
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2021 

Parametric, Nonparametric, and Semiparametric Linear Parametric, Nonparametric, and Semiparametric Linear 

Regression in Classical and Bayesian Statistical Quality Control Regression in Classical and Bayesian Statistical Quality Control 

Chelsea L. Jones 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Applied Statistics Commons, and the Other Statistics and Probability Commons 

 

© Chelsea L. Jones 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/6720 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarscompass.vcu.edu%2Fetd%2F6720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=scholarscompass.vcu.edu%2Fetd%2F6720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6720?utm_source=scholarscompass.vcu.edu%2Fetd%2F6720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


© Chelsea L. Jones 2021
All Rights Reserved



Parametric, Nonparametric, and Semiparametric Linear
Regression in Classical and Bayesian Statistical Quality Control

Chelsea L. Jones

Dissertation submitted to the Faculty of the
Virginia Commonwealth University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Systems Modeling and Analysis

Co-Director: Dr. D’Arcy Mays, Associate Professor of Statistics
Statistical Sciences and Operations Research, Virginia Commonwealth University

Co-Director: Dr. Abdel-Salam Abdel-Salam, Associate Professor of Statistics
Mathematics, Statistics and Physics, Qatar University

May 2021
Richmond, Virginia

Keywords: statistical process control; profile monitoring; EWMA; CUSUM; mCUSUM;
mEWMA; Hotelling’s T 2; nonparametric; semiparametric; Bayesian; loss functions



Abstract

Parametric, Nonparametric, and Semiparametric Linear
Regression in Classical and Bayesian Statistical Quality Control

By:
Chelsea L. Jones

Statistical process control (SPC) is used in many fields to understand and monitor de-
sired processes, such as manufacturing, public health, and network traffic. SPC is catego-
rized into two phases; in Phase I historical data is used to inform parameter estimates for
a statistical model and Phase II implements this statistical model to monitor a live ongo-
ing process. Within both phases, profile monitoring is a method to understand the func-
tional relationship between response and explanatory variables by estimating and tracking
its parameters. In profile monitoring, control charts are often used as graphical tools to
visually observe process behaviors. We construct a practitioner’s guide to provide a step-
by-step application for parametric, nonparametric, and semiparametric methods in pro-
file monitoring, creating an in-depth guideline for novice practitioners. We then consider
the commonly used cumulative sum (CUSUM), multivariate CUSUM (mCUSUM), expo-
nentially weighted moving average (EWMA), multivariate EWMA (mEWMA) charts under a
Bayesian framework for monitoring respiratory disease related hospitalizations and global
suicide rates with parametric, nonparametric, and semiparametric linear models.
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Chapter 1

Introduction

Within Statistical process control (SPC), profile monitoring is an essential step for many

applications. In this dissertation we will explore the profile monitoring aspect of SPC under 3

different distributional assumptions using a classical approach and a Bayesian approach.

Our objective is to lay the foundation for novice practitioners in Chapter 2 by construct-

ing an in-depth review of key literature and providing guided examples. In Chapters 3 and

4 we examine the current research pertaining to Bayesian-based control charts under several

loss functions. We compile and analyze simulation and real-data application results to endorse

the Bayesian CUSUM and EWMA control charts in chapter 3 and 4 respectively, under differ-

ent loss functions, priors and likelihood distributions. Chapter 5 extends the Bayesian control

charts obtained in the previous chapters onto nonparametric and semiparametric multivari-

ate regression models. Here, we intend to show the capabilities of the Bayesian control chart

framework and generalize its use for data under any distributional assumption.

In Chapter 2, we complete a comprehensive review on current methodology in profile mon-

itoring under different nonparametric and semiparametric regression techniques. The objec-

tive of this chapter is to create an instrument for practitioners to easily learn the key concepts of

SPC and a guide on how to implement profile monitoring methods. An overview of essential in-

1



Chelsea L. Jones Chapter 1. Introduction 2

formation pertaining to SPC and profile monitoring is introduced along with general practices

when engaging in the quality control. After a foundation is laid, commonly used univariate and

multivariate control charts are defined. We use data from the European Network for Business

and Industrial Statistics (ENBIS) to show how the multivariate CUSUM, multivariate mEWMA,

and Hotelling’s T 2 charts are computed and how they differ. Following the example of multi-

variate control charts, we focus in on the five different variations of the Hotelling’s T 2 chart for

a comparative analysis using linear data from Mahmoud et al., 2007 and Croarkin et al., 2006.

We then define three nonparametric regression techniques and conduct a comparison. The

comparison uses parametric, kernel, p-spline, and wavelet regression methods to estimate a

linear model then charts them in an EWMA, CUSUM, and T 2 control chart respectively. The

same analysis is done using the Model Robust Regression 1 (MRR1) semiparametric method

(Abdel-Salam, 2009). The previously stated nonparametric techniques are used to inform the

nonparametric aspect of the MRR1 method. In both the nonparametric and semiparametric

examples, the mean squared error (MSE) and the probability of signal (PoS) is used to measure

the capability of the regression method and the control chart respectively.

For chapters 3 and 4, we implement Bayesian methods under different loss functions to

assess the Bayesian EWMA chart and Bayesian CUSUM chart capabilities. We compile and

analyze simulation results to endorse the Bayesian EWMA and CUSUM control charts under

different prior distributions, likelihood distributions, and loss functions. A sensitivity analysis

of the hyper-parameters and sample size of each chart is conducted, using average run length

(ARL), standard deviation of the run length (SDRL), average time to signal (ATS), and standard

deviation of time to signal (SDTS) as measuring tools for performance. We support our simula-

tion work with hospitalization count data.

Chapter 5 considers the framework of the Bayesian control charts recounted in chapters 3

and 4 and applies them to simulated data obtained using nonparametric and semiparametric
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regression models. The objective of this chapter is to generalize the use of the Bayesian mul-

tivariate CUSUM (mCUSUM) and multivariate EWMA (mEWMA) control charts onto all data

despite distributional assumptions. Our charting methods are assessed using the ARL, SDRL,

ATS, and SDTS while a comparison of the regression methods used is done using mean squared

error (MSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC).



Chapter 2

Practitioners Guide on Parametric,

Nonparametric, and Semiparametric

Profile Monitoring

Abstract

Profile monitoring is one of the methods used in statistical process control (SPC ) to un-

derstand the functional relationship between response and explanatory variables by tracking

this relationship and estimating parameters. SPC is done in two phases: In Phase I a statistical

model is created and its parameters estimated using historical data. Phase I I implements the

statistical model and monitors the live ongoing process. Control charts are graphical tools used

to monitor these functional relationships over time in both Phase I and Phase I I . This study

provides a step-by-step application for parametric, nonparametric, and semiparametric meth-

ods in profile monitoring and creates an in-depth guideline with comparative analysis studies

for novice practitioners. A comparative analysis under each distributional assumption is con-

4
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ducted for various control charts.

Keywords: statistical process control; profile monitoring; EWMA; CUSUM; Hotelling’s T 2;

nonparametric; semiparametric

2.1. Introduction

Statistical Process Control (SPC ) (or Statistical Process Monitoring (SP M)) is widely applied

to monitor quality performance within industry settings to track and improve product quality.

It is important to understand which components of the manufacturing process are important

in capturing variability that may be between or within manufacturing processes. More can be

seen in review papers Woodall and Montgomery, 2014 and Woodall, 2007. Once the product

characteristics are determined and SPC methods are ready to be used, we move into the profile

monitoring aspect.

2.1.1. Profiling Monitoring

Profile monitoring is one of the tools used in SPC to understand the functional relation-

ship between a response variable and explanatory variables through observing/tracking this

relationship and estimating parameters. A profile is a vector of measurement values associated

with a single unit/product that when plotted over a range, can take the shape of a curve. The

process to be monitored is estimated based on known or historical data, then the actual pro-

cess is ran and its curve plotted. An example of what a profile can look like is given in figure

2.1. The example shows the revolutions per minute (RPM) versus the torque of a given engine

(Abdel-Salam et al., 2013). Next we will look at control charts, which are a tool that helps track

changes in these profiles. In this guide we consider and use control charts as an essential tool
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within profile monitoring.

Figure 2.1: Profile Example

2.1.2. Control Charts

The overall purpose of SPC is to improve a desired process, and control charts are one tool

utilized to do so. They are graphs of a quality characteristic that is measured or computed from

a sample vs sample number (or time). If a process is in-control this implies that it is operating

with only chance causes (an inherent part of the process) of variation being present. A process

is out-of-control if it is operating in the presence of assignable causes (variability stemming

from incorrect machine calibration, operator error, or defective raw materials). In subsequent

sections we will explain how to identify an out-of-control system, define some of the most com-

monly used control charts, and highlight current research pertaining to the matter.

The general rule for determining if a process is out-of-control is if one or more of the cal-
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culated statistics used to characterize the profile falls above the upper control limit (UCL) or

below the lower control limit (LCL). However, this may not be the best approach for all profiles,

thus sensitizing rules were established to make the process more versatile for capturing out-

of-control conditions (Montgomery, 1990). The sensitivity criteria are useful in its application,

but the tradeoff in using multiple of them simultaneously causes an increase in Type I error

(rejecting a true hypothesis) probability.

2.1.3. Phase I

There are two phases that take place within process monitoring: Phase I and Phase I I .

Phase I is where preparation for the profile monitoring and gaining understanding of the pro-

cess takes place. Within this phase, time-ordered samples are collected, observed, and used

to assess tendencies of the process data. Once this is completed, the stability of the process is

assessed, and an in-control model is chosen that best fits the results from the process sample.

Step shifts and drifts can occur within Phase I while monitoring a profile and have a residual

impact when estimating parameters in Phase I I . Probability of signal (PoS) is a measurement

tool used to assess the likelihood of a control chart signaling out of control. The PoS tracks the

proportion of a chart signaling out-of-control within Phase I and is given in eq. 2.1, where q is

the number of out-of-control profiles and m is the total number of profiles. Phase I is complete

and moving to Phase I I is ideal after the in-control model and parameters are chosen.

PoS = q

m
(2.1)
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2.1.4. Phase I I

After the model is chosen, the parameters of the model are estimated and the design pa-

rameters of the monitoring method can be determined. Phase I I consists of live data collected

through time and fit into a profile that is monitored and analyzed against the selected in-control

model. The Average Run Length (ARL) is the average number of sample points that must be

plotted before a point is indicated as out-of-control and given in eq. 2.2, where p is the proba-

bility that a single point exceeds in-control limits Montgomery, 2013.

ARL = 1

p
(2.2)

A typical example of a Shewhart x̄ univariate control chart is illustrated in figure 2.2 with

the UCL and LCL represented as red lines. Figure 2.2a represents Phase I of a process, note the

out-of-control point at observation 6. Since this has happened in Phase I , observation 6 should

be removed and the control chart recalculated to monitor an in-control process. However, if

this data were in Phase I I then the chart would stop at observation 6 because it breaches one

of the control limits, as in figure 2.2b.
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(a) A basic control chart (Phase I) (b) A basic control chart (Phase II)

Figure 2.2: Shewhart x̄ Control Chart

2.2. Control Charts

2.2.1. Univariate Control Charts

The simplest case of profile monitoring is tracking only one characteristic over several dif-

ferent profiles. The Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving

Average (EWMA) control charts are often used for monitoring data with one variable, but the

Hotelling’s T 2 can also be used. Shewhart control charts are the simplest to construct since they

solely use point estimates from the data. The CUSUM and EWMA control charts are known as

memory-based charts since they calculate the current profile’s statistic using information from

the previous profiles, while the Shewhart and T 2 charts are memoryless.
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2.2.1.1. Shewhart Control Chart

The Shewhart control chart was created by Walter Shewhart, introduced in Shewhart, 1926.

It is the simplest control chart method as it monitors sample statistics directly. It is commonly

used to monitor the mean (x̄), range (R), or standard deviation (s) of a sample. Figure 2.2 under

section 2.1.2 gives a simple simulated example of what the Shewhart x̄ chart looks like under

Phase I and Phase I I analysis. For the control limits, µx is the population mean, σx is the

population standard deviation, and k is some constant that represents a number of standard

deviations away from the mean.

Algorithm 1 x̄ chart algorithm

1: for i ≤ m do . m is the number of profiles

2: Calculate x̄ =
∑n

j=1 x j

n . n is the number of observations in mth profile

Require: µ̂0 = ¯̄x . ¯̄x is the average of all profile means (µ̂0 is the in-control mean)
3: Calculate UC L =µx̄ +kσx̄ . k is typically 3
4: Calculate LC L =µx̄ −kσx̄

5: Plot profile numbers versus x̄ statistics with the control limits

2.2.1.2. CUSUM Control Chart

The CUSUM control chart was initially introduced in Page, 1954 and Page, 1961. It is known

for its ability to detect gradual changes in the data by keeping a memory of the previous sam-

ples, essentially increasing the sample size. This method uses the previous and the current

distances from the target mean to determine the statistic (see eq. 2.3).

ci =
m∑

i=1
(x̄i − µ̂0), for i = 1,2, . . . ,m = # of profiles,

where x̄ =
∑n

j=1 x j

n
, j = 1,2, . . . ,n = # of observations in the current profile

(2.3)
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Algorithm 2 CUSUM algorithm

Require: µ̂0 = ¯̄x =
∑m

i=1 x̄i

m . ¯̄x is the average of all profile means (µ̂0 is the in-control mean)
1: for i ≤ m do . let c0 = 0, m is the number of profiles
2: ci = x̄i − µ̂0

3: ci = ci + ci−1

4: Calculate control limit (h = 4σ) . σ is the standard deviation
5: Plot profile numbers versus ci statistics with the control limits

2.2.1.3. EWMA Control Chart

The EWMA chart was first introduced in Roberts, 1959 and is an alternative to the CUSUM.

The idea for this chart is to assign a weight value, (1−λ), to the previous statistic which controls

the length of memory for the chart (see eq. 2.4). A λ value of 1 produces the Shewhart control

chart and a λ value closest to 0 returns a control chart with a longer memory.

zi =λx̄i + (1−λ)zi−1, for i = 1,2, . . . ,m = # of profiles,

where z0 = µ̂0

(2.4)

Algorithm 3 EWMA algorithm

Require: µ̂0 = ¯̄x =
∑m

i=1 x̄i

m . ¯̄x is the average of all profile means (µ̂0 is the in-control mean)
1: Choose λ ∈ (0,1] . Recommended as λ ∈ [0.05,0.25] Montgomery2012
2: for i ≤ m do . m is the number of profiles

3: x̄i =
∑n

j=1 x j

n . n is the number of observations in the mth profile
4: zi =λx̄i + (1−λ)zi−1

5: Calculate UC L = µ̂0 +Lσ
√

λ
2−λ (1− (1−λ)2i ) . L = 3 and σ is the standard deviation

6:

7: Calculate LC L = µ̂0 −Lσ
√

λ
2−λ (1− (1−λ)2i )

8:

9: Plot profile numbers versus zi statistics with the control limits
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2.2.2. Multivariate Control Charts

For data that has multiple characteristics to be monitored, it’s best to use multivariate con-

trol charts rather than using multiple univariate control charts. These characteristics are of-

ten correlated and conducting univariate tests for each of the characteristics fails to capture

changes in the correlations. Using multiple univariate charts can also lead to inflated Type I

error, especially with a large number of variables. In this section different multivariate control

charts will be introduced, followed by an application with comparison in the successive section.

2.2.2.1. Hotelling’s T 2

Hotelling’s T 2 method is briefly mentioned in this section as a multivariate control chart,

however the topic is visited in depth in section 2.3.1. The T 2 statistic is calculated as the squared

statistical distance, it measures the likelihood of obtaining the observation from a given popu-

lation (Hotelling et al., 1951). This method is effective in detecting large shifts in the data. The

general form of the T 2 statistic is given in eq. 2.5, where µ0 is the in-control mean andΣ0 is the

variacne-covariance matrix.

T 2 = (xi −µ0)′Σ−1
0 (xi −µ0) (2.5)

2.2.2.2. mCUSUM

The multivariate Cumulative Sum (mCUSUM) is an extension of the univariate CUSUM.

The concept for the mCUSUM is the same as the univariate case, it sums the previous statistic

calculations together to obtain the statistic at the current location (Woodall and Ncube, 1985).

The equation begins with setting µ1 = µ0 + 1 (µ0 is the in-control mean and µ1 is the out-of-
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control mean) and obtaining the variance-covariance matrix, Σ0. Equation 5.4 shows how to

obtain the mCUSUM statistic along with necessary variable definitions. Figure 2.3 shows the

implementation of this mCUSUM equation in R.

MCi = max{0, (C T
i Σ

−1
0 Ci )

1
2 −kni },

where Ci =
i∑

j=i−ni+1
(x j −µ0),such that ni =


ni−1 +1 if MCi > 0,

1,other wi se

and k = 1

2

√
(µ1 −µ0)TΣ0(µ1 −µ0) for i = 1,2, . . . ,m = number of profiles

(2.6)

Figure 2.3: R Code for mCUSUM Control Chart

2.2.2.3. mEWMA

Multivariate Exponentially Weighted Moving Average (mEWMA) is an alternative control

chart with memory to the mCUSUM . The method relies on a variable r which controls the

length of memory for the chart. A r value of 1 produces the T 2 method which is memoryless,

and a smaller r value returns a control chart with a longer memory. Another variable, γ, in-
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dicates the magnitude of the out-of-control mean shift. A UCL and r value can be found after

defining the γ and p values using techniques found in Lowry et al., 1992. The mEWMA equation

is given in eq. 5.5 and figure 2.4 shows the implementation of the mEWMA equation in R.

zi = r · xi + (1− r )zi−1, for i = 1,2, . . . ,m = number of profiles,

such that T 2
i = (zi −µ0)TΣ−1

zi
(zi −µ0)

where z0 =µ0 and Σzi = cov(zi ) = r
[
1− (1− r )2i

]
2− r

Σ0

(2.7)

Figure 2.4: R Code for mEWMA Control Chart

2.2.3. Multivariate Control Charts Example

The data used in this section was obtained from the European Network for Business and

Industrial Statistics (ENBIS) 2014 challenge. The challenge implored participants to use data

describing consumer confidence to understand when the 2008 financial crisis began. The data

is comprised of 97 months (May 2004 to May 2012) with 4 index category responses within each

month. These indices are National Consumer Confidence Index, Present Situation Index, Ex-

pectation Index, and Spending Index. We consider each month-year combination to be a profile

and the 4 indices to be observations within the profile (i.e January 2009 is a profile and it con-
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tains a measure for each index). The data and information about the ENBIS 2014 challenge can

be found at https://www.enbis.org/news/383. Figure 2.5 gives a visual of the steps taken when

operating between Phase I and Phase II for this data along with the list below. In general, the

entirety of the historical data that is provided should be used for Phase I analysis, but since our

example does not have a live process to monitor for Phase II we partitioned the data to validate

our model. We use the T 2 chart to determine if the data is in-control, but the practitioner can

use the chart that best suits their process.

https://www.enbis.org/news/383
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Figure 2.5: Phase I & Phase II Process Flowchart

(1) Partition data into 2 sets: training data and data to monitor. You can use prior knowledge

to do this, we took the first 44 profiles (May 2004-December 2007) as our training data

since the economic crisis began in 2008.

(2) Set control limits for your chart of choice. For the T 2 chart our control limit was χ2
α,p =

9.488, where α= 0.05 and p = 4.
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(3) Determine if there are any out-of-control points in the training data, if there are then

remove them and re-run the control chart. In this data there were no outlying points, so

our training data was in-control.

(4) Use the x̄ and s2 from Phase I to calculate the T 2 statistics for the remaining 52 profiles.

(5) Run the control chart for all of the data (the training data + the data to monitor). Use

this chart to conclude if/when the data is out of the acceptable bounds. The ENBIS data

breeches the control limit at sample 46 (figure 2.6a) and suggests that the economic crisis

began February 2008.

To enhance sensitivity to small change detection, we performed the mCUSUM and mEWMA

methods. The point estimates found in Phase I using the T 2 method are also used here to cal-

culate the statistics for both methods. The UC LC for the mCUSUM method was found via in-

terpolation as UC LC = 0.5857p+7.2371, where p = 4 =⇒ UC LC = 9.5779 using simulation data

found in Pignatiello Jr and Runger, 1990. For the mEWMA chart, we let λ= 1 and p = 4 for the

UCL (h4) and r (UC LE = 13.34 and r = 0.14) from techniques found in Lowry et al., 1992.

(a) Hotelling’s T 2 (b) mCU SU M (c) mEW M A

Figure 2.6: Multivariate Control Charts Example

The mCUSUM chart signaled at January 2008 (sample 45) (figure 2.6b) while the mEWMA
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chart signaled at March 2005 (sample 11) and continued to fluctuate until November 2007 (sam-

ple 43) (figure 2.6c), then it remained out-of-control. Since the mCUSUM and mEWMA charts

detect small changes that have accumulated over time it is logical that they signaled before the

T 2. Hotelling’s T 2 chart is best at detecting large sudden changes and led to the later signaling

in this instance. We recommend the use of the mCUSUM chart when immediate response in-

formation is needed but recommend the Hotelling’s T 2 chart when overall detection is needed

as it is less computationally intense. The early signaling of the mEWMA control chart results

from the small r value, which causes the chart to have a longer memory. For applications where

less sensitivity of the control charts is necessary (i.e. manufacturing), the mEWMA control chart

is not ideal compared to the T 2 and mCUSUM charts. Using the mEWMA chart for the ENBIS

data resulted in early signaling which can be considered a false alarm, in real-time applications

this can have detrimental repercussions.

2.3. Parametric Methods for Profile Monitoring in Regression

An impressive amount of research has been done with profiles represented as a simple lin-

ear regression model (yi =β0 +β1Xi +εi , i = 1,2, · · · ,n). Literature for simple regression profile

monitoring often assumes that the in-control model parameters are known and often consid-

ers Phase I I applications. This section focuses on profile monitoring methods and estimating

parameters using parametric techniques in Phase I .

2.3.1. Hotelling’s T 2

The Hotelling’s T 2 control chart is a well-known charting method characterized by a single

UCL, often using the 95th percentile, that is the χ2 statistic or F statistic (see eq. 2.8) for uni-
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variate or multivariate data, respectively. There are five different methods used to estimate the

statistic: sample average and intra-profiling (T 2
I ), sample average and covariance matrix (T 2

H ),

sample average and moving ranges (T 2
R ), Minimum Volume Ellipsoid (T 2

MV E ), and Minimum

Covariance Determinant (T 2
MC D ). The last two were initially proposed in Rousseeuw, 1984 and

further detailed in Vargas, 2003. All methods have the same form for the statistic calculation

which is defined by eq. 2.5, but differ in how the variance-covariance matrix is calculated (table

2.1). T 2
I , T 2

H , and T 2
R are known to deteriorate in performance due to the masking effect (loss in

power), thus inspiring researchers to create both the T 2
MV E and T 2

MC D methods to incorporate

estimators robust to outliers. Figure 2.7 shows the implementation of the general Hotelling’s T 2

equation in R. The s2 variable seen in the figure is defined based on which T 2 method is being

used.

Method Variance-Covariance Matrix

T 2
I S I = 1

m

∑m
i=1 var (β̂i ) = (X ′Wi X )−1

T 2
H SH = 1

m−1

∑m
i=1(β̂i − β̄)(β̂i − β̄)′

T 2
R SR = 1

2(m−1)

∑m−1
i=1 (β̂i+1 − β̂i )(β̂i+1 − β̂i )′

T 2
MV E see section 2.3.1.1

T 2
MC D see section 2.3.1.2

Table 2.1: Variance-Covariance Matrix for Hotelling’s T 2 Methods

(m −1)(n −1)

m(n −1)+1−p
F 1−α(p,m(n −1)+1−p), where

m = # of profiles,

n = # of observations,

p = # of columns in the x matrix

(2.8)
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Figure 2.7: R Code for T 2 Control Chart

2.3.1.1. T 2
MV E Algorithm

The Minimum Volume Ellipsoid algorithm iteratively constructs ellipsoids from bootstrapped

sub-samples taken from the original dataset, XN . The volumes for these ellipsoids are calcu-

lated, and the mean and covariance matrix corresponding to the subsample with the minimal

volume is used to calculate the T 2 statistic. By minimizing the volume of the ellipsoids (calcu-

lated by Mahalnobis distance), T 2
MV E is robust to outliers. In the algorithm we define p as the

number of parameters in XN (also can be considered the number of columns in a dataset XN ,

including the intercept) and m as the number of samples. It is important to note that in this

research we consider a sample to be a single profile and the terms will be interchangeable. The

MVE call in SAS or CovMve function in R can be used to run the algorithm. More can be seen on

the algorithm and its usage in Rousseeuw, 1984, Vargas, 2003, Rousseeuw and Van Zomeren,

1990, Van Aelst and Rousseeuw, 2009, and Woodruff and Rocke, 1993.
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Algorithm 4 T 2
MV E algorithm

Require: 1− (1− (1−ε)p+1)n ≥ p0 . where ε= 0.5 and p0 is near unity (i.e p0 = 0.95)
1: for i ≤ n do
2: Sample (p+1) observations from a dataset XN to form a subset,
3:

4: J ={i1, i2, · · · ip+1} ⊂ {1,2, · · ·N }
5: Compute the sample mean and sample covariance matrix for the subset using:
6:

7: x̄ J = 1
p+1

∑p+1
k=1 xk and S J = 1

p

∑p+1
k=1(xk − x̄ J )(xk − x̄ J )T

8: Calculate the distance for each profile using the sub-sample mean and covariance ma-
trix:

9:

10: d 2
J (i ) = (xi − x̄ J )S−1

J (xi − x̄ J )

11: Set the hth order statistic of d 2
J = D2

J , define h = [a] and a = 1
2 (m+p+1) where h represents

the integer part of a
12: Calculate the volume of the corresponding ellipsoid using:
13:

14: VJ = (D2
J )

p
det (S J )

15: Take the minimal VJ over all sub-samples and set J∗ = J , such that J is the sub-sample index
that mi n(VJ )

16: Set MVE estimators as: x̄MV E = x̄ J∗ and SMV E = c2
m,p (χ2

p,0.5)−1D2
J∗S J∗

where χ2
p,0.5 is the median of a chi-squared distribution with p degrees of freedom and

c2
m,p is a correction factor for a small sample size, m, given by Vargas, 2003 as: c2

m,p =
(
1+

15
m−p

)

2.3.1.2. T 2
MC D Algorithm

The Minimum Covariance Determinant method finds a subset of the data with the smallest

variance-covariance determinant, using its mean and variance to calculate T 2
MC D . Minimizing

the determinant of the variance-covarince matrix makes this method robust to location and

scatter. It is asymptotically normal, making its statistical efficiency better than the MVE method

Butler et al., 1993, but in Davies et al., 1992 it is noted that the latter has a lower convergence

rate. T 2
MC D exposes outliers better as it produces more precise robust distances over the T 2

MV E .
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However, T 2
MC D is more difficult to compute, so the MVE method is used more often. A modified

MCD algorithm is introduced in Rousseeuw and Driessen, 1999 (also see Hardin and Rocke,

2004) to improve computational efficiency.

Algorithm 5 T 2
MC D algorithm

Require: Randomly choose h profiles where we again define h = [a] and a = 1
2 (m+p +1) where

h represents the integer part of a. Such that a subset |H0| = h.
1: repeat
2: Calculate x̄0 and S0

3: if det(S0) 6= 0 then add another profile to the sample and recheck condition

4: until det(S0) = 0 . Let Hol d = H0, x̄ol d = x̄0, and Sol d = S0

5: repeat Calculate for i = 1
6: Calculate the distances using the mean and variance from the current subset
7: Order the distances and select the profile indices for the h smallest distances and set as

Hnew

8: Calculate x̄new and Snew

9: if det(Snew ) = 0 or det(Snew ) = det(Sol d ) then Set x̄MC D = x̄new and SMC D = Snew

10: else Set x̄ol d = x̄new and Sol d = Snew

11: until det(Snew ) = 0 or det(Snew ) = det(Sol d )

2.3.2. Parametric Profile Monitoring Example

The first data observed in this section is from the NASA Langley Research Center, seen in

Mahmoud et al., 2007. The objective was to investigate replicated calibrations of a force bal-

ance within wind tunnel experiments. The data has 11 independent samples totaling 723 ob-

servations, we consider the axial force as our regressor variable with an adjusted axial response.

Experiment details are in Parker et al., 2001 and the data is plotted in figure 2.8a and will be

referred to as the NASA data. We use the NASA data to exemplify how the profile monitoring

techniques can be applied to industry-type processes. This data contains a good number of

observations for us be able to engage in using all of the regression methods. The second data

used in this section, found in Croarkin et al., 2006, is plotted in figure 2.8b and will be referred to
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as the NIST data. Here, the line widths of three photomask reference standards were measured

over six days via an optical imaging system at the low, middle, and high ends of the calibration

line. The regressor variable for this is the known value of the photomask reference and the re-

sponse is the control measurement (what the optical imaging system observes). We consider

each day as a profile containing 3 observations (low, middle, and high) each, totaling 18 ob-

servations. We chose to use the NIST data because of its small size, allowing us to compare

profile monitoring methods for smaller and larger datasets. The third dataset is from HDS from

the DuPont Crop Protection and has been used in Williams, 2011 and Gomaa and Birch, 2019,

its data is plotted in figure 2.8c and will be referred to as the DuPont data. The DuPont data

consists of 44 weeks of bioassay experiments with 8 dose levels of a diluted commercial growth-

inhibiting herbicide compound which is replicated 4 times. That is, we have 44 profiles each

containing 8∗4 = 32 observations for a total of 1408 observations. The DuPont data is desirable

for us to show how profile monitoring techniques can be used on biological data. The NASA

and NIST datasets have a linear behavior so will be fit with a linear model. The DuPont data is

logistic in nature and will follow a 4-parameter logistic model as seen in Williams et al., 2007

and Jensen and Birch, 2009.

(a) NASA Data (b) NIST Data (c) DuPont Data

Figure 2.8: Raw Data
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For the NASA and NIST data we fit a linear model to each profile and obtain a column vector,

β̂i (i = 1,2, . . . ,m), containing an estimate of β0 and β1. The estimates of β0 and β1 are our

observations, meaning we have 11 samples with 2 observations each (m = 11 and p = 2) and

6 samples with 2 obersavions each (m = 6 and p = 2) for the NASA and NIST data respectively.

We take the average over all the profiles to obtain β̄ for the respective datasets. Since T 2∼̇χ2

because the population mean and standard deviation are unknown, the UCL for this data is

χ2
0.05,p=2 = 5.991.

The DuPont data will follow the 4-parameter logistic model given as: yi = ai + di−ai

1+10bi (ci −xi ) +εi

for i = 1,2, . . . ,m. In the model, ai is the maximum response parameter, di is the minimum

response parameter, ci is the point of inflection or the ED50 (elicits 50% response), and bi is the

rate parameter (how quickly the response changes from minimum to maximum response or

slope at point ci ). This model will be fit for each profile and the parameters estimated to obtain

a column vector, β̂i =
[

â
d̂
ĉ
b̂

]
(i = 1,2, . . . ,m) and the UCL for this data is χ2

0.05,p=4 = 9.488. Again

we will obtain β̄ by averaging the β̂′s over all profiles. Figure 2.9 provides visual guidance when

conducting analysis using the T 2 chart. The calculation for the variances shown in this figure

can be found in table 2.1.
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Figure 2.9: T 2 Method Flowchart

For the NASA data using traditional methods, the T 2
I chart signaled at profiles {3, 5, 9}, the

T 2
H chart did not signal, and the T 2

R chart signaled at samples {6, 7}, but nearly signaled at sample

1 (see figures 2.10a, 2.10b, 2.10c). For the robust methods, the T 2
MV E chart signaled at samples

{6, 7} (figure 2.10d) and the T 2
MC D chart signaled at samples {1, 6, 7} (figure 2.10e), showing that

there is more consistency among the robust charts. The PoS of the methods are: T 2
I = 0.2727,

T 2
H = 0, T 2

R = 0.1818, T 2
MV E = 0.1818, and T 2

MC D = 0.2727. The T 2
I and T 2

MC D return the same

PoS, but the out-of-control profiles are not exact. However, the T 2
R and T 2

MV E PoS and out-of-
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control profiles were the same. We recommend using either the T 2
MV E or T 2

MC D chart because

of their robust features or the T 2
R chart because of the similar results it produced compared to

the robust charts. Since this analysis is done within Phase I and historical information is not

provided about the data it is difficult to make any further recommendation. Note, comparisons

for the MVE method may not be exact due to the bootstrap sub-sampling and yields different

numerical results each time the method is run. The pattern for which profiles are outliers and

PoS should remain the same.

(a) T 2
I (b) T 2

H (c) T 2
R

(d) T 2
MV E (e) T 2

MC D

Figure 2.10: Hotelling’s T 2 Control Charts for NASA Data

For the NIST data using the traditional methods, the T 2
I chart signaled at profiles {2, 6},
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the T 2
H and T 2

R charts did not signal (see figures 2.11a, 2.11b, 2.11c). For the robust methods,

the T 2
MV E chart did not signal (figure 2.11d) and the T 2

MC D chart signaled at samples {1, 2, 4}

(figure 2.11e).The PoS of the methods are: T 2
I = 0.3333, T 2

H = T 2
R = T 2

MV E = 0, and T 2
MC D = 0.5.

There is some consistency in the shape of the charts for the robust methods, but they do not

indicate the same thing. Three of the methods show that the data in Phase I was in-control and

no profiles needed to be removed. However, T 2
I and T 2

MC D suggest that profiles be removed

because of their signaling. In Montgomery, 2013 the authors look at this data using separate

Shewhart charts for the intercept, slope, and error variance. In both Croarkin et al., 2006 and

Montgomery, 2013 they conclude that day 4 was out-of-control. Using the multivariate chart,

we see that day 4 consistently shows a spiking pattern (except when using T 2
I ) and breaching

the control limit in the T 2
MC D chart.
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(a) T 2
I (b) T 2

H (c) T 2
R

(d) T 2
MV E (e) T 2

MC D

Figure 2.11: Hotelling’s T 2 Control Charts for NIST Data

For the DuPont data using the traditional methods, the T 2
I chart signaled at profiles {20,

37}, the T 2
H chart signaled at {17, 19, 20, 28, 30, 37, 38}, and T 2

R signaling at {19, 20, 28, 30, 37,

38} (see figures 2.12a, 2.12b, 2.12c). For the robust methods, the T 2
MV E chart signaled at {19, 20,

37} (figure 2.12d) and the T 2
MC D chart signaled at nearly half of the samples (figure 2.12e).The

PoS of the methods are: T 2
I = 0.04545455, T 2

H = 0.1363636, T 2
R = 0.1590909, T 2

MV E = 0.06818182,

and T 2
MC D = 0.4772727. We see again that there is some consistency in the shape of the charts

for the robust methods, but they do not indicate the same thing. All of the methods show that

profiles 20 and 37 are outliers in Phase I and need to be removed. This differs from results
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obtained in Gomaa and Birch, 2019, whose T 2 chart using parametric methods did not detect

any outliers. But their findings for their nonparametric and semiparametric approaches with

the T 2 chart found that profiles {17, 19, 20, 30, 37, 38} were outliers, which match many of the

outlier profiles in the charts observed in figure 2.12.

(a) T 2
I (b) T 2

H (c) T 2
R

(d) T 2
MV E (e) T 2

MC D

Figure 2.12: Hotelling’s T 2 Control Charts for DuPont Data

In the following section we will examine methods in nonparametric statistics as they relate

to profile monitoring. Three regression techniques will be introduced and used on real data and

a comparative analysis conducted with recommendations.
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2.4. Nonparametric Methods for Profile Monitoring in Regres-

sion

Nonparametric statistics refers to a branch of statistics where the underlying distribution

is unknown, or a distribution is specified but the parameters of the distribution are unknown.

These methods are often used on ordinal/ranked datasets and aim to make as few assumptions

on the data as possible. This leads to more robust estimation results and a broader application

compared to parametric statistics. However, if nonparametric tests are used where it is more

appropriate to use parametric tests, the nonparametric test will achieve a decreased power. We

will discuss Gaussian kernels, B-splines, P-splines, and Haar wavelets used as curve smoothing

tools.

2.4.1. Kernel Regression

Kernel regression is a heavily investigated nonparametric method as it is known for its com-

putational simplicity. In general, kernel regression puts heavier weights on points close to de-

sired prediction points and less weight on further away points. This returns a normal-curve

shaped kernel density function for each prediction point. The method of using a kernel as a

weighting function was proposed in Nadaraya, 1964 and Watson, 1964, their combined efforts

produced the Nadaraya-Watson estimator, more can be seen in Bierens, 1988.

In eq. 2.9, K (·) is the chosen kernel function. The rate the weight decreases, the further the

point is from prediction which determines the smoothness and is controlled by the bandwidth,

h. Choice of bandwidth is vital to obtaining a proper balance between the variance and bias of

the model. If h chosen too close to zero (very small h), less points are included in prediction and

nearly all the weight is on the prediction point. This produces an overfit model, resulting in large
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variance (like connecting the dots). Contrarily, h chosen too close to the range of the x-values

(very large h), the weights are distributed evenly across all observations and gives an underfit

model high in bias (like fitting the mean). There are different kernel functions, but the com-

monly mentioned are Boxcar, Epanechinkov, Gaussian, and Tricube which can be seen in Mays

et al., 2001. It is more important which bandwidth is chosen than the kernel function used, so

most research uses the Gaussian kernel ( (2π)−
1
2 e

−u2

2 ) because its simplicity and properties. We

will use the Gaussian kernel function for our examples. While R offers a ksmooth function for

kernel regression under the stats package, we show in figure 2.13 how the Gaussian kernel can

be written in R.

ŷ j =
n∑

j=1
y jγ j , for j = 1,2, . . . ,n = # of observations

where γ j =
K

(
X j−x

h

)
∑n

j=1 K
(

X j−x
h

) ,h > 0

(2.9)
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Figure 2.13: R Code for Kernel Regression

2.4.2. Splines

Statistical splines are used to minimize oscillating behavior in the data and are a collection

of generally different approximated functions of sub-intervals divided over a finite interval Bur-

den and Faires, 2010. This is done by partitioning the data at locations, called knots, fitting a
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polynomial function to the data within the partitioned intervals, and smoothly joining these

segments together. Knots are endpoints of the sub-intervals that tie the functions together and

are either prespecified by an expert who is knowledgeable on the behavior of the data or chosen

as coordinate locations where the plot appears to have a steep slope and initiates a change in di-

rection. Various methods for knot selection were suggested in Kauermann et al., 2009 and Rup-

pert et al., 2009, with the latter concluding the number of knots and their position do not make

an extreme impact on the results if the range of values is covered well. Some literature pertain-

ing to knot selection and position include: Mosteller and Wallace, 1963, Stone, 1974, Geisser,

2017 (leave-one-out Cross-Validation methods (CV)), Friedman and Silverman, 1989 (TURBO

method), Breiman, 1993 (Delete-Knot/Cross-Validation method (DKCV)), Denison et al., 1998

(reversible jump Markov chain Monte Carlo method), Molinari et al., 2004(Akaike Information

Criterion (AIC) or Bayesian Information Criterion (BIC)), and Lolive et al., 2006 (Simulated-

Annealing strategy). Different types of splines are available for different data needs. Splines are

recommended for handling sparse data while polynomial smoothers are preferred for handling

dense designs Piri et al., 2019. More on splines can be found in Ruppert et al., 2009, O’Sullivan,

1986, Abdel-Salam, 2009, and De Boor et al., 1978. Keep in mind that spline functions are used

to fit the data and aim to capture its behavior, this creates a limitation that if error is present

within the data the values obtained using the spline function may vary from the expected val-

ues.

Let S be the spline over the [a, b] interval that maps to the real numbers: S : [a,b] →R . The

[a, b] interval is partitioned into k sub-intervals, where there are k knots: [a,b] = [t0, t1]∪[t1, t2]∪
·· ·∪ [tk−2, tk−1]∪ [tk−1, tk ], such that a = t0 ≤ t1 ≤ ·· · ≤ tk−1 ≤ tk = b. Let ρi represent a function

associated with the sub-interval [i, i+1]: ρi : [ti , ti+1]. Finally, define the spline function as the

sum of the k sub-interval functions with an averaged weight associated with the sub-interval:

S(t ) =∑k
i αiρi ,n(x).



Chelsea L. Jones Chapter 2. Practitioners Guide 34

We define i to be the number of knots (0 to k), and the number of sub-intervals is from 1 to

k-1.

(1) ρi (ti+1) = ρi+1(ti+1): The i th function at point tk is equal to the (i +1)th function at point

tk . Meaning there exists continuity in the spline where the intervals connect at the knots.

(2) ρ′
i (ti+1) = ρ′

i+1(ti+1): The derivative of the i th function at point tk is equal to the derivative

of the (i +1)th function at point tk . That is, if the derivative of the left side (ρi ) is the same

as the derivative of the right side (ρi+1) then there is no relative extremum at the point

(tk ). This ensures smoothness at these continuous points.

(3) ρ′′
i (ti+1) = ρ′′

i+1(ti+1): The second derivative of the i th function at point tk is equal to the

second derivative of the (i + 1)th function at point tk . That is, if the second derivative

of the left side (ρi ) is the same as the second derivative of the right side (ρi+1) then this

results in either a graph that is concave up if both are positive or concave down if both are

negative at the point (tk ). This ensures the same concavity at the knot. Where,

(a) f (t j ) = ρi (ti ): The response values for the original function and for the polynomial

functions are the same.

(b) f ′(ti ) 6= ρ′
i (ti ) and f ′(tk ) = ρ′

k−1(tk ): The derivatives for the original function and for

the polynomial functions are not the same except at the end point.

Conditions imposed on the endpoints of the spline, such as the derivatives must be equal

to zero, indicates a spline clamped spline. Otherwise the spline is natural/free.
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2.4.2.1. B-Splines

A b-spline with degree ω is made of ω+1 polynomial pieces and each piece is of degree ω.

These pieces overlap with 2ω of its polynomial neighbors, except at the spline boundaries. Each

polynomial piece is joined at ω inner knots and at these joining locations, their derivatives are

continuous up to theω-1 order (i.e ifω=3, the derivative of the joining knots is continuous up to

the second derivative). The b-spline is positive within the range of ω+2 knots, zero elsewhere,

and at a given x value, (ω+1) b-splines are nonzero.

The B-Spline is defined as

S(t ) =
k∑
i
αi Bi ,n(x)

where, Bi ,0(x) =


1, if ti ≤ x < ti+1

0,other wi se

For m ≤ M ,

Bi ,m(x) = x − ti

ti+m − ti
B i ,m−1

ti+m+1 −x

ti+m+1 − ti+1
Bi+1,m−1(x)

(2.10)

The goal of the b-spline is to minimize the sums of squares (S =∑
i (yi −∑

j α j B j (xi ))2) over

all functions. However, by simply minimizing this estimate the least squared error is obtained

and isn’t accurate for fitting a smooth spline to the data. As a solution to this problem adding a

discrete penalty to acquire greater smoothness of the spline and measured the roughness of a

curve was suggested in O’Sullivan, 1986 using equation R = ∫ u
l [ f ′′(x)]2d x, l and u are the lower

and upper bounds of the domain.
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2.4.2.2. P-Splines

Penalized splines (P-splines) were introduced in O’Sullivan, 1986 and brought to the fore-

front after discussion paper Eilers and Marx, 1996 was published. P-splines are the same as

b-splines, but impose a discrete penalty factor to achieve a smoother fit. An extensive review of

P-splines from 1995 to 2015 can be seen in Eilers et al., 2015. The ŷ values are calculated in eq

5.1 where D is a lower diagonal matrix corresponding to the number of knots, Λ is the penal-

izing parameter, and p is the number of columns in X . R offers a smooth.spline function for

p-spline regression under the pspline package, in figure 2.14 we give an example of how the

p-spline can be written in R.

ŷ = X (X T X +Λ2p D)−1X T y (2.11)

Figure 2.14: R Code for P-Spline Regression
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2.4.3. Wavelets

Wavelets, like splines, use a basis function to represent the underlying function. They

are comparable to Fourier series which use sine and cosine waves to represent a function.

The disadvantage of the Fourier series is it solely localizes in frequency, meaning it has a one-

dimensional function mapping to a one-dimensional sequence. Wavelets are more informative

as they map the one-dimensional function into a two-dimensional array, representing the loca-

tion in time and frequency. Wavelets are often preferred over splines when the profile exhibits

sudden changes/spikes. It is usually recommended when the shape of the profile is too com-

plicated to be modeled by a linear or nonlinear model Woodall, 2007.

A wavelet basis is made from a mother wavelet (ψ(x)) and a father wavelet (φ(x)). The

mother wavelet gives the essential behavior of the basis and the father wavelet is a scaling func-

tion. Reis and Saraiva, 2006, Jeong et al., 2006, Zou et al., 2007 Chicken et al., 2009, Chang and

Yadama, 2010, and Nikoo and Noorossana, 2013 use the nonparametric wavelet approach in

some capacity to help inform a model to use in constructing control charts. A more in-depth

understanding of wavelets can be acquired from Daubechies, 1992, Ogden, 2012, and Burrus

et al., 1998.

In this work we use the Haar wavelet to estimate model parameters, which is said to gen-

erate the simplest possible orthogonal wavelet system Burrus et al., 1998. Valuable insight of

wavelet use in SPC is offered in Piri et al., 2019 by exploring the use of the Haar basis function

on the poisson distribution for profile monitoring. Before using the Haar wavelet two condi-

tions must be met. First, the number of observations in the data must be a power of two, and

the second is the function is defined on the interval [0,1). In eq. 2.12, ck represents the father

wavelet coefficients and d j ,k is are the coefficients for the mother wavelet. We choose to use

the built-in wd function offered in R under the wavethresh package to perform our regression
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under the Haar wavelet, this can be seen in figure 2.15.

f (x) =
∞∑

k=−∞
ckφ(x −k)+

∞∑
j=0

∞∑
k=−∞

d j ,kψ(2 j x −k) such that,

ψ(x) =



1, if 0 ≤ x < 1
2

−1, if 1
2 ≤ x < 1

0,otherwise

and φ(x) =


1, if 0 ≤ x < 1

0,otherwise

where,


φ(x) j ,k = 2 j /2φ(2 j x −k)

ψ(x) j ,k = 2 j /2ψ(2 j x −k)

(2.12)

Figure 2.15: R Code for Wavelet Regression
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2.4.4. Nonparametric Profile Monitoring Example

This section revisits data from section 2.3.2 and applies nonparametric methods under lin-

ear (β̂=
[
β̂0

β̂1

]
) and nonlinear (β̂=

[
â
d̂
ĉ
b̂

]
) models. β̂i (i = 1,2, . . . ,m) is calculated using estimated

ŷ values for each profile and used to construct the control charts. The wavelet approach was

not used on the NIST data because the condition that the number of observations must be of

power two was not met. In figures 2.16, 2.17, and 2.18 the ŷ values are plotted for each method

against the raw NASA data, NIST data, and DuPont data respectively (parametic in 2.16a, 2.17a,

and 2.18a, kernel in 2.16b, 2.17b, and 2.18b, p-spline in 2.16c, 2.17c, and 2.18c, and wavelet in

2.16d, 2.18d). For the Gaussian kernel we use a bandwidth of h=10, 3, 15 for the NASA, NIST,

and DuPont data respectively, which is chosen to be a fair balance for each dataset. Since the

original data lacks curvature, only two knots are chosen for the P-spline for the linear data and

are taken to be the ends of the data for both data sets, while the DuPont data takes four evenly

spaced knots under the P-spline method. For the wavelet approach on the NASA and DuPont

data we choose to use resolution J = 4.

The ŷ values using the kernel method in figures 2.16b, 2.17b, and 2.18b vary from the true

data because the method uses the nearby points to estimate the current point, causing predic-

tion error near the ends. It appears to be an almost exact fit in figures 2.16c and 2.17c because

of the choice of knots and the lack of curvature. The estimates vary widely for the linear data

in figure 2.16d, but prove to be a better fit for the nonlinear data in figure 2.18d. Mean Squared

Error (MSE) values in table 2.2 reinforce what is seen in figures 2.16, 2.17, and 2.18.

The EWMA chart uses λ= 0.3, allowing for longer memory. In both the CUSUM and EWMA

charts we use a bootstrap technique of in-control profiles (reference section 2.3.2) to calculate

the UCL’s. This is done since we do not know the underlying truth for in-control profiles for the

data. The UCL for the T 2 chart is the same as in section 2.3.2, except when using splines, it is
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χ2
0.05,4 = 9.488 for the linear data (p = 2 knot estimates plus 2 β̂ estimates) and χ2

0.05,8 = 15.507

for the nonlinear data (p = 4 knot estimates plus 4 β̂ estimates).

(a) ŷp (b) ŷk (c) ŷs (d) ŷw

Figure 2.16: NASA Data ŷ values using parametric and nonparametric methods

(a) ŷp (b) ŷk (c) ŷs

Figure 2.17: NIST Data ŷ values using parametric and nonparametric methods
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(a) ŷp (b) ŷk (c) ŷs (d) ŷw

Figure 2.18: DuPont Data ŷ values using parametric and nonparametric methods

Method NASA MSE NIST MSE DuPont MSE

Parametric 104.12 0.0049 0.0044
Gaussian Kernel 4296.72 0.8663 0.0457

P-Splines 104.12 0.0049 0.0104
Haar Wavelets 67363.67 n/a 0.0016

Table 2.2: Mean Squared Error Results for nonparametric methods

PoS
NASA NIST DuPont

Method EWMA CUSUM T 2 EWMA CUSUM T 2 EWMA CUSUM T 2

Gaussian Kernel 0.9091 0.8182 0.2727 0.6667 0.8333 0 0.8636 0.9545 0.7727
P-Splines 0.9091 0.8182 0.5455 0.6667 0.6667 0.5 0.5227 0.9545 0.7727

Haar Wavelets 0.7273 0.8182 0.0909 n/a n/a n/a 0.8636 0.9545 0.7727

Table 2.3: Probability of Signal Results for control charts using nonparametric methods

From table 2.2 and figures 2.16, 2.17, and 2.18 we recommend the use of P-splines over the

Gaussian kernel and Haar wavelet for simple linear data but recommend the Haar wavelet for

nonlinear data. The P-spline was simple to implement and gave the lowest MSE for the simple

linear regression cases, but when applied to the nonlinear data it did not perform as well. The

Haar wavelet had the lowest MSE for the nonlinear data and fit the ends of the data better than
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the other methods used. We recommend the use of the CUSUM chart with our nonlinear data

when detecting drift shifts because it consistently had the largest PoS between the EWMA and

itself (seen in table 2.3), however the choice of λ is imperative to PoS results. The EWMA chart

out-performed the CUSUM chart overall for the NASA data, but the CUSUM chart remained

consistent in its detection ability. For the NIST data both charts performed almost the same.

The T 2 chart proved to have the lowest PoS overall, but this is because it is meant to detect

large/sudden changes whereas there did not seem to be any occurrences in the data used.

2.5. Semiparametric Methods in Regression

If there is information known about the data distribution or its parameters, then paramet-

ric methods are applied, otherwise nonparametric methods must be employed to inform a

model. However, solely using parametric methods for estimating a model often leads to model

misspecification since we don’t know the true model, which causes uncertainty resulting in

high bias. Whereas estimating a curve solely from nonparametric methods can fit the data too

closely, introducing a high amount of variance into the model. But what if there was a way

to mediate the consequences of relying exclusively on the parametric method or the nonpara-

metric method? Olkin and Spiegelman, 1987 used a mixing proportion to create a parametric

and nonparametric estimate in an approach to estimate density functions, utilizing maximum

likelihood to estimate the parameter of the parametric model. Meanwhile, Ke and Wang, 2001

approximated the log-likelihood function by way of the Laplace method. In regression both ap-

proaches are considered as methods of model robust regression (MRR), and the concept was

extended into phase I analysis and introduced as model robust profile monitoring (MRPM) in

Abdel-Salam, 2009. These methods combine information obtained from parametric and non-

parametric techniques via a mixing parameter (Λ), known as a semiparametric method. This
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allows for retention of known information about the data by including part of a parametric fit

while including the functional flexibility gained from a nonparametric fit.

Under the normality assumption, Einsporn, 1987 and Einsporn and Birch, 1993 introduced

their model robust regression 1 (MRR1) semiparametric method for modeling mean response.

MRR1 is an umbrella term encompassing the use of original data to estimate a model using

a convex combination of the parametric and nonparametric fits via a mixing parameter, η ∈
[0,1]. When η is chosen to be 0 only the parametric method is being used, while if η is taken to

be 1 the nonparametric method is the sole contributor. The MRR1 concept was developed in

both Burman and Chaudhuri, 2012 and Mays et al., 2000, termed by the latter . Model robust

regression 2 (MRR2), seen in Mays et al., 2000, uses a combination of the residuals from the

parametric and nonparametric fits rather than their ŷ values.

Nottingham and Birch, 2000 strayed from the frequented logistic regression methods and

extend semiparametric methods to analyze dose-response data. Waterman et al., 2015 com-

pare parametric, nonparametric, and mixed model robust methods via their approximated

integrated mean square errors then apply the methods to two data sets. Gomaa and Birch,

2019 introduces and evaluates a nonlinear mixed robust profile monitoring (NMRPM) method

against its parametric counterpart, concluding their method is capable of easily computing

control charts. The mixed model robust residuals profile monitoring (MMRRPM) method was

proposed in Siddiqui and Abdel-Salam, 2019, which implements the MRR2 technique as an ex-

pansion of the mixed model robust profile monitoring MMRPM (Abdel-Salam, 2009) method.

In this paper we focus on MRR1 as a semiparametric approach, defined as the following:

ŷ MRR1 = (1−η)ŷP +ηŷ N P (2.13)

Figure 2.19 gives R code implementing the MRR1 equation, where lam2 represents the mix-
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ing parameter η.

Figure 2.19: R Code for Semiparametric Regression

2.5.1. Semi-Parametric Profile Monitoring Example

We implement the semiparametric method mixing the parametric results with each of the

nonparametric methods from section 2.4.4. The ŷ values from the parametric and the non-

parametic methods are used in the MRR1 equation and η is taken to be 0.3 since the parametric

results appear to fit the data best. Figure 2.20 provides visual guidance for using the nonparam-

teric and semiparametric regression methods described in sections 2.5 and 2.4.
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Figure 2.20: Nonparametric and Semiparametric Regression Flowchart

The ŷ values from the semiparametric method using each nonparametric method are com-

pared via MSE. The kernel method fits similar to figures 2.16b, 2.17b, and 2.18b, respective of

the data used, but has a better fit on the ends. The P-spline method yields the same fit as before

for the linear data, but has a better fit for the DuPont data than the nonparametric by itself.

While the Haar wavelet approach for the NASA data fits closer to the original data it still has

a high prediction error, for the DuPont data it fits the same as solely using the nonparamet-

ric method. In table 2.4, the MSE in both linear data sets for the kernel and wavelet decrease

drastically from the nonparametric approach. Notice the MSE for the parametric method is the

same as for the P-splines in both cases. And for the nonlinear data the kernel and spline meth-

ods show a decrease in MSE from the nonparametric method as the wavelet method remains
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constant. We conclude that using the P-spline approach for our linear data yielded comparable

results to the parametric approach, but the Haar wavelet was best in our nonlinear data case.

The EWMA, CUSUM, and T 2 control charts are applied to the semiparametric results. We

use the same conditions as stated in section 2.4.4, besides the UCL for the T 2 chart with the

spline method. The UCL for the T 2 chart is the same as the other nonparametric methods

because we are only using the ŷ values for the semiparametric approach. The PoS for the EWMA

and CUSUM charts using the kernel and spline methods for the linear data are the same from

section 2.4.4 except the CUSUM PoS values decreases for the NIST data and the wavelet method

for the NASA data yields a much higher PoS. Under the semiparametric method EWMA and the

CUSUM charts using the DuPont data return the same PoS for each nonparametric method, but

show an overall increase for the CUSUM chart and an overall decrease for the EWMA chart. The

T 2 chart returns the same results for the PoS as the nonparametric example for all techniques

for the linear data and a decrease for the nonlinear data, except for the wavelet method.

NASA NIST DuPont
Method SP MSE NP MSE SP MSE NP MSE SP MSE NP MSE

Parametric n/a 104.12 n/a 0.0049 n/a 0.0044
Gaussian Kernel 263.82 4296.72 0.3859 0.8663 0.0417 0.0457

P-Splines 104.12 104.12 0.0049 0.0049 0.0098 0.0104
Haar Wavelets 6521.47 67363.67 n/a n/a 0.0016 0.0016

Table 2.4: Mean Squared Error comparison for semiparametric and nonparametric methods

PoS
NASA NIST DuPont

Method EWMA CUSUM T 2 EWMA CUSUM T 2 EWMA CUSUM T 2

Gaussian Kernel 0.9091 0.8182 0.5455 0.6667 0.6667 0.5 0.5455 0.9545 0.7727
P-Splines 0.9091 0.8182 0.5455 0.6667 0.6667 0.5 0.5455 0.9545 0.7727

Haar Wavelets 0.8182 0.8182 0.0909 n/a n/a n/a 0.5455 0.9545 0.7727

Table 2.5: Probability of Signal Results for control charts using semiparametric methods
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When using the semiparametric approach on linear data, we recommend the use of the

P-spline to calculate the nonparametric ŷ values and the Haar wavelet on nonlinear data. In

table 2.4 the P-spline gave the lowest MSE for the linear data compared to its other nonpara-

metric counterparts and the Haar wavelet gave the lowest for the nonlinear data. Here we still

recommend the use of the EWMA control chart for our linear data since it resulted in the larger

PoS for the NASA data and remained consistent for the NIST data for drift shift detection but

recommend the CUSUM control chart for the nonlinear data for the same reasons (table 2.5).

2.6. Conclusion and Recommendations

This paper detailed the foundation of statistical process control and the use of control

charts in profile monitoring using a linear and nonlinear model. We focused on the commonly

used control charts for univariate and multivariate data: CUSUM, EWMA, mCUSUM, mEWMA,

and T 2. It is common that the distribution of parameters of a dataset is unknown, so we intro-

duced three nonparametric techniques along with a semiparametric technique for when there

is some known information about the data. We conclude on the performance of each chart and

provide recommendations for their use under parametric, nonparametric, and semiparametric

conditions. Note, all recommendations are based on results obtained from the data sets ex-

plored in this text which are considered small in relation to other applications. They should not

be generalized onto data sets with a non-similar structure.

We recommend the P-spline method with a linear model on univariate data; it gave the best

estimates for the nonparametric and semiparametric approaches. This may be in part to the

lack of curvature in the data used, but it still gave the best results for the MSE. The P-splines were

easy to implement, and the only notable drawback is the high bias or large variance potential

for bad knot selection. As for nonlinear univariate data, we recommend the Haar wavelet; it
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gave the best estimates for the nonparametric and semiparametric approaches. They were also

easy to implement and its only drawbacks are the repercussions of choosing an inappropriate

resolution.

In sections 2.4.4 and 2.5.1, the CUSUM and EWMA charts gave comparable results for PoS.

Both are memory-based charts which track the small/gradual changes that occur between pro-

files. Each is simple to implement, and we recommend that either chart be used when track-

ing drift shifts in data. We observed that the CUSUM chart performed best for our nonlinear

data while the EWMA chart performed best for our linear data. For the memoryless charts,

we conducted our comparison using the Hotelling’s T 2 charts seen in section 2.3.2 along with

the basic T 2 in sections 2.4.4 and 2.5.1. The T 2
MV E and T 2

MC D proved to be robust, but more

computationally extensive to generate than the traditional T 2 charts. Since we did not have a

clear understanding on the in-control/out-of-control profiles of the data used, it is difficult to

conclude which of the five methods performed best.

All data, their descriptions, and additional materials used can be found via the following

link https://github.com/cjones808/Practitioners-Guide-Datasets.git.

https://github.com/cjones808/Practitioners-Guide-Datasets.git
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Chapter 3

Generalized Bayesian CUSUM Charts using

Different Loss Functions

Abstract

We propose a Bayesian approach to the cumulative sum (CUSUM) control chart to perform

under different distributions without the need of a data transformation. Different loss functions

are considered to inform the framework of the charts for the Normal and Poisson conjugate

cases. Using a comprehensive simulation study, we assess the method via a sensitivity anal-

ysis for the control chart decision parameters, shift sizes, and distribution hyper-parameters;

where performance measurements are average run length (ARL), standard deviation of the run

length (SDRL), average time to signal (ATS), and standard deviation of time to signal (SDTS).

For CUSUM literature, a data transformation is often required when using non-Guassian data,

so we also consider a comparative study with the classical CUSUM chart. To showcase their

efficacy on over-dispersed count data, we model a count series of respiratory disease related

hospitalizations in São Paulo, Brazil and implement our Bayesian charts.
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ity Control.

3.1. Introduction

In statistical process monitoring (SPM), control charts are a vital visual tool used to monitor

a process and alert of any discrepancies. Many control charts have been developed to encom-

pass the different processes to monitor, mainly falling into two categories: memory-less and

memory-based. A memory-less chart does not take into consideration previous observations

and are best used to detect large/sudden changes. Memory-based charts compute the current

statistic using the previous’ and are ideal for detecting small/gradual changes. The Shewhart

control chart, first outlined in Shewhart, 1926, is a frequently used memory-less chart while the

cumulative sum (CUSUM) (Page, 1954) and exponentially weighted moving average (EWMA)

(Roberts, 1959) charts are well-known memory-based charts.

In Riaz et al., 2017, the EWMA control chart is considered under a Bayesian approach. They

conduct a comparison analysis on control limits found using the classical approach and the

Bayesian approach under a symmetric loss function and 2 asymmetric loss functions: squared

error loss function (SELF), precautionary loss function (PLF), and Linex loss function (LLF).

In their article they use a normal conjugate prior on data that is normally distributed and for

each of the loss functions, a sensitivity analysis is done for the choice of hyper-parameter and

its effect on the performance of the Bayesian EWMA chart. The measurement tools used for

their comparative purposes are the average run length (ARL) and standard deviation run length

(SDRL).

In this paper, we conduct analysis of a Bayesian CUSUM chart via ARL, SDRL, average time

to signal (ATS), and standard deviation of time to signal (SDTS) using a Normal likelihood and
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prior and a Poisson likelihood and Gamma prior distribution under the same loss functions. We

first conduct analysis of the Bayesian CUSUM chart under the Normal conjugate case. Then, we

complete an analysis of the control chart under a Poisson likelihood and Gamma prior. Lastly,

we conduct a real data analysis of count data to show application of our method. Our objective

is to assess the choice of loss function in relation to distribution and deduce generality of the

Bayesian CUSUM control chart.

3.2. Loss Functions

A loss function is represented as L(θ, θ̂) and is a function of the parameter of interest, θ, and

an estimate of the parameter, θ̂. Loss functions measure how bad the current parameter esti-

mate is, and typically the larger the loss the worse the parameter estimate. In decision theory

it takes on a slightly different role, which is to attain the best estimator of the parameter. In

this study we consider three different loss functions: Squared Error, Precautionary, and Linex.

We construct a Bayesian CUSUM chart under the different loss functions considering the best

estimators which is found using equation 4.3.

θ̂∗ = min
θ̂

Eθ[L(θ̂,θ]

where, θ̂∗is the estimator which minimizes the expected loss

(3.1)

The Squared Error Loss Function (SELF) is a commonly used loss function because its sim-

plicity. It is considered symmetric because it assigns equal weight to both positive and negative

error and defined as L(θ, θ̂) = (θ− θ̂)2 with a Bayes estimator of θ̂∗ = E [θ|x]. The Precautionary

Loss Function (PLF) is an asymmetric loss function as it weights the error in the positive direc-

tion differently than in the negative direction. It was introduced in Norstrom, 1996 in order to
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prevent overestimation of the parameter and typically produces better estimators for low fail-

ure rate problems. Its form is L(θ, θ̂) = (θ−θ̂)2

θ̂
with its Bayes estimator given as θ̂∗ =

√
E [θ2|x].

The last loss function that we consider here is another asymmetric function introduced in Var-

ian, 1975 as the Linex Loss Function (LLF). It is asymmetric as it signifies overestimation rather

than underestimation, and is often used with estimating the location parameter. It is defined as

L(θ, θ̂) = (ec(θ̂−θ)−c(θ̂−θ)−1) with a Bayes estimator of θ̂∗ =−1
c lnE [e−cθ] (Zellner, 1986), where

c is a constant such that if c > 0 overestimation has more significance than underestimation

and if c → 0 it approaches symmetry.

3.3. Bayesian Framework

We define the necessary pieces for our Bayesian approach in equations 4.1 and 4.2.

p(θ|X) = p(X|θ)p(θ)

p(X)
(3.2)

Definition

θ Parameter(s) of interest

X Data

P (θ) Prior distribution

P (X) Marginal distribution data

P (X|θ) Likelihood function

Table 3.1: Bayesian Inference Definitions

p(y |X) =
∫

p(y|θ)p(θ|X)dθ

where, p(y|θ) is the likelihood function for the future data

(3.3)
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3.3.1. Normal Conjugate

In table 3.2, we provide the Bayes estimators for each of the loss functions. Within table 3.2

and 3.3,σ2
0 represents the prior variance andσ2 represents the known variance of the likelihood

distribution. The calculation of the variances for the posterior, posterior predictive, and Bayes

estimator of the posterior predictive distributions remains the same under each loss function

as what is seen in Riaz et al., 2017. For both tables, n is the sample size, x̄ is the sample mean,

µ0 is the prior mean, σ2
0 is the prior variance, σ2 is the known variance, and c is the Linex loss

function symmetry constant.

Loss Function Bayes Estimator

Squared Error µSELF,N N = nx̄σ2
0+σ2µ0

σ2+nσ2
0

Precautionary µPLF,N N =
√

(σ4+σ2σ2
0(n+1))(σ2+nσ2

0)+(nx̄σ2
0+σ2µ0)2

(σ2+nσ2
0)2

Linex µLLF,N N = nx̄σ2
0+σ2µ0

σ2+nσ2
0

− c
2

(
σ2 + σ2σ2

0

σ2+nσ2
0

)
Table 3.2: Bayes Estimators for Loss Functions

Distribution Variance

Posterior σ2
n = σ2σ2

0

σ2+nσ2
0

Posterior Predictive σ2
ppd =σ2 +σ2

n

Bayes Estimator of Posterior Predictive σ2
Ȳ
= σ2

n +σ2
n

Table 3.3: Variances Based on Distribution
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3.3.2. Poisson Conjugate

The Gamma distribution is the known conjugate for the Poisson likelihood function. The

posterior distribution under each of the loss functions is Gamma with shape parameter nx̄ +
α and inverse scale parameter n +β (Gamma(nx̄ +α,n +β)). The posterior predictive and

Bayes estimator of the posterior predictive distributions are derived to be Negative Binomial

(see 3.10) also with shape parameter nx̄ +α and inverse scale parameter n +β (Neg Bi n(nx̄ +
α,n +β)). Similarly as stated in section 3.3.1 the variances for each of the distributions in table

4.3 remains the same under each loss function. In the table, α and β are the shape and inverse

scale parameters respectively, with sample size n, and sample mean x̄. Prior information of

the mean and variance are used to solve for the α and β values. The mean for each of the

distributions is what differs based on the Bayes’ estimator equations for the given loss functions

and are shown in table 4.2. For both tables n is the sample size, x̄ is the sample mean, α is the

shape parameter, β is the inverse scale parameter, and c is the Linex loss function symmetry

constant.

Loss Function Bayes Estimator

Squared Error µSELF,PG = nx̄+α
n+β

Precautionary µPLF,PG =
p

(nx̄+α)(nx̄+α)2

n+β

Linex µLLF,PG =−1
c ln

[
βα

(c+β)α

]
Table 3.4: Bayes Estimators for Loss Functions
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Distribution Variance

Posterior σ2
PD = nx̄+α

(n+β)2

Posterior Predictive σ2
PPD = nx̄+α

(n+β)2 (n +β+1)

Bayes Estimator of Posterior Predictive σ2
Ȳ
= nx̄+α

n(n+β)2 (n +β+1)

Table 3.5: Variances Based on Distribution

3.4. Control Chart Schematics

The control limits for the Bayesian CUSUM control charts follow the same form as the stan-

dard CUSUM chart. The mean and standard deviation used for the chart limits are based on the

mean and standard deviation obtained using the Bayes estimator posterior predictive distribu-

tion under each loss function. Note that the plotting statistics in equation 3.4 also follow the

standard form for the CUSUM control chart.

CUSUM Posterior Predictive Control Limits:

UC L/LC L =±h ∗σȲ

C L =µLF

ci = max[0,ci−1 + (ȳ |x)−µLF ]

(3.4)

where, µLF andσȲ are the mean and standard deviation from the Bayes estimator posterior

predictive distribution respective to the loss function used, (ȳ |x) is the Bayes estimator for the

set of predicted data, and h determines the control limits. For the Poisson conjugate case, we

only consider upper limits for our control charts. This is because we are concerned with an

unusual rise in counts rather than a drop in counts.
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3.5. Simulations and Results

In this section, sensitivity analyses of the hyper-parameters and sample size are conducted

for the Bayesian CUSUM control chart for both the Normal and Poisson conjugate cases. The

charts for the Normal and Poisson cases are designed to obtain ARL0 = 370 and ARL0 = 500

respectively and are assessed for different shift sizes (δ = 0 to 2.5 by 0.25). For the simulations

under both analysis, m = 10,000 iterations were completed to calculate the performance mea-

surements.

3.5.1. Normal Conjugate

The Guassian conjugate-based CUSUM chart uses different values of h for each loss func-

tion to obtain the desired ARL0 = 370. When generating the initial data we use a standard

normal distribution (N (0,1)), where the out-of-control mean is µ1 = µ+δ and choices for the

hyper-parameters are µ0 = {5,10,15} and σ = {2,4,6}. For the sample size analysis we choose

n = {5,10,20,30}.
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µ0 = 5, σ0 = 2 µ0 = 10, σ0 = 4 µ0 = 15, σ0 = 6

Shifts ARL SDRL ATS SDTS ARL SDRL ATS SDTS ARL SDRL ATS SDTS

SELF
0 382.56 314.006 2.10E-07 1.85E-06 377.585 310.835 2.06E-07 1.84E-06 381.314 311.04 1.96E-07 1.80E-06

0.25 25.1489 6.73527 2.18E-07 1.89E-06 25.112 6.68524 2.29E-07 1.98E-06 25.226 6.69327 1.67E-07 1.66E-06
0.5 12.2902 2.39349 1.98E-07 1.80E-06 12.3517 2.42792 2.09E-07 1.85E-06 12.2861 2.36657 1.97E-07 1.80E-06

0.75 7.9762 1.32674 1.79E-07 1.71E-06 7.9855 1.33375 2.10E-07 1.85E-06 7.9705 1.31796 2.13E-07 1.87E-06
1 5.8455 0.883872 2.29E-07 1.94E-06 5.8419 0.878012 2.12E-07 1.86E-06 5.8669 0.897321 2.18E-07 1.89E-06

1.25 4.5644 0.663365 1.90E-07 1.76E-06 4.5644 0.673092 1.94E-07 1.78E-06 4.5722 0.668421 2.18E-07 1.89E-06
1.5 3.7126 0.549 1.73E-07 1.68E-06 3.7255 0.555653 2.29E-07 3.63E-06 3.7143 0.549432 2.24E-07 1.92E-06

1.75 3.1044 0.411462 2.01E-07 1.81E-06 3.1065 0.412017 2.34E-07 1.96E-06 3.1091 0.405706 1.93E-07 1.78E-06
2 2.6992 0.468529 2.04E-07 1.83E-06 2.6991 0.469637 1.93E-07 1.78E-06 2.6859 0.473963 1.91E-07 1.77E-06

2.25 2.2077 0.405661 2.03E-07 1.82E-06 2.2124 0.409251 2.16E-07 1.97E-06 2.2192 0.413946 2.27E-07 1.93E-06
2.5 2.0136 0.143579 2.00E-07 1.81E-06 2.013 0.143635 2.15E-07 1.87E-06 2.0134 0.145672 1.96E-07 1.79E-06

PLF
0 386.091 317.271 1.73E-07 1.68E-06 383.807 308.288 2.36E-07 1.96E-06 382.062 309.744 2.19E-07 1.90E-06

0.25 25.0807 6.82654 1.90E-07 1.76E-06 25.2625 6.75559 2.30E-07 1.94E-06 25.3573 6.90383 2.06E-07 1.84E-06
0.5 12.293 2.43589 2.17E-07 1.88E-06 12.2928 2.40106 1.98E-07 1.80E-06 12.3003 2.41058 1.66E-07 1.66E-06

0.75 7.9805 1.33301 1.65E-07 1.65E-06 7.9887 1.33902 2.06E-07 1.88E-06 7.9786 1.31436 1.93E-07 1.78E-06
1 5.8491 0.897513 1.98E-07 1.80E-06 5.8279 0.899267 1.96E-07 1.80E-06 5.8588 0.884343 1.83E-07 1.73E-06

1.25 4.5609 0.6682 2.03E-07 1.83E-06 4.5705 0.667705 2.23E-07 1.91E-06 4.583 0.666417 1.65E-07 1.65E-06
1.5 3.7241 0.550617 2.23E-07 1.91E-06 3.7171 0.55106 1.90E-07 1.77E-06 3.7208 0.557716 1.81E-07 1.73E-06

1.75 3.1132 0.415194 1.95E-07 1.79E-06 3.1046 0.402068 1.89E-07 1.76E-06 3.1096 0.411081 2.07E-07 1.84E-06
2 2.6909 0.471123 2.23E-07 1.91E-06 2.7013 0.468058 2.26E-07 1.92E-06 2.6941 0.469601 1.80E-07 1.72E-06

2.25 2.2127 0.409706 1.83E-07 1.73E-06 2.2143 0.410336 1.96E-07 1.79E-06 2.2166 0.411928 1.92E-07 1.77E-06
2.5 2.0132 0.146375 2.00E-07 1.81E-06 2.0151 0.149238 1.99E-07 1.81E-06 2.016 0.144028 1.81E-07 1.72E-06

LLF
0 382.633 310.757 2.16E-07 1.88E-06 379.757 312.008 1.98E-07 1.80E-06 381.621 311.286 2.05E-07 1.84E-06

0.25 25.2814 6.8093 1.90E-07 1.77E-06 25.1894 6.71061 1.55E-07 1.60E-06 25.222 6.70407 1.66E-07 1.65E-06
0.5 12.2979 2.42684 2.14E-07 1.87E-06 12.2589 2.39922 1.81E-07 1.72E-06 12.2623 2.35586 1.86E-07 1.75E-06

0.75 7.9646 1.31482 2.00E-07 1.81E-06 7.9809 1.32058 1.82E-07 1.73E-06 7.9879 1.32399 2.06E-07 1.84E-06
1 5.8316 0.88828 1.88E-07 1.76E-06 5.8337 0.889294 1.83E-07 1.73E-06 5.8465 0.890471 2.02E-07 1.82E-06

1.25 4.5581 0.669645 2.14E-07 1.87E-06 4.5811 0.660926 1.46E-07 1.55E-06 4.5675 0.671896 1.85E-07 1.74E-06
1.5 3.723 0.555041 2.04E-07 1.83E-06 3.7261 0.549253 1.74E-07 1.69E-06 3.7283 0.551615 1.88E-07 1.76E-06

1.75 3.1041 0.404306 2.15E-07 1.88E-06 3.108 0.406615 1.96E-07 1.80E-06 3.1026 0.41361 1.81E-07 1.72E-06
2 2.6947 0.470204 2.07E-07 1.84E-06 2.6936 0.472355 1.81E-07 1.72E-06 2.6927 0.472934 2.34E-07 1.96E-06

2.25 2.2067 0.405679 2.04E-07 1.83E-06 2.2029 0.402159 1.41E-07 1.53E-06 2.2195 0.414391 1.86E-07 1.75E-06
2.5 2.0152 0.144114 2.43E-07 2.01E-06 2.0132 0.136476 1.64E-07 1.64E-06 2.016 0.144028 2.08E-07 1.85E-06

Table 3.6: ARL, SDRL, ATS, and SDTS Values for Bayesian CUSUM Chart Hyper-Parameter Sen-
sitivity Analysis with Normal Conjugate

Table 3.6 shows simulation results from the Bayesian CUSUM control chart under a nor-

mal conjugate prior. The prior mean and variance were adjusted for sensitivity analysis of the

hyper-parameters while applying shifts to the in-control mean (µ0). For all of the loss functions,

the initial shift in the mean returns a drastic drop in the ARL and SDRL. After the first shift, as

the shifts increase the ARL and SDRL gradually decrease. This shows that a relatively small shift

is detectable when using the Bayesian CUSUM control chart and detection is consistent over
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several loss functions. Results also show that as you adjust the input for the hyper-parameters,

this control chart performs consistently. ATS and SDTS values, in seconds, are not significantly

different within each loss function, but overall the Linex loss function has values that are no-

ticeably smaller than the squared error and precautionary loss functions.
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Shifts

n h 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

SELF

5 14
375.399 37.1613 18.255 11.9493 8.8191 6.9268 5.6775 4.784 4.1443 3.6073 3.1807 ARL

(308.228) (11.9545) (4.21535) (2.3375) (1.54802) (1.11177) (0.867118) (0.717038) (0.599731) (0.551984) (0.44525) SDRL
2.07E-07 2.18E-07 1.76E-07 2.06E-07 2.01E-07 2.46E-07 1.69E-07 2.16E-07 2.11E-07 2.11E-07 1.80E-07 ATS

(1.86E-06) (1.89E-06) (1.70E-06) (1.84E-06) (1.81E-06) (2.01E-06) (1.67E-06) (1.88E-06) (1.86E-06) (1.87E-06) (1.72E-06) SDTS

10 13.6
381.085 25.2921 12.3169 8.002 5.8504 4.583 3.7143 3.1071 2.6879 2.2137 2.015 ARL

(313.336) (6.77449) (2.4378) (1.34781) (0.885223) (0.662202) (0.547244) (0.410889) (0.47444) (0.410161) (0.140624) SDRL
2.60E-07 1.67E-07 2.19E-07 1.97E-07 1.75E-07 1.89E-07 1.82E-07 1.97E-07 1.78E-07 1.78E-07 1.72E-07 ATS

(2.06E-06) (1.66E-06) (1.89E-06) (1.80E-06) (1.69E-06) (1.76E-06) (1.73E-06) (1.80E-06) (1.71E-06) (1.71E-06) (1.68E-06) SDTS

20 13
369.377 16.9652 8.1781 5.2669 3.809 2.9699 2.2954 2.0001 1.8121 1.2501 1.0119 ARL
(299.4) (3.82957) (1.40384) (0.79364) (0.562245) (0.379465) (0.456441) (0.126095) (0.390632) (0.43307) (0.108436) SDRL

1.90E-07 1.57E-07 2.11E-07 2.14E-07 1.92E-07 2.07E-07 1.93E-07 2.03E-07 1.50E-07 1.91E-07 2.09E-07 ATS
(1.76E-06) (1.60E-06) (1.86E-06) (1.88E-06) (1.77E-06) (1.84E-06) (1.78E-06) (1.83E-06) (1.57E-06) (1.77E-06) (1.85E-06) SDTS

30 13
373.031 13.5429 6.4694 4.1425 2.9955 2.1861 1.9625 1.4297 1.0215 1 1 ARL
(304.37) (2.84098) (1.02921) (0.60116) (0.386885) (0.389187) (0.193633) (0.495033) (0.145044) (0) (0) SDRL
2.33E-07 2.25E-07 2.08E-07 2.14E-07 2.09E-07 2.31E-07 2.59E-07 1.97E-07 2.14E-07 2.70E-07 2.24E-07 ATS

(1.95E-06) (1.92E-06) (1.84E-06) (1.87E-06) (1.85E-06) (1.95E-06) (2.06E-06) (1.79E-06) (1.87E-06) (2.10E-06) (1.91E-06) SDTS

PLF

5 8
375.604 37.207 18.2401 11.9825 8.7833 6.9291 5.6663 4.7933 4.1237 3.6066 3.1778 ARL

(310.609) (12.1227) (4.24745) (2.34252) (1.53191) (1.10873) (0.860781) (0.703829) (0.595649) (0.554289) (0.440213) SDRL
2.09E-07 1.94E-07 2.10E-07 2.01E-07 1.70E-07 1.64E-07 1.56E-07 1.96E-07 1.87E-07 1.83E-07 2.08E-07 ATS

(1.85E-06) (1.79E-06) (1.85E-06) (1.82E-06) (1.67E-06) (1.64E-06) (1.60E-06) (1.79E-06) (1.75E-06) (1.73E-06) (1.85E-06) SDTS

10 5.8
377.371 25.1675 12.2698 7.9768 5.8525 4.5655 3.7289 3.1078 2.6988 2.2135 2.0124 ARL

(303.993) (6.62654) (2.41851) (1.33726) (0.892381) (0.662955) (0.557499) (0.41398) (0.469338) (0.410022) (0.138008) SDRL
1.88E-07 2.17E-07 2.01E-07 2.05E-07 1.87E-07 2.10E-07 1.84E-07 2.08E-07 1.65E-07 1.84E-07 1.93E-07 ATS

(1.75E-06) (1.90E-06) (1.82E-06) (1.83E-06) (1.75E-06) (1.85E-06) (1.74E-06) (1.85E-06) (1.65E-06) (1.74E-06) (1.78E-06) SDTS

20 4
368.62 16.9351 8.1502 5.2623 3.8054 2.9668 2.2932 1.9982 1.8066 1.2553 1.0122 ARL

(297.546) (3.80162) (1.39422) (0.797307) (0.566684) (0.388713) (0.455449) (0.131136) (0.394964) (0.43603) (0.109778) SDRL
1.88E-07 1.96E-07 2.04E-07 1.98E-07 3.03E-07 1.76E-07 2.16E-07 2.10E-07 1.97E-07 2.08E-07 1.71E-07 ATS

(1.76E-06) (1.79E-06) (1.83E-06) (1.80E-06) (2.22E-06) (1.70E-06) (1.88E-06) (1.86E-06) (1.80E-06) (1.85E-06) (1.68E-06) SDTS

30 3.41
367.25 13.5895 6.5236 4.1415 3.0024 2.185 1.9616 1.447 1.0208 1.0001 1 ARL

(295.354) (2.83235) (1.0291) (0.603389) (0.3914) (0.389326) (0.19423) (0.497183) (0.142714) (0.0099995) (0) SDRL
1.80E-07 2.03E-07 1.80E-07 2.09E-07 2.17E-07 2.38E-07 1.98E-07 1.91E-07 2.22E-07 1.98E-07 1.88E-07 ATS

(1.72E-06) (1.82E-06) (1.72E-06) (1.85E-06) (1.89E-06) (1.97E-06) (1.80E-06) (1.77E-06) (1.90E-06) (1.80E-06) (1.76E-06) SDTS

LLF

5 9
376.357 37.1803 18.2026 11.9679 8.8241 6.9209 5.6815 4.8087 4.1361 3.6015 3.1848 ARL

(314.896) (12.0124) (4.27094) (2.32152) (1.53217) (1.10256) (0.868595) (0.721183) (0.592095) (0.547264) (0.444352) SDRL
1.52E-07 1.56E-07 2.10E-07 2.15E-07 1.97E-07 1.75E-07 1.75E-07 1.93E-07 1.75E-07 1.71E-07 1.53E-07 ATS

(1.58E-06) (1.61E-06) (1.86E-06) (1.88E-06) (1.80E-06) (1.69E-06) (1.69E-06) (1.78E-06) (1.69E-06) (1.68E-06) (1.59E-06) SDTS

10 7.7
378.459 25.3499 12.2567 7.9641 5.8521 4.5691 3.7212 3.1041 2.6955 2.2024 2.0124 ARL

(312.249) (6.70681) (2.37525) (1.33799) (0.884435) (0.670392) (0.551245) (0.409955) (0.469446) (0.402038) (0.129793) SDRL
1.76E-07 1.60E-07 2.19E-07 1.86E-07 1.81E-07 1.81E-07 1.89E-07 1.84E-07 2.19E-07 1.90E-07 1.75E-07 ATS

(1.70E-06) (1.62E-06) (1.90E-06) (1.75E-06) (1.73E-06) (1.72E-06) (1.76E-06) (1.74E-06) (1.89E-06) (1.77E-06) (1.70E-06) SDTS

20 6.8
371.933 16.9739 8.1679 5.2633 3.8142 2.9723 2.2925 2.0014 1.8113 1.2497 1.014 ARL

(310.142) (3.86676) (1.3851) (0.791564) (0.560605) (0.382011) (0.45513) (0.116611) (0.39127) (0.432839) (0.11749) SDRL
1.80E-07 2.58E-07 1.53E-07 1.83E-07 1.98E-07 1.94E-07 2.01E-07 1.69E-07 2.04E-07 1.85E-07 1.90E-07 ATS

(1.72E-06) (2.05E-06) (1.58E-06) (1.73E-06) (1.80E-06) (1.79E-06) (1.82E-06) (1.67E-06) (1.83E-06) (1.74E-06) (1.76E-06) SDTS

30 6.7
368.33 13.5945 6.5128 4.1572 3.0067 2.1906 1.967 1.4585 1.0224 1.0001 0.9999 ARL

(304.737) (2.84954) (1.02442) (0.604722) (0.382172) (0.392774) (0.182513) (0.498275) (0.147981) (0.0099995) (0.0099995) SDRL
1.88E-07 1.68E-07 2.27E-07 1.63E-07 1.71E-07 1.58E-07 1.92E-07 1.70E-07 1.65E-07 1.69E-07 2.31E-07 ATS

(1.76E-06) (1.67E-06) (1.92E-06) (1.64E-06) (1.68E-06) (1.61E-06) (1.77E-06) (1.67E-06) (1.65E-06) (1.67E-06) (1.95E-06) SDTS

Table 3.7: ARL, SDRL, ATS, and SDTS Values for Bayesian CUSUM Chart Sample Size Sensitivity
Analysis with Normal Conjugate
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Similar trends about the Bayesian CUSUM chart that were noticed in table 3.6 can also

be seen in table 3.7. By decreasing the h value as the sample size increases, we obtain ARL0

values around 370. This is intuitive since increasing sample size typically delays detection, thus

shrinking the bounds for the control limits allows for timely detection. As before, we notice that

there is an immediate drop in ARL when the initial mean shift is applied and a gradual decrease

after for all loss functions. We notice that as we increase n while applying the mean shifts,

the drop in the ARL is larger in the larger samples. This shows that detection ability grows with

sample size. ATS and SDTS are also effected by increasing sample size; detection time decreases

as sample size increases.

3.5.2. Poisson Conjugate

Simulation results from tables 3.8 and 3.9 show performance measurements for the Bayesian

CUSUM control chart under a Poisson conjugate prior. We designed a Bayesian CUSUM chart

to obtain an in-control ARL of 500 and assess their performances with imposed shifts defined

as µ1 = µ0 ∗ (1+δ). We use values µ0 = [10,15,20] and σ0 = [4,6,8] to solve for our values of

α0 and β0 to obtain our prior information. These values are α = [16,36,64] and β = [5
8 , 5

12 , 5
16

]
as calculated in section 3.8.1.2. Our initial data is generated from a Poisson distribution with

parameter λ= 25.
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α0 = 16, β0 = 5
8 α0 = 36, β0 = 5

12 α0 = 64, β0 = 5
16

Shifts ARL SDRL ATS SDTS ARL SDRL ATS SDTS ARL SDRL ATS SDTS

SELF
0 520.043 520.771 2.28E-07 5.00E-06 523.698 523.309 2.26E-07 6.75E-06 502.157 500.218 2.40E-07 1.98E-06

0.25 26.1833 25.8757 2.17E-07 7.46E-06 28.8763 28.5943 2.31E-07 6.72E-06 28.7685 28.5028 2.06E-07 1.84E-06
0.5 6.33065 5.91093 1.66E-07 6.53E-06 5.68287 5.46734 2.17E-07 6.93E-06 6.17329 5.91276 2.16E-07 1.88E-06

0.75 2.64614 2.48548 1.86E-07 6.94E-06 2.56805 2.46631 2.47E-07 5.60E-06 2.58994 2.51808 2.07E-07 1.85E-06
1 1.46543 1.48035 2.01E-07 7.18E-06 1.38482 1.45086 2.28E-07 6.51E-06 1.42274 1.48283 2.11E-07 1.86E-06

1.25 0.86422 1.02001 2.01E-07 7.22E-06 0.84758 1.01721 2.18E-07 4.05E-06 0.83408 1.02107 1.99E-07 1.80E-06
1.5 0.59422 0.796293 2.00E-07 7.18E-06 0.57116 0.784395 2.23E-07 6.93E-06 0.57079 0.78851 1.94E-07 1.78E-06

1.75 0.4083 0.64004 2.07E-07 7.27E-06 0.41768 0.64444 2.17E-07 5.96E-06 0.38137 0.625961 2.19E-07 1.89E-06
2 0.29026 0.536423 1.96E-07 7.13E-06 0.28799 0.534052 1.83E-07 6.60E-06 0.27276 0.522496 2.12E-07 1.86E-06

2.25 0.19789 0.438052 2.09E-07 7.36E-06 0.20633 0.447435 1.79E-07 6.79E-06 0.19119 0.433701 2.02E-07 1.82E-06
2.5 0.15763 0.389721 2.07E-07 7.27E-06 0.14413 0.373439 2.19E-07 5.75E-06 0.1492 0.382465 2.36E-07 1.98E-06

PLF
0 497.945 498.277 2.49E-07 7.98E-06 498.043 497.059 2.40E-07 7.85E-06 503.656 504.027 2.28E-07 5.35E-06

0.25 28.1911 27.7613 2.00E-07 7.18E-06 25.8255 25.549 2.20E-07 7.54E-06 28.5426 28.2013 2.20E-07 5.39E-06
0.5 6.13445 5.87661 2.58E-07 8.15E-06 5.76852 5.52295 2.10E-07 7.36E-06 6.40804 6.22733 2.28E-07 5.39E-06

0.75 2.63193 2.5283 2.10E-07 7.36E-06 2.54016 2.46418 1.98E-07 7.13E-06 2.49894 2.50251 2.07E-07 5.15E-06
1 1.3573 1.45241 2.39E-07 7.81E-06 1.48763 1.50498 2.19E-07 7.50E-06 1.43639 1.51323 2.22E-07 5.31E-06

1.25 0.89725 1.04922 2.19E-07 7.54E-06 0.87801 1.03212 2.15E-07 7.45E-06 0.87516 1.05679 2.16E-07 5.92E-06
1.5 0.58849 0.79213 2.34E-07 7.73E-06 0.57087 0.780319 2.56E-07 8.11E-06 0.57353 0.796626 2.13E-07 5.16E-06

1.75 0.40317 0.640347 2.24E-07 7.63E-06 0.40193 0.638187 1.86E-07 6.94E-06 0.41875 0.655758 2.09E-07 5.19E-06
2 0.29456 0.536968 2.31E-07 7.72E-06 0.27371 0.522564 2.39E-07 7.78E-06 0.27141 0.522959 2.10E-07 5.16E-06

2.25 0.2008 0.444071 2.37E-07 7.77E-06 0.19407 0.43537 2.49E-07 7.99E-06 0.1925 0.435435 2.25E-07 5.32E-06
2.5 0.15608 0.38838 2.61E-07 8.19E-06 0.16315 0.398788 1.95E-07 7.13E-06 0.14069 0.373117 2.24E-07 5.33E-06

LLF
0 511.163 514.059 1.94E-07 6.27E-06 511.677 511.93 1.77E-07 6.28E-06 506.904 507.725 2.19E-07 7.14E-06

0.25 29.4728 29.1113 1.96E-07 6.17E-06 30.1145 29.7191 1.92E-07 6.57E-06 23.7271 22.7815 2.22E-07 7.44E-06
0.5 6.84833 6.502 1.35E-07 4.94E-06 6.72874 6.34084 2.05E-07 6.78E-06 5.18563 4.67402 2.21E-07 7.41E-06

0.75 2.76337 2.63444 2.14E-07 6.45E-06 2.78938 2.62285 2.24E-07 6.98E-06 2.45799 2.18901 2.37E-07 7.74E-06
1 1.53064 1.54693 1.83E-07 4.69E-06 1.54514 1.54216 2.08E-07 6.97E-06 1.40388 1.3565 2.34E-07 7.64E-06

1.25 0.90341 1.05374 2.09E-07 6.44E-06 0.98446 1.09237 2.47E-07 7.56E-06 0.90978 0.977599 2.03E-07 7.19E-06
1.5 0.6385 0.829095 1.84E-07 5.68E-06 0.62572 0.815889 2.20E-07 7.08E-06 0.66242 0.798536 2.36E-07 7.69E-06

1.75 0.39512 0.634461 2.02E-07 5.92E-06 0.41974 0.655102 2.67E-07 7.80E-06 0.4376 0.642407 2.09E-07 7.24E-06
2 0.29178 0.536455 1.80E-07 6.84E-06 0.28497 0.531509 2.54E-07 7.45E-06 0.33495 0.555732 2.06E-07 7.23E-06

2.25 0.19793 0.441717 2.09E-07 7.32E-06 0.21774 0.46001 2.05E-07 7.02E-06 0.21106 0.447318 2.07E-07 7.21E-06
2.5 0.15885 0.393162 1.94E-07 5.52E-06 0.1721 0.406548 2.23E-07 7.16E-06 0.16768 0.39563 2.61E-07 7.37E-06

Classical
0 480.483 68.2775 2.71E-07 2.20E-06 511.303 74.7793 4.37E-07 6.31E-06 512.415 84.0906 1.99E-07 6.46E-06

0.25 231.78 17.6915 2.12E-07 1.86E-06 137.648 13.9298 4.57E-07 6.30E-06 76.9748 10.7891 2.11E-07 6.44E-06
0.5 89.2072 7.8145 2.21E-07 1.90E-06 64.247 6.6106 1.16E-06 1.09E-05 46.7017 5.78231 2.79E-07 8.24E-06

0.75 69.9729 5.7303 2.27E-07 1.92E-06 55.72 5.13864 9.90E-07 1.05E-05 50.7438 4.90322 1.91E-07 5.34E-06
1 20.2967 2.7477 2.40E-07 1.99E-06 23.912 3.079 4.02E-07 6.18E-06 31.5221 3.4653 1.78E-07 5.89E-06

1.25 18.9389 2.43786 2.38E-07 1.97E-06 35.325 3.28106 5.45E-07 6.97E-06 27.7714 2.97509 1.60E-07 4.65E-06
1.5 13.0537 1.91218 2.47E-07 2.01E-06 21.301 2.44998 4.21E-07 6.10E-06 35.4437 3.15728 2.63E-07 7.42E-06

1.75 18.6242 2.16448 2.42E-07 2.00E-06 29.634 2.65067 5.90E-07 7.48E-06 19.3307 2.21868 2.41E-07 6.49E-06
2 41.7386 3.09142 2.24E-07 1.92E-06 27.005 2.58978 4.39E-07 6.97E-06 7.1397 1.35329 3.60E-07 9.27E-06

2.25 26.841 2.39189 2.30E-07 1.94E-06 54.275 3.31382 6.72E-07 7.92E-06 7.2748 1.31083 2.20E-07 6.93E-06
2.5 8.0692 1.3175 2.23E-07 1.91E-06 8.927 1.39631 7.78E-07 7.76E-06 8.2121 1.35378 1.71E-07 5.31E-06

Table 3.8: ARL, SDRL, ATS, and SDTS Values for Bayesian CUSUM Chart Hyper-Parameter Sen-
sitivity Analysis with Poisson Conjugate
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We modified values for h to obtain an in-control ARL of around 500. Our prior α and β

were adjusted for a sensitivity analysis of the hyper-parameters while applying shifts to the in-

control sample mean. Similar to what is observed in section 3.5.1, there is a substantial drop

in both the ARL and SDRL after the initial shift in the sample mean. This exhibits the chart’s

ability to detect small changes, regardless of the loss function that is used. We also note the

consistent performance of the chart despite the choice of hyper-parameter. For the ATS we

notice that results are not significantly different between each of the loss functions or the hyper-

parameters. However, as you increase the α0 while decreasing the β0 we notice that the SDTS

under the squared error and precautionary loss functions decreases. We also see that the SDTS

under the squared error loss function is consistently lower than of its counterparts. Unlike what

we see with the normal conjugate case, our ARL and SDRL are closer in value; this is because

the use of the difference in distributions.
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Shifts

n h 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

SELF

5 15
496.298 32.2171 15.6029 9.9113 7.5339 5.6834 4.8584 4.0162 3.5874 3.2056 2.5967 ARL

(456.631) (14.6619) (5.95053) (3.7745) (2.80757) (2.2271) (1.92649) (1.63295) (1.53856) (1.38807) (1.24388) SDRL
1.71E-07 2.00E-07 1.32E-07 2.30E-07 2.14E-07 2.37E-07 2.87E-07 2.46E-07 2.67E-07 1.56E-07 2.49E-07 ATS

(6.02E-06) (6.91E-06) (5.83E-06) (7.44E-06) (7.38E-06) (7.35E-06) (8.37E-06) (7.84E-06) (8.25E-06) (5.89E-06) (7.83E-06) SDTS

10 5.6
473.362 26.3559 5.38841 2.46537 1.3864 0.85102 0.56017 0.42677 0.29204 0.2053 0.14904 ARL

(474.171) (25.6893) (5.00599) (2.27279) (1.38406) (0.985893) (0.763662) (0.638543) (0.526149) (0.443703) (0.376891) SDRL
4.34E-07 5.14E-07 5.86E-07 5.65E-07 5.50E-07 5.90E-07 5.92E-07 5.90E-07 5.39E-07 5.13E-07 6.04E-07 ATS

(8.21E-06) (7.60E-06) (8.87E-06) (9.01E-06) (1.13E-05) (8.10E-06) (9.35E-06) (9.19E-06) (1.01E-05) (1.13E-05) (8.50E-06) SDTS

20 25.6
507.147 8.1758 3.1675 1.9069 1.176 0.8272 0.581 0.4307 0.2965 0.1923 0.1012 ARL

(490.265) (4.43099) (1.54947) (0.97736) (0.715279) (0.603937) (0.556272) (0.515167) (0.462588) (0.395627) (0.302256) SDRL
2.69E-07 2.34E-07 2.47E-07 2.49E-07 2.44E-07 3.04E-07 2.45E-07 3.22E-07 3.00E-07 3.20E-07 2.89E-07 ATS

(2.09E-06) (1.95E-06) (2.01E-06) (2.02E-06) (2.00E-06) (2.22E-06) (2.00E-06) (2.27E-06) (2.20E-06) (2.26E-06) (2.16E-06) SDTS

30 20.05
507.798 5.60247 1.52877 0.68668 0.30691 0.12068 0.04604 0.01606 0.0062 0.002 0.00075 ARL

(504.214) (4.3489) (1.1703) (0.688368) (0.49185) (0.329175) (0.210096) (0.125706) (0.0784956) (0.0446766) (0.0273759) SDRL
2.61E-07 2.50E-07 2.62E-07 2.70E-07 2.77E-07 2.92E-07 2.71E-07 2.77E-07 2.59E-07 2.55E-07 2.55E-07 ATS

(2.06E-06) (2.02E-06) (2.06E-06) (2.09E-06) (2.12E-06) (2.17E-06) (2.10E-06) (2.12E-06) (2.06E-06) (2.04E-06) (2.04E-06) SDTS

PLF

5 15
485.852 32.0134 15.7883 10.1827 7.62142 5.87656 4.9891 4.03255 3.38085 3.10012 2.78037 ARL

(441.163) (14.464) (6.05076) (3.77094) (2.82046) (2.25137) (1.92472) (1.64968) (1.46048) (1.37412) (1.24799) SDRL
3.65E-07 4.62E-07 7.03E-07 4.33E-07 3.43E-07 3.41E-07 3.98E-07 3.43E-07 3.37E-07 3.31E-07 3.51E-07 ATS

(4.35E-06) (4.46E-06) (6.62E-06) (4.91E-06) (3.89E-06) (4.01E-06) (4.34E-06) (4.62E-06) (4.34E-06) (4.44E-06) (4.45E-06) SDTS

10 5.65
503.703 25.2912 5.77501 2.57142 1.34871 0.90072 0.60849 0.4113 0.3099 0.228 0.16009 ARL

(505.085) (24.6767) (5.24267) (2.32112) (1.36733) (1.00502) (0.780647) (0.630248) (0.541297) (0.465571) (0.392481) SDRL
1.94E-07 2.15E-07 2.55E-07 2.35E-07 2.19E-07 2.63E-07 2.06E-07 2.47E-07 2.29E-07 2.22E-07 2.15E-07 ATS

(7.02E-06) (7.25E-06) (7.89E-06) (7.62E-06) (7.36E-06) (8.01E-06) (7.02E-06) (7.80E-06) (7.55E-06) (7.36E-06) (7.24E-06) SDTS

20 26
525.639 8.40693 3.34964 1.88663 1.30903 0.89353 0.58188 0.43516 0.28612 0.18427 0.10412 ARL

(516.751) (4.54815) (1.59026) (0.963669) (0.724341) (0.606856) (0.55519) (0.517664) (0.458143) (0.389351) (0.305743) SDRL
2.46E-07 2.42E-07 2.27E-07 2.11E-07 2.23E-07 2.00E-07 2.19E-07 2.25E-07 2.18E-07 1.93E-07 2.11E-07 ATS

(7.94E-06) (7.90E-06) (7.68E-06) (7.41E-06) (7.59E-06) (7.18E-06) (7.50E-06) (7.63E-06) (7.46E-06) (7.03E-06) (7.41E-06) SDTS

30 19.68
525.041 5.96356 1.55198 0.66585 0.2828 0.11563 0.04548 0.01557 0.00519 0.0021 0.00067 ARL

(523.562) (4.71551) (1.19914) (0.693104) (0.477958) (0.323481) (0.208882) (0.123885) (0.0718545) (0.0457776) (0.0258757) SDRL
2.41E-07 2.62E-07 2.70E-07 2.56E-07 2.44E-07 2.55E-07 2.35E-07 2.41E-07 2.45E-07 2.47E-07 2.46E-07 ATS

(7.73E-06) (8.23E-06) (8.36E-06) (8.07E-06) (7.94E-06) (8.07E-06) (7.81E-06) (7.90E-06) (7.98E-06) (7.94E-06) (7.98E-06) SDTS

LLF

5 12
538.844 28.2244 13.2126 8.57527 6.00356 4.79641 4.21672 3.16248 2.7339 2.39553 1.98138 ARL

(506.553) (14.7659) (5.7545) (3.5996) (2.56895) (2.0908) (1.80989) (1.50578) (1.35128) (1.23558) (1.1248) SDRL
1.95E-07 2.15E-07 2.18E-07 2.24E-07 2.21E-07 1.82E-07 2.08E-07 2.09E-07 1.78E-07 2.03E-07 2.14E-07 ATS

(6.85E-06) (7.26E-06) (7.31E-06) (7.16E-06) (7.25E-06) (6.65E-06) (7.11E-06) (7.11E-06) (6.52E-06) (7.01E-06) (7.14E-06) SDTS

10 5.33
519.013 30.9964 6.4453 2.71976 1.50492 0.92406 0.62997 0.43218 0.29822 0.21673 0.14393 ARL

(518.483) (30.6673) (6.08091) (2.53317) (1.49928 (1.04987) (0.811891) (0.65547) (0.541041) (0.458146) (0.375199) SDRL
2.09E-07 2.87E-07 2.24E-07 1.94E-07 1.82E-07 1.80E-07 1.82E-07 2.13E-07 1.91E-07 2.19E-07 2.26E-07 ATS

(5.37E-06) (7.58E-06) (6.27E-06) (6.86E-06) (5.67E-06) (5.44E-06) (4.83E-06) (5.43E-06) (7.00E-06) (5.61E-06) (7.08E-06) SDTS

20 20.1
509.815 8.08598 2.77656 1.4704 0.99445 0.60287 0.37462 0.25715 0.13602 0.0824 0.0489 ARL

(506.393) (5.18941) (1.59694) (0.931431) (0.712263) (0.594927) (0.510881) (0.446211) (0.345136) (0.275482) (0.215983) SDRL
2.40E-07 2.55E-07 2.26E-07 2.49E-07 2.37E-07 2.57E-07 2.32E-07 2.25E-07 2.19E-07 2.20E-07 2.21E-07 ATS

(6.95E-06) (7.53E-06) (6.75E-06) (7.69E-06) (7.56E-06) (7.20E-06) (6.90E-06) (7.63E-06) (7.54E-06) (3.62E-06) (7.55E-06) SDTS

30 20
476.63 5.55564 1.49389 0.64454 0.31084 0.12206 0.04281 0.01663 0.00516 0.00173 0.0008 ARL

(474.056) (4.30695) (1.15642) (0.675831) (0.493314) (0.331544) (0.202873) (0.128037) (0.0716476) (0.0415573) (0.028273) SDRL
4.41E-07 3.27E-07 2.78E-07 2.84E-07 3.01E-07 2.99E-07 3.96E-07 2.82E-07 2.82E-07 3.00E-07 2.58E-07 ATS

(5.30E-06) (4.61E-06) (4.08E-06) (4.22E-06) (4.26E-06) (4.73E-06) (5.21E-06) (4.24E-06) (4.04E-06) (4.81E-06) (5.11E-06) SDTS

Table 3.9: ARL, SDRL, ATS, and SDTS Values for Bayesian CUSUM Chart Sample Size Sensitivity
Analysis with Poisson Conjugate
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The sample size analysis uses the same values for n as in section 3.5.1 and the values for

h are determined based on our desired ARL0 = 500, are seen in table (reference table). Results

shown in table 3.9 continue similar patterns as table 3.8. There is again a noticeable drop in

the ARL as we impose our first mean shift, while the SDRL remains close in value to the ARL.

Our ATS is relatively small regardless of the sample size. The SDTS for the squared error loss

function appears to decrease as our sample size increases, but remains consistent for the other

loss functions.

(a) α= 16, β= 5
8

(b) α= 36, β= 5
12 (c) α= 64, β= 5

16

Figure 3.1: ARL Comparisons
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(a) α= 16, β= 5
8

(b) α= 36, β= 5
12 (c) α= 64, β= 5

16

Figure 3.2: SDRL Comparisons

We show a visual comparison of the performance measurements between each of the Bayesian

charts under the loss functions along with the classical CUSUM chart method in figures 4.1 and

4.2. Our plots show that regardless of the loss function used, there is a drastic decline in the

ARL after a small shift is imposed and the trend continues to decline until it approaches zero.

The classical chart exhibits a similar initial decline, but the difference in the in-control ARL and

first out-of-control ARL occurrence is not as large. In figures 4.1a, 4.1b, and 4.1c the classical

method ARL results fluctuate as the applied mean shifts are added. This is also seen for the
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SDRL in scenario 2 (figure 4.2b), however, in figures 4.2a and 4.2c the classical results for the

SDRL show consistency.

3.6. Real Data Analysis

We consider our method on a dataset found at www2.datasus.gov.br seen in Alencar et al.,

2017 and Urbieta et al., 2017. The data is a count series of respiratory disease related hospital-

izations for people over 65 years old in São Paulo, Brazil. Originally, the data was collected to

represent daily counts from January 2006-December 2011, but we chose to look at the weekly

number of hospitalizations, totaling 313 weeks. Shown in figure 4.3b is the week plotted against

the average weekly count, observing that the weekly number of hospitalizations has a positive

linear trend and a seasonal pattern over time. That is, there are a greater number of hospitaliza-

tions in the São Paulo winter months (June-August) than in their summer months (December-

February).

www2.datasus.gov.br
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Figure 3.3: Weekly Hospitalizations with predicted values

Since we have count data with dispersion present, we consider the negative binomial dis-

tribution with our generalized linear model. We account for the seasonal pattern using the sine

and cosine functions. Population is used as an offset variable along with the log link function to

properly model hospitalization rate per 100,000 inhabitants. We assume that counts for January

2006-December 2010 are non-epidemic and use this to construct the model. We validate our

model using the weekly data for 2011 and predict weekly counts for 2012.

ln

[
100,000∗ µ0,t

Pt

]
=β0 +β1 sin

(
2πt

52

)
+β2 cos

(
2πt

52

)
(3.5)

where, µ0,t is the non-epidemic average number of hospitalizations and Pt is the popula-

tion size for week t , and 52 represents the seasonal period. This model follows the same make

up as what is seen in Urbieta et al., 2017, however, since we do not consider daily counts we do
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not use day-of-week dummy variables.

We use this data to assess the performance of our control chart and track the weekly number

of hospitalizations for January 2006 to December 2011. We partition the data into two sections:

training data and data to validate. Our training data is the weekly counts for January 2006-

December 2010. The upper control limit is estimated using training data and we apply shifts to

the weekly data for 2011 to assess the charts detection capability.

Figure 3.4: Squared Error Loss Function CUSUM Chart Results
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Figure 3.5: Precautionary Loss Function CUSUM Chart Results
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Figure 3.6: Linex Loss Function CUSUM Chart Results

Figures 3.4, 3.5, and 3.6 track the weekly number of hospitalizations for January 2006 to De-

cember 2011. Without an induced shift the weekly data for 2011 falls below the upper control

limit under the SELF and PLF chart, but once a shift occurs both charts signal out-of-control.

However, under the LLF chart a breech of the control limit occurs regardless if a shift was im-

posed, and this is likely a result of the chosen value for c. For each variation of the chart, as we

increase the shift size the out-of-control detection of the charts occurs earlier. We observe a de-

lay in detection at the beginning of 2011 because of the seasonal affects. Although we increase

the counts via our shifts, in application it is not alarming that hospitalizations would increase

by 25% or 50% per 100,000 inhabitants.
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3.7. Discussion

We constructed Bayesian CUSUM control charts with the use of the self error, precaution-

ary, and linex loss functions. Our objective was to assess the detection capabilities of the charts

under the Gaussian conjugate and Poisson conjugate cases. The performance measurements

for our study were the ARL, SDRL, ATS, and SDTS. Based on these measurements we recom-

mend the use of any of the three CUSUM control charts. Each performed well in obtaining

the desired ARL0 and detecting a shift in the mean, while maintaining a relatively low ATS. We

applied the charts to a count series dataset and analyzed their real-world capabilities. All the

charts quickly detected the out-of-control occurrences, and the squared error and precaution-

ary loss functions performed similarly in tracking in-control and out-of-control occurrences.

The linex loss function signaled early in the in-control and out-of-control scenarios. This is

because it is exponential in nature due to the chosen value of its constant, c and signifies over-

estimation over underestimation. Overall, we recommend the use of any of the control charts

under different distributions and regardless of the sample size and hyper-parameters.
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3.8. Appendix

3.8.1. Poisson-Gamma Derivations

Poisson Likelihood:

x|λ∼ Poi sson(λ)

f (x|λ) = e−nλ λ
∑n

i=1 xi

n∏
i=1

xi !

(3.6)

Gamma Prior:

λ∼Gamma(α,β)

f (λ) = βα

Γ(α)
λα−1e−βλ

(3.7)

Gamma Posterior:

λ|x ∼Gamma(nx̄ +α,n +β)

f (λ|x) = βα

Γ(α)
λ(nx̄+α)−1e−(n+β)λ

(3.8)

Posterior Predictive for Poisson Conjugate:

y |x ∼ Poi sson(λ)

f (y |x) = e−λ λy

y !

(3.9)



Chelsea L. Jones Chapter 3. Bayesian CUSUM Control Charts 80

f (y |x) =
∫

f (λ|x) f (y |λ)dλ

=
∫

(β+n)nx̄+α

Γ(nx̄ +α)
e−(n+β)λλ(nx̄+α)−1 e−λ λy

y !
dλ

= (β+n)nx̄+α

Γ(nx̄ +α)y !

∫
e−(n+β)e−λλ(nx̄+α)−1λy dλ

let c =
(β+n)nx̄+α

Γ(nx̄ +α)y !
, c

∫
e−(n+β)λ−λλ(nx̄+α)−1+y dλ

= c
∫

e−(n+β+1)λλ(nx̄+y+α)−1dλ

= (β+n)nx̄+α

Γ(nx̄ +α)y !
· Γ(nx̄ +α)+ y

(β+n +1)nx̄+α+y

= Γ(nx̄ +α+ y)

Γ(nx̄ +α)y !
· (β+n)nx̄+α

(β+n +1)nx̄+α+y

= (nx̄ +α+ y)!

(nx̄ +α)!y !
·
(

β+n

β+n +1

)nx̄+α (
1

β+n +1

)y

(
nx̄ +α+ y −1

y −1

)
·
(
1− 1

β+n +1

)nx̄+α (
1

β+n +1

)y

(3.10)

f (y |x) =
(

nx̄ +α+ y −1

y −1

)(
1− 1

β+n +1

)nx̄+α (
1

β+n +1

)y

y |x ∼ Neg Bi n(nx̄ +α,n +β)

(3.11)

3.8.1.1. Loss Functions Best Estimators

SELF:

λ̂∗ = E [λ|x] = nx̄ +α
n +β ,[

µSELF,PG = λ̂∗ = nx̄ +α
n +β

] (3.12)
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PLF:

λ̂∗ =
√

E [λ2|x]

V AR[λ|x] = E [λ2|x]−E [λ|x]2

nx̄ +α
(n +β)2

= E [λ2|x]−
(

nx̄ +α
n +β

)2

nx̄ +α
(n +β)2

= E [λ2|x]− (nx̄ +α)2

(n +β)2

E [λ2|x] = (nx̄ +α)+ (nx̄ +α)2

(n +β)2√
E [λ2|x] =

√
(nx̄ +α)+ (nx̄ +α)2

(n +β)2[
µPLF,PG = λ̂∗ =

√
(nx̄ +α)+ (nx̄ +α)2

(n +β)

]

(3.13)

LLF:

λ̂∗ =−1

c
ln

[
E [e−cλ]

]
E [e−cλ] =

∫
e−cλ · β

α

Γ(α)
λα−1e−βλdλ

= βα

Γ(α)

∫
e−cλλα−1e−βλdλ

= βα

Γ(α)

∫
e−(c+β)λλα−1dλ

= βα

�
��Γ(α)

· ���Γ(α)

(c +β)α[
µLLF,PG = λ̂∗ =−1

c
ln

[
βα

(c +β)α

]]

(3.14)

3.8.1.2. Solving for α and β

Given µ0 = [10,15,20] and σ2
0 = [16,36,64]:
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µ0 = 10, σ2
0 = 16

10 = α

β
⇒α= 10β

16 = α

β2
⇒ 16 = 10β

β2
⇒

[
β= 5

8

]
10 = α

5
8

⇒ [α= 16]

(3.15)

µ0 = 15, σ2
0 = 36

15 = α

β
⇒α= 15β

36 = α

β2
⇒ 36 = 15β

β2
⇒

[
β= 5

12

]
15 = α

5
12

⇒ [α= 36]

(3.16)

µ0 = 20, σ2
0 = 64

20 = α

β
⇒α= 20β

64 = α

β2
⇒ 64 = 15β

β2
⇒

[
β= 5

16

]
20 = α

5
16

⇒ [α= 64]

(3.17)



Chapter 4

Generalized Bayesian EWMA Charts using

Different Loss Functions

Abstract

In profile monitoring, control charts are used to visually observe process behaviors. Often

there are control charts that are best suited for varying processes. A Bayesian approach to the

popular exponentially weighted moving average (EWMA) control chart is proposed to perform

under different distributions. Different loss functions are considered to inform the framework

of the control chart for the Poisson conjugate case. The proposed method is assessed under a

simulation study where the performance measurements are the average run length (ARL), stan-

dard deviation of the run length (SDRL), average time to signal (ATS), and standard deviation of

time to signal (SDTS). Further assessment of the general use of the method is done via a sensi-

tivity analysis for the control chart decision parameters, out-of-control shift sizes, and distribu-

tion hyper-parameters. Once the performance and generalization of the chart is considered, we

model a count series of respiratory disease related hospitalizations for people over 65 years old

83
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in São Paulo, Brazil. The control chart is implemented with an analysis of the hospitalization

data to showcase the efficacy of our method on over-dispersed count data.

Keywords: Profile Monitoring; Bayesian; Loss Functions, EWMA; Sensitivity Analysis; Qual-

ity Control.

4.1. Introduction

Profile monitoring is an area within statistical process monitoring (SPM) that is character-

ized by the use of control charts to visually monitor a process. The exponentially weighted

moving average (EWMA) (Roberts, 1959) and cumulative sum (CUSUM) (Page, 1954) control

charts are frequently used charts because of their memory-based properties. Both charts have

been studied in conjunction with a variety of Bayesian techniques such like, Abbas et al., 2019,

Ali, 2020, Tsiamyrtzis and Hawkins, 2008, Aslam and Anwar, 2020, and Noor-ul Amin and Noor,

2021.

Our objective is to apply Bayesian techniques proposed in Riaz et al., 2017 and Jones et al.,

2021 to the EWMA chart for monitoring non-Gaussian data. This paper will proceed as follows:

presentation of the Bayesian methods and control chart framework under these methods, sim-

ulation analysis of the proposed charting method under the Poisson likelihood-Gamma prior

case, application of methods on real count data, and discussion of all results.

4.2. Bayesian Inference

Bayes theorem combines the likelihood function, which is determined by the data, with the

expert-chosen prior distribution to determine what the posterior distribution will be (equation
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4.1).

p(θ|X) = p(X|θ)p(θ)

p(X)
(4.1)

where, θ is the parameter of interest, X is the data, P (θ) is the prior distribution, P (X) is

the marginal distribution of the data, and P (X|θ) is the likelihood function. Once the posterior

distribution is found, it is be combined with the likelihood of future y data and integrated with

respect to θ to obtain the posterior predictive distribution (equation 4.2).

p(y |X) =
∫

p(y|θ)p(θ|X)dθ

where, p(y|θ) is the likelihood function for the future data

(4.2)

4.2.1. Loss Functions

In Bayesian statistics, a loss function can be used to obtain the best estimator for the pa-

rameter of interest. The idea is to minimize the expected loss presented using a specified loss

function, with the general form seen in equation 4.3.

θ̂∗ = min
θ̂

Eθ[L(θ̂,θ]

where, θ̂∗is the estimator which minimizes the expected loss

(4.3)
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Loss Function L(θ, θ̂) === θ̂∗ ===

Squared Error (θ− θ̂)2 E [θ|x]

Precautionary (θ−θ̂)2

θ̂

√
E [θ2|x]

Linex (ec(θ̂−θ) − c(θ̂−θ)−1) −1
c l nE [e−cθ]

Table 4.1: Bayes Estimators for Loss Functions

We study the three loss functions that are shown in table 4.1 for our method. The first is

the Squared Error loss function (SELF) which is a symmetric loss function known for its sim-

plicity and easy application. Next we study the Precautionary loss function (PLF), first outlined

in Norstrom, 1996 to prevent parameter overestimation. Unlike the SELF, this loss function

weights positive and negative errors differently and is known to produce better estimators for

low failure rate problems. The Linex loss function (LLF), our final choice, is similar to the PLF

in that it is also asymmetric aiming to identify parameter overestimation. The constant, c, in

the LLF is user defined such that if c > 0 overestimation takes presidence, but if c → 0 the loss

function becomes symmetric.

4.2.2. Poisson Conjugate

The Poisson distribution is best for modeling count data, and when used under Bayesian

inference its conjugate prior is the Gamma distribution. When combined under equation 4.1,

we obtain the following posterior distribution: Gamma(nx̄+α,n+β), with shape = nx̄+α and

inverse scale = n +β. Once the posterior distribution is obtained, we are able to derive the

posterior predictive distribution to be Neg Bi n(nx̄ +α,n +β) under equation 4.2. The means

for both the posterior and posterior predictive distributions are derived under each of the loss

functions and are seen in table 4.2. Since our method tracks the Bayes estimator of a profile, we
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need the variance of the Bayes Estimator of the posterior predictive distribution, σ2
Ȳ

. Note that

because we track profile averages as our Bayes Estimator, our µ under each loss function will be

different, but our variances will remain the same regardless of the loss function used.

Loss Function Bayes Estimator

Squared Error µSELF,PG = nx̄+α
n+β

Precautionary µPLF,PG =
p

(nx̄+α)(nx̄+α)2

n+β

Linex µLLF,PG =−1
c l n

[
βα

(c+β)α

]
Table 4.2: Bayes Estimators for Loss Functions

Distribution Variance

Posterior σ2
PD = nx̄+α

(n+β)2

Posterior Predictive σ2
PPD = nx̄+α

(n+β)2 (n +β+1)

Bayes Estimator of Posterior Predictive σ2
Ȳ
= nx̄+α

n(n+β)2 (n +β+1)

Table 4.3: Variances Based on Distribution

where, n is the sample size, x̄ is the sample mean, α is the shape parameter, β is the inverse

scale parameter, and c is the Linex loss function symmetry constant.

4.2.3. Chart Framework

In equation 4.4, µLF and σȲ are the mean and standard deviation from the Bayes estimator

posterior predictive distribution respective to the loss function and τ is a user-defined constant
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determining the length of memory. For the charting statistic, zi , (ȳ |x) is the Bayes estimator for

the set of predicted data.

EWMA Posterior Predictive Control Limits:

UC L/LC L =µLF ±LσȲ

√
τ

2−τ
zi = τ(ȳ |x)+ (1−τ)zi−1

(4.4)

In the Poisson conjugate case, we consider only the upper control limit since we are inter-

ested in an increase in counts.

4.3. Sensitivity Analyses

We conduct a sensitivity analysis for the hyper-parameters and the sample size for the

Bayesian EWMA control chart under the Poisson conjugate to test its performance. For both

analyses, our performance measurements are the average run length (ARL), standard deviation

of the run length (SDRL), average time to signal (ATS), and the standard deviation of the time

to signal (SDTS). We assess the performance by first obtaining the desired in-control ARL, then

determine which method has the greatest decrease once the initial shift is imposed.

We impose 11 relatively small shift sizes denoted as δ = 0 to 2.5 by 0.25, where the shift size

is defined as µ1 = µ0 ∗ (1+δ). Note that δ = 0 indicates our desired in-control ARL of around

500 (ARL0 = 500) and we use m = 10,000 iterations to calculate our results. The initial data is

generated using Poisson(λ= 25).
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4.3.1. Hyper-Parameter Analysis

We selected 3 choices for our hyper-parameter simulations derived from µ0 = [10,15,20]

andσ0 = [4,6,8]. Using these values for µ0 andσ0, we solved for the prior values ofα0 andβ0 as:

α0 = [16,36,64] and β0 =
[5

8 , 5
12 , 5

16

]
. The classical EWMA chart was also studied as a comparison

of its capabilities on count data versus our Bayesian methods.
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α0 = 16, β0 = 5
8 α0 = 36, β0 = 5

12 α0 = 64, β0 = 5
16

Shifts ARL SDRL ATS SDTS ARL SDRL ATS SDTS ARL SDRL ATS SDTS

SELF
0 457.812 584.427 2.83E-07 5.90E-06 503.518 987.898 1.93E-07 1.78E-06 536.307 2725.14 2.64E-07 2.40E-06

0.25 3.1181 5.08246 2.39E-07 5.51E-06 0.4183 1.57915 2.18E-07 1.86E-06 0.0245 0.430697 2.33E-07 1.95E-06
0.5 0.375 0.809058 2.36E-07 5.31E-06 0.0363 0.244504 2.07E-07 1.84E-06 0.0022 0.0616049 1.96E-07 1.79E-06

0.75 0.2198 0.554877 2.75E-07 5.97E-06 0.0469 0.278029 2.19E-07 1.90E-06 0.0006 0.0282779 2.71E-07 2.10E-06
1 0.0389 0.202452 3.54E-07 6.60E-06 0.0065 0.081595 2.01E-07 1.82E-06 0.0004 0.019996 2.36E-07 2.01E-06

1.25 0.0238 0.156312 2.23E-07 5.35E-06 0.0006 0.0244875 2.17E-07 1.89E-06 0.0001 0.0099995 2.19E-07 1.90E-06
1.5 0.0077 0.0874112 1.96E-07 4.97E-06 0.0007 0.0264483 2.06E-07 1.84E-06 0 0 1.96E-07 1.80E-06

1.75 0.0031 0.0555913 2.31E-07 5.38E-06 0.0001 0.0099995 2.71E-07 2.10E-06 0 0 2.04E-07 1.83E-06
2 0.0007 0.0264483 2.35E-07 5.51E-06 0.0001 0.0099995 2.13E-07 1.87E-06 0 0 2.33E-07 1.95E-06

2.25 0.0006 0.0244875 1.69E-07 4.63E-06 0 0 1.97E-07 1.80E-06 0 0 2.38E-07 1.97E-06
2.5 0.0002 0.0141407 2.78E-07 5.98E-06 0 0 1.98E-07 1.80E-06 0 0 2.45E-07 2.00E-06

PLF
0 458.006 721.484 2.25E-07 1.92E-06 564.132 1231.69 2.68E-07 5.45E-06 520.414 3476.57 8.96E-07 6.42E-06

0.25 0.9618 2.42271 2.47E-07 2.01E-06 0.6846 2.78538 2.44E-07 2.00E-06 0.0187 0.337861 8.65E-07 6.29E-06
0.5 0.2256 0.73014 2.29E-07 1.94E-06 0.0895 0.476329 2.06E-07 1.84E-06 0.0019 0.0607979 8.90E-07 7.16E-06

0.75 0.0299 0.190804 2.35E-07 1.96E-06 0.0087 0.111464 2.21E-07 1.90E-06 0.0003 0.0173179 9.73E-07 6.47E-06
1 0.0122 0.114242 2.31E-07 1.95E-06 0.0017 0.041196 2.21E-07 5.39E-06 0 0 8.61E-07 6.31E-06

1.25 0.0112 0.109884 2.19E-07 1.90E-06 0.0003 0.0173179 1.82E-07 6.88E-06 0 0 7.87E-07 5.85E-06
1.5 0.0006 0.0244875 2.32E-07 1.96E-06 0.0001 0.0099995 2.60E-07 8.23E-06 0 0 8.58E-07 6.13E-06

1.75 0.0001 0.0099995 2.26E-07 1.93E-06 0 0 2.08E-07 7.36E-06 0 0 7.49E-07 5.54E-06
2 0.0001 0.0099995 2.15E-07 1.88E-06 0.0001 0.0099995 2.52E-07 4.10E-06 0 0 8.54E-07 5.61E-06

2.25 0.0001 0.0099995 2.39E-07 1.98E-06 0 0 2.19E-07 1.90E-06 0 0 6.09E-07 5.55E-06
2.5 0 0 2.46E-07 2.00E-06 0 0 2.01E-07 1.81E-06 0 0 3.75E-07 4.36E-06

LLF
0 495.076 473.145 4.16E-07 4.90E-06 522.696 527.33 3.24E-07 2.42E-06 0 0 2.60E-07 8.23E-06

0.25 15.2008 5.3951 3.24E-07 2.30E-06 6.6035 4.99663 3.14E-07 2.26E-06 0 0 1.82E-07 6.89E-06
0.5 6.7224 1.65636 4.47E-07 3.65E-06 2.163 1.50307 3.48E-07 2.39E-06 0 0 1.57E-07 6.37E-06

0.75 4.9824 1.16829 4.05E-07 2.58E-06 1.123 0.878562 3.10E-07 2.25E-06 0 0 2.23E-07 6.94E-06
1 3.813 0.912705 3.38E-07 2.35E-06 0.6609 0.660539 3.32E-07 2.32E-06 0 0 2.31E-07 6.98E-06

1.25 3.0444 0.770343 2.83E-07 2.15E-06 0.3802 0.529385 3.43E-07 2.36E-06 0 0 2.22E-07 5.93E-06
1.5 2.4436 0.671133 3.48E-07 2.38E-06 0.2101 0.419473 2.97E-07 2.20E-06 0 0 2.12E-07 7.37E-06

1.75 2.0438 0.600568 3.35E-07 2.34E-06 0.1009 0.302191 3.93E-07 2.54E-06 0 0 1.61E-07 6.38E-06
2 1.7136 0.570942 3.12E-07 2.25E-06 0.0654 0.248038 3.19E-07 2.29E-06 0 0 3.39E-07 9.38E-06

2.25 1.5086 0.546558 3.40E-07 2.38E-06 0.0335 0.179938 2.92E-07 2.18E-06 0 0 2.08E-07 7.36E-06
2.5 1.3524 0.503998 3.35E-07 2.33E-06 0.0158 0.1255 3.09E-07 2.25E-06 0 0 2.86E-07 8.63E-06

Classical
0 469.116 574.412 2.93E-07 2.18E-06 445.19 547.614 4.40E-07 3.84E-06 447.05 542.769 2.41E-07 1.99E-06

0.25 3.3321 5.24559 3.44E-07 2.37E-06 6.8104 9.65327 3.47E-07 2.38E-06 4.282 6.43761 2.41E-07 1.99E-06
0.5 0.6292 1.59019 3.63E-07 2.43E-06 0.4254 1.22883 3.36E-07 2.39E-06 0.6291 1.56567 2.61E-07 2.07E-06

0.75 0.0837 0.435998 3.05E-07 2.23E-06 0.3659 1.08463 3.61E-07 2.42E-06 0.128 0.566053 2.73E-07 2.11E-06
1 0.034 0.25699 2.88E-07 2.17E-06 0.0771 0.407376 3.63E-07 2.44E-06 0.0518 0.322671 2.51E-07 2.03E-06

1.25 0.0138 0.14356 2.79E-07 2.14E-06 0.0091 0.114966 3.22E-07 2.29E-06 0.0138 0.144947 2.54E-07 2.04E-06
1.5 0.0034 0.0691986 2.83E-07 2.16E-06 0.0032 0.0692081 3.19E-07 2.28E-06 0.0025 0.0607762 2.47E-07 2.01E-06

1.75 0.002 0.050951 2.59E-07 2.06E-06 0.0022 0.0528693 2.88E-07 2.17E-06 0.0014 0.0446994 2.56E-07 2.05E-06
2 0.0003 0.0173179 2.66E-07 2.09E-06 0.0007 0.0299918 3.26E-07 2.30E-06 0.0018 0.0468696 2.21E-07 1.90E-06

2.25 0 0 3.16E-07 2.27E-06 0 0 2.97E-07 2.20E-06 0.0002 0.0141407 2.18E-07 1.89E-06
2.5 0.0001 0.0099995 2.78E-07 2.13E-06 0 0 3.35E-07 2.33E-06 0 0 2.25E-07 1.92E-06

Table 4.4: ARL, SDRL, ATS, and SDTS Values for Bayesian EWMA Chart Hyper-Parameter Sensi-
tivity Analysis with Poisson Conjugate

Loss function specific results for the hyper-parameter sensitivity analysis are given in table
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4.4. Results for the squared error method showed a steep decrease in the ARL after the initial

shift change of 0.25 was introduced and as we increased the hyper-parameter, this decrease be-

came larger. We also noticed that as we increased the hyper-parameter, the SDRL increases and

quicker detection also happens based on the ATS. These findings also translate to the precau-

tionary case, except as the hyper-parameter increases under the PLF, the ATS increases. For the

linex case, getting results for the third condition under the analysis with n = 20 and τ = 0.15

was difficult. This is similar to the classical EWMA under each of the hyper-parameters. Results

were received, but the number of simulation runs were significantly more than when using the

SELF or PLF methods.

Besides the classical method, we conclude that the LLF method performed the worst under

the hyper-parameter analysis. The ARL results suggest that the PLF was the best performer, but

based on all four performance measurements, the SELF was the top performer.
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(a) α= 16, β= 5
8

(b) α= 36, β= 5
12 (c) α= 64, β= 5

16

Figure 4.1: ARL Comparisons
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(a) α= 16, β= 5
8

(b) α= 36, β= 5
12 (c) α= 64, β= 5

16

Figure 4.2: SDRL Comparisons

Figures 4.1 and 4.2 show the ARL and SDRL results from table 4.4 for each of the loss func-

tions and the classical method.

4.3.2. Sample Size Analysis

The sample size sensitivity analysis was conducted using n = {20,30,40,50}, setting τ= 0.15

and adjusting the chart parameter, L, to attain ARL0 ≈ 500. Results from the analysis are in table
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4.5.
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Shifts

n L 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

SELF

20 -3.7
495.851 0.8169 0.0132 0.0032 0.0006 0.0006 0.0001 0.0001 0.0001 0 0 ARL

(534.0910) (1.9407) (0.9694) (0.7192) (0.5475) (0.5286) (0.5093) (0.2843) (0.2984) (0.3869) (0.4422) (SDRL)
3.83E-07 3.37E-07 3.45E-07 3.04E-07 3.69E-07 3.81E-07 3.73E-07 3.69E-07 2.52E-07 3.74E-07 4.92E-07 ATS

(6.70E-06) (5.75E-06) (5.33E-06) (4.99E-06) (5.07E-06) (6.01E-06) (5.29E-06) (5.23E-06) (5.01E-06) (5.07E-06) (5.23E-06) (SDTS)

30 78
551.883 7.4582 4.1796 2.9312 2.1155 1.6517 1.4455 1.0171 0.9431 0.826 0.7363 ARL

(313.336) (6.77449) (2.4378) (1.34781) (0.885223) (0.662202) (0.547244) (0.410889) (0.47444) (0.410161) (0.140624) (SDRL)
2.60E-07 1.67E-07 2.19E-07 1.97E-07 1.75E-07 1.89E-07 1.82E-07 1.97E-07 1.78E-07 1.78E-07 1.72E-07 ATS

(7.14E-06) (6.51E-06) (8.30E-06) (6.37E-06) (5.10E-06) (4.31E-06) (8.79E-06) (9.19E-06) (7.40E-06) (7.43E-06) (1.00E-05) (SDTS)

40 91
571.68 10.735 5.8342 3.8241 2.3965 2.0413 1.5571 1.1684 1.0935 0.9508 0.8813 ARL

(551.8080) (3.0739) (1.3374) (0.8558) (0.5859) (0.5093) (0.5201) (0.3858) (0.3202) (0.2675) (0.3377) (SDRL)
3.70E-07 2.91E-07 2.74E-07 2.74E-07 2.79E-07 3.96E-07 3.18E-07 2.97E-07 3.12E-07 2.81E-07 2.91E-07 ATS

(2.45E-06) (2.18E-06) (2.12E-06) (2.12E-06) (2.14E-06) (2.53E-06) (2.29E-06) (2.20E-06) (2.25E-06) (2.14E-06) (2.18E-06) (SDTS)

50 150.5
519.9830 10.1315 5.8238 3.6264 2.8496 2.2708 1.8720 1.4312 1.1828 1.0606 0.9870 ARL

(507.6630) (2.2237) (1.0494) (0.6668) (0.5562) (0.4817) (0.4150) (0.4965) (0.3873) (0.2501) (0.1779) (SDRL)
3.79E-07 2.97E-07 3.65E-07 4.22E-07 2.37E-07 2.68E-07 2.96E-07 2.37E-07 2.21E-07 2.70E-07 2.26E-07 ATS

(5.69E-06) (4.19E-06) (4.94E-06) (7.88E-06) (5.97E-06) (2.09E-06) (6.55E-06) (7.39E-06) (6.93E-06) (4.15E-06) (7.38E-06) (SDTS)

PLF

20 -1.3
533.02 0.9092 0.23 0.0582 0.0191 0.0115 0.0005 0.0012 0.0002 0.0002 0 ARL

(843.3900) (2.3949) (0.7468) (0.2814) (0.1495) (0.1121) (0.0224) (0.0374) (0.0141) (0) (0) (SDRL)
3.43E-07 1.90E-07 2.86E-07 2.94E-07 2.12E-07 2.58E-07 2.35E-07 2.36E-07 2.60E-07 3.12E-07 2.60E-07 ATS

(8.68E-06) (6.90E-06) (8.63E-06) (8.64E-06) (7.37E-06) (3.25E-06) (1.96E-06) (7.81E-06) (8.23E-06) (9.02E-06) (8.23E-06) (SDTS)

30 35
571.1220 9.3364 3.8706 2.5543 1.5837 1.1444 0.8933 0.6677 0.4379 0.3461 0.1830 ARL

(560.1300) (4.0645) (1.3741) (0.9362) (0.6414) (0.5039) (0.4511) (0.4957) (0.4999) (0.4772) (0.3867) (SDRL)
7.47E-07 9.50E-07 1.14E-06 8.62E-07 9.14E-07 9.58E-07 6.96E-07 8.69E-07 9.00E-07 1.14E-06 9.97E-07 ATS

(5.19E-06) (5.49E-06) (1.02E-05) (6.24E-06) (7.47E-06) (5.55E-06) (4.68E-06) (5.20E-06) (5.61E-06) (7.61E-06) (6.87E-06) (SDTS)

40 86
453.1480 10.3685 4.5154 2.8399 2.3914 1.7211 1.3709 1.1544 1.0223 0.9054 0.7773 ARL

(435.9740) (3.0808) (1.0119) (0.6610) (0.5891) (0.5139) (0.4908) (0.3794) (0.2720) (0.3182) (0.4175) (SDRL)
6.89E-07 9.27E-07 8.86E-07 9.99E-07 9.41E-07 9.89E-07 9.55E-07 8.66E-07 9.93E-07 9.63E-07 9.23E-07 ATS

(3.23E-06) (3.72E-06) (3.62E-06) (4.46E-06) (3.78E-06) (4.64E-06) (3.85E-06) (3.61E-06) (6.19E-06) (3.80E-06) (3.68E-06) (SDTS)

50 157
499.929 10.4253 6.3638 4.0256 2.9648 2.3144 1.9576 1.5789 1.2491 1.0912 0.9895 ARL

(478.347) (2.28837) (1.13236) (0.703523) (0.564235) (0.493105) (0.390643) (0.498773) (0.433416) (0.294419) (0.166102) (SDRL)
5.58E-07 4.17E-07 4.60E-07 3.51E-07 3.62E-07 5.35E-07 2.73E-07 3.43E-07 1.93E-07 3.33E-07 4.24E-07 ATS

(6.25E-06) (6.07E-06) (5.73E-06) (5.08E-06) (4.97E-06) (5.50E-06) (7.00E-06) (9.04E-06) (6.79E-06) (8.96E-06) (3.63E-06) (SDTS)

LLF

20 9
569.539 6.9163 2.1641 1.1105 0.6095 0.371 0.2089 0.11 0.056 0.0334 0.0194 ARL

(564.402) (5.01854) (1.49183) (0.881073) (0.64731) (0.522072) (0.420786) (0.315119) (0.23079) (0.179679) (0.137926) (SDRL)
3.15E-07 7.62E-07 7.25E-07 6.69E-07 5.58E-07 5.42E-07 9.25E-07 5.88E-07 5.54E-07 5.68E-07 5.29E-07 ATS

(2.34E-06) (7.55E-06) (3.41E-06) (3.60E-06) (3.03E-06) (2.99E-06) (9.43E-06) (3.10E-06) (2.99E-06) (3.03E-06) (2.94E-06) (SDTS)

30 51
490.549 9.766 4.7005 3.0601 2.1493 1.6644 1.309 1.0308 0.9438 0.8303 0.6172 ARL

(472.874) (3.371) (1.301) (0.861677) (0.644678) (0.57059) (0.493071) (0.372091) (0.3642) (0.406327) (0.490371) (SDRL)
3.44E-07 3.28E-07 3.27E-07 3.40E-07 3.53E-07 3.36E-07 5.33E-07 4.09E-07 4.01E-07 3.78E-07 3.57E-07 ATS

(2.37E-06) (2.31E-06) (2.31E-06) (2.35E-06) (2.39E-06) (2.34E-06) (7.28E-06) (2.57E-06) (2.56E-06) (2.48E-06) (2.44E-06) (SDTS)

40 104.8
550.602 10.1719 5.6892 3.5607 2.7699 2.1549 1.6974 1.3898 1.1228 1.0275 0.9842 ARL

(542.454) (2.58313) (1.13649) (0.717715) (0.599962) (0.48673) (0.499633) (0.491992) (0.341057) (0.249286) (0.230544) (SDRL)
3.07E-07 3.84E-07 6.50E-07 3.58E-07 3.71E-07 3.67E-07 5.29E-07 5.07E-07 3.58E-07 4.29E-07 3.62E-07 ATS

(2.24E-06) (2.50E-06) (1.16E-05) (2.42E-06) (2.45E-06) (2.44E-06) (4.22E-06) (2.92E-06) (2.41E-06) (2.79E-06) (2.43E-06) (SDTS)

50 169.5
454.27 9.9823 5.8387 4.0167 2.9774 2.4399 2.0352 1.7157 1.3985 1.1213 1.0251 ARL

(432.075) (2.00589) (0.960564) (0.680603) (0.53767) (0.515546) (0.3717) (0.464407) (0.489998) (0.329221) (0.182948) (SDRL)
3.24E-07 2.97E-07 3.41E-07 3.50E-07 3.28E-07 2.86E-07 4.39E-07 3.03E-07 3.26E-07 3.31E-07 3.08E-07 ATS

(2.30E-06) (2.21E-06) (2.36E-06) (2.39E-06) (2.31E-06) (2.16E-06) (6.30E-06) (2.22E-06) (2.30E-06) (2.32E-06) (2.24E-06) (SDTS)

Table 4.5: ARL, SDRL, ATS, and SDTS Values for Bayesian EWMA Chart Sample Size Sensitivity
Analysis with Poisson Conjugate
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We see from table 4.5 that for the SELF, PLF, and LLF methods, as the sample size increased,

the L tuning parameter had to be increased to reach the desirable ARL. Also, we note that there

wasn’t a significant change in ATS, but we did take note that it does take slightly less time for

detection with the sample size increase. The most interesting result for all of the loss functions

was as we increase the sample size, as we implemented the initial mean shift, the distance be-

tween the ARL0 and out-of-control ARL grew smaller. That is, the larger the sample size, the

likelihood of the chart to signal decreases.

Observation of the individual performance of the each loss function shown that under the

SELF we recorded the lowest values for L. For the PLF, the SDRL values decreased as we in-

creased the sample size and the LLF performed sub-par compared to the other loss functions

based on ARL values.

4.4. Data Application Study

The chosen data is a count series that has been seen in Alencar et al., 2017, Urbieta et al.,

2017, and Jones et al., 2021. It features daily count records of respiratory disease related hospi-

talizations for senior citizens in São Paulo, Brazil and is available to the public at www2.datasus.gov.br.

Daily data was collected from January 2006 to December 2011, but since our method tracks

Bayesian estimators, we chose to observe the average of the weekly counts (amounting to 313

weeks).

www2.datasus.gov.br
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(a) Raw data (b) Modeled data

Figure 4.3: Weekly Hospitalizations in São Paulo

The data displays a positive linear trend with a seasonal pattern (figure 4.3). The seasonal

trend reflects an increase of hospitalizations in June - August compared to December - February,

which are the winter and summer months in São Paulo, respectively.

We use a negative binomial distribution under a generalized linear model and account for

the seasonal pattern using sine and cosine functions. We model hospitalization rate per 100,000

inhabitants using an offset variable for the population size and the log link function. To vali-

date our model, we assume a non-epidemic range from January 2006 to December 2010 as our

in-control data and validate with data from January to December 2011. Once validation is com-

plete, we predict values for January to December 2012 and impose shift changes on January

2011 - December 2012 data to represent an epidemic. Our objective is to emulate and provide

quick detection of an epidemic outbreak. Our model is given in equation 4.5.

ln

[
µ0,t

Pt
100,000

]
=β0 +β1 sin

(
2πt

52

)
+β2 cos

(
2πt

52

)
(4.5)

where t = 1, . . . ,313 weeks, µ0,t is the average of non-epidemic hospitalizations for week t ,
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and Pt is the population size at week t .

In figures 4.4, 4.5, and 4.6 below are the results for the hospitalization data under each of

the loss functions with shift increments added. Under the SELF and PLF cases, we notice both

charts detect an epidemic after the initial shift of 0.25 is implemented. For the LLF chart, it

detects an epidemic without any shift, which indicates the user-defined c parameter for the

LLF may need to be adjusted.

Figure 4.4: Squared Error Loss Function EWMA Chart Results
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Figure 4.5: Precautionary Loss Function EWMA Chart Results
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Figure 4.6: Linex Loss Function EWMA Chart Results

4.5. Conclusions and Recommendations

In our work, we examined the detection capabilities of the EWMA chart under different loss

functions for the Poisson-Gamma conjugate case. We conducted simulations, implementing

shifts on the in-control mean, while adjusting the hyper-parameter values and the sample size.

The performance measurements used were the average run length (ARL), standard deviation

of the run length (SDRL), average time to signal (ATS), and the standard deviation of the time

to signal (SDTS), which were recorded for the in-control case and each of the out-of-control

shifts. After simulation results were analyzed, we tested the charts’ ability to detect epidemic-

like instances on respiratory disease related hospitalizations for seniors in São Paulo, Brazil.

From the simulation study and real data analysis, the squared error and precautionary
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loss functions performed similarly, with the PLF having better ARL results and the SELF out-

performing overall. The linex loss function had sub-optimal results in both simulation studies

and the real data analysis compared to the other options. In the hyper-parameter study, calcula-

tions for the ARL and SDRL forα0 = 64,β0 = 5
16 resulted in either zeros or unending simulations.

Compared to the classical EWMA chart, the SELF and PLF are ideal substitutes when consider-

ing count series data, while the LLF performed roughly the same. It’s also important to note that

simulations for the classical EWMA required significantly more runs than the Bayesian charts.

We recommend the use of the squared error loss function Bayesian control chart as it performed

the best in most of the measurement criteria. The precautionary loss function would be the best

option for use of an asymmetric loss function, and we only recommend the linex loss function

when a valid study is done to attain the c value.
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Chapter 5

Bayesian mEWMA and mCUSUM Control

Charts on Nonparametric and

Semiparametric Linear Regression Models

Abstract

Bayesian multivariate cumulative sum (mCUSUM) and multivariate exponentially weighted

moving average (mEWMA) charts are proposed in this work to monitor count series data. The

charts are informed by the squared error loss function (SELF) and are tested under a simulation

study while tuning the choice of hyper-parameters and sample sizes respectively. The chart-

ing methods are compared using the average and standard deviation of the run length (ARL

and SDRL) and the average and standard deviation of the time to signal (ATS and SDTS). Both

charts are assessed when used on data that is modeled using parametric, nonparametric, and

semiparametric regressioin methods. The regression techniques considered are the penalized

splines (p-splines) for the nonparametric and the model robust regression 1 (MRR1) for the

104



Chelsea L. Jones Chapter 5. NP and SP Bayesian Control Charts 105

semiparametric. Model fits are compared using the mean squared error (MSE), Akaike infor-

mation criterion (AIC), and Bayesian information criterion (BIC). The charts’ ability to monitor

live data is examined on suicide counts data modeled using each of the regression techniques.

Keywords: Profile Monitoring; Bayesian; Squared Error Loss Function, mCUSUM; mEWMA;

Sensitivity Analysis; Quality Control; P-spline; MRR1

5.1. Introduction

Profile monitoring is a area in statistical quality control (SQC) that allows for the use of

graphical tools to observe changes in a process. These graphical tools, known as control charts,

come in many variations to best suit the data application and distribution, where many have

been made to accommodate Gaussian data. Classical charts like the Shewhart, cumulative sum

(CUSUM), and exponentially weighted moving average (EWMA) have been frequented as charts

that monitor univariate data. Along with the classical approach, recent research has broadened

on the Bayesian approach to monitoring univariate Guassian data. Riaz et al., 2017 introduces

an approach using loss functions to inform a Bayesian EWMA chart, while Noor-ul Amin and

Noor, 2021 and Jones et al., 2021 extended this idea to an adaptive EWMA (AEWMA) chart and

the CUSUM chart respectively.

The Hotelling’s T 2, multivariate CUSUM and EWMA (mCUSUM and mEWMA) have been

advantageous alternatives to monitor data adorning multivariate characteristics. Our work ex-

pands the Bayesian charting methods from the aforementioned articles to the mCUSUM and

mEWMA charts after estimating model parameters using techniques mentioned in Jones et al.,

2020. In section 5.2 we introduce the loss function we use to inform our Bayesian charts, sec-

tion 5.3 details the parametric, nonparametric, and semiparametric methods implemented to
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estimate a model. We then define our Bayesian multivariate charts in section 5.4 and conduct

a simulation analysis study followed by application of our methods on suicide count data to in-

form suicide prevention strategies in sections 5.5 and 5.6 respectively. Recommendations and

discussion on the performance of the proposed methods are featured in section 5.7.

5.2. Squared Error Loss Function

The use of loss functions in Bayesian statistics has proven useful in obtaining the Bayes es-

timator, or best estimate, of a given parameter. To obtain the best estimator for the parameter,

the loss function minimizes the expected loss from using parameter estimate. The first step in

this process is for the user to choose which loss function best suites their needs. In Jones et

al., 2021, the Guassian and Poisson conjugate cases are considered to recommend generalized

Bayesian CUSUM and EWMA control charts. Of the loss functions used, the authors deter-

mined the precautionary loss function (PLF) and squared error loss function (SELF) performed

similarly under their Bayesian CUSUM charts and *EWMA article* recommended the SELF as

it performed best overall. Based on the results and recommendations from these articles, our

work will focus on using the squared error loss function.

We define the Bayes estimator as a value that minimizes the expected loss as: θ̂∗ = min
θ̂

Eθ[L(θ̂,θ]

. The squared error loss function is defined as L(θ̂,θ) = (θ−θ̂)2 and its expected loss is defined as

E [θ|x]. The form of this loss function makes it symmetric, where both the negative and positive

errors are weighted equally.
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5.3. Regression Methods

For our methods, we consider a Poisson likelihood, Poi sson(λ), with a Negative Binomial

prior, Neg−Bi n(α,β), resulting in a Gamma posterior distribution where the shape and inverse

scale parameters are (nx̄ +α) and (n +β) respectively ( Gamma(nx̄ +α,n +β) ). Combining

the posterior distribution with the likelihood function of future data, we derive the posterior

predictive distribution to be Neg −Bi n(nx̄ +α,n +β).

A log link function is used on the posterior predictive data to obtain a simple linear model of

the form yi =β0+β1Xi +εi for i = 1,2, . . . ,n = number of observations. The subsequent subsec-

tions detail how we use nonparametric and semiparametric methods to estimate values for β0

and β1, which we track in our Bayesian control charts. These coefficient estimates are defined

as a vector of estimates: β̂ =
[
β̂0

β̂1

]
. Since we are interested in more than one estimate, we will

use multivariate control charts for monitoring. Section 5.4 details the charts we use and their

Bayesian framework.

We assess the estimation capability of the parametric, nonparametric, and semiparamet-

ric methods using three performance measurement tools: mean squared error (MSE), Akaike’s

information criterion (AIC), and Bayesian information criterion (BIC). Each of the criteria is

minimized, meaning that the model with the lowest value under the respective criteria should

be chosen.

5.3.1. Nonparametric

Nonparametric (NP) techniques are frequented when a parameters are unknown for a spec-

ified distribution or when the underlying distribution is unknown. There are many different NP

methods, such as kernels and splines, which have a multitude of variants based on the users’
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needs. Penalized splines (p-splines) are a variant of B-splines that obtain a smoother fit by im-

posing a penalty factor. The conception of p-splines were initially detailed in O’Sullivan, 1986

and its popularity grew with discussion papers such as Eilers and Marx, 1996. Eilers et al., 2015

provides an in-depth review of the use of p-splines from 1995 to 2015 in their discussion paper.

In their practitioners guide, Jones et al., 2020 reviews several NP regression methods alongside

control charting techniques. A recommendation for the p-spline method with a linear model

on univariate data was made based on optimal results and simple implementation. We will use

the p-spline method as defined in equation 5.1 as our NP method.

ŷ = X (X T X +Λ2p D)−1X T y (5.1)

where Λ is the penalizing parameter, p is the total number of columns in the X matrix, and

D is a lower diagonal matrix based on the number of knots.

5.3.2. Semiparametric

Under semiparametric (SP) regression, aspects from a parametric approach are combined

with results of a NP approach using a convex combination to form a clearer picture of the data

behavior. Works such as Ruppert et al., 2003, Keele and Keele, 2008, Ruppert et al., 2009 give

detailed explanations on the uses of SP methods. We use the model robust regression 1 (MRR1)

method introduced in Einsporn, 1987 and Einsporn and Birch, 1993 for modeling mean re-

sponse, conceptualized in Burman and Chaudhuri, 2012 and Mays et al., 2000, with its term

coined in the latter.
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ŷ MRR1 = (1−η)ŷP +ηŷ N P

for η ∈ [0,1]
(5.2)

where η is the mixing parameter such that if η = 0, the model is soley parametric and if

η= 1, the model is NP. The MRR1 method seen in equation 5.2 uses estimates of y determined

from both the parametric (ŷP ) and NP (ŷ N P ) models, joining them using the user-defined mix-

ing parameter to obtain the SP y estimates. When applying the MRR1 method to real data it’s

acceptable to choose η based on the parametric and nonparametric fits, however, Mays et al.,

2001 derived a data-driven equation (eq. 5.3) to optimize the mixing parameter.

η=
(ŷ N P

−i ,i − ŷP
−i ,i )T (y − ŷP )

(ŷ N P − ŷP )T (ŷ N P − ŷP )
(5.3)

where ŷP
−i ,i and ŷ N P

−i ,i are calculated by leaving out the i th observation when estimating the

ŷ value at xi for the parametric and nonparametric methods respectively.

5.4. Multivariate Charts

As stated in section 5.3, we are monitoring the changes that occur in the vector β̂, con-

taining two coefficient estimates. The CUSUM (Page, 1954, Page, 1961) and EWMA (Roberts,

1959) charts are widely known and used charts for tracking univariate observations. Their use,

however, can be extended to the multivariate case as seen in the following subsections.
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5.4.1. mCUSUM

As the multivariate extension of the CUSUM, the mCUSUM chart (Woodall and Ncube,

1985) has the same structure. The chart sums the previous statistic calculations together and

obtains the current location’s statistic. Our Bayesian mCUSUM chart retains the same mechan-

ics as the classical version, but we replace the in-control mean with our Bayes estimator, µSELF .

mCi = max{0, (C T
i Σ

−1
0 Ci )

1
2 −k},

for i = 1,2, . . . ,m = number of profiles

where,

Ci = (β̂
i
−µSELF )

k = 1

2

√
(β̂i −µSELF )TΣ−1(β̂i −µSELF )

(5.4)

5.4.2. mEWMA

The multivariate EWMA (mEWMA) (Lowry et al., 1992) weights the previous statistic with a

user defined variable, r , where r ∈ [0,1]. Similar to the EWMA chart if the weight parameter is

1, then a memory-less chart is produced, in this case the Hotelling’s T 2 chart. A r value closer

to 0 places more weight on the previous statistics, giving the chart a longer memory. Again, we

begin with using the same structure of the classical chart and substitute our Bayes estimator for

the in-control mean.
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zi = r · β̂i + (1− r )zi−1,

for i = 1,2, . . . ,m = number of profiles,

where,

T 2
i = (zi −µSELF )TΣ−1

zi
(zi −µSELF )

Σzi = cov(zi ) = r

2− r
Σ0

(5.5)

5.5. Analysis

We assess the capability of our Bayesian mCUSUM and mEWMA control charts using simu-

lation studies. This section will provide results and comparisons from a sensitivity analysis done

by tuning hyper-parameters (section 5.5.1). Our charts are designed to reach an in-control ARL

of 500 without a shift, and are assessed under different shift sizes ranging from 0 to 2.5 with 0.25

step sizes (δ = 0 to 2.5 by 0.25). As a standard in control charting, we calculate m = 10,000 simu-

lations to shrink the standard error. The initial data of size n = 20 is drawn from Poi sson(λ= 25)

with shift sizes calculated as β̂ooc = β̂i c ∗ (1+δ), where β̂i c and β̂ooc are the in-control and out-

of-control β̂ values, respectively.

5.5.1. Hyper-Parameter Sensitivity Analysis

Under our hyper-parameter study, we select three choices for our mean and standard devi-

ation as µ0 = [10,15,20] and σ0 = [4,6,8], respectively. We solve for our priors, α0 and β0, using

the mean and standard deviation and obtain α0 = [16,36,64] and β0 =
[5

8 , 5
12 , 5

16

]
. Each sample

drawn is of size n = 20 from the posterior predictive Negative-Binomial distribution.



Chelsea L. Jones Chapter 5. NP and SP Bayesian Control Charts 112

5.5.1.1. mEWMA

α0 = 16, β0 = 5
8 α0 = 36, β0 = 5

12 α0 = 64, β0 = 5
16

Shifts ARL SDRL ATS SDTS MSE AIC BIC ARL SDRL ATS SDTS MSE AIC BIC ARL SDRL ATS SDTS MSE AIC BIC

Parametric
0 543.15 592.852 8.87E-05 0.00012365 0.351716 0.771192 -21.6351 465.25 493.571 7.74E-05 2.06E-05 0.349271 2.54348 -39.3579 414.392 390.733 0.000106142 4.83E-05 0.356772 1.95147 -33.4379

0.25 2.09 2.53809 6.77E-05 0.000114236 0.940765 -0.189589 -12.0273 0.3 0.685565 8.40E-05 3.85E-05 0.971847 -1.2443 -1.48021 0.154 0.407779 8.03E-05 2.68E-05 1.00736 -1.39201 -0.00311628
0.5 0.82 1.30675 6.77E-05 0.000120049 2.82648 -3.35169 19.5938 0.17 0.401373 9.01E-05 5.48E-05 2.7724 -3.78423 23.9191 0.189 0.497272 8.79E-05 4.93E-05 2.73005 -3.88011 24.878

0.75 0.46 0.887919 7.03E-05 0.00011563 5.48978 -4.84705 34.5474 0.11 0.343366 7.75E-05 1.96E-05 5.78616 -5.28818 38.9587 0.05 0.217945 7.52E-05 2.27E-05 5.73704 -5.16691 37.7459
1 0.44 0.765768 7.81E-05 0.000119358 9.27219 -6.24413 48.5181 0.13 0.39128 7.83E-05 2.86E-05 9.82264 -6.54198 51.4966 0.176 0.461545 8.09E-05 3.59E-05 9.61263 -6.54123 51.4892

1.25 0.18 0.40939 7.29E-05 0.000116943 14.0486 -7.06412 56.718 0.07 0.255147 8.03E-05 2.50E-05 13.4814 -7.1086 57.1628 0.059 0.243965 8.02E-05 2.52E-05 14.9658 -7.28178 58.8946
1.5 0.21 0.453762 6.25E-05 0.000111213 20.2595 -7.76993 63.7761 0.02 0.14 7.75E-05 2.09E-05 20.5145 -7.83463 64.4231 0.026 0.171243 8.08E-05 3.83E-05 20.7503 -7.87306 64.8074

1.75 0.21 0.515655 8.33E-05 0.000126944 29.6012 -8.5088 71.1648 0.03 0.170587 8.12E-05 2.13E-05 26.4954 -8.31993 69.2761 0.013 0.113274 8.78E-05 4.77E-05 27.7965 -8.42742 70.351
2 0.1 0.331662 8.07E-05 0.000120455 34.8635 -8.8541 74.6178 0.02 0.14 7.68E-05 2.00E-05 38.3375 -9.11179 77.1947 0.015 0.121552 7.77E-05 2.38E-05 37.6731 -9.06734 76.7502

2.25 0.29 0.604897 8.07E-05 0.000120451 52.2758 -9.37342 79.8111 0.02 0.14 8.58E-05 3.08E-05 49.5177 -9.56514 81.7282 0.008 0.0890842 8.13E-05 3.20E-05 49.5922 -9.53729 81.4497
2.5 0.17 0.510979 8.33E-05 0.000121488 59.0063 -9.85301 84.6069 0.01 0.0994987 9.46E-05 7.40E-05 57.9132 -9.92115 85.2884 0.012 0.108885 9.27E-05 5.40E-05 58.5002 -9.93969 85.4737

Table 5.1: mEWMA Hyper-Parameter Sensitivity Analysis

Table 5.1 above, along with figures 5.1 and 5.2 below, show results for the Bayesian mEWMA

chart proposed in section 5.5. Values within the table and figure 5.1a suggest that regardless of

the values chosen for the hyper-parameters, the Bayesian mEWMA chart will detect when an

out-of-control situation occurs. This is seen from the sharp decrease in the ARL0 after a shift

is applied. The MSE, AIC, and BIC comparisons are useful when determining if a change in

hyper-parameter influences the fit of the model. In this study, we notice that in the scenario

which α= 16, β= 5
8 there is a slight inconsistency for each fit comparison method. Both figures

5.2b and 5.2c show an irregularity once a shift is imposed on the data, and figure 5.2a sees a

similar irregularity with larger shifts. The MSE and BIC values suggest that the as the out-of-

control shifts increase the model that is fit becomes worse, but the AIC suggest the opposite.
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(a) ARL Comparisons (b) SDRL Comparisons

Figure 5.1: ARL and SDRL Comparisons
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(a) MSE Comparisons

(b) AIC Comparisons (c) BIC Comparisons

Figure 5.2: Model Fit Comparisons

5.6. Real Data Application

There has been worldwide stigma surrounding mental health throughout history, making

it difficult or impossible to obtain the resources and information necessary for treatment. Ef-

fects of mental health disorders, such as depression, has shown in some cases to lead to death

by suicide. In September 2014, the World Health Organization (WHO) recognized that suicide

was a global problem, releasing their first suicide prevention plan with their objective being "to
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prioritize suicide prevention on the global public health and public policy agendas and to raise

awareness of suicide as a public health issue" (WHO et al., 2014). Studies done by Zortea et al.,

2020, Leaune et al., 2020, Gunnell et al., 2020, and Pirkis et al., 2021 have looked at how the

Covid-19 public health emergency has impacted mental health and suicide rates. Cénat et al.,

2020 concluded that regardless of the gender, group or region, the mental health of populations

affected by the coronavirus are being adversely impacted. We aim to use our Bayesian charting

techniques to track suicide rate trends from previous years to prepare for a potential increase

due to the current public health emergency. Implications of our method could aid in targeting

areas/countries for immediate suicide prevention resources (i.e increase governmental fund-

ing/grants for organizations to provide increased mental health treatments).

Figure 5.3: Raw Data
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count si =β0 +β1 yeari +β2GDPi (5.6)

Figure 5.3 shows the global raw suicide counts per year. The suicide data we use can be

found at Suicide Data Source. The data retains suicide counts from 1985 to 2016 for 101 coun-

tries of both males and females ranging from ages 15 to 75+ along with gross domestic product

(GDP) information. We use suicide counts and GDP amounts from 1985-2005 for our in-control

training data, and information from 2006-2015 as validation data, excluding 2016 because it was

a zero column. We estimated a linear model using parametric, nonparametric, and semipara-

metric techniques for each year. Once we complete each regression method, we demonstrate

the Bayesian mCUSUM and mEWMA charts’ ability to detect out-of-control occurrences for

each method by implementing various shift changes. Our goal is to aid in suicide prevention

through detection and identification of irregularly high suicide counts. In the validation data,

we notice suicide counts much lower than that in the training data, to capture the ability of

our method to detect out-of-control occurrences, we apply a range of larger shift changes to

emulate an epidemic-like situations.

https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016
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(a) Raw Training Data (b) Parametric

(c) Nonparametric (d) Semiparametric

Figure 5.4: Training Data Regression Methods

Method MSE AIC BIC

Parametric 2.38156e+09 -45.0233 456.899

P-spline 5.52196e-16 -32.6859 327.356

MRR1 2.38156e+07 -38.4174 387.537

Table 5.2: Training Data MSE Values

For the p-spline, since we are considering linear models, we identified two knots to be the
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endpoints for each profile. Based on plots shown in figure 5.4, along with the MSE and BIC

values from table 5.2, the parametric method performed the worst while the nonparametric

p-spline method gave the lowest MSE/BIC and closest fit to the true data. We chose η = 0.9

as our mixing parameter for the MRR1 semiparametric technique because the nonparametric

method had a better fit than the parametric. We use the the variance-covariance matrix and β̄,

the average of our in-control β̂ values, to inform our control charts.

(a) Raw Training Data (b) Parametric

(c) Nonparametric (d) Semiparametric

Figure 5.5: Active Data Regression Methods



Chelsea L. Jones Chapter 5. NP and SP Bayesian Control Charts 119

Method MSE AIC BIC

Parametric 2.08504e+09 -43.5213 441.127

P-spline 6.10164e+06 -31.8533 318.614

MRR1 2.86851e+07 -37.2895 375.694

Table 5.3: Active Data MSE Values

Figure 5.5 and table 5.3 gave similar results to what we saw with the training data. That is,

the p-spline regression method provided a better model than the MRR1 and parametric meth-

ods.

5.7. Discussion and Future Work

We explored the Bayesian mEWMA chart to monitor data with multiple variables. The

squared error loss function was used to inform our Bayesian control charts, testing the tracking

capabilities of these charts under a hyper-parameter sensitivity study. In the hyper-parameter

analysis we noted that the choice of hyper-parameter had little effect on the ability of the Bayesian

mEWMA chart, as well as the fit of the parametric model.

A natural next step in this work would be to apply this Bayesian mEWMA chart to models

fit with the p-spline and MRR1 regression techniques and asses its tracking ability with a hyper-

parameter sensitivity analysis. An analysis of how sample size affects the charts ability to detect

out-of-control happenings would also beneficial for practitioners to determine if this method

would be appropriate for their specific data. The classical mEWMA and mCUSUM charts are

commonly compared memory-based charts, so a comparison of the Bayesian mEWMA and

Bayesian mCUSUM charts proposed here would be an innate direction to take. Once these

comparisons are executed via simulations, applying both Bayesian charts to the suicide count
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data is advised to test their real-world capabilities.
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Chapter 6

Discussion

6.1. Conclusion

In this dissertation we explored profile monitoring techniques using both a classical and

Bayesian approach under various distributional assumptions. In chapter 2 we reviewed pub-

lished works on statistical process control, supplying step-by-step applications of key monitor-

ing techniques. This comprehensive review and guide provides practitioners a tool in learn-

ing SPC methods under parametric, nonparametric, and semiparametric regression. From

this project, we conclude that the p-spline method resulted in better fits for linear data, while

the Haar wavelet method fit the nonlinear data best. The memory-based charts, CUSUM and

EWMA, had the highest PoS values under each data example, signifying their capability in de-

tecting more out-of-control profiles. With these conclusions, we recommend the use of p-

splines on estimating linear data and the CUSUM and EWMA charts for detecting small changes.

Chapters 3 and 4 considered the squared error (SELF), precautionary (PLF), and linex (LLF)

loss functions in constructing Bayesian CUSUM and EWMA control charts, respectively. We de-

124



Chelsea L. Jones Chapter 6. Discussion 125

rived best estimators of the sample means for a normal conjugate and a Poisson conjugate using

the various loss functions and used these, along with their variances, to inform our Bayesian

charts. A demonstration of these charts was done via two simulation studies; the first was a

sensitivity analysis of how the hyper-parameter choice influenced charting capabilities, and

the second of the sample size’s influence. The simulation results proved that our methods were

adequate in detecting small increases in sample means. Particularly, the SELF CUSUM chart

had the quickest detection. When all charts were administered on real hospitalization count

data, both the SELF and PLF CUSUM charts had preferable outcomes over every other chart

variation. We give recommendation for the squared error loss function for either chart, but

emphasize it’s use with the CUSUM.

In our final project, chapter 5, we compiled recommendations for methods utilized in chap-

ters 2, 3, and 4 for monitoring linearly regressed data with Bayesian multivariate control charts.

We estimated linear models to obtain model coefficients using parametric regression, penal-

ized splines (p-splines), and model robust regression 1 (MRR1) methods. Since we exclusively

considered count data in this chapter, we implemented the log link function to create a linear

pattern from the data before estimating the model. Once the link function was applied and co-

efficients were estimated, we compared each regression method’s estimation capability using

the mean squared error (MSE), Akaike information criterion (AIC), and Bayesian information

criterion (BIC). The p-spline regression method returned the smallest MSE and BIC values when

estimating ŷ ’s, while the parametric estimates resulted in greater MSE’s and BIC’s. Because we

obtained poor estimates from the parametric method, we adjusted our MRR1 mixing parame-

ter to rely more on the nonparametric ŷ ’s in the data application, but the semiparametric values

still gave a higher MSE and BIC values.

While in chapter 2 we focused on Phase I analysis, in chapters 3, 4, and 5 we emphasized

our work under Phase II. We chose to direct our research to provide methods for the practitioner
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of a process.

6.2. Future Work

Chapter 5 provides plausible next steps in its final section that include a comparison analy-

sis between the parametric, p-spline, and MRR1 regression techniques. This analysis should

be done while tuning the hyper-parameters and sample sizes to test the Bayesian mEWMA

charts’ tracking ability. To further allow for recommendation of the methods proposed, a study

of the Bayesian mCUSUM chart should also be conducted and results compared to that from

the Bayesian mEWMA. After both charts are tested using simulation studies, they should be ap-

plied to the suicide data that was introduced in chapter 5. This provides real-world application

results to fully assess these charts.

Our work considered tracking parametric, nonparametric, and semiparametric regression

method results in profile monitoring. Although our work has proven to provide a viable option

in quick detection of count data, we acknowledge the application and methodological short-

comings. We primarily focused our research on linear models, but many applications do not

follow a linear pattern. A future research path would be to test our methods on nonlinear data

without the use of a link function. This would benefit practitioners by allowing direct imple-

mentation of a control chart and the ability to interpret results without reversing the link func-

tion. In addition to monitoring nonlinear data, we suggest the combination of our Bayesian

methods with other control charts. That is, the use of loss functions to inform other control

charts. We believe this would give practitioners the option to use a chart that would work best

for their data, but also providing benefits from using a Bayesian technique.
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