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Abstract

AUGMENTING DEFINITIVE SCREENING DESIGNS

By Tianchi Zhang

Virginia Commonwealth University, 2021.

David J. Edwards, Ph.D. (Chair)

Department of Statistical Sciences and Operations Research

Design of experiments is used to study the relationship between one or more re-

sponse variables and several factors whose levels are varied. Response surface method-

ology (RSM) employs the design of experiment techniques to decide if changes in de-

sign variables can enhance or optimize a process. They are usually analyzed by fitting

a second-order polynomial model. Some standard and classical response surface de-

signs are 3k Factorial Designs, Central Composite Designs (CCDs), and Box-Behnken

Designs (BBDs). They can all be used to fit a second-order polynomial model effi-

ciently and allow for some testing of the model’s lack of fit. When performing multiple

experiments is not feasible due to time, budget, or other constraints, recent litera-

ture suggests using a single experimental design capable of performing both factor

screening and surface response exploration. Definitive Screening Designs (DSDs) are

well-known experimental designs with three levels. They are also named second-

order screening designs, and they can estimate a second-order model in any subsets

of three factors. However, when the design has more than three active factors, only

the linear main effects and perhaps the largest second-order term can be identified by

a DSD. Also, they may have trouble identifying active pure quadratic effects when

two-factor interactions are present. In this dissertation, We propose several methods

ix



for augmenting definitive screening designs for improving estimability and efficiency.

Improved sensitivity and specificity are also highlighted.

There are three contributions to this research. The first is constructing and

evaluating augmented DSDs based on fold-over and column permutations. The second

is constructing and evaluating augmented DSDs with points from the next inner orbit.

The third is constructing and evaluating augmented DSDs with a uniform design.

These methods are shown to improve the estimation of 2nd-order models in more

than just three factors. In addition, these methodologies indicate better precision for

pure quadratic effects while keeping the number of experimental runs competitive.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In an experiment, we change one or more variables (or factors) in order to study

the effect on one or more responses. The design of experiments is a method to obtain

data that can be analyzed to reach an objective conclusion. Design of experiments

starts with determining the objectives of an experiment and selecting the factors for

the study. A good experimental design can be useful to optimize the response for

a given number of variables. The choice of an experimental design depends on the

objective and the number of factors of the experiment. If we have many factors

and little knowledge about them, the primary goal of the experiment might be to

distinguish the few significant factors from many less important factors. In this case,

screening designs should be used. In other situations, the experimental design may

be used to estimate an interaction and quadratic effects; we want to investigate the

shape of a response surface and would use response surface designs (Piepel and Cornell

1994). In the special case where we have factors that are proportions of a mixture, and

we want to know what proportions of the factors maximize or minimize a response,

then we need to use a mixture design. Response Surface Designs (RSDs), proposed

by Box and Wilson 1951, are used when the active factors have been identified to

optimize the response.

When the relationships between the active factors and response variable(s) are

first being studied, screening experiments are used to determine the few active factors

from the many factors. The number of runs in a screening design is based on the

1



number of factors. In general, we widely use the resolution III and IV fractional

factorial designs for early-stage screening; however, they have many drawbacks. The

resolution III fractional factorial designs have main effects confounded with one or

more two-factor interaction. If a confounded effect happens to be an active term, then

the experimental results and interpretation can have substantial ambiguity. If we want

to resolve this problem, we have to perform another experiment. For the resolution

IV fractional factorial design, we may want to check for the presence of a few active

two-factor interactions. Similar to the resolution III design, if a two-way interaction

is identified as active, you may not be able to identify which of the interactions in the

set of confounded two-way interactions are active. Another drawback of traditional

screening designs, such as fractional factorials and Plackett-Burman designs (Plackett

and Burman 1946), is that their factors have only two levels. This means these designs

have no capability for capturing curvature due to quadratic effects.

In this research, we propose augmented designs based on Definitive Screening

Designs (DSDs) proposed by Jones and Nachtsheim 2011. DSDs are a relatively new

class of screening design consisting of three levels per factor that permit estimation

of main effects, which are unbiased by second-order effects. DSDs have a simple

construction based on conference matrices (Xiao, Lin, and Bai 2012). DSDs for an

even number of factors only need (2k + 1) runs, where k is the number of factors.

In addition to the small sample size, these designs have other good properties, which

will be discussed in the next section. When the number of factors is odd, Jones and

Nachtsheim 2011 suggest deleting the last column of the conference matrix.

DSDs also have drawbacks. These designs only allow for the efficient estimation

of the full quadratic model in any subset of three factors. If we have more than three

factors in the full quadratic model and want to include all the second-order terms in

the model, this design cannot estimate each term in the model. Our goal is to find an

2



augmentation approach where DSDs can project onto a large number of factors and

estimate a 2nd order model. Therefore, we propose an approach for dealing with this

challenge, which is to augment DSDs to increase the ability to estimate second-order

models as efficiently as possible. This can be advantageous compared to using other

designs for second-order models with large run sizes. For k factors, a second-order

model is

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑
i=1

k∑
j=i+1

βijxixj + ε. (1.1)

Because conference matrices do not exist when k is odd, so odd factors’ DSDs can-

not be directly constructed from conference matrices. Starting from six factors, the

design has the capacity to estimate all possible full quadratic models with three or

fewer factors with high G efficiency (Kiefer and Wolfowitz 1959). Zhou and Xu 2017

proposed augmenting a DSD with composite designs based on two-level orthogonal

array (They are using the DSCD acronym to stand for it, definitive screening compos-

ite design). While this assists the estimation of bi-linear interactions, the two-level

array is ineffective for improving the estimation of the pure quadratic terms. Liu,

Mee, and Zhou 2019 proposed augmenting a DSD with axial runs (DSDA) for im-

proving pure quadratic estimation. This paper introduced DSDAs for 6 to 12 factors

is showed projections on 3, 4, and 5 factors. This can improve the quadratic estima-

tion, but in some cases, it is not efficient for estimating interaction terms. Vazquez,

Goos, and Schoen 2020 developed an augmented DSD based on dropping columns

(The paper is using the DSDp acronym to refer to a DSD obtained by dropping one

or more columns from a DSDs as a projected DSD). They introduced a classification

criterion to identify the best sets of k columns to drop from the DSD. The primary

weakness of DSDs is for estimation of the pure quadratic terms. If many two-factor

interactions and pure quadratic effects are active, the standard DSD may not have

3



sufficient degrees of freedom to separate the correlation between interactions of two

factors and pure quadratic effects. As a result, when used as a single experimental

experiment, DSDs are prone to Type-II errors, most notably for active pure-quadratic

effects. When the noise level is large, the DSDs performance suffers in identifying

active two-factor interactions. It also has trouble identifying active pure quadratic ef-

fects when two factor interactions are present. Estimation of full second-order models

requires augmentation of DSDs. The augmentation of the DSDs could reduce the cor-

relation between a factor’s second order effects and improve precision for estimation.

Even though some augmented designs did contribute to solving this problem, none of

them resolve all issues. Furthermore, a comprehensive comparison of augmentation

strategies for DSDs lacks in the literature. The goal of this research is to propose and

evaluate augmentation strategies for DSDs to identify active effects at the screening

stage and improve the efficiency of the estimates of those effects, especially improv-

ing the estimation of the pure quadratic terms. Also, we desire estimation of the

second-order response surface model with three or more factors.

1.2 Research Objective

There are three aims for my research. The first is constructing and evaluating

augmented DSDs based on fold-over and column permutations. The second is con-

structing and evaluating augmented DSDs with points from the next inner orbits to

get better efficiency for the quadratic terms. The third is constructing and evaluat-

ing augmented DSDs with a uniform design to get better efficiency for the quadratic

terms. The goal of this proposed research is to develop methodology that will estimate

second-order models with more than three factors. In addition, another goal is that

the number of experimental runs remains competitive with DSDs. Therefore, it is

important to compare the number of runs in the augmented DSDs to other commonly

4



used designs.

1.3 Overview

This dissertation remainder is organized as follows: Chapter II provides a com-

prehensive analysis of the literature on experimental design, including response sur-

face designs, screening designs, definitive screening designs, and a few augmenting

definitive screening designs techniques. Chapters III, IV, and V are our new aug-

mented definitive screening designs based on some new methodologies. Each contains

a summary of the research applicable to that chapter in the literature. Each chap-

ter’s original contribution is as follows: the augmented definitive screening design in

Chapter III is based on fold-over and permutation of some columns from the defini-

tive screening design. In a simulation study, when both two-factor interactions and

pure-quadratic effects are present, the new augmented Definitive Screening Designs

(DSD+) are able to increase the detection rate of second-order effects. Chapter IV

describes an augmented definitive screening design based on subset designs. It shows

the most powerful ability to obtain better precision for pure quadratic estimates and

increase the ability to estimate more than three factors in a full quadratic model.

Chapter V describes an augmented definitive screening design based on uniform de-

signs. And finally, Chapter VI summarizes all the importance of studying definitive

screening design and provides suggestions for future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Screening Experiments

An experimental test is organized using experimental design, a statistical method.

The changes in the output response in a system are detected by analyzing the input

variables that change (Montgomery 2017). The design methods can be different based

on the objective of the experiment. The objectives can be screening, modeling, and

optimizing. Screening means finding the important factors, and modeling means

fitting the best model to the response variable and optimizing means finding the

maximum or minimum (the optimal) value of the response. First-order polynomial

models are commonly used in screening experiments, while second-order polynomial

models are usually used in modeling and optimization.

For two independent factors, the first-order polynomial or main effects model is

y = β0 + β1X1 + β2X2 + ε. (2.1)

where X1 and X2 are the design factors, y is the response, the β′s are unknown

estimable parameters, and ε is a random error term in the system. Most of the time,

an interaction term is usually added to the first-order model:

y = β0 + β1X1 + β2X2 + β12X1X2 + ε. (2.2)

where the β12 represents the interaction effect between the design factors X1 and X2.

6



The two-factor second-order polynomial model is

y = β0 + β1X1 + β2X2 + β12X1X2 + β11X
2
1 + β22X

2
2 + ε. (2.3)

Second-order models are used for investigations of the response surface (Montgomery

2017). A general form can be written as Equation 1.1.

Even when the experimental goal is to eventually fit a response surface model (an

RSM analysis), the first experiment is often a screening design when there are many

factors to consider. Screening designs intend to find a few significant factors from a

list of many potential ones. They usually assume a linear response function or linear

function plus interactions and study the factors at two levels. Screening designs are

typically of resolution III, which permits one to explore the effects of many factors with

an efficient number of runs. Some notable screening designs are full and fractional

2-level factorial designs, Plackett-Burman(PB) designs, and supersaturated designs.

Only the full factorial design can identify all interactions, whereas other designs can

only identify the main effect and possibly some interactions. We will talk about some

other designs that are capable of identifying some or all two-factor interaction effects

later in this chapter.

2.1.1 Fractional Factorial Designs

“A factorial experiment in which only an adequately chosen fraction of the treat-

ment combinations required for the complete factorial experiment is selected to be

run” (Feder 1984). Generally, we select a fraction, for example, 1
2
, 1

4
etc. of the full

factorial. The following example will illustrate how to choose an appropriate frac-

tion of a full factorial design to suit our purpose. For 2-level experiments, properly

selected fractional factorial designs have the desirable properties of being both bal-

anced and orthogonal. The 2k−p fractional factorial design consist of a subset of the
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2k factorial design. The 2k−p fractional factorial designs consists of k factors at just

two levels each, similar to the 2k factorial design. The value p specifies the degree of

fractionation of the design, calculated by 1/2p. For instance, a 26−3 design (see Table

1) is a 1
23 = 1/8th fraction of the 26 design. As such, the 26−3 design contains 8 runs

or 1/8th of the 64 runs for a 26 design.

Run A B C D=AB E=AC F=BC

1 -1 -1 -1 +1 +1 +1

2 +1 -1 -1 -1 -1 +1

3 -1 +1 -1 -1 +1 -1

4 +1 +1 -1 +1 -1 -1

5 -1 -1 +1 +1 -1 -1

6 +1 -1 +1 -1 +1 -1

7 -1 +1 +1 -1 -1 +1

8 +1 +1 +1 +1 +1 +1

Table 1.: A 26−3 Fractional Factorial Design

As shown in Table 1, the first 3 independent columns are generated by a 23 design.

The remaining 3 columns can be generated as interactions of the first 3 columns (Wu

and Hamada 2011). As such, the value of 3 specifies the number of independent

design generators that are necessary. Since column interactions have determined the

design generators, the estimates of the 3 factor effect are aliased, meaning that it is

not possible to measure the factor impacts on the response separately from factor

interactions. This design’s generators are D = AB, E = AC, and F = BC. Since D

= AB, the effects of A and B influence the estimation of factor D’s impact on the

response. The 26−3 design in Table 1 is of Resolution III because the main effects are

aliased with two-way interactions.
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Resolution defines the degree to which, in a fractional factorial design, estimated

main effects are confounded with estimated interactions. The smallest resolution

often considered in practice is III. The most prevalent resolutions are III, IV, and V.

The confounding characteristics of these design resolutions are:

• Res III: Main effects are confounded or aliased with two-factor interactions, and

two-factor interactions are aliased with each other.

• Res IV: No main effects are aliased with two-factor interactions, but two-factor

interactions are aliased with each other.

• Res V: No main effect or two-factor interaction is correlated with other main

effect or two-factor interaction, but maybe aliased with three factor interactions.

The design resolution can tell us the level of confounding in the design. Usually,

one employs the design with the highest resolution possible while also meeting the

required design run size consideration. This means that a resolution IV design is

better than a resolution III model because we have a less extreme confounding pat-

tern; higher order interactions are generally considered to be far less significant than

low-order interactions. Different designs can also have the same resolution but have

different confounding or aliasing structure while maintaining the overall characteris-

tics mentioned above.

2.1.2 Plackett- Burman Designs and other Orthogonal Arrays

Plackett and Burman 1946 represented the construction of very economical de-

signs with run sizes a multiple of four (rather than a power of 2). For example, the PB

design can be used for an experiment containing up to 11 variables in 12 runs. When

only main effects are of concern, Plackett-Burman designs are very successful screen-

ing designs. These designs do not have a defining relation and possess a more complex
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aliasing structure. With the 2k−p
III designs, any main factor xi is either orthogonal to

xixj or equivalent to plus or minus xixj in the main effect column. The two-factor

interaction column xixj is associated with every xk for Plackett-Burman designs (for

k not equal to i or j). However, for economically detecting large main effects, these

designs are very useful, assuming that all interactions are marginal compared to the

few relevant main effects.

2.1.3 Foldover Technique for augmenting designs

The fold-over technique or fold-over design, is talked by Li 2014. In order to

increase the resolution of 2k−p
III and Plackett-Burman designs, a mirror-image fold-

over (or foldover) design is used to increase the size of fractional factorial designs. It

is obtained by reversing the signs of all the initial design columns. The initial design

runs are paired with the fold-over design runs, and this combination can then be used

to estimate all primary effects without any bias from two-factor interaction. This is

referred to as breaking the relation of aliasing between main effects and interactions of

two variables. A mirror-image fold-over design is usually a way to build a resolution

IV design from a resolution III design. The mirror-image fold-over (in which all

column signs are reversed) is just one of the many potential follow-up fractions that

can be used to supplement a fractional factorial design. When the original fraction is

of resolution III, this is a popular choice. Alternative fold-over designs, on the other

hand, can also be used to break up those alias patterns.

2.2 Response Surface Experiments

Response surface designs are used when we believe the response surface has sig-

nificant curvature. Each factor requires at least three levels to estimate the curvature.

Response surface designs are often referred to as second-order designs. To deal with
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response curvature, the experimenter can choose a 3k or 3k−p fractional factorial.

Some other efficient options are the Central Composite Designs (CCDs, Box and

Wilson 1951), and Box-Behnken Design (BBD, Box and Behnken 1960). Response

surface methodology (RSM) aims at enhancing “the exploration of a region of design

variables in one or more responses” (Myers, Khuri, and Carter 1989). The goal for

RSM is to determine how changes in design variables can provide process improve-

ment or optimization. RSM typically has two stages: factor screening and response

surface exploration.

2.2.1 Central Composite Designs

Central composite designs were introduced by Box and Wilson 1951. It will

allow estimation of curvature are contained a two-level factorial or fractional factorial

design with center points that is augmented with a group of axial points. If the

distance between the center of the design space and the factorial point for each factor

is ±1 unit, the distance between the center of the design space and the axial point

is |α| > 1. The precise value of α depends on certain characteristics needed for the

layout and on the number of variables involved. Similarly, the number of center point

runs also depends on certain characteristics required for the design. As there are

variations in the design, a central composite design often has twice as many axial

points as factors. For each factor in the design, the axial points reflect new extreme

values (low and high). The addition of center points provides details on the system’s

overall curvature when the 2k or 2k−p
V design proves to be a poor representation of

the system response, while axial points are added to allow a second-order response

model to be fitted.
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2.2.2 Box-Behnken Designs

In that it does not have an embedded factorial or fractional factorial design,

the Box-Behnken design (Box and Behnken 1960) is an independent second-order

design. In this design, the treatment combinations are at the midpoints of edges of

the process space and at the center. Such designs are rotatable (or near rotatable), and

each element needs only 3 levels. The designs have limited capability for orthogonal

blocking compared to the central composite designs.

2.2.3 Orthogonal Array Composite Designs

Xu, Jaynes, and Ding 2014 introduced a new class of composite designs called

orthogonal-array composite designs (OACDs). This design has an orthogonal array

of N runs, k columns, s levels, and strength t, denoted by OA(N, sk, t). An OACD

is made up of a two-level factorial configuration, a three-level orthogonal arrange-

ment, and a few center points. As is the case for CCDs, an OACD may be used

in a single or concurrent experiment. The additional points from a three-level OA

in an OACD include details about linear and quadratic terms as well as bi-linear

terms; in comparison, the axial points in a CCD are used to approximate linear and

quadratic terms but do not include information about bi-linear terms. As a conse-

quence, an OACD is frequently more efficient at estimating parameters, especially

bi-linear terms, than a CCD. The capacity to recognize significant bi-linear terms is

critical for such experiments, such as combinatory medication experiments involving

a large number of medications encountered in operation. Let d be a k-factor com-

posite design that consists of (i) a two-level design d1 with n1 runs, (ii) a three-level

design d2 with n2 runs, and (iii) n0 center points. The total number of runs of d

is N = n1 + n2 + n0. For k = 4, ..., 12, Xu, Jaynes, and Ding 2014 constructed
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OACDs by choosing the smallest OA(n1, 2
k, 4) as d1 and the smallest three-level OA

as d2. Specifically, they chose a full factorial 2k for k = 4, or a regular 2k−p design

with resolution at least V for k = 5–11, and the third column of Table 2 gives the

p generators. For k = 12, use an OA(128, 215, 4) since the smallest regular reso-

lution V design for 12 factors has 256 runs. For the three-level OA, use the first

k columns of “oa.9.4.3.2.txt,” “oa.18.7.3.2.txt,” and “oa.27.13.3.2.txt” from Sloane’s

website http://neilsloane.com/oadir/(Zhou and Xu 2017). A detailed structure is

given for composing the OACD in each number of factor level in Table 2.

k d1 Generators d2

6 26−1
V I F = ABCDE OA(18,36)

7 27−1
V II G = ABCDEF OA(18,37)

8 28−2
V G = ABCDE, H= ABCF OA(27,38)

9 29−2
V H = ABCDE, J = ABCFG OA(27,39)

10 210−3
V H = ABCDE, J = ABCFG, K= ABDF OA(27,310)

11 211−4
V H = ABCDE, J = ABCFG, K= ABDF, L=ACEG OA(27,311)

12 OA(128,212, 4) OA(27,312)

Table 2.: Orthogonal Array Composite Designs

2.3 Definitive Screening Designs

Definitive screening designs (DSDs) are a new class of small three level designs

introduced by Jones and Nachtsheim 2011. They can investigate k factors with only

2k + 1 runs. The DSDs consist of k fold-over pairs for k factors and a single center

point. Each run, excluding the center-point, has exactly one point at its center and

all others at the extremes(±1). DSDs have a simple construction based on conference

matrices by Xiao, Lin, and Bai 2012. For k even factors, a k × k matrix, initials C,
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is defined as a conference matrix which satisfies C ′C = (k − 1)Ik×k, with Cii = 0

(i=1,2,3. . . , k) and Cij ∈ −1, 1, (i 6= j, i, j = 1, 2, . . . , k) (Goethals and Seidel 1967).

The DSDs for an even number of factors only need (2k+1) runs, where k is the number

of factors. In addition to the small sample size, these designs have other good proper-

ties, which will be discussed next. Because conference matrices do not exist when k is

odd, DSDs cannot be constructed from conference matrices. As an alternative, Xiao,

Lin, and Bai 2012 suggest deleting the last column of the conference matrix. Then

the design will have the same number of runs for (k− 1) factors as for k factors, and

the main effects are completely independent of the two-factor interactions. There-

fore, the estimates of the main effects are not biased. The two-factor interactions are

also not completely confounded with other two-factor interactions, and any number

of linear and quadratic main effect terms are estimable. The quadratic effects are

orthogonal to the main effects and not completely confounded with the interaction

effects. Starting from 6 factors, the design has the capacity to estimate all possible

full quadratic models with three or fewer factors. The DSD is different from other

regular screening designs because it has three levels for each factor and able to esti-

mate quadratic terms. The construction of a DSD using conference matrices is shown

below:

D =


C

−C

0

 (2.4)

where 0 is a 1×m zero vector. This design structure has all the properties as those

proposed by Jones and Nachtsheim 2011. Their desirable properties are:

1. The number of runs required is only one more than twice the number of vari-

ables.
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2. The main effects are completely independent of two-factor interactions, unlike

resolution III designs. As a consequence, the presence of active two-factor in-

teractions does not bias estimates of main effects, regardless of whether the

interactions are included in the model.

3. Two-factor interactions, unlike resolution IV designs, are not entirely confused

with other interactions of two factors, although they can be correlated.

4. All quadratic effects are estimable in models.

5. Quadratic effects are orthogonal to main effects and not completely confused

with interaction effects (although correlated).

6. With 6 to 12 factors, the models are able to estimate all possible full quadratic

models involving three or fewer factors with very high efficiency.

Table 3 shows an example of a 10 factor Definitive screening design.
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Definitive Screening Design

Fold-Over Pair Run(i) Factor Levels

Xi,1 Xi2 Xi3 . . . Xi,10

1
1 0 ±1 ±1 . . . ±1

2 0 ∓1 ∓1 . . . ∓1

2
3 ±1 0 ±1 . . . ±1

4 ∓1 0 ∓1 . . . ∓1

3
5 ±1 ±1 0 . . . ±1

6 ∓1 ∓1 0 . . . ∓1

...
...

...
...

...
...

...

10
19 ±1 ±1 ±1 . . . 0

20 ∓1 ∓1 ∓1 . . . 0

Center point 21 0 0 0 . . . 0

Table 3.: Ten factors DSD Design Matrix

2.4 Previous Work on Augmenting Definitive Screening Designs

2.4.1 Definitive Screening Designs with Axial Runs

If there are many active interactions and pure quadratic terms in the model, the

confounding issue will be a problem to estimate the 2nd-order model. Liu, Mee, and

Zhou 2019 proposed augmenting a DSD with axial runs (DSDA) to solve the above

problem. For improving the quadratic estimation and decoupling the correlation

between two factor interaction and pure quadratic, they add a 2 × k of projection

factors axial pairs plus one center-point replicate (k is the number of factors). Table 4

shows an example with six factors DSDA. They added thirteen runs (six pairs of axial

points plus one center-point) with |α| = 1. Their augmentation can reduce aliasing
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DSD + Axial Runs
Run(i) Factor Levels

Xi,1 Xi2
Xi3

Xi4
Xi5

Xi,6

1 0 1 1 1 1 1
2 0 -1 -1 -1 -1 -1
3 1 0 -1 1 1 -1
4 -1 0 1 -1 -1 1
5 1 -1 0 -1 1 1
6 -1 1 0 1 -1 -1
7 1 1 -1 0 -1 1
8 -1 -1 1 0 1 -1
9 1 1 1 -1 0 -1
10 -1 -1 -1 1 0 1
11 1 -1 1 1 -1 0
12 -1 1 -1 -1 1 0
13 0 0 0 0 0 0
14 1 0 0 0 0 0
15 -1 0 0 0 0 0
16 0 1 0 0 0 0
17 0 -1 0 0 0 0
18 0 0 1 0 0 0
19 0 0 -1 0 0 0
20 0 0 0 1 0 0
21 0 0 0 -1 0 0
22 0 0 0 0 1 0
23 0 0 0 0 -1 0
24 0 0 0 0 0 1
25 0 0 0 0 0 -1
26 0 0 0 0 0 0

Table 4.: DSD with Axial Runs for six Factors
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from omitted second-order terms for the factors.

2.4.2 Definitive Screening Design Composite Designs

Since the primary weakness of DSDs is for estimation of the pure quadratic

terms. Zhou and Xu 2017 proposed augmenting a DSD with a two-level orthogonal

array for improving the estimation of the interaction terms (Their paper is using

DSCD acronym to stand for it, definitive screening composite design). This two-

level orthogonal array is an OA(n1, 2
k, 4), the linear, quadratic, and bi-linear terms

are orthogonal to each other, and two-level OA will provide more information on

linear and quadratic terms. But the two-level array is ineffective for improving the

estimation of the pure quadratic terms. By integrating a two-level factorial design

with a three-level DS design and some center points, they were able to build a DSCD.

They generated DSCDs for k = 4–12 using three-level DS designs from Jones and

Nachtsheim 2011, with the two-level portion chosen as in Table 2 and n0 = 0 for all

designs.

2.4.3 Definitive Screening Designs Obtained by Dropping Columns

Vazquez, Goos, and Schoen 2020 developed an augmented DSDs design based

on dropping columns (The paper is using DSDp acronym to refer to a DSD obtained

by dropping one or more columns from a DSDs as a projected DSD). The purpose

of this work was to identify the screening design with the lowest expected cost for

the complete experiment, measured by the total number of runs used, the number

of correctly identified active effects at the screening stage, and the efficiency of the

estimates of these effects. The paper demonstrated how dropping k columns from

a DSD with n = m + k columns will result in an m-factor design with superior

aliasing properties than an m−factor DSD, thus increasing the likelihood that the
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DSDp can detect the active effects. For example, if the researcher wanted a seven-

factor design, it can drop three columns from the 10-factor DSD in Table 3, and thus

use a 21-run design instead of a 17-run design. This method one main contribution

is that it identifies the best sets of k columns to drop from DSDs. To classify the

DSDp obtained by dropping different sets of columns, they considered the maximal

absolute correlation and the number of squared correlations between pairs of two-

factor interaction effects contrast vectors involving three or four factors. Table 5

shows the overall best sets of 1–4 columns to drop from each (m + k)-factor DSDs.

There are often several overall best sets of columns that result in DSDp that are

equally good.

# factors in DSDs (m+k) # columns dropped (k)

1 2 3 4

6 Any Any Any Any

8 Any Any Any Last four

10 Any Any Any 6,8,9 and 10

12 Any Any Any 7,8,10 and 12

Table 5.: Overall best sets of k columns to drop from an (m + k)-factor DSDs
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CHAPTER 3

AUGMENTING DEFINITIVE SCREENING DESIGNS USING

FOLDOVER TECHNIQUE

3.1 Approach

In this chapter, the concept for our augmenting strategy is based on the fact

that we are using conference matrices to create DSDs. If we have k columns in the

conference matrix, C, and select one or more columns from matrix C to fold over, we

will produce a new conference matrix C ′. For example, one can try to fold over two

columns from C, so we have

(
k

2

)
new conference matrices. By continuing this strategy,

we can also create

(
k

3

)
,

(
k

4

)
,. . .

(
k

k − 1

)
,

(
k

k

)
different conference matrices. When

folding over the columns we chose, other columns are kept fixed. After creating the

new conference matrix C ′(after fold over), we then permute the columns from C ′. So,

k factors (k columns) will give k! choices of permutation. After each permutation we

have a new matrix called C2. Next, we combine C2 and −C2 with the original DSD.

That is,

Augmented DSD =



C

−C

0

C2

−C2

0


(3.1)

Note that our augmented DSD has 4k + 2 runs. To determine the best foldover
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permutation, two criteria are used. One is projection information capacity (PIC),

proposed by Loeppky 2004. Given an n × m design, let f be the class of models

containing k main effects and their second-order terms. Then the PIC is

dk =

∑
f ((det(X ′X/n))1/p(

m

k

) (3.2)

where p is the number of parameters (i.e.p = 1+k+

(
k

2

)
), k is the number of factors,

and X is the model matrix. We seek to maximize PIC.

The second criterion is projection estimation capacity (PEC), proposed by Loeppky,

Sitter, and Tang 2007. The PEC is defined as follows: given D, an n × m design,

let ρk(D) be the number of estimable models containing k main effects and their

second-order terms.

pk(D) =
ρk(D)(
m

k

) (3.3)

and call (p1,p2,. . . ,pk) the PEC sequence of D. It is desirable to have each element

in the PEC sequence be as large as possible. We now compare these augmentation

strategies with alternative designs. Table 6 provides a run size comparison for different

designs.

DSD stands for Definitive Screening Design, DSDFO stands for DSD aug-

mented with fold-over, CCD stands for Central Composite Design with the axial

points at α =1, DSCD stands for Definitive Screening composite designs, DSDA

stands for DSD augmented with axial runs, DSDp stands for Definitive Screening

Designs obtained by Dropping Columns, and OACD stands for orthogonal-array

composite design. Figure 1 shows in the 3 factors, DSDFO has the highest PIC value

compared with other options. For 4 factor projections, DSDFO has the highest PIC
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The number of runs for each design

Design Name Number of Factors

6 7 8 9 10 11 12

OACD 50 82 91 155 155 155 155

DSCD 45 79 81 147 149 151 153

CCD 44 78 80 146 148 150 280

DSDA 26 30 34 38 42 46 50

DSDFO 26 30 34 38 42 46 50

DSDp 26 NA 34 NA 42 NA 50

DSD 13 15 17 19 21 23 25

Table 6.: Run Size Comparison

values compared with other options after 9 factors. For 5 factor projections, DS-

DFO has a similar performance as the CCD for 10 or more factors. Figure 2 shows

that DSDFO performs well with respect to 3 and 4 factor projections. For 5-6 fac-

tor projections, PEC performance is competitive despite the smaller run sizes for a

large value of k. Since DSDFO has a significant advantage over most of the designs

in the run size, DSDFO can be a good choice when the experimenter conceives an

experimental design.
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Fig. 1.: DSDFO PIC Comparison for 3-6 factor projections
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Fig. 2.: DSDFO PEC Comparison for 3-6 factor projections
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3.2 Variance Analysis

Fig. 3.: DSDFO Variance Estimation Plots

Figure 3 shows a comparison of variance of estimation. Assuming independent

observations with error σ2, the linear, interaction, and quadratic estimators would

have variances calculated from σ2(X ′X)−1. In our comparison, we set σ2 to be 1.

For the linear and interaction terms, DSDFO shows a much smaller variance than

DSDA and DSD, and compared with other designs (with a large number of runs), the

interaction term variance of DSDFO is competitive. For the quadratic term variance

comparison, the DSDFO showed the second smallest variance among all these six

designs. In other words, the efficiencies in estimating the pure quadratic coefficients

are quite good.
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3.3 D-efficiency Comparison

For any k-factor design, the D-efficiency is defined by:

Deff =
1

n

( |X ′X|
MaxDx

)1/p
(3.4)

MaxDx = ukv
k(k−1)

2 (u− v)k−1(u+ (k − 1)v − kv2) (3.5)

where

u =
k + 3

4(k + 1)(k + 2)2
((2k2 + 3k + 7) + (k − 1)(4k2 + 12k + 17)1/2) (3.6)

v =
k + 3

8(k + 1)(k + 2)3
((4k3 + 8k2 + 11k − 5) + (2k2 + k + 3)(4k2 + 12k + 17)1/2).

(3.7)

Since DSD and augmented DSD cannot estimate the second-order model in all factors,

we calculated the D-efficiency using projection onto 3 factors. Thus, we compute the

average D-efficiency across all 3 factor projections. In other words, our design matrix

X will be all three factor model matrices chosen from k factors. The D-optimal

criterion is seeking to maximize |X ′X|, the determinant of the information matrix.

The model matrix X includes the intercept, linear, interaction, and quadratic terms.

Except for the whole model D-efficiency, We also compared designs in terms of the

precision for estimating a subset of the model parameters. For s, a subset of factors

of a design d,

Ds,eff =
1

n

( |X ′X|
|X ′(s)X(s)|

)1/|s|
(3.8)

where X(s) are the sub-matrices of X corresponding to the parameters not in s,

respectively, and |s| is the number of parameters in s. So the efficiency for each term
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can be calculated as DL(linear), DB(interaction), and DQ(quadratic), respectively.

DL,eff (d) = DL(d), DB,eff (d) = DB(d), DQ,eff (d) = DQ(d) (3.9)

(Since Zhou and Xu 2017 illustrate the DQ optimal design has a DQ value of 1/4,

so in here DQ,eff (d) = 4DQ(d)). The D-efficiency of the DSD is poor for estimating

two-factor interactions, so we want to examine the ability of DSDFO to estimate

models with interactions and quadratic terms.

Fig. 4.: DSDFO D Efficiency Plots

For k = 4, 5, . . . , 12, we compare DSDFO with DSDA, DSCD, OACDs, DSDp

and CCDs. Figure 4 shows that DSCDs have the largest DL,eff (D-linear Efficiency),
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but DSDFO also has reasonable DL,eff given their run size. For the interaction

D-efficiencies comparison, DSDFO only outperforms the DSD. For the quadratic D-

efficiencies comparison, DSDFO and DSDA both indicate reasonable high efficiencies.

For the whole model D-efficiencies comparison, it is obvious that DSDFO gives the

highest efficiencies. This illustrates that DSDFO can estimate the full quadratic

model well.

3.4 Sensitivity and Specificity Analysis

We want to assess the performance of the DSDFO in terms of power and speci-

ficity rates compared with traditional DSD and other new augmenting definitive

screening designs introduced in the literature review. Recall the following: (DSDA-

Definitive Screening Designs with Axial Runs, DSCD-Definitive Screening Design

Composite Designs, DSDp-Definitive Screening Designs Obtained by Dropping Columns).

The definition for power analysis and specificity analysis are: (1) Power is the

ratio of the number of selected active effects over the total number of truly active

effects. (2) Specificity is the ratio of the number of inactive effects not selected from

the fitted model over the number of inactive effects from the true model. Below

simulation protocol idea is from Errore et al. 2017.

1. We considered the number of factors, k, equal to 4, 6, 8, 10 and 12.

2. The active effects followed either unrestricted or strong heredity (explaining in

the next paragraph).

3. The model selection method used was forward step-wise selection based on the

minimum AICc (Cavanaugh 1997) and Lasso (Tibshirani 1996).

4. To generate a response vector, we fit a model with all active effects and an error

term.
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5. The number of active main effects varied from (i) 2 to k when only main effects

were active, (ii) 2 to k−2 for an unrestricted model having second-order effects,

and (iii) 4 to k − 2 for second-order models with strong heredity.

6. We defined the proportion of active second-order effects pso. We had three levels

for this scenario: 0 (only for first order models), 0.5, and 1.0.

7. We computed the signal-to-noise ratio (SN) of the active effects, with SN desired

as |β|/σ and SN = 1.

8. We calculated the power and specificity as previously described.

For clarity, we describe the setup for one simulation study. Suppose the number

of factors in the design is eight, and there are four active main effects. These four

active main effects are randomly selected from the eight factors. Let the proportion of

second-order effects be pso = 0.5, so the number of second-order effects is two. Note,

the type of second-order effects could be a mix of interaction and quadratic terms.

If the model type is unrestricted, the two active second-order effects are randomly

chosen from among the

(
8

2

)
= 28 interaction terms and 8 possible quadratic terms.

If the model type is strong heredity, then the two active effects are chosen from among(
4

2

)
= 6 interaction terms and 4 allowable quadratic terms.

3.4.1 Scenario 1 : Unrestricted Models with Active Second-Order Effects

Figure 5, Figure 6, and Figure 7’s top two plots show the power analysis results

for a total of 10 factors with 2, 4, 6, and 8 active factors in the design and for two

different model selection methods. Based on these results, the DSDFO and DSDp

have much better sensitivity than the traditional DSD. Therefore, these designs also
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Fig. 5.: DSDFO Power Analysis of Main-Effects

have a better chance of finding the truly active effects, especially when the number of

truly active factors is increasing. Figure 8, Figure 9, and Figure 10’s top two graphs

are the plots for comparing the specificity of the unrestricted models. The traditional

DSD did well in terms of specificity. In general, the DSDFO and DSDp performed

similarly to the DSD. Although the DSDFO and DSDp had lower specificity when

compared to the DSD in most cases, they still performed well because specificity was

close to 90% for these designs. (All designs perform well with regard to specificity).
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Fig. 6.: DSDFO Power Analysis of Interaction-Effects

3.4.2 Scenario 2 : Strong Heredity Models with Active Second-Order

Effects

Figure 5, Figure 6, and Figure 7’s bottom two plots show the results when the

models are following strong heredity. There are 10 factors with 2, 4, 6, and 8 active

factors in the design with two different model selection methods. The DSDFO and

DSDp have much better sensitivity than the traditional DSD. They have almost 100%

sensitivity to detect the main effects. The DSDFO and DSDp also have much better

sensitivity than the other two designs for interaction effects; as the number of factors

increases, the differences get larger. DSDFO had the best performance on quadratic

effects, it was almost 5% better than DSDp and clearly better than DSD. So DSDFO

has a higher probability of finding the active effects, especially when the number of
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Fig. 7.: DSDFO Power Analysis of Quadratic-Effects.

active factors are increasing. Figure 8, Figure 9, and Figure 10 ’s bottom two graphs

are the plots for comparing specificity of the strong heredity models. The traditional

DSD did well in terms of specificity. In general, the DSDFO and DSDp performed

similarly to the DSD. Although the DSDFO and DSDp had lower specificity when

compared to the DSD in most cases, they still performed well because specificity was

close to 90% for these designs. (All designs perform well with regard to specificity).
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Fig. 8.: DSDFO Specificity of Main-Effects
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Fig. 9.: DSDFO Specificity of Interaction-Effects
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Fig. 10.: DSDFO Specificity of Quadratic-Effects.
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3.5 Case Comparison

Two cases were used to compare DSDFO with DSD; these two cases represent two

different combinations of model heredity (strong and weak). Strong heredity means

that if a model has a two-factor interaction, then the model’s constituent main effects

are included. In contrast, weak heredity only allows one of the two major effects

to be used in the model. Jones and Nachtsheim 2011 suggest performing a forward

step-wise regression when considering all terms in a second-order model. We also add

another lasso regression method to check the ability to identify the active terms. We

checked three results for each model: the identified correct active terms, incorrectly

identified terms (Type I Error), and not identified terms (Type II Error).

Model I is a strong heredity model:

yi = 2X1 − 1.5X5 + 2X7 − 3X1
2 + 2.5X5

2 − 4X7
2 + 4X1X5 + 3.5X1X7 − 5X5X7 + εi

(3.10)

In Table 7, when the DSDFO is using the Lasso regression method, it can exactly find

the active terms and high order terms. However, when using the forward step-wise,

DSDFO did not identify X2
1 and X2

5 . Comparing to DSDs, DSDFO finds more active

terms than DSDs. DSDFO and DSDs both have incorrectly identified some of the

interaction terms. DSD only identified all the linear terms and one interaction term.

It missed all quadratic terms and other interaction terms in the forward step-wise

regression method. As the lasso method, DSD missed all active terms.

Model II is a weak heredity model:

yi = 2X1 + 2X5 − 1.5X1
2 + 2.5X5

2 − 3.5X1X5 + 4X1X7 − 5X5X7 + εi (3.11)

From Table 8, we see that DSDFO still can find all the active terms except missing
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one quadratic term when using the lasso method. But DSD also only can identify

all the linear terms and one interaction term. It missed all quadratic terms and

other interaction terms in the forward step-wise regression method. And for the lasso

method, DSD missed all active quadratic terms.

Model I

DSD DSDFO

Forward Step-wise Lasso Forward Step-wise Lasso

Identified
X1, X5, X7, X1X5 NA X1, X5, X7, X1X5, X1X7 X1, X5, X7, X1X5, X1X7

X5X7, X
2
7 X5X7, X

2
1 , X

2
5 , X

2
7

Type I Errors
X9, X10, X8

2, X4X10, X2X10 X4X10 X2X5, X2X10, X4X7 X2X4, X2X8, X2X9, X2X10

X6X8, X3X5, X4X5, X7X8 X5X6, X7X10, X
2
10 X4X10, X6X8, X

2
3 , X

2
9

Type II Errors
X2

1, X
2
5 , X

2
7 X1, X5, X7, X

2
1 , X

2
5 , X

2
7 X2

1, X
2
5 NA

X1X7, X5X7 X1X5, X1X7, X5X7

Table 7.: DSDFO Strong Heredity Model Results

Model II

DSD DSDFO

Forward Step-wise Lasso Forward Step-wise Lasso

Identified
X1, X5, X

2
1 X1, X5, X1X5, X1X7, X5X7 X1, X5, X1X5, X5X7 X1, X5, X1X5, X1X7, X5X7

X1X7, X
2
1 , X

2
5 X2

5

Type I Errors
X4X8, X8X10, X2X9 X1X9, X2X10, X4X6, X4X8 X7, X9, X2X9 X1X6, X2X10, X3X7

X7X8, X3X10, X10 X5X8 X7X10, X
2
10

Type II Errors
X2

5, X1X5, X1X7 X2
1, X

2
5 NA X2

1

X5X7

Table 8.: DSDFO Weak Heredity Model Results

3.6 Summary and conclusions

DSD can be used to identify the main effects and some second-order terms.

However, when we have many effects, DSD may cause an under-fit model. DSD also

does not allow for the efficient estimation of the full quadratic model in any more than

three factors. DSDFO can provide better precision for pure quadratic estimates, and

at the same time, it can identify more interaction terms. Also, DSDFO increases
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the ability to evaluate more than three factors in a full quadratic model. DSDFO

demonstrates quite good efficiencies in estimating the pure quadratic coefficients than

other designs. DSDFO also shows a competitive result as DSDA in power analysis of

quadratic effects and DSDp in power analysis of interaction effects.
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CHAPTER 4

AUGMENTING DEFINITIVE SCREENING DESIGNS USING

SUBSET DESIGNS

4.1 Subset Designs

The subset design proposed by Gilmour 2006 uses a two-level factorial design

in subsets of the factors, with the other factors being held at their middle level. In

this case, we consider the levels coded to -1, 0, and 1. Let Sr, with r = 1, 2, . . . , q,

be the subset of the 3q factorial design points that lie on the hyper-sphere of radius

r1/2 about the center point, S0. Thus, Sr contains all points which have r factors at

±1 and the remaining q − r factors at 0. A combination of Sr subsets can also be

represented by cr1Sr1 + cr2Sr2 + ..., where cr is the number of times the subset Sr is

replicated. Gordon, Murray, and Todd 1994 used this idea for four and five factors.

The Box-Behnken design is also a special case of subset design. Box-Behnken designs

have treatment combinations at the midpoints of the experimental space’s edges and

require at least three continuous factors. Table 9 shows all available Sr for choosing a

design for three factors. For projections onto two factors: each point of type (±1,±1)

appears two times in the subset S3, each point of (±1, 0) or (0,±1) appears two times,

and each point of (±1,±1) appears one time in the subset S2. For subset S1, each

point of (±1, 0) or (0,±1) appears one time, and (0, 0) appears two times. Finally,

for subset S0, the point (0, 0) appears one time. A subset design can project onto

a number of replicates of the full 22 factorial design. An example of subset design

for three factors is in Table 10 (c2S2, c2 = 1). In addition, it will be a Box-Behnken

design if an additional center run is added to it.
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S3 S2 S1 S0

-1-1-1 -1-1 0 -1 0 0 0 0 0

-1-1 1 -1 1 0 1 0 0

-1 1-1 1-1 0 0 -1 0

-1 1 1 1 1 0 0 1 0

1 -1 -1 -1 0 -1 0 0 -1

1 -1 1 -1 0 1 0 0 1

1 1 -1 1 0 -1

1 1 1 1 0 1

0 -1 -1

0 -1 1

0 1 -1

0 1 1

Table 9.: Subsets for three factors

Subset design can be useful for model selection, especially when the quadratic

effects are small (Gilmour 2006). The projection of the design when non-significant

factors are removed is an important criterion to consider for second-order polynomial

models.
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Subset Design

Factor Levels

X1 X2 X3

1 -1 -1 0

2 +1 -1 0

3 -1 +1 0

4 +1 +1 0

5 -1 0 -1

6 +1 0 -1

7 -1 0 +1

8 +1 0 +1

9 0 -1 -1

10 0 +1 -1

11 0 -1 +1

12 0 +1 +1

Table 10.: One of Subset Design With Three Factors

4.2 Augmenting DSDs with Subset Designs

Table 11 again shows a general structure of DSDs. In general, if we have k factors

in the design model, DSDs are a Sk−1+S0 subset design. Based on the definition of

Sr, the next level subset design after Sk−1 will be Sk−2. So following the DSD(Sk−1),

we will augment it with a Sk−2 subset design. For example, if we want to create a

four-factor augmented DSD, a fully detailed design structure appears in Table 12.

As k increases, the design space’s volume increases quickly based on the next-

order inner orbit design combinations. Using all of Sk−2 for augmentation is not

practical in many applications. Therefore, there is a need for an optimization al-
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Definitive Screening Design

Fold-Over Pair Run(i) Factor Levels

Xi,1 Xi2 Xi3 . . . Xi,k

1
1 0 ±1 ±1 . . . ±1

2 0 ∓1 ∓1 . . . ∓1

2
3 ±1 0 ±1 . . . ±1

4 ∓1 0 ∓1 . . . ∓1

3
5 ±1 ±1 0 . . . ±1

6 ∓1 ∓1 0 . . . ∓1

...
...

...
...

...
...

...

k
2k-1 ±1 ±1 ±1 . . . 0

2k ∓1 ∓1 ∓1 . . . 0

Center point 2k+1 0 0 0 . . . 0

Table 11.: DSD Design Matrix

gorithm to choose the optimal subset. D-optimality is a widespread criterion for

choosing the best design. For a second-order polynomial model matrix X, it can

be achieved by maximizing the determinate of X ′X. However, when n < P , X ′X

will be singular. DuMouchel and Jones 1994 presented a Bayesian D-optimality cri-

terion that can solve this problem. Supposing a linear model y = Xβ + ε with

ε ∼ N(0, σ2In), the prior distribution of the parameters is β|σ2 ∼ N(β0, σ
2R−1),

where β0 is intercept and R is a prior covariance matrix, and the conditional distri-

bution of y given β is y|β, σ2 ∼ N(Xβ, σ2I). The posterior distribution for β given

y is then β|y ∼ N(b, σ2(X ′X + R)−1), where b = (X ′X + R)−1(X ′y + Rβ0). Since

the posterior variance is σ2(X ′X + R)−1, the Bayesian D-optimal designs maximize

|X ′X + R|. DuMouchel and Jones 1994 incorporate prior information and model
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Augmented Definitive Screening Design

Factor Levels

X1 X2 X3 X4

DSD(S3)

1 0 1 1 1

2 0 -1 -1 -1

3 1 0 -1 1

4 -1 0 1 -1

5 1 -1 0 -1

6 -1 1 0 1

7 1 1 -1 0

8 -1 -1 1 0

9 0 0 0 0

S2

10,11 -1 ±1 0 0

12,13 1 ±1 0 0

14,15 -1 0 ±1 0

16,17 1 0 ±1 0

18 0 0 0 0

Table 12.: Example Augmented DSDs With Four Factors

uncertainty into the regression parameters by splitting model terms into two sets:

one set contains terms assumed to be active called primary terms (P1), the other set

contains terms that may or may not be active (P2). P1 primary terms are given a

prior distribution with an arbitrary prior mean and prior variance tending towards

infinity. For the potential terms P2, they are given a prior mean zero and finite vari-

ance σ2τ 2 since they are not supposed to have large effects; τ represents the expected

effect of a factor relative to residual standard error (DuMouchel and Jones 1994). We
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use the SAS proc optex to select a design; the prior precision values’ inverses can be

interpreted as prior variances for the linear parameters corresponding to each effect.

Then the matrix R is set to R = K/τ 2, where

K =

0p1×p1 0p1×p2

0p2×p1 Ip2×p2

 . (4.1)

Since this addition of the prior information can make the information matrix invert-

ible, the total number of P = P1 +P2 could be greater than the number of runs, n. If

there are many active interactions and pure quadratic terms, the confounding issue

will make the estimation poor. An initial DSD may only identify the linear main ef-

fects and perhaps some large second-order terms. So we will consider all main effects

and quadratic effects as primary terms and interaction effects as potential terms. In

the proc optex function, we selected our candidate points from Sm−2 subset design

points. Here we considered two instances with different run sizes. One is the size of

a DSD, and the second is half the run size of a DSD. We will talk about the cost and

benefit tradeoffs and compare them later. We set the precision value for main and

quadratic effects to 0, meaning there is no prior information for the main effects and

quadratic effects. We performed a sensitivity analysis to decide on the prior precision

(from 5 runs to 20 runs). In the end, we chose τ = 1. Suppose we have n1 runs for

the DSD corresponding to the X1 model matrix and let X2 be another model matrix

subset from Sk−2 with n2 rows. For getting the optimal design, we need to maxi-

mize |X ′X| of the model matrix X, which consists of X1 and X2, set X =

X1

X2

. So

X ′X =

X1

X2


′X1

X2

=X ′1X1+X
′
2X2, we are looking to maximize |X ′1X1+X

′
2X2| and

create an augmented D-optimal design using the row-exchange algorithm (Broughton
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et al. 2010). The row-exchange algorithm is an iterative search algorithm and oper-

ates by incrementally changing an initial design matrix, X, to increase |XTX +R| at

each step. There is randomness built into the selection of the initial design and into

the choice of the incremental changes. This algorithm will return a locally D-optimal

design. At each step, the row-exchange algorithm exchanges an entire row of X with

a row from a design matrix to another design matrix, C, containing a candidate set

of feasible factor levels. We applied a projection estimation capacity (PEC) crite-

rion (Loeppky, Sitter, and Tang 2007) and projection information capacity (PIC)

(Loeppky 2004) to check the new augmented design properties. Recall the following:

Table 13 provides a run size comparison for different designs.

The number of runs for each design

Design Name Number of Factors

6 7 8 9 10 11 12

OACD 50 82 91 155 155 155 155

DSCD 45 79 81 147 149 151 153

CCD 44 78 80 146 148 150 280

DSDA 26 30 34 38 42 46 50

DSDFO 26 30 34 38 42 46 50

DSDSD 26 30 34 38 42 46 50

DSDp 26 NA 34 NA 42 NA 50

DSD 13 15 17 19 21 23 25

Table 13.: Run Size Comparison

In Figure 11 and Figure 12, DSD stands for definitive screening design, DSDFO

stands for DSD augmented with fold-over, CCD stands for central composite design

with the axial points at |α| =1, DSCD stands for DSD augmented with compos-
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Fig. 11.: DSDSD PEC Comparison for 3-6 factor projections

Fig. 12.: DSDSD PIC Comparison for 3-6 factor projections

ite designs, DSDA stands for DSD augmented with axial runs, OACD stands for

orthogonal-array composite design, DSDp stands for Definitive Screening Designs ob-
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tained by Dropping Columns and our new augmented DSD with subset design is

named as DSD+SD (DSDSD). Figure 11 shows DSD+SD PEC can estimate all 3-5

factors main effects with their associated two-level interactions. For 6 factors’ main

effects with its associated two-level interactions, DSD+SD can estimate them when

DSD+SD has more than seven factors. Figure 12 shows in the 3 and 4 factor pro-

jections, DSD+SD is competitive with other designs. For 5 and 6 factor projections,

DSD+SD clearly outperforms DSD and DSDFO. A comparison of augmentation run

sizes will be introduced in the Appendix section.

4.3 Variance Analysis

Fig. 13.: DSDSD Variance Estimation Plots
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Figure 13 shows the variance comparison in the same screening designs. As-

suming independent observations with error σ2, the linear, interaction, and quadratic

estimators would have variances calculated from σ2(X ′X)−1. In our comparison, we

set up σ2 is equal to 1. We can see that the DSD shows a high variance of estimation

for interaction and quadratic terms compared with DSD+SD. DSD+SD has a smaller

variance in quadratic terms compared with others. DSD+SD shows to have the best

cost-performance ratio.

4.4 D-efficiency Comparisons

Fig. 14.: DSDSD D Efficiency Plots

Figure 14 shows the D efficiency comparison. On the top left, DSD+SD has a

high D Efficiency (above 90%) for whole model calculation even as the number of
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factors increases. On the top right, our DSD+SD’s linear term shows an increasing

trend as the number of factors increases. DSCD and OACD show good linear term

efficiency. However, due to their numbers of runs and our focus on the high-order

terms, DSD+SD still shows a reasonable D efficiency. On the bottom left, DSD+SD’s

interaction term is also showing an increasing trend in the plot. The DSD+SD shows

the highest D-efficiency value over all the screening designs for quadratic terms on

the bottom right.

4.5 Sensitivity and Specificity Analysis

We want to assess the performance of the DSD+SD in terms of sensitivity and

specificity rates compared with traditional DSD and some other augmented DSD

strategies like DSDp, DSDA, and DSDFO. We constructed the same simulation study

as in Chapter 3 with all possible combinations of the factors. We calculated the

number of selected active effects over the total number of active effects to perform a

power analysis.

4.5.1 Scenario 1: Unrestricted Models with Active Second-Order Effects

Figure 15, Figure 16, and Figure 17’s top two plots show the sensitivity analysis

results for a total of 10 factors with 2, 4, 6, and 8 active factors in the design and two

different model selection methods. Based on these results, for the linear and interac-

tion terms, all augmented DSDs except the traditional DSDs have a strong power to

identify the active terms. For the quadratic terms, DSD+SD has the most powerful

ability to detect corrected active quadratic terms using forward model selection even

when there are many active terms in the model and shows competitive results to

DSDA when using lasso model selection. And their performance in quadratic terms

is better than other options. Finally, DSD+SD has much better sensitivity than the
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Fig. 15.: DSD+SD Linear Term Sensitivity

traditional DSD. Therefore, these designs also have a better chance of finding the

truly active effects, especially when the number of truly active factors increases.

Figure 18, Figure 19, and Figure 20’s top two graphs are the plots for comparing

the unrestricted models’ specificity. The traditional DSD did well in terms of speci-

ficity. In general, the DSD+SD performed similarly to the DSD. It performed well

because specificity was close to 90% for these designs. All designs perform well with

regard to specificity.
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Fig. 16.: DSD+SD Interaction Term Sensitivity

4.5.2 Scenario 2: Strong Heredity Models with Active Second-Order

Effects

Figure 15, Figure 16, and Figure 17’s bottom two plots show the results when

the models follow strong heredity. There are 10 factors with 2, 4, 6, and 8 active

factors in the design with two different model selection methods. The DSD+SD has

much better sensitivity than the traditional DSD. All augmented DSDs have almost

100% power to detect the main effects. The DSD+SD has clearly higher power than

DSDs to detect the interaction effects, and as the number of factors increases, the

differences get larger. For the quadratic terms, same as scenario 1, DSD+SD has the

most powerful ability to detect corrected active quadratic terms using forward model

selection even when there are many active terms in the model and shows competitive
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Fig. 17.: DSD+SD Quadratic Term Sensitivity

results to DSDA when using lasso model selection. They are both better than other

three designs. So DSD+SD has a higher probability of finding the active effects,

especially when the number of active factors increases.

Figure 18, Figure 19, and Figure 20 ’s bottom two graphs are the plots for

comparing the specificity of the strong heredity models. The traditional DSD did

well in terms of specificity. In general, the DSD+SD performed similarly to the DSD.

Although DSD+SD had lower specificity compared to the DSD in most cases, they

still performed well because specificity was close to 90% for these designs.
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Fig. 18.: DSD+SD Linear Term Specificity
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Fig. 19.: DSD+SD Interaction Term Specificity
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Fig. 20.: DSD+SD Quadratic Term Specificity

4.6 Case Comparison

Two cases represent two different combinations of model heredity (strong and

weak) are used to compare DSDSD with DSD. We checked each model’s three results;

the identified corrected active terms, the incorrectly identified terms (Type I Error),

and not identified terms (Type II Error).

Model I is a strong heredity model,

yi = 2X1 − 1.5X5 + 2X7 − 3X1
2 + 2.5X5

2 − 4X7
2 + 4X1X5 + 3.5X1X7 − 5X5X7 + εi

(4.2)
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and Model II is a weak heredity model,

yi = 2X1 + 2X5 − 1.5X1
2 + 2.5X5

2 − 3.5X1X5 + 4X1X7 − 5X5X7 + εi (4.3)

In Table 14, the DSD+SD in both regression methods can find all the active

terms, including high order terms like quadratic terms. However, DSD+SD also has

incorrectly identified some interaction terms. DSD only identified all the linear terms

and one interaction term. It missed all quadratic terms and other interaction terms

in the forward-step wise regression method. As for the lasso method, DSD missed all

active terms. Results for the weak heredity model are in Table 15, DSD+SD still can

find all the active terms. However, DSD can only identify all the linear terms and

one interaction term; it missed all quadratic terms and other interaction terms in the

forward step-wise regression method. For the lasso method, DSD missed all active

quadratic terms.

Model I

DSD DSDSD

Forward Step-wise Lasso Forward Step-wise Lasso

Identified
X1, X5, X7, X1X5 NA X1, X5, X7, X1X5, X1X7 X1, X5, X7, X1X5, X1X7

X5X7, X
2
1 , X

2
5 , X

2
7 X5X7, X

2
1 , X

2
5 , X

2
7

Type I Errors
X9, X10, X8

2, X4X10, X2X10 X4X10 X4X8, X3X10, X7X10 X3X4, X4X5, X4X8

X6X8, X3X5, X4X5, X7X8 X1X2, X3X4, X10 X4X10, X6X10

Type II Errors
X2

1, X
2
5 , X

2
7 X1, X5, X7, X

2
1 , X

2
5 , X

2
7 NA NA

X1X7, X5X7 X1X5, X1X7, X5X7

Table 14.: DSD+SD Strong Heredity Model Results
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Model II

DSD DSDSD

Forward Step-wise Lasso Forward Step-wise Lasso

Identified
X1, X5, X

2
1 X1, X5, X1X5, X1X7, X5X7 X1, X5, X1X5, X5X7 X1, X5, X1X5, X1X7, X5X7, X

2
1 ,

X1X7, X
2
5 , X

2
1 X2

5

Type I Errors
X4X8, X8X10, X2X9 X1X9, X2X10, X4X6, X4X8 X10, X4X8, X3X10 X1X2, X3X4, X4X5

X7X8, X3X10, X10 X7X10, X3X9, X1X2 X7X10, X8X10

Type II Errors
X2

5, X1X5, X1X7 X2
1, X

2
5 NA NA

X5X7

Table 15.: DSD+SD Weak Heredity Model Results

4.7 Summary and conclusions

The popularity of definitive screening designs (DSD) has risen rapidly. However,

only the linear main effects and perhaps the largest second-order term can be identified

by an initial DSD. When we have many main effects, DSD may cause an under-fit

model. DSD also does not allow for the efficient estimation of the full quadratic

model in any more than three factors. Due to the low accuracy of the DSD for pure

quadratic estimates and the potential bias of second-order estimators, we created a

new augmented design based on another popular subset design. Our new augmented

DSD has better precision for pure quadratic estimates and increases the ability to

estimate more than three factors in a full quadratic model. Through augmented

runs, we increased the design power to identify the active model terms. Therefore,

with the augmented DSD designs, we can efficiently estimate a response surface in

one experiment.

DSD+SD shows improvement in the PEC and PIC criteria compared with other

augmented designs. In the variance estimation, DSD+SD has the smallest variance

on linear, interaction, and quadratic terms in all augmenting designs. It also has a

very competitive sensitivity and specificity ability in the simulation study.
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CHAPTER 5

AUGMENTING DEFINITIVE SCREENING DESIGNS WITH

UNIFORM DESIGNS

5.1 Uniform Designs

When using optimality criteria to select a design, the optimal design is based on

a pre-specified regression model, for example

Y =
m∑
i=1

βifi(x1, . . . , xk) + ε. (5.1)

where x1, . . . , xk are k input factors, fis are known functions, βis are unknown

parameters and ε is the random error. In most cases, the true function we are trying

to estimate is unknown, and we approximate this function with our pre-specified

model. The true unknown function can be represented as :

Y = g(x1, . . . , xk) + ε. (5.2)

We want to estimate the average value E(g(x)) over the experimental domain.

E(g(x)) can be estimated by the mean h̄ = 1
n

∑
x∈p g(x), where p is a set of n exper-

imental points. Thus, we look for an experimental design that can estimate E(g(x))

efficiently. There are several methods of designs, one is called Latin hypercube sam-

pling proposed by McKay and Conover 1979, which provides an efficient estimate of

the overall mean of the response. It has the best performance with respect to the

radial-basis functions (Buhmann 2000). These functions were shown to have better

performance than the polynomial model. Another design is proposed by Fang 1980,

which is called the uniform design. In the uniform design, all the experimental points
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are uniformly scattered on the domain. An example is found in Bursztyn and Stein-

berg 2006. A third design is called the sphere-packing design, also known as the

maxi-min design, which maximizes the minimum distances between pairs of design

points Johnson, Moore, and Ylvisaker 1990. An example of this application can be

found in Chen et al. 2006. Yet another design is the maximum entropy design devel-

oped by Shewry and Wynn 1987. It uses entropy as the optimality criterion. Entropy

is a measure of the amount of information contained in the distribution of a data set.

If the data are assumed to be normally distributed, then the design maximizes the

determinant of the correlation of the design matrix. All four of the designs discussed

above are space-filling experimental designs.

When the experimental domain is continuous, the points in the uniform design

are selected from the center of the cells in a deterministically uniform manner. Sup-

pose there are m factors of interest over a domain Cm. The goal is to choose points

from a set of n points Pn = (x1, . . . , xn) ⊂Cm such that these points are uniformly

scattered on Cm (Fang, Lin, et al. 2000). Let Fn(x) be the empirical distribution

function of Pn, Fn(x) = 1
n

∑n
i=1 Ixi≤x ,where I is the indicator function. Define

Dp(Pn) =
[ ∫

Cm |Fn(x) − F (x)|Pdx
]1/p

, where F (x) is the uniform distribution func-

tion on Cm. It can be re-expressed as follows: D(Pn) = supx⊂Cm |Fn(x)− F (x)|. For

the case where m=1, the uniform design under D is P ∗n = { 1
2n
, 3
2n
, . . . , 2n−1

2n
} with

D = 1
2n

(Fang, Lin, et al. 2000). When m > 1, it is more difficult to find a uniform

design. There are U−type uniform designs, where Un,s = (uij) is an n × s matrix and

each column is a permutation of {1, 2, . . . , n}. More specifically, a U-type design,Un,s,

with rank s whose induced matrix has the smallest discrepancy over Xn,s is called a

U uniform design and can be denoted by Un(ns) (Fang, Lin, et al. 2000).

The final focus of this research is using an augmented DSD with a uniform design

to get better efficiency for the quadratic terms. The uniform design has two proper-
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ties: (1) some significant information can be obtained for exploring the relationships

between the response and the contributing factors, and (2) it performs well even if the

form of the regression model is not known. But unlike the fractional factorial design,

a uniform design is not orthogonal. In reality, we do not know the input function. So,

the uniform design can provide a good spread of design points over the entire design

space, allowing us to explore the relationship between the output and input variables.

The theory behind the uniform design is the theory of numbers and the Quasi-Monte

Carlo method (Fang, Lin, et al. 2000). Suppose that we need to evaluate the integral∫
D

m(X)dX (5.3)

where X is an s-dimension vector, m(X) is a known function, and D is the domain

of integration. Then, when X has a uniform distribution over D, the expected value

of m(X) is

E{m(X)} =

∫
D

m(X)dX
|D|

(5.4)

A numerical method that can be used to evaluate the integral is the Monte Carlo

Method, which generates n points P = {X1, . . . , Xn}1/n that are independently and

identically distributed over D with a uniform design. Then,

h̄ =
1

n

∑
X∈P

m(X) (5.5)

is an estimate of E{m(X)}. The Central Limit Theorem (CLT) shows that the

rate of convergence of the Monte Carlo method is n−1/2. Table 16 shows an example

of a U8(8
4) uniform design with a domain from [-1,1].
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Uniform Design

No. Run U8(8
4)

1 2 3 4

1 0.0923403342 -0.844852364 -0.367414176 -0.367414274

2 0.8213568818 0.1246386386 -0.600651522 -0.600651522

3 -0.08707149 0.8132735427 0.5641017331 -0.813273308

4 -0.613010463 0.3053750085 0.8374501039 0.0670530766

5 0.6232522007 -0.395477565 0.1541016391 -0.093445338

6 0.3956575014 -0.11184812 0.416544874 0.620564738

7 -0.810953035 -0.593616518 -0.104503052 0.8109530347

8 -0.337655646 0.6082597748 -0.822230642 0.3771222913

Table 16.: Uniform Design

5.2 Augmenting DSDs with Uniform Designs

The notation Un(ns) is purposely chosen to mimic that commonly used for or-

thogonal designs Ln(qs), where n is the number of experiments, s is the number of

factors, and q is the number of levels for each factor. The first column of Un(ns) can

always be taken as (1, 2, . . . , n)′. There are n!−1 possible permutation of {1, 2, . . . , n}

for the second column,n!− 2 choices for the third column, and so on. The DSDs aug-

mented with these types of designs will be compared to the traditional DSDs in terms

of efficiency of the quadratic terms. A fully detailed 6 factor design structure appears

in Table 17. To evaluate the DSD + Uniform design, first, the number of runs to

consider must be selected for the uniform design. We know the uniform design can

have a lot of permutation combinations based on the number of factor levels. How-

ever, increasing the number of runs will increase the experimental cost, and we would

prefer to keep the run size low. Table 18 illustrates the designs generated with their
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DSD+Uniform Design

No.Run 6 factor DSDs+U13(136)
1 2 3 4 5 6

1 0 1 1 1 1 1
2 0 -1 -1 -1 -1 -1
3 1 0 -1 1 1 -1
4 -1 0 1 -1 -1 1
5 1 -1 0 -1 1 1
6 -1 1 0 1 -1 -1
7 1 1 -1 0 -1 1
8 -1 -1 1 0 1 -1
9 1 1 1 -1 0 -1
10 -1 -1 -1 1 0 1
11 1 -1 1 1 -1 0
12 -1 1 -1 -1 1 0
13 0 0 0 0 0 0
14 0.8066 -0.7346 -0.2717 -0.3064 0.8662 -0.5991
15 0.3224 -0.2677 0.8219 -0.4000 -0.5462 -0.7717
16 -0.9003 0.8451 0.5805 0.2740 -0.5841 0.0824
17 -0.6604 0.6520 0.3228 -0.6074 0.1921 -0.8587
18 0.5964 0.3941 0.9466 -0.0639 0.4730 0.4309
19 -0.2507 -0.4557 0.6573 -0.5153 0.7830 0.8686
20 0.5411 0.7721 -0.5877 0.7712 0.7436 -0.2519
21 -0.5940 -0.2854 -0.6274 0.3185 0.5372 0.2968
22 -0.7953 0.4359 -0.8349 -0.3742 -0.8926 -0.3488
23 -0.3394 -0.7753 -0.1857 -0.6838 -0.7691 0.1940
24 0.2079 0.6236 -0.7708 -0.8904 -0.2011 0.5095
25 -0.4262 -0.6526 0.8781 0.5747 0.2540 -0.4429
26 0.8196 -0.1939 0.4283 0.4259 -0.8369 0.7371

Table 17.: Six factor DSD+Uniform Design

respective number of runs. For the augmented run size using uniform design, we will

still try two strategies. One is using the same run size candidate points as DSD,

and another is using half the run size of DSD to find the best combination pattern.

Evaluation will use the PEC and PIC criteria. Recall the following: Table 19 provides

a run size comparison for different designs.

In Figure 21 and Figure 22, DSD stands for definitive screening design, DSDFO

stands for DSD augmented with fold-over, CCD stands for central composite design

with the axial points at |α| =1, DSCD stands for DSD augmented with compos-

ite designs, DSDA stands for DSD augmented with axial runs, OACD stands for
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Runs Factors k k k+2 k+4 2k

2 6 8 10 12

3 10 12 14 20

4 15 17 19 30

5 21 23 25 42

Table 18.: Number of Runs Required for 2nd order polynomial model

The number of runs for each design

Design Name Number of Factors

6 7 8 9 10 11 12

OACD 50 82 91 155 155 155 155

DSCD 45 79 81 147 149 151 153

CCD 44 78 80 146 148 150 280

DSDA 26 30 34 38 42 46 50

DSDFO 26 30 34 38 42 46 50

DSDSD 26 30 34 38 42 46 50

DSDp 26 NA 34 NA 42 NA 50

DSDUD 26 30 34 38 42 46 50

DSD 13 15 17 19 21 23 25

Table 19.: Run Size Comparision

orthogonal-array composite design, DSDSD stands for DSD augmented with sub-

set designs, DSDp stands for Definitive Screening Designs obtained by Dropping

Columns, and our new augmented DSD with uniform design is called DSDUD. Figure

21 shows DSDUD PEC can estimate all 3-6 factors main effects with their associated

two-level interactions. This is an excellent performance of DSDUD. However, Figure

22 shows in the 3, 4, 5, and 6 factor projections, the PIC values of DSDUD are not
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Fig. 21.: DSDUD PEC Comparison for 3-6 factor projections

as competitive as DSD+SD. For the augmentation run sizes we choose from uniform

designs, we used the same strategies in section 4. One is the full-size runs match to

the DSD, another is half-size runs of the DSD run sizes. In this chapter examples,

we used full run size n. For the augmentation run sizes comparison, n and n/2 will

be introduced in the Appendix section.
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Fig. 22.: DSDUD PIC Comparison for 3-6 factor projections

5.3 Variance Comparisons

We compared OACD, DSDA, DSCD, DSDFO, DSDSD, DSDp, CCD, and DSDs

with our new augmented DSD with uniform design (DSDUD). Figure 23 shows the

variance of estimation comparison. We can clearly see, in quadratic terms, the DSD

shows a large variance as compared with DSDUD. However, the variance of estimation

is not as low as DSD+SD.
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Fig. 23.: DSDUD Variance Estimation Plots

5.4 D-efficiency Comparisons

Figure 24 shows the D-efficiency comparison. On the top left, DSDUD has

a comparable D-efficiency for the whole model, it is above 70%. However, with

the exception of quadratic effects, D-efficiency values are not competitive with other

augmentation strategies.
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Fig. 24.: DSDUD D Efficiency Plots

5.5 Sensitivity and Specificity Analysis

We want to assess the performance of the DSDUD in terms of sensitivity and

specificity rates compared with traditional DSD and some new other augmented DSDs

such as DSDp, DSDA, DSDFO, and DSDSD. We constructed the same simulation

study with all possible combinations of scenarios as in the previous chapters. We

calculated the ratio of the number of selected active effects over the total number of

active effects to perform a power analysis.
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Fig. 25.: DSDUD Linear Term Sensitivity

5.5.1 Scenario 1 : Unrestricted Models with Active Second-Order Effects

Figure 25, Figure 26, and Figure 27’s top two plots show the power analysis

results for a total of 10 factors with 2, 4, 6, and 8 active factors in the design and

for two different model selection methods. Based on these results, for the linear and

interaction terms, with the exception of the traditional DSDs, all other augmented

DSDs have a strong power ability to identify the active term. For the quadratic terms,

DSDUD has the 3rd highest (very close to DSDFO) power ability to detect corrected

active quadratic terms, it outperforms than DSDp and DSD. Finally, DSDUD has

much better sensitivity than the traditional DSD. Therefore, these designs also have

a better chance of finding the truly active effects, especially when the number of truly

active factors is increasing. Figure 28, Figure 29, and Figure 30’s top two graphs are
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Fig. 26.: DSDUD Interaction Term Sensitivity

the plots for comparing specificity of the unrestricted models. The traditional DSD

did well in terms of specificity. In general, the DSDUD performed similarly to the

DSD. It performed well because specificity was close to 90% for these designs.

5.5.2 Scenario 2 : Strong Heredity Models with Active Second-Order

Effects

Figure 25, Figure 26, and Figure 27’s bottoms two plots show the results when

the models are following strong heredity. There are 10 factors with 2, 4, 6, and 8

active factors in the design with two different model selection methods. The DSDUD

has much better sensitivity than the traditional DSD. They perform competitively

with other augmentation strategies to detect the main effects. The DSDUD has more
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Fig. 27.: DSDUD Quadratic Term Sensitivity

power than DSD and DSDA to detect the interaction effects, and as the number of

factors increases, the percentage differences gets larger. DSDUD had a competitive

performance on quadratic effects, it is slight better than DSDp and DSDFO, and

much better than DSD. So DSDUD has a higher probability of finding the active

effects, especially when the number of active factors is increasing.

Figure 28, Figure 29, and Figure 30 ’s bottom two graphs are the plots for

comparing specificity of the strong heredity models. The traditional DSD did well

in terms of specificity. In general, the DSDUD performed similarly to the DSD.

Although DSDUD had lower specificity when compared to the DSD in most cases,

they still performed well because specificity was close to 90% for these designs.
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Fig. 28.: DSDUD Linear Term Specificity
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Fig. 29.: DSDUD Interaction Term Specificity
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Fig. 30.: DSDUD Quadratic Term Specificity
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5.6 Case Comparison

Two cases were used to compare DSDUD with DSD, representing two different

combinations of model heredity (strong and weak). We checked three results for

each model: the identified correctly active terms, incorrectly identified terms (Type

I Error), and not identified terms (Type II Error).

Model I is a strong heredity model:

yi = 2X1 − 1.5X5 + 2X7 − 3X1
2 + 2.5X5

2 − 4X7
2 + 4X1X5 + 3.5X1X7 − 5X5X7 + εi

(5.6)

In Table 20, when the USDUD is using the forward step-wise method, it can

exactly find the active terms and high order terms. When using the lasso method,

DSDUD did not identify X2
5 . Comparing to DSD, DSDUD finds more active terms

than DSD. DSDUD and DSDs both have some incorrectly identified interaction

terms. DSD only identified all the linear terms and one interaction term. It missed

all quadratic terms and other interaction terms in the forward step-wise regression

method. For the lasso method, DSD missed all active terms.

Model II is a weak heredity model:

yi = 2X1 + 2X5 − 1.5X1
2 + 2.5X5

2 − 3.5X1X5 + 4X1X7 − 5X5X7 + εi (5.7)

With results presented in Table 21. DSDUD still can exactly find all the active

terms, while DSD also can only identify all the linear terms and one interaction term.

It missed all quadratic terms and other interaction terms in the forward step-wise

regression method. Using the lasso method, DSD missed all active quadratic terms.
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Model I

DSD DSDUD

Forward Step-wise Lasso Forward Step-wise Lasso

Identified
X1, X5, X7, X1X5 NA X1, X5, X7, X1X5, X1X7 X1, X5, X7, X1X5, X1X7

X5X7, X
2
1 , X

2
5 , X

2
7 X5X7, X

2
1 , X

2
7

Type I Errors
X9, X10, X8

2, X4X10, X2X10 X4X10 X9, X10, X1X2, X1X8, X1X9 X2X3, X2X6, X3X7X6X7

X6X8, X3X5, X4X5, X7X8 X2X6, X3X7, X3X8, X7X9 X6X10, X7X8, X7X9, X
2
10

Type II Errors
X2

1, X
2
5 , X

2
7 X1, X5, X7, X

2
1 , X

2
5 , X

2
7 NA X2

5

X1X7, X5X7 X1X5, X1X7, X5X7

Table 20.: DSDUD Strong Heredity Model Results

Model II

DSD DSDUD

Forward Step-wise Lasso Forward Step-wise Lasso

Identified
X1, X5, X

2
1 X1, X5, X1X5, X1X7, X5X7 X1, X5, X1X5, X5X7 X1, X5, X1X5, X1X7, X5X7, X

2
1

X1X7, X
2
1 , X

2
5 X2

5

Type I Errors
X4X8, X8X10, X2X9 X1X9, X2X10, X4X6, X4X8 X9, X4X10 X10, X3X4, X6X10

X7X8, X3X10, X10 X2
3 X7X8, X

2
3

Type II Errors
X2

5, X1X5, X1X7 X2
1, X

2
5 NA NA

X5X7

Table 21.: DSDUD Weak Heredity Model Results

5.7 Summary and conclusions

Even though we improved the precision to identify quadratic terms, the proce-

dures are still misleading in identifying the interaction terms. But for our design goal,

we need to find all the right active terms in our design model, so we will not miss

important information for the analysis step. Our new augmented DSD can achieve

this goal. DSD can be used to identify the main effects and some second-order terms.

When we have many main effects, DSD may cause an under-fit model. DSD also

cannot allow for the efficient estimation of the full quadratic model in any more than

three factors. Our augmented DSD has better precision for pure quadratic estimates,

and increases the ability to estimate more than three factors in a full quadratic model.

Therefore, with the augmented DSD designs, we can efficiently estimate a response
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surface in one experiment. While DSDUD does well with respect to the estimation

of 2nd-order models, they did not outperform other augmentation strategies with

respect to information and variance measure.
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CHAPTER 6

SUMMARY

6.1 Summary of Research

For a second order polynomial model, a design must have enough degrees of

freedom to estimate all effects. For example, if we have k factors, then we will need

(k+1)(k+2)
2

design runs. Jones and Nachtsheim 2011 proposed the three-level DSD

for screening the continuous factors in the presence of active second order effects.

Dougherty et al. 2015, however, showed the DSD lacked the power to separate active

second order effects when both two factor interactions and pure quadratic effects are

active. For k ≥ 6, the DSD can only project down to a full quadratic model in

any three factors. We introduced three ways to augment the DSD, which increase

the detection performance of active second-order effects. Our approach took the run

efficient DSD as a baseline, and our augmented designs can improve effect estimablity.

So far, DSDFO, DSDSD, and DSDUD all show much better projection capacity than

DSD. They also show that augmenting DSDs is better than the standard DSDs with

regard to identifying active effects, especially pure-quadratic effects, and have better

power to identify active model terms. Therefore, with the augmented DSD designs, we

can efficiently estimate a response surface in one experiment. If the primary interest

focuses on quadratic terms, DSD+SD is preferred over other augmentation DSD.

6.2 Recommendations for Future Research

This research focused on better estimation efficiency of existing second-order

models and quadratic effects. It is important to review alternative methodologies of
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analysis to see if performance can be attributed to the design structure or analytical

methodologies for the identification of active results. DSDFO and DSDSD both can

fit more second order models in more than three factors; meanwhile, they have better

estimation efficiency in quadratic effects and better power to identify active model

terms with a good cost-performance ratio. While DSDUD also increased the ability

to fit more second order models in more than three factors and did a better estimation

efficiency in quadratic effects, it poorly estimated the linear and interaction terms.

That will decrease the whole model efficiency. It would be interesting to try some

different run size from uniform design to check the effect. For the DSDUD, we can

try some different run sizes from uniform design. For the DSDSD, we can combine

with runs from other orbits(Sr).
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Appendix A

ABBREVIATIONS

DSDFO Augmented Definitive Screening Design with fold over and column permutation

BBD Box-Behnken Design

CCD Central Composite Design

SCD Small Composite Designs

VCU Virginia Commonwealth University

DSDs Definitive Screening Designs

DOE Design of Experiments

DSDA DSD with axial runs

DSCD DSD with a two-level orthogonal array composite design

DSDp Definitive Screening Designs Obtained by Dropping Columns

RSD Response Surface Design

PIC Projection Information Capacity

PEC Projection estimation capacity

OACDs Orthogonal-array composite designs

DSDSD Definitive Screening Designs with Subset designs

DSDUD Definitive Screening Designs with Uniform Design
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Appendix B

APPENDIX

B.0.1 DSD+SD n and n/2 Augmentation Discussion

Figure 31 showed a PIC value comparison between full-size augmented run and

half-size augmented run. Full size means the same number of run sizes as the DSDs

structured used. Half-size is half of it. From Figure 31, when the designer tries to

project on less than or equal to four factors, we can consider using a half-size run

for augmenting. It did not show an enormous difference when using full size. Each

experiment run in the real world problem will be expensive; a half-size augmented run

can have better budget control and more economical. Table 22 and Table 23 show

a consistent result like the PIC plot. For each k factors in the design, augmented

half-size runs can estimate almost all the k − 2 main effects with their associated

two-level interactions. When the design factor is getting larger, it can estimate six

main effects with their associated two-level interactions.

Fig. 31.: DSD+SD PIC run size Comparison
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B.0.2 DSD+SD Supplement Tables

PEC(Projection Estimation Capacity)

Factor Projection Estimation Capacity

P3 P4 P5 P6 P7 P8

k=6 20/20 15/15 6/6 0/1 NA NA

k=7 35/35 35/35 21/21 7/7 0/1 NA

k=8 56/56 70/70 56/56 28/28 0/8 0/1

k=9 84/84 126/126 126/126 84/84 36/36 0/9

k=10 120/120 210/210 252/252 210/210 120/120 0/45

k=11 165/165 330/330 462/462 462/462 330/330 0/165

k=12 220/220 495/495 792/792 924/924 792/792 495/495

Table 22.: DSD+SD Full Size Run Augmented PEC

PEC(Projection Estimation Capacity)

Factor Projection Estimation Capacity

P3 P4 P5 P6 P7 P8

k=6 20/20 15/15 0/6 0/1 NA NA

k=7 35/35 35/35 21/21 0/7 0/1 NA

k=8 56/56 70/70 56/56 0/28 0/8 0/1

k=9 84/84 125/126 121/126 0/84 36/36 0/9

k=10 120/120 209/210 246/252 149/210 0/120 0/45

k=11 165/165 330/330 462/462 458/462 0/330 0/165

k=12 220/220 495/495 792/792 923/924 0/792 0/495

Table 23.: DSD+SD Half Size Run Augmented PEC
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B.0.3 DSDUD n and n/2 Augmentation Discussion

Figure 32 showed a PIC value comparison between full-size augmented run and

half-size augmented run. Full size means the same number of run sizes as the DSDs

structured used. Half-size is half of it. From Figure 32, when the designer tries to

project on less than or equal to five factors, we can consider using a half-size run for

augmenting. It did not show an enormous difference when using full size, even it is

better when projecting on three factors. Table 24 and Table 25 show a consistent

result like the PIC plot. For each k factors in the design, augmented half-size runs

can estimate almost all the 6 main effects with their associated two-level interactions

when having 12 factors in the model.

Fig. 32.: DSDUD PIC run size Comparison

B.0.4 DSDUD Supplement Tables
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PEC(Projection Estimation Capacity)

Factor Projection Estimation Capacity

P3 P4 P5 P6 P7 P8

k=6 20/20 15/15 6/6 0/1 NA NA

k=7 35/35 35/35 21/21 7/7 0/7 NA

k=8 56/56 70/70 56/56 28/28 0/8 0/1

k=9 84/84 126/126 126/126 84/84 36/36 0/9

k=10 120/120 210/210 252/252 210/210 120/120 0/45

k=11 165/165 330/330 462/462 462/462 330/330 0/165

k=12 220/220 495/495 792/792 924/924 792/792 495/495

Table 24.: DSDUD Full Size Run Augmented PEC

PEC(Projection Estimation Capacity)

Factor Projection Estimation Capacity

P3 P4 P5 P6 P7 P8

k=6 20/20 15/15 0/6 0/1 NA NA

k=7 35/35 35/35 21/21 0/7 0/1 NA

k=8 56/56 70/70 56/56 0/28 0/8 0/1

k=9 84/84 126/126 126/126 0/84 0/36 0/9

k=10 120/120 210/210 252/252 210/210 0/120 0/45

k=11 165/165 330/330 462/462 462/462 0/330 0/165

k=12 220/220 495/495 792/792 924/924 0/792 0/495

Table 25.: DSDUD Half Size Run Augmented PEC

B.0.5 All Augmented Definitive Screening Designs Sensitivity and Speci-

ficity Analysis

88



Fig. 33.: All augmented DSDs Full Model Sensitivity
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Fig. 34.: All augmented DSDs Full Model Specificity
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B.0.6 All Augmented Definitive Screening Designs Comparison Supple-

ment Table

DSD+SD can have consistent results for Type II error than other augmented

DSDs.

Model I
Design Model Selection Identified Type I Error Type II Error

DSDUD Forward X1, X5, X7, X1X5, X1X7 X9, X10, X1X2, X1X8, X1X9 NA

X5X7, X
2
1 , X

2
5 , X

2
7 X2X6, X3X7, X3X8, X7X9

Lasso X1, X5, X7, X1X5, X1X7 X2X3, X2X6, X3X7, X6X7 X2
5

X5X7, X
2
1 , X

2
7 X6X10, X7X8, X7X9, X

2
10

DSDA Forward X1, X5, X7, X
2
1 X4X10, X3X10, X4X6, X4X5 X1X5, X1X7

X2
5, X

2
7 X5X10, X7X9, X1X10, X9, X10 X5X7

Lasso X1, X5, X
2
1 , X

2
5 X9, X10, X2X10, X4X6 NA

X1X5, X1X7, X5X7 X4X8, X5X7, X7X9
DSDp Forward X1, X5, X7, X1X5, X1X7 X3, X9, X6X9, NA

X5X7, X
2
1 , X

2
5 , X

2
7 X8X9, X

2
9

Lasso X1, X5, X7, X1X5 X2X6, X2X7, X3X7 X2
5

X1X7, X5X7, X
2
1 , X

2
7 X4X10, X5X8

DSDFO Forward X1, X5, X7, X1X5 X2X5, X2X10, X4X7 X2
1, X

2
5

X1X7, X5X7, X
2
7 X5X6, X7X10, X

2
10

Lasso X1, X5, X7, X1X5, X1X7 X2X4, X2X8, X2X9, X2X10 NA

X5X7, X
2
1 , X

2
5 , X

2
7 X4X10, X6X8, X

2
3 , X

2
9

DSDSD Forward X1, X5, X7, X1X5, X1X7 X4X8, X3X10, X7X10 NA

X5X7, X
2
1 , X

2
5 , X

2
7 X1X2, X3X4, X10

Lasso X1, X5, X7, X1X5, X1X7 X3X4, X4X5, X4X8 NA

X5X7, X
2
1 , X

2
5 , X

2
7 X4X10, X6X10

Table 26.: All augmented DSDs Strong Heredity Model Results

Model II
Design Model Selection Identified Type I Error Type II Error

DSDUD Forward X1, X5, X1X5, X5X7 X9, X4X10 NA

X1X7, X
2
1 , X

2
5 X2

3
Lasso X1, X5, X1X5, X1X7 X10, X3X4, X6X10 NA

X5X7, X
2
1 , X

2
5 X7X8, X

2
3

DSDA Forward X1, X5, X
2
1 X4X8, X8X10, X2X9, X7X8 X1X7, X1X5

X2
5, X5X7 X3X10, X3X7, X9, X10

Lasso X1, X5, X
2
1 , X

2
5 X9, X10, X2X10, X4X6 NA

X5X7, X1X5, X1X7 X4X8, X5X7, X7X9

DSDp Forward X1, X5, X
2
1 , X

2
5 X2

9, X9, X3 NA
X5X7, X1X7, X1X5 X8X9, X6X9

Lasso X1, X5, X1X5 X8X9 X2
1

X1X7, X5X7, X
2
5

DSDFO Forward X1, X5, X1X5, X5X7 X7, X9, X2X9 NA

X1X7, X
2
1 , X

2
5 X5X8

Lasso X1, X5, X1X5, X1X7 X1X6, X2X10, X3X7 X2
1

X5X7, X
2
5 X7X10, X

2
10

DSDSD Forward X1, X5, X1X5, X5X7 X10, X4X8, X3X10 NA

X1X7, X
2
5 , X

2
1 X7X10, X3X9, X1X2

Lasso X1, X5, X1X5, X1X7 X1X2, X3X4, X4X5 NA

X5X7, X
2
1 , X

2
5 X7X10, X8X10

Table 27.: All augmented DSDs Weak Heredity Model Results
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