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Abstract 
 

COPPER SULFIDE MANGANESE NANOPARTICLES FOR 
MULTIMODALITY IMAGING AND THERAPY 

 
By Ali S. Gawi Ermi, MSc 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in Chemical Biology at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2021. 
 

Major Director: Professor Jamal Zweit,  
Departments of Radiology and Affiliate Professor, Department of Chemistry 

 
 

Inorganic nanoparticles (NPs) are compatible with metal-based multi-modality molecular 

imaging and targeted therapy. Copper sulfide nanoparticles (CuS NPs) are attractive photoacoustic 

and photothermal agents and are amenable to incorporation of radionuclides and paramagnetic 

elements to facilitate image-guided therapy. The aim of this work is to develop manganese (Mn)- 

doped CuS NP, intrinsically radiolabeled with radionuclides such as (Zirconium-89 (89Zr), Copper-

64/67 (64/67Cu) and Manganese-52/55 (52/55Mn)). This novel approach combines Photoacoustic 

(PA), Positron emission tomography (PET), Single-photon emission computed tomography 

(SPECT) and magnetic resonance imaging (MRI) in one platform. Potentially, such a platform can 

also accommodate therapeutic radionuclides and enable image-guided radionuclide therapy as well 

as photothermal therapy (PTT). In this study, two radionuclides were intrinsically incorporated 

into CuS-Mn NPs, 89Zr for PET imaging and 67Cu for SPECT imaging and potential radiotherapy. 

Doping of Mn into CuS NPs (CuS-Mn NPs) provided an enhanced T1/T2 MRI contrast. The CuS 

NP has a high absorption in the NIR region suitable for PA imaging and exhibits high photo-

thermal conversion efficiency, adequate for PTT. 
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A hydrothermal method was developed for the synthesis of 89Zr/67Cu labeled CuS-Mn NP, 

by reacting Sodium Sulfide (Na2S) with Copper Chloride (CuCl2)/ Manganese Chloride (MnCl2) 

in aqueous solution under existence of organic/polymeric ligand as a coating. 89Zr or 67Cu was 

doped into NPs during the synthesis. Hydrodynamic (HD) size of the NPs was measured by 

dynamic light scattering (DLS). Reaction yields were assessed by inductively coupled plasma 

optical emission spectrometry (ICP-OES) and gamma counting. Multispectral Optoacoustic 

Tomography (MSOT) signal was assessed as a function of NPs concentration. Animal PET 

imaging and biodistribution were done at 30 min, 2 h, and 24 h post intravenous (i.v.) injection. 

Stability of radiolabeled NPs in water, plasma and urine was evaluated by radio-high performance 

liquid chromatograph (radio HPLC). Relaxivity characterization was done to study the 

enhancement of MRI signal by CuS-Mn NP. Animal MRI was performed in mice before and 2 h 

after injection of CuS-Mn NPs and T1 and T2 weighted MRI images were acquired. 

The reaction yield of CuS-Mn NPs ranged from 80-90% as measured by ICP. The 

radiolabeling yield of [89Zr]-CuS-Mn NP was > 63%. When labeling with the same chemical 

element as the copper core, the radiolabeling yield of [67Cu]-CuS-Mn NP was almost quantitative. 

Doping with Mn reduced HD size from 20 nm to ≈ 5 nm, as measured by size distribution DLS. 

In a phantom study, the MR contrast signal was enhanced two-fold following injection of CuS-

Mn NP compared to the bulk molecule MnCl2. The photoacoustic signal response was linear across 

a NPs concentration ranging from 0.11 µg/ml to 10µg/ml of CuS-Mn NPs. 

PET imaging of [89Zr]-CuS-Mn NP showed rapid renal clearance within less than 30 min 

post injection. This rapid clearance has been facilitated by the ultra-small size (≈3-5nm) of the NP 

being below the glomerular filtration rate. Enhancement of MRI images was demonstrated in liver 
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and kidney at 2 hours post injection of the NP. CuS-Mn NP increased signal intensity and contrast 

following i.v. injection into mice, with the signal intensity decreased over time. 

Studies were also conducted with [67Cu]-CuS-Mn NPs, which have a larger size 

distribution of 10-30 nm. Biodistribution of [67Cu]-CuS-Mn NPs showed rapid liver and spleen 

uptake due to phagocytosis of larger particle size. Such accumulation resulted in increased 

hepatobiliary clearance compared to the small NPs which are cleared more through the kidney. 

The synthesis and intrinsic radiolabeling of CuS-Mn NPs, using either 89Zr or 67Cu has 

been demonstrated. The feasibility of multi-modal capability with PET, MRI and PA imaging has 

been demonstrated. This novel approach of intrinsically labelled radio-nanoparticles can be 

expanded to incorporate a number of radionuclides and the platform can be modified to carry 

targeting molecules, enabling the potential of target-specific imaging and therapy (Theranostics).  
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1.1 Multimodality Copper Sulfide Manganese Nanoparticle  

The merging of nanotechnology with targeted therapy and molecular imaging is gaining a 

tremendous amount of interest within the biomedical research community. This is because the 

potential for multi-targeting, controlled delivery and release can now be realized as a more rational 

approach to the treatment of various diseases. This marriage is also leading to the development of 

theranostic (“image as you treat”) approaches, which can contribute in precision and personalized 

medicine1–4. The main motivation of this project is to exploit the combination of molecular 

imaging and nanotechnology to develop a theranostic platform that could potentially be used in 

combination therapy guided by molecular imaging. The nano-platform developed during the 

course of this research has generated a novel multi-modal nanoparticle probe. It contains stable 

and radioactive elements that can be detected by positron emission tomography (PET), single-

photon emission computerized tomography (SPECT), photoacoustic (PA) and magnetic resonance 

(MR) imaging. This has been accomplished with a manganese doped copper sulfide nanoparticle 

(CuS-Mn NP) that can intrinsically incorporate radionuclides for PET, Zirconiun-89 (89Zr), and 

SPECT, copper-67 (67Cu) imaging. The MR and PA signals are provided by manganese (Mn), and 

copper sulfide (CuS) respectively. The platform could also contain therapeutic radionuclides to 

enable nano-radiopharmaceutical therapy guided by imaging (Theranostics).  

1.2 Objectives 

The overall objective of this project is to develop a novel multi-modal nanoparticle which 

combines MR, PA, PET, SPECT signals in an “all in one” theranostic platform. The core/shell 

CuS-Mn NP can be doped with PET radionuclides, such as 64Cu, 52Mn and 89Zr among others, to 

afford PET imaging. It can also be doped with therapeutic radionuclides such as 67Cu.  CuS 

provides efficient photo-absorption to enable both photoacoustic imaging and photothermal 



 3 

therapy, whilst doping with Mn allows MRI imaging. The novelty of this technology resides in the 

fact that the MR, PET/SPECT and PA molecular imaging signals are all coming from the same 

multi-elemental nanoparticle (Mn-MRI; CuS-PA; 67Cu-/64Cu-/89Zr-/52 Mn-SPECT/PET).  

1.3 Hypothesis and Aims 

We hypothesize that intrinsic labeling or doping of core/shell CuS NPs with radioisotopes 

and contrast agents, would lead to the development of a multi-modality platform that merges 

molecular imaging with nanotechnology. Furthermore, the use of therapeutic radionuclides, such 

as 67Cu could also enable the combination of radiotherapy and photothermal therapy in the same 

image-guided platform.  

The following specific aims have been investigated to demonstrate the feasibility of the working 

hypothesis: 

1.1 Synthesis and physiochemical characterization of CuS NPs and CuS-Mn-doped NPs, 

including size and charge analysis.  

1.2 Optimization of intrinsic radiolabeling of CuS-Mn NPs with the radionuclides 89Zr and 

67Cu, as positron and single photon-emitting tracers respectively.  

1.3 Evaluate the MR and MSOT imaging performance of Mn-doped CuS and determine 

minimum amount of Mn needed for adequate MR signal.  

1.4 Demonstrate imaging and radiotracer kinetics of radiolabeled CuS-Mn NPs in vivo and in 

a live animal.  

1.4 Research Strategy 

Manganese-doped-CuS NPs (CuS-Mn) was synthesized with different coating materials 

such as Poly (acrylic acid) (PAA), Alginic acid, Sodium Citrate, Polyethylene glycol (PEG), and 
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intrinsically labeled with radionuclides such as 89Zr, 67Cu. Zirconium-89 (89Zr) is a positron-

emitting radionuclide with a half-life of 78.41 hours, which is used for PET imaging and ex vivo 

biodistribution studies. Copper-67(67Cu) is a beta-emitting radioisotope which is attractive for 

medical purposes due to its ability to carry sufficient radiation energy to cause cell death in targeted 

cells while having a sufficiently short half-life of 62 hours, limiting radiation dose to patients. 

67Cu, incorporated in CuS-Mn NP was used as radiotracer tool to evaluate the chemical and 

biological behavior of radiolabeled NP. CuS-Mn NP provided enhancement in both the PA and 

MRI signals. To prepare a NP for future targeted imaging, preliminary experiments were 

conducted to functionalize the CuS-Mn NP various coating, including polyethylene glycol (PEG), 

or bovine serum albumin (BSA). To demonstrate peptide conjugation to the CuS-Mn NP, cyclo 

(Arg-Gly-Asp) peptide (cRGD) peptide was used. This peptide has been previously used in our 

laboratory, to target the alpha(V) beta (3) (αVβ3) integrins and imaged with PET and MRI.5  

1.4.1 Extrinsically vs. Intrinsically Radio-labeled Nanoparticles  

In order to radiolabel the nanoparticle with radionuclide, two main approaches have been 

used (Figure 1). The first and most widely used radiolabeling strategy is extrinsically radio-labeled 

nanoparticle, which involves the use of an exogenous linker that matches with certain isotopes to 

form stable complex.6  Well known chelators, such as 1,4,7-triazacyclononane-1,4,7-triacetic acid 

(NOTA), 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), p-

isothiocyanatobenzyl- desferrioxamine (Df-Bz-NCS) and diethylene triamine pentaacetic acid 

(DTPA), etc., have been used for radiolabeling of copper-64 (64Cu, t1/2 = 12.7 h), zirconium-89 

(89Zr, t1/2= 78.4 h) and indium-111 (111In, t1/2= 67 h) for imaging in preclinical studies.7,8 There 

are many concerns of using traditional radiolabeling strategies include the possible changes of 

chemical structure of the nanoparticle which lead to altering of in vivo pharmacokinetics of 
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carriers. In addition, the external label is on the surface of the nanostructure and is exposed to 

chemical and enzymatic activity that may separate the radionuclide from the nanoparticle. This 

could compromise the label’s usefulness for multi-modal imaging as the imaging systems such as 

PET or SPECT detect signal from the radioisotope.9 Therefore, an alternative and successful 

radiolabeling method is required to overcome with these limitations. The second strategy used in 

this research intrinsically incorporates radionuclide into the core structure of the nanoparticle. The 

focus here is on developing more reliable chelator-free radiolabeling technique, which could fully 

take advantage of the unique physical and chemical properties of the nanoparticles for 

radiolabeling, and more importantly, offer an easier, faster, and more specific radiolabeling 

possibility. This will ensure effective shielding of the radionuclide within the nano-construct, 

thereby providing a pharmacokinetic profile indicative of the overall nanoparticle. Additionally, 

this will simplify the surface coating chemistry and offer a greater surface area for conjugation of 

the targeting moiety. This intrinsic radiolabeling approach has been studied in Center of Molecular 

Imaging (CMI) by using different radioisotopes with three types of NPs: cerium oxide NPs with 

cerium-141, Indium-111, Zinc-65 and Zarconium-89, quantum dots with Indium-111, and 

superparamagnetic iron oxide NPs with Iron-59 and Manganese-52.10–13  

 
Figure 1: Extrinsically vs. Intrinsically Radio-labeled Nanoparticles. A) Externally labels 
nanoparticle, by using linker (radioactive chelator). B) Internally incorporates the radioactivity 
into the core of nanoparticle.  
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1.4.2 Intrinsically Radiolabeled Manganese-doped Copper Sulfide Nanoparticle  

For intrinsic incorporation of radiolabeled CuS-Mn nanoparticles, 89Zr or 67Cu was used. 

While the synthesis was optimized the 89Zr was used. The 89Zr isotope is a clinically relevant PET 

imaging isotope and allows for both high activity PET imaging, and ex vivo biodistribution to more 

precisely measure uptake in specific organs. 67Cu is a good candidate, chemically identical to the 

CuS NP and does not affect chemical structure or physical properties of the nanoparticles. The 

intrinsic radiolabeling strategy is more stable than using chelator to label the nanoparticle which 

may cause change on the surface chemistry of the NP. This could increase the nanoparticle binding 

with plasma proteins, increase the nanoparticle size, and change the pharmacokinetic profile.  

1.5 Thesis Organization 

This thesis contains eight chapters. The first chapter is a general introduction to the 

research, including an overview of overall objective and strategy of the approach. Chapter two 

provides an overview of cancer and nanotechnology and the impact of nanotechnology research 

on cancer imaging, drug delivery and targeted therapy. Chapter three describes molecular imaging 

techniques and their application in cancer imaging and therapy. Special emphasis is given to 

techniques relevant to this project. Chapter four details the research approach and methods adopted 

in this thesis. Chapter five describes the results of experiments, while chapter six focuses on 

discussing the results of the research work and how it relates to the literature in the relevant 

research area. Chapter seven outlines preliminary work on the synthesis of CuS-Mn NPs 

conjugated with cRGD peptide for potential targeted imaging. Chapter eight provides an overall 

summary and the way forward. 
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2.1 Cancer  

Cancer is a group of diseases, which are characterized by uncontrolled and uncoordinated 

cell division and growth. Cancer remains a major threat to human health and one of the most 

leading causes of death. According to estimates from the International Agency for Research on 

Cancer (IARC), in 2012 there were 14.1 million new cancer cases and 8.2 million cancer deaths 

worldwide. By 2030, the global burden is expected to grow to 21.7 million new cancer cases and 

13 million cancer deaths14,15. In the last few decades, advances have been made in early diagnosis 

and treatment of cancer. In the United States, this has resulted in improved survival rates for many 

types of cancers16. Despite this, cancer is still a major killer, and there is still the need for more 

advanced and effective diagnostic and therapeutic approaches to reduce the burden of the disease.  

Cancer was and remains one of the challenges that face scientists. There are many theories studied 

to answer and explain the behavior and nature of cancer cells, or at least to understand the 

underlying mechanism of its occurrence and progression. One of the remarkable progress when 

Hanahan and Weinberg published the hallmarks of cancer that allow normal cells to become 

cancerous ones (Figure2). These characters which are shared in all types of cancer cells, sustaining 

proliferative signaling, evading growth suppressors, avoiding immune destruction, enabling 

replicative immortality, tumor-promoting inflammation, activating invasion and metastasis, 

inducing angiogenesis, resisting cell death, deregulating cellular energetics, and genome instability 

and mutation. By understanding and targeting these hallmarks of cancer which the main changes 

occur in normal cell growth pathways, the treatment of cancer has been improved in most of 

cancers17,18. 
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Figure 2: Therapeutic Targeting of the Hallmarks of Cancer 

2.2 Cancer treatments 

Currently, cancer treatment involves surgery, chemotherapy, radiotherapy and biologically 

targeted therapy19. Treatment options depend on a number of factors, including type and severity 

of the disease, location of the disease and the overall health status of the patient concerned. 

However, the problems of tumor recurrence, normal tissue damage and moderate to severe side 

effects are still common among many cancer patients. In recent years, cancer immunotherapy has 

emerged as a promising and effective approach for a number of cancers, especially melanoma and 

lung cancer among others.20,21 Early cancer detection is still paramount, and all the evidence points 

to the fact that early diagnosis, while the disease is still localized, can lead to better therapeutic 

outcome. This is because controlling local disease, before tumor spread and metastasis, will always 

be more effective than treating more advanced disease.22   

Surgery: is usually the first treatment option. This can be done when the cancer is diagnosis in the 

early stage and the cancer located only on one area and did not spread to other parts of the body. 

However, not all surgeries result in complete removal of cancer cells and it is these residual cancer 

cells that usually lead to recurrence. Some of these cell clusters are pre-cancerous stem cells which 
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are never eradicated by surgery. Surgery also used for diagnosis of cancer where small piece of 

the tissue called biopsy tested for the presence of cancer, type of cancer, and rate of growth.   

Recent advances in targeting stem cell therapy are still at the experimental stage and the potential 

of this approach could help eradicate the “roots” of cancer cells.23,24 

Radiotherapy: is widely used in the treatment of cancer. The most commonly used approach is 

external beam radiation therapy (EBR). The radiation used is called ionizing radiation because it 

forms electrically charged particles to irradiate a field of view, previously planned by image 

guidance using computed tomography (CT) or magnetic resonance imaging (MRI). This energy 

can kill cancer cells or cause genetic changes (damages deoxyribonucleic acid, DNA) resulting in 

cancer cell death. Advances in the physics of EBR has resulted in more beam focused therapy, 

such is the case of confocal radiotherapy.25 In addition to CT and MRI, which provide excellent 

morphological detail, high resolution positron-emission tomography (PET) has been applied to 

determine functional volume of the tumor in order to guide a more effective EBR.26 

Brachytherapy: is another type of radiation therapy and also known as internal radiation therapy 

where the source of radioactive material is placed inside the patient body into or close to the tumor 

to irradiate cancer cells. In this way the damage to normal cells can be reduced. Therefore, 

brachytherapy delivers precise radiation doses to the tumor from the inside out. Brachytherapy can 

be administered in different ways, including intracavitary, interstitially, intraluminal, and 

intravascular.27 The duration of treatment is dependent on the half-life of the radio isotope placed 

in the tumor area. Radioisotopes used in brachytherapy include, Iodine-125 (125I), Palladium-109 

(109Pd), Iridium-192(192Ir), Cesium-131 (131Cs), and Gold-198 (198Au).28 The delivery of radiation 

to the tumor site has been improved by incorporating of imaging modalities and delivery systems 

such as nanoparticles.29,30  
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Chemotherapy: is still a major treatment modality despite the failure of many therapeutic regimens 

used. In general, chemotherapeutic drugs are usually, if not always associated with mild to severe 

side effects. It is side effects is further exasperated by the fact that chemotherapy is cytotoxic and 

does not discriminate normal from cancer cells. In advanced metastatic disease, it is given 

systemically and hence all types of cells and tissue get exposed to the chemotherapy. Damage to 

bone marrow, intestinal mucosa, and hair follicles is not uncommon. Damage to bone marrow cells 

can cause anemia and affect immune system which lead to patient discomfort and more 

importantly compromising the body defense mechanisms against for example “opportunistic” 

infection.31 These side effects sometimes cause dose reduction and delay in treatment or 

discontinuation of therapy. There are many types of chemotherapeutic agents which are classified 

according to chemical nature and function, some of well know classes are listed in table 1. They 

have been used in cancer treatment depending on the type of cancer and the mechanism of action 

of the anticancer agents. The efficacy of chemotherapy agents depends on the drug concentration 

against the specific site of the tumor. It is very important that chemotherapeutic agent be delivered 

to the site of the cancer. This will minimize the exposure to surrounding normal and healthy 

tissue.32 The use of drug delivery systems such as nanoparticles will help to deliver chemotherapy 

agents to the tumor site and do not affect surrounding normal tissues. In clinical use there are 

different types of the nanocarriers that used to deliver chemotherapies drugs and many others in 

clinical trials. Examples of food and drug administration (FDA) approved nanomaterial 

chemotherapy agents are liposomal doxorubicine (Doxil), liposomal irinotecan (onivyde), and 

liposomal vincristine (Marqibo). Liposomes are the most widely used NP as a drug delivery 

system33. 

. 
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Table 1: Classification of chemotherapeutic agents and mechanism of action (MOA) with the 
examples.34 

Type of the agent MOA Treatment of Examples 
Alkylating agents Damage DNA 

and prevent 
mitosis.  
 

leukemia, 
lymphomas, 
multiple 
myeloma, 
sarcoma and 
lung, breast, 
and ovarian 
cancer 
 

Nitrogen mustards such as 
chlorambucil 
Alkylsulfonates such as 
busulfan 
Nitrosoureas such as 
streptozotocin 
Triazines such as 
dacarbazine 
Ethylenimines such as 
thiotepa and altretamine 
Platinum drugs such as 
cisplatin, carboplatin and 
oxalaplatin 

Antimetabolites 
 
 

Interrupt the S 
phase and 
substitute normal 
DNA and RNA 
with other amino 
acids. 
 

Leukemia and 
cancers of the 
breast and 
ovary 
 

5-fluorouracil (5-FU), 6-
mercaptopurine (6-MP), 
cytarabine, capecitabine, 
fludarabine, gemcitabine, 
methotrexate, pemetrexed, 
pentostatin and 
thioguanine. 
 

Anti-tumor antibiotics or 
Anthracyclines 
 
 

Inhibit the 
enzymes that 
bring about DNA 
replication 
 

Lymphoma, 
solid tumors, 
bone and soft 
tissue sarcomas 
 

Doxorubicin, 
daunorubicin, idarubicin 
and epirubicin. 

Topoisomerase inhibitors 
 

Inhibit the 
enzyme 
topoisomerase  
 

Leukemia and 
lung, ovarian 
and gut cancer 

Topotecan, irinotecan, 
etoposide and teniposide. 

Plant alkaloids or Mitotic 
inhibitors 
 

Interrupt the M 
phase of the cell 
cycle and inhibit 
mitosis 
 

Breast and lung 
cancers and 
myeloma, 
lymphoma, and 
leukemia 
 

Taxanes such as paclitaxel 
and docetaxel, vinca 
alkaloids such as 
vinblastine, vincristine 
and vinorelbine. 
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Biological targeted therapy: as the name suggests, in this type of treatment a specific molecule is 

targeted to the tumor site. Such molecules range from small to macro-molecules including 

monoclonal antibodies and peptides. Targeting certain entities expressed on cancer cells may help 

increase the specificity of these agents and reduce damage to healthy cells that do not express such 

binding entities to the targeted agent. These molecules can stop the spread of cancer cells by 

blocking specific molecules which involved in the growth of the cells and metastasis.  For instance, 

specific receptors which are only expressed on the surface of cancer cells can be identified and 

targeted. Many molecules have been engineered to increase their selectivity and hence enhanced 

binding to, for example receptors over-expressed by the cancer cells.35 Some targeting molecules 

have been radiolabeled with therapeutic radioisotopes to produce targeted radio-pharmaceutical 

therapy with beta- and alpha-emitting radioisotopes. 36,37. These molecular targeted therapies have 

shown remarkable success in clinical use for treatment of breast, leukemia, colorectal, lung and 

ovarian cancers. The main types of targeted cancer therapies are monoclonal antibodies, small 

molecule inhibitors and immunotoxins.38,39    

Radioimmunotherapy (RIT): In RIT uses specific monoclonal antibodies (MAbs) or antibody 

fragments (peptides) against specific antigens on the surface of cancer cells, as targeting vehicles 

of α- or β-emitting radionuclides. The MAbs or peptides linked to radioisotopes by using a chelator 

to form radioimmunoconjugate (Figure 3). These radioimmunoconjugates are able to bind to 

cancer cell surface and deliver the radiotherapy to the tumor and cause damage only to the targeted 

cancer cells and not to the normal cells. The level of damage depends on the type of the 

radionuclide and dose.  For example, MAbs against prostate-specific membrane antigen (PSMA) 

have been radiolabeled with Lutetium-177 (177Lu).40 PSMA is an antigen expressed on prostatic 

cancer cells. 177Lu is a beta-emitting radioisotope with a half-life of (6.7 days) that is compatible 
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with the in vivo kinetics of MAbs. Clinical experience with 177Lu-PSMA in men with advanced 

prostate cancer is encouraging.41 More recently, alpha-emitting radioisotopes have been used with 

remarkable success in treating castrate- resistant metastatic prostate cancer.  The use of the alpha-

emitter, Actinium-225 (225Ac) conjugated to anti-PSMA molecules has shown to be very promising 

and effective against such metastatic disease.42 The combination of immunotherapy with 

radiotherapy and chemotherapy has recently been proposed to enhance therapeutic effect in lung 

cancer.43 

 

 
Figure 3: The principles of radioimmunotherapy 

Photothermal therapy (PTT): is a treatment modality in which tumors are ablated by heat following 

absorption of light. Currently, several heating resources such as laser light, focused ultrasound and 

microwaves have been employed in thermal cancer therapy. When heat is generated in the tumor 

site, the ablation efficacy can be significantly enhanced. This can be achieved by targeting near 

infrared (NIR) molecules. Compared with other therapeutic modalities, PTT shows high specificity 
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and selectivity, with less damage to normal cells if the NIR molecule can be efficiently targeted 

and retained at the tumor site.44 Photothermal agents can also be combined with chemotherapy or 

radiotherapy to enhance efficacy of the treatment.45 The cancer cells become more sensitive to 

radiotherapy or chemotherapy because of thermal stress, and this results in an improvement in 

cancer survival rate. For example, photothermal with a combination of radiotherapy studies for 

treatment of metastatic head and neck squamous cancers showed improvement results without 

causing toxicity. Also, another enhancement was seen with phototherapy combined with 

chemotherapy drugs for treatment of malignant melanoma.46 The massive invasion of heat could 

cause damage for normal and healthy tissues. As a result, of whole-body hyperthermia 

cardiovascular side effects and gastrointestinal symptoms can be seen. This makes conventional 

PTT limited. Therefore, specific energy absorbing nanomaterials are needed, which can be in vivo 

localized to target tumors to absorb energy and facilitate photothermal therapy.47,48 

Recently, PTT has been used with the nanoparticles (NPs) to help with localized treatment 

and minimize effect on normal tissues. Gold nanoparticles (Au NPs) have been developed as 

effective PTT agents, and this is due to the fact that these NPs utilize the surface plasmon resonance 

(SPR) which make them stronger absorption in visible and near infrared (NIR) regions.49 Copper 

sulfide NPs (CuS NPs) have developed as a new class of PTT agents over the past few years. There 

are three major advantages of CuS NPs in terms of their translational applications and compared 

to Au-NP: i) consistent NIR absorption, ii) low cost, and iii) better degradability profile in vivo. 

Instead of SPR effects, the NIR light absorption of CuS NPs derives from d-d energy band 

transition of Cu2+ ions, and therefore the absorption wavelength of CuS NPs is not affected by the 

size, particle shape, and surrounding environment. This feature can benefit the application of CuS-

NPs in different ways. First, in the CuS-NPs synthesis there is no need for control of morphology 
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or shape to maintain SPR effects. Second, CuS-NPs can be made in smaller size (<10 nm), which 

may lead to improve pharmacokinetic, biodistribution and fast renal clearance profile. This is 

importance for toxicity concerns of NPs. Third, the stability and consistence of NIR absorption of 

CuS-NPs in solutions, cancer cells, or in vivo environment, helps to better predict in vivo PT 

properties of CuS-NPs based on in vivo experimental observations. Fourth, similar quantities of 

CuS-NPs are about 200 times cheaper than that of Au-NPs, in term the cost of making.50,51 In 

addition to the above consideration, the incorporation of imaging moieties into the NP platform is 

essential because it provides for a direct means to examine not only the efficacy of the therapy, 

but it also enables in vivo pharmacokinetics and underlying biology to be assessed non-invasively 

in situ and within the intact in vivo environment.52  In this research, a promising multimodality 

CuS-Mn NP will be studied which could be used for targeted localized PTT. 

2.3 Emerging cancer therapies  

Immunotherapy: in this type of cancer treatment the immune system for the patient is activated 

to fight the tumor. These types of drugs are made by the body or in the laboratory to improve the 

immune system by stopping the cancer from growing or spreading. There are several forms of 

immunotherapy including cancer vaccines, oncolytic viruses, adoptive transfer of ex vivo activated 

T and natural killer cells, non-specific immunotherapies, and administration of antibodies or 

recombinant proteins that either co-stimulate cells or block the so-called immune checkpoint 

pathways.53,54 One of the most successful immunotherapeutic platforms is the use of monoclonal 

antibody to block cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) which is a type of 

immune checkpoint receptor or negative regulator of T-cell immune function. Another checkpoint 

inhibitor antibody, nivolumab, a monoclonal antibody (mAb) which targets the programmed cell 

death protein 1 (PD1) receptors on T-cells. Two of anti-PD-1 antibodies have been approved by 
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the FDA for the treatment of metastatic melanoma and shows a higher survival rate. Many 

immunotherapy treatments for preventing, managing, or treating different cancers can also be used 

in combination with surgery, chemotherapy, radiation, or targeted therapies to improve their 

effectiveness.55,56  

2.4 Cancer nanotechnology   

The study and application of materials in the nanoscale range (1-100’s of nanometer) is 

known as nanotechnology. There are many applications of nanotechnology in cancer such as 

prevention, diagnosis, therapy and combination of diagnosis and therapy (Theranostic).57 Recent 

years have shown a tremendous expansion in the field of nanomedicine with the development of 

various types of nanoparticles (NPs) geared towards both diagnosis and treatment of cancer.58 

Compared to “bulk” molecules, NPs have unique physiochemical and biological properties given 

their small size and large surface area-to-volume ratio.59 Such features allow them to bind, absorb, 

and carry many types of chemicals, including proteins, small molecule drugs, DNA, ribonucleic 

acid (RNA), and probes such as radioisotopes, and contrast agents. There are over 200 

nanomaterials approved for clinical use and clinical trials.60 The first FDA approved nanomaterial 

was Doxil, a nano formulation of liposome to deliver a chemotherapy drug (doxorubicin) to tumor 

cells with less toxicity to normal cells61. A number of applications have been explored using NPs, 

including drug delivery, targeted drug therapy, photo-thermal therapy as well as multi-modality 

molecular imaging. Over the last decade, many types of organic and inorganic NPs have been 

developed. These include metal- and polymer-based nanomaterials.62 The research described here 

focuses on the development of the inorganic copper sulfide NP as a platform, which is amenable 

to contain both therapeutic cargo and imaging moieties enabling image-guided studies. 
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2.4.1 Nanoparticles 
 

Nanoparticles (NPs) have unique physiochemical properties given their small size and 

large surface area to volume ratio, which allows them to bind, absorb, and carry compounds such 

as small molecule drugs, proteins, radioisotopes, and probes with high efficiency.63 Also, The NPs 

have the ability to accumulate at the tumor by the enhanced permeability and retention (EPR) 

effect, which means that they are better absorbed and dispersed within the tumor cells than normal 

cells.64 Due to these unique properties, nanoparticle can combine cancer diagnosis and therapy in 

one platform, a theranostic NPs.65 Theranostic nanoparticles (TNPs) are a multifunctional 

nanomaterial which designed and characterized for disease management. They have ability to 

combine diagnostic and therapeutic in one biocompatible and biodegradable nanoparticle.66 In the 

last decades, there has been interest in the development of various types of theranostic 

nanoparticles for cancer imaging and therapy. Effective targeting theranostic nanoparticles to 

specific site (tumor) is crucial for both diagnosis and therapy. However, there are many 

requirements for biocompatible TNPs with highly specific in vivo tumor-targeting capabilities, 

which need to be realized. TNPs must accumulate rapidly and selectively at the target of interest, 

report biochemical and morphological properties of the disease, site-specific drug delivery without 

affecting healthy tissues. In addition, they must also have fast clearance from the body or to be 

degraded to nontoxic byproducts. These NP features depend on a number of properties including 

size and overall charge. Ultra-small NPs (HD size = 1-5 nm) are below the threshold of renal 

clearance, while larger NP (e.g., >20 nm) are usually cleared through the hepatobiliary system 67,68. 

Although, many types of TNPs have been developed over the last decades, few meet all the ideal 

criteria. Nanoparticles have been made of different materials, organic nanomaterials or in organic 

nanomaterials. For example, carbon nanotubes, quantum dots, liposome NPs, polymer NPs and 
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metallic NPs (Figure 4). Among the metal-based NPs, gold NPs (AuNP) have been the most 

developed and accelerated towards clinical trials. This is mainly due to their plasmonic effects and 

high photothermal efficiency.69 NPs have also attracted attention in bioimaging and the most 

studied in this regard include silica NPs gold NPs, cerium oxide NPs, magnetic NPs and polymer 

NPs. Inorganic nanoparticles are compatible with incorporation of metals to facilitate multi-

modality molecular imaging and targeted therapy.70 They also offer the opportunity to incorporate 

SPECT or PET imaging radionuclides to track and guide delivery of therapeutics.71  

 
Figure 4: Different type of the NPs, organic nanoparticles and inorganic nanoparticles.72 

2.4.2 Types of nanoparticles as a nanocarrier 

There are many types of the nanoparticles which have been used as a drug delivery system, 

liposomes and simple polymers were the first generation of the nanocarriers. Liposomes are 

formed of phospholipids and they have a polar head and hydrophobic tail to form spheres. Their 

size ranges are from ten nanometers to hundreds of nanometers. Liposomes have the ability to 

deliver hydrophilic or hydrophobic drugs and their surface can be functionalized with polyethylene 

glycol (PEG). This will help to increase their stability in vivo. The other first generation of the 

nanocarriers is simple polymer which consists of natural polymers such as polysaccharides and 

polypeptides that contain sugars and amino acids. For example, chitosan and albumin, in addition 
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to polylactic acid and polyglycolic acid or a combination of both. This type of nanoparticles also 

can be used as a drug delivery system for non-soluble treatment. The main advantage of liposomes 

and polymers are biocompatible and biodegradable. Micelles are another type of complex polymer 

which can be used as a drug nanocarrier. Micelles are made of self-assembling molecules that 

contain hydrophobic and hydrophilic segments which are able to deliver hydrophilic and 

hydrophobic drugs. A branched polymers nanoparticle also named dendrimers are a new 

generation of the nanocarriers which are made of natural and non-natural components. The other 

type of nanoparticles include metal or oxide-based nanocarriers (gold, copper, magnetic, quantum 

dots, titanium dioxide, zinc oxide, and silica), carbon based nanocarriers (nanotubes and 

fullerenes), and hybrids of materials such as lipid-coated or polymer-coated nanocarriers. 73,74  

2.4.3 Copper sulfide nanoparticles CuS NPs 

One of the metal-based NPs attracted in biomedical research is a CuS NP. It has a 

multifunctional property and has been studied for different applications such as biosensing, DNA 

detection, glucose detection, immunosensor, drug delivery, photoacoustic and photothermal 

therapy. Also, they are merging and promising for combination diagnosis and therapy for cancer 

(Theranostics). 75,76 They are attracted because of stability, easy synthesis, biocompatible, low 

toxicity and low cost. 77,78 CuS NP has strong near-infrared (NIR) optical absorption (700-1100nm) 

acquired from the d-d transition of Cu2+ ions and does not depend on morphology.77 However, 

gold NP (AuNP) which is the most investigated metal-based NPs which is depends on surface 

plasmon resonance (SPR).79 It is very important for the NPs to be cleared from the body to avoid 

toxicity and accumulation. CuS NP showed fast and easy clearance and better biodegradable 

compared to AuNP. This is due to non-metabolize nature of AuNP which related with their non-

biodegradable characteristics. On the other hand, CuS NP can be removed by hepatobiliary after 
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metabolism of Cu by hepatocytes. 80,81 CuS NP has high photothermal conversion efficiency which 

can be exploited for photothermal therapy. In addition, 64Cu and 67Cu radionuclides can be 

integrated into CuS NP 82. These features make CuS NP an emerging as a multimodality platform 

for imaging and therapy.  

2.4.4 Nanotechnology for prevention and diagnosis of cancer  

Nanoparticles can be used to prevent cancer disease by delivering tumor specific antigen 

to the immune system to produce immune response against cancer. Also using the nanoparticle for 

biosensing and diagnostic imaging will help with diagnosis of cancer. The example for biosensing 

is by detecting specific cancer markers utilizing nanomaterials.83,84 The use of molecular imaging 

improved detection and monitoring of the cancer treatment. Imaging systems utilizing various 

types of nanoparticles because of their ability to generate imaging signals and their surface has the 

ability to be functionalize with targeting molecules and some nanomaterials can produce more than 

one signal, this makes them a multimodality that can be used for more than one imaging systems. 

In addition, some nanomaterials have the ability to combine diagnostic and therapeutic agents. 

Imaging systems that utilize iron oxide, gold nanoparticles, copper sulfide nanoparticles or carbon 

nanotubes may have a theranostic value because these nanomaterials may be employed for therapy 

in addition to imaging through their thermal ablation capabilities. New imaging modality such as 

photoacoustic imaging are using nanoparticles as a contrast agent.85 

2.4.5 Nanotechnology for cancer therapy 

As mentioned in 2.1, the use of traditional therapeutic agents has been shown to have side 

effects on the patients. The use of nanomaterials as nanocarriers for drug delivery may overcome 

some of these problems. The advantages of using nanoparticles as a drug delivery system are: 1-
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To avoid drug degradation or solubility in vivo, the drug can be encapsulated within nanomaterials. 

2-There surface can be functionalized with different molecules which are drugs, an imaging agent, 

and a targeting moiety as a ligand or antibody. 3-The nanoparticles are able to accumulate at the 

cancer site because of EPR effect properties. This is due to the fact that the gaps between 

endothelial cells at the cancer site. This causes leakage of nanocarriers and gets retained there 

because of defective lymphatic drainage, which results in passive targeting cancer tissue. 4-Active 

targeting nanoparticles to target specific molecules expressed only on the surface of cancer cells. 

For instance, folate receptor alpha (FRα) is a tumor marker expressed by certain epithelial cancers 

while in normal tissue it is not accessible through the blood. In cancer, receptors on endothelial 

cells have been targeted to remove cells from their blood supply. Examples for such receptors 

include integrins α2bβ3, αvβ3, and α5β1. Actively targeting cancer cells or endothelial cells by 

nanocarriers results in more effective therapy while avoiding nonspecific toxicity to normal cells. 

5-Nanocarriers may overcome drug resistance by loading more than one drug onto 

nanoparticles.86,87  

The work described here is concerned with the development of doping manganese copper 

sulfide nanoparticles (CuS-Mn NPs) for multimodality imaging and therapy. Such NP has inherent 

near ideal properties including, stability, easy synthesis, high photothermal absorption, 

biocompatibility, low toxicity and lower cost, compared to, for example gold NPs.82 Doping with 

manganese enables MRI and the CuS core/shell can also accommodate radioisotopes of Cu, Mn 

and other PET/SPECT/ radioisotopes. Copper and manganese are natural trace elements in the 

body and are generally less toxic than heavier metals especially at low concentrations.88 
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3.1 Molecular imaging (MI) 

Molecular imaging is a multidisciplinary field that combines chemistry, biology, 

mathematics and medicine. It has the capability to visualize, characterize, and monitor biological 

processes at the molecular and cellular levels and in real time in live subjects. The field has had a 

huge impact, particularly in the last two decades, in the management of cancer patients. 89–91 The 

use of [18F]-fluorodeoxyglucose (FDG)-PET for example, revolutionized cancer detection, 

staging, and how best to monitor response to therapy. This is because, the technique can highlight 

disease in any part of the body, thereby overcoming sampling limitations.92 The recent 

development of total body PET/CT is a major advance in that it provides a snapshot of the whole 

body faster and more quantitative than conventional PET.93 Clinically applicable molecular 

imaging technologies include magnetic resonance imaging (MRI), positron emission tomography 

(PET), and single photon emission computed tomography (SPECT). PET and SPECT are truly 

molecular imaging modalities because they are based on specifically targeted radiotracers. MRI 

and ultrasound (US) can obtain molecular and functional information when used with specifically 

targeted contrast agents.94,95 Nowadays, PET and SPECT are combined with x-ray computed 

tomography (CT) to provide functional information within a specific anatomical location.  These 

techniques use non-ionizing electromagnetic (MRI) and ionizing (CT, PET, SPECT) radiation with 

infinite penetration and hence can detect deep seated legions. Fluorescence, bioluminescence, 

photoacoustic and other optical-based techniques have wide applications in small animal imaging 

and as of now they are not clinically viable due to limited penetration of light photons.96 Table 2 

summarizes unique features of imaging technologies utilized in this project. Figure 5 shows the 

spectrum of medical imaging which ranks the ability to image low concentrations (Sensitivity) of 

specific molecules (Specificity). 
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Figure 5: Schematic showing the spectrum of medical imaging which ranks the ability to image 
low concentrations (Sensitivity) of specific molecules (Specificity). 

 
Table 2: Characteristics of medical imaging modalities97  

Imaging 
Modality 

Signal for 
image 
generation 

Spatial 
resolution  

 

Temporal 
resolution  

 

Depth  

 

Sensitivity 

 

Type, Amount 
of the probe  

 
Magnetic 
resonance 
imaging (MRI) 

Radiowaves  

 

25–100 μm  

 

minutes to hours  

 

no limit  

 

10−3–10−5 
mole/L  

 

activatable, 
direct or indirect, 
micrograms to 
milligrams  

 

 
Positron 
emission 
tomography 
(PET)  

 

High-energy γ 
rays  

 

1–2 mm  

 

10 sec to minutes  

 

no limit  

 

10−11–10−12 
mole/L  

 

Radiolabeled, 
direct or indirect, 
nanograms  

 

 
Single photon 
emission 
computed 
tomography 
(SPECT)  

 

Low energy γ 
rays  

 

1–2 mm  

 

minutes  

 

no limit  

 

10−10–10−11 
mole/L  

 

Radiolabeled, 
direct or indirect, 
nanograms  

 

 
Photoacoustic 
(PA) 

Frequency sound 
(laser excitation) 

50-500 μm 

seconds to 
minutes 

 

mm to cm 

not well 
characterized, 
likely 10−9–10−12 
mole/L 

limited 
activatable, 
direct, 
micrograms to 
milligrams   

 
Optical 
fluorescence 
imaging  

Visible light or 
near-infrared  

 

2–3 mmg  

 

seconds to 
minutes 

 

<1 cmh  

 

not well 
characterized, 
likely 10−9–10−12 
mole/L 

activatable, 
direct or indirect, 
micrograms to 
milligrams  
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Table2: Continuous, Characteristics of medical imaging modalities 

Imaging 
Modality 

Principal use  Advantages  

 

Disadvantages  

 

Clinical 
Application  

Quantitative 
degree  

 

Cost 

 

Magnetic 
resonance 
imaging (MRI) 

morphological 
reporter/gene 
expression, 
receptor/ligand if 
many receptors  

 

highest spatial 
resolution, 
combines 
morphological 
and functional 
imaging  

 

relatively low 
sensitivity, long 
scan and 
postprocessing 
time, mass 
quantity of probe 
may be needed  

 

Yes ++ $$$$  

 

Positron 
emission 
tomography 
(PET)  

metabolic, 
reporter/gene 
expression, 
receptor/ligand, 
enzyme targeting  

 

high sensitivity, 
isotopes can 
substitute 
naturally 
occurring atoms, 
quantitative 
translational 
research  

PET cyclotron or 
generator 
needed, 
relatively low 
spatial 
resolution, 
radiation to 
subject  

Yes +++ $$$$ 

Single photon 
emission 
computed 
tomography 
(SPECT)  

 

reporter/gene 
expression, 
receptor/ligand  

many molecular 
probes available, 
can image 
multiple probes 
simultaneously, 
may be adapted 
to clinical 
imaging systems  

relatively low 
spatial resolution 
because of 
sensitivity, 
collimation, 
radiation 

Yes ++ $$$  

 

Photoacoustic 
(PA) 

melanoma and 
lymph node 
metastases 

spectral 
information and 
optical contrast 
characteristics, 
high resolution, 
deeper into body 
than 
fluorescence 
imaging 

shielding by 
strongly 
absorbing 
objects newer 
technology with 
few current 
probes 

Yes, but limited  ++ $$-$$$ 

Optical 
fluorescence 
imaging  

reporter/gene 
expression, cell 
trafficking  

high sensitivity, 
detects 
fluorochrome in 
live and dead 
cells  

relatively low 
spatial 
resolution, 
surface-weighted 

 

yes, but limited  

 

+ to ++ $–$$ 

 
3.1.1 Magnetic resonance imaging (MRI) 
 

The first clinical use of MRI was in 1980. Since then, MRI has become a widely use and 

powerful tool to examine anatomical abnormalities caused by various diseases. MRI provides a 

three-dimensional image with good soft tissue contrast and submillimeter spatial resolution that 

can be used for diagnostic and therapeutic purposes. This is obtained by avoiding exposure to an 

ionizing radiation. MR imaging applications include cardiac imaging, neuroimaging, 

musculoskeletal imaging, to angiography.98–101 
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The basic principle of MRI depends on the fact of that certain atomic nuclei, such as the 

hydrogen nucleus (1H) which consists of proton and neutron with a net positive charge, and has a 

property known as ‘‘spin’’. When the strong external magnetic field (B0), which usually ranges 

from 0.2-7 Tesla (T), is applied to nucleus, their spin aligns in parallel or perpendicular to the 

external field. A subject (tissue of the patient or animal) containing many nuclear spins, placed 

within the B0 field, will have an extra spin in the same direction as B0. During their alignment, the 

spins precession along this axis is under a specified frequency proportional to the magnetic field, 

known as the Larmor frequency (ω0) which is calculated by equation (1). 

[ω0= γ B0]               (1) 

Where γ is the gyromagnetic ratio of the particles of interest (
1
H= 42.58 MHz/T) (Figure 6, A).  

The image signal to noise ratio (SNR) depends on the strength of the fields (B0), where higher 

strength fields result in higher image SNR which result in reduced radiofrequency field (RF) 

homogeneity and increased specific absorption rate (SAR). Due to the introduction of RF to the 

nuclei, the protons absorb energy and are excited to the transverse state (Figure 6, A). The excited 

nuclei relaxed to their initial state, after the disappearance of the RF pulse. Two types of relaxation 

pathways, longitudinal or T1 relaxation, including the decreased net magnetization in the z-

direction recovering to the initial state (Figure 6, B). The transverse or T2 relaxation is the second 

one, where the induced magnetization on the perpendicular plane (x y plane) decreases by the 

dephasing of the spins (Figure 6, C). The two relaxation measurements are used to reconstruct 

images where different tissues show different values for T1 and T2. T1 weighted images show better 

differentiation for fatty tissues, while T2 weighted images are better for showing water 

content.102,103 
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Figure 6: A) Principle of MRI: spins align parallel or antiparallel to the magnetic field and precess 
under the Larmor frequency; after introduction of the RF pulse the magnetization of the spin 
changes; excited spins undergo both T1 and T2 relaxation processes. B) T1 relaxation of protons 
which is shortened under the presence of T1contrast agents (e.g., Gd), which will generate a 
brighter image.  C)T2 relaxation of protons is shortened under the presence of T2 contrast agents 
(e.g., Fe3O4 NPs), which will generate a darker image.104  

 
3.1.2 Contrast agents for MRI 

The endogenous MR contrast of different tissues has been shown more flexibility than in 

other clinical imaging systems; nevertheless, to detect pathologies the utilization of exogenous 

contrast metals which are able to differentiate the normal and diseased tissues by modifying their 

intrinsic parameters are required. The metal contrast agent efficiency depends on their longitudinal 

(r1) and transverse (r2) relaxivity, which are defined as the increase of the nuclear relaxation rate 

(the reciprocal of the relaxation time) of water protons produced by one mmol/l of contrast agent. 

The contrast agents are classified as T1 or T2 based on their relaxation processes.105 
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Contrast-enhanced MRI is widely used to diagnose soft tissue and vascular 

abnormalities.106 To enhance the contrast in MRI images, paramagnetic compounds, with a large 

number of unpaired electrons, such as gadolinium (Gd)-based compounds, are desirable as contrast 

agents because they can shorten the longitudinal relaxation time (T1) and the transverse relaxation 

time (T2), and increase tissue signal intensity on T1 weighted images. However, safety concerns 

limit the use of Gd-based and iodinated (I) MRI contrast media in renal compromised patients. 

More recently, a number of reports have identified dose dependent Gd accumulation in the brains 

of patients with normal renal function that have received contrast-enhanced MRI, raising further 

concerns by the FDA regarding this class of compounds. Gd retention in a subset of patients further 

underscores the need for a Gd-free alternative to enhance MR contrast.107,108 Therefore, a new 

enhanced and safe contrast agent, compatible with renal impairment is sorely needed.  

The transition metal ion manganese (Mn2+), with five unpaired electrons, can produce a 

very efficient positive contrast enhancement and offers an attractive alternative to Gd-based MRI 

contrast agents. Manganese is a trace micronutrient in the human body that, along with other 

transition metals (Fe, Cu, and Zn), play essential roles in health and disease.  In this sense, Mn is 

a biologically relevant micronutrient metal ion and therefore has a much lower toxicity than 

lanthanides or other heavy metals. In fact, Manganese chloride (MnCl2) has been approved by the 

FDA as a T1 contrast agent. In addition to MnCl2, most other Mn-based MRI contrast agents have 

predominately been developed as coordination complexes with acyclic or macrocyclic ligands. 

Some recent developments have been based on different forms of Mn-based nanoparticles, such 

as manganese oxide (MnO), manganese trioxide (Mn2O3) and manganese sulfide (MnS).109,110 

Despite this, Mn-based agents developed so far, did not translate into clinical use because of 

modest contrast enhancement at low safe doses, and if used at higher concentrations, they tend to 
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induce toxicity particularly in the brain, a condition called (Manganism). Therefore, the hypothesis 

here is that a trace Mn content within a safe and biologically compatible metal platform, could 

provide high contrast at low doses. Accordingly, previously developed intrinsic nanoparticle (NP) 

labeling technology will be exploited to develop a new CuS nanoparticle doped with trace amount 

of Mn (CuS-Mn NP), as a novel platform with 1.5-2-fold higher contrast enhancement than the 

commercially available Gd-based MRI contrast agents. In this project, we present the development 

of a new copper sulfide-doped manganese (CuS-Mn) nanoparticle with ultra-small size and 

biocompatible coating that facilitates rapid renal clearance. The product is a novel and safe MRI 

contrast agent with a dual photoacoustic imaging (PAI) capability. 

3.2 Positron emission tomography (PET) and Single Photon Emission Tomography 
(SPECT) 

These molecular imaging modalities have been used to study and understand biological 

function and disorders of living tissue in health and disease. PET and SPECT are widely used for 

the diagnosis of various diseases, including neurogenerative disorders, cardiovascular diseases and 

cancer among others. A key component of PET or SPECT is the radiotracer which consists of the 

biochemical compound of interest labeled with a PET or SPECT radionuclide respectively.  PET 

and SPECT will be disused in details in the following sections. 

3.2.1 Positron emission tomography (PET) 
 

The principle of PET imaging is based on the use of radionuclides coupled to chemical 

compounds to produce radiotracers that decay by positron emission (Table 3). When a radiotracer 

labeled with a radionuclide, such as Fluorine-18 (18F), or Zirconium-89 (89Zr), is injected into a 

patient, a PET scanner can detect and track the signal from such radiotracer in different organs and 

tissues.  As an example, the decay schemes of 18F and 89Zr are shown in figure 7, A and B. 
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Following positron decay, the positron travels a certain distance (determined by their kinetic 

energy) and collides with a negative electron in tissue. The result of this is the annihilation of both 

particles and the production of annihilation radiation in the form of two gamma rays with an energy 

of 511 keV emitted at opposite directions. These photons are detected in coincidence by a PET 

scanner using opposing pairs of detectors in a ring system. The principle of PET coincidence 

detection and imaging is illustrated in (Figure 7, C). 111,112 

The activity distribution of the radionuclide represents an image of the tracer 

distribution/concentration that provides an insight into the physiology and/or pathology in the 

patient.  

Table 3: The characteristics of commonly used PET radionuclides. 

Nuclide Half-life Decay 
Modes 

Maximum positron energy 
(MeV) and yield (%) 

Production 

11C 20.3 min β+ 0.961 (99.8%) 14N(p,α)11C 

13N 10 min β+ 1.20 (99.8%) 16O(p, α)13N 

15O 2 min β+ 1.74(99.9%) 15N(p,n)15O 
14N(d,n)15O 

18F 109.8 min EC, β+ 0.634 (96.7%) 18O(p,n)18F 
20Ne(d, α)18F 

52Mn 5.6 days EC, β+ 0.575 (29.6%) 52Cr(p,n) 52Mn 
89Zr 3.27 days EC, β+ 0.90 (22%) 89Y(p,n)89Zr 

89Y(d,2n)89Zr 
64Cu 12.7 hrs EC, β+, β- 0.653 (17.4%) 64Ni(p,n)64Cu 
124I 4.2 days EC, β+ 2.14 (23.0%) 124Te(p,n)124I 

β+: beta-plus; β-: beta-minus; EC: Electron Conversion 
 
 

    
A B 
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Figure 7: A) Decay scheme of Fluorine-18. B) Decay schemes of Zerconium-89. C) Principle of 
PET imaging: positron emitting radionuclide yields a positron that travels a short distance, before 
colliding with an electron which results in the annihilation of both particles and the production of 
two collinear 511 keV photons. These photons exit the body and are detected by an array of 
scintillation crystals.  

3.2.2 Single Photon Emission Tomography (SPECT) 

The fundamental basis for SPECT imaging is the detection of mono-energetically emitted 

γ-rays from intravenously injected exogenous radionuclides (Table 4), ex. Iodine-123 (123I) 

(Figure8, A) or Technetium-99m (99mTc) (Figure8, B). Gamma-ray photons emitted from the 

internal distributed radiopharmaceutical penetrate through the animal’s or patient’s body are 

detected by a single or a set of collimated radiation detectors. The collimator defines the angle of 

incidence of the γ-rays emitted. Most of the detectors used in current SPECT systems are based on 

multiple sodium iodide (NaI) (TI) scintillation crystal detectors. Upon interaction with the γ-rays, 

these crystals emit light which is amplified by photomultiplier tubes and converted to electronic 

signals.  2D images are acquired by rotating the gamma camera at different angles. These are then 

converted to 3D image data set using tomographic reconstruction algorithms (Figure 8, C). 113 

In SPECT, data are acquired from different views around the animal/patient and physical 

collimation is used to project the signal emanating from specific field of view. Some of the emitted 

γ-rays will be absorbed by the lead collimation, and it is because of this, SPECT imaging has a 

C 
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lower detection efficiency than PET, where electronic collimation is used to detect two coincident 

γ-rays. Therefore, PET systems have higher sensitivity and higher resolution than SPECT cameras. 

However, the use of radionuclide generators and medium half-life radionuclides, combined with 

lower cost of gamma cameras, make SPECT imaging much more widely available for clinical use 

than PET scanners. 114 

Table 4: The characteristics of SPET radionuclides 

Nuclide Half-life Decay 
Modes 

Maximum energy (MeV) Production reaction 

67Cu 61.83 hrs  β-, γ 0.5617  68Zn (γ, p)  
99mTc 6 hrs g 0.1405 99

Mo/99mTc  
123I 13.3 hrs EC, γ 0.16 127

I(p,5n) 
198Au  2.7 days β-, γ 0.960 197

Au (n, γ) 
111In 67.9 hrs EC, γ 0.17/.0.25 111

Cd (p,n) 
153Gd 240.4 days EC, γ 0.10 152

Gd (n, γ) 
67Ga 78.3 hrs EC, γ 0.09/0.19/0.30 68

Zn(p,2n) 
β+: beta-plus, β-: beta-minus, EC: Electron Conversion, γ: gamma rays 
 
 

 

A B 
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Figure 8: A) Decay scheme for single photon emitting radionuclides Indium-123 (A), and 
Technetium-99m (B). C) Principle of SPECT imaging. 

 
3.2.3 Radiotracers 
 

Radiotracers are chemical compounds labeled with radionuclides which enable PET and 

SPECT imaging techniques to be used, non-invasively, to visualize, study and diagnose various 

disease conditions. Table 5 lists a number of commonly used radiotracers for PET and SPECT. 

These range from simple thyroid imaging using a 99mTc-pertechnetate or iodide ion to more 

complex metabolic and receptor-based radiotracers. For instance, fluorine-18-fluorodeoxyglucose 

([18F]-FDG) is used for PET imaging of various cancers because the radiotracer is preferentially 

taken up by cancer cells due to their greater metabolic activity compared to normal cells.115,116 

Among the recently developed molecularly targeted radiotracers, gallium-68-prostate specific 

membrane antigen	(68Ga-PSMA) has shown high sensitivity and specificity for prostate cancer 

detection and for monitoring response to therapy because it is taken up by specific membrane 

antigen over-expressed on the prostate cancer cells.117,118  

There is a continuous development of radiotracers for molecular imaging, including the 

exciting combination of radiolabeled nanoparticles with drug nano-delivery systems for multi-

modality image-guidance of multiple therapeutics and drug “cocktails”. The introduction of 

nanotechnology into radiotracer research has opened new possibilities of solid phase chemistry, 

C 
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microreactors and flow chemistry techniques to synthesis radiotracers.119 The incorporation of 

radionuclides, contrast agents and therapeutic drugs has opened up the potential of multi-functional 

nano-based agents including radiopharmaceuticals for imaging and therapy (theranostics). This 

thesis is contributing to this effort by the development of a novel multi-modality intrinsically 

labeled nanoparticle which encompasses an ‘’all in one” platform for multi-modal imaging by 

PET, SPECT, MRI and photoacoustic imaging.  

Table 5: Common radiotracers used in medical imaging  

Radiopharmaceutical  Common clinical use Mechanism of uptake 
Tc-99m pertechnetate or 
Sodium iodide-123/131 
pertechnetate 

Thyroid gland imaging  Trapping by Active transport  

Tc-99m methylene 
diphosphonate (

99m
Tc-MDP)  

Bone imaging  

 

Adsorption by hydroxyapatite 
crystals  

Tc-99m macroaggregated 
albumin particles (

99m
Tc-MAA)  

Lung perfusion imaging  

 

Blockage of capillaries and 
precapillary arterioles  

  
Tc-99m-

(mercaptoacetyltriglycine) 
99mTc-MAG-3  

Renal dynamic imaging  

 

Tubular excretion  

 

Tc-99m or In-111 labeled white 
blood cells and monoclonal 
antibody  

Infection imaging  

 

Cell migration  

 
Fluorine-18 fluorodeoxyglucose 
([

18
F] FDG)  

Tumor imaging  

 

Active transport to cells 
(glucose analog)  

Fluorine-18 sodium fluoride 
([

18
F] NaF)  

Bone imaging  

 

Ion exchange  

 
Gallium-68-PSMA(

68
Ga-

PSMA)  
Prostate cancer imaging  

 

Receptor binding 

Gallium-68- octreotide/ 
edotreotide (68Ga-NOC/TOC)  

Neuroendocrine tumor imaging  

 

Receptor binding 

 
Zr-89-labeled monoclonal 
antibody 

Immune PET imaging  Receptor binding 
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3.3 Optical imaging 

Optical imaging is another type of molecular imaging using optical technology non-

invasively to visualize and characterize biological processes at the cellular and molecular level. 

Using non-invasive and non-toxic imaging methods allows researchers and clinicians to study and 

examine inside the system over the time without any modification or interactions in the tissues or 

their microenvironments. This real time imaging is important especially for the examination of 

diseases such as cancer. Deferent types of optical imaging such as florescence imaging, 

bioluminescence imaging and optoacoustic imaging, use various techniques which depend on 

illumination light in the ultraviolet, visible and infrared regions of the electromagnetic spectrum. 

In the florescence imaging, the light illuminates on the subject or tissue within the range of the 

wavelength between 395-600 nm and the emitted light with wavelength higher than excited 

wavelength will be detected by charged coupled device (CCD) detectors. Near infrared probes can 

be used to maximize tissue penetration. In bioluminescence imaging, the emission light only 

detected by CCD because bioluminescence is a light producing phenomenon which occurs 

naturally in many species whereas the oxidation of substrate (luciferin) by enzyme (luciferase), 

photons are released as the substrate returns to its ground state from its excited state. Commonly 

used probes for bioluminescence are reporter genes such as firefly or renilla luciferase (Fluc or 

Rluc). Optoacoustic technology principle based on using pulsed laser to excite light on the subject 

and as a result an ultrasound emitted and detected.91,120 In this work, MSOT was used for 

photoacoustic imaging, and will be discussed in detail in the following section.   

3.3.1 Multi-spectral optoacoustic tomography (MSOT) 

Over the last decade, MSOT has been developed by combining high sensitivity optical 

detection with high resolution ultrasound imaging.121 This technology works by using a pulsed 
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laser light (1-100 nanoseconds) to illuminate tissue or an entity within. The technology can utilize 

either endogenous compounds such as oxygenated & deoxygenated hemoglobin, and melanin, or 

use exogenous agents with photoacoustic properties such as imaging probes and nanoparticles.  

The principle of MSOT imaging is outlined in figure 9. First, the electromagnetic energy 

from the laser light is absorbed by a photo-absorber in tissue, and part of this energy is converted 

to heat. This causes thermo-elastic expansion, a phenomenon known as the optoacoustic or 

photoacoustic effect, creating a pressure wave that is detected by ultrasound sensors. The detected 

wave is converted into an image of the initial pressure distribution in the tissue using tomographic 

inversion methods.122,123 Image formation can be done by means of hardware (e.g., acoustic 

focusing or optical focusing) or computed tomography (mathematical image formation). MSOT 

has the ability to illuminate tissues with various wavelengths, which allows the detection of 

ultrasound waves emitted by different photo-absorbing molecules. Optoacoustic imaging based on 

collecting ultrasound waves in the 0.1–10 MHz range achieves a resolution of about 300 microns 

through 1-3 cm of tissue in the near-infrared (NIR) region, since sound scattering in tissue is orders 

of magnitude lower than photon scattering.	Compared with other conventional optical imaging 

techniques, MSOT is not affected by photon scattering and as a result of this, high-resolution 

optical images in reasonably deep biological tissues will be obtained.122 MSOT biological 

applications include studies in cardiovascular disease research, neuroimaging, and cancer research, 

among others.124–127 In addition, prototype clinical use of MSOT for imaging the breast, 

vasculature, lymph nodes and skin, by real-time handheld imaging systems, has been recently 

demonstrated.128,129 
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Figure 9: A) Principle of MSOT operation. Illuminating the tissue at multiple wavelengths can 
stimulate ultrasound wave emission by several photo-absorbers, leading to more informative 
imaging than single-wavelength illumination. B) A number of endogenous compounds has 
different absorption coefficient that compatible with MSOT. 

 
3.3.2 MSOT contrast agents 

Light absorbing molecules capable of converting light to a pressure wave have the potential 

to be detected leading to the formation of an optoacoustic signal. Contrast agents absorbing light 

in the NIR are particularly attractive, because the high wavelength in the NIR region enables 

imaging at greater depth. Contrast agents with this feature help to expand the range of MSOT 

imaging applications. Contrast agents can either be endogenous, that is light absorbing molecules, 

which are naturally present in animal or humans, or they can be exogenous compounds 

administered to the subject. 

3.3.2.1 Endogenous contrast agents 

A number of endogenous compounds have different absorption coefficients that are 

compatible with MSOT shown in figure 9, B. One of the most commonly used endogenous contrast 

agents for optoacoustic imaging is hemoglobin which is a dominate absorber of light in the visible 

and NIR of the optical spectra. Hemoglobin, as a contrast agent allows sensitive imaging of 

A B 
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vascular anatomy at various levels. Furthermore, MSOT has multispectral capability that allows 

differentiation between oxygenated versus de-oxygenated hemoglobin. This is a unique tool which 

can assess tissue oxygenation level and hypoxia (reduced oxygen), hence providing a functional 

measure of oxygen status in normal and pathological physiology. Many useful applications for 

using hemoglobin-based imaging, such as resolve vascular abnormalities and oxygenation status, 

as well as perfusion imaging, inflammation imaging, and tumor detection and 

characterization.123,130  Another endogenous contrast agent is melanin, which has the ability to 

absorb over abroad range of the wavelength in the visible and NIR and the absorption decreases 

with higher wavelength. There are different uses of melanin based optoacoustic imaging such as 

to assess the depth of melanoma ingrowth inside epithelial tissue, and to assess the metastatic status 

of sentinel lymph nodes in melanoma patients, also to detect circulating melanoma cells.131 More 

endogenous absorbers can be detected by MSOT. For example, lipids which can be imaged at NIR 

wavelengths with absorption peak of 930 nm, and water which has strong absorption at NIR 

wavelengths and higher peak at 980 nm. Bilirubin and cytochromes can be imaged at blue 

wavelengths. DNA absorbs UV which is exploited to image cell nuclei.132,133 

3.3.2.2 Exogenous contrast agents  
 

A large numbers of exogenous contrast agents have been developed and are under 

development for optoacoustic imaging, examples of imaging probes have been reported in table 6. 

The absorption spectrum for these contrast agents is different from that of endogenous ones and 

this makes them easily separated from other background absorbers using spectral unmixing. 

Organic dyes, such as the fluorochromes indocyanine green and methylene blue, are non-specific, 

approved for clinical use, and suitable for perfusion imaging. Another type already in clinical use 

for photodynamic therapy is photosensitizers which can be detected using MSOT and allowing 
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analysis of their pharmacokinetics and biodistribution in vivo.134 Light-absorbing nanoparticles are 

another exogenous contrast agent, and because of their lower photosensitivity and ability to 

produce stronger photo-echoes, they offer potential advantages over organic dyes. Gold 

nanoparticles, silver nanoparticles, carbon nanotubes, and iron-oxide particles have been used for 

optoacoustic imaging in animals. Gold nanoparticles have the ability to produce strong 

optoacoustic signals due to plasmon resonance and their absorption spectrum can be adjusted by 

modifying their shape. Nanoparticle or dye can be combined with a targeting ligand to form MSOT 

targeted contrast agents and used for a specific tissue which expressed specific cellular 

molecules.135 For instance, MSOT imaging of integrins within tumor animals, and image matrix 

metalloproteinase (MMP) activity within thyroid tumors in mice.136,137 Another powerful tool 

which is already widely used in biomedical research and can also be visualized by MSOT is 

fluorescent proteins. Green fluorescent protein and red fluorescent protein are examples of that.138 

Table 6: Examples of optoacoustic imaging probes and their characterizations139  

Probe  Type  Size (nm) Absorption peak (nm)  Imaging target(s)  

Green fluorescent 
protein (GFP) 

Genetically 
engineered 
chromophore (GEC)  

NA 488 Drosophila Pupa 

LacZ (produced by 
transgene) 

GEC NA 605-665 Tumor 

Melanin (produced 
by tyrosinase 
transgene)  

GEC NA 680-800 Lymph nodes and tumor 

Indocyanine Green 
(ICG) 

NIR- Fluorescent 
dye FD  

<2 790 Brain, lymph nodes, 
tumor  

IRDye800cw NIR-FD <2 774 Tumor 
Methylene blue NIR-FD <2 670 Lymph nodes and tumor 
Polypyrrole  Polymeric 

nanostructures (NS)  
≈50 800 Brain and deep tissue 

Porphysome  Polymeric-NS  ≈100 400, 680  Lymph nodes 
Conjugated 
polymers  

Polymeric-NS  50-200 Depends on 
composition  

Vasculature and tumor  

Gold nanorods Inorganic NP  100–1000  600-1100 Tumor and lymph nodes 
Gold nanoclusters Inorganic NP  50-100 500-600 Tumor 
Copper sulfide Inorganic NP  ≈20 900-1000 Tumor 
Iron oxide Inorganic NP  10–200  500-800 Tumor 
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Single-walled 
carbon nanotubes 

Inorganic NP  5-8 600-1100 Tumor and lymph nodes 

Graphene oxide Inorganic NP  ≈10 500-900 Tumor 
Quantum dots  Inorganic NP  5-50 630 Cells and lymph nodes  

The CuS NP platform described in this work has been conceptually developed as a multi-

modality theranostic nano-platform which can accommodate a radioisotope and a magnetic 

element, in addition to the CuS core with photoacoustic capability.  This “all in one” platform can 

be used as a single modality probe or as a combination of two or more modalities. By inserting a 

radioisotope into the core/shell of NP, quantitative in vivo imaging and biodistribution analysis 

can be accomplished by either PET or SPECT. Such a tool would provide robust pharmacokinetic 

data and would also validate the performance of the NP imaging signal from the other modalities, 

namely photoacoustic (PA) and MR imaging. 
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4.1 Chemicals and suppliers   

All chemical reagents involved in this work, including cell culture were used without 

further modification unless it is stated in the text. Copper Chloride (CuCl2), Manganese Chloride 

(MnCl2.4H2O), Sodium Sulfide (Na2S.9H2O), Poly (acrylic acid) (PAA, Mw =1800), Thiol 

Polyethylene glycol Amine (HS-PEG2K-NH2), Methoxypolyethylene glycol (MPEG), Bovine 

serum albumin (BSA), Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-

SMCC), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS), and Cyclo (Arg-Ala-Asp-D-Phe-Lys) peptide (cRGD). All stoke 

solutions, nanoparticle synthesis and purification were prepared by using nano pure water (18MΩ).  

4.2 Cell lines and cell culture 

The cell lines were used in this project were human lung carcinoma (A549), human colon 

cancer cell (HCT116), human brain glioblastoma astrocytoma (U87-MG), human colon carcinoma 

(COLO-205) and breast cancer cell lines (MDA-MB-435) and were obtained from American Type 

Culture Collection (ATCC). Cell lines were maintained in humidified incubator at 37 °C and 5% 

CO2. Briefly, cells were grown in Dulbecco's Modified Eagle's Medium (DMEM)/High glucose 

medium supplemented with 10% fetal bovine serum (FBS), 5mM L-Glutamine, Penicillin 

(100U/ml), Streptomycin (100µg/ml) and Amphotericin B (0.25 µg/ml). The cells were grown to 

80 – 90 % confluency before they were used. Trypsin was used to detach the cells, and then cells 

were resuspended in the media. Cells were counted by using a Neubauer chamber and the exact 

number used for in vitro experiments and implantation in animals. 
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4.3 Animal tumor models 

All animal experiments were performed according to the policies and guidelines of the 

Animal Care and Use Committee (IACUC) at Virginia Commonwealth University. Female 

athymic nude mice and CD-1 mice were aged 4-6 weeks were obtained from Charles River 

Laboratories. For the tumor mice model, 5X106 cells were inoculated subcutaneously into the 

shoulder-side (Right and Left) of the mouse. Mice were monitored and tumor growth was 

measured by using digital caliper every three days. Tumors developed within 8-10 weeks. 

4.4 Synthesis of Intrinsically Radio-labeled CuS-Mn NPs 

Overview: To develop the synthesis procedure for multimodality NPs. First, a non-

radiolabeled Mn doped CuS NPs were synthesized and coated with different coating small 

molecules or polymers to develop the chemistry of synthesis. Second, 89Zr was incorporated with 

CuS-Mn NPs to develop the chemical process of intrinsically radiolabeled NPs. Another 

radionuclide was used for radiolabeling which is 67Cu. 67Cu was used for incorporation with CuS-

Mn NPs to develop [67Cu]-CuS-Mn NP. The following sections describe the development of small 

NPs, composed of CuS core, which was doped with radionuclides (89Zr/67Cu) and paramagnetic 

(e.g., Mn) elements, to enable MR, PET, SPECT and PA imaging in one platform (Figure 10). 

 
 

Figure 10: Concept and synthetic strategy of multi-label CuS-Mn NPs 
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Different approaches have been used to synthesize CuS NPs. Hydrothermal/solvent 

methods, sono-chemical synthesis, microwave irradiation methods and co-precipitation method 

are generally used to prepare nanostructure.77,140 The synthesis of CuS NP and Mn doped CuS-Mn 

NP was done by hydrothermal reaction, without complexity and at lower temperature. A two-step 

synthesis involving the reactants, copper (II) chloride (CuCl2), manganese chloride (MnCl2.4H2O), 

sodium sulfide Na2S.9H2O, and different coating material were used including alginic acid, poly 

(acrylic acid), citric acid, sodium citrate, and polyethylene glycol (PEG). 89Zr or 67Cu were used 

for intrinsically radiolabeling the NP. 89Zr is produced by proton irradiation of a natural yttrium 

target on a PET-Trace Cyclotron by IBA Molecular (Richmond, VA, USA). 89Zr activity separated 

from the target using ion exchange chromatography to produce 89Zr-oxalate in a solution of 1M 

oxalate. 67Cu is produced by a photonuclear reaction from Zinc-68 (68Zn) at Argonne National 

Laboratory (ANL) and received in the form of 67CuCl2. Due to its medium energy beta particle, 

gamma emissions and 2.6 days half-life, 67Cu is useful isotope can be used for therapy and 

diagnosis141. 

4.4.1 Synthesis of non-radiolabeled CuS NPs and CuS-Mn NPs  
 
The synthesis of non-radiolabeled CuS NPs and CuS-Mn NPs was done as following: 

1- CuCl2 (13.4mg, 0.1 mmole), MnCl2.H2O (3.4mg, 0.005-0.05 mmole) which was added 

only to the CuS-Mn NP synthesis and not in CuS NP synthesis, under the existence of 

organic polymers (25mg) was dissolved in 100 ml of nano-pure water. 

2- In another tube, Na2S.H2O (28.8 mg, 0.12 mmole) was dissolved in 1ml of nano-pure 

water. 

3-  A 100 µl from Na2S solution was added to 10 ml of CuCl2/MnCl2 and organic polymer 

solution, dropwise and stirred for 5 min at room temperature, to form CuS-Mn core, 
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followed by heating the reaction mixture to 90° C for 30 min to grow nanoparticles, which 

changed color from brown to green color.  

4- The obtained NPs dissolved in water and were purified by using a 3KDa molecular weight 

cut-off centrifugal filter (MWCO) by centrifugation spin at 4750 rpm for 30 minutes. 

5- The NPs size and surface properties can be manipulated by adjust the reaction conditions. 

6- Organic polymers were used for CuS-Mn NPs synthesis, for instance: poly (acrylic acid) 

(PAA), sodium citrate, alginic acid, ascorbic acid and polyethylene glycol (PEG).  

7- Stability of nanoparticles, hydrodynamic size, toxicity and biodistribution depends on the 

surface coating. An outline of the synthesis of coated CuS NP and CuS-Mn NPs shown in 

figure 11 and 12. 

 

 
 
 
CuCl

2 
/ MnCl2 

Coating ligand 

 
 

Figure 11: Schematic for the synthesis of CuS-Mn NPs 
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Figure 12: Synthesis scheme and image for coated CuS-Mn NPs. Different coated material was 
used to synthesis CuS-Mn NP by adding polymers or small molecules to the reaction mixture 
including PAA, PEG, sodium citrate and alginic acid. 

 
4.4.2 Synthesis of intrinsic radiolabeling 89Zr labeled CuS-Mn NPs 
 

In order to enable PET imaging, CuS-Mn NP was incorporated with Zirconium-89 (89Zr). 

89Zr is an increasingly used radionuclide in PET imaging, particularly for radiolabeled antibodies 

investigated for immunotherapy.142 This is because it has medium half-life, 3.27 days, which is 

compatible with in vivo kinetics of macromolecules. The cyclotron produced 89Zr is in the form of 

zirconium oxalate (89Zr-Oxalate), and in order to intrinsically introduce 89Zr in the CuS-Mn NPs 

it needs to be converted to zirconium chloride 89ZrCl4 in 1M hydrochloric acid (HCl). This was 

done as follows: 

 

Polyethylene glycol (PEG) 

+  CuCl2+MnCl2 

Na2S, 90°c for 30 min 

+  CuCl2+MnCl2 

Na2S, 90°c for 30 min 
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89ZrCl4 preparation 
 

1- Sep-pak Light QMA strong anion exchange column (Waters, Inc.) was pre-washed with 6 

mL acetonitrile, 10 mL 0.9% saline, and 10 mL nano-pure water.  

2- The 89Zr-Oxalate was loaded onto the cartridge and then rinsed with 40 mL nano-pure 

water. 

3- The 89Zr activity is retained in the column and oxalate is washed out by the water.  

4- The 89Zr is eluted by 1mL 1M HCl and fractions are collected, with the highest activity 

fractions combined and used for subsequent reactions. 

 
Preparation of 89Zr labeled CuS-Mn NPs 

 
The synthesis scheme of 89Zr labeled CuS Mn NPs is shown in figure 13, and the synthesis 

procedure was done as follow: 

1- CuCl2 (13.4mg, 0.1 mmole), MnCl2.H2O (3.4mg, 0.02 mmole) under existence of organic 

polymers (25mg) was dissolved in 100 ml of nano-pure water. 

2- For radiolabeling with 89Zr, a 100 µl of 89ZrCl4 (100 µCi - 940 µCi) was added to 

CuCl2/MnCl2 solution before starting reaction to incorporate 89Zr in core NPs. 

3- In another tube, Na2S.H2O (28.8 mg, 0.12 mmole) dissolved in 1ml of nano-pure water. 

4-  A 100 µl from Na2S was added to 10 ml of CuCl2/MnCl2 and organic polymer (PAA) 

solution, dropwise and stirred for 5 min at room temperature, to form CuS-Mn core, 

followed by heating the reaction mixture to 90° C for 30 min to grow nanoparticles, which 

changed color from brow to green.  

5- The obtained 89Zr labeled CuS-Mn NPs dissolved in water and were purified by using a 

3KDa MWCO by centrifugation spin at 4750 rpm for 30 minutes. 
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6- This was repeated three times to remove non-NP 89Zr associated activity, which passes 

through the MWCO filter. This purification ensures that all radioactivity remaining is in 

the core of the nanoparticle. 

7- The NPs size and surface properties can be manipulated by adjust the reaction conditions. 

Organic polymers PAA was used for coating [89Zr]-CuS-Mn NPs because it resulted of 

smaller size NP.                                                             

 
Figure 13: Synthesis scheme for 89Zr labeled CuS-Mn NPs. 89ZrCl4 was added to the synthesis to 
incorporate 89Zr into the CuS-Mn NP. PAA coated material was used to synthesis CuS-Mn NP. 

4.5 Characterization of CuS-Mn NPs 

The produced CuS-Mn NPs needs to be characterized to determine concentration, size and 

surface charge using different methods such as an Ultraviolet-visible (UV-Vis) absorption 

spectrum, dynamic light scattering (DLS), zeta potential (ZP) measurement, transmission electron 

microscope (TEM) and inductively couple plasma – optical emission spectrometry (ICP-OES). 

For radioactive yields, a dose calibrator to measure the activity was used during radiosynthesis and 

at the end of the synthesis. 

4.5.1 Absorption spectra of CuS-Mn NPs 
 

The effect of surface coating and content of manganese on the absorption of CuS-Mn NPs 

were studied and the plots showing the absorbance VS wavelength range from (400-1100) 

analyzed by using an UV spectrum to see the effect of Mn concentration and surface coating. The 

nanoparticles were diluted in water (1:2), and plain water was used as a blank. The absorption 
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spectra of CuS NP and CuS-Mn NP were recorded by using the DU 730 spectrophotometer which 

is a complete scanning UV-Vis spectrophotometer with a bandwidth of 3 nm and a wavelength 

range of 190 to 1100 nm.  

4.5.2 Hydrodynamic size and zeta potential measurement of CuS NPs and CuS-Mn NPs  
 

The coating and doping Mn into CuS NPs changes its size and charge, so it is important to 

determine the size and charge of the NPs. The hydrodynamic size (HD) of the nanoparticles was 

measured by dynamic light scattering (DLS) using a Zeta Sizer Nano Series ZEN3600 (Malvern, 

USA). The HD size of the CuS-Mn NP represents core/shell size. When the NP is coated with a 

ligand, then the HD size is representative of the whole coated NP. DLS measures the diffraction 

of light by particles in a solution, which fluctuate in a manner correlated to the particle size. The 

diffraction can be analyzed by the system to determine the size distribution of the particles. This 

method is able to determine size as small as 1-5 nm. The samples of CuS NPs, CuS-Mn with 10% 

and 20% Mn concentration were diluted (1:2) with water and sonicated for 30 minutes before the 

measurement.   

The zeta potential is the electro-kinetic potential between the surface of nanoparticle 

coating and the dispersion medium. This potential was also calculated with the Zeta Sizer Nano 

Series ZEN3600, by measuring the effect of an external electric field on the nanoparticle motion. 

4.5.3 Transmission electron microscope (TEM) for CuS-Mn NPs 
 

The TEM analysis was carried out on CuS-Mn NPs. The size and morphology of 

synthesized CuS-Mn NPs were investigated by EOL JEM-1400 Plus transmission electron 

microscope (JEOL USA INC, Peabody, MA, USA) at an accelerating voltage of 120 kV. Images 

were taken by a Gatan OneView camera (Gatan Inc., Warrendale, PA. USA). The steps of this 

process are described below: 
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1- First CuS-Mn NPs samples were diluted (1:5) in water and one drop was taken on copper grids 

coated with carbon film. The samples of CuS-Mn NPs were left to dry for overnight.  

2-The scale of the image was defined in the software by matching a scale line to the scale bar in 

the TEM image. 

3-The background of the image was removed by subtracting a Gaussian blur filter image with a 

radius much larger than the nano-particle size (usually 150 nm). 

4-The threshold of the image was adjusted to give high nanoparticle contrast and sharp edges. 

5-The ‘analyze particles’ tool was used to measure the area of the particles in the image. Around 

300 nanoparticles were analyzed. 

4.5.4 Concentration and radioactive yield  
 

In order to determine the concentration of CuS-Mn NPs in solution, the inductively couple 

plasma – optical emission spectrometry (ICP-OES) was used to measure the concentration of Cu 

and Mn.  ICP-OES was also used for testing the doping of Mn in the CuS-Mn NPs. For radioactive 

yield, a dose calibrator was used.  

4.5.4.1 Inductively couple plasma – optical emission spectrometry (ICP-OES) 
 

ICP-OES is an analytical system used to determine how much trace metal is in the sample. 

The principle of ICP-OES depends on the fact that absorption of energy by the atoms and ions to 

move electrons from the ground state to an excited state. The source of energy is argon plasma that 

operate at 10,000 kelvin, which used to ionize the metal atoms in a liquid sample (nitric acid). 

Those excited atoms as they are transition to a lower energy, the photons produced at specific 

wavelengths that can be detected by photomultiplier tubes. The amount of light given off from the 

sample is proportional to the concentration of the metal in solution. This method can detect metals 
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as low as 2 parts per billion (ppb) (2 ng/mL). Agilent 5110 ICP-OES system was used for the 

measurement. 

Copper and manganese standards were prepared, and 7% nitric acid was used as a diluent solution 

and ranged in concentration from 0.1, 0.5, 1.0, 5.0, 10, 20, 30 and 40 parts per million (ppm) and 

showed linear response across that range and a standard curve was produced from the results of 

the Cu and Mn standards, as seen in (Figure 14; A, B). The samples were prepared by adding a 

volume (100 μL) of CuS-Mn NPs from the stock solution to 10mL 7% nitric acid solution, 

expected to create a concentration within the range of the standards. The nitric acid dissolves the 

CuS-Mn NPs, producing free ions of Cu and Mn in solution which can be detected.  
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Figure 14: Inductively couple plasma – optical emission spectrometry (ICP-OES) calibration 
curves of Copper (A) and Manganese (B) standards show good response across a wide range of 
concentrations (0.1-40 PPM). Samples concentrations within this range were measured.  

 
4.5.4.2 Radiochemical yield   
 

A capintec CRC-15 PET chamber-based dose calibrator was used to measure 89Zr 

incorporation into CuS-Mn NPs. The measurement was taken during and at the end of 

radiosynthesis of [89Zr]-CuS-Mn NPs to determine the yield and monitor the decrease of 

radioactive yield.  

4.6 Stability of [89Zr]-CuS-Mn NP 

The purpose of radiolabeling CuS-Mn NP is to be used for in vivo biodistribution study. 

So before injecting the [89Zr]-CuS-Mn NP it is important to ensure that the radioactive signal is 

represent the radiolabeled NP and continue even post injection in vivo within period of time. The 

MWCO filter was used for purification of the NP three times to remove unreacted 89Zr which pass 

through the MWCO filter from the solution, and this indicate all the radioactivity still remining in 

the nanoparticle core. To study stability of [89Zr]-CuS-Mn NP after the synthesis, Reversed phase 

high-performance liquid chromatography (RP-HPLC) (Bio-scan, Model B-FC-3300) was used. 
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The PAA-[89Zr]-CuS-Mn NPs samples were incubated in three different types of media, in water 

solution, in ex vivo plasma for 24 hrs, and in urine sample collected 2hrs post injection of mice. 

The samples were injected into RP-HPLC, and 8 x 300 mm, 200 Å Diol (YMC, Japan) size-

exclusion column was used. A 20 µL of sample solutions were injected into the HPLC with DI 

water as the mobile phase and a flow rate of 1 mL/min.  

4.7 MRI Performance of CuS-Mn NP 

Overview: In order to enhance contrast in MRI images, paramagnetic compounds, with a 

large number of unpaired electrons, such as gadolinium (Gd)-based compounds, are used as 

contrast agents because they can shorten the longitudinal relaxation time (T1) and the transverse 

relaxation time (T2). However, safety concerns limit the use of Gd-based contrast agents (GBCA). 

The transition metal ion manganese (Mn2+), with five unpaired electrons, can produce a very 

efficient positive contrast enhancement and offers an attractive alternative to GBCA. In fact, 

Manganese chloride (MnCl2) has been approved by the FDA as a T1 contrast agent. The 

performance of CuS-Mn NPs as a contrast agent was studied in comparison to MnCl2. The toxicity 

of CuS-Mn NPs is significantly lower due to reduced Mn concentration with retention of MR 

signal. Furthermore, Cu and Mn are less toxic elements than Gd and are biologically compatible. 

4.7.1 MRI relaxivity study of CuS-Mn NP 
 

The MRI performance of CuS-Mn NPs was done in comparison to MnCl2 contrast agent. 

In order to determine the relationship between MR signal intensity as a functional of different 

concentration of both MnCl2 and CuS-Mn NPs, a phantom study was done.  

Methodology: MnCl2 and CuS-Mn NPs was prepared in Mn concentrations ranging from (0.0 mM 

(Water), 0.0081mM, 0.0163mM, 0.0327mM, 0.0675mM, 0.135mM, 0.27mM and 0.54 mM). The 

samples loaded in a 1ml syringe and sealed using para film on both ends (Phantom samples, Figure 
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15). Each syringe labeled with the corresponding concentration.  Each syringe (phantom) arranged 

and taped together to make one bundle and loaded in the cradle within MRI scanner and 72mm 

transmit/receive coil was used. The MR protocol with this coil results in both T1 and T2 images. 

The MRI T1 and T2 signal intensity as a functional of concentration of CuS-Mn NPs and MnCl2 

was calculated. MRI images of phantom for both CuS-Mn NPs and MnCl2 were taken. This 

phantom was imaged by using Bruker 7T Bio spec. 70/30 small animal MRI scanner, with multiple 

slice multiple echo (MSME) sequence which produce phantom image. 

 

Figure 15: Phantom samples of MnCl2 and CuS-Mn NP. Mn concentration was in the range from 
0.0mM-0.54mM. 

Relaxivity calculation 
 
1. T1 calculation: An inversion recovery pulse sequence with variable inversion time was used to 

image the samples. Then, the region of interest (ROI) was drawn on each image to find the signal 

intensity. The signal intensity of each concentration was plotted as a function of inversion time. 

The recovery curve was then fitted into the inversion recovery equation, to yield the T1 value.   The 

inversion of the T1, for all the concentrations, gives the relaxation rate (R1=1/T1). The R1 values 

were plotted, as a function of concentration. The slope of the straight-line fit equation gives the 

relaxivity value, r1. 
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2. T2 calculation: A spin-echo equation with a variable echo time was used for the same samples 

above as above. The signal intensity for all the concentrations was measured as a function of echo 

time, which is an exponential decay curve. This was then fitted to the exponential decay equation 

to give the T2 value. The inversion of T2 is R2 (R2=1/T2). The R2 values were plotted, as a 

function of concentration, and the slope of the straight-line fit gives the relaxivity value, r2. 

 
4.7.2 In vivo MRI with CuS-Mn NP 
 

The purpose of this experiment to evaluate the performance of CuS-Mn NPs in an in vivo 

setting which is a live animal. Before imaging, the animal was anesthetized using 2% isoflurane 

at room temperature until stable vital signs were established. Once the animal was sedated, it was 

placed onto the imaging bed under mixtures of 2% isoflurane and O2 (1 mL/min) for the duration 

of the imaging. The pre-injection MR images for mouse kidney and liver were taken and then 

mouse was received intravenous (iv) injection (tail vein) with 200 µl of CuS-Mn NPs and images 

for mouse kidneys and liver were taken 2 hours post injection.   

4.8 Photoacoustic imaging of CuS-Mn by using (MSOT) 

The CuS-Mn NP was also evaluated in terms of its photoacoustic performance in vitro and 

in vivo. The CuS NP has unique properties which is the ability to absorb NIR which results an 

efficient NIR and photoacoustic signal. In this study, the PA performance need to be demonstrated 

using MSOT. Both phantom and animal studies were conducted to test the merit of the NP 

performance as a PA agent. 

4.8.1 MSOT signal as a function of CuS-Mn NP concentration 
 

In order to determine the relationship between photoacoustic signal and NP concentration. 

Such measurements determine the sensitivity of detection. To demonstrate this, a phantom study 
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was carried out whereby various concentration of the CuS-Mn NPs were used and the intensity 

(PA signal) of each concentration was calculated. CuS-Mn NP was prepared in the concentration 

range 0 µg/ml to 100 µg/ml in water. The samples were placed in the phantom as shown in figure 

16 and imaged in MSOT.  

 

Figure 16: Agar phantom after prepared and loaded in the MSOT 

Agar phantoms for MSOT imaging: 

Phantoms were used to characterize injectable contrast agent in controlled setting. The 

sensitivity and linearity of an optoacoustic system can be determined by using of phantoms. There 

are various properties of phantoms, such as size, composition and their resulting absorption and 

scattering properties.  Agar phantom was made shortly before use and the preparation method was 

used as follows:  

1- A 20 ml syringe was used, and the front part cut off by using a scalpel, with an internal diameter 

of 2 cm. 

2- Intralipid (Sigma I141-100mL), 1.03 ml was heated in hot water bath. 

3- To 0.75 g of Agar (Fluka, 05039-500g), a 50 ml of dH2O was added, and heated in microwave 

until it boils. 
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4- The agar was taken out of the microwave and immediately added to the hot intralipid and shake 

gently. 

5- A 15 ml of this mixture poured into a plastic adapted (distal part of cut off) syringe which having 

a diameter of 2 cm. Then, immediately two 3 mm diameter straws were placed in the syringe and 

was hold in position using tape. Then, cooled at room temperature for 30 minutes. 

The agar phantom can be stored in the fridge in sealed container with some dH2O to keep moist. 

However, the optical properties of the agar phantom change over time, so it is recommended to be 

used on the same day. 

MSOT image acquisition: MSOT images were acquired multispectral according to the protocol 

for CuS-Mn NP (wavelengths, 700-900 nm). After image reconstruction, images corresponding to 

different wavelengths were weighted with the internal laser energy values.  

4.8.2 CuS-Mn NP Photoacoustic Imaging in vivo 
  
In addition to evaluation in a phantom, the CuS-Mn NPs were also investigated in vivo. 
 
Method: An initial baseline image was taken prior to NP administration in order to compare the 

PA signal to that after injection. Mice were injected with 200 µl of CuS-Mn NPs (≈20µg/ml), and 

images were taken 1 hr, 5 hrs and 24 hrs post injection.  

4.8.3 Ex vivo Biodistribution of CuS-Mn NPs using ICP 
 
CuS-Mn NPs was used for ex vivo biodistribution study and in vivo stability. Inductively coupled 

plasma mass spectrometry (ICP-MS) was used to measure Cu and Mn in the tissues.  

Methodology: three mice were received iv injection of a 200 µl of CuS-Mn NPs and then 24 hrs 

post injection following MSOT imaging, mice were dissected, blood, major organs, and tumor 
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were collected and prepared for ICP-MS measurements. The tissues need to be digested before 

ICP-MS measurements, and this was done as follows: 

1- The tissues were placed in a 10 mL tube, and 1mL of concentrated (70%) nitric acid was 

added.  

2- Tissues were allowed to be dissolved at room temperature for 24-48 hours. 

3- Then, 9 ml of nano-pure water was added, and total volume became 10 ml. 

4- The solution was filtered through a 0.25um filter. The final solution concentration was 7% 

nitric acid. 

5- Standards for Mn and Cu was made at concentrations from 0.1 PPM - 40 PPM as explained on 

section 4.2.4.1. 

6- ICP-MS was used to measure Mn and Cu, because it is sensitive enough for the low 

concentration in tissue.   

4.9 In vivo PET imaging of [89Zr]-CuS-Mn NP 

Biodistribution of [89Zr]-CuS-Mn NP was determined by PET imaging. Mice PET imaging 

studies were performed using a Multimodality PET/CT system (Siemens Medical Solutions Inc., 

Knoxville, TN, USA). Ten minutes prior to imaging, the animals were anesthetized using 2% 

isoflurane at room temperature until stable vital signs were established. Once the animal was 

sedated, it was placed onto the imaging bed under mixtures of O2 (1 mL/min) and 2% isoflurane 

for the duration of the imaging. [89Zr]-CuS-Mn NPs (200µl, ≈320 µCi) was injected intravenously 

in a nude mouse via the tail vein. Immediately following the injection, imaging was performed at 

30 min, 2hrs, and 24hrs post injection. PET images were reconstructed using Fourier Re-binning 

and Ordered Subsets Expectation Maximization (OSEM) 3D algorithm with dynamic framing 
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every 60 seconds. Reconstructed images were analyzed using Inveon® Research Workplace 

(IRW) software.  

4.9.1 Biodistribution of PAA coated [89Zr]-CuS-Mn NPs in nude mice  
 

Mice were injected with [89Zr]-CuS-Mn (200µl, ≈320 µCi). Mice then were dissected at 

different time points post injection (30min, 2hr and 24hrs). Following animal dissections, organs, 

including blood were collected. Radioactivity of each sample was measured by gamma counter. 

The percentage of the injected dose per gram (%ID/g) of tissues was calculated based on the total 

injected dose and organ weights. The resulting quantitative data were expressed in percent injected 

dose per gram (%ID/g).  

4.10 Radiolabeling of CuS-Mn NPs with 67Cu 

In order to further demonstrate the intrinsic radiolabeling approach and flexibility, another 

radionuclide was investigated. 67Cu is near ideal (theranostic) radionuclide. It emits both 

therapeutic radiation (beta particles) and low energy gamma photons ideal for SPECT imaging. It 

has a 62 hrs half-life which is long enough to study prolonged kinetics, yet short enough so it does 

not deliver high radiation dose to patients. In the course of 67Cu radiolabeling, the radionuclide 

was also used to intrinsically radiolabel a NP based on cerium oxide nanoparticle (CONP) which 

was previously labeled with 89Zr.13 

4.10.1 Synthesis of radiolabeled [67Cu]-CuS, [67Cu]-CuS-Mn and [67Cu]-CONP NPs 
 
A. Synthesis of [67Cu]-CuS nanoparticle: 
 
The synthesis of ([67Cu]-CuS NPs) was done by the reaction of CuCl2 (13.4mg, 0.1 mmole), and 

Na2S.H2O (0.1 mmole) in aqueous solution in the presence of organic polymers (PAA) (25mg). 

The reaction involves Na2S with CuCl2 in organic polymer solution at room temperature for 5 min, 

to form CuS core, followed by heating of the reaction mixture to 90° C for 30 min, to enable NPs 
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growth. For radiolabeling with 67Cu, a 100 µl of 67CuCl2 (≈150 µCi) was added to cold CuCl2 

solution before starting the reaction to incorporate 67Cu in core NPs. The obtained NPs were 

purified using a 3KDa MWCO filters by spinning the solution at 4750 rpm for 30 min at room 

temperature to remove non-NP associated radioactivity. 

B. Synthesis of [67Cu]-CuS-Mn nanoparticle: 
 
The synthesis of manganese doped copper sulfide nanoparticles (CuS-Mn NPs) was done by the 

reaction of CuCl2 (13.4mg, 0.1 mmole), MnCl2.H2O (3.4mg, 0.02 mmole) and Na2S.H2O (0.12 

mmole) in aqueous solution in the presence of PAA (25mg). The reaction involving Na2S with 

CuCl2/MnCl2 in presence of PAA solution at room temperature for 5 min, to form CuS-Mn NPs 

core, followed by, heating the reaction mixture to 90° C for 30 min, to enable NP growth. For 

radiolabeling with 67Cu, a 100 µl of 67CuCl2 (≈150 µCi) was added to CuCl2/MnCl2 solution before 

starting reaction to incorporate 67Cu in core NPs. The obtained NPs were purified by using a 3KDa 

MWCO centrifuge filters by spinning the solution at 4750 rpm for 30 min at RT to remove non-

NP associated radioactivity. Synthesis scheme for 67Cu labeled CuS-Mn NPs is shown in figure 

17. 

 

Figure 17: Synthesis scheme for 67Cu labeled CuS-Mn NPs. 67CuCl2 was added to the synthesis 
to incorporate 67Cu into the CuS-Mn NP. PAA coated material was used to synthesis CuS-Mn 
NP. 3k MWCO filters were used for purification. HD size range was 10-35 nm.  
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C. Synthesis of [67Cu]-CONPs 
 
Another metal-based nanoparticle which is developed by our group is CONP and has been 

intrinsically radiolabeled with other radionuclides such as 89Zr and 111In 39.  The synthesis scheme 

of [67Cu]-CONP is shown in figure 18, and the procedure as follows: 

1- To a 10 ml vial, cerium nitrate Ce (NO3)3·6H2O (4mg) and polyacrylic acid (PAA) (10mg), 

and a desired volume of 67CuCl2 (100 µl of ≈150 µCi) was added. Water was added to bring 

the volume to 600 µl. 

2- Another separate vial was filled with a diluted ammonium hydroxide NH4OH (10x dilution 

of concentrated 28% NH3 stock). 

3- To a 600 µl of diluted NH4OH, the prepared solution in step one was added. The solution 

was stirred overnight 400 rpm at RT.  

4- The obtained NPs were purified using 0.2µm filter to remove large particles and a 3 KDa 

MWCO centrifuge filters by spinning the solution at 4750 rpm for 30 min at RT to remove 

non-NP associated radioactivity. 

 

Figure 18: Synthesis scheme for 67Cu labeled CONPs. 67CuCl2 was added to the synthesis to 
incorporate 67Cu into the CONP. PAA coated material was used to synthesis CONP, 3k MWCO 
filters were used for purification. HD size range was 3-10 nm. 
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4.10.2 Radiolabeling yield measurement of [67Cu]-CuS, [67Cu]-CuS-Mn and [67Cu]-CONP  
 

The obtained radiolabeled NPs were purified using a 3KDa MWCO centrifuge filters by 

spinning the solution at 4750 rpm for 30 min at RT to remove non-NP incorporated radioactivity. 

Radioactive reaction yields of 67Cu incorporated into CuS, CuS Mn and CONPs were measured 

using an ionization chamber-based dose calibrator (Capintec CRC-15 PET) and gamma counting. 

Measurements were taken during the radiosynthesis, end of radiosynthesis and one week after the 

synthesis, to determine the radiochemical yield and retention of the radioactive at various steps. 

4.10.3 Cells Uptake of [67Cu]-CuCl2 [67Cu]-CuS, [67Cu]-CuS-Mn and [67Cu]-CONP 

As part of evaluation of multimodality [67Cu]-CuS-Mn NP in order to validate the nature 

and chemical identity of externally detected imaging signals. The assessment of surface coating 

NPs on cell binding (non-specific binding) uptake was done. To understand interactions of three 

types of radiolabeled NPs with cells, three cell lines were used to determine cell uptake kinetics. 

The in vitro cell uptake studies were done by using relatively low concentrations of 67CuCl2, 

[67Cu]-CuS NP, [67Cu]-CuS-Mn NP, and [67Cu]-CONP to assess the accumulation in to U87-MG, 

COLO-205 and MDA-MB-435 cell lines within the time. The procedure was done as follows:  

1- Three cell lines were used for cell uptake experiment, human brain glioblastoma 

astrocytoma (U87-MG), human colon carcinoma (COLO-205) and breast cancer cell lines 

(MDA-MB-435).  

2- Cell Culture: Cell lines were maintained in humidified incubator at 37 °C and 5% CO2. 

Briefly, cells were grown in DMEM/High glucose medium supplemented with 10% fetal 

bovine serum (FBS), 5mM L-Glutamine, Penicillin (100U/ml), Streptomycin (100µg/ml) 
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and Amphotericin B (0.25 ug/ml). The cells were grown to 70-80% confluency before they 

were used.  

3- Then 1X106cells were incubated with 200 µl [67Cu]-Cl2, [67Cu]-CuS NPs, [67Cu]-CuS-Mn 

NPs and [67Cu]-CONP in DEME media at 37 °C and 5% CO2. Three incubation times (1hr, 

4 hrs and 24 hrs) were studied in triplicate.  

4- At the end of the incubation period the supernatant was collected and used for gamma 

counting. 

5- Cell pellet was washed with phosphate buffer saline (PBS) by spun down at 1000 rpm for 

10 minutes 3 times, and wash was collected for gamma counting. 

6- After third wash, cell pellet, wash 1,2,3 and supernatant were collected for gamma 

counting.  

4.10.4 Ex vivo Biodistribution of [67Cu]-CuS-Mn NP 
 

The biodistribution of [67Cu]-CuS-Mn NP was done in normal female CD-1 mice. 

Methodology: A nine mice (3 groups, n=3) were iv injected with a 200 μl of [67Cu]-CuS-Mn NPs 

(≈ 25 μCi). Mice were dissected at 15min, 1 hr, and 24 hrs post-injection, blood samples and major 

organs were collected and weighted. Gamma counter (Perkin Elmer Wallac Wizard 1470) was 

used to measure radioactivity of each tissue. The percentage of the injected dose per gram (%ID/g) 

of tissues was calculated from the total injected dose and organ weights. The organs removed for 

counting are given below: 

1-Blood, 2-Heart, 3- Liver, 4- RT.&LT. Kidney, 5-Spleen, 6-Muscle, 7-Lung, 8-Urine, 9-Feumer 

bone, 10-Skull, and 11-Brain. 
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5.1 Characterization of CuS-Mn NP  

5.1.1 Absorption spectra of CuS-Mn NPs 
 

The optical properties of CuS NPs and CuS-Mn NPs were characterized using UV-visible 

as explained in section 4.5.1. To study the effect of surface coating and content of manganese on 

the absorption of synthesized CuS NPs and CuS-Mn NPs, the absorption spectra have been 

analyzed as shown in figure 19 below. All the NP preparations showed a NIR peak in the region 

of 400-1100 nm. The addition of Mn and/or the surface coating still retains absorption at the NIR 

region for both the addition of Mn (Fig. 19 A) and modification of surface coating (Fig. 19 B).  

The magnitude of the absorption, however, has dropped slightly compared to the absorption of 

neat CuS NP.  

 

 
A.                                                                  B. 

Figure 19: A) Absorption of PAA coated CuS NPs with different amount of Mn doping (10%, 
20%, 30% and 40%). B) Absorption CuS-Mn with different surface coating (PAA, Citric acid, 
Polyethylene glycol (PEG) and Cit-PEG). 

5.1.2 Hydrodynamic size (HD) and zeta potential (ZP) analysis of CuS NP and CuS-Mn NP  
 

The use of different precursor coating materials resulted in different sizes and charges of 

the synthesized NP.  The synthesis of Mn doped CuS NPs was successfully achieved and variation 

in the amount of Mn content has also affected the HD size of the NP. The doped Mn NP reaction 

yield ranged from 80% to 90% as measured by ICP. The HD size and ZP of CuS and CuS-Mn NPs 

with various amount of Mn and different coating materials are summarized in table 7. Compared 

to PEG and citrate, coating with PAA resulted in the smallest HD size.  
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The amount of Mn doping has also impacted the HD size with 20% Mn content resulting in the 

smallest size as shown in table 7 and figure 22. The zeta potential of the CuS NPs and CuS-Mn 

NPs were ranged from (-22mV to -35mV), yielding a negative surface charge of the coated 

nanoparticles.  

Table 7: Hydrodynamic (HD) size and zeta potential of the synthesized CuS NPs, Cus-Mn NP 

NPs Type  Range of size 

distribution  

Zeta potential (ZP) 

(mV) 

PAA-CuS NP 10-40 nm -29 

PAA-CuS-Mn (10%) NP 6-20 nm -35 

PAA-CuS-Mn (20%) NP 
 

2.5-7 nm -32 

Cit-CuS-Mn NP 
 

5-20 nm -33 

PEG-Cit-CuS-Mn NP 
 

10-30 nm -22 

 
 
     
 

      

 
Figure 20: Hydrodynamic size distribution by number (top), and zeta potential (bottom) of PAA-
CuS NPs 

 
 

      

PAA-CuS NP Size Distribution by Number 

 

 PAA-CuS NP Zeta potential  

 



 68 

 

 
Figure 21: Hydrodynamic size distribution by number (top), and zeta potential (bottom) of PAA-
CuS-Mn (10%) NPs 

 
 

  

 
Figure 22: Hydrodynamic size distribution by number (top), and zeta potential (bottom) of PAA-
CuS-Mn (20%) NPs 

 
 
 

 

  

PAA-CuS-Mn (20%) NP Size Distribution by Number 

 

PAA-CuS-Mn (20%) NP Zeta potential  

 

Cit-CuS-Mn NP Size Distribution by Number 

 

PAA-CuS-Mn (10%) NP Zeta potential  

 

PAA-CuS-Mn (10%) NP Size Distribution by Number 
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Figure 23: Hydrodynamic size distribution by number (top), and zeta potential (bottom) of Cit-
CuS-Mn NPs 

 
 

  

 
Figure 24: Hydrodynamic size distribution by number (top), and zeta potential (bottom) of PEG-
Cit-CuS-Mn NPs 

 
 
5.1.3 Transmission electron microscope (TEM) for CuS-Mn NPs 
 

The synthesized CuS-Mn NPs was accomplished with the synthesis method as described 

in section 4.4.1. The morphology and qualitative size were characterized by TEM as described in 

section 4.2.3. Representative TEM images from different field views of CuS-Mn NPs coated with 

PAA are shown in (Fig. 25, A). The Samples were prepared by spreading a diluted solution of 

CuS-Mn NPs onto carbon-coated copper grid. The size measured of each particle is characteristic 

of the size of the CuS-Mn NPs. The size range was (≈ 5-20 nm). Figure 25, B is showing the HD 

size of the same sample measured by DLS and the size range was (≈ 7-20 nm). 

Cit-CuS-Mn NP Zeta potential  

 

PEG-Cit-CuS-Mn NP Size Distribution by Number 

 

PEG-Cit-CuS-Mn NP Zeta potential  
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Figure 25: A) Representative TEM images from different field views of CuS-Mn NPs coated 
with PAA. Samples were prepared by spreading a dilute solution of CuS-Mn NPs onto carbon-
coated copper grid. The size measured of each particle is characteristic of the size of the CuS-Mn 
NP. B) Size distribution by number of CuS-Mn NP measured by DLS. 

5.2 MRI relaxivity study of CuS-Mn NP 

The MRI signal intensity of the CuS-Mn NP was assessed as a function of Mn 

concentration and compared to the intensity obtained from “bulk” MnCL2.  This was tested in a 

phantom study, as outlined in section 4.7.1, to obtain a relaxivity curve as shown in figures 26 and 

27. Images of the phantom shown in these figures 26, 27 (A and B) indicate image enhancement 

with increasing Mn concentration for both compounds. Further relaxivity characterization revealed 

that CuS-Mn NP had a 2-fold increase compared to MnCl2.  It can be deduced from figures 26, C 

and 27, C that CuS-Mn NP shows a two-fold signal intensity higher than MnCl2 (r1: 6.1 S-1mM-1 

for CuS-Mn NP vs 2.9 S-1mM-1 for MnCl2), and (r2: 151.6 S-1mM-1 for CuS-Mn NP vs 82.5 S-

1mM-1 for MnCl2).  

 

B) PAA- CuS-Mn NP size distribution by number 

                      A)    TEM of CuS-Mn NP 
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Figure 26: A) CuS-Mn NPs MR T1 images of phantom. B) MnCl2 MR T1 images of phantom. 
Mn concentration range, 0 mM (Water) 0.0081mM, 0.0163mM, 0.0327mM, 0.0675mM, 
0.135mM, 0.27mM and 0.54 mM.  C) MRI T1 signal intensity as a function of concentration of 
CuS-Mn NP and MnCl2 solution in water at various concentration of Mn.                                                                            

 

C 

A- CuS-Mn NP B- MnCl2 
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Figure 27: A) CuS-Mn NPs MR T2 images of phantom. B) MnCl2 MR T2images of phantom. 
Mn concentration range, 0 mM (Water) 0.0081mM, 0.0163mM, 0.0327mM, 0.0675mM, 
0.135mM, 0.27mM and 0.54 mM. C) MRI T2 signal intensity as a functional of concentration of 
CuS-Mn NP and MnCl2 solution in water at various concentration of Mn.  

 
5.2.1 In vivo MRI with CuS-Mn NP 
 

To validate in vitro MRI characterization of CuS-Mn NP, in vivo imaging was 

accomplished as described in section 4.7.2.  Figure 28 is a representative of in vivo T1 MR images 

of a mouse before and 2 hours after the injection of CuS-Mn NPs. Enhancement in both the liver 

(upper images) and the kidney (lower images) can be seen 2 hours after injection of CuS-Mn NP. 

    
    

A-CuS-Mn NP B-MnCl2 

C C 
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Figure 28: In vivo T1 weighted MRI images of mouse pre-injection and 2 hours post-injection of 
CuS-Mn NPs. Yellow arrows point to liver (top images) and kidneys (bottom images). Images 
show brighter MRI signal in both liver and kidney following injection. 

5.3 MSOT signal as a function of CuS-Mn NP concentration 

The CuS NP has a unique property, which is the ability to absorb NIR, which results in an 

efficient NIR and photoacoustic signal. After doping with  Mn, the CuS-Mn NP was evaluated in 

terms of its photoacoustic performance in vitro and in vivo. To test the merit of the NP performance 

as a PA agent using MSOT, both phantom and animal studies were conducted. 

MSOT signals as a function of CuS-Mn NP concentrations have been studied and as shown in 

(Fig., 29), the PA signal increased as a function of the concentration of CuS-Mn NPs, which 

indicates contrast enhancement due to the CuS-Mn NP. Such enhancement is due to the efficient 

photo-absorption at the NIR region, resulting in a high PA signal.  
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Figure 29: Linearity of MSOT signal as a function of CuS-Mn NP concentration. Photoacoustic 
signal intensity of CuS-Mn NPs. 

 
5.3.1 CuS-Mn NP Photoacoustic Imaging in vivo  
 

In addition to evaluation in a phantom, the CuS-Mn NPs were also investigated in vivo. 

Figure 30 illustrates lack or decreased signal prior to injection, however, increased signal is 

observed following injection as soon as one hour after injection and persisted for 24 hours. Whole-

body imaging showed maximum signal in the abdomen at 1 hr post injection (Fig.31), in fact 

maximum signal could have been obtained less than an hour post injection as can be seen in the 

figure. The rapid renal clearance of  CuS-Mn NPs allows for the minimum waiting period between 

injection and start of imaging. The small HD size makes the NP escape engulfing by phagocytosis 

cells in blood, liver and spleen. This unique feature makes CuS-Mn NP a desirable contrast agent 

with accelerated renal clearance. 
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       Pre-injection            1hour post-injection       5 hrs post-injection    24 hrs post-injection 
 
Figure 30: Photoacoustic imaging of mice at pre-injection, 1, 5 and 24 hours post i.v. injection of 
CuS-Mn NPs. MSOT images show PA signal in liver and kidneys as early as 1hour post injection. 

 

  
Figure 31: Whole body Photoacoustic Imaging showing contrast signal of CuS-Mn NPS and 
with time is decreased. 

 
5.3.2 Multi-frame Kinetic Analysis Single Wavelength (800 nm) 
 

Kinetic analysis was calculated  for CuS-Mn NPs signal intesity. As shown in figure 32, 

the  presentage of optoacoustic signal in the kidneys and renal clearance were confirmed by 

photoacoustic imaging. The higher signal percent was in the kidneys (Blue) as soon as the CuS-

Mn NPs was injected,  followed by the liver (Red). The liver signal was subsequently decreased, 

followed by the kidneys.  



 76 

 
 
Figure 32: Presence of optoacoustic signal in the kidneys and renal clearance were confirmed by 
photoacoustic imaging. MSOT kinetic analysis of CuS-Mn NP signal intensity at one wavelenght 
(800) in mice kidney, spleen and liver post injection 
 

5.3.3 Ex vivo biodistribution study of CuS-Mn NP using ICP 
 

To further validate in vivo MSOT imaging data a biodistribution study was accumplished 

as described in section 4.8.3.  The bioditribution results were based on ex vivo ICP measurments 

of copper and manganesse in the blood, major organs and tumors. The data was expressed as a 

relative percentage uptake (organ uptake as a percentage of total Cu/Mn detected in the organ 

relative to to the total elements in the rest of the organs), excluding the carcass. As seen in figure 

33, the liver and the kidneys showed highest accumulation of the NP based on these measurements. 

This depicts a similar pattern of accumulation as was observed from the MSOT images and kinetic 

analysis.  
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Figure 33: Biodistribution of CuS-Mn NPs in single organs after 24hrs post injection. Tissues 
were digested by using concentrated nitric acid, and ICP-MS was used to measure Cu and Mn. 
Results from 1 group of mice (n=3) and presented as average distribution of CuS-Mn NPs per 
organ, high uptake in liver and kidneys followed by the tumor and heart. 

5.4. Radiolabeling of CuS-Mn NP with 89Zr  

The ultimate strategy is to use Cu isotopes doped in CuS-Mn NPs because such isotopes 

are chemically the same as stable copper. However, while developing the concept of doping, 89Zr 

was the only radioisotope available.  

The other purpose of this experiment is to demonstrate the PET capability of CuS-Mn NPs by 

incorporating a PET isotope. 

The synthesis of 89Zr labeled CuS-Mn NP was conducted as explained in section 4.4.2. The   

radiolabeling reaction yield of [89 Zr]-CuS-Mn NPs was > 60%.  89Zr was used due to availability 

to test the merit of intrinsic radiolabeling. 89Zr may not be the best radionuclide to incorporate into 

CuS-Mn NPs, due to the element having a different chemistry and oxidation state compared to the 

di-valent Cu and Mn. 
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5.4.1 Stability of PAA-[89Zr]-CuS-Mn NP 
 

Size Exclusion Radio-HPLC was used to study the stability of PAA-Coated [89Zr]-CuS-

Mn NP to validate the incorporation of 89Zr into the core of the NP and the radioactivity signal 

represents the radiolabeled NPs. This was done in three different media: water, plasma, and urine. 

Figure 34 shows the results and radioactive retention time in all samples, A), in aqueous solution 

the peak had a retention time of 10.3 min; B) after incubation in mouse plasma for 24hrs, the peak 

had a retention time of 10.7 min.; and C) in urine sample collected 2hrs post injection, the peak 

had a retention time of 11.3 min. This demonstrates the incorporation and stability of the 89Zr into 

the CuS-Mn NP. 

 

 

A 

B 
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Figure 34: Radio-HPLC retention times of PAA-Coated [89Zr]-CuS-Mn NP. (A) In aqueous 
solution. (B) After in vitro incubation in mouse plasma for 24 hours. (C) In urine sample 
collected 2 hours post injection. Samples were injected into HPLC and detected by radioactivity 
of 89Zr. 

 
5.4.2 In vivo PET imaging of [89Zr]-CuS-Mn NP 

 
PET imaging of [89Zr]-CuS-Mn NPs was accomplished as explained in section 4.9. 89Zr 

PET imaging was performed in mice at 30 min, 2 hrs and 24 hrs post injection of (≈320 µCi) 

[89Zr]-CuS-Mn NPs (0.04 µmole). There was rapid first pass renal clearance of [89Zr]-CuS-Mn 

NPs as early as 30 min or indeed earlier, because of the small size of the NPs (Figure 35). The 

small HD size (1-5 nm) of NPs facilitated rapid renal clearance, and the NP does not accumulate 

appreciably in liver or spleen. As early as 30 min, it was already in the kidney and possibly earlier. 

There is 89Zr accumulated in the bone, presumably due to detachment of the 89Zr from its NP and 

subsequent accumulation in the bone, because Zirconium has a strong affinity for phosphate and 

hence is a bone seeker. 

 

C 
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Figure 35: A female nude mice were injected iv with ≈320 µCi of [89Zr]-CuS-Mn NP, and PET 
imaging was performed in mice at 30 min, 2 hrs and 24 hrs post injection. There was rapid renal 
clearance of [89Zr]-CuS-Mn NPs as early as 30 min because of the small size of the NPs. The 
bone uptake because of 89Zr is bone seeker. 

5.4.3 Biodistribution of PAA coated [89Zr]-CuS-Mn NPs in nude mice  
 

The in vivo image data was validated by quantitative biodistribution results showing rapid 

uptake and clearance through the kidneys and less uptake in all other organs (Fig.36). The 89Zr 

activity uptake seen in bone, is probably due to leakage of 89Zr ion from the NP core/shell, and 

accumulating in bone lattice, as Zr is a bone seeker and has a strong affinity for phosphate. By 

using another type of radionuclide such as 64Cu/67Cu, bone uptake could be avoided. 
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Figure 36: Biodistribution of [89Zr]-CuS-Mn NPs at various time points 30min, 2hrs, and 24hrs. 
Tissues were weighted, and gamma counted and percent injected dose per gram (%ID/g) was 
calculated. High uptake in kidney and rapid renal clearance were observed, with low uptake in 
liver and spleen due to small size of the NPs. 

6.1. Radiolabeling of the CuS-Mn NPs with 67Cu 

In order to further demonstrate the intrinsic radiolabeling approach and flexibility, another 

radionuclide was investigated. The ideal radioisotopes to incorporate within the CuS NP are those 

of copper, 64Cu and 67Cu. 67Cu was incorporated with three types of NPs as explained on section 

5.1.2.  

6.1.1 Radiolabeling yield measurements of [67Cu]-CuS, [67Cu]-CuS-Mn and [67Cu]-CONP  
 

The Synthesis of intrinsically radiolabeled [67Cu]-CuS, [67Cu]-CuS-Mn and [67Cu]-CONP 

NPs was accomplished as described in section 5.1.2. The radiochemical yields of [67Cu]-CuS NPs, 

[67Cu]-CuS-Mn NPs and [67Cu]-CONP were 88±2, 98%±0 and 78%±5 respectively as shown in 

(Table 8 and Fig.37). The radioactive yield stability of [67Cu]-CuS NP, [67Cu]-CuS-Mn NP and 

[67Cu]-CONP was measured one week after the synthesis and was the same, excluding loss of 

radioactivity due to physical decay of the radionuclide. Radiochemical yields for the incorporation 
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of 67Cu into CuS-Mn NPs and CuS NPs were higher than that of CONP, presumably due to the 

different chemistry of divalent Cu and Mn compared to that of Zr, indicating that incorporation of 

the same elemental material results in a higher yield.  

Table 8: Radiochemical yield of [67Cu]-CuS NP, [67Cu]-CuS-Mn NP and [67Cu]-CONP after the 
synthesis. The measurements were taken by dose calibrator and gamma counting (n=3) 

Radiochemical yield of 
[67Cu]-CuS 

Radiochemical yield of 
[67Cu]-CuS-Mn 

Radiochemical yield of 
[67Cu]-CONP 

88%±2 98%±0 78%±5 
                

 
 

Figure 37: Radiochemical yield of [67Cu]-CuS NP, [67Cu]-CuS-Mn NP and [67Cu]-CONP. The 
measurements were taken by dose calibrator and gamma counting (n=3) 

        
6.1.2 Cell Uptake of [67Cu]-CuCl2 [67Cu]-CuS, [67Cu]-CuS-Mn and [67Cu]-CONP 
 

Three cell lines were used for the cell uptake experiment, to determine the degree of 

accumulation by cells, U87-MG, COLO-205 and MDA-MB-435. This was done as preparation of 

future work to evaluate the radiolabeled CuS-Mn NPs in cancer cells and in tumor-bearing animals.  

Cell uptake was done for the three types of radiolabeled nanoparticles as well as [67Cu]-Cl2, a bulk 

molecule for comparison in order to test the effect of physiochemical properties on cellular uptake. 
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The cell uptake results are shown in figures 38, 39, 40 and 41. [67Cu]-Cl2 shows higher uptake in 

all types of the cell lines and this uptake increased over time in the range of (3% to 22%). [67Cu]-

CuS NPs and [67Cu]-CuS-Mn NPs showed lower uptake initially and then increased over time (≈ 

0.4 % to 5%). Compared to [67Cu]-CuS NPs and [67Cu]-CuS-Mn NPs, however, [67Cu]-CONPs 

showed higher cellular uptake which increased over time (1% to 20%). 

 

 
 

Figure 38: Uptake of [67Cu]-Cl2 in U87-MG, Colo-205 and MDA-MB435, [67Cu]-Cl2 shows higher 
uptake compared with radiolabeled NPs and the cellular uptake increasing over time. 

 

 
 
Figure 39: Uptake of [67Cu]-CuS NPs in U87-MG, Colo-205 and MDA-MB435. Uptake of [67Cu]-
CuS NPs in U87-MG was 1% at 1 hr incubation and increased over time, with Colo-205 and MDA-
MB-435 was ≈ 0.5% and increased at 4hrs and 24hrs. 
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Figure 40: Uptake of [67Cu]-CuS-Mn NPs in U87-MG, Colo-205 and MDA-MB435. Uptake of 
[67Cu]-CuS-Mn NPs in U87-MG was ≈1% at 1 hr incubation and increased over time, with Colo-
205 and MDA-MB-435 was ≈ 0.5% and increased at 4hrs and 24hrs. 

 

 
 
Figure 41: Uptake of [67Cu]-CONP in U87-MG, Colo-205 and MDA-MB-435. Uptake of [67Cu]-
CONPs in U87-MG was 1% at 1 hr incubation and increased over time, with Colo-205 was ≈ 4%, 
at 4hrs was 3% and 24hrs was16%, with MDA-MB-435 was ≈ 1% and increased by the time. 

6.1.3 Biodistribution of [67Cu]-CuS-Mn NP 
 

The ex vivo biodistribution for [67Cu]-CuS-Mn NPs at 15 min, 1 hr, and 24 hours post 

injection is shown in (Fig., 42). The results show that the majority of [67Cu]-CuS-Mn NPs is in the 

liver as a result of NPs being engulfed by liver phagocytosis predominantly due to the larger HD 

size of these nanoparticles. The increase in liver accumulation over the time period studied 

indicates hepatobiliary excretion.  
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Figure 42: Biodistribution of [67Cu]-CuS-Mn NPs. Uptake of the organ at various time points 
15min, 1hr, and 24hrs, (n=3 per time point). Mice tail vein injected with [67Cu]-CuSMn NPs were 
dissected, and tissues were weighted, and gamma counted and percent injected dose per gram 
(%ID/g) was calculated. High uptake of [67Cu]-CuS-Mn NPs was by the liver followed by lung, 
heart and blood.  
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6.1 Mn doped CuS NPs  

Mn was successfully doped within CuS NPs with an 80-90% reaction yield. Mn doping 

and PAA surface coating has the ability to reduce the size of CuS NPs. Doping 20% of Mn in CuS 

NPs reduced the HD size up to ≈5 nm which is lower than the renal clearance threshold. The CuS-

Mn NP was rapidly cleared by the kidneys because of the small size. Fast clearance is needed and 

optimum NPs should do their function in the target in vivo and then be eliminated from the body.68 

For example, if the NPs are used as a drug delivery vehicle , they has to deliver the drug to the 

target and then degrade or clear to avoid over exposure of the body to NP and hence reduce overall 

toxicity.  

Absorption spectra and ZP were measured to see the effect of Mn concentrations and 

different coating materials. Absorption spectra of the CuS-Mn NPs were analyzed with the 

wavelength range from (400-1100 nm). The data showed a slight shift in absorption, with all 

recorded peaks in the wavelength range of 900-1000 nm.  This is still within the NIR range (700-

1100 nm) which maintains PA absorption properties of CuS-Mn NP.143 HD size and ZP of the 

different types of the NPs were measured which shows the different size ranges of the CuS-Mn 

NPs and the difference in range of negative charges depending on the coating materials. The 

magnitude of charge of the zeta potential value affects the NP interactions with cells and tissues 

in vitro and in vivo. 

6.2 Intrinsically radiolabeled CuS-Mn NP 

Two types of radionuclides were incorporated within the CuS-Mn NPs. 89Zr for PET 

imaging and 67Cu for SPECT. First, intrinsically radiolabeled CuS-Mn NPs were tested by using 

89Zr because of availability. The incorporation synthesis of 89Zr into CuS-Mn NP was successful, 

with a radiochemical yield of >60% which enabled PET imaging and biodistribution study. 
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However, 89Zr was not a good candidate due to the difference in chemistry and showed detachment 

and bone accumulation in vivo.  

67Cu was used to test the intrinsic labeling within three different types of NPs CuS NP, 

CuS-Mn NP and CONP. 67Cu is a SPECT radiotracer and useful isotope that can be used for 

therapy and diagnosis and has medium energy (beta particle, gamma emissions) with a half-life of 

2.6 days. The incorporation of 67Cu was successfully accomplished into three different types of 

the NPs which are CuS NP, CuS-Mn NP and CONP, to test the intrinsically radiolabeling and 

enable SPECT imaging, cellular uptake and biodistribution study. The radiolabeling yields were 

88±2, 98%±0 and 78%±5 respectively. Higher yields resulted in [67Cu]-CuS NP and [67Cu]-CuS-

Mn NP due to this same chemistry. Intrinsically radiolabeling using the same chemical material 

can result higher radiochemical efficiency and good stability.144  52Mn and 64Cu can be tested for 

intrinsically labeled CuS-Mn NP and enable PET imaging.   

6.3 PET in vivo imaging of [89Zr]-CuS-Mn NPs 

To enable PET imaging 89Zr was incorporated with CuS-Mn NP. In vivo PET imaging was 

taken 30 min, 2hrs and 24hrs post injection. [89Zr]-CuS-Mn NPs accumulated in the kidney as 

early as 30 minutes post injection and decreased over time. This is due to the small size of the NPs 

which was lower than the renal threshold (HD size ≈ 5 nm) and able to be cleared by the kidneys. 

This is in sharp contrast to larger NPs which lodge in the liver and spleen due to larger HD size. 

The nanoparticles can be eliminated from the body by the renal or through hepatobiliary clearance. 

The small size NPs can be degraded and cleared by the kidneys.13,145  

89Zr radiolabeling CuS-Mn NPs enable ex vivo biodistribution to study organ uptake and 

retention within the time of the NPs. The [89 Zr]-CuS-Mn NPs showed higher uptake by the kidneys 

after 30 minutes post injection, or possibly sooner, and decreased over time as shown in PET 
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imaging. The liver showed lower uptake than the kidneys followed by the bones. The higher uptake 

by the kidneys is because of the small HD size of the NPs which enable them to be cleared through 

the kidneys as soon they are injected. The bone uptake was due to the fact that 89Zr is a bone seeker 

which has a high affinity to phosphate. This result validated [89Zr]-CuS-Mn NP PET imaging. 

6.4 MRI and MSOT evaluation of CuS-Mn NPs 

Mn2+ is an inorganic compound and is known as a transition metal ion with five unpaired 

electrons which can produce a very efficient positive contrast enhancement for MRI such as Gd. 

Gd-incorporated  CuS NPs has been demonstrated feasible imaging for both MR and PA.146 Mn 

doped into the CuS NP to enable MR signal. Also, PA signal was assessed as a function of CuS-

Mn NP concentration. Relaxivity study was done for CuS-Mn NP in comparison with MnCl2 and 

the results show enhancement in MRI signal. The linearity relationship between r1 and r2 with the 

Mn concentration was demonstrated. The CuS-Mn NP showed higher 2 folds than MnCl2. In vivo 

images were taken for mouse liver and kidneys before, and two hours post injection by CuS-Mn 

NPs. The enhancement in MRI signal was seen in both liver and kidneys post injection. The MRI 

contrast agent has to be low toxic and with no side effect. Hence, here the small amount of Mn 

doping within the CuS NP was able to enhance MRI signal, this may overcome with toxicity 

problems caused by Mn based contrast agents and Gd based contrast agents.147   

CuS NPs have strong NIR optical absorption properties.  CuS-Mn NPs was evaluated in 

terms of its ability to enhance MSOT signals. Phantom study and in vivo imaging were taken pre 

and post injection (1hr, 5hrs and 24hrs) of CuS-Mn NP. In phantom, MSOT signal intensity was 

increased as a function of CuS-Mn NP concentration and there was a linear relationship. In vivo 

images of CuS-Mn NPs showed enhancement in MSOT signal and the signal decreased over time 

because of the clearance of the NPs from the animal.   
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Ni, Gd, and Fe integrated into CuS NP and successfully applied both PA and MR signal.146,148,149  

CuS-Mn NP demonstrated here as a dual contrast agent for MRI and PA.  

6.5 In vivo Biodistribution study of CuS-Mn NPs and [67Cu]-CuS-Mn NPs 

Radiolabeling CuS-Mn NPs enable in vivo biodistribution study to evaluate organs uptake 

and accumulation over time of the NPs. Gamma counting was used to count the activity. Another 

biodistribution study was done for unlabeled CuS-Mn NPs and ICP-MS was used to measure Mn 

and Cu in tissues. 

The biodistribution study of [67Cu]-CuS-Mn NPs showed higher uptake in the liver 

increased over time. The lower uptake showed in the lung, spleen, heart, blood and kidneys which 

decreased over time. The [67Cu]-CuS-Mn NP was cleared from the body through hepatobiliary 

excretion. This is due to the size of the [67Cu]-CuS-Mn NP which was (10-30 nm) above the size 

threshold of renal clearance. In the case of the previous radiolabeling with Zr, the NP size was 

(≈5nm) which cleared through the kidneys. The nanoparticles can be potentially eliminated via 

renal or hepatobiliary, both demonstrated here.11,13  

Another biodistribution study was done by unlabeled CuS-Mn NPs by using ICP-MS. This 

was done in one time point which is 24hrs post injection in tumor model mice to assess the 

accumulation of the unlabeled CuS-Mn NP in the tumor and other organs. The higher uptake was 

shown in the liver followed by kidneys, tumor, heart, bone, lung and muscle. Tumor uptake was 

based on the advantage of EPR effect of the NPs which adsorbed into the tumor tissue due to 

vascular leakage. The uptake of CuS-Mn NPs was seen in most major organs which is important 

as these organs could be targeted for cancer treatment. In future work, the plan is to conjugate the 

CuS-Mn NPs with a targeting molecule to enhance tumor uptake in vivo. 
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6.6 Cellular uptake of [67Cu]-CuS NP, [67Cu]-CuS-Mn NP and [67Cu]-CONP 

For in vitro uptake study, the cellular uptake of all types of NPs with three different cell 

lines (U87, MDA-MB435, and COLO-205) were shown to be gradually enhanced over time. The 

higher uptake was seen in [67Cu]-CONP compared with [67Cu]-CuS NP and [67Cu]- CuS-Mn NP. 

This is due to the smaller HD size of [67Cu]-CONP. The HD size affects the cellular uptake as 

[67Cu]- CONP (3-10nm) size was smaller than [67Cu]-CuS NP (15-30nm) and [67Cu]-CuS-Mn NP 

(10-30nm). These results showed that the intrinsically radiolabeled NP provides a feasible method 

to quantitatively study the behavior of CuS-Mn NPs in vitro. This work was done to evaluate the 

passive diffusion of the untargeted radiolabeled NPs into different cancer cell lines. The CuS-Mn 

NP will be conjugated with targeting molecule (e.g peptide or mAb) to enhance tumor uptake in 

vitro and in vivo. 
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Chapter 7: Conjugation of CuS-Mn NPs to RGD for Integrins 
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7.1 Introduction 

Integrins are cell surface receptor proteins. One of the integrin family members consisting 

of dimeric alpha v and beta 3 (αvβ) subunits, has been found over expressed in several types of 

cancer cells, such as breast cancer and glioblastoma. Therefore, the αvβ integrin has become an 

attractive molecular target for early cancer diagnosis and treatment. Cyclic arginine–glycine–

aspartic acid (cRGD) peptide has excellent selectivity and high binding affinity to αVβ3 integrin.150  

The cRGD peptide has been well established and labeled with various imaging probes and 

demonstrated feasibility of imaging integrin receptors in tumors.5,151  

A method has been developed to conjugate CuS-Mn NPs with cRGD peptide. Characterization by 

FTIR, DLS and ZP. The flow cytometry was performed on three different cell lines to assess the 

integrins expression.  The RGD-CuS-Mn NP then will be tested in cancer cells with different levels 

of integrin expression in vivo. The NP-conjugate will be evaluated in terms of its binding to 

integrin receptors expressed to varying degrees in the cancer cell lines, U87-MG, Colo-205, and 

MDA-MB-345. 

7.2 Synthesis of Specific Targeting CuS-Mn NP using cRGD peptide 

7.2.1 Synthesis of cRGD-CuS-Mn NPs 
 

In order to facilitate the conjugate cRGD peptide with CuS-Mn NP, the surface coating has 

to be functionalized by using polyethylene glycol (PEG) or bovine serum albumin (BSA).  Two 

different synthesis strategies were done and the synthesis procedure for each one is described 

below.  

7.2.1.1Synthesis of cRGD-PEG-CuS-Mn NPs 
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Synthesis of PEG-Cit-CuS-Mn NP 

The synthesis of Cit-CuS-Mn NP was done as explained in the section 4.1.1. Briefly, CuCl2 

(13.4mg, 0.1 mmole), MnCl2.H2O (3.4mg, 0.02 mmole) and Na2S.H2O (0.12 mmole) in aqueous 

solution under existence of sodium citrate (25mg) at room temperature for 5 min, to form CuS-Mn 

core, followed by heating the reaction mixture to 90° C for 30 min to grow nanoparticles. The 

obtained Cit-CuS-Mn NPs was purified by using a 3K MWCO by centrifugation. To introduce 

PEG into Cit-CuS-Mn NPs, the solution was suspended in 1ml H2O and 1 mg of Thiol-PEG-amine 

was added to Cit-CuS-Mn NP and incubated stirring at RT overnight to form PEG-Cit-CuS-Mn 

NP. 

Synthesis of cRGD-PEG-CuS-Mn NP 

1-The PEG-Cit-CuS-Mn NPs in PBS transferred to a 10 mL vial. 

2-Sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate(Sulfo-SMCC)(5mg/ml) 

was added to PEG-Cit-CuS-Mn NP under stirring and reacted for 40 min at room temperature. The 

sulfo-SMCC acts as a bifunctional crosslinker between the PEG-Cit-CuS-Mn NPs and the cRGD 

peptide. 

3-The reaction mixture was purified by Sephadex G25 column to remove unreacted sulfo-SMCC.  

4-Cyclo-RGD (1mg/ml) was mixed with activated PEG-Cit-CuS-Mn NP and stirred at room 

temperature for 1 hour. 

5-The cRGD-PEG-CuS-Mn NP was purified and concentrated by centrifuging through a 3,000 

MW cut-off centrifuge filter at 4750 rpm for 30 min at RT. Schematic of the reaction is shown 

below (Fig., 43). 
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Figure 43: Schematic diagram of synthesis of cRGD-PEG-CuS-Mn NPs. CuS-Mn NPs coated with 
PEG and then further conjugated with cRGD peptide. Sulfo-SMCC was used as a crosslinker 
between cRGD and PEG-CuS-Mn NP. 

 
7.2.1.2 Synthesis of cRGD-BSA-CuS-Mn NPs 
 

As an alternative strategy previously used was done by using bovine serum albumin (BSA) 

as a coating material for the CuS-Mn NPs and then N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) used as a crosslinker 

between BSA and cRGD to form cRGD-BSA-CuS-Mn NPs.152 EDC is a carboxyl activate agent 

which then reacted with NHS resulting unstable NHS ester which was reacted with primary amine 

to form amide crosslinker bond between RGD and BSA. The strategy and schematic of the reaction 

is shown below (Fig. 44).  

1-0.25 g of BSA was dissolved in 7.5 mL of ultrapure water and this was used as the core reagent. 

2-Next, 0.268 g of CuCl2, 0.08g MnCl2 and 0.48 g of Na2S.9H2O was dissolved in 10 mL of 

ultrapure water to form the reaction solution.  

3-Then, 1 mL of the copper solution was added to the BSA solution. 0.5 mL, NaOH solution was 

added to adjust the pH, followed by the addition of 1.5 mL of sodium sulfide solution.  
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4-Then, the mixture was heated to 90 °C and stirred for about 30 min, to form BSA-CuS-Mn NP 

and ready for conjugation with RGD peptide as explained in the following. 

5- The aqueous solution then cooled down to room temperature. 

6-Then, 40 mg of EDC was added to the prepared BSA-CuS-Mn NP solution at room temperature 

with slight stirring. 

7-After 20 min, 32 mg of NHS was added to the mixture and allow to react for 2 h in the dark. 

This was followed by adding 1 mL of cRGD (5 mg ml−1) to the solution.  

8- The resulting mixture was vigorously stirred for 12 h.  

9- The -cRGD-BSA-CuS-Mn NP solution was purified by using (0.22 µm) syringe filters and a 3k 

MWCO centrifuge filters by centrifugation 3 times at 4750 rpm for 30 min at RT. 

10- The purified cRGD-BSA-CuSMn NP solution was then stored at 4 °C for further use. 

 
 
Figure 44: Schematic diagram of synthesis of cRGD-BSA-CuS-Mn NPs. CuS-Mn NPs coated with 
BSA and then further conjugated with RGD peptide. EDC+NHS was used as a crosslinker between 
cRGD and BSA-CuS-Mn NP. 

7.3 Characterization  

The physical characterizations of BSA-CuS-Mn NP and cRGD-BSA-CuS-Mn NP were 

done by using dynamic light scattering (DLS), zeta potential to evaluate the effect of PEG, BSA 

and cRGD peptide on the size and charge of the CuS-Mn NP. ICP-OES was done to measure the 

amount of Cu and Mn in the NP.  DLS, zeta potential and ICP-OES were done as explained in a 
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previous section (4.2). Fourier Transform infrared spectroscopy (FTIR) was done to identify 

surface functional groups of conjugated cRGD peptide to BSA-CuS-Mn NP and the procedure and 

principle as below. 

7.3.1 Fourier Transform infrared spectroscopy (FTIR) 

FTIR spectroscopy is a method used to study solid, liquid, or gas by obtaining a high 

resolution of wide range of infrared spectrum of absorption. The basic theory is that the bonds 

between different elements absorb light at different frequencies. The frequency range is from 400 

to 4000 cm-1 and at a resolution of 0.15 cm-1.  In FTIR technique, the instrument produces infrared 

light passes through interferometer where spectral encoding takes place. When the sample absorbs 

specific frequencies of energy from the beam that enters the samples compartment, this will 

characterize the sample. This spectrum provides information about the chemical bounds and 

molecular structure. The BSA-CuS-Mn NP and RGD-BSA-CuS-Mn NP were dried in the oven at 

45°C for 2 hrs. Dry samples as shown in (Fig., 45) were prepared to be tested for FTIR spectrum 

measurement which was taken at room temperature by using Nicolet iS50 FT-IR.  

 

Figure 45: Images of dried synthesized BSA-CuS-Mn and cRGD-BSA-CuS-Mn NPs.  
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7.4 Flowcytometry analysis of αVβ3 integrins on tumor cells 

Integrins receptors expressed on the surface of tumor cells with various levels and lack of 

expression on other cells. It is important to study the percent of the expression of the integrins 

before starting implantation in animals. This work was done in the preparation of in vitro and in 

vivo work for evaluation of targeting RGD-CuS-Mn NP. The flowcytometry was used to detect 

the expression level of αVβ3 integrins on the tumor cells. Three cell lines were used; human brain 

glioblastoma astrocytoma (U87-MG), colon cancer cell line (Colo-205) and breast cancer cell lines 

(MDA-MB-435), which were measured with a fluorescent labeled antibody.  

7.4.1 Flowcytometry 

First, the cells were either labeled with fluorochrome-linked antibodies or stained with 

fluorescent membrane, cytoplasm, or nuclear dyes. Hence, differentiation of cell type 

(immunophenotyping), the presence of membrane receptors and antigens, membrane potential, 

pH, enzyme activity, and DNA content can be measured. The basic principle of flowcytometry is 

that cells which passes through a laser beam can be detected and counted depending on their 

properties. As the cell passes through the laser beam, light is scattered in all directions, and the 

light scattered in the forward direction forward scatter (FSC), at low angles (0.5-10°) from the axis 

is proportional to the square of the radius of a sphere and the size of the cell or particle. Light also 

may enter the cell and be reflected by nucleus and other contents of the cell; thus, the 90° light 

(right-angled, side scatter (SSC)) may be considered proportional to the granularity and internal 

complexity of the cell (Figure 46). Fluorescent labeled internal or external cells components are 

excited by the laser to emit light at various wavelength. Various detectors are used to measure 

FSC, a line with the light beam to detect cell volume. The other detector is placed perpendicular 

to the stream and used to measure SSC which detects the inner component of the cells.153 
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Labeling cells by using fluorescent antibody to detect αVβ3 integrin:   

Cells were labeled by using human integrin αVβ3 anti-body and the procedure was as follows: 

1- 1 ×106 of the cells were collected and washed with phosphate buffer saline (PBS) three 

times. 

2- The cell pellets were resuspended in in 100 µl of staining buffer and were incubated with 

5 μL of Fc blocker on refrigerator for 10 min, to prevent non-specific binding of the anti-

body. 

3- Then, the cells were incubated for 20 minutes with 5 μL of human integrin αVβ3 anti-body 

labeled with Alexa Fluor 488. 

4- The cells were washed three times with staining buffer. 

5- The cells were resuspended in 1 ml of staining buffer and analyzed by flow cytometry. 

6-  Unstained cells were prepared in the same procedure without florescence to be used as a 

negative control.  

7- The fluorescence signal of 50,000 cells were analyzed on a cell-by-cell basis using flow 

cytometry. 
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Figure 46: Principle of flowcytometry: Flow cytometry is a technique that colored fluorescence 
cells particle move in a liquid stream through a laser light. The relative light-scattering by cells 
particle is measured. Analysis and differentiation of the cells is based on their size, granularity 
and which cells are carrying antibodies or dyes.  

 
7.4.2 Fluorescence Microscope 
 

After cells were analyzed by flow cytometry, fluorescence microscope (BZ-X800E) was 

used to image the cells to assess the expression of αVβ3 integrins.  

7.5 Results and discussion  

7.5.1 Synthesis and Characterization of untargeted CuS-Mn NP and targeted CuS-Mn NP 
 

The synthesis of untargeted BSA-CuS-Mn NP and targeted RGD-BSA-CuS-Mn NP was 

successfully accomplished as described in section 7.2.1. BSA was used as coating material and 

then RGD conjugated with BSA-CuS-Mn NP using crosslinker as described above. DLS and ZP 

were done as described in section 4.2. FTIR spectra was done to confirm the conjugation of BSA-

CuS-Mn NP with RGD peptide.  

DLS and ZP of BSA-CuS-Mn NP and RGD-CuS-Mn NP 
 

The HD size of untargeted BSA-CuS-Mn NP was ranged from 1.5-4 nm and the zeta-

potential was -33 mV. The HD size of targeted RGD-CuS-Mn NPs was ranged from 5-20 nm and 
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zeta-potential was -28 as shown in figure 47. The increased in hydrodynamic size in RGD-BSA-

CuS-Mn NP was due to the conjugation of RGD peptide with BSA-CuS-Mn NP.  

 

 

 

Figure 47: Hydrodynamic size and zeta-potential of A) HD size of BSA-CuS-Mn NPs, B) ZP of 
BSA-CuS-Mn NPs, C) HD size of RGD-BSA-CS-Mn NPs and D) ZP of RGD-BSA-CuS-Mn 
NPs, showing different HD size and ZP between both NPs. 

 

A- HD size of BSA-CuS-Mn NP 

B- ZP of BSA-CuS-Mn NP 

C- HD size of RGD-BSA-CuS-Mn 
NP 
 

D-ZP of RGD-BSA-CuS-Mn NP 
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The Fourier Transform Infrared Spectroscopy (FTIR)   

FTRI spectra of the peptides were measured for RGD-BSA-CuS-Mn NP and the 

corresponding BSA-CuS-Mn NP (Figure 48). The characteristic IR absorption peaks at 1633 cm-

1 (amide I, C=O carbonyl stretch vibration) and 1388 cm-1 (amide III, C–N stretch vibration) are 

representative of RGD peptides and were also found in the spectra of the corresponding NP, which 

indicating the successful binding of peptide molecules to the BSA-CuS-Mn NPs. A stronger and  

broad peak between 3100 cm-1 and 3400 cm-1 was observed from the FTIR spectrum of RGD-

BSA-CuS-Mn NP, indicating the existence of a –NH–CO– bond between BSA and RGD peptide.  

 
Figure 48: FTIR spectra of BSA-CuS-Mn NPs and RGD-BSA-CuS-Mn NPs 

7.5.2 Integrins expression levels  
 

Three different cell lines were used to measure	αVβ3 integrins expression levels by flow 

cytometry as explained in section 7.4.2. The antibody-stained cells (labeled cells) were compared 

with negative unstained cells (unlabeled cells). As can be seen in figure 49, A colo-205 showed a 

lack in the expression of αVβ3 integrins as the cells overlays with negative unstained cells. On the 

other hand, U87-MG and MDA-MB-435 showed higher expression of αVβ3 integrins where the 
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cells shifted to the positive fluorescence intensity with the αVβ3 antibody-stained cells. 

Fluorescence microscopic images were taken to validate the flowcytometry result (Figure 50). The 

U87-MG has been known to express αVβ3 integrins and used in previous studies for imaging 

targeted using RGD peptides. MDA-MB-435 also utilized in previous studies for targeting 

integrins to enhance therapeutic efficacy. 5,154,155  

 

Figure 49: Flow cytometry results of A) Colo-205, B) MDA-MB-435, C) U87-MG cells. U87-
MG and MDA-MB-435 cells showed increase fluorescence with the αvβ3 antibody stain 
compared to unstained (negative cells), indicating that the αvβ3 integrin is expressed on the 
U87MG cells and MDA-MB-435. The Colo-205 cells did not show a shift in fluorescence 
intensity, indicating a lack of αVβ3 integrin expression.  

 

 
Unlabeled U87.                 Labeled U87 

 
Unlabeled MDA-MB435 Labeled MDA-Mb-435 
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Unlabeled Colo-205.        Labeled Colo-205 
Figure 50: Fluorescence microscope images of U87, MDA-MB-435 and Colo-205 for stained 
cells with human integrin αvβ3 anti-body labeled with Alexa Fluor 488 (Labeled cells), 
compared with unstained cells which not stained with human integrin αVβ3 anti-body labeled 
with Alexa Fluor 488 (Unlabeled cells).  

7.6 Conclusion 

This work was undertaken prior to the pandemic and was intended to prepare the 

groundwork for future in vivo studies. Unfortunately, the pandemic had disrupted such plans. The 

development, however, has been valuable to build upon for future work. 

The untargeted BSA-CuS-Mn NPs and targeted RGD-BSA-CuS-Mn NPs were 

successfully synthesized and ready for in vitro and in vivo evaluation, which may enhance the 

tumor uptake. Integrins expression level were studied on three cell lines (U87MG, MDA-MB435 

and COLO-205). U87MG and MDA-MB435 were shown over expression of integrins than 

COLO-205. The cells which showed expression of αVβ3 integrins will be candidates for future 

tumor impanation in mice. 
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Chapter 8: Summary and Conclusions  
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8.1 Summary of Conclusion 

A general strategy to synthesize a multimodality intrinsic doping/radiolabeling of CuS-Mn 

NPs was demonstrated. Neither the chemical nor physical properties of radiolabeled CuS-Mn NPs 

were changed by the incorporation of trace quantities of radionuclides. The NPs have been coated 

with different coating polymers which facilitate water solubility, stability, biocompatibility, and 

functionalization. The physiological properties and pharmacokinetics of CuS-Mn NPs can be 

adjusted by modifying their surface coating. The physiochemical properties were characterized by 

hydrodynamic size analysis, surface charge, radiochemical yield, absorption spectra, and relaxivity 

measurements. The cell uptake and biodistribution of [67Cu]-CuS NP, [67Cu]-CuS-Mn NP and 

[67Cu]-CONP, indicated obvious correlation with its size. Real time in vivo PET imaging of [89Zr]-

CuS-Mn NPs depicted the fate of the radiolabeled NP and revealed indications of some 89Zr 

dissociation as evidenced by the bone uptake. This pharmacokinetic picture was reflected in the 

data obtained by an ex vivo biodistribution study. MRI and MSOT imaging were characterized, 

first in phantom and then in mice and the enhancement of MRI and PA signal were confirmed. 

Doping with small amount of Mn enabled MR enhancement following intravenous (iv) 

administration while maintaining PA contrast at the same time. Ex vivo biodistribution study of 

[67Cu]-CuS-Mn NPs were conducted using gamma counting and another biodistribution study of 

unlabeled CuS-Mn NPs were done using ICP-MS. Both showing higher uptake by the liver which 

indicating hepatobiliary excretion. Finally, targeting cRGD-CuS-Mn NP was synthesized to 

evaluate the active targeting in vivo. The cRGD peptide was conjugated with CuS-Mn NP through 

surface functionalization approaches. 

The radiolabeling method provides a useful quantitative tool to study and monitor the 

behavior of the CuS-Mn NPs in vitro and in vivo. The multimodality radiolabeling CuS-Mn NPs 
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can be utilized as a novel nanomedicine platform for multiple biomedical imaging and theranostic 

applications. The “all in one” platform is flexible and can be used either as a single modality 

imaging (PA/MRI/PET/SPECT) agent or as multi-modal agent combining two or more imaging 

techniques.  

8.2 Future work 

The intrinsic radiolabeling of CuS-Mn NPs was established as a platform to build on in the 

future. Conjugation synthesis of RGD-CuS-Mn NPs was developed and can be used for future in 

vivo imaging and toxicity studies.  

8.2.1 Future directions for intrinsically radiolabeled CuS-Mn NPs 
 
Further studies could focus on three directions: 

1. Investigate the in vivo targeting merit of radiolabeled NP and perform pharmacokinetic and 

toxicity studies. 

2. Investigate intrinsic radiolabeling of other radionuclides such as 52Mn and 64Cu to assess 

not only imaging performance, but also the effect of the radionuclide on the overall 

accumulation, retention and clearance, as well as toxicity related issues pertinent to the 

radionuclide.  

3. Explore the combination of photo-thermal and radionuclide therapy guided by imaging. 

This approach could break new grounds in multi-modal therapy. 
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Appendix 
 

Research Presentation and Manuscript for publications 
 

• Gawi A., Gobalakrishnan S., Vijayaragavan V., Cicek H., Sun M., and Zweit J. “Image-
Guided CuS-Mn Nanoparticles for Targeted Photo-thermal and Radiotherapy of Cancer”, 
poster presentation at Virginia Commonwealth University, Chemistry annual poster 
session (2016,2017 and 2018).   

• Gawi A., Gobalakrishnan S., Cicek H., Elmekharam N., McDonagh P., Wang L. and Zweit 
J. “Multimodality Theranostic Copper Sulfide Nanoparticles”, oral presentation at 50th 
Annual Meeting of Biomedical Engineering Society (BMES) 2018, Atlanta, Georgia.  

• Gawi A., Gobalakrishnan S., Cicek H., Elmekharam N., McDonagh P., Wang L., Sun M. 
and Zweit J “Intrinsically Radiolabeled Copper Sulfide-Manganese Nanoparticles for 
Multimodality for in vitro and in vivo study” (Manuscript in preparation). 

• Gawi A., Gobalakrishnan S., Cicek H., Elmekharam N., McDonagh P., Wang L., Sun M. 
and Zweit J “Manganese-Doped Copper Sulfide Nanoparticles as Dual MR and 
Photoacoustic Imaging Contrast Agent” (Manuscript in preparation). 

• Rojas J., Umretiya R., Molina-Higgins M., Gawi A., Gobalakrishnan S., and Zweit 
J.“Incorporation of 67Cu within Luminescent lanthanide phosphate nanoparticles for 
theranostics” (Submitted for publication). 
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