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 Organic anion transporters (OATs) are known to interact with a wide variety of 

negatively charged drugs and can impact their clinical safety and efficacy profiles. The 

U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) have 

recognized and highlighted the importance of evaluating the potential interactions with 

transporters, specifically hOAT1 and hOAT3, during the development of new drug 

entities. Little is known about OAT-drug interactions as they are difficult to discern on a 

molecular level in the absence of any solved crystal structures for OATs. Therefore, in a 

previous study, in silico homology models of hOAT1 and hOAT3 were generated based 

on the solved crystal structure for Piriformospora indica phosphate transporter (PiPT). 

The models were docked with their respective prototypical substrates, amino acid 

contacts involved in substrate recognition predicted, and single point mutations 
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generated. Following mutagenesis, singly mutated hOAT1 and hOAT3 transporters were 

subject to accumulation and saturation studies to determine their role in substrate binding 

and subsequent translocation. The findings from this previous study indicated singly 

mutated constructs did not result in altered binding affinity (Km). However, the question 

remained whether these predicted amino acid contacts would significantly alter affinity 

when present in various double and triple combinations.  

In this study, multiple combination hOAT1 (Arg15Lys/Ile19Leu, 

Ile19Leu/Tyr230Phe, Arg15Lys/Tyr230Phe, and Arg19Lys/Ile19Leu/Tyr230Phe) and 

hOAT3 mutants (Phe426Tyr/Phe430Ser and Phe426Tyr/Phe430Tyr) were generated 

and functional accumulation screens were conducted to determine the impact on overall 

transport activity. Mutants that retained transport activity were then further assessed by 

kinetic assays to determine any changes in Km. Functional accumulation screens showed 

none of the hOAT1 multiple mutants retained PAH transport activity. In contrast, the 

generated hOAT3 double mutants retained ES transport activity. Subsequent kinetic 

analysis revealed the hOAT3 double mutants exhibited no statistically significant changes 

in estimated Km values as compared to hOAT3 wild-type. 

   This study provides further insight as to the importance of these predicted critical 

amino acid residues in substrate binding interactions. Further characterizing these 

molecular interactions will allow for improved manipulation of drug substrate 

pharmacokinetics as well as prediction of drug-drug interactions, both of which can be 

utilized in drug design and development.  
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CHAPTER 1 

1.A INTRODUCTION 

Transporters have gained attention in the field of pharmacology as they are 

expressed throughout our bodies and play important roles in the absorption, distribution, 

and excretion of endogenous and exogenous substances, including drugs. There are two 

major superfamilies of membrane-bound transporters: ATP binding cassette (ABC) and 

solute carrier (SLC) transport proteins. ABC transporters directly bind and hydrolyze ATP 

to drive the translocation of substrates across the cell membrane. Whereas, SLCs are 

indirectly coupled to cellular energy and use ion gradients (e.g., symporters and 

antiporters) as well as electrochemical potential (e.g., facilitated diffusion) to drive 

transcellular transport of substrates (Figure 1.1) [11]. Among the 65 SLC families, the 

SLC22 family comprises anion/cation/zwitterion transporters [3,22,24]. Organic anion 

transporters (OATs) are a subtype of the SLC22 transport proteins that are responsible 

for the membrane translocation of negatively charged organic substrates such as toxins, 

nutrients, and drugs [14,16,22]. 

Twenty-nine transporters have been identified as potential members within the 

SLC22 family; many of which have been characterized in terms of transport mechanism, 

substrate and inhibition profiles, and tissue distribution [24]. Two of these members, 

OAT1 (SLC22A6) and OAT3 (SLC22A8), are further investigated in this project. OATs 

are proposed to have 12 alpha helical transmembrane domains (TMDs) with a large 

extracellular loop between TMDs 1 and 2, a large intracellular loop between TMDs 6 and 

7, and cytosolic amino and carboxyl termini [9,17]. In humans, OAT1 and OAT3 share 

expression in the eye, brain, and kidneys while OAT1 and OAT3 are found in the placenta 
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and liver, respectively. Furthermore, they are highly expressed in the kidneys and 

targeted to the basolateral membrane of renal proximal tubule cells [15,20,21]. 

Additionally, they have high amino acid sequence similarity (50%) and are often 

expressed in the same cell types. Furthermore, while their specificities overlap, they often 

have different affinities for the same compound. This redundancy in substrate recognition 

may serve as an evolutionary survival mechanism that likely provides additional transport 

capacity in the following situations: 1) environmental exposure to toxic compounds, 2) 

drug-drug interactions, 3) genetic dysfunction (e.g., gene variants), and 4) 

pathophysiological states (e.g., renal insufficiency) [23]. In renal proximal tubule cells, 

human OAT1 (hOAT1) and OAT3 (hOAT3) are specifically responsible for mediating the 

absorption of organic anion substrates from the blood across the cell membrane via a 

dicarboxylate/organic anion antiport mechanism (Figure 1.1) [11,22]. Prototypical 

substrates for hOAT1 (para-aminohippurate, or PAH) and hOAT3 (estrone sulfate, or ES) 

are exchanged for α-ketoglutarate (α-KG), the only known physiological counterion. Efflux 

of substrates occurs through facilitated diffusion carriers and/or efflux transporters.  

 In addition to the prototypical substrates, hOAT1 and hOAT3 bind to a wide variety 

of structurally diverse negatively charge compounds under physiological conditions (i.e., 

pH 7.4) including NSAIDs (e.g., indomethacin), antivirals (e.g., acyclovir), β-lactam 

antibiotics (e.g., penicillin), diuretics (e.g., furosemide), and chemotherapeutic agents 

(e.g., cisplatin) [4,5,6]. OATs impact the pharmacokinetics and pharmacodynamics of 

several dozens of drugs, potentially altering their clinical safety and efficacy profiles. Both 

the U.S. Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA) have issued guidances that recognize the importance of in vitro studies of 
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investigational new drugs to be evaluated as potential substrates or inhibitors for 

transporters known to be involved in drug interactions [1,7,13]. These guidances 

specifically identify hOAT1 and hOAT3 as transporters that need to be evaluated for 

potential interactions with the new chemical entity and to determine if further in vivo 

studies are required regarding potential drug-drug interactions [1,7,13]. Thereby, 

highlighting the importance of studying the structure-activity relationship of hOAT1 and 

hOAT3 in drug substrate binding interactions.  

As several substances are known to interact with hOAT1 and hOAT3 for renal 

elimination, gaining a better understanding of the biochemical binding mechanisms of 

OATs is vital to predict their pharmacokinetics as well as therapeutic safety and efficacy. 

Doing so potentially allows transporter-substrate interactions to be manipulated to 

maximize efficacy and minimize renal toxicity [12]. For example, renal elimination can be 

slowed by optimizing transporter-drug interactions to decrease binding affinity. This may 

be used to improve the therapeutic effects of a poorly bioavailable drug as well as to lower 

its dosage or dosing frequency. Furthermore, generating compounds that have greater 

specificity for a transporter and are co-formulated as excipients (e.g., probenecid) may 

decrease drug-drug interactions and/or allow for preferential competitive binding at target 

transporters [12]. Ultimately, identifying and characterizing critical amino acids involved 

in substrate recognition for hOAT1 and hOAT3 may offer great insight into drug design to 

control pharmacokinetics as well as to better predict drug-drug interactions.  

The lack of structural information (i.e., no solved crystal structure) for OATs has 

made it challenging to understand these molecular interactions [17]. In order to study 

substrate binding via hOAT1 and hOAT3, in silico homology models of each transporter 
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were previously generated based on the solved crystal structure of Piriformospora indica 

phosphate transporter (PiPT) [8]. Substrates were docked and from these models amino 

acids potentially critical to binding interactions were determined (Figure 1.2 and Figure 

1.3). Subsequently, single mutants were generated (Table 1.1 and Table 1.2) and 

screened for transport activity [8]. Initial accumulation studies revealed hOAT1 

substitutions Arg15Lys, Ile19Leu, and Tyr230Phe and hOAT3 substitutions Phe426Tyr, 

Phe430Ser, and Phe430Tyr retained sufficient transport activity to pursue saturation 

analyses. For hOAT1, saturation analyses showed none of the single mutants had 

significantly altered affinity (Km) compared to wild-type. For hOAT3, one single mutant 

(Phe430Ser) showed significantly altered Km compared to wild-type suggesting weaker 

binding affinity. These findings suggest that a single mutation is insufficient to significantly 

impact affinity, however double or triple combinations of these mutants could potentially 

have a greater impact on substrate binding and transport kinetics. Thus, in this project, 

we explored the hypothesis that multiple mutant combinations are needed to significantly 

alter hOAT1 and hOAT3 substrate binding affinity through the following specific aims: 
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1.B SPECIFIC AIMS 

 Specific Aim 1 

To test the hypothesis that double and triple combinations of point mutants at 

predicted critical substrate binding contacts will result in altered substrate binding 

affinity for hOAT1, we: 

a. Generated double/triple mutants using site-directed mutagenesis. 

b. Established stably transfected cell lines expressing hOAT1 mutants. 

c. Identified active and inactive mutants via substrate accumulation assays. 

d. Determined the binding affinity of active mutants and their prototypical 

substrate PAH. 

 Specific Aim 2 

To test the hypothesis that double and triple combinations of point mutants at 

predicted critical substrate binding contacts will result in altered substrate binding 

affinity for hOAT3, we: 

a. Generated double mutants using site-directed mutagenesis.  

b. Established stably transfected cell lines expressing hOAT3 mutants. 

c. Identified active and inactive mutants via substrate accumulation assays. 

d. Determined the binding affinity of active mutants and their prototypical 

substrate ES.  
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Figure 1.1. Model depicting driving forces for OAT1 and OAT3 transport. 
Mechanisms/driving forces used for cellular entry and exit for organic anion transport 
using renal proximal tubule cell as an example.  
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Figure 1.2. Different rotational views of the hOAT1-PAH binding complex. 
The five amino acids predicted to be important for PAH binding and transport are 
indicated. Image files generated using PyMOL 1.8.  
 
[Figure taken from reference [8]] 
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Table 1.1. Summary of putative PAH-hOAT1 complex forming amino acids, the 
predicted nature of each interaction and generated conservative and non-
conservative hOAT1 mutations. 
 

 
 
[Table taken from reference [8]] 
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Figure 1.3. Different rotational views of the hOAT3-ES binding complex. 

The five amino acids predicted to be important for ES binding and transport are indicated. 
Image files generated using PyMOL 1.8.  
 
[Figure taken from reference [8]] 
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Table 1.2. Summary of putative ES-hOAT3 complex forming amino acids, the 
predicted nature of each interaction and generated conservative and non-
conservative hOAT3 mutations. 
 

 
 
[Table taken from reference [8]] 
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CHAPTER 2  

 

IDENTIFYING STRUCTURAL ELEMENTS OF HUMAN ORGANIC ANION 

TRANSPORTERS 1 AND 3 MEDIATING SUBSTRATE-TRANSPORTER BINDING 

INTERACTIONS 

 

2.A INTRODUCTION 

 Previously studied hOAT1 and hOAT3 transport active single mutants were 

combined to generate double and/or triple mutants. Multiple combination mutants were 

stably expressed in CHO or HEK cells in order to determine retention of transport function. 

Functional screening indicated none of the hOAT1 mutants, but both of the hOAT3 double 

mutants (Phe426Tyr/Phe430Ser and Phe436Tyr/Phe430Tyr) exhibited significant 

changes in substrate accumulation as compared to parental cells. Saturation analysis of 

transport active hOAT3 double mutants indicated no change in affinity as compared to 

hOAT3 wild-type.  

2.B MATERIALS AND METHODS 

2.B.1 Chemicals and Reagents  

Mutagenesis and sequencing primers were purchased from Integrated DNA 

Technologies (Coralville, IA). The QuikChange Lightning Site-Directed Mutagenesis Kit 

and DH5-α cells were purchased from Agilent Technologies (Santa Clara, CA). hOAT3 

mutants were purchased from GenScript. Lipofectamine transfection reagents, 

Dulbecco’s Modified Eagle/Ham’s F-12 Medium (DMEM/F12), and Dulbecco’s Modified 

Eagle Medium with high glucose (DMEM/HIGH GLUCOSE) were purchased from Thermo 
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Fisher Scientific (Waltham, MA). QIAprep spin miniprep kits were purchased from 

QIAGEN (Germantown, MD). Geneticin (G418) and Penicillin-Streptomycin were 

purchased from Gibco-Invitrogen (Grand Island, NY).  [H3] PAH was purchased from 

PerkinElmer Life and Analytical Science (Waltham, MA). Unlabeled PAH and probenecid 

were purchased from Sigma-Aldrich (St. Louis, MO). Ecoscint H cocktail was purchased 

from National Diagnostics (Atlanta, GA). Bradford protein assay dye was purchased from 

Bio-Rad Laboratories. GoTaq green master mix was purchased from Promega (Madison, 

WI). 

2.B.2 hOAT1 Mutant Generation  

Using previously constructed hOAT1 single point mutants as template, hOAT1 

double and triple combination mutants were constructed using the QuikChange Lightning 

Site-Directed Mutagenesis Kit according to the manufacturer’s recommendations [2]. 

Briefly, the single mutant template (for double combination mutants) or the double mutant 

template (for triple combination mutant) was denatured, primers annealed to the template 

to introduce the additional desired mutation(s), and the mutant DNA strand elongated. 

Samples were incubated with Dpn1 restriction enzyme to degrade hOAT1 wild-type 

template strands. Oligonucleotide primers containing the desired mutations are reported 

in Table 2.1. 

2.B.3 hOAT3 Mutant Generation 

Multiple attempts at generating hOAT3 double combination mutants with the 

previously described method for hOAT1 were unsuccessful. Following reanalysis of the 

desired mutation positions, it was discovered there was wild-type sequence in the 

mutagenesis primers that overlapped mutant sequence in the template. Therefore, 
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primers that would introduce both desired mutations at once were generated to construct 

hOAT3 double mutants. After these generation attempts failed, hOAT3 double mutants 

were synthesized by GenScript in order to move forward with subsequent 

experimentation. Sequences used to generate the desired hOAT3 mutants are reported 

in Table 2.2. 
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Table 2.1. Oligonucleotide primers used for hOAT1 site-directed mutagenesis.  
 

Template Mutagenesis 
Position 

Substitution Primers (5’ - 3’) Final Mutant 

R15K 19 Isoleucine → 
Leucine 

Forward    CCGCTTCCAGCAGTTGCAGGTCACCCTGG 

Reverse    CCAGGGTGACCTGCAACTGCTGGAAGCGG 

 

R15K/I19L 

I19L 230 Tyrosine → 
Phenylalanine  

Forward    

GGGCACCTTGATTGGCTATGTCTTTAGCCTGGGCCAG  

Reverse    

CTGGCCCAGGCTAAAGACATAGCCAATCAAGGTGCCC 

 

I19L/Y230F 

R15K 230 Tyrosine → 
Phenylalanine 

Forward    

GGGCACCTTGATTGGCTATGTCTTTAGCCTGGGCCAG  

Reverse    

CTGGCCCAGGCTAAAGACATAGCCAATCAAGGTGCCC 

 

R15K/Y230F 

R15K/I19L 230 Tyrosine → 
Phenylalanine 

Forward    

GGGCACCTTGATTGGCTATGTCTTTAGCCTGGGCCAG  

Reverse    

CTGGCCCAGGCTAAAGACATAGCCAATCAAGGTGCCC 

R15K/I19L/Y230F 
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Table 2.2. hOAT3 site-directed mutagenesis.  
 

Template Mutagenesis 
Position 

Substitution Sequence Substitution Final Mutant 

Wild-type 426 & 430 426: Phenylalanine → 
Tyrosine 
 
430: Phenylalanine → 
Serine 

Forward 

CCTATCCAGCTCCTACAGCTGCCTCTCCCTCTACACAAGT 

Reverse 

ACTTGTGTAGAGGGAGAGGCAGCTGTAGGAGCTGGATAGG 

 
 

F426Y/F430S 

Wild-type 426 & 430 426: Phenylalanine → 
Tyrosine 
 
430: Phenylalanine → 
Tyrosine 

Forward 

CCTATCCAGCTCCTACAGCTGCCTCTACCTCTACACAAGT 

Reverse 

ACTTGTGTAGAGGTAGAGGCAGCTGTAGGAGCTGGATAGG 

F426Y/F430Y 
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2.B.4. Bacterial Transformation 

hOAT1 and hOAT3 mutant plasmids were transformed into XL10-Gold 

Ultracompetent and DH5-α cells, respectively, according to the manufacturer’s protocol 

[2]. Transformed bacterial cells were spread on LB agar plates containing ampicillin (0.1 

mg/mL) and incubated at 37°C for 16 hrs. Individual colonies were picked and incubated 

for 16 hrs in 5 mL LB broth containing 0.1 mg/mL ampicillin at 37°C while being shaken 

at 225 RPM.  

2.B.5 Mutant Confirmation  

Plasmid DNA from the overnight culture was isolated and purified using QIAGEN’s 

Mini-Prep Kit following the manufacturer’s protocol [18]. Briefly, bacterial cultures were 

pelleted, resuspended, lysed, neutralized, and centrifuged at 13,000 RPM for 10 min. The 

supernatant was applied to the spin columns where plasmid DNA binds to, and 

contaminating material is washed from, the column. Following elution of the purified 

plasmid DNA from the column, DNA concentration and purity were determined using UV-

Vis spectroscopy. hOAT1 and hOAT3 mutants were confirmed by DNA sequencing 

(Genewiz, South Plainfield, NJ) with the primers in Table 2.3 and Table 2.4, respectively. 

The presence of the desired mutations was confirmed by comparing sequence files and 

chromatograms for the mutants against hOAT1 and hOAT3 wild-type.  
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Table 2.3. Oligonucleotide primers used for hOAT1 DNA sequencing.  
 

Primer Primer Sequence (5’ - 3’) 

hOAT1 Forward 1 CCCATCTACCATCGTGACTG 

hOAT1 Forward 2 AGTCTGCAGAAGGAGCTGAC 

hOAT1 Reverse 1 CATTGAGCAGGATGCAGATG 

hOAT1 Reverse 2 AAGTTGGGTGCGAAGGCTGC 

T7 TAATACGACTCACTATAGGG 

BGHR TAGAAGGCACAGTCGAGG 
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Table 2.4. Oligonucleotide primers used for hOAT3 DNA sequencing.  
 

Primer Primer Sequence (5’ - 3’) 

hOAT3 Forward 1 TGGTCTTCCGCTTCCTGTG 

hOAT3 Forward 2 CTTAAGCTACCTGGGCC 

hOAT3 Reverse 1 CTAGGATCAGTCTCTGGAGG 

hOAT3 Reverse 2 CCTCCGAGGACTTTCCAGAC 

T7 TAATACGACTCACTATAGGG 

BGHR TAGAAGGCACAGTCGAGG 
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2.B.6 Transfection and Cell Culture 

Stable Chinese hamster ovary (CHO) and human embryonic kidney (HEK 293) cell 

lines expressing confirmed mutant transporters were generated for hOAT1 and hOAT3, 

respectively, using cationic lipid-based transfection according to the Lipofectamine 2000 

Reagent protocol [10]. Briefly, 1 μg plasmid DNA and 4 μL Lipofectamine 2000 were 

mixed, diluted with OptiMEM, and applied to cells at 70-80% confluency in 12-well tissue 

culture plates. Prior to seeding for hOAT3 mutant transfections, tissue culture plates were 

coated with 0.1 mg/mL poly-D-lysine. Fresh DMEM/F12 and DMEM/HIGH GLUCOSE 

containing 10% FBS was added to each well for hOAT1 and hOAT3 mutant transfections, 

respectively, prior to adding the plasmid DNA/Lipofectamine 2000/OptiMEM mixture. 

After incubating for 24 to 48 hrs at 37°C with 5% CO2, the transfection medium was 

replaced with fresh medium containing G418 (1mg/mL) for 2 to 3 weeks of antibiotic 

selection. Cells viable in the presence of G418 were moved to culture flasks and 

maintained under antibiotic selective pressure (0.25 mg/mL G418). All CHO and HEK 293 

cells lines were maintained in DMEM/F12 and DMEM/HIGH GLUCOSE, respectively, 

containing 10% FBS, 1% Penicillin-Streptomycin, and 0.25 mg/mL G418 (for transporter 

expressing cell lines) at 37°C with 5% CO2. Cells were subcultured once they reached 

80-90% confluency.  

2.A.7 Accumulation Assay Screen 

Generated mutants were tested for transport activity via cell accumulation assays. 

Briefly, cells were seeded in 24-well tissue culture plates at 250,000 cells/well in the 

absence of antibiotics 48 hrs before the experiment. For all assays involving HEK 293 

cells, tissue culture plates were coated with 0.1 mg/mL poly-D-lysine. Culture medium 
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was removed and cells were equilibrated at room temperature for 10 min with 500 µL 

transport buffer (TB). Cells were incubated in 400 µL TB containing 5 µM PAH (or ES) 

spiked with 0.25 µCi/mL [H3] PAH (or [H3] ES) in the presence or absence of the inhibitor 

probenecid (500 µM). After a 10 min incubation, treatment was removed and cells were 

immediately washed three times with ice-cold TB. Cells were lysed with 200µL 1N NaOH, 

neutralized with 250 µL 1N HCl, and 200 µL 10 mM HEPES. Radioactivity in cell lysates 

was quantified by liquid scintillation counting using 400 µL of sample and 5 mL Ecoscint 

H cocktail. Substrate accumulation was determined from background corrected counts 

and normalized by the protein content as determined via a Bradford protein assay using 

10 µL of sample and 200 µL protein assay dye. Accumulation values were corrected for 

background accumulation (diffusion) in parental CHO and HEK 293 cells via linear 

regression (Y = mX+b) as appropriate. Initial activity screen values were reported as 

average ± SD from triplicate samples. 

2.B.8 Kinetic Assay  

The Michaelis-Menten constant (Km) was determined for PAH and ES on active 

hOAT1 and hOAT3 mutants, respectively, via saturation analysis. Mutant expressing cells 

were seeded in 24-well tissue culture plates at 250,000 cells/well in the absence of 

antibiotics 48 hrs before the experiment. For all assays involving HEK 293 cells, tissue 

culture plates were coated with 0.1 mg/mL poly-D-lysine. Culture medium was removed 

and cells were equilibrated at room temperature for 10 min with 500µL TB. Cells were 

incubated in 400 µL TB containing increasing concentration of PAH (1-200 µM PAH or 

ES) spiked with 0.25 µCi/mL [H3] PAH (or [H3] ES). After a 1 min incubation, treatment 

was removed and cells were immediately washed three times with ice-cold TB. Cells were 
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lysed with 200 µL 1N NaOH, neutralized with 250 µL 1N HCl, and 200 µL 10 mM HEPES. 

Radioactivity in cell lysates was quantified by liquid scintillation counting using 400 µL of 

sample and 5 mL Ecoscint H cocktail. Substrate accumulation was determined from 

background corrected counts and normalized by the protein content as determined via a 

Bradford protein assay using 10 µL of sample and 200 µL protein assay dye. 

Accumulation values were corrected for background accumulation (diffusion) in parental 

CHO and HEK 293 cells via linear regression (Y = mX+b) as appropriate. Transporter 

mediated uptake was plotted and analyzed using nonlinear regression 

(Y = Vmax*X/(Km + X)) in GraphPad Prism (GraphPad Software Inc., San Diego, CA) to 

generate Km estimates. Km estimates from individual experiments were reported as 

average ± SD from triplicate samples. Final Km estimates from at least two independent 

experiments were reported as average ± SE.  

2.B.9 Statistics  

Data are plotted as average ± SD for initial screen and saturation assays. One-

way ANOVA with post-hoc Dunnett’s multiple comparisons were used to determine 

differences compared to a single control for initial screens. Differences were considered 

statistically significant if p < 0.05. Final Km estimates are reported as average ± SE. 

GraphPad Prism version 9.1.0 was used for statistical analysis.  
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2.C RESULTS 

2.C.1 hOAT Mutant DNA Confirmation 

All hOAT1 and hOAT3 mutant constructs were confirmed by DNA sequencing. 

Figure 2.1 shows chromatograms for the hOAT1 Arg15Lys/Ile19Leu double mutants. In 

Figure 2.1A, the hOAT1 Arg15Lys single mutant template sequence shows an AAG 

codon for lysine at position 15 and an ATC codon for isoleucine at position 19. In Figure 

2.1B, the mutated TTG codon for leucine is observed. Figure 2.2 shows chromatograms 

for the hOAT1 Ile19Leu/Tyr230Phe double mutant. In Figure 2.2A, the hOAT1 Ile19Leu 

single mutant template sequence shows a TTG codon for leucine at position 19 and a 

TAC codon for tyrosine at position 230. In Figure 2.2B, the mutated TTT codon for 

phenylalanine is observed. Figure 2.3 shows chromatograms for the hOAT1 

Arg15Lys/Tyr230Phe double mutant. In Figure 2.3A, the hOAT1 Arg15Lys single mutant 

template sequence shows an AAG codon for lysine at position 15 and a TAC codon for 

tyrosine at position 230. In Figure 2.3B, the mutated TTT codon for phenylalanine is 

observed. Figure 2.4 shows chromatograms for the hOAT1 

Arg15Lys/Ile19Leu/Tyr230Phe triple mutant. In Figure 2.4A, the hOAT1 

Arg15Lys/Ile19Leu double mutant template sequence shows an AAG codon for lysine at 

position 15, a TTG for leucine at position 19, and a TAC for tyrosine at position 230. In 

Figure 2.4B, the mutated TTT codon for phenylalanine is observed.  

Figure 2.5 shows chromatograms for the hOAT3 double mutants generated. In 

Figure 2.5A, the hOAT3 wild-type template sequence shows a TTC codon for 

phenylalanine at positions 426 and 430. In Figure 2.5B, the mutated TAC codon for 

tyrosine and TCC codon for serine at positions 426 and 430, respectively, are observed. 
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In Figure 2.5C, the mutated TAC codons for tyrosine are observed at positions 426 and 

430.  
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Figure 2.1. Chromatograms for DNA sequencing confirmation of hOAT1 
Arg15Lys/Ile19Leu double mutant. 
The chromatograms for hOAT1 Arg15Lys single mutant (A) and hOAT1 
Arg15Lys/Ile19Leu double mutant (B) DNA sequence. Arg15Lys was used as a template 
and position 19 was mutated. The highlighted regions show the mutated position as well 
as the amino acid that is translated as a result.  
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Figure 2.2. Chromatograms for DNA sequencing confirmation of hOAT1 
Ile19Leu/Tyr230Phe double mutant. 
The chromatograms for hOAT1 Ile19Leu single mutant (A) and hOAT1 
Ile19Leu/Tyr230Phe double mutant (B) DNA sequence. Ile19Leu was used as a template 
and position 230 was mutated. The highlighted regions show the mutated position as well 
as the amino acid that is translated as a result.  
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Figure 2.3. Chromatograms for DNA sequencing confirmation of hOAT1 
Arg15Lys/Tyr230Phe double mutant. 
The chromatograms for hOAT1 Arg15Lys single mutant (A) and hOAT1 
Arg15Lys/Tyr230Phe double mutant (B) DNA sequence. Arg15Lys was used as a 
template and position 230 was mutated. The highlighted regions show the mutated 
position as well as the amino acid that is translated as a result.  
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Figure 2.4. Chromatograms for DNA sequencing confirmation of hOAT1 Arg15Lys/Ile19Leu/Tyr230Phe triple 
mutant. 
The chromatograms for hOAT1 Arg15Lys/Ile19Leu double mutant (A) and hOAT1 Arg15Lys/Ile19Leu/Tyr230Phe triple 
mutant (B) DNA sequence. Arg15Lys/Ile19Leu was used as a template and position 230 was mutated. The highlighted 
regions show the mutated position as well as the amino acid that is translated as a result.  
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Figure 2.5. Chromatograms for DNA sequencing confirmation of hOAT3 double 
mutants. 
The chromatograms for hOAT3 wild-type (A), hOAT3 Phe426Tyr/Phe430Ser double 
mutant (B), and hOAT3 Phe426Tyr/Phe430Tyr double mutant (C) DNA sequence. 
hOAT3 wild-type was used as a template and positions 426 and 430 were mutated. The 
highlighted regions show the mutated position as well as the amino acid that is translated 
as a result.  
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2.C.2 Accumulation Assay Screen 

Accumulation assays were performed with stably-expressing cell lines to determine 

overall transport activity of cells expressing wild-type and mutant hOAT1 (Figure 2.6 and 

Figure 2.7) and hOAT3 (Figure 2.8). Initially, only one functional screen for hOAT1, which 

will be referred to as “Round 1 functional screen”, was used to determine transport activity 

and inactivity of the hOAT1 mutants (Figure 2.6). In Figure 2.6, hOAT1 wild-type cells 

(113.0 ± 2.6 pmol/mg protein/10 min) showed significant PAH accumulation 

approximately 31 fold higher than CHO parental cells (3.6 ± 2.7 pmol/mg protein/10 min). 

PAH accumulation in the probenecid exposed hOAT1 wild-type cells (7.8 ± 2.7 pmol/mg 

protein/10 min) is comparable to that of the CHO parental cells (3.6 ± 1.5 pmol/mg 

protein/10 min), demonstrating nearly complete inhibition of transport activity. A one-way 

ANOVA with Dunnett’s multiple comparison test between hOAT1 mutants and CHO 

parent were performed to determine whether hOAT1 mutants were active or inactive. 

hOAT1 mutants Arg15Lys/Ile19Leu (18.1 ± 6.6 pmol/mg protein/10 min) and 

Ile19Leu/Tyr230Phe (15.2 ± 3.5 pmol/mg protein/10 min) appeared to retain PAH 

transport activity and were statistically different from CHO parent (p < 0.05), suggesting 

these two are transport active mutants. PAH accumulation in hOAT1 mutants 

Arg15Lys/Tyr230Phe (9.9 ± 2.2 pmol/mg protein/10 min) and 

Arg15Lys/Ile19Leu/Tyr230Phe (7.1 ± 3.5 pmol/mg protein/10 min) were not statistically 

different from CHO parent, indicating they are transport inactive mutants.  

Due to lack of transport activity observed (as described below in Kinetic Assays), a 

second accumulation assay (Figure 2.7), which is referred to as “Round 2 functional 

screen” was done to reassess active and inactive hOAT1 mutants. In Figure 2.7, hOAT1 
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wild-type cells (21.8 ± 1.1 pmol/mg protein/10 min) showed significant PAH accumulation 

approximately seven-fold higher than CHO parental cells (3.2 ± 0.3 pmol/mg protein/10 

min). PAH accumulation in the probenecid exposed hOAT1 wild-type cells (4.0 ± 0.6 

pmol/mg protein/10 min) is comparable to that of the CHO parental cells (3.1 ± 0.9 

pmol/mg protein/10 min), demonstrating nearly complete inhibition of transport activity. 

hOAT1 mutants Arg15Lys/Ile19Leu (4.3 ± 0.4 pmol/mg protein/10 min), 

Ile19Leu/Tyr230Phe (4.3 ± 0.2 pmol/mg protein/10 min), Arg15Lys/Tyr230Phe (4.7 ± 0.2 

pmol/mg protein/10 min), and Arg15Lys/Ile19Leu/Tyr230Phe (5.2 ± 1.1 pmol/mg 

protein/10 min) did not retain significant PAH transport activity as compared to CHO 

parent. A one-way ANOVA with Dunnett’s multiple comparison test between hOAT1 

mutants and CHO parent was performed to determine whether hOAT1 mutants were 

active or inactive. Only one hOAT1 mutant (Arg15Lys/Ile19Leu/Tyr230Phe) was 

statistically different from CHO parent (p < 0.05). Although, 

Arg15Lys/Ile19Leu/Tyr230Phe was statistically different from CHO parent, it was 

ultimately considered inactive because PAH accumulation in 

Arg15Lys/Ile19Leu/Tyr230Phe was comparable in the presence (3.6 ± 0.5 pmol/mg 

protein/10 min) and absence (5.3 ± 1.1 pmol/mg protein/10 min) of probenecid, indicating 

there was no inhibitable transport activity (as described below in Discussion). All hOAT1 

mutants were considered transport inactive according to the Round 2 functional screen. 

In Figure 2.8, hOAT3 wild-type cells (399.6 ± 2.7 pmol/mg protein/10 min) showed 

significant ES accumulation approximately nine-fold higher than HEK 293 parental cells 

(42.6 ± 25.2 pmol/mg protein/10 min). ES accumulation in the probenecid exposed 

hOAT3 wild-type cells (14.1 ± 4.1 pmol/mg protein/10 min) is comparable to that of the 
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HEK 293 parental cells (19.0 ± 7.8 pmol/mg protein/10 min), demonstrating nearly 

complete inhibition of transport activity. hOAT3 mutants Phe426Tyr/Phe430Ser (234.4 ± 

30.0 pmol/mg protein/10 min) and Phe426Tyr/Phe430Tyr (366.0 ± 20.2 pmol/mg 

protein/10 min) retained statistically significant ES transport activity compared to HEK 293 

parent (p < 0.0001) and were considered transport active mutants.  
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Figure 2.6. Round 1 functional screening of hOAT1 mutants. 
Cells were incubated in 5 µM PAH spiked with 0.25 µCi/mL [H3] PAH in the absence 
(gray) or presence (black) of 500 µM probenecid (inhibitor) for 10 min. Y-axis labels 
indicate the stably-expressing hOAT1 cell line tested including hOAT1 wild-type and the 
double and triple hOAT1 mutants. CHO parental cells were used as a measure of 
background activity.  Accumulation values were normalized for protein content. Values 
reported as average ± SD of triplicate samples. Significance indicated by ****p < 0.0001, 
*p < 0.05 and **p < 0.01 compared to CHO parent as determined by one-way ANOVA 
followed by Dunnett’s t-test. Image was generated using GraphPad Prism.  
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Figure 2.7. Round 2 functional screening of hOAT1 mutants. 
Cells were incubated in 5µM PAH spiked with 0.25 µCi/mL [H3] PAH in the absence (gray) 
or presence (black) of 500µM probenecid (inhibitor) for 10 min. Y-axis labels indicate the 
stably-expressing hOAT1 cell line tested including hOAT1 wild-type and the double and 
triple hOAT1 mutants. CHO parental cells were used as a measure of background activity. 
Accumulation values were normalized for protein content. Values reported as average ± 
SD of triplicate samples. Significance indicated by ****p < 0.0001 and *p < 0.05 compared 
to CHO parent as determined by one-way ANOVA followed by Dunnett’s t-test. Image 
was generated using GraphPad Prism.  
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Figure 2.8. Representative functional screening of hOAT3 mutants. 
Cells were incubated in 5 µM ES spiked with 0.25 µCi/mL [H3] ES in the absence (gray) 
or presence (black) of 500 µM probenecid (inhibitor) for 10 min. Y-axis labels indicate the 
stably-expressing hOAT3 cell line tested including hOAT3 wild-type and the double 
hOAT3 mutants. HEK 293 parental cells were used as a measure of background activity.  
Accumulation values were normalized for protein content. Values reported as average ± 
SD of triplicate samples. Significance indicated by ****p < 0.0001 compared to HEK 293 
parent as determined by one-way ANOVA followed by Dunnett’s t-test. The functional 
screen was repeated a second time for N=2. Image was generated using GraphPad 
Prism.  
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2.C.3 Kinetic Assays 

Based on the hOAT1 Round 1 functional screen (Figure 2.6), Arg15Lys/Ile19Leu 

and Ile19Leu/Tyr230Phe appeared to retain transport activity. Therefore, saturation 

analysis was conducted on these mutants to determine PAH affinity changes compared 

to hOAT1 wild-type. However, no transport activity was observed for any of the active 

hOAT1 mutants (data not shown). Subsequently, a time course experiment was 

conducted to determine if the linear range of uptake was extended for each mutant (Figure 

2.9). As shown, substrate uptake in hOAT1 wild-type and hOAT1 mutants is linear 

through one min and 10 min, respectively. Therefore, a second kinetic assay (1-200 µM 

PAH) was conducted with an increased accumulation time of 10 min for each mutant was 

performed. No transport activity was observed for Ile19Leu/Tyr230Phe (data not shown) 

while potential transport activity was observed for Arg15Lys/Ile19Leu (Figure 2.10). It was 

unclear whether Arg15Lys/Ile19Leu was saturated with PAH at increasing concentrations 

of 1-200 µM. An additional assay was conducted with a broader PAH concentration range 

(10-2000 µM), however saturable Arg15Lys/Ile19Leu mediated uptake was not observed 

(Figure 2.11).  
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Figure 2.9. Representative time course of PAH uptake by hOAT1 wild-type and 
hOAT1 active mutants.  
Cells were incubated in 5 µM PAH spiked with 0.25µCi/mL [H3] PAH for 1–15 min. 
Accumulation values were corrected for background and protein content. Values reported 
as average ± SD of triplicate samples. The time course was repeated a second time for 
N=2. Image generated using GraphPad Prism.  
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Figure 2.10. Saturation analysis of CHO hOAT1 Arg15Lys/Ile19Leu 
CHO hOAT1 Arg15Lys/Ile19Leu was incubated in increasing concentrations of PAH (1–
200 μM) spiked with 0.25µCi/mL [H3] PAH for 10 min. Values were corrected for 
background and protein content. Image generated using GraphPad Prism.  
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Figure 2.11. Saturation analysis of CHO hOAT1 Arg15Lys/Ile19Leu.  
CHO hOAT1 Arg15Lys/Ile19Leu was incubated in increasing concentrations of PAH (10–
2000 μM) spiked with 0.25µCi/mL [H3] PAH for 10 min. Values were corrected for 
background and protein content. Image generated using GraphPad Prism.  
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Kinetic analysis was performed on transport active hOAT3 mutants to determine 

changes in Km compared to hOAT3 wild-type. All mutant expressing cell lines showed 

saturable transport activity (Figure 2.12) and final Km estimates are summarized in Table 

2.5. As shown, neither hOAT3 mutant Phe426Tyr/Phe430Ser (14.4 ± 3.0 pmol/mg 

protein/1 min) nor Phe426Tyr/Phe430Tyr (16.7 ± 0.3 pmol/mg protein/1 min) exhibited 

statistically different Km estimates as compared to wild-type hOAT3 (12.5 ± 3.4 pmol/mg 

protein/1 min).
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Figure 2.12. Representative saturation analysis for hOAT3 wild-type and active mutants.  
(A) hOAT3 wild-type, (B) hOAT3 Phe426Tyr/Phe430Ser, and (C) hOAT3 Phe426Tyr/Phe430Tyr cell lines were incubated 
in increasing concentrations of ES (1–200 μM) spiked with 0.25µCi/mL [H3] ES for 1 min. Values were corrected for 
background and protein content. Km estimates were determined using Michaelis-Menten nonlinear regression in GraphPad 
Prism and reported as average ± SD of triplicate samples. A representative curve of the cell lines is shown in each panel. 
For hOAT3 wild-type and Phe426Tyr/Phe430Ser, saturation assays were repeated three times for N=3. For hOAT3 
Phe426Tyr/Phe430Tyr, saturation assays were repeated twice for N=2.  
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Table 2.5. Estimated Km for hOAT3 wild-type and hOAT3 active mutants. 
 

Transporter Km (µM) N 

hOAT3 wild-type 12.5 ± 3.4 3 

hOAT3 F426Y/F430S 14.0 ± 1.8 3 

hOAT3 F426Y/F430Y 16.7 ± 0.3  2 

 
Values reported as average ± SE. 
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2.D DISCUSSION 

There has been increasing interest in OATs as they are known to interact with a 

broad variety of structurally diverse substrates, which makes them key contributors to the 

pharmacokinetics of many therapeutics as well as highly susceptible to drug-drug 

interactions. Therefore, from a clinical standpoint, gaining a better understanding of the 

biochemical interactions between hOATs and their substrates is essential to improve drug 

efficacy, better manage and predict drug-drug interactions, and even potentially influence 

drug design. Currently, there is no solved crystal structure for any of the OATs, and 

because of this lack of structural information, it is difficult to study OAT-substrate binding 

interactions. For this reason, in silico homology models of hOAT1 and hOAT3 were 

previously generated using the solved crystal structure of PiPT as template [8]. PiPT is 

currently the best available template as it belongs to the same transporter superfamily, 

shares relatively high protein sequence similarity to hOAT1 (33%) and hOAT3 (31%), is 

evolutionarily related to the OATs, as it is a eukaryotic protein, and is crystalized in its 

occluded state [8]. In addition, the International Transporter Consortium (ITC) has 

identified PiPT as the preferred template moving forward [19]. Previously, docking studies 

were performed between the hOAT1 and hOAT3 homology models and their prototypical 

substrates to determine amino acid residues that may potentially be involved in substrate 

recognition [8]. Single mutants were generated at the predicted contact amino acids, 

screened for transport activity, and kinetic analysis was pursued with transport active 

mutants. Findings from this previous study indicated that a single mutation is insufficient 

to elicit a statistically significant change in binding affinity of prototypical substrates [8]. 



43 
 

Therefore, in this project, we study the impact of double and triple mutant combinations 

on binding affinity.  

In order to test whether the previously generated hOAT1 and hOAT3 single mutants 

would bring about a significant change in affinity when combined, double and triple 

mutants were generated for hOAT1 and hOAT3 as appropriate (Table 2.1 and Table 2.2). 

For hOAT1, the Round 1 functional screen (Figure 2.6) revealed what appeared to be two 

active mutants (Arg15Lys/Ile19Leu, p < 0.05 and Ile19Leu/Tyr230Phe, p < 0.01). Not only 

was their PAH accumulation statistically significantly different from CHO parent, it was 

also at least two to three times above CHO parental background which is the standard 

criteria for determining whether a system is sufficiently robust to pursue kinetic analysis. 

However, a saturation assay at 1-200 µM PAH and one minute uptake showed no 

saturable transport activity (data not shown). To explore the possibility that the hOAT1 

mutants had an extended linear range of uptake and that an extended accumulation time 

was required for sufficient signal to accumulate, a time course experiment was conducted. 

It was determined that the linear range of uptake was extended through at least 10 min 

for both hOAT1 active mutants (Figure 2.9). Upon conducting saturation experiments for 

10 min, no transport activity was observed for Ile19Leu/Tyr230Phe, but no transport 

activity (Km = 5.1 ± 12 µM) was detected for Arg15Lys/Ile19Leu (Figure 2.10). The hOAT1 

Arg15Lys/Ile19Leu mutation may have resulted in a weaker binding affinity (increased 

Km), so the PAH concentration range for the saturation assay was extended in order to 

ensure accurate Km estimation. Therefore, another saturation assay from 10-2000 µM 

PAH with 10 min uptake was conducted. However, robust, saturable transport activity for 

hOAT1 Arg15Lys/Ile19Leu (Km = 1542.2 ± 1379.2 µM) was not observed under these 
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conditions (Figure 2.11). Given the lack of uptake and extreme error associated with 

attempted kinetic analysis, the mutant appeared transport inactive. Therefore, the single 

functional screen (Figure 2.6) was repeated as statistically different transport activity seen 

in the Round 1 functional screen may have been due to improper washing following 

substrate exposure. In the Round 2 functional screen (Figure 2.7), where washing volume 

and time were increased post-substrate incubation to minimize variation between 

replicates, all hOAT1 mutants were found to be inactive, as PAH accumulation was not 

significantly different from CHO parental background. While 

Arg15Lys/Ile19Leu/Tyr230Phe was statistically significant compared to hOAT1 wild-type, 

the PAH accumulation was not two to three times CHO parental background activity, a 

required parameter in order to have a system that is considered robust enough to pursue 

kinetic analyses. Additionally, a paired t-test comparing PAH in the presence and absence 

of probenecid for Arg19Lys/Ile19Leu/Tyr230Phe indicated that there is no statistical 

difference (p < 0.05) between the two, suggesting once again that the triple mutant is 

transport inactive. The single mutations Arg15Lys, Ile19Leu, and Tyr230Phe were 

considered transport active mutants in previous studies [8]. Double and triple 

combinations of these hOAT1 mutants resulted in transport inactivity, potentially 

indicating that these mutations have disrupted multiple contacts within the binding site 

and that multiple substrate contacts are needed to stably bind and translocate PAH. 

These findings suggest that the hydrogen bond (Arg15), hydrophobic interaction (Ile19), 

and edge-face Pi system (Tyr230) all need to be present in order for the transporter to 

recognize PAH [8]. Since all hOAT1 mutants were considered transport inactive as there 
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was insufficient transport activity to pursue kinetic analysis, no further studies were 

conducted.  

PAH transport inactivity observed for the hOAT1 mutants may be due to the 

following: 1) the mutation disrupted binding interaction(s) critical for substrate recognition 

or 2) the mutation disrupted proper protein folding and/or targeting to the plasma 

membrane. Previously, hOAT1 membrane localization via Western blotting, GFP-fusion 

constructs, and c-Myc tagged constructs was attempted, however all with inconclusive 

results [8]. When examined in hOAT1, hOAT2 and hOAT3 expressing cell lines, no 

transporter specific signal was associated with the commercial hOAT1 or hOAT3 

antibodies via Western blotting [8]. The GFP-fusion constructs exhibited extensive 

cytoplasmic fluorescent signal, preventing conclusive evaluation at the cell surface (i.e., 

membrane targeting) [8]. Immunohistochemistry was conducted on c-Myc tagged 

constructs with a commercial c-Myc antibody, but again no transporter specific signal was 

observed for controls [8]. Membrane targeting of inactive mutant transporter constructs 

remains an unresolved issue. 

Initial functional screening indicated both hOAT3 double mutants, 

Phe426Tyr/Phe430Ser and Phe426Tyr/Phe430Tyr (p < 0.0001), retained ES transport 

activity that is statistically different from HEK 293 parental background (Figure 2.8). Based 

on the functional screen, both hOAT3 mutants recognize and transport ES, but it is 

unknown whether the double mutant combinations altered the affinity for ES. Therefore, 

saturation assays were conducted on these mutants to estimate the kinetic parameter Km 

(Figure 2.12). For the current study, the hOAT3 wild-type Km for ES is 12.5 ± 3.4 µM 

(Table 2.5), which is in agreement with previous literature values [22]. In previous single 
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mutant studies, the estimated Km values for Phe426Tyr (13.4 ± 2.9 µM) and Phe430Tyr 

(13.6 ± 0.2 µM) were not significantly different from wild-type [8]. However, the estimated 

Km value for the combined Phe426Tyr/Phe430Tyr mutant (16.7 ± 0.3 µM) found in this 

study is similar to that of hOAT3 wild-type (Table 2.5). Similarly, the estimated Km value 

for Phe426Tyr/Phe430Ser (14.4 ± 3.0 µM) is not significantly different from hOAT3 wild-

type (Table 2.5). Previously, there was a significant increase in Km with the single mutant 

Phe430Ser (26.8 ± 5.0 µM) [8]. Surprisingly, in combination with Phe426Tyr 

(Phe426Tyr/Phe430Ser) exhibited affinity similar to that of wild-type hOAT3. These 

findings suggest that Phe426 and Phe430 may somehow interact with each other in order 

to bind ES. Perhaps, the hydroxyl groups on the tyrosine and serine at both of these 

amino acid positions is necessary for the hydrophobic interactions that occur and having 

just one amino acid mutated disrupts the molecular interactions that occur.  

In summary, initial accumulation assays demonstrated that double and triple 

combination mutations resulted in loss of transport activity in all hOAT1 mutants. There 

was no loss in transporter function for hOAT3 double combination mutations at positions 

426 and 430. Furthermore, hOAT3 double mutants did not significantly alter the binding 

affinity, indicating a degree of tolerance as well as a potential interaction between the 

amino acids at these positions. Future work will focus on proper protein trafficking to the 

plasma membrane, which would strengthen the interpretation that these contact points 

actually play a role in substrate binding interactions. While all hOAT1 multiple mutants 

resulted in a complete loss of transport activity for PAH, these mutants could retain 

transport function for other substrates as they may have different amino acid contacts. 

Future work will evaluate the impact of these hOAT1 mutants on transport activity of other 
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hOAT1 substrates. Based on this study, it may be possible that hOAT3 positions 426 and 

430 work in conjunction for ES recognition. In the future, kinetic studies with other hOAT3 

substrates can further characterize these amino acid contacts. Once better characterized, 

hOAT1 and hOAT3 modeling studies could serve as tools to asses and optimize new 

chemical entities in terms of drug design. Furthermore, modeling studies could be utilized 

to predict drug-drug interactions, which aids in decisions for continued finance and pursuit 

of an investigational new drug.  
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