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Lung insults, such as respiratory infections and lung injuries, can damage the pulmonary

epithelium, with the most severe cases needing mechanical ventilation for effective breathing

and survival. Furthermore, despite the benefits of mechanical ventilators, prolonged or mis-

use of ventilators may lead to ventilation-associated/ventilation-induced lung injury (VILI).

Damaged epithelial cells within the alveoli trigger a local immune response. A key immune

cell is the macrophage, which can differentiate into a spectrum of phenotypes ranging from

pro- to anti-inflammatory. To gain a greater understanding of the mechanisms of the immune

response in the lungs and possible outcomes, we developed several mathematical models of

interactions between immune system components and site of damage while accounting for

macrophage polarization. We analyzed these models to highlight the parameters and cor-

responding biological mechanisms that drive outcome and to make predictions about lung

health.
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We developed a set of ordinary differential equations (ODEs) to model VILI and utilized

parameter sampling to evaluate how baseline immune state and lung health, as well as

response to tissue damage, affect post-ventilation outcomes. We used a variety of methods

to analyze the resulting parameter sets, transients, and outcomes. Analysis showed that

parameters and properties of transients related to epithelial repair and M1 activation are

important factors. We then used this collection of parameter sets to generate synthetic data

and developed algorithms that utilize this collection to predict lung health outcomes based

on early time-point data. Our results were comparable to logistic regression and random

forest classification methods, and we performed several case studies to highlight how our

methods can be used.

Finally, we used different modeling techniques, ODE modeling and agent-based model-

ing (ABM), to simulate the spectrum of macrophage activation to general pro- and anti-

inflammatory stimuli on an individual cell level. The ODE model includes two hallmark

pro- and anti-inflammatory signaling pathways and the ABM incorporates similar M1-M2

rules but in a spatio-temporal platform. We then performed simulations with various initial

conditions to replicate different experimental setups. Comparing the two models’ results

sheds light on the important features of each modeling approach. In the future, when more

data is available, these features can be considered when choosing techniques to best fit the

needs of the modeler and application.



Chapter 1

Introduction

Inflammation in the lungs is a response to invading pathogens, such as bacteria and viruses,

or to other types of insults, including smoking and mechanical ventilation. The immune re-

sponse is a vital process to remove microorganisms and damaged tissue and promote repair,

but failure of this system can lead to chronic inflammation and organ failure. Inflammation

is tightly regulated, involving many complex mechanisms, the details of which are still in-

completely understood. In particular, more research is needed to understand the spectrum

of activation within macrophages, cells crucial to the immune response and involved in the

pathogenesis of many diseases [11].

Mathematical modeling provides a platform through which to simulate biological pro-

cesses, understand and analyze the underlying mechanisms, generate and test hypotheses,

and make predictions. The goal of this work is to apply mathematical modeling and analysis

methods to develop a greater understanding of lung inflammation in response to mechanical

ventilation and general inflammatory stimuli. We aim to explore the driving mechanisms

behind varied immune responses and predict outcome, highlighting the role of the spectrum

of macrophage activation, from classically activated M1 to alternatively activated M2. Fig-

ure 1.1 shows how the three main chapters of this work are linked together in the context of

lung inflammation.
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Figure 1.1: A visual representation of how Chapters 2, 3, and 4 relate to our overall goal
of understanding lung inflammation. Chapter 2 is specific to VILI, and Chapter 3 builds
directly off this work. Chapter 4 examines M1/M2 activation in the context of general
inflammatory stimuli, but can be used and adapted to inform more specific types of insults,
such as VILI.

This work begins with a set of ordinary differential equations (ODEs) modeling VILI in

Chapter 2. We developed this model based on known biological interactions and mechanisms,

accounting for macrophage phenotype. Due to a limited amount of data currently available,

we used Latin hypercube sampling to develop a collection of parameter sets, each of which

produced unique dynamics. We then relied on parameter sensitivity and statistical/machine

learning methods to gain a greater understanding of the immune response to VILI and the

mechanisms that drive post-ventilation outcomes. We also hypothesized interventions and

performed these interventions on a case study. This chapter is a standalone journal article

[85] and builds the framework for the next chapter. It contains a detailed background on

lung inflammation along with an explanatory figure.

In Chapter 3, we extend the results of our model from Chapter 2. From the parameter

collection produced by Latin hypercube sampling, we generated synthetic data. We then

used this data to develop an algorithm to predict whether the lung health of an in silico

patient would worsen after ventilation and a period of recovery due to a severe response to

ventilation. Our results compared well to current classification methods, and we extended the
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use of our algorithm to determine the next time at which a sample should be taken to obtain

the most useful information. The corresponding parameters also provided information about

possible outcomes; we developed a process through which we can supplement inconclusive

results by examining parameter values. We showed overall accuracy for the entire collection

as well as results for selected cases.

Chapters 2 and 3 focus on the immune response to mechanical ventilation; Chapter 4

examines the spectrum of macrophage activation in response to more general inflammatory

stimuli using two different modeling approaches. To determine the importance of including

subcellular signaling in a model, we developed a system of ODEs representing two hallmark

signaling pathways within a macrophage, initiated by signaling proteins TNFα and IL-10.

The former is related to the pro-inflammatory (M1) response and the latter to a regulatory

(M2b) response. We extended this model to incorporate multiple macrophages and cell

lifespan. The second is an agent-based model (ABM) which also utilizes M1-M2 activation

rules, but in a spatio-temporal platform. We tuned the model parameters to calibrate the

models to each other in the context of a single macrophage. We then performed simulations

with various initial conditions to replicate different experimental setups. Comparing the two

models’ results sheds light on the important features of the modeling approaches and future

directions when more data is available.

We conclude in Chapter 5 with a summary of our results, relevance for current experi-

mental processes, and future directions for modeling of lung inflammation.
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Chapter 2

Mathematical modeling of

ventilator-induced lung inflammation

2.1 Introduction

Inflammation occurs in the lungs when an immune response is initiated to eliminate an insult.

Types of insults include inhaled pathogens, such as influenza, Mycobacterium tuberculosis,

SARS-CoV-2, and other harmful particles. In the most severe cases this leads to acute

respiratory distress syndrome (ARDS). Due to respiratory failure associated with ARDS,

the clinical intervention is the use of mechanical ventilation (MV) [139].

Despite the benefits of MV, prolonged or misuse of these ventilators may lead to VILI. In

this work we will focus on the alveolar tissue damage associated with MV and resulting im-

mune cell recruitment. The damage caused to alveolar sacs (clusters of alveolar cells) during

MV can lead to volutrauma (extreme stress/strain), barotrauma (air leaks), atelectrauma

(repeated opening and closing of alveoli), and biotrauma (general severe inflammatory re-

sponse). If the trauma increases, it can lead to multi-system organ failure [45, 118].

It has also been shown that the inflammatory response of the elderly is altered in the

lungs and other areas [103, 108]. As compared to younger mice, increased levels of circulating
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inflammatory cytokines and altered macrophage function have been reported in old mice

[16]. A 2003-2008 study conducted at Bridgeport Hospital reported that 4,238 out of 9,912

(42.8%) patients received MV for a median of two days. Mortality or discharge to extended-

care facilities increased for each decade of age greater than 65 years [39]. Most recently, severe

forms of COVID-19, a highly infectious respiratory disease caused by the novel coronavirus

SARS-CoV-2, can lead to respiratory failure and death [64]. Studies report varying but

overall relatively high rates of mechanical ventilation in response to COVID-19 [20, 71,

145]. The case fatality rate for COVID-19 patients over 70 years old and over 80 years

old was around 50.8% and 14.8% of the total number of deaths, respectively [144]. This is

in agreement with other studies reporting higher rates of severe outcomes in patients with

COVID-19 aged 65 or older [15].

The change in the inflammatory response with patient age combined with the increased

need for ventilation and increased mortality rate among the elderly stress the need to inves-

tigate the influence of aging in VILI. We used mathematical modeling to investigate the role

of the pulmonary innate immune response and interventions to alleviate ventilator-induced

damage. At this stage of exploration of VILI, we focus on epithelial damage and immune

system interactions. VILI is complex and the final injury pathways may involve pre-existing

or evolving co-morbidities. However, we developed this model to explore the contribution of

epithelial damage to the development of VILI in isolation.

It is difficult to clinically isolate the local epithelial and inflammatory response in the

lung during VILI, and in silico modeling of experimental data from animal experiments or

human cell lines may help us to understand this complex condition. In silico approaches

provide the ability to explore immune responses by including various nonlinear dynamics

and feedback loops in order to shed light on the specific mechanisms and interactions that

drive diseases and generate hypotheses [37]. The framework we have built here addresses

VILI with various parameters and initial conditions that can be narrowed in future studies

with data from different age groups and/or insults to explore dynamics and driving factors
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in various diseases related to age and/or outcome.

We adapted a model developed by Torres et al. for the innate immune response to

bacteria, which accounts for macrophage polarization along the pro- to anti- inflammatory

spectrum, by including epithelial dynamics and damage-induced recruitment of immune

cells [128]. We used this model to understand the mechanisms by which the immune system

responds to damaged epithelial cells and the sensitivity of lung health to components of this

complex process. We began by analyzing the epithelial subsystem mathematically, since this

component of the model was not in Torres et al.. We performed a fixed point analysis and

bifurcation diagrams for this subsystem, which is included in the supplementary material

(Appendix A.1). We combined the epithelial subsystem with the Torres et al. model by

adapting the immune cell dynamics such that they are triggered by epithelial cell damage

rather than an infection.

The resulting model is a system of nonlinear ordinary differential equations with a sub-

stantial number of parameters. We allowed the parameters in the model to vary over specified

ranges using Latin hypercube sampling to simulate the variety of immune system dynamics

that may be observed. We organized parameter sets into three categories, healthy, moder-

ate damage, and severe damage, based on the percentage of healthy epithelial cells. The

breakdown of the sets into these categories is shown in Figure 2.4, which we describe in

greater detail in the following sections. To determine what is driving differences in lung

health immediately after ventilation as well as after a recovery phase, we used a variety of

methods to analyze the resulting dynamics: 1) comparison of parameters associated with

different outcomes, 2) random forest decision tree algorithm, which parses through the va-

riety of predictors that may be particularly important in the immune response to VILI and

3) parameter sensitivity with eFAST, a variance-based method.
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2.1.1 Biological background

The alveolar epithelium consists of alveolar type I and type II cells. Alveolar type I cells

make up about 95% of the alveolar surface and are primarily responsible for facilitating gas

exchange. Type II cells cover the other 5% of the surface and are important in the innate

immune response. In the presence of damage, these cells proliferate to repair the epithelium

and can also differentiate to type I cells [79, 81].

The immune response is divided into innate (non-specific) and adaptive (acquired) re-

sponses. The adaptive immune response involves cells that are effective at fighting specific

pathogens, whereas the innate immune response lacks specificity and allows the host to re-

spond to a variety of insults. Two of the most important innate immune cells are neutrophils

and macrophages, which can be tissue-specific or recruited to the site upon insult. Some of

the important features of the immune response to lung damage are illustrated in Figure 2.1.

Neutrophils respond quickly to pro-inflammatory signals sent from damaged epithelial

cells and other resident cells. A small amount of neutrophils are found in the lungs in home-

ostasis [61]. Neutrophils have phagocytic capabilities in the presence of invading pathogens,

but in the case of VILI without infection neutrophils recruit other immune cells such as

macrophages through the production of pro-inflammatory agents such as proteinases and

cytokines and contribute to the removal of damaged or dead tissue. An overabundance of

neutrophils and their byproducts can cause further unnecessary damage [44]. Neutrophils

are relatively short-lived; they become apoptotic and are removed by macrophages [61] or

become necrotic in an uncontrolled death resulting in the release of cytotoxic material [93].

Phenotypes of macrophages can range from "pro-inflammatory" (M1) to "anti-inflammatory"

(M2) based on their activators and byproducts [88, 135]. Their pro-inflammatory behavior

includes destroying pathogens, consuming damaged cells, and amplification of signaling.

Their anti-inflammatory response, which counteracts pro-inflammatory behavior, promotes

repair by producing anti-inflammatory cytokines and removing apoptotic neutrophils. A

single macrophage may produce both pro-inflammatory and anti-inflammatory signals con-
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Figure 2.1: An illustration of some of the important biological mechanisms and interactions
included in our model, which is described in the following sections.
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currently [11].

An imbalance in the pro- and anti-inflammatory responses can cause complications for

the individual during various injuries and insults. Also, macrophages play a significant role in

the impact of aging on the immune response [16, 67, 72]. Therefore, to develop interventions

to mitigate the effects of VILI, it is important to study the immune response to lung injury

and the interplay between various types of cells.

2.1.2 Mathematical background

Mathematical modeling is used to capture the complexities of the immune response to ep-

ithelial cell damage, including important feedback loops and nonlinearities. Analyzing the

resulting model gives insight into the driving mechanisms of this system. An in silico ap-

proach allows for simulation of scenarios and hypotheses for new interventions, especially

when in vivo and in vitro experiments to explore possible interventions to improve patient

outcomes are difficult to perform.

Many models have examined the within-host immune response to bacterial and viral

infections, such as influenza, tuberculosis, pneumonia [10, 17, 18, 58, 91, 120] and, most

recently, COVID-19 [35, 47, 98]. Additionally, models related to non-infectious injury such

as smoking and asthma [14, 22, 42, 102] and general inflammatory stress [103, 111] have

been developed. We have published a review of mathematical models that focus generally

on the immune response in the lungs [86].

Models of MV and VILI generally deal with the mechanics of the airways, including air-

flow, pressure, and gas exchange to inform and optimize machine settings and assess stress

[7, 24, 46, 57, 62, 75, 100, 106, 124]. Fluid-structure interactions (FSI) can be incorporated

into such models [5, 56, 100]. Aghasafari et al. [5] and Ibrahim et al. [52] incorporate the

epithelium and immune cells into cellular automata models linked to tissue-scale mechanics.

Previous models that include epithelial damage have been developed for wound healing [101],

infection [31, 87], and other applications using a variety of methods [119, 132]. Several infec-
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tion models identify parameters related to bacterial growth that delineate between healthy

and infected states, or high and low pathogenicity [86].

Models have also been developed to understand and analyze the subcellular pathways

that govern the phenotype switch that macrophages undergo from pro-inflammatory to anti-

inflammatory, as well as other important subcellular pathways [40, 73, 94, 122, 137, 149].

Other mathematical models have described macrophage polarization in the context of infec-

tion [27], cancer [70], and other injuries [36, 53]. However, to our knowledge, no mathematical

models have described M1/M2 interactions specifically in the context of VILI. We modeled

the inflammatory response to VILI, specifically the resulting damage to epithelial cells, using

a set of coupled ODEs, which we describe further in the following section. Systems of ODEs

are often used to model complex biological systems because of their ability to reproduce a

variety of dynamics with reasonable computation times.

To perform a global assessment of a large parameter space such as that described in this

work, other methods are needed aside from traditional parameter estimation techniques.

Latin hypercube sampling (LHS), a Monte Carlo-based method, evenly samples the pa-

rameter space and can quantify uncertainty in model output. Sensitivity analysis methods

identify how changes in parameters affect model output. Partial rank correlation measures

the linear relationship between input and output and is useful in cases where the relationship

is monotonic; when monotonicity is not the case, variance-based techniques such as the Sobol

method and eFAST are advantageous [76]. These and similar methods have been applied to

various models of inflammation, infection, and others to explore parameter space and identify

sensitive parameters that contribute to damage, disease, and recovery [80, 127, 143, 148].

2.2 Methods & Model Development

The primary focus of this model is to examine the effects of damage on the alveolar ep-

ithelium, in particular alveolar type II cells, since they are responsible for restoration of
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the epithelium. The physical forces of ventilation such as overdistention and tears in the

epithelial membrane cause epithelial cells to release various mediators that elicit an immune

response [118]. Epithelial barrier damage is one of the main features of VILI [30], and the

extent to which the alveolar epithelium is damaged is a useful indicator of the overall effects

of a lung insult [79, 138]. We began with a small three-dimensional system of differential

equations of epithelial cell dynamics and analyzed this model using stability analysis and

bifurcations (Appendix A.1). This became the basis for our lung compartment dynamics in

our multi-compartmental model for ventilator-induced lung injury.

The full model is a system of coupled ordinary differential equations based on the in-

teractions between immune cells, epithelial cells, and other mediators in the alveoli, shown

in Fig 2.2. This model captures dynamics in two compartments, the local lung and the

blood. Damaged lung epithelial cells release mediators that activate local cells and recruit

nonresident immune cells from the bloodstream. These activated cells interact with the lung

epithelial cells.

2.2.1 Model equations

A system of ODEs was used to model these interactions because of its ability to capture

distinct nonlinearities and feedback loops with relatively few computational requirements.

However, one of the drawbacks of an ODE model is that it assumes a well-mixed environment,

in which all elements of the model are evenly distributed throughout the given space. One

way to include aspects of the spatial heterogeneity without explicitly modeling space is to

use a compartmental model. Each compartment represents a well-mixed environment and,

when biologically appropriate, cells and mediators can move between compartments. The

model includes a variable for each cell or mediator for each compartment in which it can be

located.

Here we chose to model two compartments. The first is the site of inflammation in the

lungs, specifically the epithelial cells which provide a barrier lining in the alveolar region
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Figure 2.2: Schematic describes interactions between immune system components.
Green boxes represent neutrophils: unactivated and activated neutrophils in the bloodstream
(N0b and N0, respectively), activated and apoptotic neutrophils at the site of inflammation
(N and AN, respectively). Circles represent M0, M1, and M2 macrophages, which perform
a number of roles including removing debris and producing pro- and anti-inflammatory
mediators. White boxes represent healthy, damaged, and dead epithelial cells/empty space.
Pro- and anti-inflammatory mediators (red and blue boxes) recruit and activate immune
cells (red and blue arrows indicate activation by pro- and anti-inflammatory mediators,
respectively). Repair mediators (purple box) promote repair of damaged epithelial cells.
Dynamics between cells and mediators in the blood (not shown) are similar to the detailed
dynamics shown for local inflammation in lung tissue.
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Bloodstream Lung Description
Eh Healthy epithelial cells
Ed Damaged epithelial cells
Ee Dead epithelial cells/empty space

pb p Pro-inflammatory mediators
ab a Anti-inflammatory mediators
M0b M0 Naive macrophages
M1b M1 M1 pro-inflammatory macrophages
M2b M2 M2 anti-inflammatory macrophages
N0b Unactivated neutrophils
Nb Activated neutrophils

N Neutrophils
AN Apoptotic neutrophils
R Repair mediators

Table 2.1: State variables for the model. Variables in both columns represent cells or medi-
ators that diffuse between the two compartments.

of the lung. The second compartment is the adjacent blood vessel that provides additional

immune support to the site of damage. Differentiating between these two compartments

allows us to determine the concentrations of various immune cells and other mediators in

each separate area. This is necessary so that in future work this model can be calibrated

with blood and local data, which are often measured by different means and with different

frequencies.

Fig 2.2 gives a detailed breakdown of the dynamics in the lung. The dynamics are similar

for the same cells and mediators in the blood. Cell types tracked in each compartment are

stated in Table 2.1. In the following subsections, we develop the equations for these variables.

The parameters used in the equations are given in Table 2.2 with their description and range

used during parameter sampling. Since data is not yet available to estimate these model

parameters, we use Latin hypercube sampling and exploratory simulations to determine

initial acceptable ranges. This process is described in further detail in Section 2.2.2.
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Name Description Range used

ab∞ Relative effectiveness of ab at inhibiting M0b differentiation to M1b [0.29, 67.35]
a∞ Relative effectiveness of a at inhibiting M0 differentiation to M1 [0.13, 72.08]

bd Baseline decay of damaged cells [1.06× 10−5, 0.07]
bp Baseline self-resolving repair of epithelial cells [0, 6.20]

br Baseline repair of damaged cells [9.79× 10−3, 4.47]
da Rate of diffusion for a [0.19, 177.98]

dp Rate of diffusion for p [0.34, 2.3× 103]
dm0 Rate of diffusion for M0 [0.24, 275.55]

dm1 Rate of diffusion for M1 [2.75× 10−3, 19.8]
dm2 Rate of diffusion for M2 [0.14, 143.36]
kam1 Production rate of a by M1b & M1 [0.01, 18.01]

kam2 Production rate of a by M2b & M2 [2.43× 10−3, 1.67]
kan Rate at which neutrophils become apoptotic [0.01, 50.04]

kanm1 Rate of M1 phagocytosis of AN [1.32× 10−3, 0.69]

kanm2 Rate of M2 phagocytosis of AN [2.71× 10−3, 7.36]
kem1 Rate of phagocytosis of damaged cells by M1 [0.01, 16.03]
ken Rate of phagocytosis of damaged cells by N [0.01, 16.03]
kep Rate of self-resolving repair mediated by p [0, 4.30]

ker Rate of repair of damaged cells by R [1.47× 10−3, 1.08]

xer Regulates effectiveness of repair of damaged cells by R (Hill-type con-
stant)

[7.23× 10−3, 4.13]

km0a Rate of differentiation of M0 by a [0.01, 89.07]
xm0a Regulates effectiveness of differentiation ofM0 by a (Hill-type constant) [0.16, 136.83]
km0ab Rate of differentiation of M0b by ab [1.15, 436.59]
xm0ab Regulates effectiveness of ab differentiation of M0b (Hill-type constant) [0.16, 83.97]
km0ad Rate of recruitment of M0b by ab [0.34, 181.89]
xm0ad Regulates effectiveness of recruitment ofM0b by ab (Hill-type constant) [0.01, 27.6]

km0p Rate of differentiation of M0 by p [8.99× 10−3, 37.2]

xm0p Regulates effectiveness of differentiation ofM0 by p (Hill-type constant) [1.17, 1.14× 104]
km0pb Rate of differentiation of M0b by pb [0.05, 89.96]

xm0pb Regulates effectiveness of differentiation of M0b by pb (Hill-type con-
stant)

[41.51, 2.92× 104]

km0pd Rate of recruitment of M0b by pb [4.57× 10−3, 53.97]

xm0pd Regulates effectiveness of recruitment ofM0b by pb (Hill-type constant) [0.24, 180.74]

km1p Rate of recruitment of M1b by pb [0.2, 92.81]

xm1p Regulates effectiveness of recruitment ofM1b by pb (Hill-type constant) [9.8× 10−3, 1.69]
km2a Upregulation of M2b recruitment by a [0.1, 219.93]
xm2a Regulates effectiveness of M2b recruitment by a (Hill-type constant) [0.08, 94.84]

km2r Upregulation of M2b recruitment by R [3.61× 10−3, 20.11]
xm2r Regulates effectiveness of M2b recruitment by R (Hill-type constant) [0.01, 18.70]
kman Rate of M1 switch to M2 by AN [0.01, 27.08]

kmne Rate of collateral damage to epithelial cells by macrophages and neu-
trophils

[1.12× 10−3, 5.17]

xmne Regulates effectiveness of macrophages and neutrophils to damage ep-
ithelial cells (Hill-type constant)

[0.03, 41.06]

kn Rate of migration of Nb to lung [2.39× 10−3, 3.54]
kn0p Rate of activation of Nb by p [0.01, 5.58]
xn0p Regulates effectiveness of activation of Nb by p (Hill-type constant) [0.03, 142.56]

kpe Production rate of p by Ed [44.02, 1.12× 104]
kpm1 Production rate of p by M1 & M1b [0.24, 412.22]

kpn Production rate of p and pb by neutrophils [1.67× 10−3, 2.95]
krm2 Production rate of R by M2 [0.02, 40.97]

µa Decay rate of a [5.16× 10−4, 5.08]
µab Decay rate of ab [0.04, 12.86]

µp Decay rate of p [2.76× 10−3, 41.04]

µpb Decay rate of pb [4.79× 10−4, 3.71]

µm0 Decay rate of M0 [0.01, 42.67]

µm0b Decay rate of M0b [7.66× 10−3, 329.59]

µm1 Decay rate of M1 [8.2× 10−3, 10.16]
µm1b Decay rate of M1b [0.03, 60.32]
µm2 Decay rate of M2 [0.27, 135.37]
µm2b Decay rate of M2b [0.02, 16.51]

µnb Decay rate of Nb [2.49× 10−3, 6.03]

µn0b Decay rate of N0b [3.94× 10−6, 2.1× 10−3]

µn Decay rate of N [8× 10−3, 4.32]
µR Decay rate of R [0.72, 761.75]

sa Source rate of background ab [5.75× 10−3, 1.11]
sd Rate of damage from ventilator 0.75

sm Source rate of M0b [1.28, 1.14× 103]
sn Source rate of N0b [0.22, 225.45]

sp Source rate of background pb [6.5× 10−4, 9.4]

Table 2.2: Model parameters with short descriptions and ranges used in LHS.
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Epithelial cells

We define the local lung epithelial cells to be a simplified approximation of the entire alveolar

space, and track time in hours. We modeled this “local space" as the percentage of cells in

three subpopulations, healthy (Eh), damaged (Ed), and dead epithelial cells/empty space

needing be replaced by healthy cells (Ee). Thus, Eh, Ed, and Ee are dimensionless and

Ee + Eh + Ed = 1. We depict these populations using Eqs (2.1), (2.2), and (2.3). These

equations track proliferation and interactions between the epithelial and immune cells that

are recruited in response to VILI. The first term in Eq (2.1) is a logistic growth, representing

epithelial cells that spread and replicate to fill Ee. The factors Eh + Ed and Ee delineate

the areas taken up by cells and the empty space that can be filled by new cells. This

term appears negated in Eq (2.3), modeling the removal of empty space. The proliferation

rate is assumed to be bp at baseline and it is modulated at a rate proportional to the pro-

inflammatory mediator level, kepp. Nearby epithelial cells and progenitor cells, stem cells

that can differentiate into specific types of epithelial cells only, perform this task. These cells

spread and replicate to fill the empty space left by dead epithelial cells [25, 41, 48]. In this

model we do not account for the progenitor cells. Therefore, we attribute all proliferation to

the local epithelial cells.

The next term in Eq (2.1) and the first term of Eq (2.2) represents repair of damaged

cells back to a healthy state. Epithelial cells are prone to self-repair [25], represented by a

baseline rate br, and repair at a faster rate in the presence of repair mediators variable R,

which tracks the level of mediators that promote epithelial repair such as fibronectin and

other epithelial growth factors [43, 48, 113]. The third term in Eq (2.1) and second in Eq

(2.2) represents collateral damage to epithelial cells by the influx and activity of the immune

system. This mechanism is modeled via a nonlinear term, which is dependent on macrophage

and neutrophil levels [4, 63, 92]. We also model damage due to ventilator-induced injury as

sdEh, the fourth term in Eq (2.1) and fifth term in Eq (2.2), in which injury occurs at a rate

proportional to the amount of healthy epithelial cells at a given time. This general term
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covers over-distention for any mode of ventilation.

dEh
dt

=

Proliferation of healthy cells,
upregulated by PIM︷ ︸︸ ︷

(bp + kepp)(Eh + Ed)Ee+

Baseline
repair︷ ︸︸ ︷
Ed

(
br +

Upregulation
via repair
mediators︷ ︸︸ ︷
kerR

xer +R

)

−

Damage via
M1 & neutrophils︷ ︸︸ ︷

Eh

(
kmne(M1 +N)2

x2mne + (M1 +N)2

)
−

Damage from
ventilator︷︸︸︷
sdEh (2.1)

dEd
dt

=−

Baseline
repair︷ ︸︸ ︷
Ed

(
br +

Upregulation
via repair
mediators︷ ︸︸ ︷
kerR

xer +R

)
+

Damage via
M1 & neutrophils︷ ︸︸ ︷

Eh

(
kmne(M1 +N)2

x2mne + (M1 +N)2

)

−

Phagocytosis
of damaged
cells by M1︷ ︸︸ ︷
kem1M1Ed

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)
−

Phagocytosis
of damaged
cells by N︷ ︸︸ ︷
kenNEd +

Damage from
ventilator︷︸︸︷
sdEh −

Death︷︸︸︷
bdEd (2.2)

dEe
dt

= −

Proliferation of healthy cells,
upregulated by PIM︷ ︸︸ ︷

(bp + kepp)(Eh + Ed)Ee+

Phagocytosis
of damaged
cells by M1︷ ︸︸ ︷
kem1M1Ed

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)

+

Phagocytosis
of damaged
cells by N︷ ︸︸ ︷
kenNEd +

Death︷︸︸︷
bdEd (2.3)

M1 macrophages and neutrophils clear debris from the inflammation site to make room

for healthy epithelial cells to divide and fill the empty space [25, 41, 61]. The third and

fourth terms in Eq (2.2) and second and third in Eq (2.3) represent this phagocytosis of

damaged cells by M1 macrophages and activated neutrophils, respectively. Regulation of M1

is modeled by the last multiplier in the term, representing inhibition by anti-inflammatory

mediators (AIM), such as IL-10 [4, 48, 54]. The negative feedback loop of AIM inhibiting

further pro-inflammatory functions occurs multiple times in our model. We will heretofore

refer to this multiplier as inhibition by AIM. Depending on the compartment, the term may
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utilize the variable ab (bloodstream) or a (local). The anti-inflammatory and regulatory

role of M2 macrophages and the balance between M1 and M2 phenotypes is critical for a

successful and rapid recovery [48, 135]. The last term of Eqs (2.2) and (2.3), bdEd, represents

the death of Ed (negative in Eq 2.2) and the associated gain in the Ee population (positive

in Eq 2.3)).

Pro- and anti-inflammatory mediators

As a signal to the immune cells, damaged epithelial cells release pro-inflammatory cytokines

and other mediators, including TNFα and matrix metalloproteinases (MMPs) [25, 41, 88].

In our equations, we track these pro-inflammatory mediators (PIM) in both compartments:

p in the lungs and pb in the blood. The release of PIM by damaged epithelial cells leads to

diffusion of PIM into the bloodstream to recruit additional immune cells [41]. Movement

from one compartment to another is assumed to be due to passive diffusion driven by the

difference of the PIM concentrations between both compartments, first term in Eqs (2.4)

and (2.5). This type of diffusion term will be used for all variables in our model that move

bidirectionally from one compartment to the other.

M1 macrophages produce PIM, which upregulate the activation and migration of macro-

phages to the site of injury; see the second term in Eqs (2.4) and (2.5) [48, 88]. The

macrophage population self-regulates by releasing AIM such as IL-10, thus inhibiting further

production of PIM [73]. Therefore the production terms for PIM by M1 macrophages in both

the blood and lung compartments include an inhibition multiplier. Therefore, the rate of

PIM production by M1 macrophages decreases with increased concentrations of ab or a.

Neutrophils are also important producers of pro-inflammatory mediators such as TNFα,

IL-1, IL-6, LTB4, and chemokines, which stimulate the activation of macrophages toward an

M1 phenotype [44, 61, 63, 113, 125], third term in Eqs (2.4) and (2.5). Low levels of PIM

exist in the absence of damage, accounted for by the source term sp in the second to last

term of Eq (2.4) [9, 130]. The final terms of this equation and Eq (2.5) model the natural
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decay of these mediators.

dpb
dt

=

Diffusion︷ ︸︸ ︷
dp(p− pb)+

Production
via M1︷ ︸︸ ︷

kpm1M1b

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
ab
ab∞

)2
)

+

Production via
neutrophils︷ ︸︸ ︷
kpnNb

+

Background
production︷︸︸︷
sp −

Decay︷ ︸︸ ︷
µpbpb (2.4)

dp

dt
=−

Diffusion︷ ︸︸ ︷
dp(p− pb)+

Production
via M1︷ ︸︸ ︷
kpm1M1

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)
+

Production via
neutrophils︷ ︸︸ ︷
kpnN

+

Production via
ep. damage︷ ︸︸ ︷
kpeEd −

Decay︷︸︸︷
µpp (2.5)

Anti-inflammatory mediators, such as the anti-inflammatory signaling caused by IL-4

and IL-10 [95], are represented by Eq (2.6) in the bloodstream and Eq (2.7) at the site of

damage. The first term in each equation models diffusion. AIM are released by both M1 and

M2 macrophages [48, 54, 88], shown in the second and third terms of Eqs (2.6) and (2.7).

Similarly to pb, background levels of ab are present in the absence of an immune response,

represented by term four in Eq (2.6) [9]. Natural decay of AIM is accounted for by the last

term in each equation.

dab
dt

=

Diffusion︷ ︸︸ ︷
da(a− ab)+

Production
via M1︷ ︸︸ ︷

kam1M1b+

Production
via M2︷ ︸︸ ︷

kam2M2b+

Background
production︷︸︸︷
sa −

Decay︷ ︸︸ ︷
µabab (2.6)

da

dt
=

Diffusion︷ ︸︸ ︷
−da(a− ab)+

Production
via M1︷ ︸︸ ︷
kam1M1 +

Production
via M2︷ ︸︸ ︷
kam2M2 −

Decay︷︸︸︷
µaa (2.7)
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M0 macrophages

M0 macrophages, also called naive or undifferentiated, are present both locally and in the

blood. The diffusion term, seen in the first term of Eqs (2.8) and (2.9), represents movement

between compartments. The baseline diffusion between compartments is modeled in the

same manner as with other variables, but the rate at which this diffusion occurs is modu-

lated by mediators. Increased PIM and AIM levels cause undifferentiated macrophages in

the bloodstream to be recruited at a higher rate to the damaged site, where they differenti-

ate and perform phagocytic, pro-inflammatory, and pro-resolving roles [88]. This increased

flux between compartments due to the presence of pb and ab is modeled by adding to the

baseline diffusion rate (dm0). The added term is a Michaelis-Menten-type term to capture

the increasing rate as mediators rise, with a maximum rate at which these cells can diffuse,

(dm0 + km0pd + km0ad).

MV induces epithelial cells to produce pro-inflammatory mediators such as TNFα, chemo-

kines, and interleukins (ILs) [45]. Undifferentiated macrophages receive these signals and

differentiate into the M1 phenotype [134]. Eq (2.8) accounts for activation to M1 and M2 in

the bloodstream by PIM and AIM, respectively, given a high enough concentration of these

mediators [4]. Although there is still debate on the types of macrophages that exist in the

bloodstream after being released from the bone marrow, there is evidence that populations

of both M1 and M2 exist in the bloodstream before being recruited to the site of injury

[54, 88]. Thus, we include this process in our equations in the second term of Eq (2.8).

Undifferentiated macrophages in the bloodstream can change phenotype to M1 or M2 after

interacting with PIM or AIM, respectively, modeled by a Hill-type term. This nonlinearity

accounts for the sufficient amount of PIM or AIM needed to activateM0 and that this process

saturates to a maximum rate of km0pb and km0ab for activation by pro- and anti-inflammatory

mediators, respectively.

The second term in Eq 2.9 represents activation of undifferentiated macrophages in

the lung compartment to the pro-inflammatory phenotype, downregulated by the anti-
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inflammatory response through an inhibition multiplier. In this term, M2 macrophages can

also be activated directly from the naive phenotype by various repair and anti-inflammatory

mediators involved in the repair of epithelial cells [41, 48].

Using the same inhibition multiplier as previously, AIM inhibit differentiation to M1 as

part of their regulatory role in the inflammatory process, although a complete understanding

of these mechanisms is yet to be uncovered [41, 73, 88]. In the absence of injury, lungs

contain a low number of undifferentiated macrophages which patrol the surrounding area

[25]. "Patrolling" macrophages are also prevalent in the bloodstream. The third term in Eq

(2.8) represents a constant source of undifferentiated macrophages into circulation [48]. We

also account for natural decay of all macrophage phenotypes in the last term of Eqs (2.8)

through (2.13).

dM0b

dt
=

Diffusion, upregulated by PIM & AIM︷ ︸︸ ︷
(M0 −M0b)

(
dm0 +

km0pdpb
xm0pd + pb

+
km0adab
xm0ad + ab

)

− M0b

[ Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pbp

2
b

x2m0pb + p2b

) Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
ab
ab∞

)2
)
+

Differentiation
to M2︷ ︸︸ ︷(
km0aba

2
b

x2m0ab + a2b

)]

+
Source︷︸︸︷
sm −

Decay︷ ︸︸ ︷
µM0bM0b (2.8)

dM0

dt
=−

Diffusion, upregulated by PIM & AIM︷ ︸︸ ︷
(M0 −M0b)

(
dm0 +

km0pdpb
xm0pd + pb

+
km0adab
xm0ad + ab

)

−M0

[ Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pp

2

x2m0p + p2

) Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)
+

Differentiation
to M2︷ ︸︸ ︷(
km0aa

2

x2m0a + a2

)]

−
Decay︷ ︸︸ ︷
µM0M0 (2.9)
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M1 macrophages

Similarly to naive macrophages, M1 macrophages move between compartments. The pres-

ence of pro-inflammatory mediators, which act as recruiters, increases the rate of diffusion,

shown in the first term of Eq (2.10) [88]. The second term represents differentiation from

the naive state, as described for the associated term in M0.

Macrophages exhibit high plasticity, and based on the mediators and other immune cells

they encounter, they can switch phenotype and perform different or enhanced functions;

this plasticity is not yet fully understood [4, 48]. M1 macrophages are primarily respon-

sible for producing PIM, thereby recruiting other immune cells to the damaged area [54].

M2 macrophages are considered pro-resolving and downregulate PIM. Both M1 and M2

macrophages phagocytize apoptotic cells such as neutrophils [113]. The shift from an overall

pro-inflammatory phase to an anti-inflammatory phase in the course of the immune response

is highly dependent upon a shift in macrophage behavior, specifically the shift from a mainly

M1 response to a mainly M2 response [41, 54, 88].

One of the primary ways this shift is achieved is through the inhibition of M0 to M1

differentiation by anti-inflammatory mediators, as described previously. Additionally, when

pro-inflammatory macrophages phagocytize apoptotic neutrophils, they shift towards a more

anti-inflammatory phenotype. This results in suppression of the release of pro-inflammatory

mediators and production of pro-resolving mediators [63, 92]. We account for this shift by

including the third term in Eq (2.11) to account for M1 macrophages shifting to the M2

phenotype when they phagocytize apoptotic neutrophils. This term is proportional to the

term in the apoptotic neutrophil equation, Eq (2.17), modeling the phagocytosis of apoptotic

neutrophils by M1. This term also includes inhibition of M1 function by AIM. It has been

shown in some studies that M2 macrophages can switch to an M1 phenotype [49], although

this idea is not currently widely accepted. Thus, we choose to include only the shift from

M1 to M2.
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dM1b

dt
=

Diffusion, upregulated by PIM︷ ︸︸ ︷
(M1 −M1b)

(
dm1 +

km1ppb
xm1p + pb

)

+M0b

Differentiation
to M1︷ ︸︸ ︷(
km0pbp

2
b

x2m0pb + p2b

) Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
ab
ab∞

)2
)
−

Decay︷ ︸︸ ︷
µM1bM1b (2.10)

dM1

dt
=−

Diffusion, upregulated by PIM︷ ︸︸ ︷
(M1 −M1b)

(
dm1 +

km1ppb
xm1p + pb

)

+

Differentiation
to M1 via PIM︷ ︸︸ ︷

M0

(
km0pp

2

x2m0p + p2

) Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)

−

M1 switch to M2
by phagocytosis︷ ︸︸ ︷

kman(kanm1ANM1)

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)
−

Decay︷ ︸︸ ︷
µM1M1 (2.11)

M2 macrophages

M2 macrophages, associated with an anti-inflammatory response, can be activated directly

from undifferentiated macrophages by specific anti-inflammatory signals in addition to switch-

ing phenotype from M1. They diffuse between compartments modeled in the first terms of

Eqs (2.12) and (2.13). M2 macrophages produce anti-inflammatory mediators which recruit

and promote differentiation to more M2 macrophages, described in the second term of both

equations. They release cytokines that trigger the repair phase of the immune response

[48, 88]. This repair phase includes repair mediators (discussed in Eq (2.18)), which play a

direct role in the reconstruction of healthy epithelial cells and resolution of damage [48].
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dM2b

dt
=

Diffusion︷ ︸︸ ︷
(M2 −M2b)

(
dm2 +

km2rR

xm2r +R
+

km2aa

xm2a + a

)

+

Differentiation
to M2︷ ︸︸ ︷

M0b

(
km0aba

2
b

x2m0ab + a2b

)
−

Decay︷ ︸︸ ︷
µM2bM2b (2.12)

dM2

dt
=−

Diffusion︷ ︸︸ ︷
(M2 −M2b)

(
dm2 +

km2rR

xm2r +R
+

km2aa

xm2a + a

)
+

Differentiation
to M2︷ ︸︸ ︷

M0

(
km0aa

2

x2m0a + a2

)

+

M1 switch to M2
by phagocytosis︷ ︸︸ ︷

kman(kanm1ANM1)

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)
−

Decay︷ ︸︸ ︷
µM2M2 (2.13)

Neutrophils

Neutrophils are considered the first responders to injury [41, 44]. Generated in the bone mar-

row, free-flowing neutrophils, described as N0b, circulate in the lung vasculature at baseline

levels [61] and are represented by the first term in Eq (2.14). In the presence of injury, neu-

trophils are activated and recruited to the damaged site through pro-inflammatory mediators

such as TNFα, IL-1β, and other chemokines and cytokines [44, 125]. This recruitment is

represented by the first term in Eqs (2.14) and (2.15). On the other hand, anti-inflammatory

mediators, including macrophage-produced resolvins and protectins, inhibit further recruit-

ment of neutrophils [92]. Similarly to the differentiation of macrophages, it is assumed that

a neutrophils activation is nonlinear and that it saturates. Therefore, a Hill-type term with

a maximum rate of kn0p and a constant of xn0p is used to model activation of neutrophils by

PIM. To model the inhibition of neutrophil activation by AIM, we include the same inhibi-

tion multiplier as previously described. The effectiveness of AIM to inhibit this process is

controlled by ab∞. We also account for intrinsic decay of neutrophils in the last term of Eqs

(2.14) through (2.16).

23



dN0b

dt
=−

Activation by PIM︷ ︸︸ ︷
N0b

(
kn0pp

2
b

x2n0p + p2b

) Inhibition by AIM︷ ︸︸ ︷(
1

1 +
(
ab
ab∞

)2
)
+

Source︷︸︸︷
sN −

Decay︷ ︸︸ ︷
µN0b

N0b (2.14)

dNb

dt
=

Activation by PIM︷ ︸︸ ︷
N0b

(
kn0pp

2
b

x2n0p + p2b

) Inhibition by AIM︷ ︸︸ ︷(
1

1 +
(
ab
ab∞

)2
)
−

Migration︷ ︸︸ ︷
knNb −

Decay︷ ︸︸ ︷
µNbNb (2.15)

Neutrophils go through a multi-step process of rolling along and subsequently adhering

to the surface of the endothelium. Then neutrophils transmigrate to the injury site either

through or between endothelial cells [44, 61]. This process is assumed to be driven not by

a concentration difference in neutrophils between the compartments but rather is a direct

consequence of activation. Therefore, neutrophil transmigration, the first term in Eq (2.16),

is modeled from the bloodstream to the site of injury by a linear term with rate kn.

Activated neutrophils that have transmigrated through the endothelium and reached the

site of injury release pro-inflammatory mediators, as discussed previously in Eq (2.5). During

infection, neutrophils play an important role by phagocytizing pathogens [63], but during

VILI a main role of neutrophils is the recruitment of macrophages, particularly to promote

a more pro-inflammatory environment for the clearance of damaged and dead cells [44].

Neutrophils become apoptotic, modeled by the second term of Eq (2.16) [41]. In this state,

they are phagocytized by M1 and M2 macrophages (second and third terms of Eq (2.17),

respectively) and no longer contribute to the production of PIM [61, 113, 123]. Phagocytosis

by M1 macrophages is inhibited by AIM using our standard functional form for the inhibition

multiplier. AIM do not inhibit phagocytosis by M2 macrophages since AIM support the

function of anti-inflammatory cells.
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dN

dt
=

Migration︷ ︸︸ ︷
knNb −

Transition to
apoptotic︷ ︸︸ ︷
kanN −

Decay︷︸︸︷
µnN (2.16)

dAN

dt
=

Transition to
apoptotic︷ ︸︸ ︷
kanN −

Phagocytosis
by M1︷ ︸︸ ︷

kanm1ANM1

Inhibition
by AIM︷ ︸︸ ︷(
1

1 +
(
a
a∞

)2
)
−

Phagocytosis
by M2︷ ︸︸ ︷

kanm2ANM2 (2.17)

Repair mediators

The direct contribution of alveolar macrophages to the repair of epithelial cells is not

completely understood, although macrophage involvement in the repair process has been

widely demonstrated [48]. M2 macrophages produce various mediators such as prostaglandin

E2, chemokines such as CCL2, TGF-β, fibronectin 1 and other epithelial growth factors

[43, 48, 113] that promote repair of epithelial cells and recruit fibroblasts, key cells involved

in tissue repair [105]. We do not model each of these components, instead grouping them

together in one variable called R, which can be thought of as the downstream effects of

fibroblasts and other mediators. If the recovery phase is the focus of a future study this

model could be adapted to include these dynamics explicitly. The production of R by M2

macrophages is modeled by the first term in Eq (2.18). The second term models intrinsic

decay of these mediators.

dR

dt
=

Upregulation
by M2︷ ︸︸ ︷
krm2M2 −

Decay︷︸︸︷
µRR (2.18)

These equations form a system of ODEs that captures the most important aspects of

the immune response to VILI. In the following sections we describe various computational

approaches used to explore parameter space, determine the parameters the model is most

sensitive to and establish influential predictors of model outcomes. We end with case stud-
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ies in which we modulated particular parameters and then evaluated long-term epithelial

damage.

2.2.2 Sampling method for parameters: Latin hypercube sampling

Because of the large number of variables and parameters, mathematical and statistical tech-

niques needed to be used to analyze the system and find parameter sets that generate a

variety of dynamics and outcomes of immune cell populations included in this model. At

this stage we analyzed the model with various parameters without utilizing data; in future

work this model can be coupled with ventilation experiments to narrow parameter ranges.

As an initial step we determined initial conditions and parameters for this model through

LHS, which generates random, unique parameter sets according to user-defined distributions

[83]. As suggested by Marino et al. [76], we initially chose uniform distributions since we

had no prior knowledge of the parameter values, and sampled on a logarithmic scale to cover

a span of several magnitudes. For LHS with uniform distributions assumed for each param-

eter, to generate n desired parameter sets, the algorithm splits the determined range into n

evenly-spaced subintervals and each interval is sampled exactly once [76]. We also sampled

using log-normal distributions for each parameter with the same means and variances as the

uniform distributions to see whether restriction of the parameter space by bounded intervals,

as enforced by the uniform distributions, affected our results. We sampled using log-normal,

rather than normal, distributions to ensure the parameters were positive.

Using MATLAB functions adapted from Kirschner [59], all parameters were sampled ex-

cept the rate of damage sd due to ventilation to ensure the same insult during all simulations.

We began to explore parameter space by sampling near transients associated with different

outcomes. Ranges were set such that that the resulting sampling gave rise to a variety of

behaviors and outcomes. Table 2.2 shows the final ranges used for the LHS sweep that con-

structed the collection of parameter sets used in this work. Using LHS in these ranges we

generated 100,000 parameter sets. Future work could calibrate parameter sets to data from
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different experimental or clinical groups and then use the analysis methods in this manuscript

to compare dynamics and parameters that drive differences between experimental or clinical

groups.

2.2.3 Parameter Set Collections: Healthy, Moderate Damage, &

Severe Damage

Our goal was to understand the effects of baseline lung health, represented by initial condi-

tions and unique parameter sets, on the response to ventilation and post-ventilation recovery.

Therefore we needed to start our simulation from initial conditions associated with a steady

state, so that when ventilation was simulated we were seeing changes in the dynamics only

due to the ventilator. For all 100,000 parameter sets we simulated the model for 800 hours,

without any ventilation (sd = 0), to determine if a numerical steady-state condition was

reached in the absence of ventilation. Our numerical steady state condition was that the

l2-norm of the difference between each meshpoint in the last 100 hours of the simulation and

the last point (hour 800) was less than 0.1. By examining simulation results, we confirmed

that this ensured minimal change in all variables at the tail end of the simulation.

Three different initial conditions were used with the sampled parameter sets for the

800-hour, non-vent simulation, in order to find sets that have steady states. The first set

of initial conditions was associated with initial simulations used to develop the sampling

ranges, but was not associated with a particular set in our final round of sampling. The

second initial condition we chose was associated with an insult to the epithelial cells with no

initial immune response, all variables set to zero except for Eh(0) = 0.75 and Ed(0) = 0.25.

The third and final initial condition had all variables set to zero except for M1(0) = 50,

which is starting with an activated immune response and healthy tissue. If our numerical

steady-state condition was satisfied with any of these initial conditions, the parameter set

was accepted and the associated initial conditions were set to the variable values at 800 hours.

A total of 27,836 sets satisfied our numerical steady state condition. Any parameter set that
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did not result in an equilibrium state by 800 hours from these three initial conditions was not

simulated with ventilation. Since we did not perform a complete analysis on all 100,000 sets,

we do not mathematically conclude that the remaining parameters cannot reach a steady

state. However, given the robustness of the resulting dynamics and the number of parameter

sets that reached our condition for numerical steady state, we assumed that actual biological

dynamics were well represented by simulating these 27,836 unique parameter sets. The same

process was applied to the log-normally-distributed collection of parameter sets, generating

a total of 33,812 sets that reached a steady state. Results throughout this manuscript were

similar for the sets generated using log-normal distributions, see Section A.2.

Some parameter sets gave rise to a steady state with associated initial conditions where

the percent of empty space in the epithelium was significantly high. Therefore, we eliminated

some sets based on their initial condition for Ee (empty/dead cells). In this paper we focus

on the 24,432 parameters sets that had a steady state for Ee < 50% and show a summary of

all results for steady states with Ee < 25% and Ee < 75% in Section A.2. We did not find

any major differences when varying this inclusion threshold.

These 24,432 sets were then simulated for 200 hours with ventilation for the first two

hours (a nonzero damage rate), a duration comparable with murine experiments [121, 141].

Given that all mice do not survive ventilation, we adjusted our model to account for extensive

lung damage due to ventilation, leading to severe inflammation. Without this adjustment,

the model assumes survival in all scenarios and allows for a recovery phase. Instead, we

assumed that a high percentage of empty space Ee is not survivable; therefore, we set a

threshold for Ee. Ideally this threshold’s value would be derived from data. However, in

the absence of data related to epithelial integrity, we used a threshold of 75% given that we

had set a threshold of 50% for Ee(0). These two thresholds combined map the arbitrary 0

to 100% epithelial population to metrics of overall lung health. Ee more than 50% without

ventilation is not survivable and more than 75%, even with MV, is not survivable. Therefore,

if Ee rises above 75% at any time, variables are set to 0 at that time.
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Simulations were separated into three different categories based on percentage of healthy

epithelial cells at time of classification T :

• Eh(T ) ≥ 90%: Healthy epithelial cells sufficiently cover the alveoli to function normally

• 50% ≤ Eh(T ) < 90%: Moderate tissue damage

• 0% ≤ Eh(T ) < 50%: Severe tissue damage

Sets were classified into the three categories based on their initial conditions and again at

two other time points: immediately after ventilation (2 hours) and after ventilation with a

recovery period (200 hours). Classification at these two time points allowed us to understand

the immediate effects of VILI as well as the long-term effects after a period of recovery. These

parameter sets, their corresponding transients, and the outcomes they generate were used

to develop a collection of parameter sets representing a variety of immune system dynamics.

The collection was then used to analyze outcomes in terms of their associated transient

variables and underlying parameters.

2.2.4 eFAST

We used several tools to perform a sensitivity analysis of model parameters. A common

method is calculating partial rank correlation coefficients (PRCCs), but results are only

reliable for monotonic relationships between parameters and variables. Our model output

does not fit this criteria. Marino et al. suggest the extended Fourier amplitude sensitivity

test (eFAST), a variance-based method for non-linear, non-monotonic relationships [76]. The

greatest drawback of eFAST compared to PRCC is the computation time.

eFAST varies parameters and the resulting variation in model output is calculated using

statistical variance. The algorithm varies each parameter at different frequencies by creating

a sinusoidal function, called a search curve, and then sampling parameter values along the

function. Fourier analysis measures the influence of the parameter’s frequency on model

output. First-order sensitivity Si for a parameter i is calculated by varying only i and leaving
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the rest constant. Total-order sensitivity ST i is calculated by varying i using a unique, higher

frequency and varying the other parameters using lower non-unique frequencies. This total-

order sensitivity captures non-linear interactions between parameters in addition to changes

in model output. We implemented the method by Marino et al. [76] to calculate Si and ST i

and determined the statistical significance of each parameter. A "dummy parameter" was

included in the parameter set and its eFAST index was compared to the other parameters

found in the model.

MATLAB functions by Kirschner [59] to perform eFAST are available online. We ob-

tained 257 values of each parameter on a search curve and repeated this process for five

unique search curves since different ones can generate slightly different samples. Sensitivity

can be calculated at specific time points for the desired variable.

2.2.5 Random forest decision tree

Aside from more conventional sensitivity analysis measures, we chose a few alternative meth-

ods that require less computation time and can include other features of the model besides

parameters. One of these alternatives is a random forest decision tree [65, 66]. Each pa-

rameter set in the collection has a number of predictors and outputs: parameters and any

other characteristics from the transients that can be quantified. The decision tree algorithm

determines the parameter/predictor values that best partition the collection into categories

of healthy, moderate damage, and severe damage. Each member of the collection answers a

series of questions, i.e. nodes on the tree, based on the predictor values of that parameter

set, eventually being classified into a particular outcome. This process is repeated to obtain

a "forest" of decision trees.

Since a decision tree simply takes value for each predictor and is not dependent on

the model itself, measures besides parameters can be used. We included supplementary

predictors calculated from the transients. These predictors are: maximum and minimum

M1 and M2 (percent of total macrophages and raw values), time at which M1 and M2
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maximums occur (M1/M2 peak time), ratio of M1 peak to M1 initial condition, percent M2

macrophages at 10 hours, ratio of Eh initial condition to Eh at 30 minutes, 2 hours, and 6

hours, and the difference between Eh initial condition and Eh at 200 hours. Adding these

predictors allowed for the possibility that the best classifiers of outcome could be not only

parameters but also properties of the transients. This knowledge could provide additional

information about metrics for experimentalists and clinicians to track in order to identify

early warning signs for undesirable results.

One metric generated by the random forest is the importance value of each parameter

or characteristic, calculated from the Gini Index [6]. The importance value is a measure

of how important any given parameter was in determining the outcome of each set in the

collection. Because of the large number of parameters in the model, this can provide intuition

about which parameters and other characteristics of the transients are most influential in

determining outcomes. The R and MATLAB code used for this method are provided in

Sections A.4-A.6.

2.3 Results

Our aim is to understand how recruitment of the immune response and its interactions with

epithelial cells translate to specific outcomes and what dynamics are driving this process.

Using the techniques described in the previous section, we determined predictors of outcome

and/or processes that could be targeted to modulate outcome.

2.3.1 Sample Transients and Collection Breakdown

This model can generate a variety of dynamics, similar to the mixed responses of patients on

a ventilator [99]. Our model generates a variety of dynamics which reflects this spectrum of

responses. There is significant variability between outcomes as well as within them. Fig 2.3

shows examples of these different dynamics for healthy epithelial cells and M0, M1, and M2
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(a) (b)

(c) (d)

Figure 2.3: Sample simulations show the variety of model-generated dynamics.
Blue, orange, and green curves indicate healthy, moderate damage and severe damage out-
comes, respectively. (a) Proportion healthy epithelial cells. (b) Percent M0 macrophages.
(c) Percent M1 macrophages. (d) Percent M2 macrophages.

macrophages using a case of each of the three outcomes as determined at 200 hours: healthy,

moderate damage, and severe damage. All three can be classified as "severe damage" at

2 hours. Each case has a unique set of initial conditions and parameters, giving rise to

three very different immune responses and epithelial cell health. Simulations were run in

MATLAB using the code provided in Section A.4.

We generated 100,000 parameter sets using LHS with parameter ranges given in Table 2.2.

Fig 2.4 shows the breakdown of these parameter sets based on whether or not the dynamics

led to a steady-state system and whether the steady state value had Ee ≤ 50% in the

absence of ventilation. Additionally, Figure 2.4 shows the classifications of each parameter
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Total LHS runs: 100,000

Steady-state: 24,432
Classification after 2 hours

Start End
H: 16,833 (14,260) 2,573 (0)
M: 5,382 (3,387) 10,116 (8,121)
S: 2,217 (0) 11,743 (9,526)

Classification after 200 hours
Start End

H: 16,833 (635) 16,198 (0)
M: 5,382 (572) 5,104 (294)
S: 2,217 (0) 3,130 (913)

Not steady-state: 77,568

Figure 2.4: Results of 100,000 LHS runs grouped by classification. Parameter sets
are broken down by their associated initial conditions (Start) and ending states (End) and by
category healthy (H), moderate damage (M), or severe damage (S). Numbers in parentheses
in the IC columns are the number of simulations that started in the category associated with
that row and change their state after ventilation. Numbers in parentheses in the ES columns
are the number of simulations that ended in the category associated with that row, but were
not in that category before ventilation. The first three rows in the table show classification
immediately after a 2-hour period of ventilation. The last three rows show classification after
200 hours (a 2-hour vent and period of recovery). All parameter sets are associated with a
steady-state solution with Ee < 50%.

set based on their associated initial conditions (before ventilation), immediately after the

2-hour ventilation, and after the 2-hour ventilation with a recovery period (200 hours total).

The top number in each box is the total number of parameter sets in that category, and that

number is further broken down by the category in which they started (column 1) and ended

(column 2). The number in parentheses in the first column is the number of sets that started

in that category but ended in a different one. Conversely, the number in parentheses in the

second column shows the sets that ended in a certain outcome but did not start there. These

numbers serve as a summary of how damage may affect outcome directly after ventilation

as well as after a recovery period for the variety of behaviors in the collection of parameter

sets. We will analyze all 24,432 sets that reach steady state (with steady state Ee < 50%)

to understand the full array of responses that could occur.
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2.3.2 Determining Predictors and Driving Dynamics

In this section we examine and compare the results of multiple methods that determine

the parameters and other predictors that help differentiate or predict model dynamics and

outcomes.

Correlations and Significance Testing Highlight Specific Parameters

As an initial step towards understanding relationships between parameters and model out-

put, we calculated the correlations of parameters and predictors with one another for each

outcome. There were some correlations between predictors that were very high, but were

measuring similar things; for example, maximum M1 and minimum M1. We excluded these

since they did not provide new or useful information. Aside from these, there were only a

few correlations between parameters or between parameters and predictors that were higher

than R = 0.3. The pair with the highest correlation, for outcome determined at both 2

and 200 hours, is shown in Fig 2.5 using a random sample from each classification group for

better visibility of the points. For kmne, the rate of collateral damage to epithelial cells by

macrophages and neutrophils, parameter sets that resulted in moderate and severe damage

outcomes had a significant correlation with the Eh ratio at 0.5 hours. The Eh ratio and kmne

had the following correlations for each group with classification at 2 hours: healthy R = 0.24

(not shown), moderate damage R = 0.43, and severe damage R = 0.73. For classification at

200 hours, the correlations were: healthy R = 0.1 (not shown), moderate damage R = 0.66,

and severe damage R = 0.87. These high correlations suggest that the parameter kmne may

play a key role in determining outcome, which we explored further in the following sections.

We also performed hypothesis testing for predictors. We were not able to use ANOVA,

a common statistical model used to examine the difference between group means, because

the resulting distributions for the accepted parameter sets were not necessarily normal.

The Kruskal-Wallis test is an alternative to ANOVA when the variable distributions are not

normal [84]. We categorized all parameter sets by their outcome (healthy, moderate damage,

34



(a) (b)

Figure 2.5: Scatter plot of predictors with notable correlations. Parameter kmne
(rate of collateral damage to epithelial cells by macrophages and neutrophils) versus ratio of
Eh at 0.5 hours to initial Eh values. (a) Outcome was determined at 2 hours. Correlations:
resolved to healthy R = 0.24 (not shown); moderate damage R = 0.43; severe damage
R = 0.73. (b) Outcome was determined at 200 hours. Correlations: resolved to healthy
R = 0.1 (not shown); moderate damage R = 0.66; severe damage R = 0.87. Points are a
random sample of the total points.

severe damage) and compared them. If any of the three groups had a statistically significant

difference (p-value less than 0.05), a Wilcoxon test was performed on each pair (healthy and

moderate damage, healthy and severe damage, moderate and severe damage) to determine

which groups were different from one another. P-values for the Kruskal-Wallis and Wilcoxon

tests were adjusted using the Benjamini–Hochberg procedure to control for the false discovery

rate [8]. Knowledge of which parameters and other predictors were different between groups

based on outcome provides insight into predicting outcomes and which predictors might best

influence the immune response to damage.

When classification occurred at 2 hours, 52 out of 81 parameters and other predictors

returned results for a statistically significant difference between at least two groups and

30 gave statistically significant differences between all three groups. For classification at

200 hours, statistically significant differences occurred for at least two groups and all three

groups for 40 and 13 predictors, respectively. Table 2.3 shows a summary of the results from

the various methods used to examine predictors’ significance in determining model output.
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Figure 2.6: Predictors selected by significance testing show visible differences
between injury groups. Subset of parameters and predictors that showed a statistically
significant difference between all three outcomes determined at 200 hours: healthy, moderate
damage, and severe damage, as determined by the Kruskal-Wallis and Wilcoxon tests. These
five predictors were also statistically significant when classification occurred at 2 hours. All
are shown on a log scale for better visibility. Parameters/predictors: br, baseline repair
rate of damaged cells; Eh ratio at 2h, ratio of Eh at 2 hours to Eh initial condition; kmne,
rate of collateral damage to epithelial cells by macrophages and neutrophils; M1 peak ratio,
ratio of M1 maximum to initial condition; xmne, regulates effectiveness of macrophages and
neutrophils to damage epithelial cells (Hill-type constant).

Columns 1 and 3 of Table 2.3 show the predictors in which all three groups were different

from one another for both classification times, as determined by the Kruskal-Wallis and

Wilcoxon tests. Results in other columns are described in the following sections. Box plots

of a subset of predictors in which all three groups were different are shown in Fig 2.6 to help

visualize these differences.

Parameter Sensitivity with eFAST

We calculated eFAST indexes for Eh at 30 minutes, 2 hours (end of ventilation), 6 hours,

and 200 hours (time at which outcome is determined). We included a few early time points

since we are looking for parameters that could suggest early interventions to mitigate pos-

sible negative outcomes. We calculated first-order and total-order sensitivities Si and STi,

respectively. Fig 2.7 shows results for the parameters with p-value < 0.05. Parameters xmne

(Hill-type constant for effectiveness of macrophages and neutrophils in damaging epithelial
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Classification after 2 hours Classification after 200 hours eFAST (Ordered)Sig. Testing Random Forest Sig. Testing Random Forest
(Not ordered) (Ordered output) (Not ordered) (Ordered output) 0.5h 2h 6h 200h
Eh ratio 2h Eh ratio 2h kmne kmne ken ken xmne xmne
Eh ratio 0.5h Eh ratio 0.5h Eh ratio 6h kpe br
Eh ratio 6h Eh ratio 6h xmne xmne µp µp
kmne kmne Eh ratio 2h Eh ratio 2h xmne kpe
br br Min M1 Min M1 kn kn
kep kep Eh ratio 0.5h Eh ratio 0.5h kep xmne

xmne Min M2 Min M2 br kep
Min M1 Min M1 M2% at 10h M2% at 10h kan
ken ken br br
sn sn ken
Max M1 M1 peak time
Min M1% kep
kan M1 peak ratio
Max M1% µp
kem1 kem1

M1 peak time
kam1

µna
Max M2%
kn
µp
Min M2%
a∞
sm
M2% at 10h
µab
kpm1

bp
knn
xm0ab

µm1b

Table 2.3: Summary of three different methods used to determine the most influential pre-
dictors, including parameters and other factors. Columns 1-4 show results for all 24,432
parameter sets. Columns 1-2 show results for analysis methods with classification into three
categories (healthy, moderate damage, severe damage) after 2 hours, and columns 3-4 show
results for classification after 200 hours. Columns 1 & 3: significance testing results for
predictors in which all three groups are statistically different (p-value < 0.05). For ease of
comparison between columns, the predictor is listed next to its counterpart in the ordered
random forest list, if listed in that column. Column 2 & 4: average importance values
determined by random forest decision trees. The top ten are ordered from highest to low-
est importance. Columns 5-8: first-order eFAST results (ordered by p-value, with p-value
< 0.05) for four time points.
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cells), br (baseline repair of damaged cells), and ken (phagocytosis of damaged cells by N)

were sensitive for several time points. There were no parameters with total-order sensitivity

p-value < 0.05 for 6 hours. Parameters with a significant Si may be better candidates for

treatment than those with a significant ST i because first-order sensitivity measures sensitiv-

ity of Eh based only on fluctuations in a single parameter. For this reason and since many of

the same parameters are significant for first-order and total-order sensitivity, we show results

for first-order sensitivity in Columns 5-8 of Table 2.3, ordered from lowest p-value to highest

and for the four time points specified.

Random forest algorithm to determine predictors

To offset any unusual results generated by the randomness of the decision tree algorithm, we

replicated the process of randomly selecting a training set and generating importance values

from the random forest 1000 times. Fig 2.8 shows the average and standard deviations of

the top ten importance values generated for both 2-hour and 200-hour classifications.

Many of the same predictors are seen in both 2 and 200-hour outcomes, though in a

different order. Notice that the standard deviations in both figures are small and support

that the predictors remain the same across multiple random forest simulations. Furthermore,

several of the top ten predictors were found to be significant by the Kruskal-Wallis test, and

br, xmne, and ken are shared by random forest and eFAST. (see Table 2.3). The consistency

of the importance of these parameters and predictors using different methods supports the

idea that they play a significant role in the sensitivity of model output and determining or

differentiating outcomes, both immediately after ventilation and after a period of recovery,

though they may be more important at specific times.

2.3.3 Modulating recovery: a case study of select transients

Fig 2.9 shows four examples of transients that started in one category and ended in another

after ventilation plus a recovery period. We used the information gained in the parameter
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(a)

(b)

Figure 2.7: Parameter sensitivity analysis shows which parameters most influence
model output. Parameters determined by eFAST to be most sensitive, with p-values
calculated by comparing eFAST sensitivity indexes to a dummy variable. Results are given
for each of the time points tested: 0.5 (red), 2 (blue), 6 hours (purple), 200 hours (navy).
(a) First-order sensitivity, also shown in Table 2.3. (b) Total-order sensitivity. Results at 6
hours are not shown as there were no statistically significant parameters at that time point.
Parameters: ken, rate of phagocytosis of damaged cells by N ; kpe, production rate of p by
Ed; µp, decay rate of p; xmne, regulates effectiveness of macrophages and neutrophils to
damage epithelial cells (Hill-type constant); kn, rate of migration of Nb to lung; kep, rate
of self-resolving repair mediated by p; br, baseline repair rate of damaged cells; kan, rate at
which neutrophils become apoptotic.
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(a) (b)

Figure 2.8: Random forest decision tree selects top indicators of outcome. Mean and
standard deviation of importance values for the top ten highest predictors from 1000 random
forest decision trees. Results with classification at (a) 2 hours and (b) 200 hours. Parameters:
kmne, rate of collateral damage to epithelial cells by macrophages and neutrophils; br, baseline
repair rate of damaged cells; kep, rate of self-resolving repair mediated by p.; xmne, regulates
effectiveness of macrophages and neutrophils to damage epithelial cells (Hill-type constant);
ken, rate of phagocytosis of damaged cells by N ; sn, source rate of N0b. Eh ratio at 0.5, 2,
and 6h represents the ratio of Eh at those time points to its initial condition.
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(a) (b)

Figure 2.9: Some parameter sets generate transients that end in a worse outcome.
(a) Transients of Eh that started in one category and ended in a different one. (b) Cor-
responding transients of M1. We included examples of all possible worsening changes in
classification as well as a case in which all variables were set to zero due to Ee > 0.75 at
some time.

analysis to identify key targets for interventions that could modulate damage, especially in

the case of a patient starting in one state and ending in a different, negative outcome even

after a recovery period. The goal was to return the percentage of healthy epithelial cells to

its original steady-state earlier, since the inability to recover from a 2-hour vent after 200

hours or more could be detrimental to long-term health.

Our analysis showed that the parameters kmne, the rate of collateral damage by macrophages

and neutrophils to epithelial cells, xmne, the Hill-type constant which regulates the effective-

ness of macrophages and neutrophils in damaging epithelial cells, br, the rate of self-repair

of healthy epithelial cells, and ken, the rate of phagocytosis of damaged cells by neutrophils,

were some of the most influential parameters and thus could inform targets for intervention.

Furthermore, in the previous section, we obtained results for classification at 2 hours and 200

hours, showing how parameter sensitivity differs between time points. Thus, we examined

interventions beginning at several time points (see Fig 2.10).

We intervened in a case that started healthy and ended in moderate damage. Note in

Fig 2.10, the original Eh transient began recovery to healthy after the two-hour ventilation
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Figure 2.10: Modulating parameters based on parameter analysis improved out-
come in case study. Starting with a parameter set that gave rise to an Eh transient that
started healthy and ended in a moderate damage state, we applied various treatment strate-
gies by changing three key parameters, br (rate at which healthy epithelial cells self-repair),
kmne (rate of collateral damage to epithelial cells by macrophages and neutrophils), and
xmne (Hill-type constant which regulates the effectiveness of macrophages and neutrophils
in damaging epithelial cells). Results for various changes are shown for healthy epithelial
cells (a, b, c) and percent of M1 macrophages (d, e, f). Treatment began at 0, 2, or 4 hours
after the start of ventilation, denoted by solid, dotted, and dot-dashed lines, respectively,
and lasted for 48 hours. The original parameter values are br = 0.33, kmne = 0.38, and
xmne = 0.92. Black transients show the original dynamics without intervention. Orange
transients show moderate treatment for each parameter, which was found to be insufficient
in mediate the injury. Blue transients show stronger treatments, which were sufficient to
bring about resolution for some intervention times.
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period, but by the end of the 200-hour period, was at a lower Eh value than it was initially.

This was coupled with a transient for M1 in which the pro-inflammatory phenotype increases

significantly and then stays in the 40-45% range.

Increasing br by various amounts had increasingly positive effects on long-term epithelial

health. Lower values of br increased Eh slightly and an earlier intervention generated a

higher peak of Eh around five hours, but did not continue increasing at this rate regardless

of intervention time. If br was increased substantially for a significant duration of treatment

time, healthy epithelial cells reached the healthy steady-state after ventilation and did not

decrease again. Shown in Figures 2.10a and 2.10d, doubling br to 0.66 was not enough

to generate recovery, but increasing br by a factor of four to 1.32 did result in a healthy

outcome. For an insufficient treatment duration and value of br, levels of Eh were higher

until treatment ended and then decreased back to the same level as the original simulation.

For a long enough treatment duration, the proportion of healthy epithelial cells remained

high even after treatment ended. For br = 0.66, the intervention time did not improve health

in the long run, whereas for br = 1.32, intervention at either 0 or 2 hours was sufficient to

bring about recovery while intervention at 4 hours was not.

The parameter kmne has an inverse relationship with epithelial health; thus, decreasing the

parameter provided better results. Decreasing kmne slightly increased the rate of recovery but

not enough to change the outcome to resolved. However, with a significant enough decrease

of kmne, M1 activation peaked around hour 10 and decreased back to its original level. The

original simulation shows M1 activation leveling off at a high percentage of activation (Fig

2.10e). The modulated return to baseline levels was paired with a healthy outcome for

epithelial cells (Fig 2.10b). For higher values of kmne, results were about the same for any

intervention time 4 hours or less after the beginning of ventilation. Note in Fig 2.10 that

the time at which intervention begins mattered somewhat for changes in br but not for kmne.

Figures 2.10b and 2.10e show that half of the original value of kmne (0.38 to 0.19) was not

low enough to change the outcome; multiplying by a factor of 0.1 to kmne = 0.04, on the
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other hand, was sufficient to change the outcome to healthy.

We also increased the parameter xmne. Increasing this value caused the presence of

macrophages and neutrophils to be less effective in damaging epithelial cells. Similarly

to the other treatments, sufficient changes to xmne brought about long-term recovery and

the time at which intervention began was not as important. Figures 2.10c and 2.10f show

doubling xmne to 1.85 was insufficient to change the outcome, and increasing xmne by a factor

of four to 3.69 was sufficient.

Finally, we increased ken. This increased the rate at which neutrophils phagocytize

damaged cells, making room for new, healthy cells. Interestingly, although ken was shown

to be an important parameter in our analysis, even increasing the parameter by a factor

of ten to 1.52 was insufficient to make any real changes in the epithelial and macrophage

populations. Since there was no significant change, we do not show this treatment in Fig

2.10.

We also examined the results of combination therapy that could include regulation of

two or three parameters. Together, changes in parameter values that would be insufficient

on their own were able to regulate macrophage activation and bring epithelial cells back to a

healthy state. Additionally, higher values of br and xmne and lower values of kmne precipitated

a quicker recovery from damage. Intervention time was important for parameter values

near the threshold, but not for parameter values sufficiently above or below the threshold.

Intervention time may make a difference in the ending values of Eh orM1, depending on the

parameters. Many combinations could be formulated; Fig 2.11 shows two cases in which two

parameter changes were insufficient to bring about recovery individually but were sufficient

when combined. The orange curves show br = 0.99 and kmne = 0.19 and the blue curves

show xmne = 2.31 and ken = 1.52, which brought about long-term recovery for all three

intervention times.

For other cases starting in a healthy state and ending in moderate or severe damage,

a high enough br can bring about resolution in some cases. In general, earlier intervention
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Figure 2.11: Treatment by combining parameter changes can result in a positive
outcome. Changes in br, kmne, xmne and ken that were insufficient on their own (Fig
2.10) resulted in a change in outcome when combined. Orange curves show a combination
treatment of br = 0.99 and kmne = 0.19 and blue curves show that of xmne = 2.31 and
ken = 1.52. Duration of treatment in each case was 48 hours, and all intervention times (0,
2, and 4 hours) were successful in a long-term recovery.

times resulted in a faster rate of recovery, but there were varied responses to changes in

kmne, xmne, and ken. Even for transients with similar Eh and M1 dynamics, reactions to

interventions may be different, reinforcing the uniqueness of each parameter set, mirroring

the variety of patient responses to MV.

2.4 Discussion

MV is a widely-used short-term life support technique. However, despite its life-saving uses,

it often comes with serious complications. Decades of work have contributed to our under-

standing of the physiology and management of MV, though additional research is needed

to best care for patients during and after the period of ventilation, including interventions

that target inflammation triggered by ventilator-induced lung injury [99]. Within the im-

mune response, the spectrum of macrophage activation has been a recently growing field of

research [11, 128] and with recent findings regarding differences in macrophage polarization

linked to age [12, 16], a better understanding of and treatment for VILI is of great concern.
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Additionally, mortality rates for MV patients increase with age [26, 117]. Mathematical

models have studied a host of causes of lung inflammation, including bacterial and viral

infections and allergic reactions [86]. Our model includes macrophage polarization with a

more detailed epithelial subsystem to model ventilator-induced lung injury. These features

provide a better understanding of how the components of the immune response, including

those associated with the different macrophage phenotypes and baseline lung health (steady

state values), play a role in post-ventilation outcomes both immediately after ventilation as

well as after a period of recovery.

Our approach of developing a collection of parameter sets and identifying the important

parameters is a first step in uncovering the driving mechanisms behind VILI and how they

contribute to outcomes. Analysis of the model showed that properties and parameters related

to epithelial repair and M1 activation and de-activation were especially predictive of outcome.

We used br, the rate of self-repair of epithelial cells, kmne, the rate at which macrophages

and neutrophils cause collateral damage to epithelial cells, xmne, the Hill-type coefficient

that regulates the effectiveness of that collateral damage, and ken, the rate of phagocytosis

of damaged epithelial cells by neutrophils, to simulate treatments for a parameter set in

the collection that started healthy and ended in a moderate damage outcome. We found

that modulating br is effective in most cases, and the other four can be helpful in some.

The chosen case responded differently to treatments and these were paired with varied M1

activation dynamics, indicating that macrophage activation is tied to epithelial health in

VILI.

The epithelial subsystem in this model is a simplified version of epithelial cell dynamics

that reduces complexity by not accounting for each individual cell and all possible damage

levels. We used three categories to model epithelial cell states where a damaged epithelial cell

corresponds to increased production of pro-inflammatory mediators. Using this model with

data will require alignment of these variables with experimental measurements of lung health.

Future iterations of this model would ideally be calibrated with M1/M2 activation and lung
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epithelial data in the context of VILI derived from clinical samples. However this would

likely need measurements of macrophage phenotypes and epithelial health at multiple time

points from various age groups. Until these types of clinical and experimental measures are

available, biologically relevant dynamics could be determined using inflammatory biomarkers

and macrophage recruitment from cell and tissue experimental models of VILI [109, 129, 140].

For example, Valentine et al. [131] recorded inflammatory gene expression and monocyte

recruitment in response to in vitro mechanical stretch.

Another area of study is determining if and when the model is bistable, identifying mech-

anisms that can transition trajectories from one steady state to another, and establishing

when this is biologically relevant with regard to treatment. This would help address why

some virtual cases can recover with a short intervention time while others need indefinite

treatment. Additionally, this model can be expanded to include other types of injury and/or

the comorbidities that lead to needing MV, such as a bacterial or viral infection or ARDS,

or coupled with other previously published models, to study the interactions between the

different types of injury and how they contribute to patient outcome.

In conclusion, our model contributes to the current understanding of the immune response

in the lungs, and is an important first step for VILI. Our parameter analysis using a variety

of methods provides new insight into potential interventions during and after ventilation

to mediate VILI. Experimental data will greatly improve our ability to suggest treatments.

Furthermore, the model can be extended to address specific diseases.
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Chapter 3

VILI Model: Methods for Outcome

Prediction

3.1 Introduction

In recent years, virtual cohorts have become a way to guide patient interventions in a more

personalized manner and reduce the expense and risk of experimental and clinical studies

[21]. In this way, a single model can accommodate a variety of patient dynamics and re-

sponses by changing model parameters. However, the methods used to obtain patient-specific

information are highly specific to the type of injury, data available, and the model itself.

In Chapter 2, we utilized our ODE model and a collection of parameter sets to represent

the variety of dynamics observed in patients. We then used this information to determine

the parameters to which model output was most sensitive. In this chapter, we extend the

use of our model and parameter collection to predict severe responses to ventilation and

determine the next best time to obtain new data.

Previously, the Maximally Informative Next Experiment (MINE) algorithm was intro-

duced by Dong et al. [33] to guide experimental design such that model uncertainty is

reduced. The MINE approach considers the variance between predicted model outputs; the
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larger the variance at a future time point, the more knowledge can be gained from exper-

iments at that time point. The MINE algorithm was developed specifically for systems of

ODEs and has been extended and applied to various models [29, 32, 82].

Currently, a sufficient amount of data is not available for our model to utilize a formal

MINE approach. However, with the same principles, we used an alternative to parameter

variance, since our parameter space is large and exact parameter values are currently un-

known. Thus, using principles similar to the MINE approach and synthetic data generated

from the collection of parameter sets in Chapter 2, we developed a process through which we

can predict changes in epithelial health after ventilation, determine potential next sampling

times, and provided recommendations for future efforts to obtain experimental data. When

more data is available, this same process can be used iteratively with experiments.

3.2 Methods

3.2.1 Generation of synthetic data & outcome classification

We first obtained synthetic data from the ODE model-generated dynamics corresponding

to each parameter set in the collection. We mimicked a clinical setup such that ventilation

occurred for 48 hours, and samples were collected every 12 hours during that period. Simu-

lating a 48-hour ventilation resulted in numerical errors for some parameter sets; these cases

were removed for a total of 24,170 sets with Ee(0) < 0.5, consistent with our methods in

Chapter 2. To obtain synthetic data, values were "collected" from transients generated from

each prameter set in the collection at these time points and perturbed with 10% uniform

noise. In a clinical setting, data can potentially be recorded for macrophage and pro- and

anti-inflammatory mediators as well as some measurement of epithelial health. Therefore,

the synthetic data we generated included all of these variables, for both the site of inflamma-

tion and bloodstream compartments. We used various combinations of available synthetic

data throughout the rest of this chapter when testing the predictive ability of our methods.

49



In Chapter 2, the outcome was based on the ending value of Eh, the proportion of health

epithelial cells. In this chapter, we still utilized this number but in relation to its initial

condition; the set was categorized as having a severe response to ventilation, or having a

"worsening" outcome, if the value of Eh at 200 hours (48-hour vent plus a recovery period)

was at least 20% less than its initial condition. If the set was less than 20% lower, it was

categorized as not changing. We chose to examine not just Eh at the end of the simulation

as in Chapter 2, but rather classify whether the condition worsened to evaluate VILI. We

wanted to be able to predict whether a patient will deviate from their initial state after

ventilation and a period of recovery. Also in Chapter 2, if Ee > 0.75 at any time during the

simulation, all variables were set to zero to preserve a reasonable threshold of survival during

ventilation. In this chapter, we felt that it did not make sense to set the variables to zero

and then generate the data; this would skew calculations used in our algorithm and affect

the machine learning methods because of the sharp change in the variables at that time. To

maintain a reasonable threshold of survival, we set Eh = 0 at the end of the simulation for

any transient that had Ee > 0.75 at any time. Then the outcome is determined based on

this ending value in comparison to its initial condition.

3.2.2 Initial parameter estimation

One of the most common methods for estimating parameters is through curve-fitting al-

gorithms such as nonlinear least squares. As a proof of concept, we first fit our model to

synthetic data (without noise) using a nonlinear least-squares method which takes an initial

guess. Since least-squares methods are sensitive to initial guesses, we obtained 30 fits using

30 initial guesses randomly generated between the upper and lower bounds. Bounds for

parameters were obtained from the values in Table 2.2 and for initial conditions from zero to

the maximums generated by the collection of parameter sets in Chapter 2. We also ensured

that initial conditions for Eh, Ed, and Ee summed to one.

We estimated all parameters and initial conditions using synthetic data from variables
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(a) (b)

Figure 3.1: Results of parameter estimation using a least-squares method. Points represent
synthetic data, and solid lines represent the transients generated from fitting the original
parameters and initial conditions to synthetic data. Solid lines represent the 10 parameter
fits with the lowest norm of the residuals out of the 30 initial guesses. Transients show
Eh scaled by Eh + Ed + Ee for (a) the four time points at which data was input into the
parameter fit process and (b) the complete 200-hour simulation.

representing healthy epithelial cells, M0, M1, M2 macrophages, and pro-inflammatory and

anti-inflammatory mediators in the alveolar space and the bloodstream at four early time

points. Results for Eh are shown in Figure 3.1.

As can be seen in Figure 3.1, the parameter estimation routine did not return satisfactory

fits. This may be due to the large ranges for initial conditions and parameters and the large

number of variables and time points the algorithm had to fit. Another drawback of using

a least-squares parameter estimation is that the parameters which best fit the data may

result in a system whose dynamics are not driven by the damage itself. In Aim I, we

discussed the value of our model in exploring the development of VILI in isolation, without

considering comorbidities such as infection. We established a numerical steady-state criteria

such that the dynamics seen were only due to ventilator-induced damage. When performing

parameter estimation through an algorithm such as least-squares, the dynamics generated by

the estimated parameters cannot be guaranteed to arise only from damage due to ventilation.

Furthermore, due to the large number of parameters and variables compared to data
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available, the results of a least squares fit like the one seen in Figure 3.1 do not consistently

reflect the dynamics of the true parameter set. To ensure damage-driven changes in the

components of our model, we used the collection of 24,170 parameter sets developed in the

previous aim. All of these parameter sets satisfy the necessary condition that in the absence

of damage, all variables remain at a numerical steady-state.

In Aim I, simulations were performed with a two-hour vent time which reflects murine

experiments [121, 141]. In this aim, we changed the vent time to 48 hours, representing

a timeline more appropriate to a clinical setting. In the following sections, we propose a

method using our collection of parameter sets and corresponding dynamics with the goal of

accurately predicting a worsening outcome due to VILI.

3.2.3 Development of RES algorithm

Our algorithm is based on having a large collection of in silico immune system data for which

the outcome is already known. Then for an incoming data set, a subset of this collection

that behaves similarly to the data is selected, and predicts the outcome based on what is

already known about this subset.

We obtain this subset through calculating a relative error metric for each variable v, with

data points x0 and their corresponding synthetic data point x generated from the collection,

accounting for all time points t that are available. We then sum over all variables for which

samples have been collected. We call this a relative error sum (RES), calculated as follows:

RES =
∑
v

√√√√∑
t

(
x− x0
x0

)2

Therefore each member of the collection has an RES metric in comparison to the data

set. The n parameter sets with the smallest RES are selected to predict the outcome. The

data is predicted to an outcome if a certain percentage of the selected subset reaches that

outcome; this decision threshold can be varied, which will be discussed below.
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3.2.4 Possible combinations of data

Different clinical situations or experiments may necessitate different types of data collection.

We wanted to examine the success of our algorithm in the context of multiple cases of data

availability, and comment on which combinations of variables and time points may provide

the best predictions. Therefore, we examined seven different cases of data availability in the

form of model variables. All cases contain samples taken at 0, 12, 24, and 36 hours unless

otherwise specified, and we performed our prediction methods on these combinations of data:

1. Eh, macrophages and inflammatory mediators from the alveolar space and blood-

stream.

2. Eh, macrophages and inflammatory mediators from the alveolar space and blood-

stream. Does not include samples at t = 0 hours.

3. Macrophages and inflammatory mediators from the alveolar space and bloodstream.

4. Macrophages and inflammatory mediators from the bloodstream.

5. Eh and macrophages from the alveolar space and bloodstream.

6. Macrophages from the alveolar space and bloodstream.

7. Macrophages from the bloodstream.

We will refer to these numbers throughout this chapter in reference to the types of data

availability.

3.2.5 Varying the decision threshold

The parameter sets selected by the RES formula are then used to predict the outcome of

the given data set. At the very least, more than half of the selected sets should have a

particular outcome in order to predict that the data also has this outcome. However, in

a clinical setting, a threshold of 50% is likely not enough for a confident prediction and
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justification for intervention. Therefore, we explored varying the decision threshold such

that 60%, 70%, or some other percent of the selected subset was necessary to classify the

data into a particular outcome. This also introduced the possibility that the algorithm may

generate a subset in which the percentage of sets in one outcome or the other does not reach

the desired threshold, resulting in an inconclusive outcome. We investigated additional ways

to support outcome prediction in inconclusive cases, discussed in the following sections.

3.2.6 Comparison of RES to other classification methods

A main purpose of the RES process was to classify a data set into one of two categories:

Eh changes by a sufficiently large amount (20% or more), or Eh does not change. Other

classification methods exist, so we compared the success of our methods to these. First,

we implemented a random forest decision tree, a machine learning method used in Chapter

2. Instead of using the random forest to identify important parameters, as we did in the

previous chapter, we used it to predict classification into one of the two categories using the

available data. We first selected a subset of the collection as a training set, and the rest as a

test set. The random forest was created from the training set, and then used to predict the

outcome of each member of the test set. Second, we used logistic regression, where input

(data) is continuous but output (classification) is binary [96]. We also used a training and

test set for logistic regression.

Additionally, the ranges of the variables themselves are large and different for each vari-

able, so they were scaled before training and testing by subtracting the mean of each variable

and dividing by the standard deviation.

Considering class imbalances

One of the main challenges associated with classification using machine learning methods

is the class imbalance problem. It is important to note that out of the 24,170 members of

the collection, only 13.75% decrease by 20% or greater after a 200-hour simulation. When
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a machine learning algorithm such as a decision tree method trains a model, it is motivated

to correctly classify the group that has a significantly greater sample size so that it has a

higher percentage accuracy. This results in the group that has a smaller sample size being

disproportionately misclassified.

There are a number of ways to circumnavigate this issue; two of the most common

approaches are [68]:

1. Impose a higher cost when a member of the smaller group is misclassified. Many

functions have been developed to determine these cost values, or the cost can be factors

proportional to the total number of cases in each group such that the the cost factor

for the smaller group is larger than the cost factor for the larger group.

2. Construct the model based on training samples of each group so that the samples are

the same or similar sizes.

We applied the latter method for its ease of implementation, comparing results when class

imbalances were considered and when they were not. When considering class imbalances, we

constructed a training set by randomly selecting 1000 samples from the "change" group and

1000 from the "no change" group. The test set was the entire collection. When not taking

class imbalances into account, the training set consisted of a random sample of the entire

collection, as described above.

3.2.7 Next sample time algorithm

A feature of our process is that not only does it predict a data set’s outcome given the time

points available, but it is extended to determine the next best time to sample, to gain a more

confident prediction or a new prediction in the case of an inconclusive result when there is

not sufficient information. This process takes the subset selected by the RES algorithm and a

set of possible time points at which a new sample can be taken. To demonstrate the process,
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we chose a set of possible new time points to be every six hours after the original samples

were taken, through 96 hours. To select the next sample time, the steps are as follows:

1. Obtain the subset of n parameter sets and corresponding transients with the smallest

RES.

2. For each member of the subset, get value of Eh at each possible next sample time, as

if the sample were taken at that time point.

3. At each possible sample time, calculate the variance of the n Eh values.

4. Obtain the possible sample time at which the variance is the highest - choose this as

the next sample time.

The concept behind selecting the next sample time is choosing when variance among

potential predictions is highest; thus, when the sample is actually taken, there may be less

uncertainty regarding the prediction that the algorithm makes [82].

In a clinical or experimental setting, obtaining a next sample time is useful when the

current data does not provide enough information about whether or not to intervene; this

case is reflected in the data considered "inconclusive" by the RES algorithm. Therefore, we

used the next sample time algorithm to choose a time and simulated collecting data at that

point. Then, the RES algorithm was employed again, where a smaller subset of the original

set selected by the RES algorithm determined the outcome based on the additional data

point.

3.2.8 Using parameters to support classification

The benefit of having a collection of parameter sets and their corresponding transients is

that not only can information be gained from the variables’ dynamics, but also from the pa-

rameters themselves, as we showed in Chapter 2 through various analysis methods including

random forest and eFAST.
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In this chapter, we used parameter values as a supplement to classification when the

process resulted in an inconclusive decision. Future work could involve using parameter

values in conjunction with the RES algorithm, but in this work we ranked decisions by

the RES algorithm as final if they did not return inconclusive. We used random forest

to calculate the importance values for the parameters when outcome was determined by

whether Eh worsened, not by the Eh ending value as in Chapter 2. The six parameters with

the highest importance values were bp, kmne, xmne, ken, kep, and µp. We tested various

combinations of these parameters as predictors to examine their effectiveness in predicting

outcome.

Since these six parameters were shown in Aim I to be good predictors of outcome, our

method used the means of the parameter values associated with the subset of selected sets

to predict outcome depending on whether it lies above or below certain means. These means

were compared to the means of the overall collection. For each of the six parameter listed

above, three overall means were calculated: 1) mean over all parameters in the collection,

2) mean over parameters associated with a "change" outcome, and 3) mean over parameters

associated with a "no change" outcome. We calculated their arithmetic means as well as their

geometric means since parameters were sampled on a logarithmic scale. We compared this

classification method with random forest and logistic regression methods using the parameter

values as predictors.

In all cases except the geometric mean of µp, the means associated with "no change" and

"change" outcomes were on opposite sides of the total mean. For example, the arithmetic

mean of kep associated with "no change" was greater than the overall mean, and the mean

associated with "change" was less. This provides intuition about how comparing individual

parameter values with these means could help classify into one outcome or the other.

Our goal was to increase confidence in the algorithm’s prediction, so instead of classifying

based only on the overall mean, which could result in greater overlap between the two

classification groups, we classified data only if the parameter was above or below the "change"
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Figure 3.2: Example of how our algorithm predicts outcome based on a parameter value.
For some parameter α, if the parameter value associated with a certain data set is less than
the mean associated with a "change" outcome, Eh is predicted to change by greater than
20%. If the parameter is greater than the mean associated with a "no change" outcome, Eh
is predicted not to change.

or "no change" means. See Figure 3.2 for a visualization.

Not only can individual parameters aid in prediction, but groups of parameters can

provide additional information about the outcome. We performed our prediction method on

all combinations of the six parameters, such that if a majority of parameter values predicted

an outcome, the data set was classified as having that outcome. Comparing the results of

each parameter combinations can show which parameters - together and separately - hold

the greatest predictive power.

3.3 Results

In this section, we examine the results of our algorithm applied to the collection of parameter

sets developed in Chapter 2. Our goal is to use this collection and their resulting transients

to predict worsening outcomes using early time points, and recommend informative next

sample times to reduce harm to the subject or patient and decrease cost. Figure 3.3 shows

a diagram of the process used to make predictions. For every synthetic data set, the RES

algorithm made an initial prediction. If that prediction was inconclusive, we performed

either the next sample time algorithm or parameter means method to decrease the number

of inconclusive results and increase accuracy.
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1. Generate synthetic 
data

2. Use RES algorithm 
to predict outcome

3a. If inconclusive: 
next sample time or 
parameter means

3b. If RES algorithm 
returned “change” or 

“no change” prediction

4. Make final 
prediction

Figure 3.3: Diagram of the process used in this section to obtain predictions of whether a
synthetic data set indicated a severe response to ventilation.

3.3.1 RES method compared to other classification methods

We first sought to evaluate the accuracy of our method in comparison to two established

classifications methods, random forest decision tree and logistic regression. Figure 3.4 shows

how the RES algorithm, using selected subsets of 10, 20, or 30, compared with the established

methods. We also show the corresponding accuracy with percent false positives and false

negatives in Table 3.1. We set the decision threshold to 50%, where if 50% or more of

the RES sets reached a "change" outcome, the data set was predicted to have a "change"

outcome. Otherwise, it was classified as having no change. This way, data sets could not be

classified as inconclusive. Changing the decision threshold is explored in the next section.

We fit the random forest and logistic regression models first without taking class imbal-

ances into account. We randomly chose 70% of the collection as training data, and tested on

the remaining 30%. Second, we took class imbalances into account by using a training set

that consisted of 1000 sets with a "change" outcome and 1000 with a "no change" outcome.

We used the entire collection as a test set to prevent too large or too small of one outcome

to skew results.

Taking into account class imbalances resulted in a higher percentages of the smaller

"change" group being classified correctly, but unsurprisingly at the expense of correctly-
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Percent accuracy
Data type ns = 10 ns = 20 ns = 30 Rand For Log Reg

1 96.01 96.00 96.02 97.75 97.47
2 95.25 95.15 94.99 97.44 97.03
3 88.61 88.29 88.34 88.86 86.20
4 88.62 88.27 88.23 88.59 86.22
5 96.78 96.63 96.70 97.80 97.29
6 87.25 86.99 86.89 87.04 86.20
7 87.29 86.91 86.82 87.10 86.29

Percent false positive (falsely identified as needing intervention)
ns = 10 ns = 20 ns = 30 Rand For Log Reg

1 2.54 2.39 2.25 1.06 2.01
2 3.16 3.13 3.24 1.24 2.11
3 2.07 1.42 1.13 13.59 10.15
4 1.82 1.13 0.85 13.72 10.12
5 1.35 1.29 1.13 1.09 1.95
6 0.74 0.31 0.24 13.73 12.61
7 0.64 0.22 0.14 13.68 12.44

Percent false negative (not identifying a needed intervention)
ns = 10 ns = 20 ns = 30 Rand For Log Reg

1 1.45 1.61 1.73 1.46 0.24
2 1.59 1.73 1.77 1.73 0.45
3 9.33 10.29 10.53 0.20 1.00
4 9.56 10.59 10.92 0.05 1.28
5 1.87 2.09 2.17 1.62 0.25
6 12.01 12.71 12.88 0.06 0.35
7 12.06 12.87 13.04 0.04 0.46

Table 3.1: Accuracy, false positives, and false negatives for our RES algorithm with 10, 20,
or 30 selected subsets, compared to random forest and logistic regression results.
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Figure 3.4: Percent accuracy of each approach to predicting outcome. Types of data avail-
ability are as follows: 1) Eh, macrophages, and mediators in bloodstream and alveolar space,
2) Same as 1, but without samples at t = 0 hours, 3) Macrophages and mediators from alve-
olar space and bloodstream, 4) Macrophages and mediators from bloodstream, 5) Eh and
macrophages from alveolar space and bloodstream, 6) Macrophages from alveolar space and
bloodstream, 7) Macrophages from bloodstream. 10, 20, and 30 RES represent selecting
subsets of the smallest 10, 20, and 30 relative error sums to predict outcome. Dashed black
line at 86.25% represents the percentage of sets that have a "no change" outcome. Values of
percent accuracy, false positives, and false negatives are shown in Table 3.1.

predicted "no change" data sets. The accuracy of these models was significantly lower than

that of the models that did not take into account class imbalances, so we only show results

for models that did not take class imbalances into account.

The vast majority of synthetic data sets resulted in a "no change" outcome. If we were to

predict that all cases, had a "no change" outcome, we would be correct 86.25% of the time,

represented by the dashed black line in Figure 3.4. This means that nearly 15% of cases would

be misclassified; we used our algorithm to not only predict the "no change" sets correctly,

but also improve early identification of "change" outcomes. We included this benchmark in

the figure because we sought predictive methods that achieved a percent accuracy of greater

than 86.25%.

As can be seen in Figure 3.4, the RES algorithm performed well in comparison to the

machine learning methods, slightly better in some cases than logistic regression and slightly

less effective than random forest. The size of the subsets selected in the RES algorithm

(10, 20, or 30) did not make a significant difference in the results. There was, however, a
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noticeable difference in results between data availability types 1, 2, 5 and 3, 4, 6, 7. The

former group contains some measure of Eh whereas the latter does not, suggesting that

having a measure of Eh in the data set improves prediction. This is not surprising since Eh

is used in determining the outcome.

More surprisingly, though, was that the accuracy rate of the RES algorithm was higher

for data availability type 5 than for 1 and 2, even though type 5 does not include data on

pro- and anti-inflammatory mediators whereas 1 and 2 do. Similarly, adding these mediators

as predictors in random forest and logistic regression increased accuracy by less than one

percent. This decrease in accuracy by RES and only minor improvement by the other meth-

ods may be due to the high variability of the pb, ab, p, and a transients. Given experimental

data, acceptable dynamics for these variables could lead to reduced variability allowing them

to aid in prediction.

Another unexpected result was that including initial conditions, i.e. data at hour 0,

did not significantly improve accuracy of any of the classification methods. Examining the

difference between data availability types 1 and 2, where type 2 is the same variables as 1

but without data at hour 0, accuracy differed by less than half a percent for all methods

shown in Figure 3.4; in fact, RES with a selected subset of 10 and logistic regression had

slightly better accuracy when not including initial conditions.

These findings support the use of the RES algorithm, as its results were comparable to

well-established classification methods and also provides the basis for the algorithm that

chooses the next sample time. Furthermore, it provides insight into the types of data that

should be collected and when. Since collecting samples can be expensive and invasive, it is

useful to choose only what is necessary, and in silico modeling provides the ability to test

different combinations of data and guide experimental design.
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(a)

Figure 3.5: Results of RES method when varying decision threshold from 50% to 80%. The
method was performed for all seven data data availability types by selecting a subset of
20 to determine outcome. Y-axis begins at 60% to highlight differences between decision
thresholds. Dashed black line at 86.25% represents the percentage of sets that have a "no
change" outcome.

3.3.2 Varying the decision threshold

In the previous section, the decision threshold for the RES algorithm was 50%, such that

if 50% or more of the subset had a certain outcome, the data was predicted to have that

outcome. This means that for a decision threshold of 50%, every data set was guaranteed

to be classified, but this does not provide much confidence in the results. Therefore, we

explored the effects of increasing the decision threshold such that a greater percentage of the

selected subset must have a certain outcome to classify a data set. We began with a simple

majority and increased to 80%. Figure 3.5 shows the results for all seven data availability

types. Results from selected subsets of 10, 20, and 30 were all similar; thus, we only show

results from 20 sets here.

For every increase in the decision threshold, fewer data sets were misclassified; however,

the cost was that more sets were considered inconclusive, where neither outcome had a per-

centage of the selected subset that reached the threshold. This may be preferred in a clinical

setting, where a greater degree of confidence is needed when considering additional interven-

tion. The greatest number of misclassifications occurred with the lowest decision threshold,
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50%, paired with no inconclusive sets. As the decision threshold increased, the total num-

ber classified both correctly and incorrectly decreased and the number of inconclusive sets

increased. There was a large increase in inconclusive sets between 70 and 80%. For data

availability types 1, 2, and 5, the total percentage of misclassified sets show about half false

positive and half false negative. On the other hand, for types 3, 4, 6, and 7, nearly all of the

misclassified sets were false negatives. This is most likely due to the much larger number

of sets that do not change than the number that do. A benefit of this process is that the

threshold can be adjusted based on the needs of the situation; for example, if a greater cost

occurs for a misclassified set than an inconclusive one.

3.3.3 Next sample time & new predictions

When available data does not provide convincing evidence of one outcome or the other, an

additional sample later in time may be useful. Using an extension of the RES algorithm,

we performed additional predictions on sets that were considered inconclusive by using our

"next sample time" process described in the Methods section. Using a selected subset of 10

gave slightly higher success rates when predicting the new outcome, whereas selected subset

of 30 had a lower number of inconclusive sets. A selected subset of 20 balanced both of these

considerations, so we show results for 20 in Figure 3.6.

The bar graph shows stark differences between the number of inconclusive sets determined

after the first prediction by the three decision thresholds shown: 55, 60, and 70%. For all data

availability types with a 55% decision threshold, less than 400 out of 24,170 were originally

inconclusive. To ensure no inconclusive sets after the next sample time determined by the

algorithm, sets were classified as having a "change" outcome if 50% or more of the new

subset had a "change" outcome. The number of sets that came out inconclusive after the

first round of classificaiton increased as the decision threshold increased, up to nearly 3000

for some of the data availability types. Although the number of inconclusive sets determined

by the RES algorithm was much smaller for 55% than 60% and 70%, when examined as
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(a)

(b)

Figure 3.6: Results for sets that were first classified as inconclusive, shown as (a) number
of sets that were originally classified as inconclusive, and (b) percent of total sets after
initial prediction and, if needed, prediction after next sample time. These results were then
classified based on a new selected subset of half the original subset. Next sample time with
original decision thresholds of 55, 60, and 70% were compared to initial RES prediction with
a decision threshold of 50% (In 50) and random forest and logistic regression results. The
dashed black line represents the percentage of sets that have a "no change" outcome.
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percentages they performed similarly, shown in Figure 3.6(b). After selecting a next sample

time, they also performed with similar accuracy to the original 50% decision threshold. We

also noticed that both our algorithm and the machine learning methods were more prone to

predicting false negatives in data availability types 3, 4, 6, and 7; this is likely due to the

disproportionately large number of sets in the group of sets that do not change outcome.

We were also interested in the times the algorithm chose to be the next sample time, and

whether there were any patterns. We compared these times between data availability types,

decision thresholds, and overall. Figure 3.7 shows these results, first with the frequencies

were broken down by data availability type and decision threshold, then totaling the results

from different decision thresholds and data availability types. We found that 42 and 48 hours

were never chosen as next sample times. 54 and 60 hours were selected sometimes, and the

probability of choosing time points after that generally decreased until 96 hours, which was

chosen at the highest rate.

There were some specific differences regarding the type of data available and decision

threshold. First, a notable observation was that for a decision threshold of 70% (Figure

3.7b), sample times of 54 and 60 hours were chosen slightly more often than for the other

two thresholds. Second, data availability types 1, 2, and 5 (Figure 3.7c) showed 96 hours to

be selected around 75% of the time, with 54 and 60 hours selected at about the same rate

as 66-90 hours, whereas types 3, 4, 6, and 7 showed 54, 60, and 96 hours to be selected at

nearly equal rates. As previously mentioned, types 1, 2, and 5 contain data from Eh whereas

3, 4, 6, and 7 do not. It follows that the closest sample time to the end of the simulation,

which determines the outcome group, provided the most information about the classification

when Eh was available. Without Eh, there was greater dispersion across time points.

3.3.4 Using parameters to support classification

An additional step in classifying inconclusive data sets is taking advantage of our knowledge

of the parameter values corresponding to the transients that were selected from the RES

66



(a)

(b)

(c)

Figure 3.7: Results of the RES algorithm selecting the next sample time based on maximum
variance. (a) Results across all decision thresholds, separated by data availability type. (b)
Results across all data availability types, separated by decision threshold. (c) Percent of sets
across all decision thresholds (60-80%) and data availability types (1-7).
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algorithm. Since this method is based on the parameter means, the geometric or arithmetic

means can be used to classify sets. We include results for both since parameters were

originally sampled on a logarithmic scale.

Similarly to the next sample time algorithm, we used the method to predict the out-

comes of parameter sets in the collection that were first predicted as inconclusive, testing

all combinations of the six parameters, kep, bp, kmne, µp, ken and xmne. Because the pro-

cess purposefully does not classify all parameters, many of the sets were determined by the

algorithm to be inconclusive. However, most of the parameter combinations that were not in-

conclusive had a very high successful prediction rate. We show two parameter combinations

in Figure 3.8: kep and xmne, and kep, kmne, µp, ken and xmne.

We tested our algorithm on all data availability types and a selected subset of 20. The

parameter means method assigned a prediction to the data set if 55% or more of the pa-

rameters in a specific combination of the six parameters predicted either "change" or "no

change." Figure 3.8 shows a comparison of our parameter means method, using geometric

or arithmetic means, to results of random forest and logistic regression using synthetic data

as well as the original RES prediction (without taking class imbalances into account). Since

data types 1, 2, and 5 behaved similarly and 3, 4, 6, and 7 behaved similarly, we show

one from each group. We also included the percentage of sets classified as a "no change"

outcome, 86.25%, shown by the dashed black line. As we explained above, a success rate

higher than this is desired.

Figure 3.8 reveals that the parameter means method results in a high percentage of

inconclusive predictions, but that misclassification rates are low. Decision thresholds of 55-

60% show marginal differences between original RES predictions (column names 4, 5) and

arithmetic and geometric mean predictions (columns Ar, Geo 4 and 5). For higher decision

thresholds of 70-80%, increased accurate predictions using arithmetic and geometric means

can be seen compared to the original RES prediction. The two parameter combinations

have similar results, and data availability type 5 performs better than type 4 in every case,
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(a) (b)

(c) (d)

Figure 3.8: Results from predictions using multiple methods described in this chapter for
two combinations of parameters (apply only to parameter means method, the other methods’
results are consistent between the two combinations) and two data availability types (types
4 and 5). The parameter combinations are kep and xmne (left) and kep, kmne, µp, ken and
xmne (right). From left to right: prediction via RES plus arithmetic (Arith) and geometric
(Geom) means method, prediction via RES only (RES), prediction via RES plus next sample
time method (RES+NST), random forest and logistic regression with data types 4 and 5 as
input (RF, LR). Panels show four different decision thresholds: (a) 55%, (b) 60%, (c) 70%,
(d) 80%. The dashed black line represents the percentage of sets that have a "no change"
outcome.
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and comparable to random forest and logistic regression. However, this accuracy had the

cost of significantly fewer classifications due to the high number of inconclusive sets. This

parameter means exercise shows that the parameters can be useful in predicting outcome in

some cases, though future work is needed to decrease the number of inconclusive results.

3.3.5 Comparison of methods

As seen in Figure 3.8, our results show many variations, including number of selected subsets,

decision threshold, and type of data available. We also show how taking an additional step of

either selecting a next sample time or utilizing the parameter values of the selected sets can

aid in a more confident prediction. In comparison to the established classification methods

random forest and logistic regression, our methods performed well. In particular, our RES

algorithm plus next sample time predicted with accuracy comparable to random forest and

logistic regression for all decision thresholds studied in this work; for some data availability

types, our algorithm performed better. RES alone, RES plus next sample time, and RES plus

parameter means also performed well when Eh data was included in the data set, though

more work should be done to improve prediction for all of our methods when Eh is not

included and to decrease the number of inconclusive sets predicted by the parameter means

method.

3.4 Case studies

Thus far, we have shown results for the entire collection. In this section, we examine a few

parameter sets that represent cases where different predictions methods may be used. This

is to demonstrate how our processes could be used for an individual data set.
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3.4.1 Case study 1: "no change" outcome

First, we examined a case in which Eh was confidently predicted as not worsening. Using

the RES algorithm with an 80% decision threshold, all data types correctly predicted no

change from the Eh initial condition; furthermore, any decision threshold lower than 80%

will also give the same prediction. We highlight types 1 and 3 in this and the following case

studies as examples of data that includes Eh and does not include Eh. Figure 3.9 shows

the 20 transients to which the data was closest to, as defined by having the smallest RES

values; note that the two variables shown are only a subset of the total data used by the

RES algorithm to find the closest matches.

The transients for M1 in Figure 3.9(b) and (d) are very similar, since M1 data was

included in both data types. However, Eh is fairly different between the two types and we

did not include data in panel (c) since Eh data is not included in type 3. Therefore, the

range of possible Eh transients is wider. Even without Eh data, however, the RES algorithm

predicted this case correctly. In Figure 3.9, bold lines show sets classified as having a

worsening outcome. Using data type 1, none of the sets have this outcome, and with type

3, only 3 out of 20 sets have this outcome. Therefore, with an 80% decision threshold, both

correctly predict that this case does not have a severe response to ventilation.

In this case, the pre-ventilation state, measured by initial condition for Eh, was high and

the algorithm predicted correctly that after ventilation, Eh will return to this state. Based

on the algorithm’s prediction that the post-ventilation state will not worsen, we would not

recommend additional intervention. Because the algorithm predicted with high confidence

that this case will not worsen, an additional sample at a later time was deemed unnecessary.

3.4.2 Case study 2: "change" outcome

Next, we demonstrate a case that worsens after ventilation and period of recovery. A de-

cision threshold of 70% results in data types 1-5 predicting a worsening outcome, and 6-7

inconclusive. A decision threshold of 60% results in all data availability types predicting a
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(a) (b)

(c) (d)

Figure 3.9: Case 1: Data used in RES algorithm (black points) to find the 20 sets that are
closest to the data. Blue curves in (a) and (b) are the sets found when data availability type
1 was used, and pink curves in (c) and (d) show results from type 3. Bold lines show sets
classified as having a worsening outcome.

72



worse outcome. Figure 3.10 shows the subset of transients selected to predict the data set’s

outcome. Out of the 20 selected sets, 20 in type 1 and 16 in type 3 predicted a worsening

outcome, resulting in a "change" outcome for up to an 80% decision threshold. Bolded

curves in the figure represent the sets that are classified as worsening. Similarly to Case 1,

M1 transients were similar between the two data availability types, but Eh transients were

very different since Eh data is not available for type 3. In Chapter 2 we discussed how

dysregulation of the M1/M2 response can affect the epithelium, and the low amount of M1

in this case could be influencing the poor outcome seen in Eh data in Figure 3.10(a).

We show the dynamics out to 200 hours to highlight the contrast between the variability

in the Eh transients selected for type 1, panel (a), and those for type 3, panel (c). Since

Eh data was not included for type 3, higher variability can be seen in panel (c) than in

(a). Nonetheless, many of the sets in (c) are decreasing from a high percentage of Eh

to a lower one, indicating a "change" outcome; in particular, see bolded curves in Figure

3.10, representing sets with a worsening outcome. We hypothesize that this is due to the

corresponding variables that do have data and the underlying mechanisms of the dynamical

system that lead to a severe response in Eh. Since the outcome was predicted with a high

decision threshold, we did not proceed with an additional sample point.

3.4.3 Case 3: inconclusive prediction with next sample time needed

The third case we examined was one in which the RES algorithm initially gave an inconclusive

result, but selecting a next sample time provided the correct prediction. In this case, RES

with data availability types 1 and 3 gave an inconclusive result with a decision threshold

of 70%. Bold transients in Figure 3.11 show the selected sets that end in a worse outcome.

Given this result, we wanted to sample again at a later time to obtain more information.

The next sample time algorithm determined 54 hours to be the best sample time for both

data availability types 1 and 3. This time was commonly selected based on our results for

the entire collection of parameter sets. After sampling at 54 hours and predicting again,
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(a) (b)

(c) (d)

Figure 3.10: Case 2: Data used in RES algorithm (black points) to find the 20 sets that are
closest to the data. Blue curves in (a) and (b) are the sets found when data availability type
1 was used, and pink curves in (c) and (d) show results from type 3. Insets are included
when necessary to show data with smaller x and y ranges. Bold lines show sets classified as
having a worsening outcome.
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(a) (b)

(c) (d)

Figure 3.11: Case 3: Data used in RES algorithm (black points) to find the 20 sets that
are closest to the data. Blue curves in (a) and (b) are the sets found when data availability
type 1 was used, and pink curves in (c) and (d) show results from type 3. Sets that end in
a worsening outcome are bold.
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(a) (b)

(c) (d)

Figure 3.12: Case 3: Data used in RES algorithm (black points) to find the 10 sets that are
closest to the data after selecting a next sample time. Blue curves in (a) and (b) are the sets
found when data availability type 1 was used, and pink curves in (c) and (d) show results
from type 3. Sets that end in a worsening outcome are bold.

both resulted in a correct prediction of "no change." Figure 3.12 shows the subset of original

sets selected to predict this case. The additional time point for Eh at 54 hours reveals that

there was a sharp increase in Eh after ventilation, representing a recovery back to its initial

condition.

3.4.4 Case 4: inconclusive result

As shown in the figures that summarize the entire collection, our algorithm is not always

accurate. In this section we show a case in which a next sample time incorrectly predicts the
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outcome. Figure 3.13 shows the selected sets after the initial inconclusive prediction and a

next sample time, predicting a "change" outcome when the true outcome was "no change."

Figure 3.13(a) shows that at hour 84, the time point selected as the next sample time, Eh

increases back up to its original magnitude and many of the selected transients also increase.

However, based on our criteria that if Ee > 0.75 at any time the outcome is set to worsening,

many of the selected transients result in a worsening outcome. Based on the Eh data at

12, 24, and 36 hours, the case does not correspond to Ee > 0.75 but some transients in the

selected subset may have slightly lower Eh and result in higher Ee values. These high Ee

values can be seen in Figure 3.13(e), where many reach above 0.75 at some point during

ventilation. This results in a inconsistent prediction.

We then used the parameter means process to obtain a prediction. This method does

not use data; only the parameter values corresponding to the selected subsets. We found

in the previous section that parameter combinations with more successful predictions, not

including inconclusive results, were kep + xmne and kep + kmne + µp + ken + xmne. The

parameter means method can be based on geometric or arithmetic means; we tried both.

For the combination of kep and xmne, the prediction was still inconclusive using arithmetic

means but with geometric means, the process correctly predicted a "no change" outcome.

The combination of kep, kmne, µp, ken and xmne predicted the opposite: geometric means

predicted inconclusive and arithmetic means predicted "no change."

These four case studies show some of the possibilities that can occur when using the

methods developed in this chapter. As seen in the results for the entire collection of synthetic

data, our algorithms generally perform well, such as Cases 1 and 2, but may also result in

inconclusive or incorrect predictions, as in Cases 3 and 4. Further work should be done to

determine the most reliable methods when the parameter means method is inconclusive or

provides contrasting results based on mean type (geometric or arithmetic) or contrasting to

a next sample time prediction. The differences between the data availability types showed

that having Eh in the data set was useful but not always necessary in correctly predicting the
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(a) (b)

(c) (d)

(e)

Figure 3.13: Case 4: Data used in RES algorithm (black points) to find the 10 sets that are
closest to the data after selecting a next sample time. Blue curves in (a) and (b) are the sets
found when data availability type 1 was used, and pink curves in (c) and (d) show results
from type 3. Sets that end in a worsening outcome are bold.
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outcome. In Figures 3.9-3.13, the range of values that the algorithm selected show that this

process does not find exact fits in the collection because of the number of variables involved

in the process and the variability in the transients, but that a subset of close yet inexact fits

can still be useful for predicting.

3.5 Discussion

This chapter shows the many possibilities of how a collection of data sets, such as the

one synthetically generated by the parameter sets from Chapter 2, can be used to aid in

predicting outcome and determining the next best time to sample. This in silico modeling

and prediction could save time and money in experimental and clinical settings. However,

real data should be collected to effectively use the algorithms described here. The results

from our methods also bring up some questions. We found that data that includes Eh

performed similarly (types 1, 2, and 5), and differently from those that do not include Eh,

which performed similarly (types 3, 4, 6, and 7). The groups that performed similarly have

different forms, such as taken from the alveolar space vs. the bloodstream or macrophages

vs. pro- and anti-inflammatory mediators.

Despite these different variables, accuracy was similar. In fact, Figure 3.4 shows that

with Eh data, not including pro- and anti-inflammatory mediators increased the accuracy

rate for the RES algorithm. We hypothesize that this is due to the large variability in the

dynamics of PIM and AIM produced by the collection of parameter sets. These mediators

are produced by several types of cells in the ODE model (see Eqs (2.4), (2.5), (2.6), and

(2.7) in Chapter 2) and have wide parameter ranges for the associated production rates.

Therefore the synthetic data produced by these dynamics may also have high variability.

Using this algorithm on experimental data could help to better distinguish the effectiveness

of the different cells and mediators sampled in predicting outcome, indicating which types

of data and sample times provide the most information. This could aid future experimental
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design.

Other statistical methods could be used to aid or modify the current process. For exam-

ple, the next sample time algorithm utilizes the variance of Eh at various possible sample

times; however, variance can be susceptible to outliers. Using more robust measures of dis-

persion such as the interquartile range may be useful in obtaining the next best sample time

and thus better predictions [74].

Furthermore, having parameter sets based on real data would be useful in the parameter

means method. Although we established in Chapter 2 what we believed to be reasonable

parameter ranges for obtaining a variety of dynamics, these ranges are not based on data.

We hypothesize that obtaining ranges informed by data would improve the accuracy of both

the parameter means method and the RES algorithm. In the future, more work could be

done to understand the difference between cutoffs determined by the geometric means and

those determined by arithmetic means.

Since these methods only require a set of ODEs and a collection of parameter sets,

this process could be applied to any model. The outcome could be determined by a relative

decrease in a particular variable like we did in this chapter, but could also distinguish between

growth or decay of a bacterial population, damage categories as in Chapter 2, or any other

type of classification.
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Chapter 4

Macrophage Phenotype Polarization

4.1 Introduction

As discussed in previous chapters, the plasticity of macrophages allows them to perform many

roles in response to an injury or infection, and they have a significant impact on the overall

ability of the immune system to resolve the insult [11]. Several models have been published

that include macrophage polarization, including ODE models of subcellular signaling and

simplified M1/M2 activation. Maiti et al. [73] and Moya et al. [90] focused on the subcellular

signaling pathways of NF-κB/TNFα and STAT3/IL-10, respectively. Frank et al. [40] and

Zhao et al. [149] developed two-dimensional ODE models with M1 and M2 activation as the

state variables. Rex et al. [110] used a Boolean model to select genes related to M1/M2

dynamics and developed an ODE modeling the dynamics of those genes. Additionally, some

modeling efforts of macrophage plasticity incorporate spatial dynamics. Agent-based models

that include M1/M2 phenotypes have been developed in the context of tuberculosis [58] and

Nickaeen et al. [94] developed a PDE model of M1/M2 macrophages in response to high

levels of IL4 or LPS/IFNγ.

In this chapter, we propose two models of the immune response to lung inflammation that

build upon previous modeling work to examine the spectrum of macrophage activation in
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greater detail. Whereas the model introduced in Chapter 2 examines the immune system’s

response to damaged epithelium in response to VILI, the ODE model proposed in this

chapter tracks M1 and M2 activation via subcellular signaling pathways in response to general

inflammatory stimuli. This model is an extension of work by Maiti et al. [73]; we added details

of the IL-10 pathway not yet included in Maiti et al. by adapting and extending equations

from Moya et al. [90], including both pro- and anti-inflammatory feedback loops and their

interactions. The model consists of ten macrophages, each of which has a set of equations

modeling its subcellular pathways. These ten macrophages are linked by external TNFα and

IL-10, which can be both introduced into the system at various times and produced by the

macrophages themselves. In our ABM, we incorporated various mediators with a spectrum

of M1/M2 polarization and spatial dynamics. In this model, macrophages can become more

activated towards an M1 or M2 phenotype based on their local patch environment, and

perform a variety of roles depending on their activation levels. Both models account for

macrophage cell cycle using randomly generated lifespans for each macrophage.

Based on data from Maiti et al. [73], we calibrated the models to each other by simulating

a single macrophage with both pro- and anti-inflammatory stimuli. Through this initial

scenario, we found that modeling the SOCS regulatory feedback loop is important in the

definitive resolution of inflammation. We then simulated additional scenarios highlighting

the effects of incorporating cell lifespan, recruitment, and various types of external stimuli

and initial conditions. Comparison of these scenarios between the ODE model and ABM

revealed overall similar behavior of M1 and M2 activation across two very different modeling

approaches, suggesting that detailed subcellular pathway modeling is not necessary to achieve

complex interplay between M1 and M2 polarization.

In the following sections, we describe the models in detail, the calibrating experiment,

and the comparison of various simulated scenarios.
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4.2 Methods

4.2.1 ODE subcellular macrophage model

Biological summary

There are several main interactions involved in cell signaling pathways that we include in

our model. First, extracellular signals such as TNFα and IL-10 bind to and unbind from

their receptors on the cell surface [73, 150]. Receptors transmit signals to other proteins

within the cell, which may become activated or phosphorylated [1]. These complexes induce

activation of transcription factors, proteins that are responsible for translocating to the

nucleus, where they control the transcription of specific genes in the DNA into mRNA.

mRNA then undergoes translation in the cytosol, where the protein corresponding to the

gene is assembled according to the mRNA sequence [3]. We also account for degradation of

various components. We model this process using the law of mass action unless otherwise

specified. Details for these interactions are given in the following sections.

TNFα triggers a signaling pathway that leads to activation of the transcription factor

NFκB and the subsequent shift to an M1 phenotype [135]. This results in the production

of additional TNFα and IL-10 as well as other proteins. Alternatively, IL-10 activates the

transcription factor STAT3 through the Jak-STAT pathway, giving rise to M2-type activation

[19]. To capture the interactions between these pathways, we developed an ODE model,

adapted from Maiti et al. [73] that includes these hallmark signaling pathways. This involves

subcellular interactions between receptors and proteins in the cytosol and nucleus of the

macrophage.

The model by Maiti et al. [73] initiates their signaling cascade with LPS, a molecule

found in Gram-negative bacteria used to experimentally induce an immune response. IKK,

a protein whose role is to regulate phosphorylation of IκBα, is activated by both LPS and

TNFα. Since we model general lung inflammation in this chapter, we do not rely on acti-

vation of the M1 pathway by LPS; rather, we focus on activation via TNFα. Maiti et al.
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[73] include production of IL-10 and STAT3; our model extends this by including additional

components of the Jak-STAT pathway and the negative feedback loops required to resolve

the immune response. In the following sections, we note specifically which equations and

terms are novel to our model.

LPS binds to its receptor, TLR4, which activates neutral IKK. IKK then phosphorylates

IκBα in the IκBα-NFκB complex, freeing NFκB to translocate to the nucleus. In the

absence of a stimulus, IκBα sequesters NFκB to prevent it from causing the production of

unnecessary proteins [50, 97]. Transcription factor NFκB initiates transcription of TNFα,

IL-10, A20, and IκBα mRNA, resulting in their translation and protein production [116].

As part of a negative feedback loop that prevents excessive production of these proteins,

A20 inactivates active IKK and IκBα sequesters unbound NFκB [89]. TNFα and IL-10 are

secreted from the cell.

Extracellular TNFα binds to its receptor, activating neutral IKK [116]. IL-10 also binds

to its receptor, and JAK and Tyk tyrosine kinases, whose main function is to activate

STAT3, bind to this complex as well [133]. Without all of these components, STAT3 cannot

be phosphorylated and control transcription of key genes in the nucleus. The IL-10-Jak-Tyk

complex activates STAT3, which translocates to the nucleus and initiates the production of

IL-10, SOCS1, and SOCS3 [19]. Both SOCS1 and SOCS3 are part of negative feedback loops

that bring about resolution of both the M1 and M2 pathways. SOCS3 inhibits transcription

of TNFα mRNA and both SOCS1 and SOCS3 inhibit activation of STAT3 [23, 104]. IL-10

also inhibits activation of IKK [34].

Eqs (4.2) through (4.27) are from Maiti et al. [73] unless otherwise noted, and the model

variables we added are shown in Eqs (4.28) through (4.38). Figure 4.1 summarizes these

interactions, described in more detail in the equations. This schematic differs from that in

Chapter 2 wherein the interactions described in Chapter 2 account for tissue-level dynamics,

where cells and extracellular signals interact in the bloodstream and site of injury to perform

various functions. Here, the schematic describes interactions between receptors, transcription
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factors, and other proteins within the cell in response to detection of extracellular signals

on the cell surface. Table 4.1 lists the parameters used in the model and their descriptions.

Code for these equations can be found in Section B.2.
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Parameter Description Value

1. atrans Rate at which A20 is translated by NFκB 11.338
2. ctf Maximum NFκB concentration in nucleus 0.114
3. ctfstat3 Maximum STAT3 concentration in nucleus 0.0669
4. eki Rate at which IκBα is imported outside nucleus 2.172×10−4

5. eni Rate at which IκBα-NFκB is exported outside nucleus 0.157
6. iki Rate at which IκBα is imported into nucleus 0.0155
7. il10max IL10/IL10R maximum concentration 5.523×10−5

8. iln Rate at which NFκB is imported into the nucleus 0.0021
9. kbal Component balance for TNFα and IL-10 0.0018
9. kikbatrans Rate at which IκBα is translated by NFκB 0.179
10. kdega20 Rate at which A20 decays 6.227×10−4

11. kdegikba Rate at which phosphorylated IκBα decays 2.232×10−4

12. kdegtnfa Rate at which extracellular TNFα is degraded 1.209×10−4

13. kf1 Rate at which LPS binds to its receptor 0.275
14. kf3 Rate at which TNFα binds to its receptor 0.040
15. kf4 Rate at which IκBα and NFκB associate 0.0023×10−4

16. kfi Rate at which IKK is activated 0.093
17. kilc Rate at which IL10cyto moves outside the cell 1.681×10−4

18. kiljb Rate at which JAK1 and Tyk2 are recruited to the IL10 complex 0.0078
19. kilju Rate at which JAK1 and Tyk2 unbind from the IL10 complex 0.0246
20. kilm Rate at which ILmRNA move from the nucleus to the cytosol 0.335
21. kilnf Rate at which IL10mRNA is transcribed by NFκB 0.234
22. kilrb Rate at which IL10ext binds to its receptor 0.0079
23. kilru Rate at which IL10ext unbinds from its receptor 4.225×10−4

24. kilsn Rate at which IL10mRNA is transcribed by STAT3 0.939
25. kin Inhibition by IL-10: max

(
1− IL10/R

IL10/Rmax
, 0

)
Varies

26. kk1 Rate at which IKK is inactivated by A20 0.0335
27. kk3 Rate at which IKK associates with IκBα−NFκB 0.940
28. kr1 Rate at which LPS dissociates from its receptor 1.804×10−5

29. kr3 Rate at which TNFα dissociates from its receptor 0.0032
30. ks1 Rate at which SOCS1mRNA moves into the cytosol 1.0192
31. ks1st Rate at which SOCS1mRNA is transcribed by STAT3 1.970
32. ks3 Rate at which SOCS3mRNA moves into the cytosol 0.0047
33. ks3st Rate at which SOCS3mRNA is transcribed by STAT3 2.701
34. ksa Rate at which activated STAT3 moves into nucelus 5.227×10−5

35. ksec Rate at which TNFα is secreted from the cytosol outside the cell 1.694×10−4

36. ksni Rate at which activated STAT3 in the nucleus becomes deactivated 8.902×10−5

37. ksnicyto Rate at which inactivated STAT3 in the nucleus moves into the cytosol 0.0083
38. kstat Rate at which IL-10 complex activates STAT3 0.0094
39. ktnfatrans Rate at which TNFα is translated by NFκB 0.389
40. kv Nuclear:cytoplasmic ratio (volume) 1.042
41. µa20m Decay rate of A20mrna 0.0114
42. µilc Decay rate of IL10cyto 0.0067
43. µile Decay rate of IL10ext 7.105×10−5

44. µilm Decay rate of IL10mRNA 0.0234
45. µs1c Decay rate of SOCS1cyto 3.591
46. µs1m Decay rate of SOCS1mRNA 0.139
47. µs3c Decay rate of SOCS3cyto 0.110
48. µs3m Decay rate of SOCS3mRNA 0.0717
49. µtnc Decay rate of TNFαcyto 0.0080
50. µtnm Decay rate of TNFαmrna 0.0125
51. p Transcription parameter 0.0371
52. sm Rate at which NFκB transcribes mRNA 0.237
53. SOCS3∞ Relative effectiveness of SOCS3cyto at inhibiting TNFα transcription 10.609
54. SOCS∞ Relative effectiveness of SOCS1cyto and SOCS3cyto at inhibiting activation of STAT3 21.933
55. ti3 Rate at which IKK/IκBα/NF -κB is broken down 3.515×10−6

Table 4.1: List of parameter estimates from preliminary fit for the subcellular pathways
model.

LPS

Maiti et al. began the model through initiation by LPS, a major component of bacteria

identified by the macrophage. LPS is represented as a constant input into the system, shown

in Eq (4.1). When LPS is detected by TLR4, its receptor, they form a complex denoted

LPS/TLR4, shown in Eqs (4.2) and (4.3). Components connected by a forward slash, such
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as LPS/TLR4, represent a complex; otherwise, variables side by side are multiplied together.

We will use this convention in the equations described throughout this section.

dLPS

dt
=

Constant input︷︸︸︷
0 (4.1)

dTLR4

dt
=

LPS binds to receptor︷ ︸︸ ︷
− kf1LPS TLR4+

LPS unbinds from receptor︷ ︸︸ ︷
kr1LPS/TLR4 (4.2)

dLPS/TLR4

dt
=

LPS binds to receptor︷ ︸︸ ︷
kf1LPS TLR4 −

LPS unbinds from receptor︷ ︸︸ ︷
kr1LPS/TLR4 (4.3)

IκBα kinase

IκBα kinase (IKK) is represented in three distinct states: neutral, active, and inactive,

shown in Eqs (4.4), (4.5), and (4.6), respectively. The binding of LPS and TNFα to their

respective receptors triggers the activation of neutral IKK, represented by the first term in

Eqs (4.4) and (4.5). As part of a negative feedback loop for the pro-inflammatory response,

IL-10 inhibits neutral IKK from activating. Maiti et al. describes this inhibition in the first

term of Eqs (4.5) and (4.5) through the parameter kin, where

kin = max

(
1− IL10/R

IL10/Rmax

, 0

)
.

Active IKK phosphorylates the IKK-IκBα-NFκB complex (second term in Eq (4.5)). Phos-

phorylation causes the complex to break down, releasing a neutral form of IKK, shown in the

second term of Eq (4.4). Finally as part a negative feedback loop to prevent an overactive

pro-inflammatory response, the protein A20 inactivates active IKK, the last term of Eq (4.5)

and Eq (4.6).
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dIKKn

dt
=−

IKK activation︷ ︸︸ ︷
kfikin(LPS/TLR4 + TNFα/R)IKKn+

Complex breaks down︷ ︸︸ ︷
ti3IKK/IκBα/NFκBcyto (4.4)

dIKKa

dt
=

IKK activation︷ ︸︸ ︷
kfikin(LPS/TLR4 + TNFα/R)IKKn−

IKK binds to Iκ Bα/NFκB︷ ︸︸ ︷
kk3kinIKKaIκBα/NFκBcyto

−

A20 deactivates IKK︷ ︸︸ ︷
kk1IKKaA20cyto (4.5)

dIKKi

dt
=

A20 deactivates IKK︷ ︸︸ ︷
kk1IKKaA20cyto (4.6)

IκBα

In a resting state, IκBα sequesters free NFκB by associating into a complex, shown in the

first term of Eq (4.7). This process also occurs in the nucleus, from which the complex can

move to the cytosol (second term of Eq (4.7)). Activated IKK phosphorylates the complex,

represented by the third term in Eq (4.7). The binding of active IKK to IκBα-NFκB (first

term of Eq (4.8)) causes all three components to separate, modeled by the second term of

Eq (4.8): NFκB is released, IκBα is degraded, and IKK returns to a neutral state.

dIκBα/NFκBcyto

dt
=

Association︷ ︸︸ ︷
kf4NFκBcytoIκBαcyto+

Moves outside nucleus︷ ︸︸ ︷
eniIκBα/NFκBnuclearkv

−

IKK binds to IκBα/NFκB︷ ︸︸ ︷
kk3kinIKKaIκBα/NFκBcyto (4.7)

dIKKa/IκBα/NFκBcyto

dt
=

IKK binds to IκBα/NFκB︷ ︸︸ ︷
kk3kinIKKaIκBα/NFκBcyto−

Complex breaks down︷ ︸︸ ︷
ti3IKK/IκBα/NFκBcyto

(4.8)

Eqs (4.9) through (4.12) show the various states of the inhibitory protein IκBα. NFκB
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promotes the transcription of IκBα mRNA, shown in the first term of Eq (4.9). Subsequent

translation of the protein and decay of the mRNA are described in the first term of Eq (4.10)

and the second term of Eq (4.9), respectively. As previously described, the second term of

Eq (4.10) represents IκBα sequestering free NFκB in the cytosol. In a resting cell, excess

IκBα is distributed evenly between the cytosol and nucleus; thus, the last two terms of Eq

(4.10) show import and export of IκBα between the two compartments [69]. The parameter

kv accounts for the nuclear-cytoplasmic ratio to account for the size of the cell’s cytoplasm

in relation to its nucleus. The release of NF-κB from the IκBα-NF-κB complex by active

IKK results in the phosphorylation of IκBα and its subsequent degradation, shown in the

two terms of Eq (4.12).

dIκBαmrna
dt

=

Transcription via NFκB︷ ︸︸ ︷
smpNFκBnuclear

ctf +NFκBnuclear

−

Decay︷ ︸︸ ︷
µilmIκBαmrna (4.9)

dIκBαcyto
dt

=

Translation︷ ︸︸ ︷
kikbatransIκBαmrna−

Association︷ ︸︸ ︷
kf4NFκBcytoIκBαcyto

−

Import to nucleus︷ ︸︸ ︷
ikiIκBαcyto +

Export from nucleus︷ ︸︸ ︷
ekiIκBαnuclearkv (4.10)

dIκBαnuclear
dt

= −

Association︷ ︸︸ ︷
kf4NFκBnuclearIκBαnuclear+

Import to nucleus︷ ︸︸ ︷
iki
kv
IκBαcyto −

Export from nucleus︷ ︸︸ ︷
ekiIκBαnuclear (4.11)

dIκBαphospho
dt

=

IKK releases NFκB︷ ︸︸ ︷
ti3IKKa/IκBα/NFκBcyto−

Decay︷ ︸︸ ︷
kdegikbaIκBαphospho (4.12)

NFκB

The protein NFκB is released from the complex (first term of Eq (4.13)) and translocates to

the nucleus, represented by the second term of Eq (4.13) [69]. NFκB activates the transcrip-

tion of several genes, including TNFα and IL-10, A20, and IκBα. IκBα sequesters nuclear

NFκB (last term in Eq (4.14) and first term in Eq (4.15)) before the complex moves back
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into the cytosol, shown in the last term of Eq (4.15).

dNFκBcyto

dt
=

IKK releases NFκB︷ ︸︸ ︷
ti3IKKa/IκBα/NFκBcyto−

Moves to nucleus︷ ︸︸ ︷
ilnkinNFκBcyto

−

IκBα sequesters NFκB︷ ︸︸ ︷
kf4NFκBcyto IκBαcyto (4.13)

dNFκBnuclear

dt
=

Moves to nucleus︷ ︸︸ ︷
ilnkinNFκBcyto

kv
−

IκBα sequesters NFκB︷ ︸︸ ︷
kf4NFκBnuclearIκBαnuclear (4.14)

dIκBα/NFκBnuclear

dt
=

IκBα sequesters NFκB︷ ︸︸ ︷
kf4NFκBnuclearIκBαnuclear−

Moves outside nucleus︷ ︸︸ ︷
eniIκBα/NFκBnuclear (4.15)

TNFα

One of the main targets of gene expression of NFκB is the pro-inflammatory cytokine TNFα.

The first term of Eq (4.16) represents transcription of mRNA. There is evidence that Sup-

pressor of Cytokine Signaling 3 (SOCS3), discussed in further detail below, plays a role in

regulating the pro-inflammatory response by inhibiting TNFα mRNA and protein produc-

tion, although the exact mechanisms by which this occurs is still unclear [28, 104]. We

included a multiplier, not in the original equation by Maiti et al., in this first term to repre-

sent inhibition of mRNA production by SOCS3. After transcription and translation, TNFα

is secreted from the cell (first two terms of Eq (4.17)). The parameter kbal represents a

component balance for TNFα as it moves from the cytosol to the supernatant.

Extracellular TNFα binds to its receptor on the cell surface, represented by the second

term in Eq (4.18). In some cases the cytokine unbinds from its receptor, accounted for by

the second term in Eq (4.18). Once inside the cell, either after binding to its receptor or

being translocated from the nucleus, TNFα performs several important roles. Shown in the

first term of Eq (4.4), TNFα bound to its receptor upregulates activation of IKK, which

then precipitates further NFκB transcription.
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dTNFαmrna
dt

=

Transcription via NFκB︷ ︸︸ ︷
smp NFκBnuclear

ctf +NFκBnuclear

Inhibition by SOCS3︷ ︸︸ ︷(
1

1 +
(SOCS3cyto
SOCS3∞

)2
)
−

Decay︷ ︸︸ ︷
µtnmTNFαmrna (4.16)

dTNFαcyto
dt

=

Translation︷ ︸︸ ︷
ktnfatransTNFαmrna−

Secreted from cell︷ ︸︸ ︷
ksecTNFαcyto−

Decay︷ ︸︸ ︷
µtncTNFαcyto (4.17)

dTNFαext
dt

=

Secreted from cell︷ ︸︸ ︷
kseckbalTNFαcyto−

TNFα binds to receptor︷ ︸︸ ︷
kf3TNFαextTNFαR+

TNFα unbinds
from receptor︷ ︸︸ ︷

kr3TNFα/R

−

Decay︷ ︸︸ ︷
kdegtnfaTNFαext (4.18)

dTNFαR

dt
=−

TNFα binds to receptor︷ ︸︸ ︷
kf3TNFαextTNFαR+

TNFα unbinds
from receptor︷ ︸︸ ︷

kr3TNFα/R (4.19)

dTNFα/R

dt
=

TNFα binds to receptor︷ ︸︸ ︷
kf3TNFαextTNFαR−

TNFα unbinds
from receptor︷ ︸︸ ︷

kr3TNFα/R (4.20)

A20

As mentioned previously, A20 is another NFκB-responsive gene responsible for deactivating

IKK, which blocks NFκB translocation to the nucleus. Eq (4.21) shows transcription and

subsequent degradation of A20 mRNA. Eq (4.22) shows translation of the protein in the

cytosol, and A20 decays at rate kdega20, second term in Eq 4.22.

dA20mrna
dt

=

Transcription via NFκB︷ ︸︸ ︷
sm p NFκBnuclear

ctf +NFκBnuclear

−

Degradation︷ ︸︸ ︷
µa20mA20mrna (4.21)

dA20cyto
dt

=

Translation︷ ︸︸ ︷
atransA20mrna−

Decay︷ ︸︸ ︷
kdega20A20cyto (4.22)
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IL-10

A hallmark of the anti-inflammatory response is the cytokine IL-10. Its gene is a target

of NFκB transcription and is involved in the regulation of the pro-inflammatory response.

Some events related to IL-10 production and function are included in the model by Maiti

et al. [73], but we expand the model to include a fuller view of the role of IL-10 and an

important pathway it activates.

Extracellular IL-10 can bind to and unbind from its receptor IL-10R, as modeled by the

first two terms in Eq (4.23) [90]. For simplicity, we assume the total number of receptors

is conserved. The first term in Eq (4.25) describes upregulation of the IL-10 gene by tran-

scription factors NFκB and STAT3. Maiti et al. include the constants 0.4 and 0.6 such that

NFκB is responsible for 40% of the transcription rate and STAT3 is responsible for the other

60%. The nonlinear terms represent maximum possible rates of IL-10 transcription, since

space in the nucleus is limited. IL-10 is translated from its mRNA and secreted from the cell

(first two terms of Eq (4.26)). The third term in Eq (4.23) includes a component balance kbal

between the cytosol and supernatant. Baseline degradation rates for extra- and intracellular

IL-10 and IL-10 mRNA is included in Eqs (4.23), (4.26), and (4.25), respectively.
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dIL10ext
dt

=−

Binds to receptor︷ ︸︸ ︷
kilrbIL10extIL10R+

Unbinds from receptor︷ ︸︸ ︷
kilruIL10/R +

Moves outside cell︷ ︸︸ ︷
kilckbalIL10cyto

−

Decay︷ ︸︸ ︷
µileIL10ext (4.23)

dIL10R

dt
= −

IL-10 binds to receptor︷ ︸︸ ︷
kilrbIL10extIL10R+

IL-10 unbinds
from receptor︷ ︸︸ ︷
kilruIL10/R (4.24)

dIL10mRNA
dt

=

Gene transcription︷ ︸︸ ︷
0.4kilnfp

NFκB

ctf +NFκB
+ 0.6kilsnp

STAT3n
ctfstat3 + STAT3n

−

Decay︷ ︸︸ ︷
µilmIL10mRNA (4.25)

dIL10cyto
dt

=

Translation︷ ︸︸ ︷
kilmIL10mRNA−

Moves outside cell︷ ︸︸ ︷
kilcIL10cyto −

Decay︷ ︸︸ ︷
µilcIL10cyto (4.26)

JAK-STAT signaling

Aside from inhibitory functions, IL-10 signaling initiates the JAK-STAT signaling pathway,

a primary mechanism through which the immune response mediates inflammation [107]. The

protein tyrosine kinases JAK1 and Tyk2 are recruited to the IL-10/IL-10 receptor complex,

shown in the third term of Eq (4.27). This creates a new complex, IL10/R/JAK1/Tyk2, Eq

(4.30) [115]. The second term accounts for the possibility that the complex may break apart.

JAK1 (Eq (4.28)) and Tyk2 (Eq (4.29)) concentrations are conserved, assuming enzyme-type

dynamics. In light of the many components involved in creating this complex, we explored

incorporating the various combinations of the binding steps, such as the individual receptor

components, each of which bind to a specific tyrosine kinase. In the end, we decided to

model the recruitment of JAK1 and Tyk2 to the IL-10/IL-10 receptor complex as one step;

this still captures the appropriate dynamics without adding more parameters and equations.

The last two terms of Eq (4.27) and all of Eqs (4.28) through (4.30) are our additions to

the original model by Maiti et al., with terms representing activation of STAT3 through the

Jak-STAT pathway adapted from Moya et al. [90].
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dIL10/R

dt
=

IL-10 binds to receptor︷ ︸︸ ︷
kilrbIL10extIL10R−

IL-10 unbinds
from receptor︷ ︸︸ ︷
kilruIL10/R

−

Recruitment of JAK1 and Tyk2︷ ︸︸ ︷
kiljbIL10/R JAK1 Tyk2+

Dissociation of JAK1 and Tyk2︷ ︸︸ ︷
kiljuIL10/R/JAK1/Tyk2 (4.27)

dJAK1

dt
=−

Recruitment of JAK1 and Tyk2︷ ︸︸ ︷
kiljbIL10/R JAK1 Tyk2+

Dissociation of JAK1 and Tyk2︷ ︸︸ ︷
kiljuIL10/R/JAK1/Tyk2 (4.28)

dTyk2

dt
=−

Recruitment of JAK1 and Tyk2︷ ︸︸ ︷
kiljbIL10/R JAK1 Tyk2+

Dissociation of JAK1 and Tyk2︷ ︸︸ ︷
kiljuIL10/R/JAK1/Tyk2 (4.29)

dIL10/R/JAK1/Tyk2

dt
=

Recruitment of JAK1 and Tyk2︷ ︸︸ ︷
kiljbIL10/R JAK1 Tyk2−

Dissociation of JAK1 and Tyk2)︷ ︸︸ ︷
kiljuIL10/R/JAK1/Tyk2 (4.30)

The IL-10/IL-10 receptor/JAK1/Tyk2 complex serves as a temporary docking station

for inactive Signal Transducer and Activator of Transcription 3 (STAT3) [112]. Upon re-

cruitment to the complex, STAT3 is activated and undergoes homodimerization, shown in

the first term of Eq (4.31). Maiti et al. modeled the recruitment and activation of STAT3

through binding of STAT3 to the IL-10/IL-10R complex without Jak1 and Tyk2. We also

included a multiplier representing inhibition by Suppressors of Cytokine Signaling 1 and 3

(SOCS1 and SOCS3), two IL-10 responsive genes as well as the second term of Eq (4.33) and

Eq (4.34) which allow for the conservation of STAT3 in the model. SOCS1 inhibits JAK1

function by binding its SH2 domain to JAK1, preventing STAT3 from docking to the IL-10

complex. SOCS3 performs a similar role but docks to the receptor; since we do not model at

the level of detail of specific binding locations, we model this inhibition as having the same

result, which is preventing STAT3 from activating [23, 126, 147].

STAT3 translocates to the nucleus (second term of Eq (4.32)) and controls transcription of

several IL-10 responsive genes. The main inhibitor of STAT3 function is PIAS3. The protein

binds to activated STAT3, preventing further transcription [146]. We model this by including
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a deactivation term with rate ksni, shown in the second term of Eq (4.33). Assuming enyzme-

type dynamics for all states of STAT3, the transcription factor is conserved, and deactivated

nuclear STAT3 returns to the cytosol in the last term of Eq (4.34).

dSTAT3i
dt

=−

STAT3 activation︷ ︸︸ ︷
2kstatIL10/R/JAK1/Tyk2 STAT32i

Inhibition by SOCS1/3︷ ︸︸ ︷(
1

1 +
(SOCS1cyto+SOCS3cyto

SOCS∞

)2
)

+

Moves to cytosol︷ ︸︸ ︷
ksnicytoSTAT3ni (4.31)

dSTAT3a
dt

=

STAT3 activation︷ ︸︸ ︷
kstatIL10/R/JAK1/Tyk2 STAT32i

Inhibition by SOCS1/3︷ ︸︸ ︷(
1

1 +
(SOCS1cyto+SOCS3cyto

SOCS∞

)2
)

−

Moves to nucleus︷ ︸︸ ︷
ksaSTAT3a (4.32)

dSTAT3n
dt

=

Moves to nucleus︷ ︸︸ ︷
ksaSTAT3a −

Deactivation︷ ︸︸ ︷
ksniSTAT3n (4.33)

dSTAT3ni
dt

=

Deactivation︷ ︸︸ ︷
ksniSTAT3n−

Moves to cytosol︷ ︸︸ ︷
ksnicytoSTAT3ni (4.34)

SOCS

The inclusion of SOCS, represented in Eqs (4.35) through (4.38), is also novel to our model

as compared to that by Maiti et al. Suppressors of Cytokine Signaling 1 and 3 (SOCS1,

SOCS3) are upregulated via STAT3 transcription and translation, first two terms of Eqs

(4.35) and (4.36), respectively [19, 51]. The last terms of these two equations represent

natural degradation of the mRNA.
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dSOCS1mRNA
dt

=

Gene transcription︷ ︸︸ ︷
ks1stSTAT3n −

Translation︷ ︸︸ ︷
ks1SOCS1mRNA−

Decay︷ ︸︸ ︷
µs1mSOCS1mRNA (4.35)

dSOCS3mRNA
dt

=

Gene transcription︷ ︸︸ ︷
ks3stSTAT3n −

Translation︷ ︸︸ ︷
ks3SOCS3mRNA−

Decay︷ ︸︸ ︷
µs3mSOCS3mRNA (4.36)

dSOCS1cyto
dt

=

Translation︷ ︸︸ ︷
ks1SOCS1mRNA−

Decay︷ ︸︸ ︷
µs1cSOCS1cyto (4.37)

dSOCS3cyto
dt

=

Translation︷ ︸︸ ︷
ks3SOCS3mRNA−

Decay︷ ︸︸ ︷
µs3cSOCS3cyto (4.38)

We used this model that includes both pro- and anti-inflammatory signaling pathways to

provide a fuller picture of the spectrum of activation that can occur within a macrophage.

In the following pages, we discuss how this model was implemented and compared to the

ABM.

4.2.2 Parameters & initial conditions for ODE model

We used data from Maiti et al. [73] to obtain initial parameter values as a starting point.

This was not a complete parameter estimation (calculating sensitivities, etc.), but rather a

first step in obtaining parameter values and initial conditions that produce dynamics that are

roughly expected and have the correct scales. Due to challenges with processed data provided

by the authors, we did not rely on fits to their data. Instead, we ensured that parameter

values produced similar behavior between single and multiple macrophage simulations.

Since the model simulations by Maiti et al. [73] were initialized with LPS, once the

final parameter set was obtained the model was run for 1,000 hours with no LPS using

the code provided in Section B.2. The ending values of these simulations for each variable

were determined to be the baseline initial conditions, representing a state of no macrophage

activation.
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4.2.3 Modeling multiple macrophages

The equations described in the section above represent the pathways in a single macrophage.

To model recruitment and cell lifespan, we extended the model such that the equations

are copied ten times to represent ten macrophages. These macrophages share the same

extracellular components: LPS, IL-10, and TNFα. Figure 4.2 shows a visualization of this

compartmental model. Furthermore, each macrophage is randomly assigned a lifespan, 12±3

hours. At the end of each cell’s lifespan, the variables in the signaling pathway are returned

to a naive state to represent the recruitment of a naive cell.

Our aim in constructing a model of multiple macrophages was to examine how macrophages

in close proximity behave in response to extracellular stimuli while still utilizing the ODE

structure. Resulting dynamics of variables that exist in each model can be viewed separately

or averaged together to obtain the average behavior across all macrophages.

4.2.4 Agent-based M1/M2 model

Our ABM pro- and anti-inflammatory mediators (PIM and AIM, respectively), M0, M1,

and M2 macrophages, and SOCS on a 40-by-40 grid, implemented using object-oriented

programming in MATLAB (code provided in Section B.1). Macrophages are mobile agents

with M1/M2 activation and SOCS levels as associated attributes. Each macrophage may

take up one patch, and pro- and anti-inflammatory mediators are measured by amount on

each patch, diffusing across the grid over time. We do not specifically model TNFα and

IL-10 but rather group together general mediators with pro- and anti-inflammatory roles.

The model can be initialized with varying levels of any of these components and simulated to

obtain the resulting dynamics. The model performs a series of steps to recruit macrophages,

determine M1/M2 activation, and produce and inhibit pro- and anti-inflammatory mediators

and SOCS. Each macrophage has levels of M1 and M2 activation, where 0 ≤ M1+M2 ≤ 1,

and these activation levels are updated based on the surrounding levels of pro- and anti-

inflammatory mediators. Figure 4.3 summarizes the steps taken during every iteration of
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Figure 4.2: A representation of the multiple macrophages ODE model, in which each
macrophage is a compartment with its own set of subcellular signaling pathways, and all
ten macrophages share external stimuli LPS, TNFα, and IL-10.
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the simulation, where each iteration represents 20 minutes. These steps are based on the

same interactions described in the ODE model.

4.2.5 Calibrating experiment and scenarios

To be able to compare the models to each other, we implemented the same scenario, which we

called a "calibrating experiment," in each model and tuned the ABM results so that PIM &

AIM and M1 & M2 activation results were similar to their corresponding components in the

ODE model, since the ODE model parameters were already set (see Section 4.2.2 for process).

These ODE model components were extracellular TNFα & IL-10 and TNFα mRNA & IL-

10 mRNA, respectively. We chose M1 and M2 activation to be represented by TNFα and

IL-10 mRNA, respectively, since mRNA is produced via downstream signaling initiated by

the surrounding environment and also results in specific proteins that are secreted from the

cell. Thus, mRNA associated with the cell’s phenotype both reflects and drives macrophage

polarization.

Tuning parameters so that the ABM and ODE model returned similar dynamics in the

calibrating experiment allowed us to obtain similar behavior at baseline and compare the

results of more complicated experiments. We chose this scenario to be a single macrophage

with a high pro-inflammatory stimulus and without cell death. In the ODEs, initial con-

ditions were established such that all variables are at baseline levels, to represent an M0

macrophage. TNFα, the variable representing a pro-inflammatory stimulus in the ODE

model, was set to 10 pg/mL, consistent with experimental methods [60].

For a naive macrophage in the ABM, we used a 3-by-3 grid so that the cell could move

but interact only with the mediators in its immediate proximity. A naive macrophage in

this model is defined as having activation M1 + M2 < 0.25; M1 and M2 activation were

randomly chosen with bounds that satisfy this condition. Pro-inflammatory mediators do

not have specific units but after exploratory simulations, we considered a concentration of

30 in the center space of the grid to be sufficient to mount an inflammatory response. ABM
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Initial values
Macrophages, PIM, AIM

Update M1/M2act
based on PIM/AIM

PIM increases M1act
AIM decreases M1act, 

increases M2act

Update macrophage 
phenotype

based on M1/M2act, where 
0 ≤ M1act, M2act ≤ 1

IntermediateM0 M2M1
M1act + M2act ≥ 0.25,

M1act, M2act < 0.5 M1act ≥ 0.5M1act + M2act ≤ 0.25 M2act ≥ 0.5

Determine lifespan

M0
24 ± 6 hours

M1, M2, int.
12 ± 3 hours

PIM & AIM diffuse

PIM & AIM decay

Recruit macrophages
Probability based on total PIM/AIM

M1act, M2act based 
on PIM/AIM

Macrophages produce PIM, AIM
proportional to M1/M2act

AIM inhibits M1 production of PIM
SOCS inhibit M2 production of AIM

t+1 Macrophages move randomly

Increment age
Reduce to 12 ± 3 hours if activated

Classified as M0, M1, M2, 
or intermediate (see above)

SOCS inhibits 
M1act & M2act

M1act & M2act decay

Wash
(if part of experiment)

M2 activation produces SOCS

Figure 4.3: Description of steps in ABM for each iteration of the simulation.
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parameters were tuned manually to match the dynamics observed in the ODE.

Through simulating the calibrating experiment and scenarios, described below, we found

that receptor-bound TNFα and IL-10 in the ODE model played an important role in the

resulting dynamics. Many modelers do not model changes in cytokine levels due to binding

to receptors, assuming this amount is negligible. However, we found that this is not the

case in our ODE model, and explicitly modeling receptors makes a difference in dynamics.

Receptors were not explicitly modeled in the ABM; macrophage activation is based solely on

the surrounding PIM and AIM. This can create a disparity in the amount of PIM and AIM

that are compared between the two models. In Figures 4.4 and 4.5 and in our results, we

showed two cases of the ODE model: when only extracellular TNFα and IL-10 are considered,

and when both extracellular and receptor-bound TNFα and IL-10 are considered. We also

discussed differences between these two cases.

In the calibrating experiment, we set the ODE and ABM parameters and initial conditions

such that a single macrophage would exhibit similar M1 and M2 behavior when initialized

with PIM (process described in Methods section). Figure 4.4 shows the results of this

simulation. All transients are normalized for comparison because the units in the models

vary. To do this, we scaled each transient by its maximum. The results of the ABM in

Figure 4.4 is the result of 50 simulations; on the other hand, the ODE model with a single

macrophage is deterministic and thus only one simulation is necessary.

M2 activation occurs slightly earlier in the ABM than in the ODE, but we concluded

that the results were similar enough to proceed with comparisons. Adding receptor-bound

TNFα and IL-10 to their extracellular counterparts did not make a significant difference in

the results. We also considered the magnitudes of M1 and M2 activation in relation to each

other, shown in Figure 4.5. M1 and M2 activation in the ABM are, by definition, bound

between 0 and 1. To compare with the ABM, we scaled TNFα and IL-10 mRNA in the ODE

by the maximum of TNFα. Peak M2 activation in both the ABM and ODE are about half

the peak M1 activation. This shows important dynamics observed in both models, which
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(a) (b)

(c) (d)

Figure 4.4: Calibrating experiment: single macrophage activated by a pro-inflammatory
stimulus. ABM and ODE results are shown on the same plots for comparison. All transients
are scaled by their maximums. Dotted lines represent extracellular TNFα or IL-10 with
receptor-bound TNFα or IL-10, respectively. (a) M1 activation, (b) M2 activation, (c) pro-
inflammatory mediators, (d) anti-inflammatory mediators.

illustrates the strength of the calibration.

Once the parameters were set and the calibrating experiment was simulated, we changed

the initial conditions to represent six additional scenarios, which will be described in greater

detail below. First, we used the same single-macrophage model as described above but

with an anti-inflammatory stimulus. Then, using the 40-by-40 grid for the ABM and ten-

macrophage model for the ODE, we incorporated recruitment/turnover and cell lifespan.

For these larger models, we simulated the following scenarios, the results of which will be
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Figure 4.5: Calibrating experiment: M1 and M2 activation resulting from the calibrating
experiment. ODE results are scaled by the maximum M1 activation to compare to activation
in the ABM, which is bound by 0 and 1.

discussed in the following section:

1. Naive macrophages with large pro-inflammatory stimulus

2. Naive macrophages with large anti-inflammatory stimulus

3. M1 macrophages with anti-inflammatory stimulus

4. Half M1, half M2 macrophages

5. Pro-inflammatory stimulus, wash at hour 12, then anti-inflammatory stimulus

4.3 Results

We simulated equivalent scenarios in an ODE model and an agent-based model of M1/M2

activation in response to general inflammatory stimuli. In this section we compare the re-

sults of the two models to shed light on the benefits of each model type and, in particular,
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examine whether the incorporation of a spatial component through an ABM or the incorpo-

ration of hallmark signaling pathways through an ODE improve the value of the models in

understanding immune system dynamics. All results shown are the average of 50 simulations

except the single-macrophage simulations, which is deterministic since age is not a factor.

Code is provided in Sections B.1 and B.2.

4.3.1 Scenario 1: macrophage with anti-inflammatory stimulus

For the first scenario, we used the same structure of a single macrophage as in the calibrating

experiment. Instead of a pro-inflammatory stimulus, we used an anti-inflammatory stimulus.

Figure 4.6 shows the results of this simulation. AIM and M2 activation behave roughly the

same; in the ABM, M2 activation decreases slightly slower than in the ODE. For the ABM,

in both the calibrating experiment and this scenario, there is a slight increase in AIM later

in time. This may be due to the small amount of SOCS left at this time, allowing AIM

to increase slightly before decaying completely due to decreasing M2 activation. Including

receptor-bound mediators in the ODE reveals a slower decrease in AIM over time but overall

similar behavior to the ABM. A small increase in M1 activation and PIM also occurs later

in time in the ODE model; this is due to trace amounts of NFκB in the baseline levels of the

cell that result in a small amount of TNFα production downstream. Additionally, we noted

that simulating a single macrophage in the ABM shows consistent results for each of the

50 simulations, since the shaded regions around the curves, representing standard deviation,

are very small or nearly zero.

Figure 4.6(c) shows that some PIM is produced in the ABM due to a small percent-

age of M1 activation existing in the naive macrophages (see Figure 4.3 to see how naive

macrophages are defined), but both models show a decrease to zero in the presence of a

large concentration of AIM. Similarly to Figure 4.5 in the calibrating experiment, we show

M1 activation in relation to M2 activation in Figure 4.7 to better visualize the magnitude

of the pro-inflammatory response, which is very small in relation to the much larger anti-
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(a) (b)

(c) (d)

Figure 4.6: Scenario 1: Simulation of single response to an anti-inflammatory stimulus. All
transients are scaled individually by their maximums. (a) M1 activation, (b) M2 activation,
(c) PIM, (d) AIM.

inflammatory stimulus.

4.3.2 Scenario 2: multiple macrophages with pro-inflammatory stim-

ulus

We then introduced recruitment/turnover and cell lifespan. In the ABM, the grid was

expanded to 40-by-40 with ten M0 macrophages initially, and the recruitment feature was

turned on. Naive and activated macrophages were randomly assigned lifespans of 24 ± 6

and 12± 3 hours, respectively. In the ODE, all ten macrophage compartments were utilized
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Figure 4.7: Scenario 1: M1 and M2 activation resulting from the calibrating experiment.
ODE and ABM results are scaled by the maximum M2 activation to compare to maximum
M1 activation, which is nearly nonexistent in comparison to M2.

and had lifespans of 12± 3 hours. In this scenario, we introduced a large pro-inflammatory

stimulus into the model. Results are shown in Figure 4.8.

In this scenario, M1 and M2 activation in the ODE occur before the ABM, despite similar

dynamics for the anti-inflammatory mediators between the two models (panel (d)). Including

receptor-bound TNFα (Figure 4.8(c)) makes a significant difference in the dynamics. Our

ODE model shows that when naive macrophages are introduced into an environment with a

high concentration of TNFα, receptors quickly bind to free TNFα. Therefore, extracellular

TNFα in the ODE did not compare well to PIM in the ABM, since receptors are not modeled

in the ABM. When receptor-bound TNFα was added to the PIM total shown in Figure 4.8,

the dynamics matched up almost perfectly to the ABM. Figure 4.8(d) shows almost no

difference between extracellular IL-10 only and extracellular IL-10 with receptor-bound IL-

10, suggesting that accounting for both populations matters more when a large amount of

extracellular mediators is introduced rather than the resulting dynamics are observed over

time. Standard deviations, shown as the shaded regions in the figures, are also higher than
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(a) (b)

(c) (d)

Figure 4.8: Scenario 2: M1/M2 response to model of multiple macrophages, activated by an
initial amount of pro-inflammatory mediators. All transients are scaled individually by their
maximums. (a) M1 activation, (b) M2 activation, (c) PIM, (d) AIM.

the single-macrophage simulations, since cell lifespan and recruitment provide additional

randomness.

4.3.3 Scenario 3: multiple macrophages with anti-inflammatory stim-

ulus

The same initial conditions were used for this scenario as in the previous one, except instead of

a pro-inflammatory stimulus, an anti-inflammatory stimulus was introduced into the system.

Results are shown in Figure 4.9. PIM and M1 activation were very small compared to AIM
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and M2 activation, so we do not show their dynamics.

(a) (b)

Figure 4.9: Scenario 3: M1/M2 response to M1 macrophages activated by an initial amount
of anti-inflammatory mediators. All transients are scaled individually by their maximums.
(a) M2 activation, (b) AIM.

M2 activation in the two models are very similar, with the ODE showing a slightly longer

tail after the peak of activation. This is paired with a slower decrease of IL-10 (AIM) when

receptor-bound IL-10 is taken into account, similarly to PIM in the previous scenario. For a

large anti-inflammatory stimulus, similar dynamics are observed between both models when

the ODE transient includes receptor-bound IL-10.

4.3.4 Scenario 4: M1 macrophages with anti-inflammatory stimulus

Next we examined what would happen to an M1 environment when an anti-inflammatory

stimulus is introduced into the system. We first needed to determine what this M1 environ-

ment would look like as initial conditions that could be used to begin the simulation.

For the ODE, we set all ten macrophages to an M1 phenotype based on the maximum

activation that occurs in the calibrating experiment. This maximum occurs around hour 13,

so we used the variable values at this time as the initial conditions for all macrophages. We

then added a high concentration of IL-10 (the same amount as in Scenario 3) and ran the

simulation.
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For the ABM, M1 macrophages are defined as having M1act > 0.5 and produce pro- and

anti-inflammatory mediators proportional to their activation. To account for recruitment,

the equivalent of which in the ODE model is turnover to naive initial conditions, we intro-

duced into the system the number of M1 macrophages at the time when M1 activation was

at its highest in Scenario 2. We find that this occurred roughly at hour 12, when there were

205 macrophages. We used this number of M1 macrophages as the initial conditions, along

with the same amount of anti-inflammatory mediators as in Scenario 3. We performed two

simulations to account for receptor-bound TNFα - in the first simulation, we started without

any extracellular TNFα. Second, we considered no TNFα to also include no receptor-bound

TNFα. Figure 4.10 shows the results for average activation and extracellular mediators.

M2 activation is similar, with the tail of M2 activation and AIM slightly longer in the

ODE than the ABM. AIM have a similar response as in the previous scenario, such that with

a large anti-inflammatory stimulus, including receptor-bound IL-10 in the AIM improve the

ODE model’s similarity to the ABM dynamics. Similarly, including receptor-bound TNFα in

the total PIM matches ABM dynamics better, though in this case PIM production increases

at a slightly higher rate in the ABM. Also, M1 activation shows a small rebound before it

decreases to zero. Since AIM do not stimulate the pro-inflammatory signaling pathway but

rather inhibit it, this rebound may be due to residual NFκB and TNFα in the cytosol and

nucleus of the M1 macrophages, taking some time to make its way downstream before being

used to produce a small amount of extracellular TNFα.

4.3.5 Scenario 5: half M1 and half M2

We then observed the results of initializing the models to a state of high activation such that

half of the macrophages present were activated to an M1 phenotype and half were M2.

For the ODEs, we used the same initial conditions for M1 macrophages as in Scenario 4,

and used a similar method to obtain initial conditions for M2. Hour 16 in Scenario 1 was the

time around which peak M2 activation occurs. Five macrophages had M1 initial conditions
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(a) (b)

(c) (d)

Figure 4.10: Scenario 4: M1/M2 response to anti-inflammatory stimulus introduced into
an M1-polarized system. Transients are scaled individually by their maximums. (a) M1
activation, (b) M2 activation, (c) PIM, (d) AIM.

and the other five had M2 initial conditions.

For the ABM, we used a total of 200 macrophages to represent a state of high acti-

vation, similar to the maximum amount of macrophages in Scenario 4. Half were defined

as M1 and half as M2. Figure 4.11 shows the results for M1 and M2 activation and for

pro- and anti-inflammatory mediators. When receptor-bound mediators were not taken into

account, only extracellular TNFα and IL-10 were set to zero at the beginning of the simula-

tion. When receptor-bound mediators were considered part of the overall TNFα and IL-10

concentrations, they were also set to zero.
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(a) (b)

(c) (d)

Figure 4.11: Scenario 5: M1/M2 response to a state of activation in which half of the
macrophages present are M1 macrophages and half are M2. Transients are scaled individually
by their maximums. (a) M1 activation, (b) M2 activation, (c) PIM, (d) AIM.

The ODE model results that included receptor-bound mediators in the total were more

similar to ABM results, reflected in all four panels of Figure 4.11. M1 and M2 activation

decay at similar rates due to low production of mediators, and the maximum PIM and AIM

show similar behavior as well. The ODE model has consistently shown a longer tail in the

overall anti-inflammatory response, both in AIM and M2 activation.
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4.3.6 Scenario 6: PIM activation with wash and anti-inflammatory

stimulus

It is common in experimental setups to perform a wash, where cells are treated with a

stimulus, then "washed" with a solution to remove external mediators [136]. We replicated

this experiment by beginning with the same initial conditions as in Scenario 2: 10 naive

macrophages and a pro-inflammatory stimulus. Then at hour 12, the cells, at whatever state

they were in at that time, were "washed" such that PIM and AIM were set to zero and a high

amount of AIM was added (same as initial amount in Scenario 3). In the case of considering

receptor-bound mediators, receptor-bound TNFα was also set to zero at hour 12. Results

are shown in Figure 4.12. Since the times at which M1 and M2 activation is affected most

by the wash is different for the ABM versus the ODE model, we compare experiments to

examine how they differ from a control, where there is no wash and no AIM added at 12

hours. Therefore, we show four cases, all of which are initialized with PIM: 1) PIM with no

later intervention, 2) no wash, AIM added at 12 hours, 3) wash with AIM added, 4) wash

with no AIM added. In the future, experiments could be performed with data collected when

the models’ dynamics differ significantly in order to select which model best replicates the

experimental results.

Figure 4.12 shows that M1 and M2 activation in the ABM responds similarly regardless

of the experiment, whereas they have more distinct results in the ODE simulations. The

ODE model has a more immediate response to the AIM than the wash, shown in the sharp

changes at hour 12 for the blue and yellow curves in panels (b) and (d). On the other

hand, activation in the ABM does not show these sharp changes; rather, they are more

gradual even though large jumps are reflected in the PIM and AIM dynamics. Incorporating

the receptor-bound mediators into the extracellular AIM and PIM in the ODE simulations

shows nearly an exact match with the ABM results in panels (e) through (h). Furthermore,

in both model types, M1 activation generally peaks before M2 activation. One noticeable

difference is that with the wash, no AIM experiment, more time is needed in the ABM to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.12: Scenario 6: M1/M2 response to an initial pro-inflammatory stimulus and either
wash or no wash, with AIM added or not added at hour 12. Transients are scaled individually
by their maximums. Column 1: ABM results. Column 2: ODE results. (a, b) M1 activation,
(c, d) M2 activation, (e, f) PIM, (g, h) AIM.
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return to its original levels whereas the ODE model shows a faster rebound. Examining

these four scenarios allowed us to observe how the models respond to different variations

of stimuli and pinpoint the sensitivity of both models to these stimuli. It could also aid in

selecting the best way to create an in silico representation of an experiment such as a wash.

4.4 Discussion

With still much unknown about M1-M2 polarization and the important role it plays in the

pathogenesis of many diseases [11], our modeling approaches and scenarios contribute to

the body of knowledge surrounding macrophage polarization by providing a comparison of

in silico platforms to test hypotheses and highlight mechanisms that may be necessary or

unnecessary to include in future models.

By using the same basic principles of M1/M2 activation, interaction with mediators,

and cell lifespan, our two distinctly different models provided surprisingly similar results

after tuning to a common calibrating experiment. In particular, peak times and overall

shapes of the transients were similar in most cases. Whereas our ODE model accounted for

relatively detailed subcellular signaling, where each term represented a different interaction

within the cell as well as with extracellular mediators, our ABM simplified the interactions

to reflect similar roles of M1/M2 activation without the detail of individual mechanisms and

interactions. Rather, only M1/M2 activation and mediators were measured in the model.

A common difference between models was a longer tail of M2 activation and AIM activity

across several scenarios. This was also seen in the calibrating scenario, where M2 activation

decreases more quickly in the ABM. Future work could include finer tuning of the parameters

to better align the model results.

Another thread throughout this chapter is the consideration of receptor-bound TNFα

and IL-10 in the ODE model. In most scenarios, especially those with high amounts of one

mediator (Scenarios 2-4) or both (Scenarios 5-6), incorporating receptor-bound mediators
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into the overall concentration of mediators improved similarity to the ABM results. Though

this disparity was initially unexpected, it was not surprising since the ABM does not explic-

itly model receptors such that extracellular mediators are not removed from the population

when they interact with a macrophage. Due to the significant difference when taking into

account receptors versus not taking them into account, future changes to the ABM may

involve accounting for receptor-bound mediators by explicitly including receptors or PIM

and AIM in the extracellular population could be decreased when they come into contact

with a macrophage, representing binding to receptors.

We also wanted to examine the differences that incorporating space (ABM) or detailed

subcellular signaling (ODEs) would make in the resulting dynamics. A notable difference

between the two models is seen in Figure 4.10(a), where residual amounts of M1-related

variables such as intracellular forms of NFκB and TNFα resulted in a small downstream

bump in M1 activation in the ODE, whereas the ABM, which does not account for these

variables, showed a more gradual, constant decrease of M1 activation to zero. Another

significant difference was observed in the "wash" experience in Scenario 6, where the ODE

model had a greater sensitivity to immediate changes in PIM and AIM than the ABM. In the

ABM, rules of macrophage activation are defined such that activation decreases gradually

when a stimulus is not present, whereas in the ODEmodel the explicit transcription of mRNA

responds directly and more immediately to a lack of extracellular mediators. Interestingly,

this discrepancy did not significantly affect the other scenarios. This is an area of future

investigation, especially if these models could be validated with experimental data. Overall,

the incorporation of multi-step subcellular signaling was not very important since the ABM

did not include subcellular signaling and we obtained similar dynamics from both models.

We did not observe significant differences regarding the spatial dynamics of the ABM

versus the well-mixed assumption of the ODE model, although this was not a focus of our

analysis. It has been shown in previous ABMs involving macrophages, such as modeling

granuloma formation in tuberculosis [77], that incorporating the ability of macrophages to
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interact on a spatial level and gather together is important to the immune response. Future

simulations and scenarios could involve putting initial amounts of PIM and AIM on different

areas within the grid or in different patterns to observe more carefully how space plays a

role in M1/M2 activation.

Based on our findings from comparing the two models, we recommend a focus on the

main interactions of extracellular mediators and macrophages, where M1/M2 polarization

can occur on a continuous spectrum, reflecting the current knowledge and modeling practices

of macrophage activation [78, 88, 149]. Important feedback loops in the pro- and anti-

inflammatory phases of the immune response are: the positive feedback loop of M1 activation,

upregulation of M2 via M1, and the negative feedback loop in which M2 decreases both

M1 and itself. Initially, our ABM did not include SOCS, a family of intracellular proteins

produced by the IL-10 pathway to regulate itself. Without this regulatory feedback loop, M2

activation and AIM did not decrease back to its initial state, but when we added SOCS to the

ABM, we obtained the expected dynamics such that the calibrating experiment results of the

ABM were similar to the ODE model, which did include SOCS. Whether these interactions

and feedback loops are modeled explicitly through signaling pathways or through general

rules was less important for our purposes, as our results from the two approaches were

similar, as long as they were included in some manner.

Future work necessary to confirm our hypotheses via the scenarios described above is to fit

both models, especially the calibrating experiment, to additional data. The only data used so

far was an initial parameter estimation of the ODE model parameters based on LPS-induced

dynamics. More sophisticated parameter estimation methods, such as obtaining correlations

between parameters and a sensitivity analysis, would be useful due to the large number of

parameters in the model. Furthermore, currently both models are meant to represent the

immune response to a general insult. These models can be adapted to incorporate the key

players and mechanisms involved in specific injuries such as bacterial or viral infections,

mechanical ventilation, or smoking/COPD.
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Chapter 5

Discussion

5.1 Conclusion

Infections and other insults associated with the lungs are still some of the top causes of death

worldwide [2]. Despite decades of research surrounding lung inflammation and damage,

there is still much that is unknown about the mechanisms of inflammation and repair in

the lungs, especially relating to the M1/M2 spectrum of activation. In the context of VILI,

the need to test new ventilation strategies that mitigate VILI before becoming standard

practice arises from the combination of patient-specific needs and the many configurations

of the ventilator itself [118]. Another example of the need for new treatments can be seen

in treatment of the respiratory infection tuberculosis, for which there is currently not a

comprehensive vaccine and antibiotic resistance is a growing problem [58]. In silico modeling

is a useful tool to simulate these complex interactions, test hypotheses, and make predictions.

Furthermore, a variety of methods, including statistical and machine learning techniques, can

aid in analyzing our models in the absence of experimental data. In this work, we utilized

various types of in silico modeling with standard analysis methods and ones developed on

our own to contribute to a greater understanding of lung inflammation.

To understand VILI and identify the key mechanisms driving outcome, we developed
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an ODE model that includes an epithelial subsystem and accounts for M1/M2 polarization.

Through LHS, we generated a collection of parameter sets that provided a wide variety

of dynamics. Using hypothesis testing, a random forest algorithm, and the variance-based

sensitivity analysis method eFAST, we identified the parameters and other predictors that

contributed most to changes in overall lung health. We found that the key parameters

corresponded to mechanisms of epithelial repair and M1 activation. We then hypothesized

interventions based on these mechanisms and modulated epithelial damage in a case study.

We explored the usefulness of the collection of parameter sets produced from LHS and

their corresponding model-generated dynamics. By creating a large synthetic data set from

these transients, we were able to develop an algorithm based on relative error between the

collection and each synthetic data set to predict whether the individual’s condition would

worsen after ventilation and a period of recovery. We also extended this algorithm to choose

a next sample time that would provide the most information to determine outcome, and

employed the parameter values themselves to supplement prediction in some cases. There

are many different ways our algorithms can be tuned based on the needs of the user, such as

the availability of different kinds of data and the thresholds for determining outcome. Thus

far, our prediction processes compares fairly well to current classification methods using

the synthetic data as a proof of concept. However, our methods should be calibrated to

experimental data to be truly useful in a real-world setting and improve the accuracy of our

predictions.

As previously stated, a coordinated M1/M2 response is necessary to correctly respond

to and resolve damage in the lung. We built upon previous models to develop a system of

ODEs that represents M1 and M2 subcellular signaling pathways within a macrophage. We

also applied the same principles in an ABM, adding a spatio-temporal component to the

macrophage dynamics. Both of these models represented a generic inflammatory response

in the lungs. We developed these models to include cell lifespan and M1/M2 dynamics on

both an individual-cell level and a tissue-scale level. In this way, macrophages interact with
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their environment. We compared these different modeling approaches in various scenarios

and found that including the details of the subcellular signaling pathway were not necessary

in capturing the nonlinear dynamics of the M1/M2 response as long as the feedback loops

regulating this immune response were incorporated into the model. We also identified how

differences between the two models, such as explicitly including receptors, can affect output

and should be considered when modeling.

Overall, this work contributes to the current body of knowledge surrounding mathemati-

cal modeling of lung inflammation, and in particular the role of the spectrum of macrophage

activation. Due to the lack of data currently available, sophisticated computational meth-

ods were necessary to gain insight into the immune response. Through these methods we

were able to identify important mechanisms, hypothesize and test interventions, and provide

suggestions for future modeling efforts.

5.2 Future directions

A current limitation of our work is a lack of data, especially M1/M2 data in response to

VILI. Once this is available, it will be possible to perform formal parameter estimation

methods, calculate correlations between parameters, and obtain sensitivity analysis results.

Furthermore, a true cohort could be established to aid in future predictions of outcome. With

a bank of previous data, the algorithms we developed in Chapter 3 could be validated and

used in real time for experimental design and in clinical settings to recommend sample times

and determine whether additional intervention is needed, both during and after ventilation.

The calibrating experiment and scenarios in Chapter 4 could also be fit to data. This would

shed more light on M1/M2 dynamics on an individual cell level and aid in understanding

the collective behavior of the tightly regulated interactions and roles of these cells.

All of these modeling approaches can be adapted or coupled with other models to replicate

the dynamics of specific diseases. We discussed in Chapter 2 that although we focused our
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modeling on the immune system dynamics that resulted only from ventilation, there are a

number of insults and comorbidities that induce the need for ventilation in the first place.

Since the algorithms developed in Chapter 3 are essentially classification methods based

on an ODE model and collection of parameter sets, these same algorithms can be applied

to other models to obtain predictions of different outcomes. Furthermore, for our general

inflammation models in Chapter 4, specific mechanisms and interactions can be included to

reproduce infection, particle inhalation through smoking, or other initiators of the immune

response.

The methods used in this work, such as LHS, hypothesis testing, and eFAST, were

appropriate for our purposes but alternative sampling and parameter sensitivity analysis

methods exist. For example, Halton sequences are quasi-random but often cover parameter

space more evenly [142], and partial rank correlation coefficients and the Sobol method are

alternatives to eFAST [76, 114]. Additionally, incorporating other statistical methods could

be useful. When performing hypothesis tests, interactions between parameters can be taken

into account [13]. Furthermore, in Chapter 3, there may be other combinations of parameters

not included in the collection that best fit a data set. Instead of the RES algorithm, LHS

could be used as an experimental design to fill the parameter space. Then, using a linear

model or Gaussian process model, parameter values could be selected to optimize the fit

to data [55]. Future work could explore whether these and other analysis methods provide

more information or aid in more accurate predictions.

Additional directions for future work are related to the properties of the models them-

selves. In Chapters 2 and 3, we examined how outcomes differed between initial conditions

and states after ventilation plus a recovery period. After exploratory simulations, we ob-

served that it is possible for many of the cases that worsen after 200 hours in comparison

to their pre-ventilation state to eventually return to their initial conditions, but only after

several thousand hours, which may be clinically unrealistic. We performed a bifurcation

analysis for the epithelial subsystem, showing stable and unstable steady-states at zero or
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nonzero points for Eh and Ed, but what about the stability of the larger system? Under-

standing the stability of the model as a whole may provide additional insight into the reasons

why some individuals can recovery quickly after ventilation while others do not; this is of

particular interest in the context of inflammaging in VILI, where older individuals do not

recover as well from ventilation as younger individuals.

Furthermore, the ABM incorporates recruitment of macrophages, diffusion of extracel-

lular mediators, and random movement of macrophages. However, the spatial dynamics of

this model were not fully explored in Chapter 4, and could be useful in understanding how

different spatial configurations of the immune system components might affect the M1/M2

response. Future simulations could include placing macrophages and extracellular mediators

in different locations on the grid and examining the resulting patterns.

In conclusion, through mathematical modeling of lung inflammation and incorporating

macrophage polarization, we have been able to develop a better understanding of these

complex interactions and recommend targets for intervention. In the future, we will be able

to validate our models and strengthen results through fitting to data, which can be guided

by our modeling efforts described in this work.
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Appendix A

Chapter 2 supplementary material

A.1 Epithelial subsystem

We began with a small three-dimensional system of differential equations of epithelial cell

dynamics, shown in Eqs (A.1)-(A.3). We then performed a bifurcation analysis to gain an

initial understanding of the effects of the immune response on the epithelium. In this section,

we examine steady-states that arise from mechanisms specific to VILI.

Eh is the proportion of the local space filled by healthy cells, Ed is the proportion of

the local space filled by damaged cells, and Ee represents dead cells or empty "space" that

can be replaced/filled with healthy cells. We define this "local space" to be a simplified

approximation of the entire alveolar space. Each term represents a biological event explained

by the brackets above the term. This first model includes only the baseline abilities of

epithelial cells to proliferate and repair themselves in the presence of sustained damage.

We do not explicitly model proliferating and non-proliferating cells; the parameter pe is

modulated to reflect the general mechanism by which neighboring epithelial cells renew

surrounding "space" (tracked by Ee).
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dEh
dt

=

Proliferation︷ ︸︸ ︷
pe(Eh + Ed)(Ee)+

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh (A.1)

dEd
dt

= −
Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh (A.2)

dEe
dt

= −
Proliferation︷ ︸︸ ︷

pe(Eh + Ed)(Ee)+

Death︷︸︸︷
bEd (A.3)

Ventilator-induced injury is represented by the rate s, and causes healthy epithelial cells to

become damaged. This general term covers over-distension for any mode of ventilation. Some

damaged cells, depending on the severity of damage, have the ability to repair themselves,

returning from the Ed state back to Eh, represented by a baseline repair rate r [25]. Damaged

cells may also decay naturally at a rate b.

The first terms in Eq (A.1) for Eh, and Eq (A.3) for Ee, account for proliferation of

the healthy and damaged cells into empty space. Note that total local space is conserved:

Ee+Eh+Ed = 1. Therefore, we can define Ee = 1− (Eh+Ed) and rewrite this term, where

it becomes the standard logistic growth with a carrying capacity of 1, associated with 100%

of space being filled. Thus, Eh, Ed, and Ee are dimensionless and we determine time to be

in hours. Eliminating Ee gives rise to a two-dimensional system, Eqs (A.4)-(A.5).

dEh
dt

=

Proliferation︷ ︸︸ ︷
pe(Eh + Ed)(1− (Eh + Ed))+

Repair︷︸︸︷
rEd −

Damage from
ventilator︷︸︸︷
sEh (A.4)

dEd
dt

= −
Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage from
ventilator︷︸︸︷
sEh (A.5)

Stability analysis revealed that in the absence of ventilator-induced damage (s = 0) and

with all positive parameters, (0, 0) is a saddle node and (0, 1) is a stable equilibrium with

eigenvalues λ1 = −r − b and λ2 = −pe. Given a nonzero initial condition for damaged cells,
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the epithelial cells subsystem will resolve to the fully repaired fixed point (0, 1).

In the presence of sustained ventilator-induced damage (s > 0), the Ed nullcline switches

from a vertical line to a line with slope (r+b)/s. The second equilibrium point changes from

(0, 1) to

(E∗d , E
∗
h) =

(
s2(pe − b) + pes(b+ r)

pe(b2 + r2 + s2 + 2br + 2bs+ 2rs)
,

(r + b)[s(pe − b) + pe(b+ r)]

p(b2 + r2 + s2 + 2br + 2bs+ 2rs)

)

Therefore in the presence of sustained damage, there no longer exists an equilibrium associ-

ated with full recovery.

In this section, we focused on the existence of bifurcations rather than the specific values

and time scales at which they occur; therefore the parameter values and ranges were chosen

to highlight the presence of these bifurcations. Further consideration for parameter ranges

is discussed in Sections 2 and 3. Based on initial exploration of the parameter space, Eh and

Ed seemed most responsive to changes in pe. There may be other bifurcation parameters;

we chose pe as examples (Figures A.1).

A bifurcation diagram for pe, shown in Fig A.1, has one transcritical bifurcation at

p∗e = 0.497. The bifurcation diagrams in this manuscript were created using XPPAUT [38]

with code included in Section A.3. In this figure, we show the proportion of space occupied

by healthy epithelial cells as a percentage, which is Eh multiplied by 100. The second

equilibrium for values of pe below the bifurcation is not included in the diagram, since it is

non-biological (negative Eh). For small values of pe, the ability of healthy cells to proliferate

and replace dead cells was insufficient and damage caused both healthy and damaged cells

to approach 0%. On the other hand, for values of pe larger than p∗e, the system approached

the stable nonzero equilibrium (E∗d , E
∗
h), which was closer to (0, 1) for higher values of pe

even in the presence of sustained damage.
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Figure A.1: The epithelial subsystem generated a transcritical bifurcation for the
parameter pe. Bifurcation diagram for the proliferation parameter pe for the epithelial
system with VILI and no immune response. Other parameters were set to r = 2.6, s = 0.22,
and b = 0.74. The unstable equilibrium below pe < p∗e = 0.497 is not included in the figure,
since it is not biologically relevant.
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A.1.1 Fixed immune response

Next we examinde the roles of immune cells, especially neutrophils and macrophages, by

adding several terms to Eqs (A.1) and (A.2). We first focused on dynamics with a fixed im-

mune response, because when we worked with the full model (Section 2.2), we only considered

parameter sets that gave rise to steady-state solutions in the absence of ventilator-induced

damage. Therefore, we decided to start our model development by analyzing Eh and Ed

with immune cells as parameters before including their full dynamics. The modifications are

shown in Eqs (A.6) and (A.7).

dEh
dt

=

Proliferation︷ ︸︸ ︷
pe(Eh + Ed)(1− (Eh + Ed))+

Repair︷︸︸︷
rEd −

Damage from
ventilator︷︸︸︷
sEh −

Damage via
M1 & neutrophils︷︸︸︷

nEh (A.6)

dEd
dt

= −
Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage from
ventilator︷︸︸︷
sEh +

Damage via
M1 & neutrophils︷ ︸︸ ︷

imEh −

Phagocytosis
of damaged
cells by M1︷︸︸︷
mEd (A.7)

The physical presence of immune cells, especially first-responder neutrophils, causes

small-scale collateral damage as they clear debris [92] and can be especially deleterious if the

response is overzealous [44]. This biological event is modeled as the last term in Eq (A.6)

with cells switching from a healthy to a damaged state at the rate im. M1 macrophages

aid in the clearance of damaged cells to make room for replacement by new, healthy cells

through subcellular signaling and phagocytosis [4, 41]. The last term in Eq (A.7) represents

this loss of damaged cells.

The stability analysis was similar to that from the model without the immune response,

with additional parameters m, im that could shift steepness of the nullcline or the speed at

which the system approached or diverged from an equilibrium. The parameter pe once again
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played an important role in the stability of the two critical points, (0, 0) and

(E∗d , E
∗
h) =

(
(im + s)[(im + s)(pe − b−m) + pe(b+m+ im)]

pe(b+m+ im + r + s)2
,

(b+m+ r)[(im + s)(pe − b−m) + pe(b+m+ im)]

pe(b+m+ im + r + s)2

)

There was a transcritical bifurcation when the value of pe was varied; given its similarity

to Fig A.1, it is not shown here. For the same parameter values as in Fig A.1 (r = 2.6, s =

0.22, b = 0.74) with m = 0.92 and im = 1.6 added, we obtained the same p∗e = 0.497. The

main difference between these models is that the transcritical bifurcation point p∗e may be

lower because of the damage resulting from macrophages and neutrophils, represented by m

and im. The rate of proliferation of healthy cells may need to be higher to counteract these

effects.

The bifurcation diagram for scaled Eh versus im also had a transcritical bifurcation (see

Fig A.2a). For sufficiently low values of im, the nonzero critical point was stable, but for

values above i∗m = 1.364, (0, 0) was the stable equilibrium. Additionally, the two-parameter

stability diagram shows a curve which separates the pe/im-space into two stability regimes

(see Fig A.2b). For high enough values of im and low enough values of pe, the system went

to zero for both variables. Biologically, this corresponds to a situation in which the ability

of epithelial cells to proliferate is low and there are high levels of immune cells. On the

other hand, with low levels of immune cells and a higher proliferation rate, the system limits

to the nonzero equilibrium. It should be noted that for a large enough pe, it would take

an extremely high value of im to overpower proliferation and make (0, 0) the stable critical

point. In the full system, the initial conditions for our simulations have similar properties to

the type of steady state in the non-zero stable equilibrium region of Fig A.2b. Varying levels

of baseline inflammation exist given differences in patients’ age and past medical history.

These simple models provide a framework for the dynamics of the epithelium in response

to damage and an introductory look into the influence of the immune response. However,
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(a) (b)

Figure A.2: Variations on the epithelial subsystem revealed a transcritical bifurca-
tion and two-parameter bifurcation. (a) Bifurcation diagram for epithelial subsystem
when varying n. Other parameter values were set to r = 2.6, pe = 0.45, s = 0.22, b =
0.74, im = 1.6, m = 0.92. (b) Two-parameter plot showing values of pe and im which caused
the subsystem to have either a zero or nonzero stable equilibrium.

there are many more complex, nonlinear interactions and events involved in VILI which we

explored in the full model in Section 2.2.
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A.2 Analysis results for different sampling techniques

The next pages show the results of our analysis methods for LHS-generated parameter sets

using log-uniform and log-normal distributions, with three different exclusion criteria based

on Ee initial condition. We found that our methods did not differ significantly among these

sets.
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Cohort Breakdown
A summary of the initial sates and outcomes and how they change, depending on the maximum initial amount of Ee allowed (exclusion group), time at which outcome is 
determined, and type of sampling distribution.
Numbers in parentheses are the number of sets that leave the state and enter the state at the end of the simulation for initial condition (IC) and ending state (ES), 
respectively.

Log-uniform, 200h Log-uniform, 2h Log-normal
Initial condition criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% Ee(0)<50% Ee(0)<50%

Total number of sets that 
reached steady-state: 24798 24432 23517 22432 33256

Healthy IC: 16833 (635) 16833 (635) 16833 (635) 16833 (14260) 21403 (37)
Health ES: 16198 (0) 16198 (0) 16198 (0) 2573 (0) 21373 (7)

Moderate damage IC: 5382 (572) 5382 (572) 4697 (265) 5382 (3387) 10892 (155)
Moderate damage ES: 5105 (295) 5104 (294) 4726 (294) 10116 (8121) 10771 (34)

Moderate damage IC: 2583 (1) 2217 (0) 1987 (0) 2217 (0) 961 (0)
Moderate damage ES: 3495 (913) 3130 (913) 2593 (606) 11743 (9526) 1112 (151)



Top Correlations
The parameters that have the highest correlation with parameters and other predictors, for each exclusion group and outcome classification.

Log-uniform Log-uniform, 2h Log-normal
Criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% Ee(0)<50% Ee(0)<50%

kmne, Eh ratio 0.5h kmne, Eh ratio 0.5h kmne, Eh ratio 0.5h
Healthy 0.1 0.1 0.1 0.24 0.06
Moderate damage 0.66 0.66 0.66 0.43 0.47
Severe damage 0.55 0.87 0.86 0.73 0.67

br, Eh ratio 0.5h br, Eh ratio 0.5h br, Eh ratio 0.5h
Healthy 0.29 0.29 0.29 -0.04 0.19
Moderate damage 0.42 0.42 0.43 0.27 0.23
Severe damage 0.05 0.18 0.22 0.32 0.22

sm, max M2 sm, max M2 sm, max M2
Healthy 0.32 0.32 0.32 0.28 0.48
Moderate damage 0.31 0.31 0.31 0.32 0.51
Severe damage 0.4 0.29 0.3 0.32 0.52



Significance Testing
Parameters and other predictors that show a statistically significant difference (p-value<0.05) between all three outcome classifications, using Kruskal-Wallis and Wilcoxon tests.

Log-uniform Log-uniform, 2h Log-normal
Criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% Ee(0)<50% Ee(0)<50%
Significant predictors: kmne kmne kmne kep kmne

xmne xmne xmne br xmne
M2% at 10h M2% at 10h br Eh ratio at 0.5h Eh ratio at 2h
min M2 min M2 M2% at 10h Eh ratio at 2h mup
M1 peak time br ken Eh ratio at 6h ken
Eh ratio at 2h Eh ratio at 2h min M2 min M1 kep
min M1 M1 peak time min M1 ken M1 peak ratio
kep kep Eh ratio at 2h sn br
br min M1 M1 peak ratio max M1 M1 peak time
M1 peak ratio M1 peak ratio kep min M1% min M1%
Eh ratio at 0.5h Eh ratio at 0.5h Eh ratio at 0.5h kan M2 peak time
mup mup kem1 max M1% kem1
kem1 kem1 bp kem1 sn
kpe M1 peak time M2% at 10h

kam1 ainf
muna
max M2%
kn
mup
min M2%
ainf
sm
M2% at 10h
muab
kpm1
kmne
bp
knn
xm0ab
mum1b



Random Forest Decision Tree
Ten highest average importance values, as determined by 1000 random forests.

Log-uniform, 200h Log-uniform, 2h Log-normal
Criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% Ee(0)<50% Ee(0)<50%
Top ten, in order: kmne kmne kmne Eh ratio at 2h kmne

Eh ratio at 6h Eh ratio at 6h Eh ratio at 6h Eh ratio at 0.5h xmne
Eh ratio at 2h xmne xmne Eh ratio at 6h Eh ratio at 2h
xmne Eh ratio at 2h Eh ratio at 2h kmne Eh ratio at 0.5h
min M1 min M1 Eh ratio at 0.5h br Eh ratio at 6h
Eh ratio at 0.5h Eh ratio at 0.5h min M1 kep mup
min M2 min M2 min M2 xmne min M1
M2% at 10h M2% at 10h M2% at 10h min M1 ken
br br br ken min M1%
ken ken ken sn kep



A.3 Code: XPP file

The following is an .ode file that can be input into XPP to obtain the bifurcations described

in Section A.1.

# VILI epithelial subsystem, Minucci et al

# the parameters:

p N=0, R=2.6, P=0.45, S=0.22, B=0.74, M=0

### with immune response:

### N=1.6, M=0.92

# the system:

h'=-N*h+R*d+P*(h+d)*(1-h-d)-S*h

d'=-M*d-R*d+N*h+S*h-B*d

# initial conditions:

h(0)=1

d(0)=0

done

A.4 Code: ODE model equations

The following MATLAB function contains the equations for the full model presented in

Section 2.2.

1 function [dxdt] = model_equations(t,y,param)

2 % Equations for compartmental model of immune response to VILI
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3 % Minucci et al. | 2021

4

5 vent_time=2;

6

7 % parameters

8

9 dp = param(1); % PIM diffusion

10 da = param(2); % AIM diffusion

11 dm0 = param(3); % M0 diffusion

12 dm1 = param(4); % M1 diffusion

13 dm2 = param(5); % M2 diffusion

14 xm0pb = param(6); % regulates differentiation of M0b by pb

15 xm0ab = param(7); % regulates differentiation of M0b by pb

16 xm0pd =param(8); % regulates recruitment of M0b by pb

17 xm0ad = param(9); % regulates recruitment of M0b by ab

18 xm1p = param(10); % regulates recruitment of M1b by pb

19 kpm1 = param(11); % production of p by M1

20 kpe = param(12); % production of p by damaged cells

21 kam1 = param(13); % production of a by M1

22 kam2 = param(14); % production of a by M2

23 xm0p = param(15); % regulates differentiation of M0 by p

24 xm0a = param(16); % regulates differentiation of M0 by a

25 km1m2 = param(17); % dummy variable (used for eFAST)

26 xer = param(18); % regulates repair of damaged cells by R

27 kep = param(19); % self−resolving repair mediated by p

28 km2r = param(20); % upregulation of M2 recruitment by R

29 km2a = param(21); % upregulation of M2 recruitment by AIM
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30 xnup = param(22); % regulates activation of neutrophils by PIM

31 kpn = param(23); % production of PIM by neutrophils

32 kn = param(24); % migration of activated neutrophils to lung

33 kman = param(25); % upregulation of M1 switch by AN

34 kan = param(26); % neutrophils become apoptotic

35 knn = param(27); % neutrophils become necrotic

36 kanm1 = param(28); % phagocytosis by M1

37 kanm2 = param(29); % phagocytosis by M2

38 km0pb = param(30); % differentiation of M0b by pb

39 km0ab = param(31); % differentiation of M0b by ab

40 km0pd = param(32); % recruitment of M0b by pb

41 km0ad = param(33); % recruitment of M0b by ab

42 km1p = param(34); % recruitment of M1b by pb

43 km0p = param(35); % differentiation of M0 by p

44 km0a = param(36); % differentiation of M0 by a

45 krm2 = param(37); % production of R by M2

46 ker = param(38); % repair of damaged cells by R

47 kem1 = param(39); % further damage by M1

48 knup = param(40); % activation of neutrophils by PIM

49 abinf = param(41); % maximum amount of ab for inhibition

50 ainf = param(42); % maximum amount of a for inhibition

51 mupb = param(43); % decay rate of pb

52 muab = param(44); % decay rate of ab

53 mum0b = param(45); % decay rate of M0b

54 mum1b = param(46); % decay rate of M1b

55 mum2b = param(47); % decay rate of M2b

56 mup = param(48); % decay rate of p
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57 mua = param(49); % decay rate of a

58 mum0 = param(50); % decay rate of M0

59 mum1 = param(51); % decay rate of M1

60 mum2 = param(52); % decay rate of M2

61 muR = param(53); % decay rate of R

62 munu = param(54); % decay rate of Nu

63 muna = param(55); % decay rate of Na

64 sm = param(56); % source of M0b

65 sn = param(57); % source of Nu

66 bd = param(58); % baseline decay of damaged cells

67 br = param(59); % baseline repair of damaged cells

68 bp = param(60); % baseline self−resolving repair of epithelial cells

69 sd=param(61); % constant damage rate

70 kmne=param(62); % damage to healthy epithelial cells due to M1 & N

71 sp=param(63); % source of PIM

72 sa=param(64); % source of AIM

73 xmne=param(65); % regulates damage to healthy epithelial cells due to M1 & N

74 xm2r=param(66); % regulates effectiveness of M2b recruitment by R

75 xm2a=param(67); % regulates effectiveness of M2b recruitment by a

76 ken=param(68); % rate of phagocytosis of damaged cells by neutrophils

77

78 % rename variables

79 pb=y(1);

80 ab=y(2);

81 m0b=y(3);

82 m1b=y(4);

83 m2b=y(5);
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84 nu=y(6);

85 na=y(7);

86 p=y(8);

87 a=y(9);

88 m0=y(10);

89 m1=y(11);

90 m2=y(12);

91 n=y(13);

92 an=y(14);

93 R=y(15);

94 eh=y(16);

95 ed=y(17);

96 ee=y(18);

97

98 %%%%%%%%%%%% Equations

99 dxdt = zeros(length(y),1);

100 % 1. pb / PIM

101 dxdt(1) = sp + dp*(p − pb) + kpm1*m1b*(1/(1+(ab/abinf)^2)) + kpn*na − mupb*

pb;

102 % 2. ab / AIM

103 dxdt(2) = sa + da*(a − ab) + kam1*m1b + kam2*m2b − muab*ab;

104 % 3. M0b

105 dxdt(3) = sm − m0b*(((km0pb*pb^2)/(xm0pb^2+pb^2))*(1/(1+(ab/abinf)^2)) + ...

106 ((km0ab*ab^2)/(xm0ab^2+ab^2))) + (m0−m0b)*(dm0+((km0pd*pb)/(xm0pd+pb))

...

107 + ((km0ad*ab)/(xm0ad+ab))) − mum0b*m0b;

108 % 4. M1b
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109 dxdt(4) = m0b*(km0pb*pb^2/(xm0pb^2+pb^2))*(1/(1+(ab/abinf)^2)) +...

110 (m1−m1b)*(dm1+(km1p*pb/(xm1p+pb)))−mum1b*m1b;

111 % 5. M2b

112 dxdt(5) = m0b*(km0ab*ab^2/(xm0ab^2+ab^2)) + (m2−m2b)*(dm2+(km2r*R/(xm2r+R))

...

113 +(km2a*a/(xm2a+a))) − mum2b*m2b;

114 % 6. Nu

115 dxdt(6) = sn − nu*((knup*pb^2)/(xnup^2+pb^2))*(1/(1+(ab/abinf)^2))−munu*nu;

116 % 7. Na

117 dxdt(7) = nu*((knup*pb^2)/(xnup^2+pb^2))*(1/(1+(ab/abinf)^2)) − kn*na − muna

*na;

118

119 % LUNG COMPARTMENT

120

121 % 8. p / PIM

122 dxdt(8) = −dp*(p−pb) + kpm1*m1*(1/(1+(a/ainf)^2)) + kpe*ed + kpn*n − mup*p;

123 % 9. a / AIM

124 dxdt(9) =−da*(a−ab) + kam1*m1 + kam2*m2 − mua*a;

125 % 10. M0

126 dxdt(10) = −(m0−m0b)*(dm0+((km0pd*pb)/(xm0pd+pb))+((km0ad*ab)/(xm0ad+ab)))

...

127 −m0*((km0p*p^2/(xm0p^2+p^2))*(1/(1+(a/ainf)^2))+(km0a*a^2/(xm0a^2+a^2)))

−mum0*m0;

128 % 11. M1

129 dxdt(11) = m0*(km0p*p^2/(xm0p^2+p^2))*(1/(1+(a/ainf)^2))...

130 − (m1−m1b)*(dm1+(km1p*pb/(xm1p+pb)))...

131 − (kman*(kanm1*an*m1))*(1/(1+(a/ainf)^2)) −mum1*m1;
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132 % 12. M2

133 dxdt(12) = m0*((km0a*a^2)/(xm0a^2+a^2)) ...

134 − (m2−m2b)*(dm2+(km2r*R/(xm2r+R))+(km2a*a/(xm2a+a))) ...

135 + (kman*(kanm1*an*m1))*(1/(1+(a/ainf)^2)) − mum2*m2;

136 % 13. N

137 dxdt(13) = kn*na − kan*n − knn*n;

138 % 14. AN

139 dxdt(14) = kan*n − kanm1*an*m1*(1/(1+(a/ainf)^2)) − kanm2*an*m2;

140 % 15. R

141 dxdt(15) = krm2*m2−muR*R;

142 % 16. Eh

143 if t<=vent_time % 2−hour damage

144 dxdt(16) = −eh*(kmne*(m1+n)^2/(xmne^2+(m1+n)^2)) + ed*(br+(ker*R/(xer+R)

))...

145 − sd*eh + (bp+kep*p)*(eh+ed)*ee;

146 else

147 dxdt(16) = −eh*(kmne*(m1+n)^2/(xmne^2+(m1+n)^2)) + ed*(br+(ker*R/(xer+R)

))...

148 + (bp+kep*p)*(eh+ed)*ee;

149 end

150 % 17. Ed

151 if t<=vent_time % 2−hour damage

152 dxdt(17) = −ed*kem1*m1*(1/(1+(a/ainf)^2)) − ed*ken*n...

153 − ed*(br+(ker*R/(xer+R))) + eh*(kmne*(m1+n)^2/(xmne^2+(m1+n)^2))...

154 + sd*eh − bd*ed;

155 else

156 dxdt(17) = −ed*kem1*m1*(1/(1+(a/ainf)^2)) − ed*ken*n...
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157 − ed*(br+(ker*R/(xer+R))) + eh*(kmne*(m1+n)^2/(xmne^2+(m1+n)^2))...

158 − bd*ed;

159 end

160 % 18. Ee

161 dxdt(18)=ed*kem1*m1*(1/(1+(a/ainf)^2)) + bd*ed + ed*ken*n...

162 − (bp+kep*p)*(eh+ed)*ee;

163 end

A.5 Code: Random forest

The following script can be run in R to obtain the average importance values for all param-

eters and other predictors from 1000 runs of the random forest decision tree algorithm. This

process is described in Section 2.2.5 and results are shown in Figure 2.8.

#### Minucci et al. | Mathematical Modeling of Ventilator-Induced Lung Inflammation

#### random forest with LHS data - run several and find average importance values

require(randomForest)

## Loading required package: randomForest

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

########################################

######### LHSproc should have 87 columns

########################################

parnames=c('dp','da','dm0','dm1','dm2','xm0pb','xm0ab','xm0pd','xm0ad','xm1p',

'kpm1','kpe','kam1','kam2','xm0p','xm0a','km1m2','xer','kep ',
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'km2r','km2a','xnup','kpn','kn','kman','kan','knn','kanm1',

'kanm2','km0pb','km0ab','km0pd','km0ad','km1p','km0p','km0a',

'krm2','ker','kem1','knup','abinf','ainf','mupb','muab',

'mum0b','mum1b','mum2b','mup','mua','mum0','mum1','mum2','muR',

'munu','muna','sm','sn','bd','br','bp','sd','kmne','sp',

'sa','xmne','xm2r','xm2a','ken',

'starting.state','M2.percent.at.t=10','max.M1.percent','max.M2.percent',

'min.M1.percent','min.M2.percent','max.M1','max.M2','min.M1',

'min.M2','M1.peak.time','M2.peak.time','M1.peak.ratio','Eh.difference',

'Eh.ratio.0.5h','Eh.ratio 2h','Eh.ratio.6h','Eh.end.value','outcome')

# insert your own file here

params<-read.table("LHS_rf_example.txt",

header=FALSE, sep=",", quote="", col.names = parnames)

params$starting.state <- factor(params$starting.state)

params$outcome <- factor(params$outcome)

# remove some predictors related to classification

partest=params

partest$Eh.difference <- NULL

partest$km1m2 <- NULL # dummy parameter

partest$sd <- NULL # not varied

partest$Eh.end.value <- NULL

partest$starting.state <- NULL

###################################################################

nchar<-81; # total columns minus one (outcome is response variable)
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#set.seed(29)

# set number of runs and create arrays for saving data

nruns=5 # will take the average of nruns importance values

importance.all<-array(0, dim=c(nchar,nruns))

for(i in 1:nruns){

print(i) # tells what iteration you're on (out of nruns)

train = sample(1:nrow(partest), 50) # example, training set should be >50

rf.par = randomForest(outcome~., data = partest, subset = train) # default mtry

importance.rf=importance(rf.par)

importance.all[,i]<-round(importance(rf.par), 2) # look at variable importance

}

## [1] 1

## [1] 2

## [1] 3

## [1] 4

## [1] 5

# save this file and import into MATLAB script to make plot

# write.table(importance.all,"FILE PATH/importance_values_from_R.txt",

# sep="\t", row.names=FALSE)
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A.6 Code: plot random forest results

This MATLAB script loads the file generated in Section A.5 and plots the top ten average

importance values.

1 % Minucci et al. | Mathematical Modeling of Ventilator−Induced Lung

Inflammation

2 % finds & plots top 10 importance values

3

4 % load file

5 rf=readtable('importance_values_from_R');

6 rf=table2array(rf);

7

8 % first load importance values

9 im_vals=rf;

10 im_vals=mean(im_vals,2);

11 im_stdev=std(rf,0,2);

12 % importance value names

13

14 im_names={'dp','da','dm0','dm1','dm2','xm0pb','xm0ab','xm0pd','xm0ad','xm1p'

,...

15 'kpm1','kpe','kam1','kam2','xm0p','xm0a','xer','kep','km2r','km2a',...

16 'xnup','kpn','kn','kman','kan','knn','kanm1','kanm2','km0pb','km0ab',...

17 'km0pd','km0ad','km1p','km0p','km0a','krm2','ker','kem1','knup','abinf',

...

18 'ainf','mupb','muab','mum0b','mum1b','mum2b','mup','mua','mum0','mum1',

...

19 'mum2','muR','munu','muna','sm','sn','bd','br','bp','kmne',...

20 'sp','sa','xmne','xm2r','xm2a','ken','M2% at 10h','max M1%',...
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21 'max M2%','min M1%','min M2%','max M1','max M2',...

22 'min M1','min M2','M1 peak time','M2 peak time','M1 peak ratio',...

23 'Eh ratio at 0.5h','Eh ratio at 2h','Eh ratio at 6h'};

24

25 % find max values

26 [top_im_vals,im_index]=maxk(im_vals,10);

27 top_im_names=im_names(im_index);

28

29 % plot

30 x = categorical(top_im_names);

31 x = reordercats(x,top_im_names);

32 y = top_im_vals;

33 figure

34 hold on

35 bar(x,y);

36 er = errorbar(x,y,[],im_stdev(im_index),'linewidth',2);

37 er.Color = [0 0 0];

38 er.LineStyle = 'none';

39 set(gca,'fontsize',16)

40 ylabel('Average importance value')

41 xlabel('Predictor')
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Appendix B

Chapter 4 supplementary material

B.1 Code: agent-based model

The following MATLAB scripts and functions, writted in object-oriented programming no-

tation, are used to obtain results for the agent-based model described in Section 4.2.4. The

main scripts which include the parameters and toggles for recruitment, wash, age, plots,

etc. are main_abm.m, MacModel.m, and MyRules. To run, enter model=main_abm; into the

command line.

B.1.1 main_abm.m

1 % main_abm − intro to OOP

2 classdef main_abm < handle

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 properties (SetAccess = public)

7 Models = {};

8 Rule;
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9 rule;

10 generations;

11 GenerationSize = 20; %duration in minutes, must also change in

InflammatoryDataFitting.m

12 Runs = 1;

13 hours = 50;

14 gridSize = 120;

15 end

16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

19 methods

20

21 function sim = main_abm()

22 %size, runs, generations

23 sim.generations = sim.hours*60/sim.GenerationSize;

24 for i = 1: sim.Runs

25 sim.Models{i} = MacModel(sim.gridSize);

26 sim.Models{i}.setGeneration(sim.generations);

27 sim.Rule = MyRules(sim.Models{i});

28 end

29 sim.generations = sim.Models{1}.MaxGenerations;

30

31 sim.setParameters();

32 sim.run();

33 end

34
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35 function setParameters(this)

36 % young

37 for i = 1:length(this.Models)

38 % no parameters needed yet

39 end

40 end

41

42 function run(this)

43 display('running ...');

44 for i = 1:length(this.Models)

45 this.Models{i}.run();

46 model = this.Models{i};

47

48 % Append rows of data to matrices for each outcome.

49 this.Rule.Results{model.Outcome}.Runs = this.Rule.Results{model.

Outcome}.Runs + 1;

50 this.Rule.Results{model.Outcome}.ImmuneCellCounts = this.Rule.

Results{model.Outcome}.ImmuneCellCounts + model.Rules{1}.

ImmuneCellCounts;

51 this.Rule.Results{model.Outcome}.ImmuneCellCountsSquared = this.Rule

.Results{model.Outcome}.ImmuneCellCountsSquared + (model.Rules

{1}.ImmuneCellCounts .^ 2);

52 this.Rule.Results{model.Outcome}.IntermediateCounts = this.Rule.

Results{model.Outcome}.IntermediateCounts + model.Rules{1}.

IntermediateCounts;

53 this.Rule.Results{model.Outcome}.IntermediateCountsSquared = this.

Rule.Results{model.Outcome}.IntermediateCountsSquared + (model.
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Rules{1}.IntermediateCounts .^ 2);

54 this.Rule.Results{model.Outcome}.M1Counts = this.Rule.Results{model.

Outcome}.M1Counts + model.Rules{1}.M1Counts;

55 this.Rule.Results{model.Outcome}.M1CountsSquared = this.Rule.Results

{model.Outcome}.M1CountsSquared + (model.Rules{1}.M1Counts .^ 2);

56 this.Rule.Results{model.Outcome}.M2Counts = this.Rule.Results{model.

Outcome}.M2Counts + model.Rules{1}.M2Counts;

57 this.Rule.Results{model.Outcome}.M2CountsSquared = this.Rule.Results

{model.Outcome}.M2CountsSquared + (model.Rules{1}.M2Counts .^ 2);

58 this.Rule.Results{model.Outcome}.TotalMacs = this.Rule.Results{model

.Outcome}.TotalMacs + model.Rules{1}.TotalMacs;

59 this.Rule.Results{model.Outcome}.TotalMacsSquared = this.Rule.

Results{model.Outcome}.TotalMacsSquared + (model.Rules{1}.

TotalMacs .^ 2);

60 this.Rule.Results{model.Outcome}.ProInflammatoryCounts = this.Rule.

Results{model.Outcome}.ProInflammatoryCounts + model.Rules{1}.

ProInflammatoryCounts;

61 this.Rule.Results{model.Outcome}.ProInflammatoryCountsSquared = this

.Rule.Results{model.Outcome}.ProInflammatoryCountsSquared + (

model.Rules{1}.ProInflammatoryCounts .^ 2);

62 this.Rule.Results{model.Outcome}.AntiInflammatoryCounts = this.Rule.

Results{model.Outcome}.AntiInflammatoryCounts + model.Rules{1}.

AntiInflammatoryCounts;

63 this.Rule.Results{model.Outcome}.AntiInflammatoryCountsSquared =

this.Rule.Results{model.Outcome}.AntiInflammatoryCountsSquared +

(model.Rules{1}.AntiInflammatoryCounts .^ 2);
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64 this.Rule.Results{model.Outcome}.SOCSCounts = this.Rule.Results{

model.Outcome}.SOCSCounts + model.Rules{1}.SOCSCounts;

65 this.Rule.Results{model.Outcome}.SOCSCountsSquared = this.Rule.

Results{model.Outcome}.SOCSCountsSquared + (model.Rules{1}.

SOCSCounts .^ 2);

66 this.Rule.Results{model.Outcome}.AverageM1Activation = this.Rule.

Results{model.Outcome}.AverageM1Activation + model.Rules{1}.

AverageM1Activation;

67 this.Rule.Results{model.Outcome}.AverageM1ActivationSquared = this.

Rule.Results{model.Outcome}.AverageM1ActivationSquared + (model.

Rules{1}.AverageM1Activation .^ 2);

68 this.Rule.Results{model.Outcome}.AverageM2Activation = this.Rule.

Results{model.Outcome}.AverageM2Activation + model.Rules{1}.

AverageM2Activation;

69 this.Rule.Results{model.Outcome}.AverageM2ActivationSquared = this.

Rule.Results{model.Outcome}.AverageM2ActivationSquared + (model.

Rules{1}.AverageM2Activation .^ 2);

70 this.Rule.Results{model.Outcome}.RecruitedCells = this.Rule.Results{

model.Outcome}.RecruitedCells + model.Rules{1}.RecruitedCells;

71 this.Rule.Results{model.Outcome}.RecruitedCellsSquared = this.Rule.

Results{model.Outcome}.RecruitedCellsSquared + (model.Rules{1}.

RecruitedCells .^ 2);

72 this.Rule.Results{model.Outcome}.ProbRecruited = this.Rule.Results{

model.Outcome}.ProbRecruited + model.Rules{1}.ProbRecruited;

73 this.Rule.Results{model.Outcome}.ProbRecruitedSquared = this.Rule.

Results{model.Outcome}.ProbRecruitedSquared + (model.Rules{1}.

ProbRecruited .^ 2);
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74

75 end

76

77 % calculate averages

78 this.Rule.Results{model.Outcome}.ImmuneCellCounts = this.Rule.

Results{model.Outcome}.ImmuneCellCounts / this.Rule.Results{model

.Outcome}.Runs;

79 this.Rule.Results{model.Outcome}.ImmuneCellCountsSquared = this.Rule

.Results{model.Outcome}.ImmuneCellCountsSquared / this.Rule.

Results{model.Outcome}.Runs;

80 this.Rule.Results{model.Outcome}.IntermediateCounts = this.Rule.

Results{model.Outcome}.IntermediateCounts / this.Rule.Results{

model.Outcome}.Runs;

81 this.Rule.Results{model.Outcome}.IntermediateCountsSquared = this.

Rule.Results{model.Outcome}.IntermediateCountsSquared / this.Rule

.Results{model.Outcome}.Runs;

82 this.Rule.Results{model.Outcome}.M1Counts = this.Rule.Results{model.

Outcome}.M1Counts / this.Rule.Results{model.Outcome}.Runs;

83 this.Rule.Results{model.Outcome}.M1CountsSquared = this.Rule.Results

{model.Outcome}.M1CountsSquared / this.Rule.Results{model.Outcome

}.Runs;

84 this.Rule.Results{model.Outcome}.M2Counts = this.Rule.Results{model.

Outcome}.M2Counts / this.Rule.Results{model.Outcome}.Runs;

85 this.Rule.Results{model.Outcome}.M2CountsSquared = this.Rule.Results

{model.Outcome}.M2CountsSquared / this.Rule.Results{model.Outcome

}.Runs;
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86 this.Rule.Results{model.Outcome}.TotalMacs = this.Rule.Results{model

.Outcome}.TotalMacs / this.Rule.Results{model.Outcome}.Runs;

87 this.Rule.Results{model.Outcome}.TotalMacsSquared = this.Rule.

Results{model.Outcome}.TotalMacsSquared / this.Rule.Results{model

.Outcome}.Runs;

88 this.Rule.Results{model.Outcome}.ProInflammatoryCounts = this.Rule.

Results{model.Outcome}.ProInflammatoryCounts / this.Rule.Results{

model.Outcome}.Runs;

89 this.Rule.Results{model.Outcome}.ProInflammatoryCountsSquared = this

.Rule.Results{model.Outcome}.ProInflammatoryCountsSquared / this.

Rule.Results{model.Outcome}.Runs;

90 this.Rule.Results{model.Outcome}.AntiInflammatoryCounts = this.Rule.

Results{model.Outcome}.AntiInflammatoryCounts / this.Rule.Results

{model.Outcome}.Runs;

91 this.Rule.Results{model.Outcome}.AntiInflammatoryCountsSquared =

this.Rule.Results{model.Outcome}.AntiInflammatoryCountsSquared /

this.Rule.Results{model.Outcome}.Runs;

92 this.Rule.Results{model.Outcome}.SOCSCounts = this.Rule.Results{

model.Outcome}.SOCSCounts / this.Rule.Results{model.Outcome}.Runs

;

93 this.Rule.Results{model.Outcome}.SOCSCountsSquared = this.Rule.

Results{model.Outcome}.SOCSCountsSquared / this.Rule.Results{

model.Outcome}.Runs;

94 this.Rule.Results{model.Outcome}.AverageM1Activation = this.Rule.

Results{model.Outcome}.AverageM1Activation / this.Rule.Results{

model.Outcome}.Runs;
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95 this.Rule.Results{model.Outcome}.AverageM1ActivationSquared = this.

Rule.Results{model.Outcome}.AverageM1ActivationSquared / this.

Rule.Results{model.Outcome}.Runs;

96 this.Rule.Results{model.Outcome}.AverageM2Activation = this.Rule.

Results{model.Outcome}.AverageM2Activation / this.Rule.Results{

model.Outcome}.Runs;

97 this.Rule.Results{model.Outcome}.AverageM2ActivationSquared = this.

Rule.Results{model.Outcome}.AverageM2ActivationSquared / this.

Rule.Results{model.Outcome}.Runs;

98 this.Rule.Results{model.Outcome}.RecruitedCells = this.Rule.Results{

model.Outcome}.RecruitedCells / this.Rule.Results{model.Outcome}.

Runs;

99 this.Rule.Results{model.Outcome}.RecruitedCellsSquared = this.Rule.

Results{model.Outcome}.RecruitedCellsSquared / this.Rule.Results{

model.Outcome}.Runs;

100 this.Rule.Results{model.Outcome}.ProbRecruited = this.Rule.Results{

model.Outcome}.ProbRecruited / this.Rule.Results{model.Outcome}.

Runs;

101 this.Rule.Results{model.Outcome}.ProbRecruitedSquared = this.Rule.

Results{model.Outcome}.ProbRecruitedSquared / this.Rule.Results{

model.Outcome}.Runs;

102

103 % convert to vectors

104 %%% healthy outcome

105 avgm0count_h = [this.Models{i}.InitialImmuneCount (this.Rule.Results

{1}.ImmuneCellCounts)];

106 avgintcount_h = [0 (this.Rule.Results{1}.IntermediateCounts)];
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107 avgm1count_h = [this.Models{i}.InitialM1Count (this.Rule.Results{1}.

M1Counts)];

108 avgm2count_h = [this.Models{i}.InitialM2Count (this.Rule.Results{1}.

M2Counts)];

109 avgtotalmacs_h = [avgm0count_h(1)+avgm1count_h(1)+avgm2count_h(1) (

this.Rule.Results{1}.TotalMacs)];

110 avgpimcount_h = [this.Models{i}.InitialPIM (this.Rule.Results{1}.

ProInflammatoryCounts)];

111 avgaimcount_h = [this.Models{i}.InitialAIM (this.Rule.Results{1}.

AntiInflammatoryCounts)];

112 avgsocscount_h = [this.Models{i}.InitialSOCS (this.Rule.Results{1}.

SOCSCounts)];

113 avgm1act_h = [mean(mean(this.Models{i}.InitialM1ActivationLattice))

(this.Rule.Results{1}.AverageM1Activation)];

114 avgm2act_h = [mean(mean(this.Models{i}.InitialM2ActivationLattice))

(this.Rule.Results{1}.AverageM2Activation)];

115 avgrecruit_h = [0 (this.Rule.Results{1}.RecruitedCells)];

116 avgprobrecruit_h = [0 (this.Rule.Results{1}.ProbRecruited)];

117

118 avgm0count_sq_h = [avgm0count_h(1)^2 (this.Rule.Results{1}.

ImmuneCellCountsSquared)];

119 avgintcount_sq_h = [avgintcount_h(1)^2 (this.Rule.Results{1}.

IntermediateCountsSquared)];

120 avgm1count_sq_h = [avgm1count_h(1)^2 (this.Rule.Results{1}.

M1CountsSquared)];

121 avgm2count_sq_h = [avgm2count_h(1)^2 (this.Rule.Results{1}.

M2CountsSquared)];
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122 avgtotalmacs_sq_h = [avgtotalmacs_h(1)^2 (this.Rule.Results{1}.

TotalMacsSquared)];

123 avgpimcount_sq_h = [avgpimcount_h(1)^2 (this.Rule.Results{1}.

ProInflammatoryCountsSquared)];

124 avgaimcount_sq_h = [avgaimcount_h(1)^2 (this.Rule.Results{1}.

AntiInflammatoryCountsSquared)];

125 avgsocscount_sq_h = [avgsocscount_h(1)^2 (this.Rule.Results{1}.

SOCSCountsSquared)];

126 avgm1act_sq_h = [avgm1act_h(1)^2 (this.Rule.Results{1}.

AverageM1ActivationSquared)];

127 avgm2act_sq_h = [avgm2act_h(1)^2 (this.Rule.Results{1}.

AverageM2ActivationSquared)];

128 avgrecruit_sq_h = [avgrecruit_h(1)^2 (this.Rule.Results{1}.

RecruitedCellsSquared)];

129 avgprobrecruit_sq_h = [avgprobrecruit_h(1)^2 (this.Rule.Results{1}.

ProbRecruitedSquared)];

130

131 %%% inflamed outcome

132 avgm0count_i = [this.Models{i}.InitialImmuneCount (this.Rule.Results

{2}.ImmuneCellCounts)];

133 avgintcount_i = [0 (this.Rule.Results{2}.IntermediateCounts)];

134 avgm1count_i = [this.Models{i}.InitialM1Count (this.Rule.Results{2}.

M1Counts)];

135 avgm2count_i = [this.Models{i}.InitialM2Count (this.Rule.Results{2}.

M2Counts)];

136 avgtotalmacs_i = [avgm0count_i(1)+avgm1count_i(1)+avgm2count_i(1) (

this.Rule.Results{2}.TotalMacs)];
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137 avgpimcount_i = [this.Models{i}.InitialPIM (this.Rule.Results{2}.

ProInflammatoryCounts)];

138 avgaimcount_i = [this.Models{i}.InitialAIM (this.Rule.Results{2}.

AntiInflammatoryCounts)];

139 avgsocscount_i = [this.Models{i}.InitialSOCS (this.Rule.Results{2}.

SOCSCounts)];

140 avgm1act_i = [mean(mean(this.Models{i}.InitialM1ActivationLattice))

(this.Rule.Results{2}.AverageM1Activation)];

141 avgm2act_i = [mean(mean(this.Models{i}.InitialM2ActivationLattice))

(this.Rule.Results{2}.AverageM2Activation)];

142 avgrecruit_i = [0 (this.Rule.Results{2}.RecruitedCells)];

143 avgprobrecruit_i = [0 (this.Rule.Results{2}.ProbRecruited)];

144

145 avgm0count_sq_i = [avgm0count_i(1)^2 (this.Rule.Results{2}.

ImmuneCellCountsSquared)];

146 avgintcount_sq_i = [avgintcount_i(1)^2 (this.Rule.Results{2}.

IntermediateCountsSquared)];

147 avgm1count_sq_i = [avgm1count_i(1)^2 (this.Rule.Results{2}.

M1CountsSquared)];

148 avgm2count_sq_i = [avgm2count_i(1)^2 (this.Rule.Results{2}.

M2CountsSquared)];

149 avgtotalmacs_sq_i = [avgtotalmacs_i(1)^2 (this.Rule.Results{2}.

TotalMacsSquared)];

150 avgpimcount_sq_i = [avgpimcount_i(1)^2 (this.Rule.Results{2}.

ProInflammatoryCountsSquared)];

151 avgaimcount_sq_i = [avgaimcount_i(1)^2 (this.Rule.Results{2}.

AntiInflammatoryCountsSquared)];
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152 avgsocscount_sq_i = [avgsocscount_i(1)^2 (this.Rule.Results{2}.

SOCSCountsSquared)];

153 avgm1act_sq_i = [avgm1act_i(1)^2 (this.Rule.Results{2}.

AverageM1ActivationSquared)];

154 avgm2act_sq_i = [avgm2act_i(1)^2 (this.Rule.Results{2}.

AverageM2ActivationSquared)];

155 avgrecruit_sq_i = [avgrecruit_i(1)^2 (this.Rule.Results{2}.

RecruitedCellsSquared)];

156 avgprobrecruit_sq_i = [avgprobrecruit_i(1)^2 (this.Rule.Results{2}.

ProbRecruitedSquared)];

157

158 % compute standard deviations

159 %%% healthy outcome

160 sdm0count_h = sqrt(avgm0count_sq_h − avgm0count_h.^2);

161 sdintcount_h = sqrt(avgintcount_sq_h − avgintcount_h.^2);

162 sdm1count_h = sqrt(avgm1count_sq_h − avgm1count_h.^2);

163 sdm2count_h = sqrt(avgm2count_sq_h − avgm2count_h.^2);

164 sdtotalmacs_h = sqrt(avgtotalmacs_sq_h − avgtotalmacs_h.^2);

165 sdpimcount_h = sqrt(avgpimcount_sq_h − avgpimcount_h.^2);

166 sdaimcount_h = sqrt(avgaimcount_sq_h − avgaimcount_h.^2);

167 sdsocscount_h = sqrt(avgsocscount_sq_h − avgsocscount_h.^2);

168 sdm1act_h = sqrt(avgm1act_sq_h − avgm1act_h.^2);

169 sdm2act_h = sqrt(avgm2act_sq_h − avgm2act_h.^2);

170 sdrecruit_h = sqrt(avgrecruit_sq_h − avgrecruit_h.^2);

171 sdprobrecruit_h = sqrt(avgprobrecruit_sq_h − avgprobrecruit_h.^2);

172

173 %%% inflamed outcome
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174 sdm0count_i = sqrt(avgm0count_sq_i − avgm0count_i.^2);

175 sdintcount_i = sqrt(avgintcount_sq_i − avgintcount_i.^2);

176 sdm1count_i = sqrt(avgm1count_sq_i − avgm1count_i.^2);

177 sdm2count_i = sqrt(avgm2count_sq_i − avgm2count_i.^2);

178 sdtotalmacs_i = sqrt(avgtotalmacs_sq_i − avgtotalmacs_i.^2);

179 sdpimcount_i = sqrt(avgpimcount_sq_i − avgpimcount_i.^2);

180 sdaimcount_i = sqrt(avgaimcount_sq_i − avgaimcount_i.^2);

181 sdsocscount_i = sqrt(avgsocscount_sq_i − avgsocscount_i.^2);

182 sdm1act_i = sqrt(avgm1act_sq_i − avgm1act_i.^2);

183 sdm2act_i = sqrt(avgm2act_sq_i − avgm2act_i.^2);

184 sdrecruit_i = sqrt(avgrecruit_sq_i − avgrecruit_i.^2);

185 sdprobrecruit_i = sqrt(avgprobrecruit_sq_i − avgprobrecruit_i.^2);

186

187 % save some results for healthy − can do the same for inflamed

188 this.Rule.Results{1}.avgm1act = avgm1act_h;

189 this.Rule.Results{1}.avgm2act = avgm2act_h;

190 this.Rule.Results{1}.avgpimcount = avgpimcount_h;

191 this.Rule.Results{1}.avgaimcount = avgaimcount_h;

192 this.Rule.Results{1}.sdm1act = sdm1act_h;

193 this.Rule.Results{1}.sdm2act = sdm2act_h;

194 this.Rule.Results{1}.sdpimcount = sdpimcount_h;

195 this.Rule.Results{1}.sdaimcount = sdaimcount_h;

196

197 t = 1:this.generations;

198 t = t .* (this.GenerationSize/60);

199 t=[0 t]; % include initial conditions in plot

200
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201 % plot results

202 if(model.togglePlot) % full macrophage model

203 %%% healthy outcome

204 figure('name','Results: Healthy Outcome','Position'

,[100,200,1000,800]);

205 subplot(2,3,1)

206 boundedline(t,avgpimcount_h, sdpimcount_h);ylabel('Pro−

inflammatory count');xlabel('hours');

207 title('Healthy outcome')

208

209 subplot(2,3,2)

210 boundedline(t,avgaimcount_h, sdaimcount_h);ylabel('Anti−

inflammatory count');xlabel('hours');

211

212 subplot(2,3,3)

213 boundedline(t,avgm1act_h, sdm1act_h,'r',t,avgm2act_h, sdm2act_h,

'b');ylabel('Average activation');xlabel('hours');

214 legend('M1','M2')

215

216 subplot(2,3,4)

217 boundedline(t,avgrecruit_h,sdrecruit_h);ylabel('Macrophages

recruited');xlabel('hours');

218

219 subplot(2,3,5)

220 boundedline(t,avgprobrecruit_h,sdprobrecruit_h);ylabel('Average

probability of mac recruitment');xlabel('hours');

221
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222 subplot(2,3,6)

223 boundedline(t,avgm1count_h,sdm1count_h,'r',t,avgm2count_h,

sdm2count_h,'b',t,avgintcount_h,sdintcount_h,'y');ylabel('

Macrophage count');xlabel('hours');

224 legend('M1','M2','Intermediate')

225

226 %%% inflamed outcome

227 figure('name','Results: Inflamed Outcome','Position'

,[200,200,1000,800]);

228 subplot(2,3,1)

229 boundedline(t,avgpimcount_i, sdpimcount_i);ylabel('Pro−

inflammatory count');xlabel('hours');

230 title('Inflamed outcome')

231

232 subplot(2,3,2)

233 boundedline(t,avgaimcount_i, sdaimcount_i);ylabel('Anti−

inflammatory count');xlabel('hours');

234

235 subplot(2,3,3)

236 boundedline(t,avgm1act_i, sdm1act_i,'r',t,avgm2act_i, sdm2act_i,

'b');ylabel('Average activation');xlabel('hours');

237 legend('M1','M2')

238

239 subplot(2,3,4)

240 boundedline(t,avgrecruit_i,sdrecruit_i);ylabel('Macrophages

recruited');xlabel('hours');

241
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242 subplot(2,3,5)

243 boundedline(t,avgprobrecruit_i,sdprobrecruit_i);ylabel('Average

probability of mac recruitment');xlabel('hours');

244

245 subplot(2,3,6)

246 boundedline(t,avgm1count_i,sdm1count_i,'r',t,avgm2count_i,

sdm2count_i,'b',t,avgintcount_i,sdintcount_i,'y');ylabel('

Macrophage count');xlabel('hours');

247 legend('M1','M2','Intermediate')

248

249 figure

250 boundedline(t,avgm1act_h, sdm1act_h,'r',t,avgm2act_h, sdm2act_h,

'b');ylabel('Average activation');xlabel('hours');

251 legend('M1','M2')

252 set(gca,'fontsize',16)

253 end

254

255 % plot results

256 if(model.togglePlotSingleMac) % single macrophage model

257 %%% healthy outcome

258 figure('name','Results: Healthy Outcome','Position'

,[100,200,1000,800]);

259 subplot(2,3,1)

260 boundedline(t,avgpimcount_h, sdpimcount_h);ylabel('Pro−

inflammatory count');xlabel('hours');

261 title('Healthy outcome')

262

162



263 subplot(2,3,2)

264 boundedline(t,avgaimcount_h, sdaimcount_h);ylabel('Anti−

inflammatory count');xlabel('hours');

265

266 subplot(2,3,3)

267 boundedline(t,avgm1act_h, sdm1act_h,'r',t,avgm2act_h, sdm2act_h,

'b');ylabel('Average activation');xlabel('hours');

268 legend('M1','M2')

269

270 subplot(2,3,4)

271 boundedline(t,avgsocscount_h,sdsocscount_h);ylabel('Total SOCS')

;xlabel('hours');

272

273 subplot(2,3,5) % make sure no macs were recruited

274 boundedline(t,avgrecruit_h,sdrecruit_h);ylabel('Macrophages

recruited');xlabel('hours');

275 end

276

277 if model.toggleLayeredFigure

278 %%% healthy outcome

279 figure('name','Results: Healthy Outcome')

280 a=area(t,[avgm0count_h; avgm1count_h; avgintcount_h;

avgm2count_h]');

281 a(1).FaceColor = [199 199 199]/255; % M0

282 a(2).FaceColor = [255 133 194]/255; % M1

283 a(3).FaceColor = [255 253 128]/255; % intermediate

284 a(4).FaceColor = [161 176 255]/255; % M2
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285 xlabel('hours')

286 ylabel('Macrophages')

287 legend('M0','M1','Intermediate','M2')

288 set(gca,'fontsize',16)

289 %%% inflamed outcome

290 figure('name','Results: Inflamed Outcome')

291 a=area(t,[avgm0count_i; avgm1count_i; avgintcount_i;

avgm2count_i]');

292 a(1).FaceColor = [199 199 199]/255; % M0

293 a(2).FaceColor = [255 133 194]/255; % M1

294 a(3).FaceColor = [255 253 128]/255; % intermediate

295 a(4).FaceColor = [161 176 255]/255; % M2

296 xlabel('hours')

297 ylabel('Macrophages')

298 legend('M0','M1','Intermediate','M2')

299 end

300

301 % plot results

302 if(model.SingleMacWriteUpFigures) % single macrophage model

303 %%% healthy outcome

304 figure

305 boundedline(t,avgpimcount_h, sdpimcount_h,'r');ylabel('Pro−

inflammatory count');xlabel('Time (hours)');

306 set(gca,'fontsize',16)

307

308 figure
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309 boundedline(t,avgaimcount_h, sdaimcount_h,'b');ylabel('Anti−

inflammatory count');xlabel('Time (hours)');

310 set(gca,'fontsize',16)

311

312 figure

313 boundedline(t,avgm1act_h, sdm1act_h,'r');ylabel('Average M1

activation');xlabel('Time (hours)');

314 set(gca,'fontsize',16)

315

316 figure

317 boundedline(t,avgm2act_h, sdm2act_h,'b');ylabel('Average M2

activation');xlabel('Time (hours)');

318 set(gca,'fontsize',16)

319

320 figure

321 boundedline(t,avgsocscount_h,sdsocscount_h);ylabel('Total SOCS')

;xlabel('Time (hours)');

322 set(gca,'fontsize',16)

323 end

324

325 end

326

327 end

328

329 end
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B.1.2 MacModel.m

1 classdef MacModel < handle

2

3 properties (SetAccess = public)

4 CurrentGeneration = 0;

5 PreviousGeneration = 0;

6 MaxGenerations;

7 GenerationSize = 20; %duration in minutes, must also change in main_abm,

MyRules

8 ImmuneLattice;

9 ProInflammatoryLattice;

10 AntiInflammatoryLattice;

11 SOCSLattice;

12 M1ActivationLattice;

13 M2ActivationLattice;

14 InitialM1ActivationLattice;

15 InitialM2ActivationLattice;

16 ImmuneCellCount;

17 InitialImmuneAge;

18 ImmuneAge;

19 InitialImmuneMatrix;

20 InitialImmuneCount=0;

21 InitialM1Count=100;

22 InitialM2Count=100;

23 InitialIntCount=0;

24 InitialPIM = 0;

25 InitialAIM = 0;
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26 InitialSOCS = 0;

27 AgeMeanM0 = 24; % change here & in MyRules.m

28 AgeStDevM0 = 6; % change here & in MyRules.m

29 AgeMeanActivated = 12; % change here & in MyRules.m

30 AgeStDevActivated = 3; % change here & in MyRules.m

31 Outcome = Outcomes.Healthy;

32 ShowLattices = false;

33 toggleImmune = true; % from previous version, always true

34 ToggleRecruitment = true; % recruit macrophages from outside grid

35 toggleWash = false; % wash: reset extracellular environment at some

point

36 togglePlot = true;

37 togglePlotSingleMac = false;

38 toggleLayeredFigure = false;

39 SingleMacWriteUpFigures = false;

40 InitialMatrix;

41 Rules;

42 RuleSet = {'MyRules'};

43 Debug = false;

44 % M0 blank problem M1 problem M2

problem intermediate problem

45 ImmuneColorMap = [255 255 255; 0 0 0; 0 255 0; 255 133 194; 0 255 0; 161

176 255; 0 255 0; 255, 253, 128; 0 255 0] / 255;

46 end

47

48

49 methods
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50

51 function model = MacModel(size)

52 % Create macrophage matrix

53 model.RandomizeMatrix(size);

54 model.InitialMatrix = ones(size,size);

55 % Create all the rule objects.

56 for i = 1:length(model.RuleSet)

57 model.Rules{i} = feval(str2func(model.RuleSet{i}), model);

58 end

59 model.reset();

60 end

61

62 function RandomizeMatrix(this,size)

63 this.InitialImmuneMatrix = ones(size/3,size/3);

64 this.InitialImmuneAge = ones(size/3,size/3);

65 this.InitialImmuneMatrix = this.InitialImmuneMatrix.*2;

66 this.InitialM1ActivationLattice = zeros(size/3,size/3);

67 this.InitialM2ActivationLattice = zeros(size/3,size/3);

68 %Add random initial immune cells

69 n_m0=0;

70 n_m1=0;

71 n_m2=0;

72 % set up M0

73 while n_m0 < this.InitialImmuneCount

74 i = randi([1 size/3]);

75 j = randi([1 size/3]);

76 this.InitialImmuneMatrix(i,j) = 1;
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77 n_m0 = n_m0 + 1;

78 this.InitialImmuneAge(i,j) = round(random_in_range(0,(this.AgeMeanM0

+this.AgeStDevM0)*60/this.GenerationSize));

79 % this.InitialImmuneAge(i,j) = (round(this.AgeStDevM0*randn(1)) +

this.AgeMeanM0)*60/this.GenerationSize;

80 this.InitialM1ActivationLattice(i,j)=random_in_range(0,0.25);

81 this.InitialM2ActivationLattice(i,j)=random_in_range(0,0.25−this.

InitialM1ActivationLattice(i,j));

82 end

83

84 % set up M1

85 while n_m1 < this.InitialM1Count

86 i = randi([1 size/3]);

87 j = randi([1 size/3]);

88 if this.InitialImmuneMatrix(i,j)~=1

89 this.InitialImmuneMatrix(i,j) = 4;

90 n_m1 = n_m1 + 1;

91 this.InitialImmuneAge(i,j) = round(random_in_range(0,(this.

AgeMeanActivated+this.AgeStDevActivated)*60/this.GenerationSize))

;

92 % this.InitialImmuneAge(i,j) = (round(this.AgeStDevActivated*randn

(1)) + this.AgeMeanActivated)*60/this.GenerationSize;

93 this.InitialM1ActivationLattice(i,j)=random_in_range(0.5,1);

94 this.InitialM2ActivationLattice(i,j)=random_in_range(0,0.49);

95 end

96 end

97
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98 % set up M2

99 while n_m2 < this.InitialM2Count

100 i = randi([1 size/3]);

101 j = randi([1 size/3]);

102 if this.InitialImmuneMatrix(i,j)~=1 || this.InitialImmuneMatrix(i,j)

~=4

103 this.InitialImmuneMatrix(i,j) = 6;

104 n_m2 = n_m2 + 1;

105 this.InitialImmuneAge(i,j) = round(random_in_range(0,(this.

AgeMeanActivated+this.AgeStDevActivated)*60/this.GenerationSize))

;

106 % this.InitialImmuneAge(i,j) = (round(this.AgeStDevActivated*randn

(1)) + this.AgeMeanActivated)*60/this.GenerationSize;

107 this.InitialM2ActivationLattice(i,j)=random_in_range(0.5,1);

108 this.InitialM1ActivationLattice(i,j)=random_in_range(0,0.49);

109 end

110 end

111 % set up intermediate

112 while n_m2 < this.InitialM2Count

113 i = randi([1 size/3]);

114 j = randi([1 size/3]);

115 if this.InitialImmuneMatrix(i,j)~=1 || this.InitialImmuneMatrix(i,j)

~=4

116 this.InitialImmuneMatrix(i,j) = 6;

117 n_m2 = n_m2 + 1;

118 this.InitialImmuneAge(i,j) = round(random_in_range(0,(this.

AgeMeanActivated+this.AgeStDevActivated)*60/this.GenerationSize))
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;

119 % this.ImmuneAge(i,j) = (round(this.AgeStDevActivated*randn(1)) +

this.AgeMeanActivated)*60/this.GenerationSize;

120 this.InitialM1ActivationLattice(i,j)=random_in_range(0,0.49);

121 this.InitialM2ActivationLattice(i,j)=random_in_range(max([0, 0.25−

this.InitialM1ActivationLattice(i,j)]),0.49);

122 end

123 end

124

125 this.ImmuneLattice = this.InitialImmuneMatrix;

126 end

127

128 function setGeneration(this, n)

129 this.MaxGenerations = n;

130 end

131

132 function reset(this)

133 this.ImmuneLattice = this.InitialImmuneMatrix;

134 this.ImmuneAge = this.InitialImmuneAge;

135 this.ProInflammatoryLattice = zeros(size(this.InitialImmuneMatrix));

136 this.ProInflammatoryLattice(14:27,14:27) = this.InitialPIM;

137 this.AntiInflammatoryLattice = zeros(size(this.InitialImmuneMatrix));

138 this.AntiInflammatoryLattice(14:27,14:27) = this.InitialAIM;

139 this.SOCSLattice = zeros(size(this.InitialImmuneMatrix));

140 this.SOCSLattice(2,2) = this.InitialSOCS;

141 this.M1ActivationLattice = this.InitialM1ActivationLattice;

142 this.M2ActivationLattice = this.InitialM2ActivationLattice;
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143 this.CurrentGeneration = 0;

144 this.PreviousGeneration = 0;

145

146 for i = 1:length(this.Rules)

147 rule = this.Rules{i};

148 rule.reset();

149 end

150 end

151

152 function run(this)

153 % Run the simulation using the rules in the model's RuleSet

154 % parameter.

155

156 % Splitting up this figure into separate figures since subimage

157 % requires the Image Processing Toolkit.

158

159 if this.ShowLattices

160 immune_h = figure;

161 set(immune_h, 'Name', 'Macrophages', ...

162 'OuterPosition', [100 100 300 300]);

163 title('Immune Cells')

164

165 proinflammatory_h = figure;

166 set(proinflammatory_h, 'Name', 'Pro−inflammatory Mediators', ...

167 'OuterPosition', [400 100 300 300]);

168 title('Pro−inflammatory Cells')

169
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170 antiinflammatory_h = figure;

171 set(antiinflammatory_h, 'Name', 'Anti−inflammatory Mediators', ...

172 'OuterPosition', [700 100 300 300]);

173 title('Anti−inflammatory Cells')

174

175 m1activation_h = figure;

176 set(m1activation_h, 'Name', 'M1 Activation', ...

177 'OuterPosition', [100 600 300 300]);

178 title('M1 Activation')

179

180 m2activation_h = figure;

181 set(m2activation_h, 'Name', 'M2 Activation', ...

182 'OuterPosition', [400 600 300 300]);

183 title('M2 Activation')

184 end

185

186 if this.Debug

187 pause on;

188 else

189 pause off;

190 end

191

192 for generation = 1:this.MaxGenerations

193 this.CurrentGeneration = generation;

194 this.PreviousGeneration = generation−1;

195

196 if this.ShowLattices
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197 % Update the immune cell lattice window

198 set(0, 'CurrentFigure', immune_h);

199 image(this.ImmuneLattice);

200 colormap(this.ImmuneColorMap);

201 axis square;

202 set(gca, 'XTick', [], ...

203 'YTick', [], ...

204 'XTickLabel', '', ...

205 'YTickLabel', '');

206 title(sprintf('Total time (Hours) %f', generation/(60/this.

GenerationSize))); %MUST CHANGE IF YOU CHANGE GENERATION SIZE

207

208 set(0, 'CurrentFigure', proinflammatory_h);

209 imagesc(this.ProInflammatoryLattice,[0 4]);

210 colormap(autumn);

211 axis square;

212 set(gca, 'XTick', [], ...

213 'YTick', [], ...

214 'XTickLabel', '', ...

215 'YTickLabel', '');

216

217 set(0, 'CurrentFigure', antiinflammatory_h);

218 imagesc(this.AntiInflammatoryLattice,[0 4]);

219 colormap(cool);

220 axis square;

221 set(gca, 'XTick', [], ...

222 'YTick', [], ...
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223 'XTickLabel', '', ...

224 'YTickLabel', '');

225

226 set(0, 'CurrentFigure', socs_h);

227 imagesc(this.SOCSLattice,[0 4]);

228 colormap(parula);

229 axis square;

230 set(gca, 'XTick', [], ...

231 'YTick', [], ...

232 'XTickLabel', '', ...

233 'YTickLabel', '');

234

235 set(0, 'CurrentFigure', m1activation_h);

236 imagesc(this.M1ActivationLattice,[0 0.5]);

237 colormap(autumn);

238 axis square;

239 set(gca, 'XTick', [], ...

240 'YTick', [], ...

241 'XTickLabel', '', ...

242 'YTickLabel', '');

243

244 set(0, 'CurrentFigure', m2activation_h);

245 imagesc(this.M2ActivationLattice,[0 0.5]);

246 colormap(cool);

247 axis square;

248 set(gca, 'XTick', [], ...

249 'YTick', [], ...

175



250 'XTickLabel', '', ...

251 'YTickLabel', '');

252

253 drawnow;

254

255 if this.Debug

256 pause;

257 end

258 end

259

260 for i = 1:length(this.Rules)

261 rule = this.Rules{i};

262 rule.apply_rule();

263 end

264

265 end

266

267 % After the run we call finalize() on each rule.

268 for i = 1:length(this.Rules)

269 rule = this.Rules{i};

270 rule.finalize();

271 end

272 end

273

274 end

275

276 end
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B.1.3 MyRules.m

1 classdef MyRules < LungModelRule

2

3 properties (SetAccess = public)

4 Model;

5 GenerationSize = 20; %duration in minutes, must also change in sbm.m,

MacModel.m

6 ImmuneCellCounts;

7 ImmuneCellCountsSquared;

8 IntermediateCounts;

9 IntermediateCountsSquared;

10 M1Counts;

11 M2Counts;

12 M1CountsSquared;

13 M2CountsSquared;

14 TotalMacs;

15 TotalMacsSquared;

16 ProInflammatoryCounts;

17 ProInflammatoryCountsSquared;

18 AntiInflammatoryCounts;

19 AntiInflammatoryCountsSquared;

20 SOCSCounts;

21 SOCSCountsSquared;

22 AverageM1Activation;

23 AverageM1ActivationSquared;

24 AverageM2Activation;

25 AverageM2ActivationSquared;
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26 RecruitedCells;

27 RecruitedCellsSquared;

28 ProbRecruited;

29 ProbRecruitedSquared;

30 Results;

31 ProbImmuneCellArrives;

32

33 % parameters

34 AgeMeanM0 = 24; % change here & in MacModel.m

35 AgeStDevM0 = 6; % change here & in MacModel.m

36 AgeMeanActivated = 12; % change here & in MacModel.m

37 AgeStDevActivated = 3; % change here & in MacModel.m

38

39 ImmuneProInflammatoryRate = 0.35; % M1s produce pro−inflammatories

40 ImmuneAntiInflammatoryRate = 0.55; % M2s produce anti−inflammatories

41 ImmuneM1AntiInflammatoryRate=0.12; % M1s produce anti−inflammatories

42

43 ProInflammatoryDecayRate = 0.03;

44 AntiInflammatoryDecayRate = 0.03;

45 SOCSDecayRate = 0.03;

46

47 PIMNegativeFeedbackRate=0.002;

48 AIMNegativeFeedbackRate=0.002;

49

50 RecruitmentMMTerm = 30;

51 AIMRecruitScale=0.25;

52 PIMActivationScale=0.75;
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53 AIMActivationScale=0.75;

54 AIMInfinity=4; % Recruitment: M1 activation inhibited by AIM

55

56 M1ActivationRate=0.05; % M1 activation increased by PIM (0,1)

57 M1ActHillParameter=1; % increase M1 expression via PIM

58 M2ActScalar=0.06; % increase M2 activation by AIM

59 M2ActHillParameter=0.85; % Hill: increase M2 activation via AIM

60 M1AIMInfinity=0.05; % inhibition of M1s production of pro−inflammatories

by AIM

61 M1DecreaseViaAIM=0.01; % AIM decreases M1 activation

62 M1DecreaseViaAIMHill=0.4; % Hill parameter − AIM decreases M1 activation

63

64 SOCSProductionRate=4; % rate at which AIM produce SOCS

65 AIMSOCSHill=3.5; % AIM production of SOCS, larger −> requires more

accumulation to be effective

66 M1SOCSInfinity=4; % SOCS inhibition of M1 activation

67 M2SOCSInfinity=4; % SOCS inhibition of M2 activation

68 AIMSOCSInfinity=0.3; % SOCS inhibition of AIM production

69

70 WashTime=12; % hours

71 WashAIM=30;%3.5;

72 end

73

74 methods

75

76 function rule = MyRules(model)

77 rule.Model = model;
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78 rule.reset();

79

80 rule.Results = cell(1, length(enumeration('Outcomes')));

81

82 % We have to initialize all of the matrices where our counts

83 % get appended to. These don't get wiped out between runs.

84 % They stick around even after a reset().

85 for i = 1:length(enumeration('Outcomes'))

86 rule.Results{i}.Runs = 0;

87 rule.Results{i}.ImmuneCellCounts = zeros(1, model.MaxGenerations

);

88 rule.Results{i}.ImmuneCellCountsSquared = zeros(1, model.

MaxGenerations);

89 rule.Results{i}.IntermediateCounts = zeros(1, model.

MaxGenerations);

90 rule.Results{i}.IntermediateCountsSquared = zeros(1, model.

MaxGenerations);

91 rule.Results{i}.M1Counts = zeros(1, model.MaxGenerations);

92 rule.Results{i}.M1CountsSquared = zeros(1, model.MaxGenerations)

;

93 rule.Results{i}.M2Counts = zeros(1, model.MaxGenerations);

94 rule.Results{i}.M2CountsSquared = zeros(1, model.MaxGenerations)

;

95 rule.Results{i}.TotalMacs = zeros(1, model.MaxGenerations);

96 rule.Results{i}.TotalMacsSquared = zeros(1, model.MaxGenerations

);
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97 rule.Results{i}.ProInflammatoryCounts = zeros(1, model.

MaxGenerations);

98 rule.Results{i}.ProInflammatoryCountsSquared = zeros(1, model.

MaxGenerations);

99 rule.Results{i}.AntiInflammatoryCounts = zeros(1, model.

MaxGenerations);

100 rule.Results{i}.AntiInflammatoryCountsSquared = zeros(1, model.

MaxGenerations);

101 rule.Results{i}.SOCSCounts = zeros(1, model.MaxGenerations);

102 rule.Results{i}.SOCSCountsSquared = zeros(1, model.

MaxGenerations);

103 rule.Results{i}.AverageM1Activation = zeros(1, model.

MaxGenerations);

104 rule.Results{i}.AverageM1ActivationSquared = zeros(1, model.

MaxGenerations);

105 rule.Results{i}.AverageM2Activation = zeros(1, model.

MaxGenerations);

106 rule.Results{i}.AverageM2ActivationSquared = zeros(1, model.

MaxGenerations);

107 rule.Results{i}.RecruitedCells = zeros(1, model.MaxGenerations);

108 rule.Results{i}.RecruitedCellsSquared = zeros(1, model.

MaxGenerations);

109 rule.Results{i}.ProbRecruited = zeros(1, model.MaxGenerations);

110 rule.Results{i}.ProbRecruitedSquared = zeros(1, model.

MaxGenerations);

111 end

112 end
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113

114 function apply_rule(this)

115 % move macrophages, determine M1/M2 activation, update age

116 model = this.Model;

117 if(model.toggleImmune)

118 this.moveImmuneCells();

119 end

120

121 % if wash: reset pro/anti−inflammatories

122 if(model.toggleWash) && (model.CurrentGeneration==this.WashTime*60/

this.GenerationSize)

123 model.ProInflammatoryLattice = zeros(size(model.

ProInflammatoryLattice));

124 model.AntiInflammatoryLattice = zeros(size(model.

AntiInflammatoryLattice));

125 model.AntiInflammatoryLattice(14:27,14:27) = this.WashAIM;

126 % model.AntiInflammatoryLattice(14:27,14:27) = model.

AntiInflammatoryLattice(14:27,14:27) + this.WashAIM;

127 end

128

129 % diffuse pro− and anti−inflammatory mediators

130 model.ProInflammatoryLattice = diffuse(model.ProInflammatoryLattice)

;

131 model.AntiInflammatoryLattice = diffuse(model.

AntiInflammatoryLattice);

132 % model.SOCSLattice = diffuse(model.SOCSLattice);

133
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134 % The amount of pro− and anti−inflammatories in each cell decays at

a set rate

135 model.ProInflammatoryLattice = model.ProInflammatoryLattice .* (1 −

this.ProInflammatoryDecayRate);

136 model.AntiInflammatoryLattice = model.AntiInflammatoryLattice .* (1

− this.AntiInflammatoryDecayRate);

137 model.SOCSLattice = model.SOCSLattice .* (1 − this.SOCSDecayRate);

138

139 % recruit macrophages

140 if(model.toggleImmune)

141 %%% calculate the probability a macrophage will be recruited

142 if(model.ToggleRecruitment)

143 this.ProbImmuneCellArrives = (model.ProInflammatoryLattice+

this.AIMRecruitScale*model.AntiInflammatoryLattice)

.^2./((model.ProInflammatoryLattice+this.AIMRecruitScale*

model.AntiInflammatoryLattice).^2+this.RecruitmentMMTerm

^2);

144 else

145 this.ProbImmuneCellArrives = zeros(size(model.ImmuneLattice)

);

146 end

147 this.ProbRecruited(model.CurrentGeneration)=mean(mean(this.

ProbImmuneCellArrives));

148 temp = (rand(size(model.ImmuneLattice)) < this.

ProbImmuneCellArrives) & (~ismember(model.ImmuneLattice,[1 4

6 8]));
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149 this.RecruitedCells(model.CurrentGeneration)=sum(sum(temp)); %

number of macrophages recruited

150 % M1 & M2 activation

151 temp_m1act=model.ProInflammatoryLattice./(model.

ProInflammatoryLattice+this.PIMActivationScale).*(1/1+(model.

AntiInflammatoryLattice/this.AIMInfinity));

152 temp_m2act=model.AntiInflammatoryLattice./(model.

AntiInflammatoryLattice+this.AIMActivationScale);

153

154 % if M1act+M2act>1, scaling is needed

155 test=temp_m1act+temp_m2act>1;

156 temp_sum=temp_m1act+temp_m2act;

157 temp_m1act(test)=temp_m1act(test)./temp_sum(test);

158 temp_m2act(test)=temp_m2act(test)./temp_sum(test);

159

160 model.M1ActivationLattice(temp) = temp_m1act(temp);

161 model.M2ActivationLattice(temp) = temp_m2act(temp);

162 temp_m1=temp_m1act>0.5;

163 temp_m2=temp_m2act>0.5;

164 temp_int=((temp_m1act+temp_m2act)>=0.25) & (temp_m1act<0.5) & (

temp_m2act<0.5);

165 temp_naive=(temp_m1act+temp_m2act)<0.25;

166 % update immune state

167 model.ImmuneLattice(temp_naive & temp) = ImmuneStates_sbm.

M0Static;

168 model.ImmuneLattice(temp_m1 & temp) = ImmuneStates_sbm.M1Static;

169 model.ImmuneLattice(temp_m2 & temp) = ImmuneStates_sbm.M2Static;
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170 model.ImmuneLattice(temp_int & temp) = ImmuneStates_sbm.

MIntStatic;

171 % define ages (naive/activated)

172 temp_age_act=ismember(model.ImmuneLattice,[4 6 8]); % activated

macrophages

173 % ages=max([0,round((this.AgeStDevActivated + this.

AgeMeanActivated).*randn(size(model.ImmuneLattice)).*60/this.

GenerationSize)]);

174 ages=round(this.AgeStDevActivated.*randn(size(model.

ImmuneLattice)) + this.AgeMeanActivated).*60/this.

GenerationSize;

175 model.ImmuneAge(temp_age_act & temp)=ages(temp_age_act & temp);

176 temp_age_m0=model.ImmuneLattice==ImmuneStates_sbm.M0Static; %

activated macrophages

177 % ages=max([0,round((this.AgeStDevM0 + this.AgeMeanM0).*randn(

size(model.ImmuneLattice)).*60/this.GenerationSize)]);

178 ages=round(this.AgeStDevM0.*randn(size(model.ImmuneLattice)) +

this.AgeMeanM0).*60/this.GenerationSize;

179 model.ImmuneAge(temp_age_m0 & temp)=ages(temp_age_m0 & temp);

180 clear temp temp_m1act temp_m2act temp_age_act temp_age_m0 ages;

181

182 %%%% all immune cells recruit & produce inflammatories

183 temp=ismember(model.ImmuneLattice,[1 4 6 8]); % any kind of

macrophage, proportional to activation (see below)

184 % M1s produce pro−inflammatories, inhibited by AIM

185 model.ProInflammatoryLattice(temp) = model.

ProInflammatoryLattice(temp) + this.ImmuneProInflammatoryRate
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*normrnd(1,0.25,size(model.ImmuneLattice(temp))).*...

186 model.M1ActivationLattice(temp).*(1./(1+(model.

AntiInflammatoryLattice(temp)./this.M1AIMInfinity)));

187 % M1s produce anti−inflammatories

188 model.AntiInflammatoryLattice(temp) = model.

AntiInflammatoryLattice(temp) + this.

ImmuneM1AntiInflammatoryRate*normrnd(1,0.25,size(model.

ImmuneLattice(temp))).*...

189 model.M1ActivationLattice(temp);

190 % M2s produce anti−inflammatories, inhibited by SOCS

191 model.AntiInflammatoryLattice(temp) = model.

AntiInflammatoryLattice(temp) + this.

ImmuneAntiInflammatoryRate*normrnd(1,0.25,size(model.

ImmuneLattice(temp))).*...

192 model.M2ActivationLattice(temp).*1./(1+(model.SOCSLattice(

temp)./this.AIMSOCSInfinity).^3);

193 % SOCS produced by level of M2 activation

194 model.SOCSLattice(temp) = model.SOCSLattice(temp) + this.

SOCSProductionRate*normrnd(1,0.25,size(model.ImmuneLattice(

temp))).*...

195 model.M2ActivationLattice(temp).^2./(model.

M2ActivationLattice(temp)+this.AIMSOCSHill^2);

196 clear temp;

197 end

198

199 % Save the plot data
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200 this.ImmuneCellCounts(model.CurrentGeneration) = sum(model.

ImmuneLattice(:) == 1);

201 this.ProInflammatoryCounts(model.CurrentGeneration) = sum(model.

ProInflammatoryLattice(:));

202 this.AntiInflammatoryCounts(model.CurrentGeneration) = sum(model.

AntiInflammatoryLattice(:));

203 this.SOCSCounts(model.CurrentGeneration) = sum(model.SOCSLattice(:))

;

204 this.IntermediateCounts(model.CurrentGeneration) = sum(model.

ImmuneLattice(:) == 8);

205 this.M1Counts(model.CurrentGeneration) = sum(model.ImmuneLattice(:)

== 4);

206 this.M2Counts(model.CurrentGeneration) = sum(model.ImmuneLattice(:)

== 6);

207 this.TotalMacs(model.CurrentGeneration) = sum(model.ImmuneLattice(:)

== 1) + sum(model.ImmuneLattice(:) == 4) +...

208 sum(model.ImmuneLattice(:) == 6) + sum(model.ImmuneLattice(:) ==

8);

209 this.AverageM1Activation(model.CurrentGeneration) = mean(mean(model.

M1ActivationLattice));

210 this.AverageM2Activation(model.CurrentGeneration) = mean(mean(model.

M2ActivationLattice));

211

212 % Determine the model's outcome. If ??? then the outcome is Inflamed

.

213 if this.ImmuneCellCounts(model.CurrentGeneration) + this.

IntermediateCounts(model.CurrentGeneration) + ...
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214 this.M1Counts(model.CurrentGeneration) + this.M2Counts(

model.CurrentGeneration) >= 400

215 model.Outcome = Outcomes.Inflamed;

216 else

217 model.Outcome = Outcomes.Healthy;

218 end

219 end

220

221 function reset(this)

222 model = this.Model;

223

224 % Note that the Results DO NOT get reset.

225 % Set up the arrays holding the transient plot data.

226 this.ImmuneCellCounts = zeros(1, model.MaxGenerations);

227 this.ProInflammatoryCounts = zeros(1, model.MaxGenerations);

228 this.AntiInflammatoryCounts = zeros(1, model.MaxGenerations);

229 this.SOCSCounts = zeros(1, model.MaxGenerations);

230 this.IntermediateCounts = zeros(1, model.MaxGenerations);

231 this.M1Counts = zeros(1, model.MaxGenerations);

232 this.M2Counts = zeros(1, model.MaxGenerations);

233 this.TotalMacs = zeros(1, model.MaxGenerations);

234 this.AverageM1Activation = zeros(1, model.MaxGenerations);

235 this.AverageM2Activation = zeros(1, model.MaxGenerations);

236 this.RecruitedCells = zeros(1, model.MaxGenerations);

237 this.ProbRecruited = zeros(1, model.MaxGenerations);

238 end

239
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240 function moveImmuneCells(this)

241 model = this.Model;

242 %change the space to where the immune cells moves to 3. If the

243 %cell cannot move, change the space its on to 3. at the end,

244 %change all 3s to 1s.

245 temp = randi([1,9],size(model.ImmuneLattice));

246 %1 2 3

247 %4 5 6

248 %7 8 9

249 [m,n] = size(model.ImmuneLattice);

250 ii=0;

251 jj=0;

252 for i = 1:m

253 for j = 1:n

254 if (model.ImmuneLattice(i,j) == ImmuneStates_sbm.M0Static)

|| ...

255 (model.ImmuneLattice(i,j) == ImmuneStates_sbm.

M1Static) || ...

256 (model.ImmuneLattice(i,j) == ImmuneStates_sbm.

M2Static) || ...

257 (model.ImmuneLattice(i,j) == ImmuneStates_sbm.

MIntStatic)

258 %move up

259 if temp(i,j) < 3

260 ii = i − 1;

261 %move down

262 elseif temp(i,j) > 6
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263 ii = i + 1;

264 else

265 ii = i;

266 end

267 %move right

268 if mod(temp(i,j),3) == 0

269 jj = j + 1;

270 %move left

271 elseif mod(temp(i,j),3) == 1

272 jj = j − 1;

273 else

274 jj = j;

275 end

276 %adjust values at edges to spill over to other side

277 if ii <= 0

278 ii = m;

279 end

280 if ii > m

281 ii = 1;

282 end

283 if jj <= 0

284 jj = n;

285 end

286 if jj > n

287 jj = 1;

288 end

289 % move cells
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290 if model.ImmuneLattice(ii,jj) == ImmuneStates_sbm.Empty

291 % move age cell

292 model.ImmuneAge(ii,jj) = model.ImmuneAge(i,j)−1;

293 old_age=model.ImmuneAge(i,j);

294 model.ImmuneAge(i,j) = 0;

295 % move SOCS

296 model.SOCSLattice(ii,jj) = model.SOCSLattice(i,j);

297 model.SOCSLattice(i,j) = 0;

298

299 % update M1/M2 activation

300 pim_fun=@(x) x^2/(x^2+this.M1ActHillParameter^2);

301 aim_fun=@(x,hill) x^2/(x^2+hill^2);

302 % get old M1 activation

303 oldm1act=model.M1ActivationLattice(i,j);

304 model.M1ActivationLattice(i,j)=0; % macrophage no

longer there

305 % get old M2 activation

306 oldm2act=model.M2ActivationLattice(i,j);

307 model.M2ActivationLattice(i,j)=0; % macrophage no

longer there

308

309 % increase M1 expression via PIM, inhibited by SOCS

310 model.M1ActivationLattice(ii,jj)=oldm1act+min([this.

M1ActivationRate*pim_fun(model.

ProInflammatoryLattice(ii,jj))*normrnd(1,0.25)...

311 *1/(1+(model.SOCSLattice(ii,jj)/this.

M1SOCSInfinity)^2), 1−oldm1act−oldm2act]);

191



312

313 % decrease M1 expression via AIM

314 model.M1ActivationLattice(ii,jj)=max([model.

M1ActivationLattice(ii,jj)−this.M1DecreaseViaAIM*

aim_fun(model.AntiInflammatoryLattice(ii,jj),this

.M1DecreaseViaAIMHill), 0]);

315

316 % increase M2 expression via AIM, inhibited by SOCS

317 model.M2ActivationLattice(ii,jj)=oldm2act+min([this.

M2ActScalar*model.AntiInflammatoryLattice(ii,jj)

^4/(model.AntiInflammatoryLattice(ii,jj)^4+this.

M2ActHillParameter^4)*normrnd(1,0.25)...

318 *1/(1+(model.SOCSLattice(ii,jj)/this.

M2SOCSInfinity)^2), 1−oldm1act−oldm2act]);

319 % model.M2ActivationLattice(ii,jj)=oldm2act+min([

this.M2ActScalar*aim_fun(model.AntiInflammatoryLattice(ii,jj),this.

M2ActHillParameter)*normrnd(1,0.25)...

320

321 % decrease M1 & M2 expression (natural decay)

322 model.M1ActivationLattice(ii,jj)=model.

M1ActivationLattice(ii,jj).*(1−this.

PIMNegativeFeedbackRate);

323 model.M2ActivationLattice(ii,jj)=model.

M2ActivationLattice(ii,jj).*(1−this.

AIMNegativeFeedbackRate);

324

325 % make old space empty
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326 model.ImmuneLattice(i,j) = ImmuneStates_sbm.Empty;

327

328 % change new state

329

330 % was original state M0?

331 oldstate=model.ImmuneLattice(ii,jj) ==

ImmuneStates_sbm.M0Moving;

332

333 if model.M1ActivationLattice(ii,jj)>0.5

334 model.ImmuneLattice(ii,jj) = ImmuneStates_sbm.

M1Moving;

335 if oldstate==1 % if M0 −> M1, change age to 12

hours

336 model.ImmuneAge(ii,jj)=min(old_age,(round(

this.AgeStDevActivated.*randn(1,1) + this

.AgeMeanActivated).*60/this.

GenerationSize));

337 end

338 elseif model.M2ActivationLattice(ii,jj)>0.5

339 model.ImmuneLattice(ii,jj) = ImmuneStates_sbm.

M2Moving;

340 if oldstate==1 % if M0 −> M2, change age to 12

hours

341 model.ImmuneAge(ii,jj)=min(old_age,(round(

this.AgeStDevActivated.*randn(1,1) + this

.AgeMeanActivated).*60/this.

GenerationSize));
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342 end

343 elseif model.M1ActivationLattice(ii,jj)+model.

M2ActivationLattice(ii,jj)>0.25

344 model.ImmuneLattice(ii,jj) = ImmuneStates_sbm.

MIntMoving;

345 if oldstate==1 % if M0 −> intermediate, change

age to 12 hours

346 model.ImmuneAge(ii,jj)=min(old_age,(round(

this.AgeStDevActivated.*randn(1,1) + this

.AgeMeanActivated).*60/this.

GenerationSize));

347 end

348 else

349 model.ImmuneLattice(ii,jj) = ImmuneStates_sbm.

M0Moving;

350 end

351

352 end

353 end

354 end

355 end

356

357 %finalize cells from Moving to Static

358 % M0

359 temp = model.ImmuneLattice == ImmuneStates_sbm.M0Moving;

360 model.ImmuneLattice(temp) = ImmuneStates_sbm.M0Static;

361 % M1
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362 temp = model.ImmuneLattice == ImmuneStates_sbm.M1Moving;

363 model.ImmuneLattice(temp) = ImmuneStates_sbm.M1Static;

364 % M2

365 temp = model.ImmuneLattice == ImmuneStates_sbm.M2Moving;

366 model.ImmuneLattice(temp) = ImmuneStates_sbm.M2Static;

367 % intermediate

368 temp = model.ImmuneLattice == ImmuneStates_sbm.MIntMoving;

369 model.ImmuneLattice(temp) = ImmuneStates_sbm.MIntStatic;

370 %kill cells

371 tempDeath = (model.ImmuneAge <= 0);

372 model.ImmuneLattice(tempDeath) = ImmuneStates_sbm.Empty;

373 model.M1ActivationLattice(tempDeath) = 0;

374 model.M2ActivationLattice(tempDeath) = 0;

375 model.SOCSLattice(tempDeath) = 0;

376 model.ImmuneAge(tempDeath) = 0;

377 end

378

379 function finalize(this)

380 model = this.Model;

381 % Append rows of data to matrices for each outcome.

382 this.Results{model.Outcome}.Runs = this.Results{model.Outcome}.Runs

+ 1;

383

384 this.Results{model.Outcome}.ImmuneCellCounts = this.Results{model.

Outcome}.ImmuneCellCounts + model.Rules{1}.Results{model.Outcome

}.ImmuneCellCounts;
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385 this.Results{model.Outcome}.ImmuneCellCountsSquared = this.Results{

model.Outcome}.ImmuneCellCountsSquared + (model.Rules{1}.Results{

model.Outcome}.ImmuneCellCounts .^ 2);

386 this.Results{model.Outcome}.IntermediateCounts = this.Results{model.

Outcome}.IntermediateCounts + model.Rules{1}.Results{model.

Outcome}.IntermediateCounts;

387 this.Results{model.Outcome}.IntermediateCountsSquared = this.Results

{model.Outcome}.IntermediateCountsSquared + (model.Rules{1}.

Results{model.Outcome}.IntermediateCounts .^ 2);

388 this.Results{model.Outcome}.M1Counts = this.Results{model.Outcome}.

M1Counts + model.Rules{1}.Results{model.Outcome}.M1Counts;

389 this.Results{model.Outcome}.M1CountsSquared = this.Results{model.

Outcome}.M1CountsSquared + (model.Rules{1}.Results{model.Outcome

}.M1Counts .^ 2);

390 this.Results{model.Outcome}.M2Counts = this.Results{model.Outcome}.

M2Counts + model.Rules{1}.Results{model.Outcome}.M2Counts;

391 this.Results{model.Outcome}.M2CountsSquared = this.Results{model.

Outcome}.M2CountsSquared + (model.Rules{1}.Results{model.Outcome

}.M2Counts .^ 2);

392 this.Results{model.Outcome}.TotalMacs = this.Results{model.Outcome}.

TotalMacs + model.Rules{1}.Results{model.Outcome}.TotalMacs;

393 this.Results{model.Outcome}.TotalMacsSquared = this.Results{model.

Outcome}.TotalMacsSquared + (model.Rules{1}.Results{model.Outcome

}.TotalMacs .^ 2);

394 this.Results{model.Outcome}.ProInflammatoryCounts = this.Results{

model.Outcome}.ProInflammatoryCounts + model.Rules{1}.Results{

model.Outcome}.ProInflammatoryCounts;
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395 this.Results{model.Outcome}.ProInflammatoryCountsSquared = this.

Results{model.Outcome}.ProInflammatoryCountsSquared + (model.

Rules{1}.Results{model.Outcome}.ProInflammatoryCounts .^ 2);

396 this.Results{model.Outcome}.AntiInflammatoryCounts = this.Results{

model.Outcome}.AntiInflammatoryCounts + model.Rules{1}.Results{

model.Outcome}.AntiInflammatoryCounts;

397 this.Results{model.Outcome}.AntiInflammatoryCountsSquared = this.

Results{model.Outcome}.AntiInflammatoryCountsSquared + (model.

Rules{1}.Results{model.Outcome}.AntiInflammatoryCounts .^ 2);

398 this.Results{model.Outcome}.SOCSCounts = this.Results{model.Outcome

}.SOCSCounts + model.Rules{1}.Results{model.Outcome}.SOCSCounts;

399 this.Results{model.Outcome}.SOCSCountsSquared = this.Results{model.

Outcome}.SOCSCountsSquared + (model.Rules{1}.Results{model.

Outcome}.SOCSCounts .^ 2);

400 this.Results{model.Outcome}.AverageM1Activation = this.Results{model

.Outcome}.AverageM1Activation + model.Rules{1}.Results{model.

Outcome}.AverageM1Activation;

401 this.Results{model.Outcome}.AverageM1ActivationSquared = this.

Results{model.Outcome}.AverageM1ActivationSquared + (model.Rules

{1}.Results{model.Outcome}.AverageM1Activation.^ 2);

402 this.Results{model.Outcome}.AverageM2Activation = this.Results{model

.Outcome}.AverageM2Activation + model.Rules{1}.Results{model.

Outcome}.AverageM2Activation;

403 this.Results{model.Outcome}.AverageM2ActivationSquared = this.

Results{model.Outcome}.AverageM2ActivationSquared + (model.Rules

{1}.Results{model.Outcome}.AverageM2Activation.^ 2);
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404 this.Results{model.Outcome}.RecruitedCells = this.Results{model.

Outcome}.RecruitedCells + model.Rules{1}.Results{model.Outcome}.

RecruitedCells;

405 this.Results{model.Outcome}.RecruitedCellsSquared = this.Results{

model.Outcome}.RecruitedCellsSquared + (model.Rules{1}.Results{

model.Outcome}.RecruitedCells.^ 2);

406 this.Results{model.Outcome}.ProbRecruited = this.Results{model.

Outcome}.ProbRecruited + model.Rules{1}.Results{model.Outcome}.

ProbRecruited;

407 this.Results{model.Outcome}.ProbRecruitedSquared = this.Results{

model.Outcome}.ProbRecruitedSquared + (model.Rules{1}.Results{

model.Outcome}.ProbRecruited.^ 2);

408 end

409 end

410 end

B.1.4 Outcomes.m

1 classdef Outcomes < uint32

2 enumeration

3 Healthy (1)

4 Inflamed (2)

5 end

6 end

B.1.5 ImmuneStates_sbm.m
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1 classdef ImmuneStates_sbm < uint32

2 enumeration

3 M0Static (1)

4 Empty (2)

5 M0Moving (3)

6 M1Static (4)

7 M1Moving (5)

8 M2Static (6)

9 M2Moving (7)

10 MIntStatic (8) % intermediate: between M1/M2

11 MIntMoving (9) % intermediate: between M1/M2

12 end

13 end

B.1.6 LungModelRule.m

1 classdef LungModelRule < handle

2 properties (Abstract)

3 Model;

4 end

5

6 methods (Abstract, Static)

7 apply_rule(this);

8 finalize(this);

9 end

10

11 methods
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12 function nbhd = neighborhood_count(this, mat, state)

13 % Count the number of cells that match a given state in each

14 % cell's Moore neighborhood.

15 [m, n] = size(mat);

16

17 up = [2:m 1];

18 down = [m 1:m−1];

19 left = [2:n 1];

20 right = [n 1:n−1];

21

22 nbhd = (mat(up, :) == state) + ...

23 (mat(up, left) == state) + ...

24 (mat(up, right) == state) + ...

25 (mat(down, :) == state) + ...

26 (mat(down, left) == state) + ...

27 (mat(down, right) == state) + ...

28 (mat(:, left) == state) + ...

29 (mat(:, right) == state);

30 end

31

32 function diffused = diffuse(mat)

33 % Given a matrix containing a fluid intensity (0 to 1),

34 % diffuse the fluid across the matrix evenly.

35 [m, n] = size(mat);

36

37 up = [2:m 1];

38 down = [m 1:m−1];
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39 left = [2:n 1];

40 right = [n 1:n−1];

41

42 diffused = 1/9 * (mat(up, left) + ...

43 mat(up, :) + ...

44 mat(up, right) + ...

45 mat(:, left) + ...

46 mat(:, :) + ...

47 mat(:, right) + ...

48 mat(down, left) + ...

49 mat(down, :) + ...

50 mat(down, right));

51 end

52 end

53 end

B.1.7 diffuse.m

1 function diffused = diffuse(mat)

2 % Given a matrix containing a fluid intensity (0 to 1),

3 % diffuse the fluid across the matrix evenly.

4 [m, n] = size(mat);

5

6 up = [2:m 1];

7 down = [m 1:m−1];

8 left = [2:n 1];

9 right = [n 1:n−1];
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10

11 diffused = 1/9 * (mat(up, left) + ...

12 mat(up, :) + ...

13 mat(up, right) + ...

14 mat(:, left) + ...

15 mat(:, :) + ...

16 mat(:, right) + ...

17 mat(down, left) + ...

18 mat(down, :) + ...

19 mat(down, right));

20 end

B.1.8 boundedline.m

1 function varargout = boundedline(varargin)

2 %BOUNDEDLINE Plot a line with shaded error/confidence bounds

3 % Created by Kelly Kearney

4 % https://github.com/kakearney/boundedline−pkg

5 %

6 % [hl, hp] = boundedline(x, y, b)

7 % [hl, hp] = boundedline(x, y, b, linespec)

8 % [hl, hp] = boundedline(x1, y1, b1, linespec1, x2, y2, b2, linespec2)

9 % [hl, hp] = boundedline(..., 'alpha')

10 % [hl, hp] = boundedline(..., ax)

11 % [hl, hp] = boundedline(..., 'transparency', trans)

12 % [hl, hp] = boundedline(..., 'orientation', orient)

13 % [hl, hp] = boundedline(..., 'cmap', cmap)
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14 %

15 % Input variables:

16 %

17 % x, y: x and y values, either vectors of the same length, matrices

18 % of the same size, or vector/matrix pair where the row or

19 % column size of the array matches the length of the vector

20 % (same requirements as for plot function).

21 %

22 % b: npoint x nsize x nline array. Distance from line to

23 % boundary, for each point along the line (dimension 1), for

24 % each side of the line (lower/upper or left/right, depending

25 % on orientation) (dimension 2), and for each plotted line

26 % described by the preceding x−y values (dimension 3). If

27 % size(b,1) == 1, the bounds will be the same for all points

28 % along the line. If size(b,2) == 1, the bounds will be

29 % symmetrical on both sides of the lines. If size(b,3) == 1,

30 % the same bounds will be applied to all lines described by

31 % the preceding x−y arrays (only applicable when either x or

32 % y is an array). Bounds cannot include Inf, −Inf, or NaN,

33 %

34 % linespec: line specification that determines line type, marker

35 % symbol, and color of the plotted lines for the preceding

36 % x−y values.

37 %

38 % 'alpha': if included, the bounded area will be rendered with a

39 % partially−transparent patch the same color as the

40 % corresponding line(s). If not included, the bounded area

203



41 % will be an opaque patch with a lighter shade of the

42 % corresponding line color.

43 %

44 % ax: handle of axis where lines will be plotted. If not

45 % included, the current axis will be used.

46 %

47 % transp: Scalar between 0 and 1 indicating with the transparency or

48 % intensity of color of the bounded area patch. Default is

49 % 0.2.

50 %

51 % orient: 'vert': add bounds in vertical (y) direction (default)

52 % 'horiz': add bounds in horizontal (x) direction

53 %

54 % cmap: n x 3 colormap array. If included, lines will be colored

55 % (in order of plotting) according to this colormap,

56 % overriding any linespec or default colors.

57 %

58 % Output variables:

59 %

60 % hl: handles to line objects

61 %

62 % hp: handles to patch objects

63 %

64 % Example:

65 %

66 % x = linspace(0, 2*pi, 50);

67 % y1 = sin(x);
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68 % y2 = cos(x);

69 % e1 = rand(size(y1))*.5+.5;

70 % e2 = [.25 .5];

71 %

72 % ax(1) = subplot(2,2,1);

73 % [l,p] = boundedline(x, y1, e1, '−b*', x, y2, e2, '−−ro');

74 % outlinebounds(l,p);

75 % title('Opaque bounds, with outline');

76 %

77 % ax(2) = subplot(2,2,2);

78 % boundedline(x, [y1;y2], rand(length(y1),2,2)*.5+.5, 'alpha');

79 % title('Transparent bounds');

80 %

81 % ax(3) = subplot(2,2,3);

82 % boundedline([y1;y2], x, e1(1), 'orientation', 'horiz')

83 % title('Horizontal bounds');

84 %

85 % ax(4) = subplot(2,2,4);

86 % boundedline(x, repmat(y1, 4,1), permute(0.5:−0.1:0.2, [3 1 2]), ...

87 % 'cmap', cool(4), 'transparency', 0.5);

88 % title('Multiple bounds using colormap');

89

90

91 % Copyright 2010 Kelly Kearney

92

93 %−−−−−−−−−−−−−−−−−−−−

94 % Parse input
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95 %−−−−−−−−−−−−−−−−−−−−

96

97 % Alpha flag

98

99 isalpha = cellfun(@(x) ischar(x) && strcmp(x, 'alpha'), varargin);

100 if any(isalpha)

101 usealpha = true;

102 varargin = varargin(~isalpha);

103 else

104 usealpha = false;

105 end

106

107 % Axis

108

109 isax = cellfun(@(x) isscalar(x) && ishandle(x) && strcmp('axes', get(x,'type

')), varargin);

110 if any(isax)

111 hax = varargin{isax};

112 varargin = varargin(~isax);

113 else

114 hax = gca;

115 end

116

117 % Transparency

118

119 [found, trans, varargin] = parseparam(varargin, 'transparency');

120
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121 if ~found

122 trans = 0.2;

123 end

124

125 if ~isscalar(trans) || trans < 0 || trans > 1

126 error('Transparency must be scalar between 0 and 1');

127 end

128

129 % Orientation

130

131 [found, orient, varargin] = parseparam(varargin, 'orientation');

132

133 if ~found

134 orient = 'vert';

135 end

136

137 if strcmp(orient, 'vert')

138 isvert = true;

139 elseif strcmp(orient, 'horiz')

140 isvert = false;

141 else

142 error('Orientation must be ''vert'' or ''horiz''');

143 end

144

145

146 % Colormap

147
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148 [hascmap, cmap, varargin] = parseparam(varargin, 'cmap');

149

150 %Linewidth;

151 [found, width, varargin] = parseparam(varargin, 'linewidth');

152 if ~found

153 width = 1;

154 end

155

156

157 % X, Y, E triplets, and linespec

158

159 [x,y,err,linespec] = deal(cell(0));

160 while ~isempty(varargin)

161 if length(varargin) < 3

162 error('Unexpected input: should be x, y, bounds triplets');

163 end

164 if all(cellfun(@isnumeric, varargin(1:3)))

165 x = [x varargin(1)];

166 y = [y varargin(2)];

167 err = [err varargin(3)];

168 varargin(1:3) = [];

169 else

170 error('Unexpected input: should be x, y, bounds triplets');

171 end

172 if ~isempty(varargin) && ischar(varargin{1})

173 linespec = [linespec varargin(1)];

174 varargin(1) = [];
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175 else

176 linespec = [linespec {[]}];

177 end

178 end

179

180 %−−−−−−−−−−−−−−−−−−−−

181 % Reformat x and y

182 % for line and patch

183 % plotting

184 %−−−−−−−−−−−−−−−−−−−−

185

186 % Calculate y values for bounding lines

187

188 plotdata = cell(0,7);

189

190 htemp = figure('visible', 'off');

191 for ix = 1:length(x)

192

193 % Get full x, y, and linespec data for each line (easier to let plot

194 % check for properly−sized x and y and expand values than to try to do

195 % it myself)

196

197 try

198 if isempty(linespec{ix})

199 hltemp = plot(x{ix}, y{ix});

200 else

201 hltemp = plot(x{ix}, y{ix}, linespec{ix});
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202 end

203 catch

204 close(htemp);

205 error('X and Y matrices and/or linespec not appropriate for line

plot');

206 end

207

208 linedata = get(hltemp, {'xdata', 'ydata', 'marker', 'linestyle', 'color'

});

209

210 nline = size(linedata,1);

211

212 % Expand bounds matrix if necessary

213

214 if nline > 1

215 if ndims(err{ix}) == 3

216 err2 = squeeze(num2cell(err{ix},[1 2]));

217 else

218 err2 = repmat(err(ix),nline,1);

219 end

220 else

221 err2 = err(ix);

222 end

223

224 % Figure out upper and lower bounds

225

226 [lo, hi] = deal(cell(nline,1));
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227 for iln = 1:nline

228

229 x2 = linedata{iln,1};

230 y2 = linedata{iln,2};

231 nx = length(x2);

232

233 if isvert

234 lineval = y2;

235 else

236 lineval = x2;

237 end

238

239 sz = size(err2{iln});

240

241 if isequal(sz, [nx 2])

242 lo{iln} = lineval − err2{iln}(:,1)';

243 hi{iln} = lineval + err2{iln}(:,2)';

244 elseif isequal(sz, [nx 1])

245 lo{iln} = lineval − err2{iln}';

246 hi{iln} = lineval + err2{iln}';

247 elseif isequal(sz, [1 2])

248 lo{iln} = lineval − err2{iln}(1);

249 hi{iln} = lineval + err2{iln}(2);

250 elseif isequal(sz, [1 1])

251 lo{iln} = lineval − err2{iln};

252 hi{iln} = lineval + err2{iln};

253 elseif isequal(sz, [2 nx]) % not documented, but accepted anyways
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254 lo{iln} = lineval − err2{iln}(:,1);

255 hi{iln} = lineval + err2{iln}(:,2);

256 elseif isequal(sz, [1 nx]) % not documented, but accepted anyways

257 lo{iln} = lineval − err2{iln};

258 hi{iln} = lineval + err2{iln};

259 elseif isequal(sz, [2 1]) % not documented, but accepted anyways

260 lo{iln} = lineval − err2{iln}(1);

261 hi{iln} = lineval + err2{iln}(2);

262 else

263 error('Error bounds must be npt x nside x nline array');

264 end

265

266 end

267

268 % Combine all data (xline, yline, marker, linestyle, color, lower bound

269 % (x or y), upper bound (x or y)

270

271 plotdata = [plotdata; linedata lo hi];

272

273 end

274 close(htemp);

275

276 % Override colormap

277

278 if hascmap

279 nd = size(plotdata,1);

280 cmap = repmat(cmap, ceil(nd/size(cmap,1)), 1);
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281 cmap = cmap(1:nd,:);

282 plotdata(:,5) = num2cell(cmap,2);

283 end

284

285

286 %−−−−−−−−−−−−−−−−−−−−

287 % Plot

288 %−−−−−−−−−−−−−−−−−−−−

289

290 % Setup of x and y, plus line and patch properties

291

292 nline = size(plotdata,1);

293 [xl, yl, xp, yp, marker, lnsty, lncol, ptchcol, alpha] = deal(cell(nline,1))

;

294

295 for iln = 1:nline

296 xl{iln} = plotdata{iln,1};

297 yl{iln} = plotdata{iln,2};

298 % if isvert

299 % xp{iln} = [plotdata{iln,1} fliplr(plotdata{iln,1})];

300 % yp{iln} = [plotdata{iln,6} fliplr(plotdata{iln,7})];

301 % else

302 % xp{iln} = [plotdata{iln,6} fliplr(plotdata{iln,7})];

303 % yp{iln} = [plotdata{iln,2} fliplr(plotdata{iln,2})];

304 % end

305
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306 [xp{iln}, yp{iln}] = calcpatch(plotdata{iln,1}, plotdata{iln,2}, isvert,

plotdata{iln,6}, plotdata{iln,7});

307

308 marker{iln} = plotdata{iln,3};

309 lnsty{iln} = plotdata{iln,4};

310

311 if usealpha

312 lncol{iln} = plotdata{iln,5};

313 ptchcol{iln} = plotdata{iln,5};

314 alpha{iln} = trans;

315 else

316 lncol{iln} = plotdata{iln,5};

317 ptchcol{iln} = interp1([0 1], [1 1 1; lncol{iln}], trans);

318 alpha{iln} = 1;

319 end

320 end

321

322 % Plot patches and lines

323

324 [hp,hl] = deal(zeros(nline,1));

325

326 axes(hax);

327 hold all;

328

329 for iln = 1:nline

330 hp(iln) = patch(xp{iln}, yp{iln}, ptchcol{iln}, 'facealpha', alpha{iln},

'edgecolor', 'none');
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331 end

332

333 for iln = 1:nline

334 hl(iln) = line(xl{iln}, yl{iln}, 'marker', marker{iln}, 'linestyle',

lnsty{iln}, 'color', lncol{iln}, 'linewidth', width);

335 end

336

337 %−−−−−−−−−−−−−−−−−−−−

338 % Assign output

339 %−−−−−−−−−−−−−−−−−−−−

340

341 nargchk(0, 2, nargout);

342

343 if nargout >= 1

344 varargout{1} = hl;

345 end

346

347 if nargout == 2

348 varargout{2} = hp;

349 end

350

351 %−−−−−−−−−−−−−−−−−−−−

352 % Parse optional

353 % parameters

354 %−−−−−−−−−−−−−−−−−−−−

355

356 function [found, val, vars] = parseparam(vars, param)
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357

358 isvar = cellfun(@(x) ischar(x) && strcmpi(x, param), vars);

359

360 if sum(isvar) > 1

361 error('Parameters can only be passed once');

362 end

363

364 if any(isvar)

365 found = true;

366 idx = find(isvar);

367 val = vars{idx+1};

368 vars([idx idx+1]) = [];

369 else

370 found = false;

371 val = [];

372 end

373

374 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−

375 % Calculate patch coordinates

376 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−

377

378 function [xp, yp] = calcpatch(xl, yl, isvert, lo, hi)

379

380 ismissing = any(isnan([xl;yl;lo;hi]),2);

381 if any(ismissing)

382

383 else
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384 if isvert

385 xp = [xl fliplr(xl)];

386 yp = [lo fliplr(hi)];

387 else

388 xp = [lo fliplr(hi)];

389 yp = [yl fliplr(yl)];

390 end

391 end

B.2 Code: ODE model

The following function contains the equations for the ten-macrophage ODE model described

in Section 4.2.1.

1 function dx=rhs_crosstalk_compartmental(~,x,param,scale_flag)

2 % x, param: each column is a different compartment

3

4 if scale_flag==1

5 scale=3600;

6 else

7 scale=1;

8 end

9

10 %−−−−−−−−−−−−− nominal parameter value −−−−−−−−−−−−−−−−−−

11 %%%% shared parameters

12 kdeg_tnfa = param(1)*scale;

13 muile = param(2)*scale;

14
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15 %%%% compartmental parameters

16 a_trans_1 = param(3)*scale;

17 a_trans_2 = param(52+3)*scale;

18 a_trans_3 = param(2*52+3)*scale;

19 a_trans_4 = param(3*52+3)*scale;

20 a_trans_5 = param(4*52+3)*scale;

21 a_trans_6 = param(5*52+3)*scale;

22 a_trans_7 = param(6*52+3)*scale;

23 a_trans_8 = param(7*52+3)*scale;

24 a_trans_9 = param(8*52+3)*scale;

25 a_trans_10 = param(9*52+3)*scale;

26 ctf_1 = param(4);

27 ctf_2 = param(52+4);

28 ctf_3 = param(2*52+4);

29 ctf_4 = param(3*52+4);

30 ctf_5 = param(4*52+4);

31 ctf_6 = param(5*52+4);

32 ctf_7 = param(6*52+4);

33 ctf_8 = param(7*52+4);

34 ctf_9 = param(8*52+4);

35 ctf_10 = param(9*52+4);

36 ctf_stat3_1 = param(5);

37 ctf_stat3_2 = param(52+5);

38 ctf_stat3_3 = param(2*52+5);

39 ctf_stat3_4 = param(3*52+5);

40 ctf_stat3_5 = param(4*52+5);

41 ctf_stat3_6 = param(5*52+5);
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42 ctf_stat3_7 = param(6*52+5);

43 ctf_stat3_8 = param(7*52+5);

44 ctf_stat3_9 = param(8*52+5);

45 ctf_stat3_10 = param(9*52+5); % 473

46 eki_1 = param(6)*scale;

47 eki_2 = param(52+6)*scale;

48 eki_3 = param(2*52+6)*scale;

49 eki_4 = param(3*52+6)*scale;

50 eki_5 = param(4*52+6)*scale;

51 eki_6 = param(5*52+6)*scale;

52 eki_7 = param(6*52+6)*scale;

53 eki_8 = param(7*52+6)*scale;

54 eki_9 = param(8*52+6)*scale;

55 eki_10 = param(9*52+6)*scale;

56 eni_1 = param(7)*scale;

57 eni_2 = param(52+7)*scale;

58 eni_3 = param(2*52+7)*scale;

59 eni_4 = param(3*52+7)*scale;

60 eni_5 = param(4*52+7)*scale;

61 eni_6 = param(5*52+7)*scale;

62 eni_7 = param(6*52+7)*scale;

63 eni_8 = param(7*52+7)*scale;

64 eni_9 = param(8*52+7)*scale;

65 eni_10 = param(9*52+7)*scale;

66 ikba_trans_1 = param(8)*scale;

67 ikba_trans_2 = param(52+8)*scale;

68 ikba_trans_3 = param(2*52+8)*scale;
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69 ikba_trans_4 = param(3*52+8)*scale;

70 ikba_trans_5 = param(4*52+8)*scale;

71 ikba_trans_6 = param(5*52+8)*scale;

72 ikba_trans_7 = param(6*52+8)*scale;

73 ikba_trans_8 = param(7*52+8)*scale;

74 ikba_trans_9 = param(8*52+8)*scale;

75 ikba_trans_10 = param(9*52+8)*scale;

76 iki_1 = param(9)*scale;

77 iki_2 = param(52+9)*scale;

78 iki_3 = param(2*52+9)*scale;

79 iki_4 = param(3*52+9)*scale;

80 iki_5 = param(4*52+9)*scale;

81 iki_6 = param(5*52+9)*scale;

82 iki_7 = param(6*52+9)*scale;

83 iki_8 = param(7*52+9)*scale;

84 iki_9 = param(8*52+9)*scale;

85 iki_10 = param(9*52+9)*scale;

86 il10max_1 = param(10);

87 il10max_2 = param(52+10);

88 il10max_3 = param(2*52+10);

89 il10max_4 = param(3*52+10);

90 il10max_5 = param(4*52+10);

91 il10max_6 = param(5*52+10);

92 il10max_7 = param(6*52+10);

93 il10max_8 = param(7*52+10);

94 il10max_9 = param(8*52+10);

95 il10max_10 = param(9*52+10);
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96 iln_1 = param(11)*scale;

97 iln_2 = param(52+11)*scale;

98 iln_3 = param(2*52+11)*scale;

99 iln_4 = param(3*52+11)*scale;

100 iln_5 = param(4*52+11)*scale;

101 iln_6 = param(5*52+11)*scale;

102 iln_7 = param(6*52+11)*scale;

103 iln_8 = param(7*52+11)*scale;

104 iln_9 = param(8*52+11)*scale;

105 iln_10 = param(9*52+11)*scale;

106 kdeg_a20_1 = param(12)*scale;

107 kdeg_a20_2 = param(52+12)*scale;

108 kdeg_a20_3 = param(2*52+12)*scale;

109 kdeg_a20_4 = param(3*52+12)*scale;

110 kdeg_a20_5 = param(4*52+12)*scale;

111 kdeg_a20_6 = param(5*52+12)*scale;

112 kdeg_a20_7 = param(6*52+12)*scale;

113 kdeg_a20_8 = param(7*52+12)*scale;

114 kdeg_a20_9 = param(8*52+12)*scale;

115 kdeg_a20_10 = param(9*52+12)*scale;

116 kdeg_ikba_1 = param(13)*scale;

117 kdeg_ikba_2 = param(52+13)*scale;

118 kdeg_ikba_3 = param(2*52+13)*scale;

119 kdeg_ikba_4 = param(3*52+13)*scale;

120 kdeg_ikba_5 = param(4*52+13)*scale;

121 kdeg_ikba_6 = param(5*52+13)*scale;

122 kdeg_ikba_7 = param(6*52+13)*scale;
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123 kdeg_ikba_8 = param(7*52+13)*scale;

124 kdeg_ikba_9 = param(8*52+13)*scale;

125 kdeg_ikba_10 = param(9*52+13)*scale;

126 kf1_1 = param(14)*scale;

127 kf1_2 = param(52+14)*scale;

128 kf1_3 = param(2*52+14)*scale;

129 kf1_4 = param(3*52+14)*scale;

130 kf1_5 = param(4*52+14)*scale;

131 kf1_6 = param(5*52+14)*scale;

132 kf1_7 = param(6*52+14)*scale;

133 kf1_8 = param(7*52+14)*scale;

134 kf1_9 = param(8*52+14)*scale;

135 kf1_10 = param(9*52+14)*scale;

136 kf3_1 = param(15)*scale;

137 kf3_2 = param(52+15)*scale;

138 kf3_3 = param(2*52+15)*scale;

139 kf3_4 = param(3*52+15)*scale;

140 kf3_5 = param(4*52+15)*scale;

141 kf3_6 = param(5*52+15)*scale;

142 kf3_7 = param(6*52+15)*scale;

143 kf3_8 = param(7*52+15)*scale;

144 kf3_9 = param(8*52+15)*scale;

145 kf3_10 = param(9*52+15)*scale;

146 kf4_1 = param(16)*scale;

147 kf4_2 = param(52+16)*scale;

148 kf4_3 = param(2*52+16)*scale;

149 kf4_4 = param(3*52+16)*scale;
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150 kf4_5 = param(4*52+16)*scale;

151 kf4_6 = param(5*52+16)*scale;

152 kf4_7 = param(6*52+16)*scale;

153 kf4_8 = param(7*52+16)*scale;

154 kf4_9 = param(8*52+16)*scale;

155 kf4_10 = param(9*52+16)*scale;

156 kfi_1 = param(17)*scale;

157 kfi_2 = param(52+17)*scale;

158 kfi_3 = param(2*52+17)*scale;

159 kfi_4 = param(3*52+17)*scale;

160 kfi_5 = param(4*52+17)*scale;

161 kfi_6 = param(5*52+17)*scale;

162 kfi_7 = param(6*52+17)*scale;

163 kfi_8 = param(7*52+17)*scale;

164 kfi_9 = param(8*52+17)*scale;

165 kfi_10 = param(9*52+17)*scale;

166 kilc_1 = param(18)*scale;

167 kilc_2 = param(52+18)*scale;

168 kilc_3 = param(2*52+18)*scale;

169 kilc_4 = param(3*52+18)*scale;

170 kilc_5 = param(4*52+18)*scale;

171 kilc_6 = param(5*52+18)*scale;

172 kilc_7 = param(6*52+18)*scale;

173 kilc_8 = param(7*52+18)*scale;

174 kilc_9 = param(8*52+18)*scale;

175 kilc_10 = param(9*52+18)*scale;

176 kiljb_1 = param(19)*scale;
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177 kiljb_2 = param(52+19)*scale;

178 kiljb_3 = param(2*52+19)*scale;

179 kiljb_4 = param(3*52+19)*scale;

180 kiljb_5 = param(4*52+19)*scale;

181 kiljb_6 = param(5*52+19)*scale;

182 kiljb_7 = param(6*52+19)*scale;

183 kiljb_8 = param(7*52+19)*scale;

184 kiljb_9 = param(8*52+19)*scale;

185 kiljb_10 = param(9*52+19)*scale;

186 kilju_1 = param(20)*scale;

187 kilju_2 = param(52+20)*scale;

188 kilju_3 = param(2*52+20)*scale;

189 kilju_4 = param(3*52+20)*scale;

190 kilju_5 = param(4*52+20)*scale;

191 kilju_6 = param(5*52+20)*scale;

192 kilju_7 = param(6*52+20)*scale;

193 kilju_8 = param(7*52+20)*scale;

194 kilju_9 = param(8*52+20)*scale;

195 kilju_10 = param(9*52+20)*scale;

196 kilm_1 = param(21)*scale;

197 kilm_2 = param(52+21)*scale;

198 kilm_3 = param(2*52+21)*scale;

199 kilm_4 = param(3*52+21)*scale;

200 kilm_5 = param(4*52+21)*scale;

201 kilm_6 = param(5*52+21)*scale;

202 kilm_7 = param(6*52+21)*scale;

203 kilm_8 = param(7*52+21)*scale;
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204 kilm_9 = param(8*52+21)*scale;

205 kilm_10 = param(9*52+21)*scale;

206 kilnf_1 = param(22)*scale;

207 kilnf_2 = param(52+22)*scale;

208 kilnf_3 = param(2*52+22)*scale;

209 kilnf_4 = param(3*52+22)*scale;

210 kilnf_5 = param(4*52+22)*scale;

211 kilnf_6 = param(5*52+22)*scale;

212 kilnf_7 = param(6*52+22)*scale;

213 kilnf_8 = param(7*52+22)*scale;

214 kilnf_9 = param(8*52+22)*scale;

215 kilnf_10 = param(9*52+22)*scale;

216 kilrb_1 = param(23)*scale;

217 kilrb_2 = param(52+23)*scale;

218 kilrb_3 = param(2*52+23)*scale;

219 kilrb_4 = param(3*52+23)*scale;

220 kilrb_5 = param(4*52+23)*scale;

221 kilrb_6 = param(5*52+23)*scale;

222 kilrb_7 = param(6*52+23)*scale;

223 kilrb_8 = param(7*52+23)*scale;

224 kilrb_9 = param(8*52+23)*scale;

225 kilrb_10 = param(9*52+23)*scale;

226 kilru_1 = param(24)*scale;

227 kilru_2 = param(52+24)*scale;

228 kilru_3 = param(2*52+24)*scale;

229 kilru_4 = param(3*52+24)*scale;

230 kilru_5 = param(4*52+24)*scale;
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231 kilru_6 = param(5*52+24)*scale;

232 kilru_7 = param(6*52+24)*scale;

233 kilru_8 = param(7*52+24)*scale;

234 kilru_9 = param(8*52+24)*scale;

235 kilru_10 = param(9*52+24)*scale;

236 kilsn_1 = param(25)*scale;

237 kilsn_2 = param(52+25)*scale;

238 kilsn_3 = param(2*52+25)*scale;

239 kilsn_4 = param(3*52+25)*scale;

240 kilsn_5 = param(4*52+25)*scale;

241 kilsn_6 = param(5*52+25)*scale;

242 kilsn_7 = param(6*52+25)*scale;

243 kilsn_8 = param(7*52+25)*scale;

244 kilsn_9 = param(8*52+25)*scale;

245 kilsn_10 = param(9*52+25)*scale;

246 kk1_1 = param(26)*scale;

247 kk1_2 = param(52+26)*scale;

248 kk1_3 = param(2*52+26)*scale;

249 kk1_4 = param(3*52+26)*scale;

250 kk1_5 = param(4*52+26)*scale;

251 kk1_6 = param(5*52+26)*scale;

252 kk1_7 = param(6*52+26)*scale;

253 kk1_8 = param(7*52+26)*scale;

254 kk1_9 = param(8*52+26)*scale;

255 kk1_10 = param(9*52+26)*scale;

256 kk3_1 = param(27)*scale;

257 kk3_2 = param(52+27)*scale;
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258 kk3_3 = param(2*52+27)*scale;

259 kk3_4 = param(3*52+27)*scale;

260 kk3_5 = param(4*52+27)*scale;

261 kk3_6 = param(5*52+27)*scale;

262 kk3_7 = param(6*52+27)*scale;

263 kk3_8 = param(7*52+27)*scale;

264 kk3_9 = param(8*52+27)*scale;

265 kk3_10 = param(9*52+27)*scale;

266 kr1_1 = param(28)*scale;

267 kr1_2 = param(52+28)*scale;

268 kr1_3 = param(2*52+28)*scale;

269 kr1_4 = param(3*52+28)*scale;

270 kr1_5 = param(4*52+28)*scale;

271 kr1_6 = param(5*52+28)*scale;

272 kr1_7 = param(6*52+28)*scale;

273 kr1_8 = param(7*52+28)*scale;

274 kr1_9 = param(8*52+28)*scale;

275 kr1_10 = param(9*52+28)*scale;

276 kr3_1 = param(29)*scale;

277 kr3_2 = param(52+29)*scale;

278 kr3_3 = param(2*52+29)*scale;

279 kr3_4 = param(3*52+29)*scale;

280 kr3_5 = param(4*52+29)*scale;

281 kr3_6 = param(5*52+29)*scale;

282 kr3_7 = param(6*52+29)*scale;

283 kr3_8 = param(7*52+29)*scale;

284 kr3_9 = param(8*52+29)*scale;
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285 kr3_10 = param(9*52+29)*scale;

286 ks1_1 = param(30)*scale;

287 ks1_2 = param(52+30)*scale;

288 ks1_3 = param(2*52+30)*scale;

289 ks1_4 = param(3*52+30)*scale;

290 ks1_5 = param(4*52+30)*scale;

291 ks1_6 = param(5*52+30)*scale;

292 ks1_7 = param(6*52+30)*scale;

293 ks1_8 = param(7*52+30)*scale;

294 ks1_9 = param(8*52+30)*scale;

295 ks1_10 = param(9*52+30)*scale;

296 ks1st_1 = param(31)*scale;

297 ks1st_2 = param(52+31)*scale;

298 ks1st_3 = param(2*52+31)*scale;

299 ks1st_4 = param(3*52+31)*scale;

300 ks1st_5 = param(4*52+31)*scale;

301 ks1st_6 = param(5*52+31)*scale;

302 ks1st_7 = param(6*52+31)*scale;

303 ks1st_8 = param(7*52+31)*scale;

304 ks1st_9 = param(8*52+31)*scale;

305 ks1st_10 = param(9*52+31)*scale;

306 ks3_1 = param(32)*scale;

307 ks3_2 = param(52+32)*scale;

308 ks3_3 = param(2*52+32)*scale;

309 ks3_4 = param(3*52+32)*scale;

310 ks3_5 = param(4*52+32)*scale;

311 ks3_6 = param(5*52+32)*scale;

228



312 ks3_7 = param(6*52+32)*scale;

313 ks3_8 = param(7*52+32)*scale;

314 ks3_9 = param(8*52+32)*scale;

315 ks3_10 = param(9*52+32)*scale;

316 ks3st_1 = param(33)*scale;

317 ks3st_2 = param(52+33)*scale;

318 ks3st_3 = param(2*52+33)*scale;

319 ks3st_4 = param(3*52+33)*scale;

320 ks3st_5 = param(4*52+33)*scale;

321 ks3st_6 = param(5*52+33)*scale;

322 ks3st_7 = param(6*52+33)*scale;

323 ks3st_8 = param(7*52+33)*scale;

324 ks3st_9 = param(8*52+33)*scale;

325 ks3st_10 = param(9*52+33)*scale;

326 ksa_1 = param(34)*scale;

327 ksa_2 = param(52+34)*scale;

328 ksa_3 = param(2*52+34)*scale;

329 ksa_4 = param(3*52+34)*scale;

330 ksa_5 = param(4*52+34)*scale;

331 ksa_6 = param(5*52+34)*scale;

332 ksa_7 = param(6*52+34)*scale;

333 ksa_8 = param(7*52+34)*scale;

334 ksa_9 = param(8*52+34)*scale;

335 ksa_10 = param(9*52+34)*scale;

336 ksec_1 = param(35)*scale;

337 ksec_2 = param(52+35)*scale;

338 ksec_3 = param(2*52+35)*scale;
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339 ksec_4 = param(3*52+35)*scale;

340 ksec_5 = param(4*52+35)*scale;

341 ksec_6 = param(5*52+35)*scale;

342 ksec_7 = param(6*52+35)*scale;

343 ksec_8 = param(7*52+35)*scale;

344 ksec_9 = param(8*52+35)*scale;

345 ksec_10 = param(9*52+35)*scale;

346 ksni_1 = param(36)*scale;

347 ksni_2 = param(52+36)*scale;

348 ksni_3 = param(2*52+36)*scale;

349 ksni_4 = param(3*52+36)*scale;

350 ksni_5 = param(4*52+36)*scale;

351 ksni_6 = param(5*52+36)*scale;

352 ksni_7 = param(6*52+36)*scale;

353 ksni_8 = param(7*52+36)*scale;

354 ksni_9 = param(8*52+36)*scale;

355 ksni_10 = param(9*52+36)*scale;

356 ksnicyto_1 = param(37)*scale;

357 ksnicyto_2 = param(52+37)*scale;

358 ksnicyto_3 = param(2*52+37)*scale;

359 ksnicyto_4 = param(3*52+37)*scale;

360 ksnicyto_5 = param(4*52+37)*scale;

361 ksnicyto_6 = param(5*52+37)*scale;

362 ksnicyto_7 = param(6*52+37)*scale;

363 ksnicyto_8 = param(7*52+37)*scale;

364 ksnicyto_9 = param(8*52+37)*scale;

365 ksnicyto_10 = param(9*52+37)*scale;
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366 kstat_1 = param(38)*scale;

367 kstat_2 = param(52+38)*scale;

368 kstat_3 = param(2*52+38)*scale;

369 kstat_4 = param(3*52+38)*scale;

370 kstat_5 = param(4*52+38)*scale;

371 kstat_6 = param(5*52+38)*scale;

372 kstat_7 = param(6*52+38)*scale;

373 kstat_8 = param(7*52+38)*scale;

374 kstat_9 = param(8*52+38)*scale;

375 kstat_10 = param(9*52+38)*scale;

376 kv_1 = param(39);

377 kv_2 = param(52+39);

378 kv_3 = param(2*52+39);

379 kv_4 = param(3*52+39);

380 kv_5 = param(4*52+39);

381 kv_6 = param(5*52+39);

382 kv_7 = param(6*52+39);

383 kv_8 = param(7*52+39);

384 kv_9 = param(8*52+39);

385 kv_10 = param(9*52+39);

386 mua20m_1 = param(40)*scale;

387 mua20m_2 = param(52+40)*scale;

388 mua20m_3 = param(2*52+40)*scale;

389 mua20m_4 = param(3*52+40)*scale;

390 mua20m_5 = param(4*52+40)*scale;

391 mua20m_6 = param(5*52+40)*scale;

392 mua20m_7 = param(6*52+40)*scale;
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393 mua20m_8 = param(7*52+40)*scale;

394 mua20m_9 = param(8*52+40)*scale;

395 mua20m_10 = param(9*52+40)*scale;

396 muilc_1 = param(41)*scale;

397 muilc_2 = param(52+41)*scale;

398 muilc_3 = param(2*52+41)*scale;

399 muilc_4 = param(3*52+41)*scale;

400 muilc_5 = param(4*52+41)*scale;

401 muilc_6 = param(5*52+41)*scale;

402 muilc_7 = param(6*52+41)*scale;

403 muilc_8 = param(7*52+41)*scale;

404 muilc_9 = param(8*52+41)*scale;

405 muilc_10 = param(9*52+41)*scale;

406 muilm_1 = param(42)*scale;

407 muilm_2 = param(52+42)*scale;

408 muilm_3 = param(2*52+42)*scale;

409 muilm_4 = param(3*52+42)*scale;

410 muilm_5 = param(4*52+42)*scale;

411 muilm_6 = param(5*52+42)*scale;

412 muilm_7 = param(6*52+42)*scale;

413 muilm_8 = param(7*52+42)*scale;

414 muilm_9 = param(8*52+42)*scale;

415 muilm_10 = param(9*52+42)*scale;

416 mus1c_1 = param(43)*scale;

417 mus1c_2 = param(52+43)*scale;

418 mus1c_3 = param(2*52+43)*scale;

419 mus1c_4 = param(3*52+43)*scale;

232



420 mus1c_5 = param(4*52+43)*scale;

421 mus1c_6 = param(5*52+43)*scale;

422 mus1c_7 = param(6*52+43)*scale;

423 mus1c_8 = param(7*52+43)*scale;

424 mus1c_9 = param(8*52+43)*scale;

425 mus1c_10 = param(9*52+43)*scale;

426 mus1m_1 = param(44)*scale;

427 mus1m_2 = param(52+44)*scale;

428 mus1m_3 = param(2*52+44)*scale;

429 mus1m_4 = param(3*52+44)*scale;

430 mus1m_5 = param(4*52+44)*scale;

431 mus1m_6 = param(5*52+44)*scale;

432 mus1m_7 = param(6*52+44)*scale;

433 mus1m_8 = param(7*52+44)*scale;

434 mus1m_9 = param(8*52+44)*scale;

435 mus1m_10 = param(9*52+44)*scale;

436 mus3c_1 = param(45)*scale;

437 mus3c_2 = param(52+45)*scale;

438 mus3c_3 = param(2*52+45)*scale;

439 mus3c_4 = param(3*52+45)*scale;

440 mus3c_5 = param(4*52+45)*scale;

441 mus3c_6 = param(5*52+45)*scale;

442 mus3c_7 = param(6*52+45)*scale;

443 mus3c_8 = param(7*52+45)*scale;

444 mus3c_9 = param(8*52+45)*scale;

445 mus3c_10 = param(9*52+45)*scale;

446 mus3m_1 = param(46)*scale;
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447 mus3m_2 = param(52+46)*scale;

448 mus3m_3 = param(2*52+46)*scale;

449 mus3m_4 = param(3*52+46)*scale;

450 mus3m_5 = param(4*52+46)*scale;

451 mus3m_6 = param(5*52+46)*scale;

452 mus3m_7 = param(6*52+46)*scale;

453 mus3m_8 = param(7*52+46)*scale;

454 mus3m_9 = param(8*52+46)*scale;

455 mus3m_10 = param(9*52+46)*scale;

456 mutnc_1 = param(47)*scale;

457 mutnc_2 = param(52+47)*scale;

458 mutnc_3 = param(2*52+47)*scale;

459 mutnc_4 = param(3*52+47)*scale;

460 mutnc_5 = param(4*52+47)*scale;

461 mutnc_6 = param(5*52+47)*scale;

462 mutnc_7 = param(6*52+47)*scale;

463 mutnc_8 = param(7*52+47)*scale;

464 mutnc_9 = param(8*52+47)*scale;

465 mutnc_10 = param(9*52+47)*scale;

466 mutnm_1 = param(48)*scale;

467 mutnm_2 = param(52+48)*scale;

468 mutnm_3 = param(2*52+48)*scale;

469 mutnm_4 = param(3*52+48)*scale;

470 mutnm_5 = param(4*52+48)*scale;

471 mutnm_6 = param(5*52+48)*scale;

472 mutnm_7 = param(6*52+48)*scale;

473 mutnm_8 = param(7*52+48)*scale;
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474 mutnm_9 = param(8*52+48)*scale;

475 mutnm_10 = param(9*52+48)*scale;

476 p_1 = param(49);

477 p_2 = param(52+49);

478 p_3 = param(2*52+49);

479 p_4 = param(3*52+49);

480 p_5 = param(4*52+49);

481 p_6 = param(5*52+49);

482 p_7 = param(6*52+49);

483 p_8 = param(7*52+49);

484 p_9 = param(8*52+49);

485 p_10 = param(9*52+49);

486 sm_1 = param(50)*scale;

487 sm_2 = param(52+50)*scale;

488 sm_3 = param(2*52+50)*scale;

489 sm_4 = param(3*52+50)*scale;

490 sm_5 = param(4*52+50)*scale;

491 sm_6 = param(5*52+50)*scale;

492 sm_7 = param(6*52+50)*scale;

493 sm_8 = param(7*52+50)*scale;

494 sm_9 = param(8*52+50)*scale;

495 sm_10 = param(9*52+50)*scale;

496 socs3inf_1 = param(51);

497 socs3inf_2 = param(52+51);

498 socs3inf_3 = param(2*52+51);

499 socs3inf_4 = param(3*52+51);

500 socs3inf_5 = param(4*52+51);

235



501 socs3inf_6 = param(5*52+51);

502 socs3inf_7 = param(6*52+51);

503 socs3inf_8 = param(7*52+51);

504 socs3inf_9 = param(8*52+51);

505 socs3inf_10 = param(9*52+51);

506 socsinf_1 = param(52);

507 socsinf_2 = param(52+52);

508 socsinf_3 = param(2*52+52);

509 socsinf_4 = param(3*52+52);

510 socsinf_5 = param(4*52+52);

511 socsinf_6 = param(5*52+52);

512 socsinf_7 = param(6*52+52);

513 socsinf_8 = param(7*52+52);

514 socsinf_9 = param(8*52+52);

515 socsinf_10 = param(9*52+52);

516 ti3_1 = param(53)*scale;

517 ti3_2 = param(52+53)*scale;

518 ti3_3 = param(2*52+53)*scale;

519 ti3_4 = param(3*52+53)*scale;

520 ti3_5 = param(4*52+53)*scale;

521 ti3_6 = param(5*52+53)*scale;

522 ti3_7 = param(6*52+53)*scale;

523 ti3_8 = param(7*52+53)*scale;

524 ti3_9 = param(8*52+53)*scale;

525 ti3_10 = param(9*52+53)*scale;

526 tnfa_trans_1 = param(54)*scale;

527 tnfa_trans_2 = param(52+54)*scale;
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528 tnfa_trans_3 = param(2*52+54)*scale;

529 tnfa_trans_4 = param(3*52+54)*scale;

530 tnfa_trans_5 = param(4*52+54)*scale;

531 tnfa_trans_6 = param(5*52+54)*scale;

532 tnfa_trans_7 = param(6*52+54)*scale;

533 tnfa_trans_8 = param(7*52+54)*scale;

534 tnfa_trans_9 = param(8*52+54)*scale;

535 tnfa_trans_10 = param(9*52+54)*scale;

536

537 %−−−−−−−−−−−−−−−−−−−−−−− original model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

538

539 %%%% shared variables

540 lps= x(1);

541 il10ext=x(2);

542 tnfaext=x(3);

543

544 %%%% in each compartment

545 a20cyto_1= x(4);

546 a20cyto_2= x(1*36+4);

547 a20cyto_3= x(2*36+4);

548 a20cyto_4= x(3*36+4);

549 a20cyto_5= x(4*36+4);

550 a20cyto_6= x(5*36+4);

551 a20cyto_7= x(6*36+4);

552 a20cyto_8= x(7*36+4);

553 a20cyto_9= x(8*36+4);

554 a20cyto_10= x(9*36+4);
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555 a20mrna_1= x(5);

556 a20mrna_2= x(1*36+5);

557 a20mrna_3= x(2*36+5);

558 a20mrna_4= x(3*36+5);

559 a20mrna_5= x(4*36+5);

560 a20mrna_6= x(5*36+5);

561 a20mrna_7= x(6*36+5);

562 a20mrna_8= x(7*36+5);

563 a20mrna_9= x(8*36+5);

564 a20mrna_10= x(9*36+5);

565 ikba_nfkbcyto_1= x(6);

566 ikba_nfkbcyto_2= x(1*36+6);

567 ikba_nfkbcyto_3= x(2*36+6);

568 ikba_nfkbcyto_4= x(3*36+6);

569 ikba_nfkbcyto_5= x(4*36+6);

570 ikba_nfkbcyto_6= x(5*36+6);

571 ikba_nfkbcyto_7= x(6*36+6);

572 ikba_nfkbcyto_8= x(7*36+6);

573 ikba_nfkbcyto_9= x(8*36+6);

574 ikba_nfkbcyto_10= x(9*36+6);

575 ikba_nfkbnuclear_1= x(7);

576 ikba_nfkbnuclear_2= x(1*36+7);

577 ikba_nfkbnuclear_3= x(2*36+7);

578 ikba_nfkbnuclear_4= x(3*36+7);

579 ikba_nfkbnuclear_5= x(4*36+7);

580 ikba_nfkbnuclear_6= x(5*36+7);

581 ikba_nfkbnuclear_7= x(6*36+7);
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582 ikba_nfkbnuclear_8= x(7*36+7);

583 ikba_nfkbnuclear_9= x(8*36+7);

584 ikba_nfkbnuclear_10= x(9*36+7);

585 ikbacyto_1= x(8);

586 ikbacyto_2= x(1*36+8);

587 ikbacyto_3= x(2*36+8);

588 ikbacyto_4= x(3*36+8);

589 ikbacyto_5= x(4*36+8);

590 ikbacyto_6= x(5*36+8);

591 ikbacyto_7= x(6*36+8);

592 ikbacyto_8= x(7*36+8);

593 ikbacyto_9= x(8*36+8);

594 ikbacyto_10= x(9*36+8);

595 ikbamrna_1= x(9);

596 ikbamrna_2= x(1*36+9);

597 ikbamrna_3= x(2*36+9);

598 ikbamrna_4= x(3*36+9);

599 ikbamrna_5= x(4*36+9);

600 ikbamrna_6= x(5*36+9);

601 ikbamrna_7= x(6*36+9);

602 ikbamrna_8= x(7*36+9);

603 ikbamrna_9= x(8*36+9);

604 ikbamrna_10= x(9*36+9);

605 ikbanuclear_1= x(10);

606 ikbanuclear_2= x(1*36+10);

607 ikbanuclear_3= x(2*36+10);

608 ikbanuclear_4= x(3*36+10);
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609 ikbanuclear_5= x(4*36+10);

610 ikbanuclear_6= x(5*36+10);

611 ikbanuclear_7= x(6*36+10);

612 ikbanuclear_8= x(7*36+10);

613 ikbanuclear_9= x(8*36+10);

614 ikbanuclear_10= x(9*36+10);

615 ikbaphospho_1= x(11);

616 ikbaphospho_2= x(1*36+11);

617 ikbaphospho_3= x(2*36+11);

618 ikbaphospho_4= x(3*36+11);

619 ikbaphospho_5= x(4*36+11);

620 ikbaphospho_6= x(5*36+11);

621 ikbaphospho_7= x(6*36+11);

622 ikbaphospho_8= x(7*36+11);

623 ikbaphospho_9= x(8*36+11);

624 ikbaphospho_10= x(9*36+11);

625 ikka_1= x(12);

626 ikka_2= x(1*36+12);

627 ikka_3= x(2*36+12);

628 ikka_4= x(3*36+12);

629 ikka_5= x(4*36+12);

630 ikka_6= x(5*36+12);

631 ikka_7= x(6*36+12);

632 ikka_8= x(7*36+12);

633 ikka_9= x(8*36+12);

634 ikka_10= x(9*36+12);

635 ikka_ikba_nfkbcyto_1= x(13);
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636 ikka_ikba_nfkbcyto_2= x(1*36+13);

637 ikka_ikba_nfkbcyto_3= x(2*36+13);

638 ikka_ikba_nfkbcyto_4= x(3*36+13);

639 ikka_ikba_nfkbcyto_5= x(4*36+13);

640 ikka_ikba_nfkbcyto_6= x(5*36+13);

641 ikka_ikba_nfkbcyto_7= x(6*36+13);

642 ikka_ikba_nfkbcyto_8= x(7*36+13);

643 ikka_ikba_nfkbcyto_9= x(8*36+13);

644 ikka_ikba_nfkbcyto_10= x(9*36+13);

645 ikki_1= x(14);

646 ikki_2= x(1*36+14);

647 ikki_3= x(2*36+14);

648 ikki_4= x(3*36+14);

649 ikki_5= x(4*36+14);

650 ikki_6= x(5*36+14);

651 ikki_7= x(6*36+14);

652 ikki_8= x(7*36+14);

653 ikki_9= x(8*36+14);

654 ikki_10= x(9*36+14);

655 ikkn_1= x(15);

656 ikkn_2= x(1*36+15);

657 ikkn_3= x(2*36+15);

658 ikkn_4= x(3*36+15);

659 ikkn_5= x(4*36+15);

660 ikkn_6= x(5*36+15);

661 ikkn_7= x(6*36+15);

662 ikkn_8= x(7*36+15);
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663 ikkn_9= x(8*36+15);

664 ikkn_10= x(9*36+15);

665 il10_il10r_1= x(16);

666 il10_il10r_2= x(1*36+16);

667 il10_il10r_3= x(2*36+16);

668 il10_il10r_4= x(3*36+16);

669 il10_il10r_5= x(4*36+16);

670 il10_il10r_6= x(5*36+16);

671 il10_il10r_7= x(6*36+16);

672 il10_il10r_8= x(7*36+16);

673 il10_il10r_9= x(8*36+16);

674 il10_il10r_10= x(9*36+16);

675 il10_rjt_1= x(17);

676 il10_rjt_2= x(1*36+17);

677 il10_rjt_3= x(2*36+17);

678 il10_rjt_4= x(3*36+17);

679 il10_rjt_5= x(4*36+17);

680 il10_rjt_6= x(5*36+17);

681 il10_rjt_7= x(6*36+17);

682 il10_rjt_8= x(7*36+17);

683 il10_rjt_9= x(8*36+17);

684 il10_rjt_10= x(9*36+17);

685 il10cyto_1= x(18);

686 il10cyto_2= x(1*36+18);

687 il10cyto_3= x(2*36+18);

688 il10cyto_4= x(3*36+18);

689 il10cyto_5= x(4*36+18);
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690 il10cyto_6= x(5*36+18);

691 il10cyto_7= x(6*36+18);

692 il10cyto_8= x(7*36+18);

693 il10cyto_9= x(8*36+18);

694 il10cyto_10= x(9*36+18);

695 il10mrna_1= x(19);

696 il10mrna_2= x(1*36+19);

697 il10mrna_3= x(2*36+19);

698 il10mrna_4= x(3*36+19);

699 il10mrna_5= x(4*36+19);

700 il10mrna_6= x(5*36+19);

701 il10mrna_7= x(6*36+19);

702 il10mrna_8= x(7*36+19);

703 il10mrna_9= x(8*36+19);

704 il10mrna_10= x(9*36+19);

705 il10r_1= x(20);

706 il10r_2= x(1*36+20);

707 il10r_3= x(2*36+20);

708 il10r_4= x(3*36+20);

709 il10r_5= x(4*36+20);

710 il10r_6= x(5*36+20);

711 il10r_7= x(6*36+20);

712 il10r_8= x(7*36+20);

713 il10r_9= x(8*36+20);

714 il10r_10= x(9*36+20);

715 jak1_1= x(21);

716 jak1_2= x(1*36+21);
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717 jak1_3= x(2*36+21);

718 jak1_4= x(3*36+21);

719 jak1_5= x(4*36+21);

720 jak1_6= x(5*36+21);

721 jak1_7= x(6*36+21);

722 jak1_8= x(7*36+21);

723 jak1_9= x(8*36+21);

724 jak1_10= x(9*36+21);

725 lps_tlr4_1= x(22);

726 lps_tlr4_2= x(1*36+22);

727 lps_tlr4_3= x(2*36+22);

728 lps_tlr4_4= x(3*36+22);

729 lps_tlr4_5= x(4*36+22);

730 lps_tlr4_6= x(5*36+22);

731 lps_tlr4_7= x(6*36+22);

732 lps_tlr4_8= x(7*36+22);

733 lps_tlr4_9= x(8*36+22);

734 lps_tlr4_10= x(9*36+22);

735 nfkbcyto_1= x(23);

736 nfkbcyto_2= x(1*36+23);

737 nfkbcyto_3= x(2*36+23);

738 nfkbcyto_4= x(3*36+23);

739 nfkbcyto_5= x(4*36+23);

740 nfkbcyto_6= x(5*36+23);

741 nfkbcyto_7= x(6*36+23);

742 nfkbcyto_8= x(7*36+23);

743 nfkbcyto_9= x(8*36+23);
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744 nfkbcyto_10= x(9*36+23);

745 nfkbnuclear_1= x(24);

746 nfkbnuclear_2= x(1*36+24);

747 nfkbnuclear_3= x(2*36+24);

748 nfkbnuclear_4= x(3*36+24);

749 nfkbnuclear_5= x(4*36+24);

750 nfkbnuclear_6= x(5*36+24);

751 nfkbnuclear_7= x(6*36+24);

752 nfkbnuclear_8= x(7*36+24);

753 nfkbnuclear_9= x(8*36+24);

754 nfkbnuclear_10= x(9*36+24);

755 socs1cyto_1= x(25);

756 socs1cyto_2= x(1*36+25);

757 socs1cyto_3= x(2*36+25);

758 socs1cyto_4= x(3*36+25);

759 socs1cyto_5= x(4*36+25);

760 socs1cyto_6= x(5*36+25);

761 socs1cyto_7= x(6*36+25);

762 socs1cyto_8= x(7*36+25);

763 socs1cyto_9= x(8*36+25);

764 socs1cyto_10= x(9*36+25);

765 socs1mrna_1= x(26);

766 socs1mrna_2= x(1*36+26);

767 socs1mrna_3= x(2*36+26);

768 socs1mrna_4= x(3*36+26);

769 socs1mrna_5= x(4*36+26);

770 socs1mrna_6= x(5*36+26);
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771 socs1mrna_7= x(6*36+26);

772 socs1mrna_8= x(7*36+26);

773 socs1mrna_9= x(8*36+26);

774 socs1mrna_10= x(9*36+26);

775 socs3cyto_1= x(27);

776 socs3cyto_2= x(1*36+27);

777 socs3cyto_3= x(2*36+27);

778 socs3cyto_4= x(3*36+27);

779 socs3cyto_5= x(4*36+27);

780 socs3cyto_6= x(5*36+27);

781 socs3cyto_7= x(6*36+27);

782 socs3cyto_8= x(7*36+27);

783 socs3cyto_9= x(8*36+27);

784 socs3cyto_10= x(9*36+27);

785 socs3mrna_1= x(28);

786 socs3mrna_2= x(1*36+28);

787 socs3mrna_3= x(2*36+28);

788 socs3mrna_4= x(3*36+28);

789 socs3mrna_5= x(4*36+28);

790 socs3mrna_6= x(5*36+28);

791 socs3mrna_7= x(6*36+28);

792 socs3mrna_8= x(7*36+28);

793 socs3mrna_9= x(8*36+28);

794 socs3mrna_10= x(9*36+28);

795 stat3a_1= x(29);

796 stat3a_2= x(1*36+29);

797 stat3a_3= x(2*36+29);
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798 stat3a_4= x(3*36+29);

799 stat3a_5= x(4*36+29);

800 stat3a_6= x(5*36+29);

801 stat3a_7= x(6*36+29);

802 stat3a_8= x(7*36+29);

803 stat3a_9= x(8*36+29);

804 stat3a_10= x(9*36+29);

805 stat3i_1= x(30);

806 stat3i_2= x(1*36+30);

807 stat3i_3= x(2*36+30);

808 stat3i_4= x(3*36+30);

809 stat3i_5= x(4*36+30);

810 stat3i_6= x(5*36+30);

811 stat3i_7= x(6*36+30);

812 stat3i_8= x(7*36+30);

813 stat3i_9= x(8*36+30);

814 stat3i_10= x(9*36+30);

815 stat3n_1= x(31);

816 stat3n_2= x(1*36+31);

817 stat3n_3= x(2*36+31);

818 stat3n_4= x(3*36+31);

819 stat3n_5= x(4*36+31);

820 stat3n_6= x(5*36+31);

821 stat3n_7= x(6*36+31);

822 stat3n_8= x(7*36+31);

823 stat3n_9= x(8*36+31);

824 stat3n_10= x(9*36+31);
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825 stat3ni_1= x(32);

826 stat3ni_2= x(1*36+32);

827 stat3ni_3= x(2*36+32);

828 stat3ni_4= x(3*36+32);

829 stat3ni_5= x(4*36+32);

830 stat3ni_6= x(5*36+32);

831 stat3ni_7= x(6*36+32);

832 stat3ni_8= x(7*36+32);

833 stat3ni_9= x(8*36+32);

834 stat3ni_10= x(9*36+32);

835 tlr4_1= x(33);

836 tlr4_2= x(1*36+33);

837 tlr4_3= x(2*36+33);

838 tlr4_4= x(3*36+33);

839 tlr4_5= x(4*36+33);

840 tlr4_6= x(5*36+33);

841 tlr4_7= x(6*36+33);

842 tlr4_8= x(7*36+33);

843 tlr4_9= x(8*36+33);

844 tlr4_10= x(9*36+33);

845 tnfa_tnfar_1= x(34);

846 tnfa_tnfar_2= x(1*36+34);

847 tnfa_tnfar_3= x(2*36+34);

848 tnfa_tnfar_4= x(3*36+34);

849 tnfa_tnfar_5= x(4*36+34);

850 tnfa_tnfar_6= x(5*36+34);

851 tnfa_tnfar_7= x(6*36+34);
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852 tnfa_tnfar_8= x(7*36+34);

853 tnfa_tnfar_9= x(8*36+34);

854 tnfa_tnfar_10= x(9*36+34);

855 tnfacyto_1= x(35);

856 tnfacyto_2= x(1*36+35);

857 tnfacyto_3= x(2*36+35);

858 tnfacyto_4= x(3*36+35);

859 tnfacyto_5= x(4*36+35);

860 tnfacyto_6= x(5*36+35);

861 tnfacyto_7= x(6*36+35);

862 tnfacyto_8= x(7*36+35);

863 tnfacyto_9= x(8*36+35);

864 tnfacyto_10= x(9*36+35);

865 tnfamrna_1= x(36);

866 tnfamrna_2= x(1*36+36);

867 tnfamrna_3= x(2*36+36);

868 tnfamrna_4= x(3*36+36);

869 tnfamrna_5= x(4*36+36);

870 tnfamrna_6= x(5*36+36);

871 tnfamrna_7= x(6*36+36);

872 tnfamrna_8= x(7*36+36);

873 tnfamrna_9= x(8*36+36);

874 tnfamrna_10= x(9*36+36);

875 tnfar_1= x(37);

876 tnfar_2= x(1*36+37);

877 tnfar_3= x(2*36+37);

878 tnfar_4= x(3*36+37);
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879 tnfar_5= x(4*36+37);

880 tnfar_6= x(5*36+37);

881 tnfar_7= x(6*36+37);

882 tnfar_8= x(7*36+37);

883 tnfar_9= x(8*36+37);

884 tnfar_10= x(9*36+37);

885 tyk2_1= x(38);

886 tyk2_2= x(1*36+38);

887 tyk2_3= x(2*36+38);

888 tyk2_4= x(3*36+38);

889 tyk2_5= x(4*36+38);

890 tyk2_6= x(5*36+38);

891 tyk2_7= x(6*36+38);

892 tyk2_8= x(7*36+38);

893 tyk2_9= x(8*36+38);

894 tyk2_10= x(9*36+38);

895 il10act_1= x(39);

896 il10act_2= x(1*36+39);

897 il10act_3= x(2*36+39);

898 il10act_4= x(3*36+39);

899 il10act_5= x(4*36+39);

900 il10act_6= x(5*36+39);

901 il10act_7= x(6*36+39);

902 il10act_8= x(7*36+39);

903 il10act_9= x(8*36+39);

904 il10act_10= x(9*36+39);

905
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906 kin_1=(1−il10_il10r_1/il10max_1)*(il10_il10r_1<il10max_1);

907 kin_2=(1−il10_il10r_2/il10max_2)*(il10_il10r_2<il10max_2);

908 kin_3=(1−il10_il10r_3/il10max_3)*(il10_il10r_3<il10max_3);

909 kin_4=(1−il10_il10r_4/il10max_4)*(il10_il10r_4<il10max_4);

910 kin_5=(1−il10_il10r_5/il10max_5)*(il10_il10r_5<il10max_5);

911 kin_6=(1−il10_il10r_6/il10max_6)*(il10_il10r_6<il10max_6);

912 kin_7=(1−il10_il10r_7/il10max_7)*(il10_il10r_7<il10max_7);

913 kin_8=(1−il10_il10r_8/il10max_8)*(il10_il10r_8<il10max_8);

914 kin_9=(1−il10_il10r_9/il10max_9)*(il10_il10r_9<il10max_9);

915 kin_10=(1−il10_il10r_10/il10max_10)*(il10_il10r_10<il10max_10);

916

917 dx=zeros(9*36+39,1);

918

919 %%%% shared variables

920 % lps

921 dx(1) = 0;

922

923 % il10ext (formerly il10sup)

924 dx(2) = −kilrb_1*il10ext*il10r_1 − kilrb_2*il10ext*il10r_2...

925 −kilrb_3*il10ext*il10r_3 − kilrb_4*il10ext*il10r_4...

926 −kilrb_5*il10ext*il10r_5 − kilrb_6*il10ext*il10r_6...

927 −kilrb_7*il10ext*il10r_7 − kilrb_8*il10ext*il10r_8...

928 −kilrb_9*il10ext*il10r_9 − kilrb_10*il10ext*il10r_10...

929 + kilru_1*il10_il10r_1 + kilru_2*il10_il10r_2...

930 + kilru_3*il10_il10r_3 + kilru_4*il10_il10r_4...

931 + kilru_5*il10_il10r_5 + kilru_6*il10_il10r_6...

932 + kilru_7*il10_il10r_7 + kilru_8*il10_il10r_8...
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933 + kilru_9*il10_il10r_9 + kilru_10*il10_il10r_10...

934 + kilc_1*il10cyto_1*(0.36/200) + kilc_2*il10cyto_2*(0.36/200)...

935 + kilc_3*il10cyto_3*(0.36/200) + kilc_4*il10cyto_4*(0.36/200)...

936 + kilc_5*il10cyto_5*(0.36/200) + kilc_6*il10cyto_6*(0.36/200)...

937 + kilc_7*il10cyto_7*(0.36/200) + kilc_8*il10cyto_8*(0.36/200)...

938 + kilc_9*il10cyto_9*(0.36/200) + kilc_10*il10cyto_10*(0.36/200)...

939 − muile*il10ext;

940

941 % tnfaext

942 dx(3) = ksec_1*tnfacyto_1*0.36/200 + ksec_2*tnfacyto_2*0.36/200 ...

943 + ksec_3*tnfacyto_3*0.36/200 + ksec_4*tnfacyto_4*0.36/200 ...

944 + ksec_5*tnfacyto_5*0.36/200 + ksec_6*tnfacyto_6*0.36/200 ...

945 + ksec_7*tnfacyto_7*0.36/200 + ksec_8*tnfacyto_8*0.36/200 ...

946 + ksec_9*tnfacyto_9*0.36/200 + ksec_10*tnfacyto_10*0.36/200 ...

947 − kf3_1*tnfaext*tnfar_1 − kf3_2*tnfaext*tnfar_2 ...

948 − kf3_3*tnfaext*tnfar_3 − kf3_4*tnfaext*tnfar_4 ...

949 − kf3_5*tnfaext*tnfar_5 − kf3_6*tnfaext*tnfar_6 ...

950 − kf3_7*tnfaext*tnfar_7 − kf3_8*tnfaext*tnfar_8 ...

951 − kf3_9*tnfaext*tnfar_9 − kf3_10*tnfaext*tnfar_10 ...

952 + kr3_1*tnfa_tnfar_1 + kr3_2*tnfa_tnfar_2 ...

953 + kr3_3*tnfa_tnfar_3 + kr3_4*tnfa_tnfar_4 ...

954 + kr3_5*tnfa_tnfar_5 + kr3_6*tnfa_tnfar_6 ...

955 + kr3_7*tnfa_tnfar_7 + kr3_8*tnfa_tnfar_8 ...

956 + kr3_9*tnfa_tnfar_9 + kr3_10*tnfa_tnfar_10 ...

957 − kdeg_tnfa*tnfaext;

958

959 % a20cyto
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960 dx(4) = a_trans_1*a20mrna_1−kdeg_a20_1*a20cyto_1;

961 dx(4+36) = a_trans_2*a20mrna_2−kdeg_a20_2*a20cyto_2;

962 dx(4+36*2) = a_trans_3*a20mrna_3−kdeg_a20_3*a20cyto_3;

963 dx(4+36*3) = a_trans_4*a20mrna_4−kdeg_a20_4*a20cyto_4;

964 dx(4+36*4) = a_trans_5*a20mrna_5−kdeg_a20_5*a20cyto_5;

965 dx(4+36*5) = a_trans_6*a20mrna_6−kdeg_a20_6*a20cyto_6;

966 dx(4+36*6) = a_trans_7*a20mrna_7−kdeg_a20_7*a20cyto_7;

967 dx(4+36*7) = a_trans_8*a20mrna_8−kdeg_a20_8*a20cyto_8;

968 dx(4+36*8) = a_trans_9*a20mrna_9−kdeg_a20_9*a20cyto_9;

969 dx(4+36*9) = a_trans_10*a20mrna_10−kdeg_a20_10*a20cyto_10;

970

971 % a20mrna

972 dx(5) = sm_1*p_1*(nfkbnuclear_1/(ctf_1+nfkbnuclear_1))−mua20m_1*

a20mrna_1;

973 dx(5+36) = sm_2*p_2*(nfkbnuclear_2/(ctf_2+nfkbnuclear_2))−mua20m_2*

a20mrna_2;

974 dx(5+36*2) = sm_3*p_3*(nfkbnuclear_3/(ctf_3+nfkbnuclear_3))−mua20m_3*

a20mrna_3;

975 dx(5+36*3) = sm_4*p_4*(nfkbnuclear_4/(ctf_4+nfkbnuclear_4))−mua20m_4*

a20mrna_4;

976 dx(5+36*4) = sm_5*p_5*(nfkbnuclear_5/(ctf_5+nfkbnuclear_5))−mua20m_5*

a20mrna_5;

977 dx(5+36*5) = sm_6*p_6*(nfkbnuclear_6/(ctf_6+nfkbnuclear_6))−mua20m_6*

a20mrna_6;

978 dx(5+36*6) = sm_7*p_7*(nfkbnuclear_7/(ctf_7+nfkbnuclear_7))−mua20m_7*

a20mrna_7;

979 dx(5+36*7) = sm_8*p_8*(nfkbnuclear_8/(ctf_8+nfkbnuclear_8))−mua20m_8*
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a20mrna_8;

980 dx(5+36*8) = sm_9*p_9*(nfkbnuclear_9/(ctf_9+nfkbnuclear_9))−mua20m_9*

a20mrna_9;

981 dx(5+36*9) = sm_10*p_10*(nfkbnuclear_10/(ctf_10+nfkbnuclear_10))−mua20m_10*

a20mrna_10;

982

983 % ikba_nfkbcyto

984 dx(6) = kf4_1*nfkbcyto_1*ikbacyto_1+eni_1*ikba_nfkbnuclear_1*kv_1−kk3_1

*kin_1*ikka_1*ikba_nfkbcyto_1;

985 dx(6+36) = kf4_2*nfkbcyto_2*ikbacyto_2+eni_2*ikba_nfkbnuclear_2*kv_2−kk3_2

*kin_2*ikka_2*ikba_nfkbcyto_2;

986 dx(6+36*2) = kf4_3*nfkbcyto_3*ikbacyto_3+eni_3*ikba_nfkbnuclear_3*kv_3−kk3_3

*kin_3*ikka_3*ikba_nfkbcyto_3;

987 dx(6+36*3) = kf4_4*nfkbcyto_4*ikbacyto_4+eni_4*ikba_nfkbnuclear_4*kv_4−kk3_4

*kin_4*ikka_4*ikba_nfkbcyto_4;

988 dx(6+36*4) = kf4_5*nfkbcyto_5*ikbacyto_5+eni_5*ikba_nfkbnuclear_5*kv_5−kk3_5

*kin_5*ikka_5*ikba_nfkbcyto_5;

989 dx(6+36*5) = kf4_6*nfkbcyto_6*ikbacyto_6+eni_6*ikba_nfkbnuclear_6*kv_6−kk3_6

*kin_6*ikka_6*ikba_nfkbcyto_6;

990 dx(6+36*6) = kf4_7*nfkbcyto_7*ikbacyto_7+eni_7*ikba_nfkbnuclear_7*kv_7−kk3_7

*kin_7*ikka_7*ikba_nfkbcyto_7;

991 dx(6+36*7) = kf4_8*nfkbcyto_8*ikbacyto_8+eni_8*ikba_nfkbnuclear_8*kv_8−kk3_8

*kin_8*ikka_8*ikba_nfkbcyto_8;

992 dx(6+36*8) = kf4_9*nfkbcyto_9*ikbacyto_9+eni_9*ikba_nfkbnuclear_9*kv_9−kk3_9

*kin_9*ikka_9*ikba_nfkbcyto_9;

993 dx(6+36*9) = kf4_10*nfkbcyto_10*ikbacyto_10+eni_10*ikba_nfkbnuclear_10*kv_10

−kk3_10*kin_10*ikka_10*ikba_nfkbcyto_10;
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994

995 % ikba_nfkbnuclear

996 dx(7) = kf4_1*nfkbnuclear_1*ikbanuclear_1−eni_1*ikba_nfkbnuclear_1;

997 dx(7+36) = kf4_2*nfkbnuclear_2*ikbanuclear_2−eni_2*ikba_nfkbnuclear_2;

998 dx(7+36*2) = kf4_3*nfkbnuclear_3*ikbanuclear_3−eni_3*ikba_nfkbnuclear_3;

999 dx(7+36*3) = kf4_4*nfkbnuclear_4*ikbanuclear_4−eni_4*ikba_nfkbnuclear_4;

1000 dx(7+36*4) = kf4_5*nfkbnuclear_5*ikbanuclear_5−eni_5*ikba_nfkbnuclear_5;

1001 dx(7+36*5) = kf4_6*nfkbnuclear_6*ikbanuclear_6−eni_6*ikba_nfkbnuclear_6;

1002 dx(7+36*6) = kf4_7*nfkbnuclear_7*ikbanuclear_7−eni_7*ikba_nfkbnuclear_7;

1003 dx(7+36*7) = kf4_8*nfkbnuclear_8*ikbanuclear_8−eni_8*ikba_nfkbnuclear_8;

1004 dx(7+36*8) = kf4_9*nfkbnuclear_9*ikbanuclear_9−eni_9*ikba_nfkbnuclear_9;

1005 dx(7+36*9) = kf4_10*nfkbnuclear_10*ikbanuclear_10−eni_10*ikba_nfkbnuclear_10

;

1006

1007 % ikbacyto

1008 dx(8) = ikba_trans_1*ikbamrna_1−kf4_1*nfkbcyto_1*ikbacyto_1−iki_1*

ikbacyto_1+eki_1*ikbanuclear_1*kv_1;

1009 dx(8+36) = ikba_trans_2*ikbamrna_2−kf4_2*nfkbcyto_2*ikbacyto_2−iki_2*

ikbacyto_2+eki_2*ikbanuclear_2*kv_2;

1010 dx(8+36*2) = ikba_trans_3*ikbamrna_3−kf4_3*nfkbcyto_3*ikbacyto_3−iki_3*

ikbacyto_3+eki_3*ikbanuclear_3*kv_3;

1011 dx(8+36*3) = ikba_trans_4*ikbamrna_4−kf4_4*nfkbcyto_4*ikbacyto_4−iki_4*

ikbacyto_4+eki_4*ikbanuclear_4*kv_4;

1012 dx(8+36*4) = ikba_trans_5*ikbamrna_5−kf4_5*nfkbcyto_5*ikbacyto_5−iki_5*

ikbacyto_5+eki_5*ikbanuclear_5*kv_5;

1013 dx(8+36*5) = ikba_trans_6*ikbamrna_6−kf4_6*nfkbcyto_6*ikbacyto_6−iki_6*

ikbacyto_6+eki_6*ikbanuclear_6*kv_6;
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1014 dx(8+36*6) = ikba_trans_7*ikbamrna_7−kf4_7*nfkbcyto_7*ikbacyto_7−iki_7*

ikbacyto_7+eki_7*ikbanuclear_7*kv_7;

1015 dx(8+36*7) = ikba_trans_8*ikbamrna_8−kf4_8*nfkbcyto_8*ikbacyto_8−iki_8*

ikbacyto_8+eki_8*ikbanuclear_8*kv_8;

1016 dx(8+36*8) = ikba_trans_9*ikbamrna_9−kf4_9*nfkbcyto_9*ikbacyto_9−iki_9*

ikbacyto_9+eki_9*ikbanuclear_9*kv_9;

1017 dx(8+36*9) = ikba_trans_10*ikbamrna_10−kf4_10*nfkbcyto_10*ikbacyto_10−iki_10

*ikbacyto_10+eki_10*ikbanuclear_10*kv_10;

1018

1019 % ikbamrna

1020 dx(9) = sm_1*p_1*(nfkbnuclear_1/(ctf_1+nfkbnuclear_1))−muilm_1*

ikbamrna_1;

1021 dx(9+36) = sm_2*p_2*(nfkbnuclear_2/(ctf_2+nfkbnuclear_2))−muilm_2*

ikbamrna_2;

1022 dx(9+36*2) = sm_3*p_3*(nfkbnuclear_3/(ctf_3+nfkbnuclear_3))−muilm_3*

ikbamrna_3;

1023 dx(9+36*3) = sm_4*p_4*(nfkbnuclear_4/(ctf_4+nfkbnuclear_4))−muilm_4*

ikbamrna_4;

1024 dx(9+36*4) = sm_5*p_5*(nfkbnuclear_5/(ctf_5+nfkbnuclear_5))−muilm_5*

ikbamrna_5;

1025 dx(9+36*5) = sm_6*p_6*(nfkbnuclear_6/(ctf_6+nfkbnuclear_6))−muilm_6*

ikbamrna_6;

1026 dx(9+36*6) = sm_7*p_7*(nfkbnuclear_7/(ctf_7+nfkbnuclear_7))−muilm_7*

ikbamrna_7;

1027 dx(9+36*7) = sm_8*p_8*(nfkbnuclear_8/(ctf_8+nfkbnuclear_8))−muilm_8*

ikbamrna_8;

1028 dx(9+36*8) = sm_9*p_9*(nfkbnuclear_9/(ctf_9+nfkbnuclear_9))−muilm_9*
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ikbamrna_9;

1029 dx(9+36*9) = sm_10*p_10*(nfkbnuclear_10/(ctf_10+nfkbnuclear_10))−muilm_10*

ikbamrna_10;

1030

1031 % ikbanuclear

1032 dx(10) = −kf4_1*nfkbnuclear_1*ikbanuclear_1+iki_1/kv_1*ikbacyto_1−eki_1

*ikbanuclear_1;

1033 dx(10+36) = −kf4_2*nfkbnuclear_2*ikbanuclear_2+iki_2/kv_2*ikbacyto_2−eki_2

*ikbanuclear_2;

1034 dx(10+36*2) = −kf4_3*nfkbnuclear_3*ikbanuclear_3+iki_3/kv_3*ikbacyto_3−eki_3

*ikbanuclear_3;

1035 dx(10+36*3) = −kf4_4*nfkbnuclear_4*ikbanuclear_4+iki_4/kv_4*ikbacyto_4−eki_4

*ikbanuclear_4;

1036 dx(10+36*4) = −kf4_5*nfkbnuclear_5*ikbanuclear_5+iki_5/kv_5*ikbacyto_5−eki_5

*ikbanuclear_5;

1037 dx(10+36*5) = −kf4_6*nfkbnuclear_6*ikbanuclear_6+iki_6/kv_6*ikbacyto_6−eki_6

*ikbanuclear_6;

1038 dx(10+36*6) = −kf4_7*nfkbnuclear_7*ikbanuclear_7+iki_7/kv_7*ikbacyto_7−eki_7

*ikbanuclear_7;

1039 dx(10+36*7) = −kf4_8*nfkbnuclear_8*ikbanuclear_8+iki_8/kv_8*ikbacyto_8−eki_8

*ikbanuclear_8;

1040 dx(10+36*8) = −kf4_9*nfkbnuclear_9*ikbanuclear_9+iki_9/kv_9*ikbacyto_9−eki_9

*ikbanuclear_9;

1041 dx(10+36*9) = −kf4_10*nfkbnuclear_10*ikbanuclear_10+iki_10/kv_10*ikbacyto_10

−eki_10*ikbanuclear_10;

1042

1043 % ikbaphospho
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1044 dx(11) = ti3_1*ikka_ikba_nfkbcyto_1−kdeg_ikba_1*ikbaphospho_1;

1045 dx(11+36) = ti3_2*ikka_ikba_nfkbcyto_2−kdeg_ikba_2*ikbaphospho_2;

1046 dx(11+36*2) = ti3_3*ikka_ikba_nfkbcyto_3−kdeg_ikba_3*ikbaphospho_3;

1047 dx(11+36*3) = ti3_4*ikka_ikba_nfkbcyto_4−kdeg_ikba_4*ikbaphospho_4;

1048 dx(11+36*4) = ti3_5*ikka_ikba_nfkbcyto_5−kdeg_ikba_5*ikbaphospho_5;

1049 dx(11+36*5) = ti3_6*ikka_ikba_nfkbcyto_6−kdeg_ikba_6*ikbaphospho_6;

1050 dx(11+36*6) = ti3_7*ikka_ikba_nfkbcyto_7−kdeg_ikba_7*ikbaphospho_7;

1051 dx(11+36*7) = ti3_8*ikka_ikba_nfkbcyto_8−kdeg_ikba_8*ikbaphospho_8;

1052 dx(11+36*8) = ti3_9*ikka_ikba_nfkbcyto_9−kdeg_ikba_9*ikbaphospho_9;

1053 dx(11+36*9) = ti3_10*ikka_ikba_nfkbcyto_10−kdeg_ikba_10*ikbaphospho_10;

1054

1055 % ikka

1056 dx(12) = kfi_1*kin_1*(lps_tlr4_1+tnfa_tnfar_1)*ikkn_1−kk3_1*kin_1*

ikka_1*ikba_nfkbcyto_1−kk1_1*ikka_1*a20cyto_1;

1057 dx(12+36) = kfi_2*kin_2*(lps_tlr4_2+tnfa_tnfar_2)*ikkn_2−kk3_2*kin_2*

ikka_2*ikba_nfkbcyto_2−kk1_2*ikka_2*a20cyto_2;

1058 dx(12+36*2) = kfi_3*kin_3*(lps_tlr4_3+tnfa_tnfar_3)*ikkn_3−kk3_3*kin_3*

ikka_3*ikba_nfkbcyto_3−kk1_3*ikka_3*a20cyto_3;

1059 dx(12+36*3) = kfi_4*kin_4*(lps_tlr4_4+tnfa_tnfar_4)*ikkn_4−kk3_4*kin_4*

ikka_4*ikba_nfkbcyto_4−kk1_4*ikka_4*a20cyto_4;

1060 dx(12+36*4) = kfi_5*kin_5*(lps_tlr4_5+tnfa_tnfar_5)*ikkn_5−kk3_5*kin_5*

ikka_5*ikba_nfkbcyto_5−kk1_5*ikka_5*a20cyto_5;

1061 dx(12+36*5) = kfi_6*kin_6*(lps_tlr4_6+tnfa_tnfar_6)*ikkn_6−kk3_6*kin_6*

ikka_6*ikba_nfkbcyto_6−kk1_6*ikka_6*a20cyto_6;

1062 dx(12+36*6) = kfi_7*kin_7*(lps_tlr4_7+tnfa_tnfar_7)*ikkn_7−kk3_7*kin_7*

ikka_7*ikba_nfkbcyto_7−kk1_7*ikka_7*a20cyto_7;

1063 dx(12+36*7) = kfi_8*kin_8*(lps_tlr4_8+tnfa_tnfar_8)*ikkn_8−kk3_8*kin_8*
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ikka_8*ikba_nfkbcyto_8−kk1_8*ikka_8*a20cyto_8;

1064 dx(12+36*8) = kfi_9*kin_9*(lps_tlr4_9+tnfa_tnfar_9)*ikkn_9−kk3_9*kin_9*

ikka_9*ikba_nfkbcyto_9−kk1_9*ikka_9*a20cyto_9;

1065 dx(12+36*9) = kfi_10*kin_10*(lps_tlr4_10+tnfa_tnfar_10)*ikkn_10−kk3_10*

kin_10*ikka_10*ikba_nfkbcyto_10−kk1_10*ikka_10*a20cyto_10;

1066

1067 % ikka_ikba_nfkbcyto

1068 dx(13) = kk3_1*kin_1*ikka_1*ikba_nfkbcyto_1−ti3_1*ikka_ikba_nfkbcyto_1;

1069 dx(13+36) = kk3_2*kin_2*ikka_2*ikba_nfkbcyto_2−ti3_2*ikka_ikba_nfkbcyto_2;

1070 dx(13+36*2) = kk3_3*kin_3*ikka_3*ikba_nfkbcyto_3−ti3_3*ikka_ikba_nfkbcyto_3;

1071 dx(13+36*3) = kk3_4*kin_4*ikka_4*ikba_nfkbcyto_4−ti3_4*ikka_ikba_nfkbcyto_4;

1072 dx(13+36*4) = kk3_5*kin_5*ikka_5*ikba_nfkbcyto_5−ti3_5*ikka_ikba_nfkbcyto_5;

1073 dx(13+36*5) = kk3_6*kin_6*ikka_6*ikba_nfkbcyto_6−ti3_6*ikka_ikba_nfkbcyto_6;

1074 dx(13+36*6) = kk3_7*kin_7*ikka_7*ikba_nfkbcyto_7−ti3_7*ikka_ikba_nfkbcyto_7;

1075 dx(13+36*7) = kk3_8*kin_8*ikka_8*ikba_nfkbcyto_8−ti3_8*ikka_ikba_nfkbcyto_8;

1076 dx(13+36*8) = kk3_9*kin_9*ikka_9*ikba_nfkbcyto_9−ti3_9*ikka_ikba_nfkbcyto_9;

1077 dx(13+36*9) = kk3_10*kin_10*ikka_10*ikba_nfkbcyto_10−ti3_10*

ikka_ikba_nfkbcyto_10;

1078

1079 % ikki

1080 dx(14) = kk1_1*ikka_1*a20cyto_1;

1081 dx(14+36) = kk1_2*ikka_2*a20cyto_2;

1082 dx(14+36*2) = kk1_3*ikka_3*a20cyto_3;

1083 dx(14+36*3) = kk1_4*ikka_4*a20cyto_4;

1084 dx(14+36*4) = kk1_5*ikka_5*a20cyto_5;

1085 dx(14+36*5) = kk1_6*ikka_6*a20cyto_6;

1086 dx(14+36*6) = kk1_7*ikka_7*a20cyto_7;
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1087 dx(14+36*7) = kk1_8*ikka_8*a20cyto_8;

1088 dx(14+36*8) = kk1_9*ikka_9*a20cyto_9;

1089 dx(14+36*9) = kk1_10*ikka_10*a20cyto_10;

1090

1091 % ikkn

1092 dx(15) = −kfi_1*kin_1*(lps_tlr4_1+tnfa_tnfar_1)*ikkn_1+ti3_1*

ikka_ikba_nfkbcyto_1;

1093 dx(15+36) = −kfi_2*kin_2*(lps_tlr4_2+tnfa_tnfar_2)*ikkn_2+ti3_2*

ikka_ikba_nfkbcyto_2;

1094 dx(15+36*2) = −kfi_3*kin_3*(lps_tlr4_3+tnfa_tnfar_3)*ikkn_3+ti3_3*

ikka_ikba_nfkbcyto_3;

1095 dx(15+36*3) = −kfi_4*kin_4*(lps_tlr4_4+tnfa_tnfar_4)*ikkn_4+ti3_4*

ikka_ikba_nfkbcyto_4;

1096 dx(15+36*4) = −kfi_5*kin_5*(lps_tlr4_5+tnfa_tnfar_5)*ikkn_5+ti3_5*

ikka_ikba_nfkbcyto_5;

1097 dx(15+36*5) = −kfi_6*kin_6*(lps_tlr4_6+tnfa_tnfar_6)*ikkn_6+ti3_6*

ikka_ikba_nfkbcyto_6;

1098 dx(15+36*6) = −kfi_7*kin_7*(lps_tlr4_7+tnfa_tnfar_7)*ikkn_7+ti3_7*

ikka_ikba_nfkbcyto_7;

1099 dx(15+36*7) = −kfi_8*kin_8*(lps_tlr4_8+tnfa_tnfar_8)*ikkn_8+ti3_8*

ikka_ikba_nfkbcyto_8;

1100 dx(15+36*8) = −kfi_9*kin_9*(lps_tlr4_9+tnfa_tnfar_9)*ikkn_9+ti3_9*

ikka_ikba_nfkbcyto_9;

1101 dx(15+36*9) = −kfi_10*kin_10*(lps_tlr4_10+tnfa_tnfar_10)*ikkn_10+ti3_10*

ikka_ikba_nfkbcyto_10;

1102

1103 % il10_il10r
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1104 dx(16) = kilrb_1*il10ext*il10r_1−kilru_1*il10_il10r_1 − kiljb_1*

il10_il10r_1*jak1_1*tyk2_1 + kilju_1*il10_rjt_1;

1105 dx(16+36) = kilrb_2*il10ext*il10r_2−kilru_2*il10_il10r_2 − kiljb_2*

il10_il10r_2*jak1_2*tyk2_2 + kilju_2*il10_rjt_2;

1106 dx(16+36*2) = kilrb_3*il10ext*il10r_3−kilru_3*il10_il10r_3 − kiljb_3*

il10_il10r_3*jak1_3*tyk2_3 + kilju_3*il10_rjt_3;

1107 dx(16+36*3) = kilrb_4*il10ext*il10r_4−kilru_4*il10_il10r_4 − kiljb_4*

il10_il10r_4*jak1_4*tyk2_4 + kilju_4*il10_rjt_4;

1108 dx(16+36*4) = kilrb_5*il10ext*il10r_5−kilru_5*il10_il10r_5 − kiljb_5*

il10_il10r_5*jak1_5*tyk2_5 + kilju_5*il10_rjt_5;

1109 dx(16+36*5) = kilrb_6*il10ext*il10r_6−kilru_6*il10_il10r_6 − kiljb_6*

il10_il10r_6*jak1_6*tyk2_6 + kilju_6*il10_rjt_6;

1110 dx(16+36*6) = kilrb_7*il10ext*il10r_7−kilru_7*il10_il10r_7 − kiljb_7*

il10_il10r_7*jak1_7*tyk2_7 + kilju_7*il10_rjt_7;

1111 dx(16+36*7) = kilrb_8*il10ext*il10r_8−kilru_8*il10_il10r_8 − kiljb_8*

il10_il10r_8*jak1_8*tyk2_8 + kilju_8*il10_rjt_8;

1112 dx(16+36*8) = kilrb_9*il10ext*il10r_9−kilru_9*il10_il10r_9 − kiljb_9*

il10_il10r_9*jak1_9*tyk2_9 + kilju_9*il10_rjt_9;

1113 dx(16+36*9) = kilrb_10*il10ext*il10r_10−kilru_10*il10_il10r_10 − kiljb_10*

il10_il10r_10*jak1_10*tyk2_10 + kilju_10*il10_rjt_10;

1114

1115 % il10_rjt (il10/il10r/jak1/tyk2)

1116 dx(17) = kiljb_1*il10_il10r_1*jak1_1*tyk2_1 − kilju_1*il10_rjt_1;

1117 dx(17+36) = kiljb_2*il10_il10r_2*jak1_2*tyk2_2 − kilju_2*il10_rjt_2;

1118 dx(17+36*2) = kiljb_3*il10_il10r_3*jak1_3*tyk2_3 − kilju_3*il10_rjt_3;

1119 dx(17+36*3) = kiljb_4*il10_il10r_4*jak1_4*tyk2_4 − kilju_4*il10_rjt_4;

1120 dx(17+36*4) = kiljb_5*il10_il10r_5*jak1_5*tyk2_5 − kilju_5*il10_rjt_5;
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1121 dx(17+36*5) = kiljb_6*il10_il10r_6*jak1_6*tyk2_6 − kilju_6*il10_rjt_6;

1122 dx(17+36*6) = kiljb_7*il10_il10r_7*jak1_7*tyk2_7 − kilju_7*il10_rjt_7;

1123 dx(17+36*7) = kiljb_8*il10_il10r_8*jak1_8*tyk2_8 − kilju_8*il10_rjt_8;

1124 dx(17+36*8) = kiljb_9*il10_il10r_9*jak1_9*tyk2_9 − kilju_9*il10_rjt_9;

1125 dx(17+36*9) = kiljb_10*il10_il10r_10*jak1_10*tyk2_10 − kilju_10*il10_rjt_10;

1126

1127 % il10cyto

1128 dx(18) = kilm_1*il10mrna_1−kilc_1*il10cyto_1−muilc_1*il10cyto_1;

1129 dx(18+36) = kilm_2*il10mrna_2−kilc_2*il10cyto_2−muilc_2*il10cyto_2;

1130 dx(18+36*2) = kilm_3*il10mrna_3−kilc_3*il10cyto_3−muilc_3*il10cyto_3;

1131 dx(18+36*3) = kilm_4*il10mrna_4−kilc_4*il10cyto_4−muilc_4*il10cyto_4;

1132 dx(18+36*4) = kilm_5*il10mrna_5−kilc_5*il10cyto_5−muilc_5*il10cyto_5;

1133 dx(18+36*5) = kilm_6*il10mrna_6−kilc_6*il10cyto_6−muilc_6*il10cyto_6;

1134 dx(18+36*6) = kilm_7*il10mrna_7−kilc_7*il10cyto_7−muilc_7*il10cyto_7;

1135 dx(18+36*7) = kilm_8*il10mrna_8−kilc_8*il10cyto_8−muilc_8*il10cyto_8;

1136 dx(18+36*8) = kilm_9*il10mrna_9−kilc_9*il10cyto_9−muilc_9*il10cyto_9;

1137 dx(18+36*9) = kilm_10*il10mrna_10−kilc_10*il10cyto_10−muilc_10*il10cyto_10;

1138

1139 % il10mrna

1140 dx(19) = 0.4*kilnf_1*p_1*(nfkbnuclear_1/(ctf_1+nfkbnuclear_1)) + 0.6*

kilsn_1*p_1*(stat3n_1/(ctf_stat3_1+stat3n_1)) − muilm_1*il10mrna_1;

1141 dx(19+36) = 0.4*kilnf_2*p_2*(nfkbnuclear_2/(ctf_2+nfkbnuclear_2)) + 0.6*

kilsn_2*p_2*(stat3n_2/(ctf_stat3_2+stat3n_2)) − muilm_2*il10mrna_2;

1142 dx(19+36*2) = 0.4*kilnf_3*p_3*(nfkbnuclear_3/(ctf_3+nfkbnuclear_3)) + 0.6*

kilsn_3*p_3*(stat3n_3/(ctf_stat3_3+stat3n_3)) − muilm_3*il10mrna_3;

1143 dx(19+36*3) = 0.4*kilnf_4*p_4*(nfkbnuclear_4/(ctf_4+nfkbnuclear_4)) + 0.6*

kilsn_4*p_4*(stat3n_4/(ctf_stat3_4+stat3n_4)) − muilm_4*il10mrna_4;
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1144 dx(19+36*4) = 0.4*kilnf_5*p_5*(nfkbnuclear_5/(ctf_5+nfkbnuclear_5)) + 0.6*

kilsn_5*p_5*(stat3n_5/(ctf_stat3_5+stat3n_5)) − muilm_5*il10mrna_5;

1145 dx(19+36*5) = 0.4*kilnf_6*p_6*(nfkbnuclear_6/(ctf_6+nfkbnuclear_6)) + 0.6*

kilsn_6*p_6*(stat3n_6/(ctf_stat3_6+stat3n_6)) − muilm_6*il10mrna_6;

1146 dx(19+36*6) = 0.4*kilnf_7*p_7*(nfkbnuclear_7/(ctf_7+nfkbnuclear_7)) + 0.6*

kilsn_7*p_7*(stat3n_7/(ctf_stat3_7+stat3n_7)) − muilm_7*il10mrna_7;

1147 dx(19+36*7) = 0.4*kilnf_8*p_8*(nfkbnuclear_8/(ctf_8+nfkbnuclear_8)) + 0.6*

kilsn_8*p_8*(stat3n_8/(ctf_stat3_8+stat3n_8)) − muilm_8*il10mrna_8;

1148 dx(19+36*8) = 0.4*kilnf_9*p_9*(nfkbnuclear_9/(ctf_9+nfkbnuclear_9)) + 0.6*

kilsn_9*p_9*(stat3n_9/(ctf_stat3_9+stat3n_9)) − muilm_9*il10mrna_9;

1149 dx(19+36*9) = 0.4*kilnf_10*p_10*(nfkbnuclear_10/(ctf_10+nfkbnuclear_10)) +

0.6*kilsn_10*p_10*(stat3n_10/(ctf_stat3_10+stat3n_10)) − muilm_10*

il10mrna_10;

1150

1151 % il10r

1152 dx(20) = −kilrb_1*il10ext*il10r_1+kilru_1*il10_il10r_1;

1153 dx(20+36) = −kilrb_2*il10ext*il10r_2+kilru_2*il10_il10r_2;

1154 dx(20+36*2) = −kilrb_3*il10ext*il10r_3+kilru_3*il10_il10r_3;

1155 dx(20+36*3) = −kilrb_4*il10ext*il10r_4+kilru_4*il10_il10r_4;

1156 dx(20+36*4) = −kilrb_5*il10ext*il10r_5+kilru_5*il10_il10r_5;

1157 dx(20+36*5) = −kilrb_6*il10ext*il10r_6+kilru_6*il10_il10r_6;

1158 dx(20+36*6) = −kilrb_7*il10ext*il10r_7+kilru_7*il10_il10r_7;

1159 dx(20+36*7) = −kilrb_8*il10ext*il10r_8+kilru_8*il10_il10r_8;

1160 dx(20+36*8) = −kilrb_9*il10ext*il10r_9+kilru_9*il10_il10r_9;

1161 dx(20+36*9) = −kilrb_10*il10ext*il10r_10+kilru_10*il10_il10r_10;

1162

1163 % jak1
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1164 dx(21) = − kiljb_1*il10_il10r_1*jak1_1*tyk2_1 + kilju_1*il10_rjt_1;

1165 dx(21+36) = − kiljb_2*il10_il10r_2*jak1_2*tyk2_2 + kilju_2*il10_rjt_2;

1166 dx(21+36*2) = − kiljb_3*il10_il10r_3*jak1_3*tyk2_3 + kilju_3*il10_rjt_3;

1167 dx(21+36*3) = − kiljb_4*il10_il10r_4*jak1_4*tyk2_4 + kilju_4*il10_rjt_4;

1168 dx(21+36*4) = − kiljb_5*il10_il10r_5*jak1_5*tyk2_5 + kilju_5*il10_rjt_5;

1169 dx(21+36*5) = − kiljb_6*il10_il10r_6*jak1_6*tyk2_6 + kilju_6*il10_rjt_6;

1170 dx(21+36*6) = − kiljb_7*il10_il10r_7*jak1_7*tyk2_7 + kilju_7*il10_rjt_7;

1171 dx(21+36*7) = − kiljb_8*il10_il10r_8*jak1_8*tyk2_8 + kilju_8*il10_rjt_8;

1172 dx(21+36*8) = − kiljb_9*il10_il10r_9*jak1_9*tyk2_9 + kilju_9*il10_rjt_9;

1173 dx(21+36*9) = − kiljb_10*il10_il10r_10*jak1_10*tyk2_10 + kilju_10*

il10_rjt_10;

1174

1175 % lps_tlr4

1176 dx(22) = kf1_1*lps*tlr4_1−kr1_1*lps_tlr4_1;

1177 dx(22+36) = kf1_2*lps*tlr4_2−kr1_2*lps_tlr4_2;

1178 dx(22+36*2) = kf1_3*lps*tlr4_3−kr1_3*lps_tlr4_3;

1179 dx(22+36*3) = kf1_4*lps*tlr4_4−kr1_4*lps_tlr4_4;

1180 dx(22+36*4) = kf1_5*lps*tlr4_5−kr1_5*lps_tlr4_5;

1181 dx(22+36*5) = kf1_6*lps*tlr4_6−kr1_6*lps_tlr4_6;

1182 dx(22+36*6) = kf1_7*lps*tlr4_7−kr1_7*lps_tlr4_7;

1183 dx(22+36*7) = kf1_8*lps*tlr4_8−kr1_8*lps_tlr4_8;

1184 dx(22+36*8) = kf1_9*lps*tlr4_9−kr1_9*lps_tlr4_9;

1185 dx(22+36*9) = kf1_10*lps*tlr4_10−kr1_10*lps_tlr4_10;

1186

1187 % nfkbcyto

1188 dx(23) = ti3_1*ikka_ikba_nfkbcyto_1−iln_1*kin_1*nfkbcyto_1−kf4_1*

nfkbcyto_1*ikbacyto_1;
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1189 dx(23+36) = ti3_2*ikka_ikba_nfkbcyto_2−iln_2*kin_2*nfkbcyto_2−kf4_2*

nfkbcyto_2*ikbacyto_2;

1190 dx(23+36*2) = ti3_3*ikka_ikba_nfkbcyto_3−iln_3*kin_3*nfkbcyto_3−kf4_3*

nfkbcyto_3*ikbacyto_3;

1191 dx(23+36*3) = ti3_4*ikka_ikba_nfkbcyto_4−iln_4*kin_4*nfkbcyto_4−kf4_4*

nfkbcyto_4*ikbacyto_4;

1192 dx(23+36*4) = ti3_5*ikka_ikba_nfkbcyto_5−iln_5*kin_5*nfkbcyto_5−kf4_5*

nfkbcyto_5*ikbacyto_5;

1193 dx(23+36*5) = ti3_6*ikka_ikba_nfkbcyto_6−iln_6*kin_6*nfkbcyto_6−kf4_6*

nfkbcyto_6*ikbacyto_6;

1194 dx(23+36*6) = ti3_7*ikka_ikba_nfkbcyto_7−iln_7*kin_7*nfkbcyto_7−kf4_7*

nfkbcyto_7*ikbacyto_7;

1195 dx(23+36*7) = ti3_8*ikka_ikba_nfkbcyto_8−iln_8*kin_8*nfkbcyto_8−kf4_8*

nfkbcyto_8*ikbacyto_8;

1196 dx(23+36*8) = ti3_9*ikka_ikba_nfkbcyto_9−iln_9*kin_9*nfkbcyto_9−kf4_9*

nfkbcyto_9*ikbacyto_9;

1197 dx(23+36*9) = ti3_10*ikka_ikba_nfkbcyto_10−iln_10*kin_10*nfkbcyto_10−kf4_10*

nfkbcyto_10*ikbacyto_10;

1198

1199 % nfkbnuclear

1200 dx(24) = iln_1*kin_1*nfkbcyto_1/kv_1−kf4_1*nfkbnuclear_1*ikbanuclear_1;

1201 dx(24+36) = iln_2*kin_2*nfkbcyto_2/kv_2−kf4_2*nfkbnuclear_2*ikbanuclear_2;

1202 dx(24+36*2) = iln_3*kin_3*nfkbcyto_3/kv_3−kf4_3*nfkbnuclear_3*ikbanuclear_3;

1203 dx(24+36*3) = iln_4*kin_4*nfkbcyto_4/kv_4−kf4_4*nfkbnuclear_4*ikbanuclear_4;

1204 dx(24+36*4) = iln_5*kin_5*nfkbcyto_5/kv_5−kf4_5*nfkbnuclear_5*ikbanuclear_5;

1205 dx(24+36*5) = iln_6*kin_6*nfkbcyto_6/kv_6−kf4_6*nfkbnuclear_6*ikbanuclear_6;

1206 dx(24+36*6) = iln_7*kin_7*nfkbcyto_7/kv_7−kf4_7*nfkbnuclear_7*ikbanuclear_7;
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1207 dx(24+36*7) = iln_8*kin_8*nfkbcyto_8/kv_8−kf4_8*nfkbnuclear_8*ikbanuclear_8;

1208 dx(24+36*8) = iln_9*kin_9*nfkbcyto_9/kv_9−kf4_9*nfkbnuclear_9*ikbanuclear_9;

1209 dx(24+36*9) = iln_10*kin_10*nfkbcyto_10/kv_10−kf4_10*nfkbnuclear_10*

ikbanuclear_10;

1210

1211 % socs1cyto

1212 dx(25) = ks1_1*socs1mrna_1 − mus1c_1*socs1cyto_1;

1213 dx(25+36) = ks1_2*socs1mrna_2 − mus1c_2*socs1cyto_2;

1214 dx(25+36*2) = ks1_3*socs1mrna_3 − mus1c_3*socs1cyto_3;

1215 dx(25+36*3) = ks1_4*socs1mrna_4 − mus1c_4*socs1cyto_4;

1216 dx(25+36*4) = ks1_5*socs1mrna_5 − mus1c_5*socs1cyto_5;

1217 dx(25+36*5) = ks1_6*socs1mrna_6 − mus1c_6*socs1cyto_6;

1218 dx(25+36*6) = ks1_7*socs1mrna_7 − mus1c_7*socs1cyto_7;

1219 dx(25+36*7) = ks1_8*socs1mrna_8 − mus1c_8*socs1cyto_8;

1220 dx(25+36*8) = ks1_9*socs1mrna_9 − mus1c_9*socs1cyto_9;

1221 dx(25+36*9) = ks1_10*socs1mrna_10 − mus1c_10*socs1cyto_10;

1222

1223 % socs1mrna

1224 dx(26) = ks1st_1*stat3n_1 − ks1_1*socs1mrna_1 − mus1m_1*socs1mrna_1;

1225 dx(26+36) = ks1st_2*stat3n_2 − ks1_2*socs1mrna_2 − mus1m_2*socs1mrna_2;

1226 dx(26+36*2) = ks1st_3*stat3n_3 − ks1_3*socs1mrna_3 − mus1m_3*socs1mrna_3;

1227 dx(26+36*3) = ks1st_4*stat3n_4 − ks1_4*socs1mrna_4 − mus1m_4*socs1mrna_4;

1228 dx(26+36*4) = ks1st_5*stat3n_5 − ks1_5*socs1mrna_5 − mus1m_5*socs1mrna_5;

1229 dx(26+36*5) = ks1st_6*stat3n_6 − ks1_6*socs1mrna_6 − mus1m_6*socs1mrna_6;

1230 dx(26+36*6) = ks1st_7*stat3n_7 − ks1_7*socs1mrna_7 − mus1m_7*socs1mrna_7;

1231 dx(26+36*7) = ks1st_8*stat3n_8 − ks1_8*socs1mrna_8 − mus1m_8*socs1mrna_8;

1232 dx(26+36*8) = ks1st_9*stat3n_9 − ks1_9*socs1mrna_9 − mus1m_9*socs1mrna_9;
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1233 dx(26+36*9) = ks1st_10*stat3n_10 − ks1_10*socs1mrna_10 − mus1m_10*

socs1mrna_10;

1234

1235 % socs3cyto

1236 dx(27) = ks3_1*socs3mrna_1 − mus3c_1*socs3cyto_1;

1237 dx(27+36) = ks3_2*socs3mrna_2 − mus3c_2*socs3cyto_2;

1238 dx(27+36*2) = ks3_3*socs3mrna_3 − mus3c_3*socs3cyto_3;

1239 dx(27+36*3) = ks3_4*socs3mrna_4 − mus3c_4*socs3cyto_4;

1240 dx(27+36*4) = ks3_5*socs3mrna_5 − mus3c_5*socs3cyto_5;

1241 dx(27+36*5) = ks3_6*socs3mrna_6 − mus3c_6*socs3cyto_6;

1242 dx(27+36*6) = ks3_7*socs3mrna_7 − mus3c_7*socs3cyto_7;

1243 dx(27+36*7) = ks3_8*socs3mrna_8 − mus3c_8*socs3cyto_8;

1244 dx(27+36*8) = ks3_9*socs3mrna_9 − mus3c_9*socs3cyto_9;

1245 dx(27+36*9) = ks3_10*socs3mrna_10 − mus3c_10*socs3cyto_10;

1246

1247 % socs3mrna

1248 dx(28) = ks3st_1*stat3n_1 − ks3_1*socs3mrna_1 − mus3m_1*socs3mrna_1;

1249 dx(28+36) = ks3st_2*stat3n_2 − ks3_2*socs3mrna_2 − mus3m_2*socs3mrna_2;

1250 dx(28+36*2) = ks3st_3*stat3n_3 − ks3_3*socs3mrna_3 − mus3m_3*socs3mrna_3;

1251 dx(28+36*3) = ks3st_4*stat3n_4 − ks3_4*socs3mrna_4 − mus3m_4*socs3mrna_4;

1252 dx(28+36*4) = ks3st_5*stat3n_5 − ks3_5*socs3mrna_5 − mus3m_5*socs3mrna_5;

1253 dx(28+36*5) = ks3st_6*stat3n_6 − ks3_6*socs3mrna_6 − mus3m_6*socs3mrna_6;

1254 dx(28+36*6) = ks3st_7*stat3n_7 − ks3_7*socs3mrna_7 − mus3m_7*socs3mrna_7;

1255 dx(28+36*7) = ks3st_8*stat3n_8 − ks3_8*socs3mrna_8 − mus3m_8*socs3mrna_8;

1256 dx(28+36*8) = ks3st_9*stat3n_9 − ks3_9*socs3mrna_9 − mus3m_9*socs3mrna_9;

1257 dx(28+36*9) = ks3st_10*stat3n_10 − ks3_10*socs3mrna_10 − mus3m_10*

socs3mrna_10;
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1258

1259 % stat3a (formerly stat3a)

1260 dx(29) = kstat_1*il10_rjt_1*stat3i_1^2*(1/(1+((socs1cyto_1+socs3cyto_1)

/socsinf_1)^2)) − ksa_1*stat3a_1;

1261 dx(29+36) = kstat_2*il10_rjt_2*stat3i_2^2*(1/(1+((socs1cyto_2+socs3cyto_2)

/socsinf_2)^2)) − ksa_2*stat3a_2;

1262 dx(29+36*2) = kstat_3*il10_rjt_3*stat3i_3^2*(1/(1+((socs1cyto_3+socs3cyto_3)

/socsinf_3)^2)) − ksa_3*stat3a_3;

1263 dx(29+36*3) = kstat_4*il10_rjt_4*stat3i_4^2*(1/(1+((socs1cyto_4+socs3cyto_4)

/socsinf_4)^2)) − ksa_4*stat3a_4;

1264 dx(29+36*4) = kstat_5*il10_rjt_5*stat3i_5^2*(1/(1+((socs1cyto_5+socs3cyto_5)

/socsinf_5)^2)) − ksa_5*stat3a_5;

1265 dx(29+36*5) = kstat_6*il10_rjt_6*stat3i_6^2*(1/(1+((socs1cyto_6+socs3cyto_6)

/socsinf_6)^2)) − ksa_6*stat3a_6;

1266 dx(29+36*6) = kstat_7*il10_rjt_7*stat3i_7^2*(1/(1+((socs1cyto_7+socs3cyto_7)

/socsinf_7)^2)) − ksa_7*stat3a_7;

1267 dx(29+36*7) = kstat_8*il10_rjt_8*stat3i_8^2*(1/(1+((socs1cyto_8+socs3cyto_8)

/socsinf_8)^2)) − ksa_8*stat3a_8;

1268 dx(29+36*8) = kstat_9*il10_rjt_9*stat3i_9^2*(1/(1+((socs1cyto_9+socs3cyto_9)

/socsinf_9)^2)) − ksa_9*stat3a_9;

1269 dx(29+36*9) = kstat_10*il10_rjt_10*stat3i_10^2*(1/(1+((socs1cyto_10+

socs3cyto_10)/socsinf_10)^2)) − ksa_10*stat3a_10;

1270

1271 % stat3i (formerly stat3cyto)

1272 dx(30) = − 2*kstat_1*il10_rjt_1*stat3i_1^2*(1/(1+((socs1cyto_1+

socs3cyto_1)/socsinf_1)^2)) + ksnicyto_1*stat3ni_1;

1273 dx(30+36) = − 2*kstat_2*il10_rjt_2*stat3i_2^2*(1/(1+((socs1cyto_2+
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socs3cyto_2)/socsinf_2)^2)) + ksnicyto_2*stat3ni_2;

1274 dx(30+36*2) = − 2*kstat_3*il10_rjt_3*stat3i_3^2*(1/(1+((socs1cyto_3+

socs3cyto_3)/socsinf_3)^2)) + ksnicyto_3*stat3ni_3;

1275 dx(30+36*3) = − 2*kstat_4*il10_rjt_4*stat3i_4^2*(1/(1+((socs1cyto_4+

socs3cyto_4)/socsinf_4)^2)) + ksnicyto_4*stat3ni_4;

1276 dx(30+36*4) = − 2*kstat_5*il10_rjt_5*stat3i_5^2*(1/(1+((socs1cyto_5+

socs3cyto_5)/socsinf_5)^2)) + ksnicyto_5*stat3ni_5;

1277 dx(30+36*5) = − 2*kstat_6*il10_rjt_6*stat3i_6^2*(1/(1+((socs1cyto_6+

socs3cyto_6)/socsinf_6)^2)) + ksnicyto_6*stat3ni_6;

1278 dx(30+36*6) = − 2*kstat_7*il10_rjt_7*stat3i_7^2*(1/(1+((socs1cyto_7+

socs3cyto_7)/socsinf_7)^2)) + ksnicyto_7*stat3ni_7;

1279 dx(30+36*7) = − 2*kstat_8*il10_rjt_8*stat3i_8^2*(1/(1+((socs1cyto_8+

socs3cyto_8)/socsinf_8)^2)) + ksnicyto_8*stat3ni_8;

1280 dx(30+36*8) = − 2*kstat_9*il10_rjt_9*stat3i_9^2*(1/(1+((socs1cyto_9+

socs3cyto_9)/socsinf_9)^2)) + ksnicyto_9*stat3ni_9;

1281 dx(30+36*9) = − 2*kstat_10*il10_rjt_10*stat3i_10^2*(1/(1+((socs1cyto_10+

socs3cyto_10)/socsinf_10)^2)) + ksnicyto_10*stat3ni_10;

1282

1283 % stat3n (formerly stat3_stat3n)

1284 dx(31) = ksa_1*stat3a_1 − ksni_1*stat3n_1;

1285 dx(31+36) = ksa_2*stat3a_2 − ksni_2*stat3n_2;

1286 dx(31+36*2) = ksa_3*stat3a_3 − ksni_3*stat3n_3;

1287 dx(31+36*3) = ksa_4*stat3a_4 − ksni_4*stat3n_4;

1288 dx(31+36*4) = ksa_5*stat3a_5 − ksni_5*stat3n_5;

1289 dx(31+36*5) = ksa_6*stat3a_6 − ksni_6*stat3n_6;

1290 dx(31+36*6) = ksa_7*stat3a_7 − ksni_7*stat3n_7;

1291 dx(31+36*7) = ksa_8*stat3a_8 − ksni_8*stat3n_8;
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1292 dx(31+36*8) = ksa_9*stat3a_9 − ksni_9*stat3n_9;

1293 dx(31+36*9) = ksa_10*stat3a_10 − ksni_10*stat3n_10;

1294

1295 % stat3ni

1296 dx(32) = ksni_1*stat3n_1 − ksnicyto_1*stat3n_1;

1297 dx(32+36) = ksni_2*stat3n_2 − ksnicyto_2*stat3n_2;

1298 dx(32+36*2) = ksni_3*stat3n_3 − ksnicyto_3*stat3n_3;

1299 dx(32+36*3) = ksni_4*stat3n_4 − ksnicyto_4*stat3n_4;

1300 dx(32+36*4) = ksni_5*stat3n_5 − ksnicyto_5*stat3n_5;

1301 dx(32+36*5) = ksni_6*stat3n_6 − ksnicyto_6*stat3n_6;

1302 dx(32+36*6) = ksni_7*stat3n_7 − ksnicyto_7*stat3n_7;

1303 dx(32+36*7) = ksni_8*stat3n_8 − ksnicyto_8*stat3n_8;

1304 dx(32+36*8) = ksni_9*stat3n_9 − ksnicyto_9*stat3n_9;

1305 dx(32+36*9) = ksni_10*stat3n_10 − ksnicyto_10*stat3n_10;

1306

1307 % tlr4

1308 dx(33) = −kf1_1*lps*tlr4_1+kr1_1*lps_tlr4_1;

1309 dx(33+36) = −kf1_2*lps*tlr4_2+kr1_2*lps_tlr4_2;

1310 dx(33+36*2) = −kf1_3*lps*tlr4_3+kr1_3*lps_tlr4_3;

1311 dx(33+36*3) = −kf1_4*lps*tlr4_4+kr1_4*lps_tlr4_4;

1312 dx(33+36*4) = −kf1_5*lps*tlr4_5+kr1_5*lps_tlr4_5;

1313 dx(33+36*5) = −kf1_6*lps*tlr4_6+kr1_6*lps_tlr4_6;

1314 dx(33+36*6) = −kf1_7*lps*tlr4_7+kr1_7*lps_tlr4_7;

1315 dx(33+36*7) = −kf1_8*lps*tlr4_8+kr1_8*lps_tlr4_8;

1316 dx(33+36*8) = −kf1_9*lps*tlr4_9+kr1_9*lps_tlr4_9;

1317 dx(33+36*9) = −kf1_10*lps*tlr4_10+kr1_10*lps_tlr4_10;

1318
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1319 % tnfa_tnfar

1320 dx(34) = kf3_1*tnfaext*tnfar_1−kr3_1*tnfa_tnfar_1;

1321 dx(34+36) = kf3_2*tnfaext*tnfar_2−kr3_2*tnfa_tnfar_2;

1322 dx(34+36*2) = kf3_3*tnfaext*tnfar_3−kr3_3*tnfa_tnfar_3;

1323 dx(34+36*3) = kf3_4*tnfaext*tnfar_4−kr3_4*tnfa_tnfar_4;

1324 dx(34+36*4) = kf3_5*tnfaext*tnfar_5−kr3_5*tnfa_tnfar_5;

1325 dx(34+36*5) = kf3_6*tnfaext*tnfar_6−kr3_6*tnfa_tnfar_6;

1326 dx(34+36*6) = kf3_7*tnfaext*tnfar_7−kr3_7*tnfa_tnfar_7;

1327 dx(34+36*7) = kf3_8*tnfaext*tnfar_8−kr3_8*tnfa_tnfar_8;

1328 dx(34+36*8) = kf3_9*tnfaext*tnfar_9−kr3_9*tnfa_tnfar_9;

1329 dx(34+36*9) = kf3_10*tnfaext*tnfar_10−kr3_10*tnfa_tnfar_10;

1330

1331 % tnfacyto

1332 dx(35) = tnfa_trans_1*tnfamrna_1−ksec_1*tnfacyto_1−mutnc_1*tnfacyto_1;

1333 dx(35+36) = tnfa_trans_2*tnfamrna_2−ksec_2*tnfacyto_2−mutnc_2*tnfacyto_2;

1334 dx(35+36*2) = tnfa_trans_3*tnfamrna_3−ksec_3*tnfacyto_3−mutnc_3*tnfacyto_3;

1335 dx(35+36*3) = tnfa_trans_4*tnfamrna_4−ksec_4*tnfacyto_4−mutnc_4*tnfacyto_4;

1336 dx(35+36*4) = tnfa_trans_5*tnfamrna_5−ksec_5*tnfacyto_5−mutnc_5*tnfacyto_5;

1337 dx(35+36*5) = tnfa_trans_6*tnfamrna_6−ksec_6*tnfacyto_6−mutnc_6*tnfacyto_6;

1338 dx(35+36*6) = tnfa_trans_7*tnfamrna_7−ksec_7*tnfacyto_7−mutnc_7*tnfacyto_7;

1339 dx(35+36*7) = tnfa_trans_8*tnfamrna_8−ksec_8*tnfacyto_8−mutnc_8*tnfacyto_8;

1340 dx(35+36*8) = tnfa_trans_9*tnfamrna_9−ksec_9*tnfacyto_9−mutnc_9*tnfacyto_9;

1341 dx(35+36*9) = tnfa_trans_10*tnfamrna_10−ksec_10*tnfacyto_10−mutnc_10*

tnfacyto_10;

1342

1343 % tnfamrna

1344 dx(36) = sm_1*p_1*(nfkbnuclear_1/(ctf_1+nfkbnuclear_1))*(1/(1+(
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socs3cyto_1/socs3inf_1)^2))−mutnm_1*tnfamrna_1;

1345 dx(36+36) = sm_2*p_2*(nfkbnuclear_2/(ctf_2+nfkbnuclear_2))*(1/(1+(

socs3cyto_2/socs3inf_2)^2))−mutnm_2*tnfamrna_2;

1346 dx(36+36*2) = sm_3*p_3*(nfkbnuclear_3/(ctf_3+nfkbnuclear_3))*(1/(1+(

socs3cyto_3/socs3inf_3)^2))−mutnm_3*tnfamrna_3;

1347 dx(36+36*3) = sm_4*p_4*(nfkbnuclear_4/(ctf_4+nfkbnuclear_4))*(1/(1+(

socs3cyto_4/socs3inf_4)^2))−mutnm_4*tnfamrna_4;

1348 dx(36+36*4) = sm_5*p_5*(nfkbnuclear_5/(ctf_5+nfkbnuclear_5))*(1/(1+(

socs3cyto_5/socs3inf_5)^2))−mutnm_5*tnfamrna_5;

1349 dx(36+36*5) = sm_6*p_6*(nfkbnuclear_6/(ctf_6+nfkbnuclear_6))*(1/(1+(

socs3cyto_6/socs3inf_6)^2))−mutnm_6*tnfamrna_6;

1350 dx(36+36*6) = sm_7*p_7*(nfkbnuclear_7/(ctf_7+nfkbnuclear_7))*(1/(1+(

socs3cyto_7/socs3inf_7)^2))−mutnm_7*tnfamrna_7;

1351 dx(36+36*7) = sm_8*p_8*(nfkbnuclear_8/(ctf_8+nfkbnuclear_8))*(1/(1+(

socs3cyto_8/socs3inf_8)^2))−mutnm_8*tnfamrna_8;

1352 dx(36+36*8) = sm_9*p_9*(nfkbnuclear_9/(ctf_9+nfkbnuclear_9))*(1/(1+(

socs3cyto_9/socs3inf_9)^2))−mutnm_9*tnfamrna_9;

1353 dx(36+36*9) = sm_10*p_10*(nfkbnuclear_10/(ctf_10+nfkbnuclear_10))*(1/(1+(

socs3cyto_10/socs3inf_10)^2))−mutnm_10*tnfamrna_10;

1354

1355 % tnfar

1356 dx(37) = −kf3_1*tnfaext*tnfar_1+kr3_1*tnfa_tnfar_1;

1357 dx(37+36) = −kf3_2*tnfaext*tnfar_2+kr3_2*tnfa_tnfar_2;

1358 dx(37+36*2) = −kf3_3*tnfaext*tnfar_3+kr3_3*tnfa_tnfar_3;

1359 dx(37+36*3) = −kf3_4*tnfaext*tnfar_4+kr3_4*tnfa_tnfar_4;

1360 dx(37+36*4) = −kf3_5*tnfaext*tnfar_5+kr3_5*tnfa_tnfar_5;

1361 dx(37+36*5) = −kf3_6*tnfaext*tnfar_6+kr3_6*tnfa_tnfar_6;
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1362 dx(37+36*6) = −kf3_7*tnfaext*tnfar_7+kr3_7*tnfa_tnfar_7;

1363 dx(37+36*7) = −kf3_8*tnfaext*tnfar_8+kr3_8*tnfa_tnfar_8;

1364 dx(37+36*8) = −kf3_9*tnfaext*tnfar_9+kr3_9*tnfa_tnfar_9;

1365 dx(37+36*9) = −kf3_10*tnfaext*tnfar_10+kr3_10*tnfa_tnfar_10;

1366

1367 % tyk2

1368 dx(38) = − kiljb_1*il10_il10r_1*jak1_1*tyk2_1 + kilju_1*il10_rjt_1;

1369 dx(38+36) = − kiljb_2*il10_il10r_2*jak1_2*tyk2_2 + kilju_2*il10_rjt_2;

1370 dx(38+36*2) = − kiljb_3*il10_il10r_3*jak1_3*tyk2_3 + kilju_3*il10_rjt_3;

1371 dx(38+36*3) = − kiljb_4*il10_il10r_4*jak1_4*tyk2_4 + kilju_4*il10_rjt_4;

1372 dx(38+36*4) = − kiljb_5*il10_il10r_5*jak1_5*tyk2_5 + kilju_5*il10_rjt_5;

1373 dx(38+36*5) = − kiljb_6*il10_il10r_6*jak1_6*tyk2_6 + kilju_6*il10_rjt_6;

1374 dx(38+36*6) = − kiljb_7*il10_il10r_7*jak1_7*tyk2_7 + kilju_7*il10_rjt_7;

1375 dx(38+36*7) = − kiljb_8*il10_il10r_8*jak1_8*tyk2_8 + kilju_8*il10_rjt_8;

1376 dx(38+36*8) = − kiljb_9*il10_il10r_9*jak1_9*tyk2_9 + kilju_9*il10_rjt_9;

1377 dx(38+36*9) = − kiljb_10*il10_il10r_10*jak1_10*tyk2_10 + kilju_10*

il10_rjt_10;

1378

1379 % il10act: il10mrna produced by STAT3

1380 dx(39) = 0.6*kilsn_1*p_1*(stat3n_1/(ctf_stat3_1+stat3n_1)) − muilm_1*

il10act_1;

1381 dx(39+36) = 0.6*kilsn_2*p_2*(stat3n_2/(ctf_stat3_2+stat3n_2)) − muilm_2*

il10act_2;

1382 dx(39+36*2) = 0.6*kilsn_3*p_3*(stat3n_3/(ctf_stat3_3+stat3n_3)) − muilm_3*

il10act_3;

1383 dx(39+36*3) = 0.6*kilsn_4*p_4*(stat3n_4/(ctf_stat3_4+stat3n_4)) − muilm_4*

il10act_4;
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1384 dx(39+36*4) = 0.6*kilsn_5*p_5*(stat3n_5/(ctf_stat3_5+stat3n_5)) − muilm_5*

il10act_5;

1385 dx(39+36*5) = 0.6*kilsn_6*p_6*(stat3n_6/(ctf_stat3_6+stat3n_6)) − muilm_6*

il10act_6;

1386 dx(39+36*6) = 0.6*kilsn_7*p_7*(stat3n_7/(ctf_stat3_7+stat3n_7)) − muilm_7*

il10act_7;

1387 dx(39+36*7) = 0.6*kilsn_8*p_8*(stat3n_8/(ctf_stat3_8+stat3n_8)) − muilm_8*

il10act_8;

1388 dx(39+36*8) = 0.6*kilsn_9*p_9*(stat3n_9/(ctf_stat3_9+stat3n_9)) − muilm_9*

il10act_9;

1389 dx(39+36*9) = 0.6*kilsn_10*p_10*(stat3n_10/(ctf_stat3_10+stat3n_10)) −

muilm_10*il10act_10;

1390 end
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