indicators are 

sufficiently powered to detect an effect if there is one in the population. At 74% power, the 

growth curve models were slightly underpowered compared to the preferred standard of 80% 

power to detect an effect. By comparison, according to post-hoc power analysis conducted using 

G*Power, the hierarchical multiple regression examining GxI effects on change in AUD 

symptoms from Time 0 to Time 1 achieved 93% power to detect an interaction effect given the 

small effect size (f2 = .038) observed in the model (Faul et al., 2007). Thus, it is possible that the 

limitations of analytical power in this sample played a role in the null effects observed in the 

growth curve analyses, whereas the hierarchical multiple regression was adequately powered to 

discern an effect.    

It is also worth considering the possibility that the single significant GxI interaction effect 

observed in this study may be a statistical artifact, or a spurious finding resulting from 

measurement error in psychometric variables. Statistical artifacts have long been a topic of 

discussion in GxE research due to the psychometric complexity of measuring psychiatric 

phenomena in the absence of objective measures, and the preponderance of scale transformations 

(e.g., diagnostic cutoffs, sum scores, etc.) used to address distributional problems in psychiatric 
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measures (Eaves et al., 1977; Jinks & Fulker, 1970; Mather & Jinks, 1982). As Eaves and 

Verhulst (2014) stated, “you can generate almost any interaction you want by changing the scale 

of measurement.” Scale transformations can emphasize or exclude certain points of the scale, 

and in turn alter the conclusions derived from analyses. Indeed, simulations of GxE interaction 

studies have shown that the dichotomization of continuous measures (Eaves, 2006) and the use 

of sum scores (Eaves, 2017; Schwabe & van den Berg, 2014) can result in biased estimates of 

GxE effects. In the present study, there was a significant GxI effect on AUD symptoms, a log-

transformed symptom sum score. Although log-transformations can reduce bias in GxE analyses, 

problems may still persist (Eaves & Verhulst, 2014). Therefore, it is possible that the observed 

GxI effects may be a statistical artifact resulting from scale transformation, or a biased 

overestimate the effect size. Recommendations for differentiating true versus artifact interactions 

include 1) categorizing each symptom and fitting models with logistic regression, 2) designing 

and using improved psychometric measures, 3) integrating item response theory, 4) using non-

transformed variables to probe effects in sensitivity analyses, and/or 5) using a variety of 

statistical models to explore potential differences as a function of genotype (Domingue et al., 

2020; Eaves & Verhulst, 2014). Although the problems related to scale artifact in GxE research 

discussed in this section are not unique to this study, it is important to consider the potential 

implications in the context of the predominantly null pattern of findings across the dissertation 

analyses. Accordingly, it is recommended that the GxI results in this study be interpreted with 

substantial caution, given the challenges of discerning true versus artifact GxI results.  

 Results of the mediation analyses focused on peer deviance, drinking to cope, and 

drinking to enhance were also non-significant. These mediators were selected based on prior 
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evidence that they significantly influence alcohol-related outcomes in youth, have a genetic 

component to their etiology, and are modifiable risk factors that can be targeted by interventions. 

Twin studies have demonstrated that genetic risk for externalizing problems is amplified under 

conditions of high peer deviance (Harden et al., 2008). GxE research also indicates that genetic 

liability for substance use and peer group deviance may be correlated, such that individuals 

carrying genetic risk for substance use problems may self-select into higher risk peer groups 

(Gillespie et al., 2009). Similarly, drinking motives are heritable (specifically drinking to cope 

with negative emotions, drinking to enhance positive feelings) and there is evidence that they 

mediate the effect of family history on alcoholism (Agrawal et al., 2008; Beseler et al., 2008). 

Despite the theoretical and empirically supported role of these factors in drinking related 

outcomes, we observed no mediating effect of these mechanisms in our analyses. One possible 

explanation is that that analyses may have had insufficient power to detect a mediating effect. 

Very few previous GxI studies of alcohol and substance use outcomes have examined mediators, 

and those that did used candidate gene methods to measure genotype (Brody et al., 2014, 2015). 

The large mediation effect sizes observed in previous studies are likely related to overestimates 

of the main effect of the genotype, and thus a more conservative estimate would be to assume 

small to very small effects for mediation analyses using polygenic scores. Based on estimates of 

sample sizes required for mediation analyses, the analytic samples for the mediation analyses in 

the present study (n ranging from 301-313, see Table 7) were adequately powered to detect 

halfway (d = .26), medium (d = .39), and large (d = .59) effects, but insufficiently powered to 

detect small (d = .14) effects (Fritz & MacKinnon, 2007). In order to detect small mediation 

effects, a sample size of 462 individuals would be required to achieve 80% power according to 
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the recommendations from Fritz & MacKinnon (2007). Post-hoc analyses also indicated that 

there were no main effects of the intervention on change in peer deviance, drinking to cope, or 

drinking to enhance, suggesting that changes in these factors were not a result of the 

intervention.  

Therefore, additional research is needed to obtain larger, more well-powered samples, 

and explore alternative factors that may have contributed to changes in AUD symptoms observed 

in individuals with low EXT PRS in the intervention group. Mechanisms of action for brief 

alcohol interventions remain unclear (Gaume et al., 2014; Magill et al., 2015), though there is 

some evidence that changes in perceptions of normative drinking (Carey et al., 2010), increased 

understanding of values-discrepant behavior (Barnett et al., 2010; McNally et al., 2005; Miller & 

Rollnick, 2002a), and increased use of protective behavioral strategies may contribute to the 

beneficial effects of alcohol interventions (Pearson, 2013; Prince et al., 2013; Walters et al., 

2009). For example, perhaps the present study’s intervention led to increased use of protective 

strategies among individuals with lower EXT PRS, such as alternating alcoholic beverages with 

water, setting a drink limit, eating before consuming alcohol, and drinking at a slower pace 

(Bravo et al., 2017; Pearson, 2013; Prince et al., 2013). Although these factors are important to 

consider as potential mediators of intervention effects, they were not assessed as part of the 

present intervention study or the Spit for Science data collection efforts. Future research would 

benefit from increased assessment of potential mediators of intervention effects, so that questions 

of how and why interventions are differentially effective can be explored.  

The present study has a number of strengths that distinguish it from the extant GxI 

literature.  First, most previous GxI studies of alcohol and other substance use outcomes relied 



 

 61	

on candidate gene methods (Neale et al., 2020). Although the early reliance on candidate genes 

in GxI literature parallels the progression of genotypic methods in the broader field of genetics 

research, the adoption of newer methods, such as polygenic scores has been slower to progress in 

GxI research. The present study advances GxI research by incorporating polygenic scores into 

the analyses, joining a handful of prior studies that have done the same (Kuo et al., 2019; Musci 

et al., 2015, 2018). Second, in order to calculate an adequately-powered polygenic score this 

study used the largest GWAS of externalizing behaviors to date (Karlsson Linnér et al., 2020). 

Although there are a number of well-powered GWAS of alcohol use and AUD (Kranzler et al., 

2019; Liu et al., 2019; Sanchez-Roige et al., 2019; Walters et al., 2018; Zhou et al., 2020), the 

externalizing GWAS discovery sample was selected due to evidence that genetic risk for 

externalizing behaviors is more likely to manifest earlier in development than alcohol-specific 

risk (Kendler & Myers, 2014; Meyers et al., 2014). Furthermore, the use of the EXT PRS is 

consistent with literature that suggests genetic risk for alcohol and substance use behaviors are 

better explained by shared genetic liability for externalizing behaviors (Hicks et al., 2004; 

Kendler et al., 2003; Krueger et al., 2002). Fourth, this study used propensity score matching to 

approximate the effects of random assignment and mitigate the effects of selection bias in a non-

randomized sample (Austin, 2011). Although randomized-controlled trials are considered the 

gold standard study design for exploring causal effects of an intervention on outcomes, the 

application of propensity score matching in this study successfully resulted in the creation of a 

comparison group with no significant differences from the intervention group across a wide 

range of baseline characteristics. While causal interpretations of study findings should still be 

approached with caution, the use of propensity score matching represents an opportunity to 
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substantially expand the realm of available datasets in which to explore GxI effects. Finally, 

most prior GxI studies examined adolescent samples and very few attempted to explore 

mediators of GxI effects. Emerging adulthood is a critical period for the development of alcohol 

use behaviors (Skidmore et al., 2016; Sussman & Arnett, 2014), yet in the context of GxI 

research remains understudied (Ewing et al., 2009; Neale et al., 2020). The present study 

capitalized on a large study of genetic and environmental influences on substance use and 

emotional health in college students, expanding the scope of prior GxI literature into important 

populations of interest. Regarding the importance of mediators, although we observed no 

evidence of mediation via changes in peer deviance or drinking motives, the present study 

emphasized the need to better understand why interventions may be differentially effective for 

individuals with varying levels of genetic risk.  

The results of this study should also be interpreted within the context of several 

limitations. First, the sample size for the current study (N=483) was relatively small and may 

have contributed limitations in statistical power to detect effects. As indicated previously, the 

sample was underpowered to detect a 3-way PRS * Intervention * Time interaction effect in the 

growth curve analyses, but adequately powered (93%) to detect the observed GxI effect of f2 = 

.038 in the hierarchical multiple regression analyses. However, this significant GxI effects may 

also be a statistical artifact resulting from scale transformation, or a biased overestimate the 

effect size. Larger samples are needed to replicate the present study’s findings and explore some 

of additional mediators of GxI effects. Recommendations for sample size requirements and 

strategies to attain larger samples are provided in the discussion of future directions. Second, the 

study was limited to individuals of European ancestry due to small numbers of individuals of 
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other racial/ethnic groups in the intervention sample. Current best practices for genetics research 

recommend analyzing ancestry groups separately due to differences in allele frequency across 

different populations that can bias results (Peterson et al., 2019). This is a significant limitation 

of the present study, as underrepresentation of diverse individuals inhibits the equitable 

application of GxI research findings (Martin et al., 2019; Popejoy & Fullerton, 2016). A 

combination of computational intricacies, such as those present in this dissertation study, and 

broader historical and systemic issues have negatively impacted representation of diverse 

ancestry in genetics research for decades (Bates et al., 2005; Dick et al., 2017; Furr, 2002; 

Tambor et al., 2002). Unfortunately, genetic findings observed in one ancestry population often 

do not replicate in other ancestry groups due to differences in genetic architecture, such as 

linkage disequilibrium and allele frequency (Sirugo et al., 2019). Without concerted effort to 

increase diverse representation in genomic research studies, disparities in the utility of genomic 

research findings will continue to expand (Martin et al., 2019). Finally, although polygenic 

scores offer many benefits over other methods for integrating genetics into 

prevention/intervention research, they also have some limitations. As measures of cumulative 

genetic risk, polygenic scores provide little information about individual SNP-level effects that 

may increase understanding of the biological processes that might explain gene-environment 

interactions. Polygenic scores also only capture genetic risk associated with common variants; as 

a result, rare variants may contribute additional variance not captured by polygenic scores 

(Crouch & Bodmer, 2020; Young, 2019). Although these limitations may inhibit the ability of 

GxI research to spur new ideas for molecular genetic research, polygenic scores remain the most 

accessible and cost-effective means to integrate genetics into prevention/intervention research. 
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Despite these limitations, there are a number of opportunities to advance the future 

directions of this work. First, it may be useful to conduct additional analyses using different 

polygenic scores. Although the externalizing polygenic score has both theoretical and empirical 

support for the association with alcohol-related behaviors, the degree to which genetic risk for 

externalizing problems influences alcohol-related outcomes may shift across environmental and 

developmental contexts. Twin studies have shown that under certain environmental conditions, 

such as high peer deviance and low parental monitoring, the influence of genetic risk is stronger 

than in more protective environments (Dick et al., 2007; Harden et al., 2008). The subjects 

included in the externalizing GWAS discovery sample were also older on average than the 

college students in the present study, which may impact the predictive validity of the polygenic 

scores. Accordingly, it will be important to examine the way that GWAS discovery sample 

characteristics may influence findings in the target sample, as well as explore the way polygenic 

scores for different outcomes (e.g., alcohol consumption, AUD diagnosis, etc.) may affect 

results. Second, as the present study identified no significant mediators of GxI effects, one viable 

future direction for this work is to identify and test new mediators. Active ingredients in brief 

interventions, such as increasing protective behavioral strategies and correcting perceptions of 

normative peer use, are both viable options for potential psychosocial mediators of GxI effects 

(Barnett et al., 2010; Lewis & Neighbors, 2006; Magill et al., 2015; Prince et al., 2013). 

Given the limitations of statistical power and racial/ethnic diversity in the present study, 

exploring these research questions in larger, more diverse study samples would enhance the 

generalizability, applicability, and reliability of these findings. Larger sample sizes can increase 

the statistical power to detect small GxI effects; however, effect size estimates for GxI studies 
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using polygenic scores are sparse in the existing literature. In a phenomenon referred to as the 

“file drawer problem,” significant findings are also more likely to be published than non-

significant findings (Rosenthal, 1979); therefore, the effect sizes that are published may represent 

inflated estimates of effects. A systematic review of polygenic GxE studies of tobacco, alcohol, 

and cannabis indicated that effect sizes are rarely reported, further complicating the procedure 

for identifying appropriate effect size estimates from which to determine sample size needs 

(Pasman et al., 2019). The authors of the review paper recommended the use of conservative 

estimates for GxE effect sizes (e.g., f2 = .005) to ensure studies are sufficiently powered. 

Assuming an effect size of f2 = .005, with an average of 15 predictors in a hierarchical multiple 

regression, a sample size of 1572 would be required to achieve 80% power. The present study’s 

sample (N=483) was adequately powered to discern GxI effects of f2 = .016 or greater but was 

not sufficiently powered to detect more conservative estimates of GxI effect sizes.  

Estimated sample size requirements for GxI analyses may exceed those typically seen in 

intervention research, thus researchers are encouraged to consider new and innovative strategies 

to attain larger, genetically informed intervention samples. Partnering with existing large-scale, 

diverse randomized-controlled trials to retrospectively collect DNA samples from study 

participants may be a useful, and potentially cost-effective approach to advancing this research. 

This approach may also have the added benefit of increasing representation of samples across the 

developmental spectrum, to include individuals from early prevention studies in youth to 

treatment efficacy trials in adulthood. All clinical trials in the United States are required to 

register on ClinicalTrials.gov, an online database of ongoing clinical trials in the United States, 

which includes recruitment information, sample sizes, and results (Anderson et al., 2015). The 
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ClinicalTrials.gov database provides an invaluable resource for identifying potential large, 

diverse, randomized-controlled trials that may be appropriate for collaborative GxI research. A 

brief search of ClinicalTrials.gov in April of 2021 returned 185 completed and 165 active, 

ongoing studies of alcohol use disorder. Filtering these studies by intervention type (i.e., 

behavioral versus pharmacological), the creation of rankings based on sample size and 

demographics may then help identify high-priority samples. After identifying prioritized studies, 

the next step would be to generate a proposal to partner with the intervention researchers to fund 

collection of DNA samples from their subjects, or access genotypic data if already available. If 

the intervention study sample sizes are still too small (i.e., fewer than 1500 participants), studies 

with similar types of interventions could be combined and analyzed together in an approach 

similar to the method used in collaborative genomics consortia (e.g., Psychiatric Genomics 

Consortium). Coordination of a collaborative effort such as the one described would likely 

benefit from the establishment of a consortium, or partnership with an existing genomic 

consortium, to create an organized and inclusive effort to increase statistical power in GxI 

studies and expand the applicability of GxI findings to individuals of all backgrounds. 
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Research Aims and Hypotheses: Study Two 

Guided by the extant literature and relevant theoretical models, the proposed research has 

the following aims and hypotheses:  

3. The first aim was to examine whether polygenic risk associated with externalizing 

behaviors moderates the effectiveness of a multi-component adolescent prevention 

program to reduce externalizing behavior in the Project Alliance sample. 

a. Informed by the differential susceptibility hypothesis, I hypothesize that 

individuals in the intervention with higher polygenic risk will show lower rates of 

alcohol use and problems in emerging adulthood than those with lower polygenic 

risk and controls. 

4. The second aim is to examine whether peer deviance mediates changes in young adult 

alcohol use behaviors for those at greater genetic risk in the Project Alliance intervention 

sample. 

a. I expect that the intervention will lead to lower peer deviance among those with 

higher genetic risk, which will partially account for lower alcohol use and 

problems in intervention participants.  Drinking motives were not measured in the 

Project Alliance sample, and thus cannot be examined as a mediator of GxI 

effects.  
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Methods: Study Two 

Project Alliance Sample 

Participants. Project Alliance (PAL) is a longitudinal study of students recruited in 6th 

grade and randomized to participate in an intervention aimed at preventing substance use and 

deviant behavior (Dishion et al., 2003). Participants (N=998; 47.3% female) and their families 

were recruited from three public middle schools in a metropolitan community in the Pacific 

Northwest region of the United States. The participation rate was 90%. The specific schools 

within the community were close in proximity and the neighborhoods had elevated rates of 

arrest. Of the students recruited for the study, one half of the participants were randomized to the 

intervention condition (n = 500), which took place in middle school. All participants were 

followed longitudinally with assessments approximately annually from grades 6-12 (ages 11-12 

to 18-19) and in early adulthood at ages 22-23, 23-24 and 26-27. Retention rates across all waves 

were very high, ranging from 80.2% to 85.8%. At wave 10 (age 26-27), PAL participants were 

invited to provide a DNA sample in order to study gene-environment interplay and the influence 

of family-centered prevention on genetic and environmental risk. DNA saliva samples were 

collected using Oragene kits and extracted according to standard procedures. Participation in the 

DNA component was high among PAL participants who were still active at wave 9 (85% of 

998). A total of 634 PAL participants provided DNA samples, of which 311 are intervention 

participants and 323 are controls. The racial/ethnic composition of this subset is 43.2% European 

American and 30.6% African American. Study procedures were approved by the Institutional 

Review Board at the University of Oregon. 

Prevention program and procedure. The goal of the PAL intervention protocol was to 

improve family management, address youth adjustment problems, and reduce substance use.  
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The intervention protocol incorporated multiple components, ranging from universal, selected, 

and indicated levels of intervention. At the universal level, all intervention participants and their 

families were offered access to a Family Resource Center established in their school and staffed 

by parent consultants.  The parent consultants offered brief in-person and telephone 

consultations, reports on their child’s behavior in school, and access to a library of parenting 

materials.  Intervention participants were assigned to the same homeroom classes in 7th grade, 

through which parent consultants led six lessons for the students based on the Life Skills 

Training program (Botvin et al., 1990) on topics such as positive peer groups and stress and 

anger.   

At the selected level, families were offered the Family Check-Up (FCU), a strengths-

based, family-centered intervention based on the principles of motivational interviewing, which 

is available for training and certification via Arizona State University’s REACH Institute 

(Dishion et al., 2003; Dishion & Stormshak, 2007; Miller & Rollnick, 2002b). The FCU was 

available to all intervention participants, but families identified as high-risk based on teacher 

report were contacted directly and offered the FCU in 7th and 8th grade. Among families in the 

intervention condition, 23% agreed to take part in the FCU at least once. The FCU is comprised 

of an initial interview in the first session, followed by a family assessment in the second session. 

In the third session, participants are provided with feedback and guided through a discussion 

about appropriate follow-up intervention services using a motivational interviewing style. The 

follow-up intervention services comprised the indicated component of the PAL intervention 

protocol. These services included evidence-based interventions such as family behavior therapy, 

multisystemic family therapy, and parent group interventions. Assessments were collected at 
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each wave of the study from intervention and control participants. Youth were provided with $20 

in compensation for each assessment they completed.   

Measures. Processed and cleaned genotypic data as well as longitudinal phenotypic data 

from the PAL surveys were used for analyses.  

Alcohol use and dependence. Alcohol use was assessed across all waves using items 

developed for the PAL study. Participants were asked to report lifetime alcohol use, age of 

initiation, frequency and quantity of typical use for several different types of alcohol (beer, wine, 

hard liquor). These items were recoded into semi-continuous measures of monthly frequency and 

quantity of alcohol use, then multiplied (frequency*quantity) to create a measure of drinks 

consumed per month. This approach has been validated for use in other studies with the PAL 

sample (Connell et al., 2007, 2012). Lifetime alcohol dependence (AD) was measured at wave 7 

(age 22-23) using the Composite International Diagnostic Interview (Kessler & Ustün, 2004; 

World Health Organization, 1997). Items were based on DSM-IV criteria for alcohol 

dependence. An AD symptom sum score was created for each participant by summing the AD 

items endorsed.  

Peer deviance and antisocial behavior. PAL participants completed the Peer Network 

Deviant Behavior Scale, a 22-item scale adapted for use with young adults from portions of the 

Community Action for Successful Youth Survey (Metzler et al., 1998). The measure assessed 

whether a young adult’s peer network engaged in problem behaviors (e.g., stealing, fighting, 

substance use). The items were used to establish measures of deviant peer association at waves 

2-4. At wave 6, participants were also invited to take part in an observational study of peer 

interactions with a self-nominated friend of the same sex. The methods for peer interaction task 

and coding are described in detail elsewhere (Piehler & Dishion, 2015). Briefly, trained research 
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assistants coded videotapes of participant behaviors during as series of peer interaction tasks. 

Derived measures included the duration of “deviant” talk and frequency of rule breaking. 

Participants also answered questionnaires assessing the frequency with which their peers 

engaged in antisocial behavior.  

Covariates. Covariates include age, sex, teacher report of child risk behavior, and 

ancestry principal components. Teacher report of risk behavior (TRISK) is a 16-item measure in 

which teachers rated each child on their 6th Grade roster on the frequency with which they 

engaged in youth problem behaviors, such as aggression, oppositionality, and problems with 

peers (Soberman, 1994). Items were averaged and standardized within classroom. The TRISK 

score is a baseline measure of risk for externalizing problems in the PAL sample.  

Genotyping. DNA samples were sent to the Rutgers University Cell and DNA Repository 

where they were genotyped on the Affymetrix Axiom BioBank Array Version 2. Genotypes 

were imputed using 1000 Genomes (Phase 3 reference panel; 1000 Genomes Project 

Consortium, 2015) using SHAPEIT2 and IMPUTE2. Quality control procedures included 

removal of: 1) palindromic SNPs, i.e. those with ambiguous directions (A/T or C/G), 2) SNPs 

with genotyping rate <0.95, 3) SNPs that failed tests of Hardy-Weinberg equilibrium (HWE; 

p<10-6), and 4) SNPs with minor allele frequency less than .01. A total of 2,067,148 SNPs passed 

quality control and data cleaning thresholds and were included in the analyses.  

Data Analysis Plan: Sample Two 

All analyses were conducted using R, a flexible statistical computing program with 

several available methods for handling missing data (Kabacoff, 2011).  R’s functionality is 

expanded through various packages built to run advanced statistical techniques described below. 
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Data preparation. All phenotypic variables were examined for normality. Log 

transformations after adding one were computed when appropriate to reduce the effects of non-

normality. Due to the longitudinal nature of the study, some missing data was expected. 

However, retention rates across all waves were very high, ranging from 80.2% to 85.8%. For the 

growth curve models, individuals missing greater than one time point were excluded list-wise. 

Complete data was required for mediation analyses. 

Creation of polygenic risk scores (PRS).  For the EA subsample in PAL, the method for 

polygenic score calculation was consistent with the method described for the S4S sample. Using 

summary statistics from a GWAS of externalizing behaviors in about 1.5 million subjects 

(Karlsson Linnér et al., 2020), polygenic scores were derived using PRS-CS and the linkage 

disequilibrium (LD) patterns observed in the 1000 Genome Phase 3 European Ancestry reference 

panel (The 1000 Genomes Project Consortium, 2015). Please see the section on creation of 

polygenic risk scores in Study 1 Methods for additional details on externalizing polygenic risk 

scores (EXT PRS) calculation for EA participants for PAL.  

For the AA subsample, additional steps were taken to minimize the potential of bias due 

to population stratification. Population stratification refers to systematic variations in allele 

frequency among different geographical ancestry groups. When population stratification is not 

accounted for in genetic analyses there is an increased risk of false-positive results (Hellwege et 

al., 2017). The multiethnic polygenic risk score approach (MultiPRS) combines data from large 

European samples with data from a smaller, ancestry-matched sample to improve risk prediction 

accuracy in non-European populations (Márquez-Luna et al., 2017). To calculate the MultiPRS, 

we conducted a GWAS of externalizing behaviors in the African American subsample of the 

Collaborative Study of the Genetics of Alcoholism. Using summary statistics from this ancestry-
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matched GWAS, we calculated polygenic scores in the target sample and combined them with 

PRS-CS scores derived using the EA Externalizing GWAS summary statistics (Karlsson Linnér 

et al., 2020). The MultiPRS is the saved predicted value of a linear combination of the COGA 

PRS and the EA Externalizing GWAS PRS for African ancestry participants in PAL. This 

method leverages the large sample size used in the Karlsson Linnér paper while also 

accommodating differences in allele frequency through the incorporation of ancestry-matched 

genotypic data in the COGA sample.  

Principal Components Analysis (PCA). Ancestry principal components (PCs) account 

for variation in allele frequency across different population structures and are included in 

analyses to reduce confounding. Principal Components Analysis (PCA) was conducted using 

EIGENSOFT and SmartPCA with 1000 Genome Project phase 3 reference panel (Patterson et 

al., 2006; Price et al., 2006). Regions of high LD were excluded using PLINK 2.0, so as to 

ensure that all SNPs were relatively independent. 

Evaluation of Externalizing PRS in PAL. To evaluate the association between EXT 

PRS and relevant outcomes (alcohol consumption, AD symptoms, peer deviance, and deviant 

behavior), we conducted hierarchical multiple regression estimating the effect of the EXT PRS 

on related phenotypes (alcohol, peer deviance, etc.) over and above the effect of the ancestry PCs 

and sex. The results of these analyses demonstrated the degree to which the EXT PRS is 

associated with expected phenotypes in the target sample. Analyses were conducted separately 

for the EA and AA participants and p-values were adjusted for multiple testing using the 

Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).  

Aim 1: Tests of GxI Effects on Alcohol Consumptions and AD Symptoms. The 

primary outcomes of interest were alcohol consumption and AD symptoms. Alcohol 
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consumption was measured at multiple time points; thus, it was appropriate to use growth curve 

analyses within a multilevel framework to estimate the effects of EXT PRS, intervention group, 

and their interaction on changes in alcohol consumption across time. However, AD symptoms 

were assessed at only one time point in emerging adulthood, wave 7 (age 18-19), and therefore, 

could not be modeled with growth curve analyses. As an alternative, hierarchical multiple 

regression was used to estimate GxI effects on AD symptoms in the PAL sample.  Each of these 

analytic approaches is described in further detail below. All analyses were conducted separately 

for EA and AA participants.  

Alcohol consumption. Alcohol consumption was measured across multiple time points in 

the PAL sample. As the focus of this study was on the developmental period of emerging 

adulthood, we modeled linear and quadratic growth curves within a multilevel framework using 

four timepoints in late adolescence to emerging adulthood (ages 16-17, 18-19, 22-23 and 23-24). 

The multilevel framework accommodated the nested structure of repeated measures within 

individuals, while also allowing for between-individual and between-group variation in intercept 

and slope of the dependent variable. We used a model building approach to compare the model 

fit between the unconditional (null) model, unconditional growth model, and conditional growth 

model with time-invariant covariates (ancestry PCs, sex, and TRISK). Analyses were conducted 

using the lme4 package for R, with maximum likelihood estimation. Model fit was evaluated 

using AIC, intraclass correlation (ICC), and pseudo R2.  

Unconditional models. First, we constructed an unconditional null model to provide an 

estimate of the within-person (Level 1) and between-person (Level 2) variance components. The 

unconditional null model serves as a base model with no predictors to test whether model fit 

improves with the addition of Level-2 effects in subsequent models. Next, an unconditional 
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growth model was fit. The unconditional growth model estimates the trajectory of the outcome 

across four time points, with Time as a predictor at Level 1. As there were no significant 

differences between intervention and control groups at baseline, Time was centered at first 

follow-up (Time 1), with each successive follow-up coded to account for approximately equal 

time between follow-up assessments (Time 0 = 0, Time 1 = 2.83, Time 2 = 3.92, Time 3 = 8.58). 

Linear and curvilinear effects for time were tested, with the quadratic equation providing a better 

fit for the data. A comparison of model fit between the unconditional null model and the 

unconditional growth model confirmed that there was sufficient individual variability to warrant 

advancing to conditional models, which include predictors to estimate variation in intercept 

and/or slope.  

Conditional models. The first conditional growth model included Time as the Level 1 

variable, and intervention group and EXT PRS as Level 2 variables. Fixed and random effects 

for slope and intercept were tested, with random slope and intercept providing the best fit for the 

data. In the second conditional model, 2-way and 3-way interaction terms were added to examine 

the degree to which interactions between Time, EXT PRS, and intervention group contributed to 

variation in the outcomes. In the final model, ancestry PCs, TRISK, and sex were added as 

covariates at Level 2 to account for their potential impact on the resulting models. We applied 

within sample (EA and AA) corrections for multiple testing to the p-values for the Level 1 

variables (intercept, Time), Level 2 variables (intervention group, EXT PRS), and Interaction 

components using the Benjamini-Hochberg correction (Benjamini & Hochberg, 1995). 

Alcohol dependence symptoms. We conducted hierarchical multiple regression in R to 

evaluate the effect of EXT PRS, intervention group, and PRS*intervention group on AD 

symptoms at age 18-19. Tests of change in R2 were used to evaluate the effect of the 
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PRS*intervention interaction over and above the main effects and covariates. All ten ancestry 

PCs, TRISK, and sex were included as covariates and p-values were adjusted using the 

Benjamini-Hochberg correction (Benjamini & Hochberg, 1995). 

Aim 2: Examining peer deviance as a mediator of gene-by-intervention effects. Aim 

2 analyses test whether peer deviance at wave 6 mediated an effect of the intervention on alcohol 

consumption and AD symptoms for those at varying levels of genetic risk.  Correlations of all 

mediating, moderating, predictor, and outcome variables were computed. Analyses were 

conducted using the mediation package in R. In the first step, we regressed the effect of EXT 

PRS * intervention and covariates (gender, TRISK, and ancestry PCs) onto the centered 

mediating variable. Next, we estimated the effect of EXT PRS * peer deviance, EXT PRS * 

intervention, and covariates on the outcome variable. In the final step, we specified the levels of 

the moderator (EXT PRS) at which to calculate the mediation function, setting the values of EXT 

PRS at 1 standard deviation above and below mean. Finally, we tested for significant differences 

in the total, direct and indirect moderating effects of EXT PRS and intervention status on AD 

symptoms through peer deviance using a bias-corrected and accelerated bootstrap resample of 

2,000 to calculate the 95% confidence interval for the indirect effects.  
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Results: Study Two 

Descriptive Statistics and Preliminary Analyses 

 Descriptive Statistics. Descriptive statistics for the EA and AA participants are 

displayed in Table 8. Intervention and control participants were similar across most variables of 

interest in both EA and AA participants. There were no significant differences in TRISK scores 

between intervention and control participants in either ancestry group. Accordingly, TRISK was 

appropriate for use as a baseline measure of externalizing risk in the analyses. There was a 

significant difference in drinks per month at wave 8 for EA participants, with intervention 

participants reported significantly less alcohol consumption than controls. For AA participants, 

there was a significant difference in drinks per month at wave 10; however, control participants 

reported significantly fewer drinks per month than intervention participants. These variations are 

further examined in the growth curve analyses to follow. Please note, the drinks per month and 

AD symptoms were log-transformed to account for skewness and kurtosis. 

 

 Table 8.  

Descriptive statistics for European Ancestry and African Ancestry PAL participants.  
 

European Ancestry African Ancestry 
Variable Intervention 

Mean (SD) 
Control 

mean (SD) 
t (p) Intervention 

Mean (SD) 
Control 

Mean (SD) 
t (p) 

Sample size  N = 138 N = 131  N=92 N = 99  
Gender (female=1)  n = 71 n = 65 !!(p) = 

.90 (.76) 
n = 56 n = 45 !!(p) = 

1.2 (.29) 
Age in months at W6 228.31 (8.55) 228.15 (8.08) -0.15 (0.65) 229.57 (0.93) 229.18 (7.96) .75 (-.40) 
TRISK 1.59 (0.73) 1.57 (0.71) -0.21 (0.72) 2.24 (0.09) 2.04 (0.07) -1.62 (.11) 
EXT PRS 0.41 (0.91) 0.42 (0.97) 0.06 (0.9) 0.39 (0.01) 0.38 (0.01) -.46 (.11) 
Alcohol dependence 
symptoms (sum) W7 

0.6 (0.66) 0.47 (0.6) -0.8 (0.55) 0.45 (0.06) 
 

0.38 (0.01) 
 

-1.64 (.10) 

Drinks per month W7 0.74 (0.69) 0.67 (0.68) 0.72 (0.72) 0.31 (0.06) 0.3 (0.06) -.19 (.85) 
Drinks per month W8 1.17 (0.65) 1.23 (0.68) 0.1 (0.02*) 0.88 (0.08) 0.83 (0.08) -.46 (.65) 
Drinks per month W9 1.14 (0.73) 1.15 (0.62) 0.88 (0.05) 0.88 (0.07) 0.87 (0.07) -.09 (.93) 
Drinks per month W10 1.06 (0.68) 1.13 (0.61) 0.09 (0.52) 1.09 (0.07) 0.81 (0.06) -2.93 (.00**) 
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Deviant talk W6 1.91 (0.8) 1.92 (0.71) 0.72 (0.88) 1.94 (0.09) 1.98 (0.08) .32 (.75) 
Peer deviant talk W6 1.93 (0.87) 2.01 (0.77) 0.37 (0.29) 1.97 (0.1) 2.04 (0.08) .50 (.62) 
Rule breaking W6 0.06 (0.07) 0.07 (0.1) 0.16 (0.64) 0.07 (0.01) 0.08 (0.01) .88 (.38) 
Peer Antisocial 
Behavior W6 

0.82 (0.69) 0.83 (0.71) -0.15 (0.65) 0.61 (0.07) 
 

0.66 (0.07) 
 

.47 (.64) 

Note: Waves are denoted by “W.” For example, W6=Wave 6. EXT PRS for EA sample was derived using summary 
statistics from the Externalizing Consortium GWAS. EXT PRS for the AA sample was derived with a MultiPRS 
approach, using a linear combination of weights from the Externalizing Consortium GWAS and an ancestry-match 
discovery sample from the Collaborative Study of the Genetics of Alcoholism. *p < .05. **p < .01. 

 

 Evaluation of Externalizing PRS in PAL. The results of the hierarchical multiple 

regression analyses testing the associations between EXT PRS and phenotypes of interest in EA 

and AA samples are displayed in Table 9. The EXT PRS for the EA sample was derived from 

the ancestry-matched Externalizing Consortium discovery sample, while the analyses in the AA 

subsample were calculated with the MultiPRS method. Analyses controlled for ancestry PCs and 

sex. After adjusting for multiple testing using the Benjamini-Hochberg correction, there were no 

significant associations between the EXT PRS and relevant outcomes in the PAL EA or AA 

samples. 

 

Table 9.  

Variance in relevant phenotypes accounted for by externalizing PRS in the PAL European 
Ancestry, and African Ancestry samples 
  

European Ancestry African Ancestry 
Outcome N Change in 

R2 
p pa N Change 

in R2 
p pa 

TRISK 269 .009 .112 .499 191 .019 .042* .382 

Alcohol dependence 
symptoms (sum) W7 

241 .002 .545 .663 168 .002 .531 .791 

Drinks per month (log) W6 168 .000 .848 .848 90 .003 .877 .917 

Drinks per month (log) W7 202 .020 .038* .499 104 .001 .878 .917 

Drinks per month (log) W8 227 .008 .188 .499 134 .004 .615 .791 

Drinks per month (log) W9 225 .006 .233 .499 148 .000 .789 .917 

Drinks per month (log) W10 266 .006 .199 .499 188 .005 .352 .791 

Drinks per month (log) W11 244 .001 .575 .663 173 .010 .182 .791 
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Deviant Talk W6 226 .004 .336 .630 162 .003 .449 .791 

Peer Deviant Talk W6 226 .003 .421 .663 162 .004 .389 .791 

Rule Breaking W6 223 .001 .735 .788 160 .004 .441 .791 

Deviant Peer Association W2 223 .002 .523 .663 160 .005 .385 .917 

Deviant Peer Association W3 244 .009 .145 .499 161 .003 .519 .791 

Deviant Peer Association W4 239 .006 .218 .499 163 .028 .026* .381 

Peer Antisocial Behavior W6 243 .002 .493 .663 167 .007 .268 .791 
Note: Change in R2 represents the variance accounted for by EXT PRS over and above the effect of Ancestry PCs 
and sex Waves are denoted by “W.” For example, W6=Wave 6. EXT PRS for EA sample was derived using 
summary statistics from the Externalizing Consortium GWAS. EXT PRS for the AA sample was derived with a 
MultiPRS approach, using a linear combination of weights from the Externalizing Consortium GWAS and an 
ancestry-matched discovery sample from the Collaborative Study of the Genetics of Alcoholism. *p < .05. **p < 
.01. 
ap-values have been adjusted for multiple testing using the Benjamini–Hochberg procedure. 
 

Aim 1: Results of Analyses Examining GxI Effects on Alcohol Consumption and AD 

Symptoms in the PAL Sample.  

Alcohol Consumption in the EA Sample. Results of the MLM for alcohol consumption 

are displayed in Table 10. The MLM was first constructed as an unconditional means model 

(Null Model; Table 10), with an estimated Intra-Class Correlation (ICC) coefficient of .45, 

indicating that slightly less than half (45%) of the variance in alcohol consumption was due to 

differences between individuals. In the unconditional growth model (Unconditional Growth 

Model; Table 10), the significant effects for intercept, time, and time2 indicated that there was 

sufficient within-person variation in trajectories of alcohol consumption to warrant a multilevel 

framework. The intercept value for the Unconditional Growth Model indicates that the average 

value for log-transformed alcohol consumption at Wave 7 (age 16-17) was 1.03. The positive 

linear slope, represented by Time (Beta = 4.05), indicated that on average, alcohol consumption 

increased over time; however, the quadratic equation provided a significantly better fit for the 

data. The negative quadratic slope, represented by Time2 of -5.15, indicated that the slope of 

alcohol consumption was curvilinear in nature with alcohol consumption increasing over time for 
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before dropping slightly at the final time point. Results of a likelihood ratio chi-square difference 

test comparing the Unconditional Growth Model with random intercept and slope (AIC=1749.7, 

ICC=.61) to the Null Model (AIC=1915.8, ICC=.45) showed significantly improved model fit 

with the Unconditional Growth Model [X2(4, 269) = 174.02, p<.001].  

Next, we constructed the Conditional Growth Model with fixed effects for time, 

intervention group, and EXT PRS, and random effects for slope and intercept at Level 1. We 

compared conditional models with random intercept only, random slopes only, and a combined 

model with random intercept and slopes, with the latter providing the overall best fit for the data 

structure (AIC=1751.1, ICC=.61). In the Conditional Model, the intercept, linear slope, and 

quadratic slope remained significant; however, there was no evidence of significant main effects 

for intervention group or EXT PRS. Next, an Interaction Model was constructed to evaluate 

whether there were variations in the slope and intercept of alcohol consumption across time as a 

function of the interaction between intervention group, EXT PRS, and time. In the Interaction 

Model, there was a significant three-way interaction between intervention group, EXT PRS, and 

Time2, such that the trajectory of alcohol consumption varies based on EXT PRS and 

intervention group. We proceeded with the addition of covariates to fully evaluate the final 

model. There were significant effects for gender and TRISK score suggesting that these factors 

significantly influenced trajectories of alcohol consumption among EA in PAL. The significant 

negative associations between gender and alcohol consumption suggests that being a female was 

associated with lower rates of alcohol consumption over time. Similarly, higher TRISK score 

was associated with lower rates of alcohol consumption over time, which is a surprising finding 

given the measure is associated with higher risk of externalizing problems. There were no 

significant main effects for intervention group or EXT PRS observed, and the significant 
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interaction between EXT PRS, intervention group, and Time2 did not survive Benjamini-

Hochberg corrections for multiple testing in the final model.  

Table 10.  
 
Multilevel Quadratic Growth Curve Analysis of Alcohol Consumption in PAL EA Sample 
 
 Model 
 
Level and Variable 

Null Unconditional 
Growth 

Conditional 
Growth 

Interaction 
Model 

Interaction 
Model with 
Covariates1 

Level 1      
    Intercept 1.03 (.03)** 1.03 (.03)** 1.03(.05)** 1.03 (.05)** 1.17 (.05)** 
    Time  4.05 (.53)** 4.05 (.53)** 4.86 (.76)** 4.86 (.76)** 
    Time2  -5.15 (.50)** -5.15(.45)** -5.50 (.64)** -5.49 (.64)** 
Level 2      
    Intervention (control=0)   -.02 (.07) -.01 (.07) .00 (.06) 
    EXT PRS   .06 (.03) .03 (.05) .03 (.04) 
Interaction components      
    Time * EXT PRS    -.11 (.79) -.11 (.79) 
    Time * Intervention    .06 (.07) -1.55 (1.06) 
    Time2 * EXT PRS    .46 (.69) 1.00 (.65) 
    Time2 * Intervention    .71 (.89) .68 (.89) 
    EXT PRS * Intervention    .06 (.07) .06 (.07) 
    Time*EXT PRS*Intervention    .46 (1.14) .39 (1.14) 
    Time2*EXT PRS*Intervention    -2.03 (.95)* -2.01 (.95) 
Covariates      
    Gender (female=1)     -.29 (.06)** 
    TRISK     -.10 (.05)* 
Additional Information      
    ICC .45 .61 .61 .61 .59 
    -2 log likelihood (FIML) -954.9 - -866.6 -862.6 -847.7 
    AIC 1915.8 1749.73 1751.1 1757.1 1751.5 
    Pseudo R2 (fixed effects) .00 - - - - 
    Pseudo R2 (total) .45 - - - - 
    Number of individuals 269 269 269 269 269 
    Observations 1016 1016 1016 1016 1016 

Note: Estimates of unstandardized coefficients are presented for fixed effects. Pseudo R2 cannot be calculated for 
quadratic growth. The Unconditional Growth Model failed to converge, thus the -2 log likelihood could not be 
calculated. Values in parentheses are standard errors. *p < .05, **p < .01.  
1 p-values for Level 1, Level 2, and Interaction components were adjusted for multiple testing using the Benjamini–
Hochberg procedure in the Interaction Model with Covariates. 
 

 

To better examine the trajectories of alcohol consumption across time, we plotted the 

mean of drinks per month over time for individuals who fall within different ranges of EXT PRS 

in the interaction and control group (Figure 6). Means were plotted separately for control and 
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intervention participants with High PRS (greater than 1 SD above the mean), Mid PRS (within 1 

SD around the mean), and Low PRS (less than 1 SD below the mean). Based on visual 

examination of the data, the slope and curvature of the High PRS participants in the intervention 

condition appears steeper than Mid PRS and Low PRS participants who participated in the 

intervention. This suggests that individuals in the intervention condition with higher EXT PRS 

increased alcohol consumption more sharply from age 16-17 to age 18-19 and consumed alcohol 

at a higher rate compared to Mid PRS and Low PRS intervention participants. In the control 

condition, Low PRS participants appeared to report lower drinks per month on average at age 16-

17 (wave 7) but caught up to Mid PRS and High PRS control group participants by age 18-19 

before decreasing more sharply by age 23-24. In summary, the slope and shape of the change in 

alcohol consumption over time varies based on the interaction between EXT PRS and 

intervention condition, with High PRS participants in the intervention group appearing to be less 

responsive to the effects of the intervention and Low PRS participants in the control group 

reporting fewer drinks per month at age 16-17. However, the results of the growth curve analyses 

suggest that the observed variation in the trajectory of alcohol consumption across time for 

individuals with varying levels of EXT PRS in the intervention and control groups were not 

significantly different following correction for multiple testing.  
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Figure 6.  
 
Plotted Log Means of Alcohol Consumption (drinks per month) across Time for Intervention 
and Control Participants at Different Levels of EXT PRS in the PAL EA Sample. 
 
 

 
Note. Values of EXT PRS were as follows: High PRS is greater than 1 SD above the mean, 
Mid PRS is within 1 SD around the mean, and Low PRS is less than 1 SD below the mean.  
 

 
Alcohol Consumption in the AA Sample. Results of the MLM for alcohol consumption 

are displayed in Table 11. The MLM was first constructed as an unconditional means model 

(Null Model; Table 11), with an estimated Intra-Class Correlation (ICC) coefficient of .35, 

indicating that approximately a third of the variance in alcohol consumption was due to 

differences between individuals. In the unconditional growth model (Unconditional Growth 

Model; Table 11), the significant effects for intercept, Time, and Time2 indicated there was 
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sufficient within-person variation in trajectories of alcohol consumption to warrant a multilevel 

framework. The intercept value for the Unconditional Growth Model indicates that the average 

value for log-transformed alcohol consumption at Wave 7 (age 16-17) was 0.75. The positive 

linear slope, represented by Time (Beta = 5.59), indicated that on average, alcohol consumption 

increased over time; however, the quadratic equation provided a significantly better fit for the 

data. The negative quadratic slope, represented by Time2 of -4.01, indicated that the slope of 

alcohol consumption was curvilinear in nature with alcohol consumption increasing over time 

before leveling off. Results of a likelihood ratio chi-square difference test comparing the 

Unconditional Growth Model with random intercept and slope (AIC=1299.0, ICC=.40) to the 

Null Model (AIC=1441.2, ICC=.35) showed significantly improved model fit with the 

Unconditional Growth Model [X2(4, 191) = 150.19, p<.001].  

Next, we constructed the Conditional Growth Model with fixed effects for time, 

intervention group, and EXT PRS, and random effects for slope and intercept at Level 1. We 

compared conditional models with random intercept only, random slopes only, and a combined 

model with random intercept and slopes. When comparing the random intercepts model 

(AIC=1299.7, ICC=.43) to the random intercepts and slopes model (AIC=1301.3, ICC=.41), the 

random intercepts model resulted in lower AIC and -loglikelihood values suggesting improved 

model fit. Accordingly, we proceeded with the Conditional Growth Model with random 

intercepts and fixed effects for time, intervention group, and EXT PRS. In the Conditional 

Model, the intercept, linear slope, and quadratic slope remained significant; however, there was 

no evidence of significant main effects for intervention group or EXT PRS. Next, an Interaction 

Model was constructed to evaluate whether there were variations in alcohol consumption across 

time as a function of the interaction between intervention group and EXT PRS. There was 
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slightly improved model fit, as indicated by lower AIC, but there was no evidence that 

trajectories of AUD symptoms varied as a function of two-way or three-way interactions 

between Time, Time2, intervention group and EXT PRS. We proceeded with the addition of 

covariates to fully evaluate the final model. There were significant main effects for gender, such 

that being a female was associated with lower rates of alcohol consumption over time. There was 

also a significant interaction between Time and intervention group; however, there was no 

significant interaction with the quadratic term (Time2). Given that the quadratic equation 

provided a better overall fit for the structure of the data, the interaction between Time and 

intervention group is not interpreted within the context of the null effects for Time2.  

Furthermore, there was no evidence of three-way interactions between EXT PRS, intervention 

group, and time on alcohol consumption in the PAL AA sample.  

 



 

 86	

Table 11.  
 
Multilevel Quadratic Growth Curve Analysis of Alcohol Consumption in PAL AA Sample 
 
 Model 
 
Level and Variable 

Null Unconditional 
Growth 

Conditional 
Growth 

Interaction 
Model 

Interaction 
Model with 
Covariates1 

Level 1      
    Intercept .76 (.04)** .75 (.04)** .70 (.05)** .70 (.05)** .82 (.07)** 
    Time  5.59 (.53)** 5.57 (.52)** 4.42 (.71)** 4.44 (.71)** 
    Time2  -4.01 (.52)** -4.00(.52)** -4.84 (.72)** -4.86 (.72)** 
Level 2      
    Intervention (control=0)   .11 (.07) .10 (.07) .10 (.07) 
    EXT PRS   .01 (.04) .02 (.05) -.05 (.06) 
Interaction components      
    Time * EXT PRS    -.28 (5.73) -.04 (.73) 
    Time2 * EXT PRS    -11.29 (5.85) -1.44 (.74) 
    Time * Intervention    .18 (3.31) 2.37 (1.02) 
    Time2 * Intervention    -3.58 (3.35) 1.64 (1.04) 
    EXT PRS * Intervention    -.09 (.58) .02 (.07) 
    Time*EXT PRS*Intervention    5.71 (8.18) .73 (1.04) 
    Time2*EXT PRS*Intervention    13.45 (8.30) 1.72 (1.06) 
Covariates      
    Gender (female=1)     -.23 (.08)** 
    TRISK     -.00 (.05) 
Additional Information      
    ICC .35 .40 .43 .44 .40 
    -2 log likelihood (FIML) -717.6 -642.5 -642.8 -636.5 -626.7 
    AIC 1441.21 1299.02 1299.7 1301.0 1305.4 
    Pseudo R2 (fixed effects) .00 - - - - 
    Pseudo R2 (total) .35 - - - - 
    Number of individuals 191 191 191 191 191 
    Observations 711 711 711 711 711 
Note: Values in parentheses are standard errors. Time was modeled with as both a linear and quadratic 
factor, with the quadratic equation providing a better fit for the data structure. Results of the quadratic 
growth models are presented in the table. For the Full Interaction Model, Ancestry PCs 2-10 were 
dropped from the model to improve statistical power. Pseudo R2 cannot be calculated for non-linear 
growth curves.  *p < .05, **p < .01. 
1 p-values for Level 1, Level 2, and Interaction components were adjusted for multiple testing using the Benjamini–
Hochberg procedure in the Interaction Model with Covariates. 

 

Alcohol Dependence Symptoms in the EA Sample. We conducted a hierarchical 

multiple regression testing for an interaction between EXT PRS and intervention condition on 

AD symptoms in the EA sample. Results are displayed in Table 12. We observed a significant 

main effect of TRISK score, such that higher scores on teacher perception of child behavioral 

risk predicted greater AD symptoms at age 18-19, t(225)=2.34, p = .02. However, there was no 
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evidence of significant main effects for intervention group or EXT PRS, and no evidence of an 

interaction between intervention group and EXT PRS on AD symptoms, F(15, 255) = 1.42, p = 

.14. Results show no evidence for differential effectiveness of the intervention of AD symptoms 

for individuals at varying levels of genetic risk. 

 
Table 12. 
 
Results of hierarchical multiple regression examining the interactions between 
Externalizing PRS and Intervention on AD symptoms in the PAL EA Sample 
 

Predictor b1 b 
95% CI sr2 sr2 

95% CI 
(Intercept) 0.32** [0.05, 0.58]   
EXT PRS 0.01 [-0.29, 0.31] .00 [-.00, .00] 

Intervention 0.37 [-0.07, 0.81] .01 [-.01, .04] 
TRISK 0.45** [0.14, 0.76] .03 [-.01, .08] 

Gender (female) -0.22 [-0.63, 0.19] .00 [-.01, .02] 
Ancestry PC1 0.25 [-0.04, 0.54] .01 [-.01, .04] 
Ancestry PC2 -0.29 [-0.81, 0.24] .00 [-.01, .02] 
Ancestry PC3 -0.16 [-0.52, 0.21] .00 [-.01, .02] 
Ancestry PC4 0.09 [-0.26, 0.44] .00 [-.01, .01] 
Ancestry PC5 0.01 [-0.42, 0.44] .00 [-.00, .00] 
Ancestry PC6 -0.15 [-0.63, 0.34] .00 [-.01, .01] 
Ancestry PC7 -0.21 [-0.62, 0.20] .00 [-.01, .02] 
Ancestry PC8 -0.19 [-0.51, 0.13] .01 [-.01, .02] 
Ancestry PC9 0.07 [-0.16, 0.30] .00 [-.01, .01] 

Ancestry PC10 0.05 [-0.17, 0.27] .00 [-.01, .01] 
EXT PRS * Intervention -0.12 [-0.55, 0.32] .00 [-.01, .01] 

Model Fit: R2   = .087*, 95% CI [.00, .10] 
Note. A significant b-weight indicates the semi-partial correlation is also significant. 
b represents unstandardized regression weights. sr2 represents the semi-partial 
correlation squared. AD symptoms were log-transformed to account for kurtosis. 
p-values were adjusted for multiple testing using the Benjamini–Hochberg procedure. 
* indicates p < .05, ** indicates p < .01 after correction. 
 

 

Alcohol Dependence Symptoms in the AA Sample. We conducted a hierarchical 

multiple regression testing for an interaction between EXT PRS and intervention condition on 



 

 88	

AD symptoms in the EA sample. Results are displayed in Table 13. We observed a significant 

main effect of intervention group, such that being in the intervention group predicted greater AD 

symptoms at age 18-19. This result suggests that the intervention may have been less effective at 

preventing AD symptoms among the African American sample. There was no evidence of a 

significant main effect for EXT PRS, and there was no evidence of an interaction between 

intervention group and EXT PRS on AD symptoms. Results show no evidence for differential 

effectiveness of the intervention of AD symptoms for individuals at varying levels of genetic risk 

in the PAL AA sample. 

Table 13. 

Results of hierarchical multiple regression examining the interactions between Externalizing 
PRS and Intervention on AD symptoms in the PAL AA Sample 
 

Predictor b1 b 
95% CI sr2 sr2 

95% CI 
(Intercept) 0.35** [0.19, 0.52]   
EXT PRS -0.12 [-0.27, 0.02] .02 [-.02, .05] 

Intervention 0.19 [0.01, 0.38] .03 [-.02, .07] 
TRISK -0.10 [-0.22, 0.02] .02 [-.02, .05] 

Gender (female) -0.12 [-0.32, 0.08] .01 [-.02, .04] 
Ancestry PC1 0.00 [-0.16, 0.16] .00 [-.00, .00] 
Ancestry PC2 -0.03 [-0.17, 0.12] .00 [-.01, .01] 
Ancestry PC3 0.02 [-0.08, 0.11] .00 [-.01, .01] 
Ancestry PC4 0.01 [-0.10, 0.12] .00 [-.01, .01] 
Ancestry PC5 0.05 [-0.06, 0.16] .01 [-.02, .03] 
Ancestry PC6 0.01 [-0.10, 0.12] .00 [-.00, .00] 
Ancestry PC7 -0.02 [-0.13, 0.08] .00 [-.01, .01] 
Ancestry PC8 -0.07 [-0.17, 0.03] .01 [-.02, .04] 
Ancestry PC9 0.03 [-0.08, 0.14] .00 [-.01, .02] 

Ancestry PC10 -0.02 [-0.12, 0.09] .00 [-.01, .01] 
EXT PRS * Intervention 0.15 [-0.05, 0.34] .01 [-.02, .05] 

Model Fit: R2   = .08, 95% CI [.00, .07] 
Note. A significant b-weight indicates the semi-partial correlation is also significant. 
b represents unstandardized regression weights. sr2 represents the semi-partial 
correlation squared. AD symptoms were log-transformed to account for kurtosis. 
p-values were adjusted for multiple testing using the Benjamini–Hochberg procedure. 
* indicates p < .05, ** indicates p < .01 after correction. 
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Aim 2: Results of examining peer deviance as a mediator of gene-by-intervention effects on 

alcohol consumption and AD symptoms.  

 Peer Deviance as a Mediator in the EA Sample. Mediation analyses were conducted 

with outcome variables (drinks per month and AD symptoms) at a single time point. Descriptive 

statistics for the EA sample (Table 8) indicated that control participants reported significantly 

more drinks per month at wave 8 (age 22-23) compared to intervention participants. 

Accordingly, wave 8 drinks per month was selected to test for mediation of GxI effects via peer 

deviance. AD symptoms were measured only at wave 7. Peer deviance was represented by a 

measure of peer antisocial behavior measures at wave 6.  In preparation for analyses, we 

calculated correlations between all independent, dependent, mediating, and moderating variables, 

displayed in Table 14. We observed several significant correlations between variables. Gender as 

female was associated with significantly lower peer antisocial behavior, drinks per month, AD 

symptoms, and TRISK scores. Peer antisocial behavior was positively correlated with EXT PRS, 

which aligns well with the theoretical relationship between genetic risk associated with 

externalizing behavior and observed measures of externalizing in the PAL EA sample. We 

proceeded with the mediated moderation analyses using separate models to examine each 

dependent variable in succession, while controlling for significantly correlated variables in each 

respective model. 
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Table 14.  
  
Means, standard deviations, and correlations for variables included in the EA PAL Mediated Moderation models 
  

Variable M SD 1 2 3 4 5 6 

         
1. EXT PRS 0.45 0.95       
2. Intervention group 0.50 0.50 .07      
3. Gender (female=1) 0.50 0.50 .09 -.03     
4. Peer Antisocial Behavior W6 0.88 0.67 .14* -.01 -.17*    
5. Drinks per Month W8 1.25 0.66 .02 -.01 -.17* .19**   
6. AD Symptoms (log) 0.57 0.65 -.07 .11 -.16* .14 .31**  
7. TRISK 1.56 0.71 -.12 -.01 -.22** .07 -.02 .19** 

Note. M and SD are used to represent mean and standard deviation, respectively. W represents Wave, for 
example W8 = Wave 8. * indicates p < .05. ** indicates p < .01. 
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Results of the mediation analyses are displayed in Table 15. Analyses covaried for the 

effects of gender and the first two ancestry PCs. We observed no evidence that peer deviance at 

wave 6 mediated the effect of the intervention on drinks per month at wave 8 or AD symptoms 

for those at varying levels of genetic risk. There was also no evidence of direct effects of peer 

deviance on drinks per month or AD symptoms.  In the absence of indirect and direct effects, the 

total effect, which is the sum of the indirect and direct effects, also showed no evidence of a 

significant effect on the outcomes.  In summary, peer deviance was significantly correlated with 

EXT PRS, but it did not explain the variation in intervention effects on alcohol-related behaviors 

for individuals with high versus low levels of EXT PRS. 

 
Table 15.  
  
Results of Mediated Moderation Analyses for EA in PAL when the Moderator is Set to High PRS 
 

 Drinks per month (W8) 
n =204 

AD Symptoms (W7) 
n = 204 

Variable Estimate 95% CI p Estimate 95% CI p 
ACME (control) .00 [-.01, .04] .67 -.00 [-.02, .02] .97 
ACME (intervention) -.01 [-.04, .01] .67 -.00 [-.01, .06] .70 
ADE (control) .04 [-.16, .22] .72 .11 [-.12, .28] .34 
ADE (intervention) .03 [-.18, .22] .78 .12 [-.10, .28] .30 
Total Effect .03 [-.17, .22] .75 .12 [-.11, .28] .31 
Proportion Mediated (control) .14 [-.19, 3.84] .87 -.00 [-.13, 2.82] .95 
Proportion Mediated (intervention) -.17 [-5.25, .41] .91 .04 [-.11, 4.98] .81 
ACME (average) -.00 [-.02, .01] .93 .00 [-.01, .04] .78 
ADE (average) .03 [-.17, .22] .74 .11 [-.11, .28] .32 
Proportion Mediated (average) -.02 [-.22, 1.74] .98 .02 [-.05, 2.09] .84 
Note. ACME is the Average Causal Mediated Effect (i.e., the indirect effect of mediator on the outcome), 
ADE is the Average Direct Effect (i.e., the direct effect of mediator on the outcome), and Total Effect 
represents the sum of the ACME and ADE. The moderator (EXT PRS) was set to 1 SD above the mean for 
the analyses reported in the table. Estimates and CI were calculated using a bias-corrected and accelerated 
bootstrap resample of 2,000 simulations. * indicates p < .05, ** indicates p < .01.  
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Peer Deviance as a Mediator in the AA Sample. Mediation analyses were conducted 

with outcome variables (drinks per month and AD symptoms) at a single time point. Descriptive 

statistics for the EA sample (Table 8) indicated that control participants reported significantly 

more drinks per month at wave 10 (age 26-27) compared to intervention participants. 

Accordingly, wave 10 drinks per month was selected to test for mediation of GxI effects via peer 

deviance. AD symptoms were measured only at wave 7. Peer deviance was represented by a 

measure of peer antisocial behavior measures at wave 6.  In preparation for analyses, we 

calculated correlations between all independent, dependent, mediating, and moderating variables, 

displayed Table 16. We observed several significant correlations between variables. Gender as 

female was associated with significantly lower EXT PRS, drinks per month, and TRISK scores. 

Peer antisocial behavior was positively correlated with drinks per month, and AD symptoms. We 

proceeded with the mediated moderation analyses using separate models to examine each 

dependent variable in succession, while controlling for significantly correlated variables in each 

respective model. 
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Table 16.  
  
Means, standard deviations, and correlations for variables included in the AA PAL Mediated Moderation models 
  

Variable M SD 1 2 3 4 5 6 

1. EXT PRS 0.38 0.12             

2. Intervention group 0.45 0.50 .08           

3. Gender (female=1) 0.56 0.50 -.17* -.05         

4. Peer Antisocial Behavior W6 0.63 0.58 .05 -.06 -.21*       
5. Drinks per month W8 (log) 0.83 0.71 .02 -.01 -.19* .25**     

6. AD Symptoms (log) 0.39 0.57 -.04 .09 -.07 .21* .46**   

7. TRISK 2.10 0.79 .09 .10 -.28** .05 .03 -.13 

Note. M and SD are used to represent mean and standard deviation, respectively. W represents Wave, for 
example W8 = Wave 8. * indicates p < .05, ** indicates p < .01. 
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Results of the mediation analyses are displayed in Table 17. Analyses covaried for the 

effects of gender and the first two ancestry PCs. We observed no evidence that peer deviance at 

wave 6 mediated the effect of the intervention on drinks per month at wave 10 for those at 

varying levels of genetic risk. However, we did observe significant direct effects of peer 

deviance on drinks per month among both the intervention and control groups for individuals at 

high and low levels of EXT PRS. The total effect, which is the sum of the indirect and direct 

effects, was also significant for both peer deviance; however, in the absence of a significant 

indirect effect, this result was likely driven by the strength of the direct effect. For AD 

symptoms, we observed no evidence that peer deviance at wave 6 mediated the effect of the 

intervention on AD symptoms. There was also no evidence of direct effects or total effects of 

peer deviance on AD symptoms.  In summary, peer deviance significantly influenced drinks per 

month at wave 10, but it did not explain the variation in intervention effects on drinks per months 

or AD symptoms for individuals with high versus low levels of EXT PRS. 

 



 

 95	

Table 17.  
  
Results of Mediated Moderation Analyses for AA in PAL when the Moderator is Set to High PRS 

 

 Drinks per month W10 
n =151 

AD Symptoms (W7) 
n = 148 

Variable Estimate 95% CI p Estimate 95% CI p 

ACME (control) -.02 [-.10, .02] .50 -.01 [-.08, .01] .64 
ACME (intervention) .01 [-.01, .10] .56 .00 [-.03, .04] .96 
ADE (control) .39 [.14, .63] .00** .18 [-.03, .37] .10 
ADE (intervention) .42 [.15, .70] .00** .19 [-.04, .40] .11 
Total Effect .40 [.15, .66] .00** .18 [-.04, .38] .12 
Proportion Mediated (control) -.04 [-.34, .04] .50 -.03 [-1.33, .06] .67 
Proportion Mediated (intervention) .02 [-.04, .20] .56 .01 [-.68, .26] .92 
ACME (average) -.00 [-.04, .02] .90 -.00 [-.05, .01] .79 
ADE (average) .40 [.14, .65] .00** .18 [-.04, .39] .11 
Proportion Mediated (average) -.01 [-.24, .03] .86 -.01 [-5.63, .05] .84 
Note. ACME is the Average Causal Mediated Effect (i.e., the indirect effect of mediator on the outcome), 
ADE is the Average Direct Effect (i.e., the direct effect of mediator on the outcome), and Total Effect 
represents the sum of the ACME and ADE. The moderator (EXT PRS) was set to 1 SD above the mean for 
the analyses reported in the table. Estimates and CI were calculated using a bias-corrected and accelerated 
bootstrap resample of 2,000 simulations. * indicates p < .05. ** indicates p < .01.  
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Discussion: Study Two 

 The present study integrates polygenic scores into prevention and intervention research 

by examining whether polygenic risk associated with externalizing problems influenced the 

effect of a randomized, family-centered intervention for adolescents on alcohol-related behaviors 

in emerging adulthood. We conducted analyses in European American and African Americans 

separately, and discuss the findings for each group separately.  

In the European American sample, there was some preliminary evidence that the 

intervention significantly moderated the effect of polygenic risk associated with externalizing 

behaviors on growth in alcohol consumption across emerging adulthood; however, this effect did 

not survive corrections for multiple testing, suggesting no reliable differences in alcohol 

consumption due to the interaction between intervention group and polygenic risk for 

externalizing behaviors. Second, we tested for GxI effects on AD symptoms and found no 

evidence to suggest that EXT PRS moderated the effect of the intervention on AD symptoms at 

age 23-24 in the European American sample. Third, we examined peer deviance as a mediator of 

GxI effects on alcohol consumption and AD symptoms and found no evidence of an indirect 

effect of peer deviance on intervention effects for individuals at varying levels of genetic risk in 

the European American sample.  

We repeated the same three analyses in the African American sample: GxI effects on 

trajectories of alcohol consumption, GxI effects on AD symptoms at age 23-24, and mediation of 

GxI effects by peer deviance. In the African American sample, there was no evidence of GxI 

effects on alcohol consumption or AD symptoms. There was also no support for peer deviance as 

a mediator of GxI effects on alcohol consumption or AD symptoms in African Americans.  
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Accordingly, these findings suggest that intervention effects on alcohol consumption and 

AD symptoms do not differ in individuals with varying levels of polygenic risk in the PAL 

European American and African American sample. Our hypothesis was that individuals at 

greater genetic risk would report greater reductions in alcohol-related outcomes relative to 

individuals with lower genetic risk and controls. The initial hypothesis was based on existing 

GxI literature in line with the differential susceptibility hypothesis, which suggests that some 

individuals are more sensitive to both promotive (e.g., positive parenting, supportive peer 

groups) and harmful (e.g., trauma exposure, deviant peers) environments (Bakermans-

Kranenburg & van IJzendoorn, 2015; Belsky & Pluess, 2009; van Ijzendoorn & Bakermans-

Kranenburg, 2015). However, as explored in the discussion of the Spit for Science findings, there 

are a number of potential reasons why the existing body of research on differential susceptibility 

in GxI studies may not align well with the present study’s methodology, and consequently, the 

null findings. The differential susceptibility hypothesis emphasizes the importance of plasticity 

genes, or genetic sensitivity to environmental exposure (Belsky & Pluess, 2009). Our polygenic 

score for externalizing behavior indexes the influence of genetic variants across the genome on 

the development of this cluster of related phenotypes. Although some environmental sensitivity 

is likely captured by these scores (Young et al., 2019), they are not an explicit measurement of 

how likely an individual is to be affected by promotive or harmful environments. Second, the 

existing GxI literature is predominantly comprised of candidate gene studies, which are prone to 

false positives and publication bias due to insufficient statistical power to detect the very small 

effects of candidate genes (Border et al., 2019; Dick et al., 2015; Johnson et al., 2017). 

Furthermore, candidate gene studies do not align with current understanding that complex 
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behaviors are polygenic in nature (Visscher et al., 2017).  Taken together, these considerations 

may explain why the existing body of research on differential susceptibility may not align well 

with the present study’s methodology, and partly explain the study’s null findings.  

 Although we observed no support for the hypotheses in this study, there are a few 

relevant studies that have observed significant GxI effects using polygenic scores. First, using 

the same sample as the present study, Kuo et al. (2019) examined whether the Family Check-up 

intervention moderated the effect of polygenic risk for alcohol dependence on lifetime diagnosis 

of alcohol dependence at age 26-27. The study used summary statistics from a well-powered 

GWAS of DSM-IV alcohol dependence (Gelernter et al., 2014b) to derive polygenic scores. Kuo 

et al. found that the intervention moderated the effect of alcohol dependence polygenic scores, 

such that higher polygenic risk was associated with greater likelihood of alcohol dependence 

diagnosis in the control condition, but not in the intervention condition in the European 

American sample. The findings suggest that the effects of underlying genetic predispositions on 

age 26-27 alcohol dependence diagnosis were mitigated by the intervention. A second study, in 

which the Family Check-Up intervention was delivered to families of young children (age 2), 

showed a similar pattern of results indicating mitigation of genetic risk by the intervention. Elam 

et al. (2020) examined the influence of polygenic risk for aggression on aggressive behavior and 

peer rejection in early adolescence. Although it was not a formal test of GxI interaction, they 

found that the aggression polygenic score predicted peer rejection in control participants, but the 

same effect was not observed in intervention participants. Consistent with the Kuo et al. study, 

these findings provide an indication that the Family Check-Up intervention may blunt the effect 

of certain genetic predispositions on the relevant outcomes.  
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There are a number of possible reasons why the present study’s null findings are not 

consistent with the pattern of findings from the Kuo et al. and Elam et al. studies. One possible 

factor that may have influenced the variable pattern of findings is the difference in alcohol 

outcomes reported. Kuo et. al examined AD diagnosis, whereas the GxI effects examined in this 

study focused on patterns of alcohol consumption across time and AD symptoms. In the present 

study, alcohol consumption and AD symptoms were moderately correlated in both European 

Americans [r(202) = .31, p<.01] and African Americans [r(146) = .46, p<.01], indicating that 

variations in findings across the outcomes are plausible. In addition, there are also unique and 

shared components to the underlying genetic architecture of the two phenotypes (Kranzler et al., 

2019; Walters et al., 2018). Accordingly, although heavy alcohol consumption is a risk factor for 

the development of alcohol-related problems, not everyone who drinks heavily meet criteria for 

alcohol use disorder.  

A second possible explanation of the discrepancy relates to the Kuo et al. study’s use of 

an alcohol dependence polygenic score to measure effects on AD diagnosis in the target sample. 

The discovery sample phenotype and the target sample phenotype were very closely aligned. The 

polygenic score for the present study was derived from a multivariate GWAS of seven different 

externalizing phenotypes that was used to predict only two phenotypes in the target sample (i.e., 

alcohol consumption and AD symptoms). Although the externalizing PRS has been shown to 

significantly predict alcohol consumption and alcohol dependence in target samples (Karlsson 

Linnér et al., 2020), it likely accounts for much broader phenotypic variation than what is 

represented by the two alcohol-related outcomes in this study. Furthermore, the externalizing 

pathway of risk to alcohol-related problems is just one of several pathways through which 
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underlying genetics may influence alcohol use outcomes (Dick & Agrawal, 2008; Kendler et al., 

2003; Saraceno et al., 2009; Schuckit, 2009). For example, the influence of the internalizing 

pathway of risk to substance use problems, characterized by patterns of self-medication or 

drinking to cope with distress, may not be well-represented by the externalizing PRS. Low level 

of response to alcohol is another genetically-informed risk factor for future alcohol problems, yet 

it too may not be indexed by the externalizing PRS (Morozova et al., 2014; Schuckit, 2018; 

Schuckit et al., 1997). The genetic correlation between alcohol consumption and externalizing 

behaviors is .50 (Karlsson Linnér et al., 2020), suggesting that a well-powered, polygenic score 

for alcohol consumption may capture additional risk pathways through which genetics influence 

alcohol-related behaviors, and thus result in different findings.  

Another possible contributing factor to the present study’s null findings is statistical 

power. The sample sizes for the Europeans American (n=269) and African American (n=191) 

PAL participants were relatively small, and thus underpowered to detect a GxI effect in the 

growth curve analyses examining trajectories of alcohol consumption across time. Hierarchical 

multiple regression has less stringent power requirements, but even these models, which 

examined GxI effects on AD symptoms in PAL, were limited in power. Given a model with 15 

predictors, a =.05, and power (1-b) = .8, the European American sample was adequately 

powered to detect effect sizes of  f2 >.029 and the African American sample was adequately 

powered to detect effect sizes of  f2 >.042.  The effect size observed in the Spit for Science 

sample was f2 =.038, meaning that only the PAL European American was sufficiently powered to 

detect a similar effect. However, it is also possible that the effect size observed in the Spit for 

Science study is an overestimate of GxI effects, perhaps due to problems related to scale 



 

 101	

transformation. Based on conservative recommendations from a systematic review of alcohol, 

tobacco and cannabis GxE studies using polygenic scores (Pasman et al., 2019), a sample size of 

1572 would be required to achieve 80% power to detect an effect size of f2 = .005 in a 

hierarchical multiple regression with 15 predictors. A larger GxI sample would improve the 

ability to detect very small interaction effect if they are present in the population or confirm that 

the absence of an effect is not due to Type II error. 

One additional factor that contributed to diminished power in this study was the decision 

to analyze European American and African American samples separately due to differences in 

genetic architecture related to ancestry that can bias results (Peterson et al., 2019). In the African 

American sample, we used an empirically-supported method for improving PRS prediction 

power in non-European ancestry groups by combining PRS derived from the well-powered 

GWAS of externalizing behavior in European Americans with PRS from a smaller, ancestry-

matched GWAS of externalizing behavior (Marquez-Luna et al., 2016). However, this method 

can also increase noise in the polygenic score, which, along with the smaller African American 

sample size, may have a negative impact on predictive power relative to using a well-powered 

ancestry-matched discovery sample. Unfortunately, the availability of well-powered GWAS for 

individuals of non-European descent is substantially limited (Popejoy & Fullerton, 2016; Sirugo 

et al., 2019), and in turn the predictive power and utility of polygenic scores is highly disparate 

across ancestry groups (Martin et al., 2019). However, analyzing ancestry groups separately is 

just one way to address the computational complexity of conducting genetic analyses in diverse 

ancestry groups (Peterson et al., 2019). An alternative approach is to analyze European 

Americans and African Americans in a combined model, covarying for race/ethnicity to account 
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for differences in genetic architecture due to ancestry. Given the similarity in the pattern of 

findings between European Americans and African Americans (see Tables 9-14), analyzing the 

samples together may prove to be a useful approach to enhance statistical power to detect an 

effect while accounting for the impact of variation in genetic architecture through the inclusion 

of covariates. The combined approach would also allow for the inclusion of other racial/ethnic 

groups, such as individuals of Asian and Hispanic background, which were too small to analyze 

separately. This method would improve the applicability of GxI research findings for individuals 

of all backgrounds.  

The inclusion of diverse samples in GxI research is critically important. Non-Europeans 

have long been underrepresented in genetic research due to a combination of historical and 

systemic factors (Dick et al., 2017; Popejoy & Fullerton, 2016). The history of the eugenics 

movement in the U.S. has had a lasting impact on trust in the scientific community, and concerns 

about confidentiality and the ways in which genetic data might be used (or misused) remain a 

concern to many individuals (Bates et al., 2005; Dick et al., 2017; Furr, 2002; Tambor et al., 

2002). In addition, increased computational complexity of using diverse samples in genomic 

research (Peterson et al., 2019), and smaller populations from which to recruit participants 

further limit the representation of diverse ancestry in research (Dick et al., 2017). Genetic 

findings for complex traits conducted in one ancestry group often do not replicate in other 

ancestry groups due to differences in genetic architecture, such as linkage disequilibrium and 

allele frequency, and improper application of these findings could be harmful (Sirugo et al., 

2019). Accordingly, the degree to which GxI findings are useful and applicable to all ancestry 

groups remains limited by the underrepresentation of non-European individuals in genomic 
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research. Large-scale efforts to diversify representation in genomic research are underway. 

Projects such as the All of Us Research Program and collaborative consortia (e.g., the Psychiatric 

Genomics Consortium) research may improve the ability to advance precision medicine for 

individuals of all backgrounds. Diversity, equity, and inclusion remain important factors to 

prioritize in future studies examining the degree to which underlying genetics contributes to 

differential intervention effects. 

 The present study has a number of strengths that fill critical gaps in the GxI literature. 

First, this study is one of a few GxI studies to integrate polygenic scores into prevention and 

intervention research. The use of polygenic scores rather than candidate genes helps to propel the 

literature toward the adoption of methods now understood to better represent genomic risk for 

complex traits/behaviors, and reduce risk of spurious findings through underpowered studies of 

single gene effects (Dick, 2018; Latendresse et al., 2018b; Musci & Schlomer, 2018b; Neale et 

al., 2020). Second, we examined long-term effects of an adolescent preventive intervention on 

young adult alcohol-related outcomes. Few prior GxI studies have focused on emerging 

adulthood, despite knowledge that it is a critical period for the development of alcohol use 

behaviors that set the stage for patterns of behavior in adulthood (Schulenberg & Maggs, 2002; 

Sussman & Arnett, 2014). Finally, this study explored potential mechanisms through which 

genetics may influence differential response to prevention and intervention. Based on estimates 

of sample sizes required for mediation analyses, the present study was adequately powered to 

detect halfway (.26), medium (.39), and large (.59) effect, but insufficiently powered to detect 

small (.14) effects (Fritz & MacKinnon, 2007). The few prior GxI studies that examined 

mediators observed large mediation effects (Brody et al., 2014, 2015); however, given the use of 
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candidate genes and likelihood of overestimating single variant main effect sizes, it is likely that 

small to very small effects are a more appropriate estimate of mediation effect sizes in GxI 

studies using polygenic scores. Despite the limitations of statistical power and null findings, the 

present study advances efforts to better understand why interventions may be more or less 

effective for individuals with varying levels of genetic risk.  

 In addition to the aforementioned strengths, the present study findings should be 

interpreted within the context of the following limitations. First, the present study examined GxI 

effects in European Americans and African Americans, but other racial/ethnic groups were not 

included in the analyses due to small numbers of individuals in those groups. As a result, the 

generalizability of these study findings to individuals from other genetic ancestry groups remains 

unknown. Second, although polygenic risk scores offer a number of benefits, they also have 

limitations that are important to consider. Current polygenic scores calculated using large, well-

powered GWAS still account for only a small percent of the variance in complex psychiatric 

outcomes, typically about 5% of the variance in substance use behaviors (Clarke et al., 2017; 

Karlsson Linnér et al., 2019; Kranzler et al., 2019; Liu et al., 2019). Although the amount of 

variance is likely to increase as GWAS discovery sample sizes increase, it may take quite some 

times before substance use research can amass samples needed to produce polygenic risk scores 

comparable to estimates observed for others phenotypes such as educational attainment and 

schizophrenia (Barr et al., 2020; Dudbridge, 2013; Evangelou et al., 2018; Lee et al., 2018; 

Pardiñas et al., 2018). Current polygenic scores may improve our understanding of relative risk 

(i.e., comparing those with high PRS to low PRS), but they are less informative about absolute 

risk until they can account for a greater proportion of variance in the overall outcome. Findings 
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from other more well-powered health-related outcomes, such as cardiovascular disease, suggest 

modest but meaningful improvement in prediction of coronary artery disease with the addition of 

polygenic scores (Elliott et al., 2020). In the future, such models may help to identify individuals 

at elevated need of early prevention of alcohol and substance use problems, or assist patients and 

providers with selection of the optimal treatment approach. However, at present, the clinical 

impact of polygenic scores in GxI research is negligible and the utility of polygenic scores for 

clinical decision-making remains to be explored (Lewis & Green, 2021). Finally, as a measure of 

aggregate genetic risk, polygenic scores provide little insight into the biological processes that 

may lead to differential intervention effects. Therefore, if polygenic scores prove useful in 

predicting differential treatment effects, mediators will be critically important to increasing our 

understanding of how and why genetics may contribute to differential intervention effects.  

Although the limitations of the present study may inhibit generalizability and clinical 

relevance of the current research, these limitations also spur insight into exciting future 

directions for further research. As noted previously, mediators are necessary to better understand 

the mechanisms through which genetics influence differential intervention effects. Both 

psychosocial and biological mediators are worthy of examination. Psychosocial mediators, such 

as use of protective behavioral strategies or self-regulation, may help to identify the active 

ingredients in intervention that can be harnessed to improve intervention effects for those at 

elevated risk. Biological mediators, such as DNA methylation and metabolic changes in the brain 

measured by functional magnetic resonance imaging (fMRI), may also help to explain the 

pathways through which polygenetic risk may lead to variations in intervention effects. For 

example, cognitive behavioral therapy has been shown to change functional neural activity in 
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patients who complete treatment, and these effects may differ for individuals with varying levels 

of genetic risk (Beauregard, 2014; Porto et al., 2009). Although the feasibility of such studies 

might be challenging due to current costs associated with collecting genotypic and neuroimaging 

data, opportunities may become increasingly possible as methods advance, and collaborative 

research consortium become the “norm” in the scientific community.  

Another important future direction for this research is to test the study hypotheses in 

larger studies, to determine the degree to which GxI research remains a fruitful topic of study.  

Conducting GxI research in larger samples may help to clarify whether the present study findings 

are the result of Type II error (i.e., failure to detect an effect when there is one in the population), 

or consistent with the absence of an effect in the population. Most evidence-based psychosocial 

intervention eventually advance to large-scale randomized trials, and by partnering with principal 

investigators of these studies, it may be possible to retrospectively collect DNA samples from 

participants already enrolled in randomized-controlled trials. Using this approach, it may also be 

possible to prioritize studies involving diverse samples, which would help to expand the 

generalizability for this research to individuals from different ancestry backgrounds. The 

ClinicalTrials.gov database is a useful tool for identifying potential study samples to approach 

with collaborative research ideas to integrate genetics into prevention and intervention. Another 

possible way to amass larger GxI samples is through collaboration with biobanks with electronic 

medical records. For example, the Million Veteran Program (MVP) is large-scale, coordinated 

research effort to understand how genetics, lifestyle factors, and military experiences influence 

health and disease (Gaziano et al., 2016). Since it began, MVP has enrolled over 800,000 

veterans and collected DNA samples through collaboration with Veterans Affairs (VA) Medical 
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Centers. The VA is also well-known for its leadership in the development, evaluation, and 

implementation of evidence-based psychological interventions for mental health problems. 

Countless randomized-controlled trials (RCTs) have been conducted in VA Medical Centers, and 

effective treatments are then disseminated to VA mental health clinics around the country. 

Accordingly, there is likely a wealth of both efficacy (via RCT studies) and effectiveness data 

(via real-world implementation of interventions) already available in the MVP biobank dataset. 

Although there are additional complexities to examining GxI effects in non-randomized samples, 

analytical methods, such as propensity score matching, may be able to mitigate the effects of 

selection bias in these studies (Austin, 2011; Guo & Fraser, 2010, 2014). By implementing these 

approaches, it may be possible to attain samples greater than N=1500, thereby increasing the 

statistical power to detect GxI effects and improving the generalizability of findings to diverse 

samples. If GxI effects are observed in larger samples, it will also be important to consider the 

clinical significance of those results. In order words, future studies are encouraged to consider 

whether the observed effects account for meaningful (rather than just statistically significant) 

differences between individuals with varying levels of genetic risk. With clinically meaningful 

effects, GxI research findings may enhance our ability to improve the effectiveness of prevention 

and treatment, and in turn, reduce the burden of alcohol and substance use problems.
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Global Summary and Conclusions 

 

The goal of this dissertation was to understand whether alcohol intervention outcomes 

varied as a function of genetic risk for alcohol problems, as indexed by polygenic risk associated 

with externalizing behaviors. The study also sought to test whether peer deviance and drinking 

motives mediated gene-by-intervention effects, which would shed light on mechanisms through 

which genetic risk might contribute to differential intervention effects. In order to understand 

whether findings generalized across different samples and interventions, we examined two 

existing datasets: Spit for Science (S4S), a longitudinal study of genetic and environmental 

influences on substance use and emotional health in college students, in which a subset of 

participants took part in online alcohol intervention, and Project Alliance (PAL), a community-

based study in which participants took part in Family Check-Up, a strengths-based, family-

centered intervention administered in middle school to promote family management and address 

child and adolescent adjustment problems.   

In this dissertation study, all primary GxI analyses and mediation analyses across both the 

S4S and PAL samples resulted in null findings. In the S4S sample, a post-hoc analysis was 

conducted to explore more proximal, short-term effects of the intervention on AUD symptoms 

approximately five months post-intervention. Findings indicated that individuals with higher 

PRS in the intervention condition reported less reduction in AUD symptoms compared to 

individuals with lower PRS in the intervention condition. In the control group, there were no 

differences in AUD symptoms at varying levels of polygenic risk. The potential clinical 

implications of these findings are important, as this indicates a possible need to dedicate 
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additional resources to develop interventions that better address alcohol-related problems for 

individuals with higher polygenic risk for externalizing problems. For example, the intervention 

modality (web-based, group or individual), intensity, and content, as well as developmental 

timing of the intervention delivery are all potential avenues to explore with the goal of improving 

outcomes for individuals across levels of genetic risk. However, it is also important to note the 

possibility that this single significant GxI finding may be a statistical artifact resulting from scale 

transformations, which is a well-documented phenomenon in the broader GxE literature 

(Domingue et al., 2020; Eaves, 2006, 2017; Eaves et al., 1977; Eaves & Verhulst, 2014; 

Schwabe & van den Berg, 2014). Accordingly, we recommend that the significant findings from 

the S4S sample be interpreted with considerable caution. 

The results presented in this dissertation study warrant a discussion of the merits of 

pursuing further GxI research given that the findings provided minimal evidence that response to 

intervention varies based on genetic risk. Although the S4S (n = 483) and PAL (EA: n = 269; 

AA: n = 191) samples used in this study are some of the largest to integrate polygenic scores into 

GxI analyses, statistical power remains a significant concern. Polygenic scores account for only a 

small percentage of the variance alcohol use behaviors (Liu et al., 2019; Sanchez-Roige et al., 

2019; Walters et al., 2018; Zhou et al., 2020); coupled with the modest effects of alcohol 

prevention intervention programs (Huh et al., 2015), much larger samples are needed to 

confidently draw conclusions about the presence or absence of GxI effects. The samples in the 

present study are not sufficiently sized to conclude that there is no effect in the population. 

Future research would benefit from examining GxI effects on alcohol and substance related 

outcomes in larger, more diverse samples. This would both allow opportunity to explore whether 



 

 110	

the present study findings are observed in other populations, and also address the need to 

increase diverse representation in genomic studies (Popejoy & Fullerton, 2016; Sirugo et al., 

2019). In the event that significant GxI effects are detected in larger samples, it will also be 

important for researchers to consider possible mediating mechanisms of these effects, and the 

clinical significance of interaction findings. Large samples may increase the likelihood of 

detecting an interaction effect if there is one in the population; however, a statistically significant 

interaction may not translate to meaningful variation at a clinical level. This may present an 

important choice point for future researchers to consider, as the allocation of limited resources 

may have a larger clinical impact in other areas of research.  

 Finally, the ethics of integrating genetics into prevention and intervention research are 

worthy of discussion. Discoveries about conditional effects of genetic risk on prevention and 

intervention programs raises concerns about how this information could be used or misused in 

the context of healthcare. Some may worry that individuals will be declined treatment on the 

basis of their genetic risk profiles, while others may have concerns about the security of this data 

(Neale et al., 2020). The National Institutes of Health is invested in understanding these 

considerations, with a dedicated extramural funding program specifically for research on the 

ethical, legal, and social implications (ELSI) of genomics research. It is also very important to 

note that at present, the utility of using PRS to improve identification of individuals at increased 

risk for alcohol use problems is extremely limited, and thus these scores are not currently 

recommended for use in a clinical setting (Barr et al., 2020). However, as interest in genetics 

continues to rise, it is likely that polygenic scores will become integrated into our lives in new 

ways. Thus, it is imperative for researchers to understand whether genetics may interact with 
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intervention effects, and ensure that effective prevention and treatment approaches are available 

for all individuals.    

In conclusion, the analyses in this dissertation represent an effort to fill a number of gaps 

in the GxI literature. By incorporating a novel polygenic score, studying emerging adult 

populations, including European American and African American samples, using propensity 

score matching to approximate random assignment, and examining longitudinal effects, this 

study contributes to our understanding of the role of genetic predispositions in differential 

intervention effects. Although larger, more diverse samples are needed to more comprehensively 

explore the research questions and detect very small GxI effect sizes, this study provides 

evidence of the feasibility of this research and presents a number of opportunities to explore the 

way that genetic risk may influence intervention effects in future studies.   
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