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Unstable aortic aneurysms and dissections are serious cardiovascular conditions associated 

with high mortality. The current gold standards for assessment of stability, however, rely on simple 

geometric measurements, like cross-sectional area or increased diameter between follow-up scans, 

and fail to incorporate information about underlying aortic mechanics. Displacement encoding 

with stimulated echoes (DENSE) magnetic resonance imaging (MRI) has been used previously to 

determine heterogeneous circumferential strain patterns in the aortas of healthy volunteers. Here, 

I introduce technical improvements to DENSE aortic analysis and early pilot application in patients 

at higher risk for the development of aortopathies. Modifications to the DENSE aortic 

postprocessing method involving the separate spatial smoothing of the inner and outer layers of 
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the aortic wall allowed for the preservation of radial and shear strains without impacting 

circumferential strain calculations. The implementation of a semiautomatic segmentation approach 

utilizing the intrinsic kinematic information provided by DENSE MRI reduced lengthy post-

processing times while generating circumferential strain distributions with good agreement to a 

manually generated benchmark. Finally, a new analysis pipeline for the combined use and spatial 

correlation of 4D phase-contrast MRI alongside DENSE MRI to quantify both regional fluid and 

solid mechanics in the descending aorta is explored in a limited pilot study.
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1 Introduction 

 The burden of cardiovascular disease (CVD) in the United States is substantial and 

growing, with over 40% of Americans estimated to have some form of CVD in 2015 with 

projections of that number growing to 132 million people, or over 45% of the population by 2035 

[1]. In addition to the detrimental impacts on individual health, CVD was estimated to have a total 

economic cost of $555 billion in 2015, a number projected to more than double by 2035 [1]. Some 

of the most prevalent forms of CVD or CVD risk factors, including hypertension and 

hyperlipidemia, are also risk factors for developing more severe pathologies [2]. With an incidence 

of 3.5-15.0 per 100,000 patients each year, aortic aneurysm or dissection is associated with 

particularly high mortality in patients who develop these vascular pathologies, with mortality rates 

of up to 17-27% for acute dissection depending on aorta location and availability of intervention 

[3]. However, even among patients that do receive timely medical intervention for these 

conditions, perioperative mortality rates of open vascular surgery and endovascular aortic repair 

(EVAR) demonstrate the importance of accurately assessing the stability of the vessel wall before 

electing to perform surgery [4]. The current gold standard for rupture risk assessment is based on 

aortic cross-sectional size alone and does not adequately differentiate between risk of rupture and 

baseline surgery risk except in larger aneurysms, necessitating the development of new methods 

for quantifying patient-specific vascular risk [5, 6]. 

Over the past several decades, imaging methods for noninvasive assessment of 

cardiovascular structure and function have become the essential clinical tools for diagnosis and 

treatment of patients with CVD. Beginning with the first clinical applications of ultrasound 

echocardiography in the 1950s to assess mitral stenosis and followed by developments in the 1970s 
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and 1980s of computed tomography (CT) imaging and magnetic resonance imaging (MRI) to 

assess cardiac morphology and myocardial tissue characterization, these imaging techniques have 

radically changed how CVD and aortopathies in particular are diagnosed and treated clinically [7, 

8, 9]. More recently, developments within these imaging modalities to better assess the function 

of the tissue or organ in addition to the morphology have become the gold standard for diagnosis 

of cardiovascular disease. Continued improvements to these imaging techniques will benefit the 

diagnostics, treatment planning, and follow-up assessment of medical and surgical interventions 

in patients with CVD to reduce the mortality for patients living with chronic disease or at risk of 

developing acute conditions, including aneurysms and dissections.  

Echocardiography has long been the standard of care for diagnosing CVD from any of 

several relevant clinical indicators including left ventricular ejection fraction, cardiac hypertrophy, 

and valvular morphological defects [10]. Doppler ultrasound takes this one step further, allowing 

for the determination of abnormal blood flow patterns in the heart and vessels to diagnose a range 

of conditions including valvular regurgitation, atherosclerosis, and thrombosis [11]. These 

findings are clinically correlated with disease progression or general outcomes but fail to describe 

specific changes within the myocardial and vascular tissues that may contribute to disease 

progression. For example, assessing the deformation of the left ventricle in patients with heart 

failure has been shown to better predict mortality in patients compared to measuring ejection 

fraction alone [12]. It is likely that in other disease states, such as in cases of assessing aortic 

aneurysm stability, the quantification of the mechanics of the vascular tissues would advance the 

understanding of a patient’s underlying pathophysiology and risk of adverse outcome. To fully 

understand the progression of cardiovascular disease, it is therefore necessary to accurately 
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quantify the mechanical forces being applied to or by the tissues in situ to determine how 

mechanical behavior changes with the development and progression of disease. 

 

1.1 Cardiovascular Biomechanics  

 Biomechanics, or the application of classical mechanics to solve biological problems, is 

fundamentally concerned with quantifying the mechanical environments of living tissues to 

understand their structure and function [13]. Mechanobiology describes how cells and tissues 

change their behavior, such as through signaling, transcription modification, or protein 

translational modification in response to physical forces and changes to the mechanical 

environment [14]. There is a constant dynamic relationship between how cells and tissues 

experience physical stimulation and in turn modify how they interact with their external 

environment due to these physical cues. In the aorta, for example, the elasticity of the vessel serves 

to convert pulsatile flow from the left ventricle into steady flow as blood moves through the 

vasculature [15]. Disruptions to normal fluid mechanics such as elevated blood pressure results in 

elevated stress which can damage vascular tissues, resulting in loss of normal aortic remodeling 

leading to accelerated arterial stiffening [16]. A better quantification of the mechanics of 

cardiovascular disease in an individual can lead to improved diagnosis and prognosis, and to better 

guide the interventions for that individual patient.  

To adequately frame a biomechanics problem, it is necessary to determine the morphology 

or geometry of the material or tissue, the mechanical properties of the material, the basic governing 

laws of the system, and the environment surrounding the material to determine acceptable 

boundary conditions [13]. While tissue and organ morphology in patients can be assessed using 
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imaging, ascertaining the precise mechanical properties of the tissue in the native environment is 

generally not possible.  

One way to get around this limitation is through studying the deformation of a tissue 

instead. Various imaging techniques introduced in the next section can be used to directly measure 

tissue deformation, that can in turn be used to calculate mechanical strain in that tissue. One-

dimensional strain is defined by equation 1.1,  

𝜀 =  
𝐿−𝐿0

𝐿0
 (1.1) 

where strain (ε) is equal to the change in length with respect to the original reference length 

between two points. Hooke’s law states that  

𝜎 = 𝐸 ∗ 𝜀 (1.2) 

where σ is stress, E is the stiffness of the material, and ε is the strain, demonstrating the direct 

relationship between measured deformation and material stress for a perfectly elastic body. The 

strain relationship shown in equation 1.1 is expandable to 2D and 3D as well.  

However, most biological tissues including the wall of a blood vessel exhibit nonlinear 

stress-strain relationships for the magnitudes of strain found in situ and are better described by 

exponential equations, such as the unified stress-strain equation for uniaxial stretch introduced by 

Fung et al. [17], 

 𝑇 =  𝛽[𝑒𝛼(𝜆−1) − 1 − 𝛼(𝜆 − 1)] + 𝐸(𝜆 − 1) (1.3) 

where T is stress, λ is the stretch ratio at zero-stress state, E is the stiffness, and α and β are 

experimentally derived constants. While not the emphasis of this work, obtaining the strain 

behavior of the aorta wall in situ can be applied to inverse mechanics problems [18], or related to 

directly to stress by equation 1.3 with the inclusion of constants specific to the tissue.  
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As outlined in Humphrey and O’Rourke [19], the Green strain is a measure of deformation 

that is unaffected by rigid-body motion, which is beneficial for looking at strains in tissues that are 

also undergoing bulk motion such as the heart translating through 3D space during contraction. 

The Green strain can be calculated for 2D using equation 1.4,  

 𝑬 =
1

2
(𝑭𝑇 ⋅ 𝑭 − 𝑰) (1.4) 

where I is the 2x2 identity matrix, and F is the deformation gradient matrix shown in equation 1.5. 

 𝑭 =  [

𝜕𝑥

𝜕𝑋

𝜕𝑥

𝜕𝑌
𝜕𝑦

𝜕𝑋

𝜕𝑦

𝜕𝑌

]  (1.5) 

 For finding the relevant 2D strains for a cross-section of a cylindrical body, this 2D xy-

coordinate system can be converted to radial circumferential coordinates using rotation matrices 

as demonstrated in Wilson et al. [20] to yield circumferential, radial, and radial-circumferential 

shear strain as shown in Figure 1.1. Therefore, the strain can be computed directly from the 

deformation measured in vivo using a variety of imaging methods outlined in the next section.  

 

 

Figure 1.1: Diagram showing relative movement of inner (red) and outer (blue) layers of a hollow 

cylinder cross-section, demonstrating circumferential strain (left), radial strain (middle), and 

radial-circumferential shear strain (right).  
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1.2 Cardiovascular Strain Imaging  

Clinically, ultrasound and magnetic resonance imaging are most often used to evaluate 

tissue strain in the heart, and some of these methods have been modified to measure strain in large 

vessels as well. The two most common ultrasound methods for characterization of tissue strain 

include echocardiographic strain and strain-rate imaging derived from Doppler ultrasound images 

and strain imaging from 2D speckle-tracking techniques [21]. Tissue Doppler imaging (TDI) 

involves sampling velocity measurements in a 2D slice to yield a spatial velocity gradient, where 

strain rate between two points can be approximated as, 

 𝑆𝑅 ≈
𝑉2−𝑉1

𝑑
∗ 𝑐𝑜𝑠𝜃, (1.6) 

where V1 and V2 are the velocities measured at two points, d is the distance between the two points, 

and 𝜃 is the angle between the ultrasound beam and the direction of tissue movement [22]. These 

strain rates can then be used to calculate strain between those points by integrating over the 

sampling period [21]. There are some drawbacks of this method for calculating tissue strain, 

however. In addition to the high interobserver variability arising from the effect of transducer 

alignment to tissue displacement, the velocities used in this calculation are 1D measurements in 

the direction of ultrasound wave propagation, and therefore do not perform well when describing 

complex deformations in multiple dimensions such as those that occur in the myocardium or the 

aortic arch [22]. 

 An alternative ultrasound technique for measuring tissue strain in 2D is non-Doppler 

speckle-tracking ultrasound. Speckles are natural acoustic markers that occur in the ultrasound 

window in two dimensions and are distributed throughout a given tissue [21, 23]. These speckles 

can be tracked between frames over time, giving a displacement in two dimensions of each 

individual speckle that remains in the plane through subsequent timepoints. The velocity field is 
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then calculated based upon these frame-by-frame displacements and the framerate, thereby 

allowing for the generation of a velocity field in 2D for determination of strain rate and strain as 

previously discussed [23].  

Advantages of this method over Doppler ultrasound include lower intraobserver variability 

and lower noise sensitivity, as well as the ability to resolve velocity components in the longitudinal 

and transverse directions simultaneously, allowing quantification of more complex multi-

dimensional strains such as those that occur in the myocardium [23, 24]. However, a drawback of 

this speckle-tracking method is the possibility for a given tracked speckle to move out of the 2D 

ultrasound imaging plane during data collection. To correct for this, most commercial software 

relies on assumptions that the neighboring speckles have the same velocities as those disappearing 

from the plane, but this can lead to discrepancies if there is a high heterogeneity in strain in a 

specific region [23]. Doppler and speckle-tracking ultrasound allow for direct mechanical 

measurements in addition to quantifying morphological features, but lower anatomical resolution 

and limitations resolving strains in tissues with complex movements make it difficult to accurately 

quantify small strain heterogeneities in cardiovascular tissue.  

Cine MRI is an alternative imaging modality that can generate spatial and temporal 

information from cardiovascular tissues with high resolution in large imaging windows, yielding 

accurate strain assessments in a specific structure via tracking or directly measuring tissue 

displacements while retaining the ability to assess contribution of surrounding anatomy on those 

mechanics. In cardiovascular MRI, several approaches have been explored for determining global 

and local strains in the left ventricle, with some limited applications in smaller anatomic structures 

such as the right ventricle and aorta. Myocardial feature tracking is one commonly available 

commercial method that allows for the determination of global and regional strains from the 
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motion of distinct visual features, such as border contours between the myocardium and ventricular 

cavity [25, 26]. The displacements of these specific features are tracked over time and combined 

to generate myocardial tissue strains in the imaging plane [25]. While this method performs well 

against the clinical gold stand of speckle tracking echocardiography for quantification of global 

longitudinal and circumferential strains, the dependence on tissue boundary tracking results in 

unreliable local strain values that prevent the resolution of small focal heterogeneities that may 

precede larger global changes in disease development [27]. Other disadvantages of MRI feature 

tracking include sensitivity to through-plane motion resulting in dropping of tracked features from 

the image plane, and an inability to resolve displacements smaller than the size of the pixels used 

in the images [28]. 

Magnetization tagging, or grid tagging, is a method that allows for the measurement of 

strain throughout a structure of interest by measuring the displacement of a regularly spaced grid 

pattern overlayed onto the image, as opposed to feature tracking methods that rely on tissue 

boundaries alone [29, 28]. Radiofrequency pulses are applied perpendicular to the imaging plane, 

repeating regularly in two spatial directions to create a grid pattern of low signal in the imaging 

plane prior to the image acquisition period [30]. The displacement of these grid patterns is tracked 

over time and used to calculate strain for all grid segments overlaying a structure, such as the left 

ventricular wall [30]. Myocardial tagging has become a commonly accepted reference standard 

for MR strain quantification due to this advantage [31], but limitations on the minimum spacing 

of tagging lines while maintaining sufficient image signal prevents the imaging of thinner walled 

structures such as the right ventricle or aorta [30, 32].  

 Strain-encoded (SENC) MRI is another tagging-based method for measuring tissue strain 

but differs from grid tagging in the direction of motion measured by the technique. Rather than 
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applying grids in orthogonal directions to the imaging plane, SENC applies tags in a series of 

planes parallel to the imaging plane [33]. As a tissue moves in the through-plane direction, the 

tagged planes compress together or spread apart, causing a shift in the peak spectrum location in 

k-space which can be used to measure regional strain in the through-plane direction [33]. SENC 

shows good agreement with myocardial tagging methods for measuring left ventricular strain with 

low interobserver variability, but the ability to only measure through plane motion limits the 

technique to single dimension strain measurements for each acquisition [34]. This limitation also 

complicates image positioning for scans of thinner tissues or in tissues with a high curvature in the 

through-plane direction, such as measuring circumferential strain in the aorta. In general, standard 

myocardial ultrasound strain imaging methods and tracking-based (via physical features or tags) 

MR imaging sequences are insufficient to measure strain heterogeneities in thin structures like the 

aortic wall.  

 An alternative approach to strain imaging with MR is to directly measure the kinematics 

of tissues on a voxel-wise level rather than using indirect measurements of feature or grid 

displacements. Phase-contrast (PC) MRI  measures voxel-wise velocities to calculate strain 

profiles, with similar advantages to Doppler ultrasound but with the added ability to measure this 

displacement in multiple directions simultaneously.  In addition to uses in measuring blood flow 

velocities, PC-MRI has been used to measure the velocity of the myocardial tissue during 

contraction in three dimensions, allowing for the determination of motion heterogeneities between 

discrete circumferential regions the ventricular wall [35, 36].  

PC-MRI has also been expanded to imaging of the aortic wall, where fields of velocity 

vectors from the PC-MRI sequence were segmented into circumferential sectors overlaying the 

aortic wall, and sector velocity vectors were assigned as the average of all enclosed velocity values 
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for that given sector [37]. The sector starting positions were determined and velocities were 

measured over time  to determine the stepwise displacement of the center of each sector using a 

forward-backward time integration approach throughout the image acquisition period. Validation 

in phantom and in-vivo porcine thoracic aortic models of PC-MRI displacement calculations 

against embedded imaging marker motion in the vessel wall have shown good agreement [37, 38]. 

However, lengthy scan times for PC-MRI can introduce errors due to temporal variations in tissue 

physiology and any errors in velocity measurements are propagated through the integration of 

pixel-wise velocity measurements, especially in the presence of through-plane motion which 

notably occurs in the aortic arch from the contractile pull of the myocardium [29, 39].  

 Displacement encoding with stimulated echoes (DENSE) MRI is a sequence developed for 

functional cardiac measurements of strain through direct tracking of tissue displacement from 

phase data. As outlined by Aletras [40], encoding phase proportional to tissue displacement is done 

through a series of radiofrequency and paired magnetic gradient pulses that induce phase 

dispersion in the selected direction for a slice. The second of the paired directional magnetization 

gradients subsequently undoes previously induced phase dispersion for all stationary spins but 

does not fully zero the phase for any spins that had displaced between the time of the two gradients. 

The remaining phase from voxels representing moving tissue is captured during image acquisition 

and related to displacement with equation 1.7, 

 𝜑 =  𝛾𝐻 ∗ 𝐺𝑥 ∗ 𝑡𝑒𝑛𝑐 ∗ Δ𝑥  (1.7) 

where φ is the accumulated phase captured during image acquisition, 𝛾𝐻 is the gyromagnetic ratio 

for hydrogen, Gx is the amplitude of the matched gradient pulses in the x-direction, tenc is the 

encoding time duration, and Δx is the displacement in the x-direction, though this process is the 

same for all three principal dimensions. The imaging sequence is again repeated using different 
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amplitude gradient pulses to remove phase contributions common to both timepoints, and the 

differences in phase between the two acquired images is used to calculate the tissue displacement 

using equation 1.8, 

 Δ𝜑 =  𝛾𝐻 ∗ (𝐺𝑥 − 𝐺𝑥
∗) ∗ 𝑡𝑒𝑛𝑐 ∗ Δ𝑥  (1.8) 

where 𝐺𝑥
∗ is the amplitude of the second image gradient pulse pair. 

 The primary advantage of DENSE is that it directly encodes the displacement into the 

image, rather than through processing velocity information like PC-MRI. This avoids the problem 

of error propagation when integrating those velocities. Also, by using information directly encoded 

in the image signal to determine displacement rather than only spatial voxel information like 

feature tracking, it is possible to resolve partial voxel displacements and therefore more accurate 

strains with higher spatial resolution throughout the bulk of a tissue compared to feature tracking 

or grid-tagging [41, 42]. In addition to spatial resolution advantages over feature tracking and 

magnetization tagging, DENSE also has a high level of reproducibility in both phantom trials and 

human subject studies for global and regional measurements of strain in the left ventricle [43, 44].  

 While successfully used in myocardial strain imaging, the application of DENSE to 

measuring aortic wall strain has only been explored more recently. It has been shown that even in 

the aortic wall that measures a few millimeters thick, DENSE can resolve circumferential strain 

heterogeneities on a regional basis [20]. In a healthy patient population, DENSE also showed the 

ability to discern normal aortic mechanics at different axial aorta locations and how these normal 

distributions differed with patient demographics [45]. Some limitations of DENSE for aortic 

imaging include long scan times, low signal to noise ratio, and a reliance on time-intensive manual 

segmentation that limits both intraobserver and interobserver repeatability for aortic cross-

sectional strain maps.  
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 In this body of work, I will be detailing my recent efforts to improve the use of DENSE 

MRI in analyzing aortic mechanics. The next section of this paper details improvements in post-

processing to preserve previously neglected radial and shear strain components to quantify the full 

2D strain tensor for aortic cross-sections. Additionally, I will be introducing a semi-automatic 

approach to segmenting the aortic wall to improve repeatability and significantly shorten the time 

required for manual segmentation and analysis. Lastly, I will discuss the use of DENSE alongside 

MR flow analysis techniques to better quantify and correlate the full mechanical environment in 

the aortic arch to study how aortic fluid and tissue mechanics in individuals at elevated risk for 

aortopathies may differ from healthy volunteers.   
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2 Quantification of Radial and Shear Strain 

 This section has been adapted from work previously published in the Journal of 

Biomechanical Engineering (Copyright 2021 by ASME, adapted with permission). My 

contributions to this publication include data collection and analysis, drafting of the manuscript, 

revisions of the manuscript, and final approval of the version of the manuscript to be published. I 

would like to thank Dr. John Wilson for his role in conception and design of this study, drafting 

of the manuscript, revisions of the manuscript, and final approval of the version of the manuscript 

to be published. Please refer to the original article at: 

 

P.A. Jones and J.S. Wilson, “The Potential for Quantifying Regional Distributions of Radial and 

Shear Strain in the Thoracic and Abdominal Aortic Wall Using Spiral Cine DENSE MRI,” 

J Biomech Eng, vol. 143, no. 6, 2021.  

 

2.1 Introduction 

Mechanical homeostasis of the aorta is necessary for its proper function but can be 

disrupted due to aging, chronic conditions such as hypertension and atherosclerosis, and/or acute 

pathologies like aortic aneurysms and dissections [46]. In general, most pathological remodeling 

tends to stiffen the aortic wall; however, this stiffening can also be associated with notable regional 

heterogeneities, including susceptibility to highly focal areas of rupture risk. Thus, a reliable in 

vivo method for the regional quantification of patient-specific mechanical function in patients with 

aortopathy, and those at risk of their development, could significantly improve the early diagnosis, 

risk-assessment, and treatment planning for these pathologies that carry well-known risks for 

cardiovascular events.  
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Previous attempts to quantify aortic wall mechanics in vivo have included ultrasound, 

computed tomography (CT), and magnetic resonance imaging (MRI). Multiple studies have 

explored the ability of ultrasound to resolve the spatial distribution of aortic wall strain; however, 

these studies generally report only a homogeneous mean or peak strain and an overall spatial 

heterogeneity index rather than local strain values around the aortic circumference [47, 48]. 

Additionally, ultrasound faces difficulty resolving strains in the direction perpendicular to the 

direction of ultrasound propagation, such as in the lateral aortic walls, though recent exploration 

of multiperspective ultrasound imaging may improve this deficit [49]. Finally, although less 

expensive, ultrasound has less resolution and versatility for evaluating surrounding tissues 

compared to MRI and can have limited ultrasonographic windows for assessing deep structures.  

 Standard cine CT or MRI provide more resolved evaluations of deep peri-aortic tissues 

but have largely focused on providing homogenous values of wall strain based on geometric 

changes during the cardiac cycle (e.g., changes in cross-sectional area [50]). More advanced MRI 

techniques, such as strain-encoded (SENC) MRI [33] and phase-contrast tissue velocity mapping 

[35, 36], have attempted to quantify regionally heterogeneous cardiovascular mechanics in vivo; 

however, neither technique has produced clinically reliable quantitative maps of regionally 

heterogeneous strain around the aortic wall in vivo. Notably, since SENC calculates strain in the 

through-plane direction, estimating circumferential strain would require a longitudinal cross-

section of the aorta, which is not only more difficult to align (particularly in the arch), but would 

likely suffer from increased partial volume effects due to high curvature of the aortic wall in the 

through-plane direction in this orientation. SENC can also be impacted by rigid body rotation along 

the imaging plane [29]. Phase-contrast tissue velocity mapping MRI can reveal regional 

displacements of the myocardium and was briefly explored for quantifying in vivo aortic wall 
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strain [51, 37], but this technique faces challenges in optimizing encoding gradients and the 

potential for accumulation of error through pixel-wise integration of velocity measurements over 

the cardiac cycle, especially in the presence of through-plane motion [29].  

To overcome some of these challenges, 2D Displacement Encoding with Stimulated 

Echoes (DENSE) MRI has recently been explored as an alternative non-invasive method to 

quantify the heterogeneous distributions of circumferential strain of the aortic wall in vivo [20, 

45]. Notably, 2D DENSE MRI can delineate local displacement with sub-voxel resolution and has 

been primarily developed to quantify regionally heterogeneous cardiac kinematics by assessing in-

plane strains (e.g., circumferential, radial, and radial-circumferential shear in a short-axis slice) 

[40]. Unlike phase-contrast velocity mapping, DENSE directly encodes displacement data into the 

phase of each voxel. The results from the initial aortic DENSE studies suggested similar patterns 

of normalized circumferential strain around the aortic wall in discrete aortic regions in healthy 

volunteers when grouping by axial location (infrarenal, descending thoracic, or aortic arch), patient 

age, or average in-plane displacement angle of the aorta during local systole. In theory, these 

healthy distributions could potentially serve as a benchmark for identifying abnormal 

circumferential strain patterns in pathological aortas [45]. 

However, the previous studies made use of a post-processing method that spatially 

smoothed the displacement field of all pixels in the aortic wall without consideration of their radial 

location in the wall. This smoothing method reduces noise but eliminates potential differences in 

displacement between the luminal and adventitial layers of the wall, resulting in near-zero radial 

and shear strain values. Recovering and quantifying the full set of 2D strains including 

circumferential, radial, and shear may offer additional useful information for future clinical 

assessments of aortic pathology if such data can be reliably quantified in the thin aortic wall. 
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Therefore, this study aims to evaluate the feasibility and repeatability of assessing all components 

of the 2D aortic wall strain tensor by separately processing DENSE-derived kinematic data from 

the inner and outer layers of the aortic wall to preserve radial and shear data. 

 

2.2 Methods 

Imaging: For this study, all imaging data from Wilson et al. (2019) [45] was re-analyzed 

following a key modification to the post-processing algorithms as described below. In brief, 2D 

spiral cine DENSE images were obtained normal to the longitudinal axis of the aorta in healthy 

volunteers with no history of structural aortopathy at the infrarenal abdominal aorta (IAA, n=10), 

mid-descending thoracic aorta (DTA, n=13), and distal aortic arch (DAA, n=9). These axial 

locations were originally chosen based on clinical relevance to the location of common 

aortopathies including Type B aortic arch dissections (DAA), thoracic aortic aneurysms and 

dissections (DTA), and abdominal aortic aneurysms (IAA) [52]. All images were acquired on a 

3T Siemens Trio or Prisma scanner using cardiac and respiratory gating, spiral k-space sampling, 

and fat suppression. Key parameters include 1.3 x 1.3 x 8 mm voxel dimension, TR 16 ms, TE 

1.21 ms, flip angle 15°, in-plane displacement encoding frequency ω=0.17-0.25 cyc/mm, 18 spiral 

interleaves, 2 leaves per heartbeat, and 4 signal averages [45]. Scan time was approximately 8-10 

minutes per axial slice without the use of acceleration or reduced phase field-of-view, depending 

on navigator efficiency. At each location, 18 timepoints were acquired through approximately the 

first two-thirds of the cardiac cycle to capture motion through local systole. Immediate repeat 

scanning was performed on six of the volunteers (two per location) to assess interscan 

repeatability. Note the original acquisition of the images was approved by the Emory University 

Institutional Review Board (IRB) and conducted following informed consent. All data was de-
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identified before being approved by the Virginia Commonwealth University IRB for sharing and 

re-analysis. 

Post-processing and Calculation of Strain: All post-processing was performed in 

MATLAB (Mathworks, Natick, MA) and utilized the aortic segmentations already performed in 

Wilson et al. (2019) [45]. In brief, DENSE phase images were unwrapped and used along with the 

magnitude images to manually segment the luminal aortic boundary at each time point. The 

adventitial boundary was segmented to ensure a wall thickness of at least two voxels (the minimum 

necessary to calculate 2D Green strain). Using the pixelwise DENSE phase data which 

proportionally encodes displacement, tracked position vectors were generated for each pixel within 

the aortic wall from the reference configuration at the end of cardiac diastole through local systole, 

as previously described [41].  

Similar to Wilson et al. (2019) [45], multiple noise-reduction techniques were applied in 

post-processing, including time smoothing, reference point averaging, and displacement vector 

smoothing. However, unique to this study, an updated technique was applied for spatial smoothing 

of the displacement vectors to preserve radial and shear strain. The prior method spatially 

smoothed displacement vectors from all neighboring pixels in the aortic wall that were within a 

fixed number of pixel spaces surrounding the point of interest without discrimination to the radial 

location of the neighboring pixel. As a result, differences between inner and outer wall pixels were 

minimized, effectively eliminating any radial or shear strain. Herein, the innermost pixels of the 

aortic wall mask that line the lumen were processed separately from the remaining outer wall pixels 

to preserve potential radial gradients in displacement. Thus, the pixelwise spatial smoothing of 

displacement vectors occurred only with circumferential neighbors (as opposed to circumferential 

and radial neighbors as before) (Figure 2.1).  
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Figure 2.1: (Upper Left) Separation of inner wall (red) and outer wall (blue and white) pixels of 

the aortic wall mask. (Upper Right) DENSE-derived displacement vectors. (Lower Right) 

Schematic of independent spatial averaging of the displacement vectors for the inner and outer 

layers. 

 

As before, the aortic wall was divided into 8 equally spaced sectors around its 

circumference, and the 2D Green strain (E) was calculated from the referential displacement 

gradient (H) for each sector using a quadrilateral finite element method as described by Humphrey 

[53], where 

 𝑬 =
1

2
(𝑯 + 𝑯𝑇 + 𝑯𝑇 ∙ 𝑯), and 𝑯 =

𝜕𝒖

𝜕𝑿
 .  (2.1) 

A standard transformation of the strain from xy-coordinates to local radial-circumferential 

coordinates was then performed. Next, a separate 8-sector strain map was generated using a half-

sector rotation relative to the first map, and the resulting overlapping maps were combined using 

a 1:2:1 weighted spatial averaging to generate a final strain map with 16 unique equally spaced 

sectors. The interested reader is directed to Wilson et al., (2019) for full details [45]. 
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To allow comparisons of strain distribution between volunteers with different mean values 

of strain, normalized circumferential strain (NCS), normalized radial strain (NRS), and normalized 

shear strain (NSS) at local aortic systole were calculated for each of the 16 sectors around the 

aortic wall as the regional strain value divided by the mean of the absolute value of each strain 

type for the given cross-section. As in the prior study, local aortic systole was defined as the time 

of greatest mean circumferential strain across all sectors for the IAA and DTA or the mean 

timepoint of the peaks of the six greatest circumferential strain sector values for the DAA. 

Comparison of Post-processing Methods: The differences in regional distribution of 

circumferential strain using the original post-processing method (Method 1) and the new post-

processing method that separately smooths the inner and outer aortic wall layers (Method 2) were 

assessed using the same imaging segmentations for the full set of volunteers at each axial location 

that were completed by one experienced reader for the earlier study by Wilson et al. (2019) [45].  

Repeatability: Repeatability for post-processing Method 2 was assessed using the data 

from the six volunteers with repeated scans. Again, all manual imaging segmentations were those 

already completed for the earlier study by Wilson et al. (2019) [45]. Herein, only the updated post-

processing technique was changed to allow for separate analysis of the inner and outer layers of 

the previously segmented aortic wall. In brief, ideal interscan repeatability was assessed for each 

component of strain between the two scans by a single non-blinded experienced ‘Observer A’ 

using calculations of the mean difference in strain (±SD), mean absolute difference in strain, mean 

normalized difference in strain (±SD), mean absolute normalized difference in strain, and the 

coefficient of variation. Similar quantitative comparisons were made for interobserver repeatably, 

where a second novice ‘Observer B’ was trained by Observer A using one set of the repeated scans 

and then independently analyzing the second set. Finally, intraobserver repeatability was assessed 
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by Observer A re-analyzing the data for the six patients more than a month following the original 

analysis.  

Statistics: The mean absolute sector-by-sector difference (±SD) and coefficient of variation 

(CoV) of the difference between analysis with Method 1 versus Method 2 were determined for 

each volunteer at each axial aortic location for the circumferential, radial, and shear strains. 

Comparisons of mean strain between the two methods for each strain type and comparisons 

between the three strain types of the mean absolute difference and CoV of the difference in strains 

from the two methods were quantified by one-way ANOVA with a Tukey post hoc test.  To 

evaluate each of the three types of repeatability tests (interobserver, intraobserver, and interscan), 

coefficient of variation (CoV) of the difference, sector-by-sector mean difference (±SD), and mean 

absolute difference (±SD) were calculated for each type of strain for both the standard strain data 

and normalized strain data. Comparisons of mean differences between strain types for each 

repeatability test were also performed by one-way ANOVA with a Tukey post hoc test. Statistical 

analyses were performed in SPSS (IBM SPSS Statistics, Version 26.0. Armonk, NY), and 

significance was defined as p<0.05. 

 

2.3 Results 

Comparison of post-processing methods: The new post-processing technique resulted in 

mean absolute differences in circumferential strain of <2% at all axial locations (Figure 2.2, Table 

2.1) and failed to show a difference in mean circumferential strain (p=0.997). In contrast, mean 

absolute values of radial and shear strain were significantly greater in Method 2 compared to 

Method 1 (Table 2.1; p<0.001 and p<0.05, respectively). Similarly, mean absolute differences of 

radial (0.043±0.05) and shear strain (0.044±0.04) between methods were greater than those for 
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circumferential strain (0.013±0.01) (p<0.001 for both). Comparing mean coefficients of variation 

(CoV) of the differences between the methods, where each CoV value was calculated as the 

standard deviation of the difference in strain divided by the mean strain of the two methods, also 

revealed that relative differences in circumferential strain were significantly smaller than radial 

and shear strain (Table 2.1, p<0.001 for both) and that relative differences in shear strain were 

significantly smaller than radial strain (p<0.001).  

 

 

Figure 2.2: Mean values of normalized circumferential strain across all volunteers for each axial 

location along the aorta between Method 1 & Method 2. 

 

 

 

 

 

 



22 

 

Table 2.1: Mean absolute differences and coefficient of variation (CoV) of differences in 

circumferential strain (Ecc), radial strain (Err), and shear strain (Erc) between Method 1 & Method 

2. 

  IAA DTA DAA Average 

Ecc 
Mean Abs. Diff. (±SD) 0.017 ± 0.02 0.015 ± 0.01 0.008 ± 0.01 0.013 ± 0.01 

CoV (Mean Diff.) 0.256 ± 0.16 0.092 ± 0.04 0.189 ± 0.26 0.179 ± 0.15 

Err 
Mean Abs. Diff. (±SD) 0.054 ± 0.06 0.042 ± 0.04 0.034 ± 0.04 0.043 ± 0.05 

CoV (Mean Diff.) 1.600 ± 0.28 1.382 ± 0.43 1.224 ± 0.60 1.402 ± 0.44 

Erc 
Mean Abs. Diff. (±SD) 0.041 ± 0.04 0.045 ± 0.05 0.047 ± 0.03 0.044 ± 0.04 

CoV (Mean Diff.) 1.400 ± 0.32 0.449 ± 0.20 0.782 ± 0.38 0.877 ± 0.30 

 

Repeatability measures: Table 2.2 records the mean coefficient of variation (CoV) of the 

differences in circumferential strain for each type of repeatability (interobserver, intraobserver, 

and interscan) at each axial location and the average for all three locations. No significant 

difference in average CoV was found between any of the repeatability tests when comparing post-

processing Method 1 and Method 2 for this small study. For each repeatability test and for both 

methods, the DAA demonstrated the largest CoV for repeatably quantifying circumferential strain, 

which may be due to the larger and more complex displacements in this aortic region with 

significant curvature. In all but one case, the IAA demonstrated the smallest CoV. 

 

Table 2.2: Mean coefficient of variation (CoV) of differences in circumferential strain between 

each type of repeated scan using either Method 1 (CoV-1) or Method 2 (CoV-2). 

 

 

 

 

 

    IAA DTA DAA Average 

Interobserver 

Repeatability 

CoV - 1 0.112 0.215 0.383 0.237 ± 0.11 

CoV - 2 0.172 0.237 0.450 0.286 ± 0.12 

Intraobserver 

Repeatability 

CoV - 1 0.105 0.220 0.324 0.216 ± 0.09 

CoV - 2 0.194 0.250 0.348 0.264 ± 0.06 

Interscan 

Repeatability 

CoV - 1 0.181 0.217 0.328 0.242 ± 0.06 

CoV - 2 0.210 0.144 0.301 0.219 ± 0.06 
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Since radial and shear strains can take both positive and negative values, mean values of 

these components of strain can approach zero, making CoV an unreliable metric. Thus, mean 

difference (±SD), mean absolute difference, mean normalized difference (±SD), and mean 

absolute normalized difference were calculated for each type of repeatability study and strain 

component for Method 2 (Table 2.3), noting that normalization was performed using the patient-

specific mean of the absolute values of each strain component across all 16 sectors. For all 

repeatability tests, circumferential strain demonstrated the lowest mean absolute difference (range 

0.02-0.03), and radial strain demonstrated the highest mean absolute difference (range 0.05-0.06). 

Shear strain had moderate mean absolute differences (range 0.03-0.05). However, when comparing 

the three components of strain for each repeatability test, only the radial strain for the intraobserver 

comparison achieved statistical significance for having a greater mean absolute difference (p<0.03 

compared to circumferential strain; p<0.05 compared to shear strain). For all three repeatability 

tests, the mean absolute normalized difference in circumferential strain was significantly less than 

that for radial strain (p<0.05). For interobserver and interscan repeatability, mean absolute 

normalized difference in circumferential strain was also significantly less than that for shear strain 

(p<0.005). No clear correlation to axial aortic location was identified for the reproducibility of 

normalized radial and shear strains.  
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Table 2.3: Mean difference (±SD), mean absolute difference, mean normalized difference (±SD), 

and mean absolute difference in normalized circumferential (Ecc), radial (Err), and shear (Erc) 

strains for interobserver, intraobserver, and interscan repeatability tests using Method 2. 

IN
T

E
R

O
B

S
E

R
V

E
R

 

Strain 
Mean Diff. Mean Abs. Mean. Diff. Mean Abs. 

± SD Diff. ± SD (Norm) Diff. (Norm) 

Ecc -0.009 ± 0.03 0.033 0.000 ± 0.28 0.228 

Err -0.029 ± 0.06 0.059 -0.274 ± 0.72 0.691 

Erc 0.006 ± 0.05 0.045 0.053 ± 0.74 0.694 

      

IN
T

R
A

O
B

S
E

R
V

E
R

 

Strain 
Mean Diff. Mean Abs. Mean. Diff. Mean Abs. 

± SD Diff. ± SD (Norm) Diff. (Norm) 

Ecc 0.001 ± 0.03 0.025 0.000 ± 0.26 0.210 

Err -0.017 ± 0.05 0.045 -0.267 ± 0.70 0.665 

Erc 0.013 ± 0.03 0.026 -0.214 ± 0.62 0.566 

      

IN
T

E
R

S
C

A
N

 

Strain 
Mean Diff. Mean Abs. Mean. Diff. Mean Abs. 

± SD Diff. ± SD (Norm) Diff. (Norm) 

Ecc -0.001 ± 0.03 0.023 0.000 ± 0.20 0.182 

Err -0.002 ± 0.07 0.060 0.004 ± 1.04 0.975 

Erc 0.005 ± 0.05 0.049 0.294 ± 0.84 0.878 

 

Spatial distribution of normalized strain by group: Mean distributions of normalized 

circumferential strain (NCS), normalized radial strain (NRS), and normalized shear strain (NSS) 

calculated by Method 2 were mapped for each axial location, as well as between previously 

suggested subgroups at each location as identified by Wilson et al. (2019) based on trends in 

distributions in circumferential strain (Figure 2.3) [14]. These include division of the DTA cohort 

into volunteers with a positive mean displacement angle (i.e., toward the left anterolateral chest 

wall) and those with a negative mean displacement angle (i.e., toward the left posterolateral chest 

wall), and division of the DAA cohort into volunteers ≥50 years of age and those under 50 years 

of age. 

The spatial distribution of NCS using Method 2 was similar to the results using Method 1 

for all locations and groups. For example, the largest NCS remained in the lateral walls in the IAA 
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(1.37 ± 0.4 in the left lateral wall, 1.37 ± 0.3 in the right lateral wall), in the medial wall in the 

DTAs with a positive mean displacement angle (1.23 ± 0.2), and in the left lateral wall in DTAs 

with a negative displacement angle (1.30 ± 0.3) (Figure 3). Similarly, as in the previous study 

using Method 1, DAA volunteers <50 years of age demonstrated maximum NCS at peak systole 

along the greater curvature (1.93 ± 0.2), while volunteers ≥50 years demonstrated peaks along the 

inferomedial wall nearer to the lesser curvature (2.05 ± 0.6). 

Mean distributions of NRS and NSS using Method 2 are shown in Figure 2.3 for each 

location, including the suggested age-based subgroups for DAA from the previous analysis. The 

DTA subgroups based on displacement angle did not reveal distinct differences in mean NRS or 

NSS and thus were grouped together. The corresponding peak magnitude values can be seen in 

Table 2.4.  
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Figure 2.3: Mean distributions of NCS, NRS, and NSS for each of the three axial locations, with 

DTA split into subgroups by displacement angle for NCS and DAA split into subgroups by age 

for all strain types. Arrows represent the mean displacement direction of the aorta at local systole 

at each location. (A – aorta, V – vertebra, L – lung, LA – left atrium, LV – left ventricle, LPA – 

left pulmonary artery, D – duodenum, IVC – inferior vena cava) 
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Table 2.4: Maximum and minimum values and corresponding in-plane location for NCS, NRS, 

and NSS for each of three axial locations and subgroups as shown in Figure 3. 

  NCS NRS NSS 

  Magnitude 

(Max) 

Location Magnitude 

(Max/Min) 

Location Magnitude 

(Max/Min) 

Location 

IAA  1.37 ± 0.4, 

1.37 ± 0.3 

Left Lateral, 

Right Lateral 

0.78 ± 1.4, 

-1.03 ± 0.8 

Posterior, 

Left Lateral 

1.13 ± 0.5, 

-0.97 ± 1.3 

Right 

Posterolateral, 

Left 

Posterolateral 

DTA 

Neg. 

Disp. 
1.30 ± 0.3 Left Lateral 

1.17 ± 0.8, 

-0.91 ± 1.1 

Posteromedial, 

Anterolateral 

0.80 ± 1.0, 

-1.24 ± 0.5 

Anterior, 

Posterior Pos. 

Disp. 
1.23 ± 0.2 Medial 

DAA 

< 50 

years 
1.93 ± 0.2 

Greater 

curvature 

1.15 ± 0.9, 

-0.71 ± 1.2 

Inferomedial, 

Greater 

curvature 

0.14 ± 0.8, 

-1.25 ± 1.3 

Greater 

Curvature, 

Lesser 

Curvature 

≥ 50 

years 
2.05 ± 0.6 Medial 

0.79 ± 0.9, 

-1.3 ± 1.0 

Left 

Inferolateral, 

Greater 

curvature  

0.76 ± 1.0, 

-1.09 ± 1.1 

Lesser 

Curvature, 

Left lateral 

 

 

2.4 Discussion 

Patient-specific mechanical analysis of the aorta would be improved by the ability to 

reliably quantify all components of the 2D Green strain tensor around the aortic wall in vivo using 

DENSE MRI. In contrast to the previous processing method that effectively eliminated radial and 

shear strain due to spatial smoothing of the displacement data throughout the aortic wall, the 

updated post-processing method presented herein recovered non-zero regional values of radial and 

shear strain (mean absolute increase of 4% strain for both) while preserving the regional 

circumferential strain measurements from the original post-processing method (mean absolute 

difference of only 1% strain) (Figure 2.2, Table 2.1). Relative repeatability of the circumferential 

strain measurements was also preserved (Table 2.2). These results open the possibility for future 
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exploration of the diagnostic usefulness of the newly quantifiable in vivo regional radial and shear 

strain distributions. 

Across the interobserver, intraobserver, and interscan repeatability tests for the new post-

processing method, the circumferential strain demonstrated the best reproducibility, followed by 

the shear strain and then radial strain, particularly when comparing normalized data (Table 2.3). 

The overall mean absolute difference in normalized circumferential strain for all three repeatability 

tests was only 21% (i.e., the average sector-to-sector difference in a repeated scan is 21% of the 

patient-specific mean strain); however, the same metric for normalized shear and radial strains was 

71% and 78%, respectively. The difference in repeatability in terms of strain type is not unexpected 

and is likely due to the thinness of the aortic wall relative to its circumference, as there are more 

pixels around the aortic wall (on average 4-5 per measured sector) from which to derive 

circumferential strain than pixels in the radial direction through the aortic wall (on average only 

2) from which to derive radial strain and radial-circumferential shear strain. Thus, user-variability 

in manually segmenting the aortic wall and partial volume effects contribute significantly more 

variability to the radial and shear calculations. This result suggests that any future use of patient-

specific measures of NRS or NSS to diagnose regional mechanical pathology will have to represent 

a larger deviation from the healthy radial and shear strain distributions than could be discerned for 

local changes in circumferential strain.  

When applying the updated post-processing method to the entire data set, the previously 

described location-specific patterns of normalized circumferential strain (NCS) distribution were 

again evident (Figure 2.3), demonstrating that assessments of radial and shear strain distribution 

can be performed without sacrificing the quantification of regional circumferential strain. Like the 

NCS, the normalized radial strain (NRS) and normalized shear strain (NSS) were heterogeneously 
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distributed around the circumference of the aortic wall and depended on the axial location; 

however, when comparing across the subgroups previously identified by NCS distribution, only 

the DAA subgroups based on age demonstrated clear differences in NRS and NSS. Nevertheless, 

some interesting observations can be made regarding the overall mean NRS and NSS at the IAA 

and DTA as well.  

For the infrarenal abdominal aorta and descending thoracic aorta, the greatest mean NRS 

was located adjacent to the aorto-vertebral interface (AVI) (i.e., in the posterior wall of the IAA 

and the posteromedial wall of the DTA; Figure 3). Notably, this is the same area where the aorta 

may be tethered to the vertebral column via periadventitial connective tissue (c.f., [54, 55]). Indeed, 

aortic DENSE reveals generally decreased displacement and circumferential strain at the AVI in 

the IAA and DTA, consistent with the few previous studies using speckle-tracking ultrasound or 

phase-contrast tissue velocity mapping MRI that reported low regional displacement or strain near 

the spine [48, 37, 56]. For the IAA, the average peak displacement vector at local systole was 96o 

relative to a horizontal axis pointing along the positive x-axis in the image (generally, the patient’s 

left side). For the DTA, the average peak displacement was 40o. Thus, the mean displacement of 

the IAA is anterior (consistent with previously published ultrasound results [57]), and the mean 

displacement of the DTA is anterolateral – both directly away from their potential tether points 

near the vertebra with elevated NRS.  

Two possibilities exist to explain this elevated radial strain. First, the bulk motion of the 

aorta away from the vertebra places the connection between the aortic adventitia and vertebra into 

tension, creating a positive radial strain in the aortic wall (which would otherwise be expected to 

be negative due to the increased internal pressure during local systole). Second, the thinness of the 

aortic wall and resulting partial volume effects of the two-pixel thick aortic mask results in the 
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outer pixel including signal from the stationary connective tissue around the vertebra. Thus, as the 

aorta moves away from the vertebra, the distance between the stationary vertebra and aortic wall 

slightly increases, resulting in a false perception of increased radial strain. It is possible that both 

effects may contribute to the increased NRS. This is a challenging question that will require future 

tests to determine; nevertheless, the correlation of increased NRS with known anatomic features 

and physiologic boundary conditions suggest that the elevated NRS in the wall near the vertebra 

is not simply noise, but rather may be able to provide useful information about aortic boundary 

conditions and, if not due solely to partial volume effects, periaortic tethering. In further support 

of the logical consistency of the radial strain distribution, the most negative mean radial strains 

were located in the lateral walls of the IAA and left lateral wall of the DTA, consistent with an 

expected thinning of the wall at these locations with elevated NCS (Figure 2.3). 

Similarly, the distribution of mean shear strain in the IAA and DTA can be explained by 

the bulk motion of the aorta relative to the expected tethering at the vertebra. Note that mean NSS 

has greatest magnitude, but opposite sign, on either side of the aorto-vertebral interface for both 

locations (posterolateral walls for IAA and anterior and posterior walls for DTA), straddling the 

area of high NRS at the tether point. As the aorta moves in the direction of its mean displacement 

angle but is constrained along its adventitia adjacent to the vertebra, it is possible that the inner 

layer of the aorta slides slightly anteriorly relative to the focally constrained adventitial layer. This 

would result in a clockwise (positive) shear of the inner layer on the outer layer in the sectors 

immediately clockwise to the tether point and a counterclockwise (negative) shear in the sectors 

immediately counterclockwise to the tether point – exactly as seen in Figure 3. Notably, this 

elevated magnitude of shear strain is remarkably consistent with the recent computational results 

of Petterson et al. (2019) [56], which predicted elevated radial-circumferential shear strain along 
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the posterolateral aortic walls when including a simulated stiff vertebra posterior to the aorta. In 

addition, since the mean aortic wall motion is directed away from the vertebra, the opposite wall 

would be moving purely radially and thus should have minimal shear – also as shown for both the 

IAA and DTA in Figure 3. Again, these relative shear strains could also be affected by partial 

volume effects of the aortic wall sliding against stationary peri-aortic tissues surrounding the aortic 

walls. Thus, we interpret these results cautiously and encourage future investigations.  

In contrast to the IAA and DTA, the aortic arch is susceptible to greater flow asymmetry 

due to its curvature and large asymmetric branch points (note the images were acquired within a 

few centimeters distal to the left subclavian artery). The tethering and peri-aortic tissues at this 

location are also more complex. As the DAA curves posteriorly and inferiorly, it approaches the 

vertebral column, but does not have direct proximity as in the IAA and DTA; thus, the exact 

tethering is unclear. The inferior wall of the DAA also abuts the left pulmonary artery (LPA) at 

this location, which as a pressurized vessel has its own motion. In addition, the ligamentum 

arteriosum connects the aorta to the LPA near this location in the majority of patients. Finally, the 

proximity of the DAA to the heart may impart greater longitudinal and twisting motions at this 

location compared to the DTA and IAA.  

Using the new method for post-processing of the DAA data reproduces the previously 

identified differences in mean NCS distribution for volunteers <50 years of age and those ≥50 

years (Figure 3). Interestingly, mean NRS and NSS also demonstrate differences in these two 

subgroups. In the younger group, the greatest mean NRS is located along the inferomedial wall 

between the aorto-vertebral interface and the likely connection of the ligamentum arteriosum to 

the LPA. As with the IAA and DTA, the average peak displacement vector for this subgroup (19o) 

points away from this region and towards an area of relatively low NRS. Additionally, the region 
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of greatest mean NCS along the greater curvature is associated with a lower mean NRS, as 

expected. As with the IAA and DTA, the NSS is split with more positive values in the sectors 

clockwise to the region of high positive NRS and more negative values counterclockwise to this 

region.  However, the NSS values along the greater curvature are closer to zero rather than highly 

positive, and those along the lesser curvature are highly negative and may be influenced by the 

motion of the underlying LPA.  

For the volunteers ≥50 years of age, the distribution of NRS appears as a mirror image to 

the younger group, with the greatest NRS now shifted to the left inferolateral wall. Notably, the 

average peak displacement angle for this subgroup (45o) is no longer directed opposite of the 

region of greatest NRS as in all the other groups, suggesting a potentially unique dynamic in this 

subgroup. However, the greatest and least mean NSS still straddle the region of high NRS. This 

results in the inferior wall of the aorta in the older group demonstrating a positive peak in the exact 

same location that the younger group demonstrated a negative peak (i.e., the shear strain reversed 

directions). The exact cause of these differences in DAA strain between the older and younger 

volunteers requires more testing; however, one potential explanation that accounts for all 

kinematic observations is that the inferior wall of older DAAs may be acted upon by an inferiorly 

oriented periadventitial force. This would increase the relative NCS along the inferomedial wall 

as the force strains the segment of wall between its application point and the normal tethering 

point, induces a positive NRS along the inferolateral wall, and reverses the NSS as the adventitial 

surface is pulled away from the overall direction of the aortic motion.  

Physiologically, this downward force could be explained by changes in the relative motion 

of the LPA relative to the DAA transmitted through the ligamentum arteriosum to the adventitia 

of the aorta. Since aortic stiffness is known to increase with age on average, this increased stiffness 
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and faster transmission of the luminal pressure wave may affect both the magnitude and timing of 

local systole at the DAA relative to completion of cardiac systole. That is, in older volunteers with 

stiffer aortas, the contracting heart is still pulling the aorta and pulmonary trunk inferiorly when 

the pressure wave reaches the DAA, and the reduced elasticity of the stiffened great vessels 

prevents any dampening of this inferior force as would be seen in younger healthier vessels. Thus, 

the heart, pulmonary trunk, LPA, and DAA (through the connection at the ligamentum arteriosum) 

may form a mechanically coupled unit independent of the deformation caused by the pulse 

pressure from the blood flow. Future studies are underway to explore this mechanical paradigm, 

but it is an intriguing hypothesis considering that this portion of the DAA is known to be at high 

risk of aortic dissection (Type B) [58] and that the connection of the ligamentum arteriosum has 

already been implicated in traumatic aortic dissections [59].  

Limitations of this work include the small sample size (n=6 for the repeatability component 

of this study and n=32 for the axial location comparisons), the need for manual segmentation of 

the aortic wall which introduces user-specific error, and the non-blind nature of the idealized 

interscan repeatability test [45]. The primary technical limitation is the maximum imaging 

resolution that aortic DENSE MRI can obtain while ensuring adequate signal-to-noise for regional 

strain quantification, which constrains the aortic wall mask thickness to approximately 2 pixels in 

most cases. As noted above, the limitation in the number of pixels through the wall in the radial 

direction is likely a primary cause of the reduced repeatability of quantifying radial and shear strain 

compared to circumferential strain for the thin aortic wall. These limitations may be improved in 

future studies by developing auto-segmenting algorithms to reduce user error, continuing to 

optimize parameters and techniques on current 3T scanners, and potentially expanding the use of 
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DENSE MRI to 7T clinical imaging, though issues with field inhomogeneities and elevated 

specific absorption rates would need to be considered and overcome. 

 

2.5 Conclusion 

We conclude that the new post-processing technique that independently assesses the inner and 

outer aortic wall layers has potential for improving the patient-specific regional quantification of 

radial and shear strain from aortic DENSE data; however, further studies and technical 

advancements are required to improve its repeatability to the level of the circumferential strain 

data and to assess the influence of potential partial volume effects. Thus, pathological changes in 

radial and shear strain distribution would have to be large to distinguish them from healthy 

distributions of NRS and NSS. Nevertheless, the mean distributions of NRS and NSS in this 

structurally normal data set demonstrate logical spatial correlation to important peri-aortic tissues 

that are location-specific along the length of the aorta. Thus, this improved aortic DENSE MRI 

technique may provide a unique opportunity to investigate and quantify regional heterogeneities 

in aortic tethering, mechanical boundary conditions, and potential focal vulnerabilities in order to 

improve clinical diagnostics and patient-specific computational models of aortic biomechanics. 
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3 A Semi-Automatic Approach to Segmenting the Aortic 

Wall using DENSE MRI 

3.1 Introduction 

 Future applications of DENSE MRI for evaluating vascular disease in the clinical setting 

are promising; however, they are currently limited by lengthy postprocessing times and limited 

repeatability. The most time-intensive step, and one of the primary sources of error contributing 

to lower repeatability with vascular DENSE imaging, is the reliance on manual segmentation to 

create the mask of the aortic wall required for analysis. Manual segmentation of an aortic wall 

mask requires marking the luminal and adventitial borders of the aorta for every cross-section 

image in the cine set, which can take over an hour for a trained observer to complete. The time-

intensive process reduces the clinical utility of this approach for high throughput evaluation and 

serial monitoring of patients with aortopathies, such as aortic aneurysms and dissections. 

Automating the segmentation process would allow for faster turnaround and help to reduce the 

effect of observer bias for strain analysis of the aortic wall.   

 One basic approach to automating segmentation in medical images is to utilize signal 

intensity histograms, such as in the conventional Otsu method for single or multiple level 

thresholding [60]. The signal histograms in MRI can represent a variety of parameters including 

T1 or T2 relaxation constants, proton density, or phase values depending on the sequence used to 

acquire the images [61]. Thresholding methods including Otsu’s method, fuzzy logic techniques, 

and clustering allow for easier implementation of edge detection approaches such as Sobel or 

Canny methods [62, 63]. These edge detection-based methods are reliable for imaging with high 

spatial resolution and good contrast, such as to delineate the endocardial border in late gadolinium 



36 

 

enhanced-MRI. Unfortunately, they are less reliable for low resolution imaging or in the presence 

of noise [64]. Alternative approaches to segmentation in low-contrast images include active 

contour models and graph cut methods, which depend on the minimization of boundary and 

curvature-based energy functions to overcome the limitations of edge detection methods by 

preventing open contours or regions [61]. However, these active methods are sensitive to 

initialization parameters. The reliance on global optimization to choose the strongest borders can 

also result in the ‘detection’ of false edges without additional temporal restrictions or shape priors 

[65, 66]. 

 Another technique, classified as prior knowledge-based methods, take advantage of large 

image atlases or training sets to prime a method to prioritize specific features in segmentations, 

including curvatures, shapes, or image intensity [67, 68, 69]. The most widely used atlas-based 

segmentation methods involve non-rigid registration of an already segmented atlas (generally 

segmented manually) to an input image, where the transformed points along the atlas contours 

become the starting point for edge detection to refine boundaries in the input image [70]. These 

methods can be computationally expensive depending on the registration process used, and the 

accuracy of the result is dependent on the atlas quality, including the accuracy of manually defined 

contours and the closeness of approximation of the atlas to the anatomy of interest [61, 64].  

 More recently, many machine learning-based methods have been introduced (for example, 

for fully automatic segmentation of both the left ventricle and the thinner right ventricle wall [71, 

72, 73, 74, 75]). Deep learning has also been used with DENSE MRI for both automatic 

segmentation and phase unwrapping in healthy controls and patients with cardiovascular 

complications [76, 77]. The use of machine learning to overcome many of the limitations of 

traditional automatic segmentation techniques, especially for smaller structures like the right 



37 

 

ventricular wall, shows potential promise for segmentation of the aorta. However, machine 

learning methods like convolutional neural networks require a large amount of data to train on, 

and the results are limited by how representative the training data set is, especially when working 

with poor quality scans or images with abnormal anatomy.  

 In aortic DENSE imaging, however, the signal intensity of the image is not the only 

characteristic available to automate segmentation. Similar to previous work on segmentation of 

the left ventricle using DENSE MRI [78], we aimed to develop a segmentation tool that employs 

the unique displacement data obtained from the DENSE sequence to guide contouring. The goal 

of this iterative semi-automatic segmentation algorithm was to both shorten the lengthy 

postprocessing time required for aortic DENSE scans while simultaneously reducing the user-

dependent error introduced by manual segmentations.  

 

3.2 Methods 

 2D aortic DENSE MRI data from Wilson et al. [45] acquired in the proximal descending 

aorta (PDA, n = 8), mid-descending thoracic aorta (DTA, n = 13), and infrarenal abdominal aorta 

(IAA, n = 10) were re-analyzed following the implementation of a novel semi-automatic masking 

algorithm in MATLAB (Mathworks, Natick, MA). DENSE magnitude images were used to 

manually demarcate a rough initial mask containing the aortic wall and 2-3 adjacent luminal and 

periaortic voxels on either side of the wall (Figure 3.1) for each time point. Initial analysis was run 

on all voxels within the mask at each time point to calculate displacements relative to the reference 

configuration (timepoint 1) from the voxel phase signal, as introduced in equation 1.8 in Chapter 

1. The back-projected xy-coordinates (X,Y) at the reference configuration at time t=1 for all voxels 
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(𝑖 = 1, 2, … , 𝑀𝑡) from every future timepoint (𝑡 = 2, 3, … , 𝑁) were then calculated using equations 

3.1 and 3.2 and overlaid on the reference configuration (Figure 3.2), where 

                                 𝑿 = ⋃ (⋃ (𝑥𝑖,𝑡 − Δ𝑥𝑖,𝑡)
𝑀𝑡
𝑖=1 )𝑁

𝑡=2                                   (3.1) 

 𝒀 = ⋃ (⋃ (𝑦𝑖,𝑡 − Δ𝑦𝑖,𝑡)
𝑀𝑡
𝑖=1 )𝑁

𝑡=2   (3.2) 

and 𝑥 and 𝑦 are the voxel positions at all timepoints after reference, and ∆𝑥 and ∆𝑦 are the 

DENSE-derived displacements.  

 

 

Figure 3.1: (Top Row) Example of initial rough masking in the descending aortic arch (left), with 

the displacement vectors for this mask from reference timepoint (middle) and back projections of 

all timepoints to reference (right). (Bottom Row) Final masking (left), final displacement vector 

field (middle), and back projections of all timepoints to reference (right).  
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 In addition to the raw back-projected position data, the tracked position vectors (TPV) from 

the DENSE-derived displacements were used. TPV vectors represent the stepwise path of voxels 

included in the reference mask through subsequent timepoints, where displacements for a given 

TPV is calculated by interpolation of the three nearest raw displacement vectors. Path linearity for 

each TPV was determined by the ratio of the largest singular value to the second largest singular 

value as calculated by singular value decomposition (SVD), where a higher ratio is indicative of a 

more linear path. Spatial distribution of a tracked point over time was calculated as average 

pairwise distance between its position at each timepoint and the centroid of its total positions over 

time. The TPV were divided into 16 circumferential groups based on original position at reference 

time, and the intersection of the top 66% of points by path linearity and top 66% of points by 

average distance to centroid was obtained for each sector. These points were saved for weighting 

the initial reference mask.  

 

    

Figure 3.2: (Left) Back-projected points at reference time with the initial position of the saved 

TPV points shown as green circles. (Right) Result after all points outside one standard deviation 

of the centerline are eliminated. Different colors represent voxels displaced from different 

timepoints. 
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The cluster of back-projected data points at timepoint 1 was similarly divided into 16 

equally sized circumferential sectors matching those of the TPV groups. For each sector, the 

weighted mean radius and standard deviation of radius were found by averaging the radii of the 

back-projected points along with the saved TPV xy-positions in timepoint 1 adjusted by a 10-fold 

weighting factor to represent the higher likelihood that the filtered TPV were located on the true 

aortic wall. The points located within one standard deviation of the mean radius for each sector 

(Figure 3.3) were saved and used to generate a 2D convex alpha shape bounding area (determined 

from the Delaunay Triangulation, as outlined in [79, 80]). The resulting alpha shape was used to 

define the updated mask of the aorta at the reference timepoint shown in Figure 3.4.  

 

 

Figure 3.3: Back-projected points converted to a polar coordinate system and unwrapped from 

negative to positive π-radians. The weighted mean radius is shown as a green solid line, and the 

radii representing one standard deviation above and below the mean are shown as dashed red lines. 
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Figure 3.4: Result from 2D convex alpha shape of remaining points at reference time, with inner 

contour vertices shown as blue circles and outer contour vertices shown as red circles. 

 

 After establishing an updated mask for the reference timepoint, each mask at subsequent 

timepoints was updated by eliminating points that, when projected by their displacement data back 

to the reference timepoint fell outside of the updated reference mask. Four and eight-connectivity 

adjacency matrices were generated for the remaining points in each timepoint mask and used to 

build directed graph objects to determine the number of neighbors for each point and the cluster 

that each point belonged to. Points that did not meet the adequate neighbor criteria (defined as 

points with fewer than 3 neighbors in 8-connectivity, and fewer than 2 neighbors in 4-connectivity) 

or points that did not belong to the primary cluster were dropped. This was done to eliminate sharp 

outcroppings from the mask or points that were not connected to the primary cluster representing 

the aortic wall. The remaining points were used to generate a 2D bounding area as explained for 

the reference timepoint. The xy-coordinates were obtained from the inner and outer borders of the 

updated bounding areas, converted to polar coordinates, and spatially smoothed with a fifth-degree 
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polynomial to produce the inner and outer mask contours for a given timepoint. These steps were 

repeated for all timepoints after reference. 

 

 

Figure 3.5: Example of mask for later timepoint, where the blue stars represent points that were 

excluded due to falling outside the acceptable range in the reference mask. Green circles show 

points that were eliminated by connectivity checks. 

 

 The full segmentation process from back-projection of points to reference through the 

generation of smoothed inner and outer wall contours for each timepoint was repeated iteratively 

until the mask generated at reference reached a thickness of two voxels (the minimum necessary 

to calculate 2D Green strain). The masks were then used for strain analysis, as detailed in Chapter 

2 and previous reports [20, 45, 81].  

Statistics: Strain results using the novel semi-automatic segmentation were compared to 

results from manually segmented masks from two or three observers depending on axial location 

(n = 3 for PDA and IAA, n = 2 for DTA). The mean absolute sector-by-sector difference (±SD) 
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and coefficient of variation (CoV) of the difference for normalized circumferential, radial, and 

shear strains obtained from manual and automatically generated masks were determined for each 

volunteer at each axial location. The differences in mean absolute difference and CoV of difference 

by axial location and strain type were assessed using Kruskal-Wallis one-way analysis of variance 

with Dunn post hoc test. Associations between mean absolute difference and CoV of difference 

with diastolic diameter, mean NCS, mean NRS, and mean NSS were assessed with multiple linear 

regression. Differences in interobserver coefficient of variation for manually segmented masks 

(variability in strain between observers) vs coefficient of variation for semiautomatically 

segmented masks (variability in strain between initial rough masks) were assessed using paired 

Student’s t-test for each axial location. Statistical analysis was conducted in R (R Core Team, 

2020. Vienna, Austria). Additionally, discrete Fréchet distances between the manual and 

automatically generated normalized circumferential, radial, and shear strain curves were computed 

to compare curve similarity on a non-sector-by-sector basis in MATLAB [82, 83].  

  

3.3 Results 

The semiautomatic segmentation technique generated masks adequate for strain analysis 

for all but one volunteer scan. Semiautomatically obtained NCS showed minimal sensitivity to the 

differences in initial rough mask, particularly in the PDA where the variability between 

semiautomatic runs was significantly lower than the variability between manual masks (p < 0.05) 

(Table 3.1). Overall, the mean absolute difference in normalized circumferential, radial, and shear 

strain between the manual and semiautomatic masks (determined as the mean of the magnitude of 

sector-by-sector differences in strain) was lowest in the PDA (0.556 ± 0.43), followed by the IAA 

(0.661 ± 0.44) and the DTA (0.838 ± 0.55) (Table 3.2). When looking at individual strain types, 
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the mean absolute difference in normalized strain between manual and semiautomatic masks was 

lowest for the NCS (0.224 ± 0.09), followed by the NSS (0.859 ± 0.39) and NRS (1.028 ± 0.47) 

(Table 3.2). For manual vs semiautomatic comparisons that are not explicitly governed by sector-

by-sector comparisons, discrete Fréchet distances showed similar trends by strain type with NCS 

(0.565 ± 0.21) significantly outperforming NSS (1.763 ± 0.74, p < 0.001) and NRS (2.236 ± 1.13, 

p < 0.001) and by axial location with the PDA (1.256 ± 0.85) showing lower but not significant 

discrete Fréchet distances compared to the IAA (1.479 ± 1.04) and DTA (1.733 ± 1.15) (Table 

3.2).  

Kruskal-Wallis analysis of variance suggested no significant differences by axial location 

for mean absolute difference in normalized strain between manual and semiautomatic masks for 

NCS (p = 0.266), NRS (p = 0.063), or NSS (p = 0.144). However, when comparing differences in 

unnormalized circumferential strain by axial location, the mean absolute difference between 

manual and automatic segmentations in the IAA (0.007 ± 0.00) was significantly lower than the 

PDA (0.021 ± 0.01, p < 0.01) and the DTA (0.031 ± 0.01, p < 0.001). Comparisons between strain 

types for mean absolute difference in strain between manual and semiautomatic masks revealed a 

significant difference (p < 0.001) between NCS and both NRS and NSS (p < 0.001 for both) but 

no difference between NRS and NSS (p = 0.412). From multiple linear regression, mean absolute 

difference in strain between manual and semiautomatic masks was not significantly associated 

with mean NCS, NRS, or NSS, diastolic diameter, or sector-by-sector NCS CoV, NRS CoV, or 

NSS CoV.  
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Table 3.1: Comparisons of interobserver coefficient of variation (CoV) for manual segmentations 

(n=3 for IAA and PDA, n=2 for DTA) and for semiautomatic segmentations with different initial 

rough masks (n=2 for all volunteers) done with a two-tailed paired sample t-test for each axial 

location for the NCS.  

 Manual Masks Mean 

CoV (±SD) 

Semiautomatic Masks Mean 

CoV (±SD) 

p-value 

PDA 0.2444 ± 0.11 0.1682 ± 0.07 p = 0.017* 

DTA 0.0975 ± 0.04 0.1348 ± 0.05 p = 0.07 

IAA 0.2114 ± 0.06 0.2234 ± 0.10 p = 0.72 

 

Table 3.2: The mean strain magnitude (manually generated), mean absolute difference in strain, 

coefficient of variation (CoV) of the differences in strain calculated using mean manual vs. mean 

semiautomated masks, and the percentage of total sectors with a normalized strain difference 

between the means of each method below 33% or unnormalized difference below 0.03%, and 

discrete Fréchet distance between normalized strain curves for each strain type at each axial aortic 

location. 

  

Mean 

Strain 

Mag. 

(Manual) 

Norm. Mean 

Abs. Diff. 

(±SD) 

CoV 

Mean 

Diff. 

Sectors 

<33% 

Norm 

Strain 

Diff. 

Sectors 

<0.03 

Strain 

Diff. 

Discrete 

Fréchet Dist. 

(±SD) 

PDA 

(n = 8) 

NCS 0.09 0.2280 ± 0.06 0.2640 75.8% 76.6% 0.6176 ± 0.19 

NRS 0.05 0.7854 ± 0.56 0.7162 41.4% 39.1% 1.6889 ± 1.02 

NSS 0.04 0.6546 ± 0.27 0.4173 28.9% 62.5% 1.4614 ± 0.66 

DTA 

(n = 11) 

NCS 0.14 0.2312 ± 0.07 0.3185 80.5% 49.0% 0.5709 ± 0.19 

NRS 0.05 1.2761 ± 0.35 0.2765 14.8% 21.4% 2.6702 ± 0.96 

NSS 0.04 1.0064 ± 0.43 0.4286 17.2% 30.7% 1.9591 ± 0.87 

IAA 

(n = 10) 

NCS 0.04 0.2131 ± 0.12 0.5830 73.1% 79.4% 0.5158 ± 0.24 

NRS 0.06 0.9232 ± 0.36 0.3951 24.4% 33.1% 2.1524 ± 1.20 

NSS 0.04 0.8471 ± 0.34 0.4048 25.0% 49.3% 1.7685 ± 0.52 
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Figure 3.6: Manual (blue) vs semiautomatically calculated (red) NCS, NRS, and NSS for the best, 

median, and worst case (determined by mean absolute difference in NCS) for the proximal 

descending aorta.  
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Figure 3.7: Manual (blue) vs semiautomatically calculated (red) NCS, NRS, and NSS for the best, 

median, and worst case (determined by mean absolute difference in NCS) for the mid-descending 

thoracic aorta. 
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Figure 3.8: Manual (blue) vs semiautomatically calculated (red) NCS, NRS, and NSS for the best, 

median, and worst case (determined by mean absolute difference in NCS) for the infrarenal 

abdominal aorta. 

 

3.4 Discussion 

The semiautomatic segmentation method for aorta DENSE MRI greatly reduced the time 

required for segmentation from over an hour to under 10 minutes (including manual verification 

of automatically generated contours), while showing good agreement compared to the original 

manual method for the calculation of circumferential strain, with a mean strain difference of less 

than 0.033 for all locations studied. The method, based on the kinematic data output from the 
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DENSE sequence, takes advantage of strong differences between phase in voxels representing the 

aortic wall and voxels in the lumen or periadventitial areas. Additionally, by weighting the masks 

with the best tracked position vectors for each sector, the method was robust for removing edge 

voxels that had similar signal in an individual timeframe but did not track in the wall over time. 

The overall mean absolute difference in NCS (0.224 ± 0.09) between the manual and 

semiautomatic masks was comparable to the interobserver and intraobserver mean absolute 

differences in NCS reported in Chapter 2 (0.228 and 0.210, respectively).  

There were no significant differences in mean absolute difference between semiautomatic 

masking and manual masking by axial locations. However, the variability in manual masks was 

lowest for the DTA compared to the PDA and IAA (Table 3.1), demonstrating lower overall 

differences between observers for the manual DTA mask segmentations while resulting larger 

average distances between the manual and semiautomatic masks. This may be due to the higher 

incidence of phase wrapping in the DTA, which can be considered manually but causes problems 

for the semi-automatic method since the calculated displacement for wrapped voxels will be 

incorrect and often of the opposite direction. Repeatability quantified by the mean coefficient of 

variation in NCS between manual observers or between semiautomatic runs was significantly 

better for the semiautomatic method in the PDA compared to the interobserver repeatability (p < 

0.05), with no statistical differences in the IAA and DTA. This suggests that the variability in the 

semiautomatic method introduced by different rough masks was comparable or better than 

interobserver repeatability for this study, but additional investigations are needed to quantify fully 

the degree of sensitivity of the final semiautomatic masks to the initial rough masks.  

The better agreement between semiautomatic and manual masks for NCS calculation 

compared to the NRS and NSS matched the general trends in interobserver and intraobserver 
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repeatability seen previously [81]. Due to the elimination of spatial smoothing between the inner 

and outer layers of the aortic wall, the effect of random noise and single outlier voxels included in 

each layer are not averaged out to the same degree as previously, leading to larger variation and 

potential errors in the strain calculation. As opposed to the circumferential direction in which the 

displacement of multiple neighboring voxels are smoothed and strains are measured across the 

width of an entire sector, this effect is magnified for radial and shear strain calculation since only 

two voxels are present in the radial direction through the aortic wall from which to calculate strain; 

therefore, the radial and shear calculations would benefit more from a single outlier voxel 

elimination.  

Future improvements to this approach may include an additional filter step where a single 

voxel can be eliminated by comparing the magnitude and direction of the stepwise displacement 

to its neighboring voxels. Additionally, efforts are being made to reduce user variability of the 

semiautomatic masking algorithm through the use of traditional edge detection techniques to form 

the initial rough mask without user input. While the semiautomatic technique was robust to 

different initial mask starting points, the ability to automatically determine the region containing 

the wall with varying amounts of specificity (i.e., purposefully including more or fewer voxels of 

the lumen and adventitial space) should be further explored to quantify how much the initial mask 

affects the convergence of the final mask to the ‘true’ aortic wall.  

The discrete Fréchet distance to measure the agreement between the manual and 

semiautomatically generated strain curves in addition to the mean absolute difference in strain was 

included to better assess curve similarity in cases where the curves had the same general shape 

with similar local maximum and minimum strain values but were offset horizontally (i.e., shifted 

by 1 or 2 sectors). In these situations, the sector-by-sector comparison of the two curves 
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overrepresents their differences and may not adequately capture physiologically relevant 

similarities in strain pattern. This situation is relatively rare and the trends of mean discrete Fréchet 

distance between axial locations and strain types for the full data set matched those determined by 

the mean absolute difference, but for individual cases the use of discrete Fréchet distance may be 

preferred.  

The use of the raw displacement images for mask generation before any phase unwrapping 

was conducted is one limitation of this method. Correcting phase wrapping before calculating 

displacements for timepoint back-projection may improve the results, especially in the DTA where 

phase wrapping was the most common. Another limitation of this study was that the volunteers 

included were all from a healthy cohort with normal aortic mechanics. The inclusion of DENSE 

scans from patients with aortopathy such as in vessels with reduced compliance resulting in lower 

frame-to-frame displacements or with small focal heterogeneities displaying significantly different 

behavior than adjacent parts of the wall will need to be assessed to confirm applicability in patients 

with pathological aortic mechanics.  

In conclusion, this semiautomatic approach to segmenting the aortic wall using the kinematic 

information from DENSE MRI greatly reduced the time that it takes to analyze aortic wall 

mechanics without overly impacting the NCS obtained. Differences between the 

semiautomatically calculated and manually calculated NCS was also comparable to interobserver 

and intraobserver differences within the manually generated NCS.  While the NRS and NSS are 

more sensitive to outlier voxels and tend to have larger differences when comparing semi-

automatically generated masks and manually generated masks, the inclusion of additional filtering 

steps could help to reduce those differences moving forward. Overall, this new semi-automatic 

technique may help to overcome the long analysis times for DENSE aortic strain imaging while 
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reducing the user-dependent error from manual masking to improve the potential clinical utility of 

DENSE MRI. 
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4 Assessment of Aortic Solid and Fluid Mechanics in 

Patients at Elevated Risk for Aortopathy Development 

4.1 Introduction 

Aortic dissections and aneurysms are vascular events associated with high mortality if left 

untreated, but this risk can be reduced with early diagnosis and management in the initial stages 

of development. Type B aortic dissections, or those originating in the descending aorta, account 

for 25-40% of all aortic dissections and are preferentially managed medically if diagnosed early 

unless there are clinical indications for immediate surgical repair  [84, 85]. Many of these type B 

aortic dissections are diagnosed in the emergency department as acute events, rather than in the 

more chronic remodeling stages. For patients presenting with acute dissection, in-hospital 

mortality rates are as high as 27% for medical management, up to 18% for endovascular repair, 

and up to 17% for open surgical repair [3]. For aneurysms in the descending thoracic aorta, risk of 

rupture is clinically assessed currently based primarily on maximal aortic diameter and adequate 

distal perfusion without consideration of local fluid and tissue mechanics that may provide further 

patient-specific data to more accurately assess rupture-risk compared to the risk of intervention. 

Risks associated with both endovascular and open surgical repair of aneurysms and dissections 

demonstrate the need for accurate quantification of their stability for improved clinical decision-

making [86]. 

However, in addition to quantifying the stability of existing aneurysms and dissections in 

the descending aorta, earlier assessment of aortic wall mechanics in patients with elevated risk of 

future aortopathy could allow for improved monitoring, potential preventative interventions, and 

improved long-term outcomes. Common risk factors for type B aortic dissection include 
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hypertension, atherosclerosis, and previous aortic aneurysms or dissection [87]. For aneurysms of 

the descending aorta, associated risk factors include hypertension and smoking, family history of 

aortopathies, and genetic syndromes including Marfan syndrome, Loeys-Dietz syndrome, Ehlers-

Danlos Type IV (vascular form), and Turners syndrome [86, 88]. These syndromes are also 

associated with development of aortic aneurysm and dissection at earlier ages compared to other 

risk factors, and differences in outcomes in response to similar treatments.  

The dysregulation of normal aortic remodeling in these syndromes often leads to 

accelerated vascular aging through increase in collagen content and loss of functional elastin, 

contributing to increased resistance to vessel deformation with pulsatile blood flow [89]. The 

deformation of the proximal descending aorta is necessary for the accommodation of the blood 

volume output by the heart. Without compensatory changes in cardiac output, these mechanical 

changes could contribute to elevated wall shear stress (WSS) and modified tissue strain 

characteristics [15, 90] . Changes in the magnitude or direction of WSS due to increased blood 

velocity or disturbed flow have been shown to drive endothelial cell phenotypic changes and 

increase remodeling behaviors that lead to aneurysmal progression [91, 92].  

Quantification of the fluid and tissue mechanics in patients at elevated risk for developing 

aortopathies could improve the understanding of how vessel mechanics influence the occurrence 

and development of aneurysms and dissections of the descending aorta, and may reveal regional 

functional changes in the aorta before obvious and often permanent anatomical changes occur 

(e.g., dilation, dissection, etc.). Phase-contrast (PC) MRI (both 2D and 3D) has increasingly been 

utilized for cardiovascular flow analysis through highly reproducible quantification of blood 

velocity fields and quantification of related metrics such as wall shear stress at the endothelial 

surface [93, 94]. Additionally, the use of aortic DENSE MRI for measurement of heterogeneities 
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in circumferential, radial, and shear strains in the aortic wall itself has been evaluated in healthy 

cohorts, with promising results [20, 45, 81]. In this preliminary study, DENSE MRI will be used 

to quantify the strain magnitudes and patterns present in the proximal descending aorta in healthy 

volunteers compared to patients with hypertension or Marfan syndrome, both of which are at 

elevated risk of aortopathy. Additionally, the inclusion of fluid mechanical analysis with 4D flow 

at the same locations as tissue mechanical quantification via DENSE MRI will allow for direct 

regional correlation of fluid flow, flow-induced wall shear stress, and aortic wall tissue strain.  

 

4.2 Methods 

Imaging: Following approval by the Virginia Commonwealth University Institutional 

Review Board, one healthy patient without a history of aortopathy or hypertension and two patients 

with documented hypertension or Marfan syndrome underwent non-contrast MR imaging of the 

aorta on a 3T Siemens Skyra scanner (Siemens Healthineers, Erlangen, Germany). Cine DENSE 

MR images were acquired in the proximal descending aorta distal to the left subclavian artery, 

oriented normally to the longitudinal direction of the aorta. DENSE imaging parameters included 

1.3 x 1.3 x 8 mm voxel dimension, TR 16 ms, TE 1.21 ms, flip angle 15 degrees, 0.17 cyc/mm in 

plane displacement encoding frequency, and spiral k-space sampling with 18 spiral interleaves and 

4 signal averages. DENSE image acquisition time was approximately 8-10 minutes. 

4D flow PC-MR cine images were acquired in the left anterior oblique orientation to 

include the full aortic arch and proximal descending aorta distally to the renal artery. 4D-flow 

imaging parameters included velocity encoding of 150 cm/sec, 2.5 x 2.5 x 2.5 mm spatial 

resolution, 38 ms temporal resolution, with prospective ECG and respiratory navigator gating. 

Image acquisition time was approximately 8 minutes. 
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Post-processing: All postprocessing of cine DENSE MR images was performed in 

MATLAB (Mathworks, Natick, MA) as previously described in Jones and Wilson, 2021 [81]. 

Following manual mask segmentation and calculation of circumferential, radial, and shear strains, 

all masks were aligned based on the most posteriorly located sector. Post-processing of 4D flow 

cine images was performed in Caas MR 4D Flow (Pie Medical Imaging, Maastricht, Netherlands) 

per vendor instructions to obtain wall shear stress (WSS) and wall normal stress (WNS) 

measurements for 90 points around the endothelial boundary of the aortic lumen in six sequential 

analysis planes manually positioned distal to the left subclavian artery and normal to the 

longitudinal axis of the aorta. The multiple analysis planes were used to address limitations arising 

from current lack of registration of DENSE imaging plane position and 4D flow analysis plane 

position, as well as to adequately capture local longitudinal changes in wall stress measurements 

at the level of DENSE wall mechanics measurements. These stress outputs were further processed 

in MATLAB to orient by the most posteriorly located point and divided into sectors matching 

those of the DENSE strain maps. The 4D flow analysis planes most closely aligned with the 

DENSE imaging plane were selected manually. WSS and WNS were normalized by their mean 

magnitude, and flow patterns were assessed and compared to normalized circumferential strain in 

the aortic wall from DENSE MRI.  
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Figure 4.1: (Left) flow streamlines output from Caas MR 4D Flow analysis. (Right) Sagittal FISP 

MR image of the thoracic aorta with the DENSE image plane marked as a yellow segment for 

manual alignment of the 4D flow analysis planes. 

 

4.3 Results 

 

Figure 4.2: Normalized circumferential strain (left), normalized wall shear stress (middle), and 

normalized wall normal stress (right) for volunteer with no history of aortopathy or hypertension. 

The arrow indicates the greater curvature of the aortic arch. 
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Figure 4.3: Normalized circumferential strain (left), normalized wall shear stress (middle), and 

normalized wall normal stress (right) for volunteer with hypertension. The arrow indicates the 

greater curvature of the aortic arch. 

 

 

Figure 4.4: Normalized circumferential strain (left), normalized wall shear stress (middle), and 

normalized wall normal stress (right) for volunteer with Marfan syndrome. The arrow indicates 

the greater curvature of the aortic arch. 

 

4.4 Discussion 

It is impossible to draw any conclusions from the sample size available to date in this small 

pilot, but some observations regarding patterns in stress and strain distributions are noted. The 

normalized WSS distributions were similar between all three volunteers, with peak values 

occurring along the lateral side of the aorta between the greater and lesser curvature. This is not 

unexpected that the WSS would be higher in this region as the flow leaving the ascending aorta is 

projected into the top of the curvature of the arch and follows it around to the proximal descending 

aorta. From this limited data, there also appears to be a tendency for normalized WNS to be highest 
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along the lateral side of the greater curvature of the aorta. One interesting pattern to consider from 

the normalized WNS maps is the general smoothness of transitions for the healthy volunteer and 

volunteer with hypertension from a single region of peak values around the lateral greater 

curvature. This contrasts with the volunteer with Marfan syndrome,  where there was a notably 

less consistent pattern with several local minimums and maximums along the greater curvature 

between the lateral and medial portions. Both the location of the peak normalized wall stress values 

and the variability of stress distributions will be considered in future volunteers. While the small 

sample size in this pilot study prevents the drawing of any broad conclusions between patients or 

between fluid and solid mechanics, the ability to quantify regional wall shear stress at the luminal 

border of the aorta in addition to strain in the wall itself grants a promising new approach to 

assessing and correlating the complex mechanics present in the proximal descending aorta. 

The analysis of 4D flow data sets following acquisition to obtain WSS and WNS maps is 

simple and straightforward, but reliant on manually positioning planes of interest along the aorta. 

Attempts were made to better represent the WSS and WNS present at the same axial position as 

the DENSE images by averaging together planes on either side of the apparent DENSE imaging 

location, but this technique may introduce error, especially in the presence of any small focal 

heterogeneities in shear along the axial direction of the aorta. Additionally, the orientation of the 

normalized WSS and WNS plots against the orientation of the NCS plots was done by taking the 

most posterior point present in each cross-section and rotating all plots such that the selected point 

was aligned. With the complex curvature of the aorta present in the arch and proximal descending 

portions, this could result in some degree of error when aligning the DENSE and 4D flow measures 

for comparison. An improved registration method that can align the DENSE imaging plane 
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automatically with the 4D flow data to extract WSS and WNS measurements at the exact level of 

wall strain measurements would likely benefit the repeatability of this process.  

In addition to looking at flow-induced shear stresses at the luminal aortic border, the use 

of the velocity profiles derived directly from the PC-MRI data presents another avenue for 

exploring the relationships between fluid behaviors and the risk of developing aortopathy. 

Quantifying measures such as variability of flow magnitude and direction along a given part of the 

wall would make it possible to assess the oscillatory behavior of flow, which may be related to 

endothelial cell phenotype/dysfunction and extracellular matrix remodeling in different portions 

of the aortic wall. Overall, the development of this method coupling DENSE tissue strain analysis 

with 4D flow wall shear stress analysis represents an important step towards fully quantifying 

aortic mechanics. However, more studies must be conducted to assess if there are any differences 

between healthy controls and patients at elevated risk of developing aortopathies, and if so how 

those measured differences in wall strain, WSS, and WNS may contribute to early focal changes 

in the formation of dissections and aneurysms.   
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5 Conclusion 

The use of non-invasive MRI techniques to quantify the mechanics in the descending aorta 

offers a promising toolset for the study of the pathogenesis of aortopathy. The work discussed in 

this thesis details recent efforts to improve DENSE MRI analysis by fully quantifying the 2D 

cylindrical strain tensor and reducing the lengthy post-processing time through semi-automatic 

segmentation of aortic wall masks. Additionally, developing a data-processing pipeline for 

regionally correlating fluid mechanical metrics derived from 4D flow MRI to aortic wall strain by 

DENSE MRI offers a promising new tool for evaluating aortic mechanics. Together, the coupled 

analysis of luminal fluid mechanics and wall tissue mechanics in patients at elevated risk of 

developing aneurysms and dissections could uncover the contribution of mechanics to the initial 

stages of dissection via intimal tear and medial infiltration or early aortic dilatation in aneurysmal 

formation. Additionally, future use of these techniques to assess stability in patients with existing 

pathology will help to better inform clinicians when deciding which course of treatment or 

intervention to pursue.  

In the first part of this thesis, a new method for aortic DENSE post-processing was 

introduced. The spatial smoothing component of DENSE analysis, which previously involved 

averaging displacement vectors with nearby neighbors to reduce the noise present, was modified 

such that spatial averaging was done discretely for the inner and outer layers of displacement 

vectors in the aortic wall mask. The differences in displacement between these two layers is 

necessary to quantify radial strain by the compression or spreading apart of these two layers and 

shear strain by the relative differences in translation of the two layers in the circumferential 

direction. The updated analysis was performed on 32 aortic cross-section cine DENSE image sets 

from three axial locations in a healthy patient cohort, yielding preserved radial and shear strain 
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measurements with minimal impacts on the calculation of the circumferential strain. Like the 

circumferential strain, the distribution of radial and shear strains was heterogenous around the 

aortic circumference, and there appeared to be differences by patient age, though additional studies 

must be conducted to fully assess this possibility. Future studies are also needed to assess any 

differences in aortic wall mechanics in patients with hypertension, connective tissue disorders, or 

existing aortopathy that may indicate elevated risk of acute aortic events.  

One of the primary limitations of aortic mechanical analysis from DENSE MRI however is the 

reliance on manual segmentation, which is time-intensive and limits the repeatability of strain 

measurement. The second aim of this work was to automate most or all the post-processing 

pipeline to improve clinical utility through reduced analysis times and improved repeatability. The 

method developed and described in Chapter 3 was dependent on the kinematic data in the form of 

DENSE-derived displacements. By taking advantage of this unique property of DENSE MRI, it 

was possible to automatically reduce broad initial starting regions down to the luminal and 

adventitial borders of the aortic wall in minutes rather than taking over an hour per scan. The 

semiautomatic method showed good agreement with the manually calculated NCS, with lower 

internal variability between masks generated from different starting regions compared to 

interobserver variability in the PDA, and with no significant differences in the DTA and IAA. The 

agreement in NRS and NSS between the manual and semiautomatic methods was significantly 

lower, likely due to the increased sensitivity to noise and individual outlier voxels. Future 

improvements including single voxel elimination and automatically setting the initial starting 

regions are currently underway and are expected to further increase repeatability of the automatic 

post-processing method. Further evaluation of the automatic method, however, is also needed to 

assess its performance in patients with abnormal anatomy or aortic mechanics due to pathology.  
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The third focus of this work was to begin applying DENSE analysis in patients at elevated 

risk of aortopathies alongside 4D flow MRI to study the relationships between fluid and solid 

tissue mechanics in the proximal descending aorta. Unfortunately, the many barriers faced over 

the past two years from both efforts to mitigate the spread of COVID-19 and unexpected hurdles 

in acquiring, installing, and receiving permission to use new research MRI sequences in a clinical 

setting pushed back the original timelines for new data collection. Consequently, at the time of this 

thesis only three data collection sessions have successfully produced adequate DENSE and 4D 

flow MR image sets for combined analysis and comparison. While not ideal, this has still allowed 

for the development of the analysis pipeline. Between the new semiautomatic segmentation 

algorithm for DENSE and straightforward 4D flow analysis in vendor software with automatic 

post-processing in MATLAB, the process between image acquisition and assessment of 

relationships between fluid and tissue mechanics has become streamlined. Further developments 

are underway and ongoing to better integrate analysis of data from the two imaging sources, with 

the goal to eventually build a fully functional, user-interface driven processing tool.  
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