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Abstract 

LIVE CELL BIOMASS TRACKING FOR BASIC, TRANSLATIONAL, AND CLINICAL RESEARCH 

By Graeme F. Murray 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at 

Virginia Commonwealth University  

 

Virginia Commonwealth University, 2021 

 

Major Director: Dr. Jason Reed, Associate Professor, Department of Physics 

 

Single cell mass is tightly regulated throughout generations and the cell cycle, making it an important marker 

of cell health. Abnormal changes in cell size can be the first indication of dysfunction in response to 

environmental stimuli such as cytotoxic drugs. Described here is the further development of high-speed live 

cell interferometry (HSLCI) to concurrently measure the changes in single cell mass of thousands of cells 

over time. Critically, the high-throughput nature of HSLCI provides realistic pictures of tumor heterogeneity. 

This throughput enabled HSLCI to correctly predict in vivo carboplatin sensitivity of three triple negative 

breast cancer patient derived xenografts, while also characterizing the spectrum of drug response from 

apoptosis to senescence to drug resistance. HSLCI quantified previous qualitative observations of 

increases in cell size and losses in cell density in senescent cells, and importantly observed proliferative 

recovery in cells demonstrating thee senescent characteristics. Furthermore, the addition of a micropipette 

system has enabled the isolation of rare (~1%) drug resistant cells for further study with molecular biology 

methods. Together, this work highlights HSLCI’s versatility and potential for clinical, translational, and basic 

research.
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1 Chapter 1: Biomass 

This chapter provides an overview of single cell mass, how it is measured, how it is regulated, and the 

important role that cell mass plays in cell biology.   

1.1 Importance of the regulation of cell mass 

In mammalian cells, single cell size (volume) and dry mass (proteins, DNA, and RNA) are tightly regulated 

throughout generations with the average mother and daughter cells being roughly the same size and 

different cell types ranging between 5- 100 µm in diameter [1, 2]. Maintaining this size and regulating growth 

are crucial for human survival. Immune cells must respond to infection but also not proliferate excessively 

to result in auto-immune disease. Dying cells must be replaced without causing carcinogenic 

overstimulation.  The cell replacing the dying must serve the same function and remain the same size. If 

the daughter cell is too small, it might not have enough surface area to absorb nutrients, while if it is too big 

the cytoplasm may become too dilute to function properly [3].  

In order to adaptively regulate size and mass on shorter timescales, cells take cues from the cytoskeleton 

through mechanosensitive ion channels and protein signals through kinase dependent ion channels to 

adapt size to environmental changes[2]. On longer time scales, size and growth are regulated by pathways 

such as mTor, MyC, and Hippo which can adapt protein and lipid synthesis in response to nutrition [4-6]. 

Yet even with this understanding, we can still only hypothesize on molecular mechanisms that couple 

division rate with cell size, the key to maintaining cell size generation after generation [1, 2].  

While our knowledge of the regulation of cell size and growth is limited but expanding, we have extensive 

research on the dysregulation of cell size due to the study of the diseases that manifest from it. Cardiac 

muscle cells enlarge leading to cardiomyopathy, developmental brain disorders occur due to neuron shape 

or size dysregulation, and cancers grow due to mutations in regulatory pathways [1]. Through the lens of 

tightly regulated cell growth, the biomass response of single cells to environmental stimuli such as cytotoxic 

drugs can reveal the heterogeneity of a population. It is this heterogeneity in response to stimuli, specifically 

cancer drugs, that is the bane of oncology clinics everywhere. Initially promising drug responses often result 

in relapses after a small subpopulation of cells that were resistant to the initial treatment regrow the tumor 

[7-10]. Identifying and studying these subpopulations before clinical treatment could not only inform 

research into drug resistance but also when done on a large enough scale inform therapy for individual 

patients. The first step is developing a system that can scan tens of thousands of cells to identify small 

subpopulations with the picogram sensitivity necessary for identifying drug resistant cells after only 10-12 

hours of monitoring.      

1.2 Measuring cell mass 

In the past 70 years, cellular mass has been measured through a variety of methods including first through 

biochemical stains and interference microscopy, and more recently mass spectrometry, microresonators, 

and electron microscopy [11-24]. All methods have only seen limited use in research and clinical settings 

due to issues of throughput, precision, or complexity [24, 25]. Recent advances in microfabrication and 

computing have unlocked the potential of using cell mass as a bio-marker at scale [3, 24, 25].  Methods 

benefitting from these advances fall into two categories, resonance sensors and optical modalities, each 

with their advantages and disadvantages:  

Resonance sensors 

Resonance sensors use an array of cantilevers in fluid communication with one another along with delay 

channels which enable repeated measurement of the mass of suspended cells over time [26]. The 

suspended cell’s or particle’s mass is determined by the change in resonance frequency of the cantilever. 

The resonance frequency is changed by the difference in the particle’s mass compared to the displaced 

fluid [20, 22].  To measure the resonance frequency, the cantilever is vibrated by either small embedded 
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piezoresisters or an external laser doppler vibrometer. This method enables 100 attogram precision in ideal 

conditions, but cells are measured one at time as they pass through the fluid channel in the cantilever, 

limiting measurement to 50-60 cells per hour [27, 28].  Drug resistant cells subpopulations which have been 

shown to lead to resistant cancer recurrence in patients can be present at only 0.2% of the population of 

the original tumor [7].  These methods do not yet have the throughput necessary to identify rare drug 

resistant cells or screen multiple drugs at once but are best suited to measuring a tens of cells with extreme 

precision.  

Optical modalities 

Quantitative optical measurement of living cells began in the 1950s utilizing Michelson interferometry 

(Figure 1), which can be traced back to 1887 when Michelson and Morley invented interferometry, 

disproving the existence of a luminiferous ether, winning America’s first Nobel prize [12, 29]. Since both the 

19th century and the 1950s, there have been leaps forward in both digital imaging and computing power. 

Today interferometry is commonly used in industry to identify nanoscale aberrations or defects in surface 

morphology. The most famous example of this use was when interferometers were used to identify the 

defects in the primary lens of  the Hubble telescope when it was first launched [30]. More recently 

interferometry was used for the first detection of gravity waves using interferometers with enough precision 

to measure the difference of a thousandth of a proton over 4 kilometers [31].   

All these applications are based on the same principles. A light beam is split down two identical paths 

except for the presence or absence (“reference beam”) of an object interest. These beams are then 

superimposed on each other forming an interference pattern. The interference pattern is caused by the 

difference in optical path length (OPL) caused by the presence of the object interest, in our case the living 

cell. Optical path length is equal to the integral of the index of refraction (n) across the path from 0 to z that 

the light travels in the z direction.   

𝑂𝑃𝐿 = ∫ 𝑛(𝑥, 𝑦)𝑑𝑧
𝑧

0

  

The index of refraction describes how fast light travels through a material, where c is the speed of light in 

a vacuum and v is the phase velocity of light in the material.  

𝑛 =
𝑐

𝑣
 

The optical path difference (OPD) can then be found by subtracting the OPL of the reference arm from 

the sample arm over the thickness of the sample, h: 

𝑂𝑃𝐷 = ∫ 𝑛(𝑥, 𝑦) − 𝑛𝑚𝑒𝑑𝑖𝑢𝑚𝑑𝑧
ℎ

0

 

From there integrating over the entire imaging surface (S) in the x, y direction gives the total optical 

volume difference (OVD). 

𝑂𝑉𝐷 = ∬ 𝑂𝑃𝐷 𝑑𝑥𝑑𝑦
𝑆

= ∬ ∫ 𝑛(𝑥, 𝑦) − 𝑛𝑚𝑒𝑑𝑖𝑢𝑚𝑑𝑧𝑑𝑥𝑑𝑦
ℎ

0𝑆

 

Living cells, specifically their proteins, DNA, and RNA, have a difference in index of refraction which is 

relatively constant and different than the media surrounding it [14].  This constant enables the OVD to be 

converted to the amount of material (dry mass) of the cell present.  This OVD is directly proportional to the 

mass of the cell by number α which is typically expressed as 
1

𝛼
= 5.56

𝑝𝑔

𝜇𝑚3 

∬ 𝑂𝑃𝐷 𝑑𝑥𝑑𝑦
𝑆

= 𝛼𝑚 
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𝑚 =
1

𝛼
𝑂𝑉𝐷 

 

 

Figure 1: Michelson Interferometry 

Coherent light is emitted and then split to go down two identical arms. The light travels down the sample 
path (L2) and reference path (L1) which are identical except for the sample. The light is then recombined 
forming an interference pattern that is captured by a CCD camera.  From the interference pattern, the 
difference in optical path length (L1 and L2) can be calculated enabling the calculation of the mass of 
the sample present. Adapted from: [32] 

 

Since 1887, variations on interferometry have developed into a field of its own.  Some methods such as 

Optical Coherence Tomography (OCT) which relies on low-coherence interferometry have become 

commonly used in ophthalmology clinics to provide detailed images from within the retina [33, 34]. Scanning 

of the mirror in the reference arm allows for the development of a reflectivity profile of the sample as only 

light reflected at the same depth of the mirror will interfere to form a pattern. This enables visualizations of 

structures with micrometer resolution [33, 34].  

While there are countless variations of interferometry such as OCT, this work will focus on those that can 

be used to measure cell mass. A Michelson interferometer can be used to measure cell mass over time 

and has been done by our group [18]. But this type of setup necessitates a second reference arm which 

adds bulk to any system. To build a system that could take phase images in parallel to fluorescence images 

and not require a second reference in arm in tight space, our group explored quadriwave lateral shearing 

interferometry (QWLSI). 

In QWLSI, non-laser coherent light is passed through the living cells and then sheared by diffraction grating 

(millimeters in front of the camera) into multiple (four) replica wavefronts. These wavefronts are then 
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recombined to form an interference pattern at the CCD camera sensor.  The phase data is then calculated 

from aberrations in the Fourier harmonics of the intensity peaks caused by local phase gradients as light 

passes through the diffraction grating. An example in one dimension is shown in Figure 2a.  Looking at the 

analyzed wavefront at the mask (P1) and after the mask (P2) shows that the light beams emerging from 

the diffraction grating at P1 are deflected with respect to the phase gradients, the local slopes of the 

wavefront.  The dependence of the fringe pattern on the local phase gradients at the point of diffraction 

enables the phase gradients to be recovered from the fringe deformation by means of Fourier deconvolution 

around the interferogram fringe frequency.  

The phase and field intensity are then calculated by integration. This process is known as unwrapping. A 

similar situation is shown in Figure 2b, this time showcasing the intensity modulation depending on the 

slope of input wavefront. Finally, Figure 2c shows what the diffraction grating looks like in 2-dimensions. 

The grating also known as a modified Hartman Mask (MHM) is made up of a superposition of an amplitude 

grating of period p and a π-shift check board (phase grating of period 2*p). This grating is optimized to 

diffract more than 90% of the light energy into the four first orders carried by the four wave vectors allowing 

calculations to use just the first four orders [35, 36].  

 

Figure 2: Quadriwave Lateral Shearing Interferometry (QWLSI) 

a) A wavefront is diffracted at P1 by a grating. The observed pattern at P1 shows equally light beams 
emerging from the grating (represented by the location of grey boxes), but when observed at P2 the 
fringe pattern has been deformed according the local slope (phase gradient) of the wavefront at the 
diffraction grating. The wavefront can then be recovered from phase gradients. b) Similarly shown to a, 
this time with intensity modulation. c) the setup of the modified Hartman Mask (MHM) and what the 
intensity modulation looks like at the CCD sensor. This figure has been adapted from Primot et al (2000) 
and Bon et al (2009) [35, 36] 
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This setup removes the need the for a reference arm but does require an additional step of integration when 

processing the data and comparison to a reference image taken without the sample (without cells, just 

media) in place.  

2 Chapter 2: Previous work on High Speed Live Cell Interferometry (HSCLI) 

This chapter provides an overview of the HSLCI system prior to the work described here utilizing QWLSI. 

Most work was performed by either Kevin Leslie, Daniel Guest, or Dian Huang. 

2.1 Overview of original HSLCI system 

Imaging setup 

 

The HSLCI platform, Figure 3, consists of a custom-built inverted optical microscope coupled to an off-axis 

quadriwave lateral shearing interferometric camera (SID4BIO, Phasics, Inc.). Cells are imaged in single, 

standard-footprint (128 mm x 85 mm), glass-bottomed, multi-well plates secured in a custom sample stage. 

 

Figure 3: Overview of original HSLCI setup  

Cell samples are placed in a 24 well plate and secured in a custom sample stage (solid yellow). The 
sample stage is connected to 3 linear translational motors that can move it in the x, y, & z directions. 
During operation the stage is translated from 0 to 100 mm in the y direction, and then moved to a new 
spot in the x direction and then scanned from 100 to 0 mm in the y direction. Focus is maintained by both 
the z-motor (coarse) and piezo actuator (fine) which is controlled by the focusing module. The focusing 
module maintains the distance between the objective and glass bottomed plate through adjustment of 
the reflection of an infrared laser by the piezo actuator as read by a quadrant photodiode. A 660 nm LED 
light above the sample stage is strobed (4 fps) to coincide with the exposure time of the phase camera.  
This light is directed to the phase camera through the image collection module. Finally, an 
epifluorescence illumination module shines light to excite any fluorophores present whose emissions are 
then directed toward the color camera. Depending on the fluorophores used filters need to be adjusted 
to allow the correct wavelengths to pass. Adapted from [37] 
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The sample stage is connected to three linear translation motors which move in the x, y, and z directions. 

The sample sits right above the objective, which is either a 10x, 20x, or 40x Nikon Plan fluorite objective.  

As the sample stage is moved 100 mm at 2mm/s (acceleration of 1mm/s2) in the y-direction, a 660 nm LED 

light is strobed at 4 fps to coincide with QWLSI camera’s exposure time.  

The glass bottom of the plate is not perfectly smooth, so focus is maintained coarsely by the linear 

translation motor and more finely by a piezo actuator. The motor and actuator are controlled by the focusing 

module (Figure 4) consisting of infrared laser, quadrant photodiode (QPD) and proportional integral 

derivative (PID) controller. The infrared laser is reflected off the bottom of the plate at the air-glass interface 

due to a difference in the index of refraction. This reflection is then sent toward the quadrant photo diode 

and read by the diode as a voltage. At the beginning of each experiment the operator sets an optimal focus 

position which is stored as a voltage from the diode in the PID controller. As the plate moves, the distance 

between the objective and bottom of the glass plate changes. The reflection of the infrared laser changes 

as does the voltage read by the QPD. The PID sense the change in voltage on QPD and sends a new 

(separate) voltage to either expand or contract the piezo actuator that the objective sits on to bring the 

image back into focus. This operation is happening thousands of times a second to ensure the imaging 

plane remains within the depth of field of the objective.  

The HSLCI platform is installed inside a standard cell culture incubator (Steri-Cult CO2 Incubator, 

ThermoFisher) to maintain conditions for optimal cell growth 

Processing 

 

Figure 4: Ray diagram of focusing module 

Samples are imaged in glass bottom plate with images collected by the off-axis QWLSI. Dynamic focus 
stabilization is maintained as the plate is scanned at 2mm/s over the objective. An infrared laser reflects 
at the air glass interface at the bottom plate.  This reflection is then captured by the quadrant photodiode 
(QPD) and interpreted as a voltage. Distance f is the focus position set at the beginning of the experiment 
from the bottom of the plate to objective. As the plate moves in the y direction a change Δf is created 
due to fluctuations in glass created during manufacturing. This in turn changes the voltage read by the 
quadrant photo diode. This change in voltage is sent to the PID controller (Feedback Loop) which then 
adjusts a voltage sent to a piezo actuator underneath the objective to bring the distance back between 
the objective and plate back to f. Note, epifluorescence module not shown. Adapted from Guest, D. 2017 
[38]. 
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210 interferograms at a time (0 to 100mm in y direction) are collected as Motion JPEG 2000 (“.mj2”) files. 

“mj2” files are simply a sequence of JPEG 2000 files which can then be accessed one by one for processing.  

These 210 interferograms are referred to as “subcolumn” (Figure 5).  Each column of wells (“A”, “B”, “C”, 

or “D”) consists of only two subcolumns.  

Processing is completed by an automated custom MATLAB pipeline. First, images are unwrapped by the 

manufacturer’s software (see Section 1.2. on QWLSI). These phase images have low frequency 

background noise inherent to lateral shearing interferometry. This and other noise is removed through a 

flattening process. First, a polynomial is fit to background curvature in the image line by line and then 

subtracted out. Next, the image is passed through a low pass filter to smooth the high frequency pixel-pixel 

noise inherent in any imaging due to each pixel generating its own independent noise. 

 

Figure 5: Image Collection 

Images are collected by moving the plate above the objective from 0 to 100 mms in the y-direction 
across all six wells in a single column (“A”, “B”, “C” or “D”). Then the plate is moved back from 100 to 0 
mm after a small move in the x-direction. The y-direction is tangent to the page in Figure 3. In the 
original setup 210 images were collected in each move in the y direction and referred to as a 
subcolumn (light purple). This number was upgraded to 420 images (Section 4.1).  The number of 
subcolumns collected per loop in the original system was 12, this was upgraded to 32 subcolums.   

 

Next cells are detected in these flattened images by spatial derivative edge detection kernels which look 

for sharp changes in OPL difference between neighboring pixels. The optical volume of each cell in an 

image is then recorded and can be converted to mass. Cells are then tracked from image to image and a 

linear fit is performed to measure each cell’s hourly growth rate. Quality filters are then applied to only 

consider cells with hourly growth rates with standard error of the residuals <0.2%. 
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On a single Intel Core i7, unwrapping takes approximately 500 ms while processing (flattening and 

segmenting) takes around 500-1000 ms. Due to manufacturers restrictions, unwrapping cannot be done in 

parallel, processing can.  

2.2 HSLCI study in melanoma 

As a proof of concept that biomass tracking in response to drug treatment could identify drug resistant and 

drug sensitive cells, our group screened two melanoma cell lines: the vemurafenib-sensitive M249P and 

vemurafenib-resistant and GFP-labeled M239R4, and attempted to identify single cells as either M249P 

(sensitive) or M249R4 (resistant) based off biomass growth in response to vemurafenib. 

M249P and M249R4 cells were plated separately and in a 1:1 mixture and then monitored with an older 

setup of Live Cell Interferometry (LCI).  Cells were then dosed with 5µM vemurafenib for 24 hours and then 

monitored by LCI for 10 hours.  As phase images were being taken every 10 minutes, every fifth loop (50 

minutes) fluorescent images were taken to be used to identify cells as either the GFP positive M249R4 or 

the GFP-negative M249P (Figure 6a-c). 

Biomass growth rates were then used as an identifier for cells as either drug resistant or drug sensitive and 

compared to cell identification based on fluorescence (Figure 6d,e).  Receiver-Operator Curve (ROC) 

analysis confirmed that biomass growth is a robust predictor of drug sensitivity even when the two cell lines 

are combined in the same well (AUC 0.88).  But as would be expected with any cell line, some M249R4 

cells were dying or showed little to no growth, while more surprisingly some M249P cells showed continued 

growth despite vemurafenib exposure (Figure 6d). This biomass growth in nominally drug sensitive cells 

showcases the heterogeneity of response in this patient derived cell line. These two cell lines are isogenic, 

M249R4 was evolved from M249P through repeated exposure to vemurafenib.  These outlier M249P cells, 

which continued growth in response to vemurafenib, may be the precursor cells that evolved into the 

M249R4 line.    

With the efficacy of single cell biomass growth as an indicator of drug sensitivity established, our group 

decided to use this indicator to find promising drugs to treat the M249R4 line. This is the first attempt to 

establish the feasibility of simulating real-world clinical decision making using single cell biomass growth. 

As will be discussed more in Section 3.1, after a patient develops resistance to first-line therapy, physicians 

have to make decision on what drugs to try next. Typically, these decisions are based off prognostic factors, 

patient health, and genetics [39].  There is interest in personalizing and informing decision-making more 

precisely through the use of quick ex-vivo drug testing against a patient’s tumor (Section 3.1).  

In the case of melanoma, salvage therapy can continue to target BRAF or instead target MEK, another 

kinase. To simulate a physician deciding on which inhibitor for this M249R4 “patient”, our group screened 

four MEK inhibitors (cobimetinib, selumetinib, trametinib, binimetinib) and one BRAF inhibitor (Dabrafenib) 

(Figure 7). The * indicated the max serum concentration (Cmax) as measured in clinic trials [24]. Using this 

CMax as a benchmark, unsurprisingly the BRAF inhibitor dabrafenib showed little effectiveness  
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when compared to the control (DMSO). In contrast MEK inhibitors cobimitinib and trametinib reached their 

maximum effectiveness below their Cmax. While binimetinib and selumitinib showed effectiveness, neither 

reached their maximum effect below Cmax, with selumitinib performing slightly better.  

In this simulated case, the physician could incorporate this new information into their decision making. 

Binimetinib would be an unlikely choice for salvage therapy while one would potentially choose between 

cobimitinib or trametinib based on experience, side effects, and patient preferences.  

This work showcases the power of HSLCI in screening and identifying effective drugs by increased 

throughput to measure multiple agents in parallel.  However, this remains just a simulation and results must 

be correlated to in vivo treatments. 

 

 

 

Figure 6: Identifying drug resistant and senstive cells in a mixed population 

a). Optical thickness as measured by LCI (left) and fluorescent images (FL, right) for M249R4-GFP 
positive cells. b) LCI and FL images of M249P cells. c) LCI and FL images of a 1:1 mixture of M249P 
(red arrows), and M249R4 (unlabeled) cells. d) Biomass vs growth rate of 1:1 mixture. M249P, 
vemurafenib sensitive, cells are in blue while M249R4, vemurafenib resistant cells are in red. Growth 
rates taken after 48 hours of exposure. e) ROC curving of classifying M249P vs M249R4 cells based on 
biomass growth rate versus true positive/negative of fluorescence. Adapted from Huang et al [24] 
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Figure 7: MEK inhibitor screen on vemurafenib resistant melanoma 

M249R4 vemurafenib resistant cells were plated into 24 well plates and given log scale dosages of each 
inhibitor or the vehicle DMSO. After 24 hours of incubation, plates were imaged by HSLCI for 10 hours. 
Hourly growth rates for individual cells, indicated by scatter plots in box plots, were automatically 
calculated by linear fit to biomass versus time data. Data for each drug-dose combination was the sum 
of three independent experiments. Median population growth rates from all three repeats were plotted 
and fit with sigmoid curves. Error bars represent the 95% confidence interval in the median. The dosages 
marked by *correspond to maximum serum concentrations measured in clinical trials at therapeutic 
dosages. Adapted from Huang et al. [24] 
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3 Chapter 3: HSLCI predicting in vivo carboplatin sensitivity  

The next step in establishing potential uses for HSLCI requires a model system that enables correlations 

of HSLCI results to in vivo treatment. For this, our group used triple negative breast cancer (TNBC) patient 

derived xenografts (PDX) models which are discussed further below.  

3.1 Ex vivo methods for predicting patient drug sensitivity  

Approximately one third of triple-negative breast cancer (TNBC) patients experience drug-resistant 

metastatic disease that is often fatal [40]. Current guidelines attempt to personalize cancer therapy based 

on a patient’s general state of health, clinical tumor staging, hormone receptor status, and mutation profile 

[41]. But these guidelines are often inadequate at predicting therapeutic resistance before bulk tumor 

growth restarts and potentially metastasizes [41-43].  

A recent study has demonstrated the necessary capabilities for such a test to successfully detect drug 

resistant clones before treatment [7]. Following 20 TNBC patients, Kim et al. performed single cell DNA and 

RNA sequencing pre-, mid-, and post-treatment. In 10 patients treatment was successful, while in 10 others 

the tumor persisted. After identifying the dominant clones post treatment in patient’s resistant tumors, Kim 

et al performed deep sequencing on the corresponding pre-treatment tumors. In 10/10 cases they were 

able to identify the dominant drug resistant clones in the pre-treatment tumors as rare sub clones with 

prevalence ranging from 0.2-2%.  This necessitates that any test must be able to detect cells in the 1/1000 

range.  

One potential assay for early detection of drug resistant clones is liquid biopsies. Liquid biopsies detect 

circulating biomarkers, exosomes, microRNAs, circulating tumor DNA, and tumor cells in blood.  These 

blood samples can accurately reflect tumor heterogeneity and are easy to acquire. Yet, this approach still 

depends on sequencing and requires an understanding of the clinical significance of each detected 

mutation. This dependency leads to a high specificity (>95%) but poor sensitivity (66%) for predicting 

therapeutic resistance in patients [44]. If a known resistance-related mutation is detected, liquid biopsy 

methodologies reliably predict patient therapeutic sensitivity. However, in more than one third of cases, 

potential resistance-related mutations are not found, or the significance of detected mutations is unknown, 

resulting in the incorrect prediction of susceptibility to therapeutics.  

Recent improvements in tumoroid culture allow for the ex vivo proliferation of primary patient samples. 

These advances make it feasible to screen patient samples for therapeutic sensitivity against a large panel 

of potential drugs. [45, 46]. However, this technology suffers from cost and procedural complexity 

drawbacks that limit its utility in clinical settings.  Furthermore, as implemented, these assays rely on the 

bulk averaging of fluorescent viability signals acquired from an entire sample well (representing a 

heterogeneous cell population), making the detection of minute (1/1000) subpopulations inherently 

impractical.  

Alternatively, analyses of changes in cancer cell biomass have shown promise in rapidly assessing drug 

sensitivity and fulfilling these requirements [21, 47]. In cell line models of breast cancer[48] and 

melanoma[49], loss in cellular biomass has been shown to correlate with drug sensitivity, and was often 

detectable before classical apoptotic signals.  A major limitation of this previous work is that it is not 

obviously extensible to real patient tumors owing to potential artefacts that would be generated by the 

removal of cells from their microenvironment and deleterious effects of excision and purification.  

To test if the analysis of biomass change could function as ex vivo test, patient-derived xenograft (PDX) 

models, which are human TNBC tumors growing in immunodeficient mice, were excised, and enzymatically 

disaggregated into a single cell suspension. Rapid and accurate biomass accumulation-based prediction 

of in vivo sensitivity to the chemotherapeutic drug carboplatin was performed and in vitro biomass results 

were correlated with in vivo treatment results.  Importantly, while not fully recapitulating a human tumor, 

owing to the absence of complete tumor: immune system interactions and other factors, PDX preclinical 

cancer models have been shown to maintain the gene expression heterogeneity and histology seen in 



12 
 

primary tumors [50]. As a result, PDX models are a much more relevant platform on which to evaluate the 

translational potential of biomass accumulation drug response assays than are cell lines and can serve as 

pre-clinical test for patient tumors. 

In these studies, we used our previously described (Section 2.1) optical cell biomass measurement system, 

the High Speed Live Cell Interferometer (HSLCI) [49].  Biomass accumulation kinetic responses were 

determined by continuously measuring single cells or small cell clusters every 10 minutes.  Assay results 

are obtained in approximately 40 hours from sample excision, which is a sufficiently rapid turnaround time 

to inform subsequent therapy selection in patients. Further, quick turnaround limits the amount of time for 

potential genetic or epigenetic changes to occur due to in vitro culture.  

3.2 Effects of carboplatin on PDX models  

 

Figure 8: Effects of carboplatin on three PDX models as measured in vitro by HSLCI 

a) Timeline for key steps in sample preparation and measurement of mass accumulation.  b) 
Representative results from a single replicate assay for each of the three PDX models (n=1296, 544, 
1071 cells respectively).  Individual dots in the underlying scatter plot represent the mass accumulation 
rates of single cells measured over the interval 24 to 36 post-dosing.  Box-plot notches are indicative of 
95% confidence intervals for the medians.  c) EC50 is calculated by sigmoidal fit to the median mass 
accumulation rates for each sample and dose.  N=3 replicates. 
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The in vitro response to carboplatin of three TNBC PDX models (HCI01, HCI09, and UCD52) were 

monitored following the timeline and protocol described in Figure 8a.  Tumors were excised and 

enzymatically digested into single-cell suspensions.  Following this, cells were placed in a 24-well glass 

bottom plate with media, dosed with carboplatin, and then monitored for 36 hours using the HSLCI system.  

As carboplatin is not cell cycle specific, we anticipated detecting responses within 36 hours post dosing.  

Each assay included parallel measurements across a log-scale range of carboplatin doses in the same 

plate.  The 1X dose in this range (40-70 µM) corresponds to the equivalent maximum serum concentration 

measured in patients receiving FDA-approved therapeutic doses of carboplatin (Figure S1a)[51].  Example 

results from one replicate assay with data from 24-36 hours after dosing for each PDX model are shown in 

Figure 8b.  The data from three independent replicates was compiled to calculate an EC50 and plot a dose 

response (Figure 8c). The in vitro assays predicted that the PDX model UCD52 (EC50 69 µM) would be 

substantially more sensitive than either HCI01 (EC50 2.1 x 102 µM) or HCI09 (EC50 3.2 x 102 µM) models to 

a single equivalent dose of carboplatin administered in vivo.    

In vivo studies (Figure 9a) were performed by first seeding and then expanding mammary tumors in all 

three TNBC models. Single dose administration of vehicle or carboplatin at 40 mg/kg was performed on 

days 21, 24 or 35 depending on tumor growth. This dose approximates to around 3.3 +/- 1.4 mg*min/ml in 

humans [51, 52]. Relative tumor size was determined daily in live animals by luminescence measurements, 

up to day 40.  As predicted by the in vitro assay, the UCD52 model was the only PDX model to demonstrate 

a decrease in tumor size (Figure 9b).  Tumors continued growing in both HCI01 and HCI09 models after 

treatment, with HCI09 growing more aggressively, a result concordant with the higher EC50 for HCI09 

measured in the in vitro biomass accumulation assay. 

 

Figure 9: Effects of carboplatin on three PDX models as measured in vivo.   

a) Timeline for key steps in in vivo carboplatin sensitivity assay.  b) Relative tumor size measured by 
luminescence over the course of the experiment for each model.  Tumors were allowed to reach 30 mm2–
60mm2 then treatment with a single 40 mg/kg carboplatin dose at days 35, 21, or 24 respectively 
depending on tumor growth rate. 
 

 

Tumor Seeding Carboplatin Dose                   Tumor Monitoring

?

0-24 days 24-40 days
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3.3 Identification of carboplatin resistant single cells in carboplatin sensitive UCD52 

As shown in Figure 8b, the biomass accumulation rates of cells within the measured populations of all 

three TNBC PDX models exhibited significant heterogeneity.  Under the imaging conditions used, this 

heterogeneity in biomass accumulation rates represents biological variation and not measurement 

noise[47, 49].  Of particular interest were cells which demonstrated robust growth despite a substantial 

population-level dose-dependent loss of biomass.  These cells could be analogous to subpopulations of 

drug resistant cells seen in patient TNBC tumors, which are subsequently selected for undesirable 

expansion or persistence by drug treatment, making them responsible for the recurrence of tumors often 

seen in TNBC.  Therefore, identification and isolation of these ‘non-responder’ cells for further genomic and 

phenotypic characterization may aid in our mechanistic understanding of drug response heterogeneity in 

cancer.  

Figure 10 shows two representative examples of the biomass accumulation responses from individual cells 

from the most sensitive PDX model, UCD52, after treatment with 100 µM carboplatin, which is higher than 

the maximum concentration experienced in humans. These cells showed biomass accumulation rates of -

1.5% and 2.3% per hour between hours 24 – 36, post-treatment.  Interestingly, during hours 24 – 36 post-

treatment, in this representative experiment 47 cells, or 16% of surviving cells at 36 hrs exposed to 100 µM 

carboplatin, gained biomass at a rate of 1% or more per hour.   However, the valid percentage of ‘non-

responders’ in the original population is likely far lower, as the number of living cells measured at later time 

points is significantly reduced, relative to pre-dosing levels, due to treatment.  

 

Figure 10: Examples of resistant and sensitive UCD52 cells to 100 µM carboplatin 

UCD52 cells were exposed for 100 µM carboplatin and then monitored for 36 hours afterwards. Time 
zero refers to time of dosing. The mass vs time plots refer to the cells encircled in red and the color scale 
bars to the left apply to all images. The top UCD52 cell was sensitive to treatment while the bottom 
UCD52 cell grew despite high carboplatin dose indicating heterogeneity of response and potentially 
resistant cells among a sensitive tumor. The white scale bars are all 10 µm. 
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3.4 Development and screening of UCD52-CR 

To simulate the development of drug resistance frequently seen in patients, the in vivo sensitive model, the 

Harrell Lab treated UCD52 repeatedly with carboplatin until it no longer responded (Figure 11). A crucial 

hurdle for HSLCI is distinguishing UCD52 from UCD52-CR as the key to clinical screening is predicting in 

vivo sensitivity. When tested in three separate experiments, (UCD52 run again), UCD52 was distinguished 

from UCD52-CR with great certainly (p<0.0001).  The EC50 of UCD52-CR increased to 104 µM up from 

54.6 µM in UCD52. 

The observation of resistant cells in UCD52 by HSLCI (Figure 8 & Figure 10) before the development of 

resistance in vivo demonstrates another avenue for clinical and translational applications. The first question 

to answer is: are these the cells that lead to the formation of UCD52-CR? If these resistant cells could be 

isolated it could not only teach us more about the development of drug resistance, but if developed enough 

inform potential therapies to prevent the development resistance in patients. Such work first requires the 

construction of isolation system (section 6.1) along with real-time data processing (section 4.2) and 

extensive testing.  

 

Figure 11: Development of UCD52-CR 

UCD52 was treated with carboplatin (arrows) until it no longer responded to carboplatin treatment. This 
new model was designated UCD52-CR (red, carboplatin resistant). All work in the development of 
UCD52-CR was performed by the Harrell Lab. 

 



16 
 

 

Figure 12: Screening UCD52 and UCD52-CR 

Both UCD52-CR and UCD52 were treated with carboplatin and screened concurrently 24-36 hours 
after treatment by HSLCI three times (single replicate shown).  UCD52-CR was significantly more 
resistant (p<0.0001) with an EC50 of 104 µM versus an EC50 of 54.6 µM for UCD52 

 

3.5 Assay details 

During tumor resection, disaggregation, and enzymatic digestion, only large pieces of debris are filtered 

out. Furthermore, beyond the surgical excision step, there is no active selection of breast cancer cells. As 

a result, the cells measured by the HSLCI are a combination of stromal and tumor cells. In previous 

fluorescence associated cell sorting experiments that specified epithelial and stromal cells, between 80-

85% of cells were found to be cancer cells [53]. While a lack of biomarker-based tumor cell selection 

increases the ease of use and decreases the expense of each HSLCI run, the presence of non-tumor cells 

and pieces of cell debris whose biomasses remain static could obscure measurements. 

 These challenges are overcome using two strategies.  First, as PDX tumor cells are non-adherent, they 

remained in 3D spherical shape and relatively dense with many PDX cells having subregions of biomass 

density over 8 pg/um2. This 3D shape causes PDX cells to remain in a focal plane distinct from stromal 

cells, such as fibroblasts which attach to the bottom of the plate. This allows for the HSLCI to focus on the 

imaging plane directly above the bottom of plate on cells that are not attached. Second, fibroblasts have a 

typical area of around 3,600 µm2, whereas unattached cancer cells have an area of approximately 200-800 

µm2 [54]. This size disparity allows for the rapid resolution of cell type. Future analyses could leverage 

distinct phenotypic features of fibroblasts, such as lamellipodia, which decrease circularity and further 

distinguish stromal cells from tumor cells. Finally, debris are easily distinguished by their low biomass, 
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allowing in silico exclusion. Importantly, the same filtering methodology was applied across all three PDX 

models evaluated in these experiments. Definitive growth response signals were detected in all three PDX 

models. 

3.6 Conclusions 

These study results demonstrate HSLCI’s ability to rapidly quantify the drug sensitivity of single, freshly 

explanted tumors cells, within 40 hours of excision. This time scale is feasible in the clinic as it is the same 

as widely used antibiotic susceptibility tests. This builds upon previous work with the HSLCI platform that 

quantified single-cell sensitivity of melanoma cell lines to vemurafenib[49] and overcomes the lack of ex 

vivo cell proliferation seen in most cancers, including these TNBC PDX models[53]. 

To succeed as a clinical assay for personalized therapeutic susceptibility, HSLCI must have faster 

turnaround times and demonstrate in vivo sensitivity correlations better than current in vitro methods, which 

have not seen wide-scale adoption. With a maximum turnaround time of 40 hours from tumor excision to 

useable results and a fully automated analysis pipeline, HSLCI reduces both cost and time compared to 

current gold standard methods. Furthermore, these initial results are promising as they demonstrate the 

correlation of in vitro drug sensitivity profiling with in vivo assessments of therapeutic efficacy in pre-clinical 

PDX breast cancer models.  

Future research utilizing HSLCI will include increased throughput and the characterization of resistant 

subpopulations to assess whether the identified cells by HSLCI are the same cells that proliferate in vivo, 

leading to therapy resistance commonly seen in TNBC. Additionally, HSLCI will also be used to assess 

drug sensitivity in biopsies from TNBC and other human solid tumors.  

3.7 Methods 

PDX Mouse Models: Three triple negative PDX lines, HCI01, HCI09, and UCD52 were obtained from the 

Huntsman Cancer Institute (HCI) and University of Colorado Denver (UCD) by the Harrell Lab. Cells were 

resuspended in Matrigel (Corning) and injected into the fourth mammary fat pads of non-obese diabetic 

severe combined immunodeficient gamma (NSG) mice.  

Preparation of tumor suspension: As described in Turner et al.[53] and DeRose et al.[50], PDX tumors 

were excised from the mammary fat pads of NSG mice once they had reached approximately 10mm x 

10mm in size. Untreated tumors were digested with a solution of DMEM/F12, 5% fetal bovine serum (FBS), 

300 U/ml Collagenase (Sigma), and 100 U/ml hyaluronidase (Sigma). Digested tissue was resuspended in 

NH4Cl, and trypsinized to generate single cell suspensions by the Harrell Lab.  

HSLCI operation:  Cells were plated on 24-well glass bottom plates at 5  x 104 cells per well in M87 

medium[50] and dosed with pharmaceutical grade carboplatin, obtained from VCU Dalton Oncology Clinic, 

ranging from 0 to 1 mM. Plates were incubated for 24 hours and then imaged by the HSLCI for 12 hours.  

To account for the potential noise introduced by drifting cells and cell debris that could artificially impact 

measured growth rates of stable cells, data was quality filtered such that only biomass tracks (mass vs. 

time) exhibiting linear fit standard errors of less than 0.002 normalized mass units per hour and a total mass 

of greater than 300 pg but less than 3000 pg were included. These error bounds ensure our confidence in 

the hourly mass accumulation rates is +/- 0.2% and that only true physiologic cell growth is measured.  The 

minimum mass filter ensures that our data only include individual cells or two-three cell clusters, and not 

cell debris.  

In vivo mouse studies: The Harrell Lab generated mammary tumors by injecting 500,000 cells from 

HCI01, HCI09 or UCD52 single cell suspensions into the abdominal mammary gland in 50% Matrigel. After 

~3 weeks, when tumors were in log-phase growth (30-60mm2), a single intraperitoneal injection of vehicle 

(normal saline) or carboplatin (40 mg/kg) was administered. Tumor sizes were recorded for an additional 3 

weeks. 
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4 Chapter 4: Technological Improvements 

The original HSLCI setup not only provided a step change improvement of throughput for single cell 

biomass measurement (Section 2.1), but also the basis for further throughput increases without complete 

system redesign [24].  The camera only collected images at 4 fps below a theoretical maximum of 32 fps, 

while the stage only moved at 2mm/s below a maximum of 20 mm/s.   

The need for technological improvements was driven by two goals: first screening cells from just a fine 

needle biopsy (FNB), and second isolating resistant cells for further examination.   The number of cells from 

a FNB would be many less than the digestion of a whole tumor. Instead of millions of cells, our group 

expected to have thousands to low tens of thousands. This requires imaging as much of the well as possible 

to capture the growth rates of the highest percentage of cells present as possible.  

When isolating resistant cells, the cells of interest are rare. Their rarity necessitates not only increased 

imaging throughput, but also requires truly real-time processing with the increased imaging throughput.    

These goals drove multiple upgrades which are elaborated below. 

4.1 Image collection upgrades 

The first and most simple upgrade was at 40x magnification which was used in the PDX studies. The 

distance between each image was greater than the length in the y-direction of a single image so that an 

extra image could be taken each time without overlap, taking 420 (8fps) instead of the 210 images (4fps) 

each time the stage is moved 100 mm in the y direction (Figure 5).   

To move the stage faster while maintaining focus the bandwidth of the autofocus feedback loop was 

increased by upgrading the microcontroller to operate at >1 kHz. At the operating depth of field (0.5 μm; 

Nikon 40x air objective), testing demonstrated the PID loop kept the microscope within +/- 0.295 µm of the 

commanded focus position 95% of the time (Figure 13). 

 

Figure 13: Objective remains within depth of field >95% of the time while scanning. 

With new hardware upgrades, it was important to ensure the objective (Nikon 40x Plan Flour.) remained 
within its depth of field while scanning. PID recorded Output, Error, and time elapsed every five 
milliseconds for 20 loops. Data was then filtered to only include time points where the images were taken. 
95% of data points collected remained with the depth field (0.59µm) of focus. 
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The system could now move at 8mm/s instead of 2 mm/s which permits maximization of the camera’s 

framerate (32 fps). A new problem arose as the files (each subcolumn, Figure 5) were now 420 images 

instead of 210 images. Due to the increased size, each “.mj2”  file took around ~40 seconds to save instead 

of ~5 seconds. The details of this are discussed in in Appendix 9.1. This extra saving time removed any 

gains from moving faster. 

To improve this, saving was then changed so that images are saved as a binary file, the simplest and 

quickest format to save. Next instead of saving at the end of each loop, the previously collected subcolumn 

(420 images) is saved from memory while the next subcolumn (420 images) is being collected. With saving 

times now ~12.5 seconds, the same speed as collection, the system operated close to its theoretical 

maximum.  

These improvements vastly expanded the data footprint. One experiment, the data collected in 12 hours, 

is now ~3.2 terabytes. Previously, less than 450 gigabytes were collected per experiment. This order of 

magnitude change required larger hard drives and unlimited back up storage. Additionally, using our 

previous setup for processing data, a single experiment could take a week or more to process.  

This burden of processing and the need to process in real-time for cell isolation experiments drove 

improvements in image processing.  

4.2 Image processing upgrades 

As referenced in Section 2.1, analyzing raw interferograms consists of both an unwrapping step and a 

processing (flattening and segmenting) step. In the original setup these steps are done in sequence by 

column and loop. All images from column A loop n on a plate (6-8 subcolumns per column) are unwrapped 

one by one by the manufacturer’s software on one CPU, then all those images are processed in parallel. 

This made the unwrapping step a major bottleneck.  

Two improvements provided by the camera manufacturer made this step faster. First, they developed a 

new GPU based unwrapping software package which took 85ms per image instead of ~500ms. Second, 

this software could now take a simple array as an input image instead of as a tiff file, saving an additional 

~17ms.   

Next the software was redesigned so that processing of the previous set images could occur during the 

unwrapping of the current images and all this could happen in real-time as images are collected (Figure 

14). The entire process is run by two computers. The “Control” computer which runs the HSLCI instrument—

sending signals to start collecting images and move the stage, and the “Processing” computer which 

unwraps, flattens and segments the data. The “Control” computer runs the machine through 

script_LoopTest where the number of loops and which columns are being imaged is established and then 

calls Script_TrigMoveCellIsolation to collect each column of images.     

When performing real-time processing at 40x, the bottleneck remains the processing. Eight subcolumns 

can be processed in <10 minutes. For comparison, 32 subcolumns can be imaged in 10 minutes. For 

experiments that don’t require real-time processing, all 32 subcolumns can be imaged and then processed 

later.  

For experiments that require real-time processing, a six-well plate is used (two columns: A and B). When 

resistant cells need to be isolated, the column “A”, in which the treated cells of interest are, is processed in 

real-time. As this processing occurs, the control column (“B”) can be imaged and analyzed later. 

Processing the data while images are still being collected requires constant communication between the 

processing and control computers to prevent delays in either processing data or data collection. As images 

are being collected by the “Control” computer, in the background files that are already collected are shuttled 

to the “Processing” computer for processing.  
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Just as the “Control” computer updates the “Processing” computer on its data collection by moving files 

over, the “Processing” computer notifies the “Control” computer when a loop has finished processing. With 

that signal, the “Control” computer starts collecting another loop of images.  This communication ensures 

that the “Control” computer does not get ahead of the “Processing” computer. The details of this 

communication are discussed further in Appendix 9.1 and Figure 14.  

These processing changes enabled a doubling (4->8 sub columns) of the amount of the data that could be 

processed within 10 minutes.   Continued improvements will come from parallelizing the unwrapping 

through multiple GPUs, and more workers to parallelize the processing.  

 

Figure 14: Processing data in real-time 

On the Control computer (CC) Script_LoopTest begins the process by calling 
script_TrigMoveCellIsolation each time a column (A or B) is imaged. Column A is imaged first, and as 
column B is imaged the images from column A of the same loop are sent to a solid state drive in the 
Processing computer (PC) by a worker from the CC through the function moveBinaryFiles. Files are only 
moved when the PC is not accessing files on the SSD. This is done through communication on the CC 
C: drive. Once files have accumulated on the SSD in the PC, script_BatchProcess runs a timer which 
unwraps loop n through the function read_unwrapColumn while function processFiles flattens and 
segments loop n-1 images in the background on 11-15 workers. Once all imaging of loop n+1 has 
finished, the CC waits for PC to tell it that unwrapping of loop n, and processing of loop n-1 has 
completed. Then collection and data processing of next loops begins.  

5 Chapter 5: Application of upgrades: fine needle biopsy and drug testing on PDX 

models 

5.1 Screening from a fine needle biopsy 

Utilizing this higher throughput setup, our group tested the feasibility of acquiring samples through Fine 

Needle Biopsy (FNB). Prior HSLCI PDX experiments employed bulk excision and enzymatic digestions of 

murine tumors, resulting in the acquisition of millions of cells [55]. This approach is not feasible in the clinic 

where procedures need to be minimally invasive for the patients and samples are often divided for multiple 

analyses, including sequencing and histology. Fine needle biopsy (FNB) is a frequently utilized procedure 

which provides minimally invasive access to patient tissue using small needles.  Additionally, if HSLCI can 

be used with FNB then it can be used with a larger core sample which is more commonly taken as cores 

preserve the histology of the tumor. A key question to be resolved in use of FNB with HSLCI is whether or 
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not the process is so perturbative to the cells’ physiologic state that it masks the effects of the drug under 

study.  

To address this question, we developed a simple needle biopsy protocol and compared the results obtained 

with it to those obtained using a bulk tumor extraction.  (Figure 15).  We tested this protocol using PDX 

model HCI09, previously shown to be resistant to carboplatin at the therapeutically relevant dose of 100 

µM in vivo [55].   HCI09 tumors were biopsied with a 22-gauge needle, yielding between 10,000-40,000 

viable cells.   Debris and dead cells were removed using the Easy Sep ® Dead Cell removal kit, which 

selects for inner leaflet phospholipid Annexin V [56]. The remaining viable cells were then directly plated 

into standard-footprint 24-well plates, treated with high dose carboplatin (100 µM), and imaged 24-36 hours 

after drug administration.  For comparison, a standard bulk enzymatic digestion was performed in parallel. 

Four independent fine-needle biopsies were performed, labeled as FNB #1 etc. in Figure 15.  Between 

700-1500 cells were isolated and monitored from each biopsy.  We found that the negative purification 

process was absolutely required due to the relatively large fraction of debris present in the FNB as 

compared to the bulk sample prep, which could be used without this step. 

Compared to the bulk prep, both the treated and untreated FNB samples displayed slightly lower median 

hourly mass accumulation rates, down ~0.3%, from ~0.9% per hour in the bulk prep to ~0.6% per hour in 

the FNB prep.  FNB and bulk prep samples showed a comparable spread of single cell growth rates about 

the median.  The four FNB replicates behaved similarly to one another, with minor differences between 

replicates in line with our previous PDX results [55].  Two of the four carboplatin treated cases showed a 

slight (~0.2%) but statistically meaningful median reduction in mass accumulation rate, again within the 

previously observed range for PDX bulk prep replicates 

The isolation process results in a slight reduction in median population mass accumulation rates relative to 

the bulk prep approach (<0.3% suppression), but this effect is small enough that it does not mask 

 

Figure 15: Fine needle biopsy (FNB) sample preparation compared to bulk prep.   

A) Timeline for key steps in the FNB.  B) HSLCI results for carboplatin resistant PDX HCI09.  Box plot 
notches are indicative of 95% confidence intervals for the medians, and each dot represents the growth 
rate of one cell. 
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carboplatin resistance in this particular PDX, nor does it appear to substantially alter the intra-sample growth 

rate heterogeneity.  The mass accumulation suppression induced by FNB could become more meaningful 

in cases where the untreated samples have naturally low mass accumulation rates and is clearly an issue 

requiring further study.   However, our initial experiments support the viability of FNB as a route to obtaining 

HSLCI-measurable samples from human patients. 

5.2 Screening more potentially HSLCI challenging drugs in a shorter time  

Throughput upgrades also enable the screening of more drugs in faster time period than our previous 

studies with PDX models. To begin to define the limits of HSLCI, two classes of drugs that pose potential 

problems for HSLCI and are relevant in the development of new therapies for TNBC were chosen.  

Proteasome inhibitors inhibit the degradation of proteins and directly interfere in mass regulation potentially 

resulting in an exaggerated effect. CDK 4/6 inhibitors present a challenge by their cell-cycle specific nature. 

An advantage of HSLCI over other ex-vivo methods is the fast turnaround time with screens performed at 

24 hours instead of 72 hours since mass loss is the leading edge of cell death. But with cell cycle specific 

drugs, more time may be required to expose the ex-vivo cells as these cells need to progress through the 

cell cycle. Additionally, eventually most ex vivo cells stop growing all together.  

Together these two drug classes can provide new insights on the use of HSLCI in as predictor of treatment 

success ex vivo.   

Proteasome inhibitors 

 

Figure 16: UCD52 screen of proteosome inhibitors 

Effect of the proteasome inhibitors bortezomib, carfilzomib, and ixazomib in TNBC PDX UCD52, 
measured by HSLCI (top) and standard luciferase assays (bottom).  Individual dots in the overlaying the 
box plot represent the mass accumulation rates of single cells measured over the interval 24 to 40 hours 
post-dosing.  Box-plot notches are indicative of 95% confidence intervals for the medians.  The “^” symbol 
indicates the in vitro dose that corresponds to the maximum tolerated serum concentration in humans 
[57-59]. In HSLCI experiments, the data shown was pooled from two replicates. In luciferase assays, 
error bars represent standard deviation.  
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Proteasome inhibitors (PIs) target the process of protein degradation via the ubiquitin-proteasome system. 

Degradation of proteins through proteasome activity is essential for the maintenance of cell homeostasis.  

Blocking the activity of the proteasome leads to the accumulation of toxic poly-ubiquitinated proteins within 

the cell. This accumulation is more pronounced in cancer cells given their higher rate of proliferation and 

subsequently increased rate of protein synthesis [60].  PIs have become very successful in treating 

hematologic malignancies, and are being investigated for use in solid cancers, including TNBC.   

Results from experiments on TNBC cell lines and xenograft models have shown that a subpopulation of 

cells usually survive after treatment with PIs [61]. This has been attributed to the ability of the resistant cells’ 

proteosomes to utilize alternative enzymatic sites not blocked by the inhibitor molecule.  [61]. These findings 

provide a rationale for screening with a method like HSLCI that can resolve intra-tumor heterogeneity to 

 

Figure 17: HCI09 screen of proteosome inhibtors 

Effect of the proteasome inhibitors bortezomib and carfilzomib in TNBC PDX HCI09, measured by HSLCI 
(top) and standard luciferase assays (bottom).  Individual dots in the overlaying the box plot represent 
the mass accumulation rates of single cells measured over the interval 24 to 40 hours post-dosing.  Box-
plot notches are indicative of 95% confidence intervals for the medians.  The “^” symbol indicates the in 
vitro dose that corresponds to the maximum tolerated serum concentration in humans [57, 58]. In HSLCI 
experiments, the data shown was pooled from two replicates.  In luciferase assays, error bars represent 
standard deviation. 



24 
 

better identify risks of failure due to minority resistant populations.   Furthermore, since proteasome 

inhibitors directly interfere with the protein synthesis functions of the cell, one would expect that mass 

accumulation would serve as a good reporter for response in this therapeutic class. 

We used HSLCI to measure the response of two TNBC PDX tumors to the FDA-approved PI bortezomib, 

a drug currently used to treat multiple myeloma and certain lymphomas, and the same class of drug that is 

currently being tested in TNBC (ClinicalTrials.gov Identifier: NCT02993094).  Additionally, we screened with 

next generation PIs carfilzomib and ixazomib which are designed to be less toxic. Tumors were excised 

from mice and enzymatically digested to single-cell suspensions following previously-described protocols 

[50, 55]. Cells were then treated for 24 hours and then monitored by HSLCI for the following 16 hours (24-

40 hours after treatment).  Each HSLCI assay included parallel measurements of cells exposed to a log-

scale dose range of proteasome inhibitors (Figure 16 & Figure 17). For comparison, we also conducted 

standard luciferase viability assays under the same conditions. These assays differ from HSLCI in that 

rather than measuring cell-by-cell kinetic responses, they quantify average ATP content of the sample at a 

fixed time point (usually 72 hours after dosing).   

Bortezomib, carfilzomib, and ixazomib were all effective in reducing the mass accumulation rates of both 

PDX tumors, even at the lowest dose of 10 nM from ~1% to ~0%.  In previous studies, a median growth 

rate of 0% at a dose equivalent to the highest concentration seen in patients reduced tumor burden in mice 

[55]. But more studies are required to determine the exact level of mass accumulation reduction that will 

correlate in patients.  The data in Figure 16 & Figure 17 is pooled from two replicates. For the individual 

replicates, the median growth rates for each condition were within 0.1% of each other with p values > 0.11 

in both PDX models, demonstrating reproducibility of these HSLCI screens. Despite the drastic decrease 

in median growth, at all doses we observed many individual cells that vigorously accumulated mass during 

the observation period, indicating little or no drug response.  This included doses well above the maximum 

tolerated serum concentration in patients (0.1 µM).  The mass versus time behaviour for one such ‘resistant’ 

cell from a UCD52 PDX is shown in Figure 18.   As discussed previously, it is possible that these ‘resistant’ 

cells are effectively utilizing non-targeted proteasome sites [61].  We note that the actual fraction of drug 

resistant cells is likely smaller than measured, as many drug responsive cells have died and become debris 

after 24 hours.  

In concordance with the HSLCI results, luciferase assays found significant decreases in the median sample 

viability due to bortezomib treatment for both PDXs at concentrations of 0.1 µM and above and higher 

doses for carfilzomib and ixazomib (Figure 16 & Figure 17).  The luciferase assay indicated a less dramatic 

response for both PDXs at low drug concentrations (0.01 µM) than did the mass accumulation assay. Our 

 

Figure 18 An example UCD52 cell resistant to 1 μM bortezomib. 

This cell is from the data set presented in Figure 16. This cell continued accumulating mass a 1.2 ± 0.1% per hour 
over the interval 30–40 h post dosing. The white scale bars are all 10 μm. 
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interpretation of these results is that at the 0.01µM concentration, the PIs effectively inhibits biomass 

synthesis, which is primarily due to protein production. However, PIs may only modestly impact cell viability 

as measured by ATP production at 72 hours.   The clinical significance of this difference could be resolved 

by comparison to in vivo anti-tumor response at the same dose. In vivo studies of PIs performed by the 

Harrell lab resulted in too much toxicity and had to be discontinued possibly indicating HSLCI may better 

show this toxicity. This issue remains unresolved.  

Unlike past experiments, instead of screening just one drug (carboplatin) on a plate, increased throughput 

enabled the screening of up to three at a time. Again, showcasing the usefulness of the new throughput.  

 

Figure 19: HCI09 screen of CDK 4/6 inhibitors 

Effect of the CDK4/6 inhibitors on TNBC PDX HCI09, measured by HSLCI (panels A & B) and standard 
luciferase assays (C & D).  Individual dots overlaying the box plot represent the mass accumulation rates 
of single cells measured over the interval 48 to 64 hours post-dosing.  Box-plot notches are indicative of 
95% confidence intervals for the medians.  The “^” symbol indicates the in vitro dose that corresponds 
to the maximum tolerated serum concentration in humans [62, 63].  In HSLCI experiments, the data 
shown was pooled from two replicates. In panels C & D, error bars represent standard deviation. Two 
sample t-tests were performed between all populations compared to the control populations. 
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As tumor growth can be variable from mouse to mouse and the need for a large number of cells to re-seed 

tumors in the next generation of mice, the number of doses tested in the luciferase assay was limited by 

the amount of material available at the time of testing.   

CDK 4/6 Inhibitors 

 

Figure 20: UCD52 screen of CDK 4/6 inhibtor Abemaciclib, 24 vs 48 hr comparision 

UCD52 TNBC PDX cells were plated and dosed with abemaciclib and then monitored by HSLCI after 24 
and 48 hours (top) and measured by luciferase activity after 72 hours (bottom). Individual dots overlaying 
the box plot represent the mass accumulation rates of single cells measured over the interval 24 to 40 
hours or 48 to 64 hours post-dosing.  Box-plot notches are indicative of 95% confidence intervals for the 
medians.  The “^” symbol indicates the in vitro dose that corresponds to the maximum tolerated serum 
concentration in human [62].  In the luciferase assay, the error bars represent standard deviation. 
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CDK 4/6 inhibitors block cyclin dependent kinases, which serve to progress cells through the cell cycle. 

They are typically upregulated in cancer cells as part of an increase in proliferation.  Several drugs of this 

class are approved for the treatment of hormone receptor-positive, HER2-negative breast cancer.   These 

drugs are not effective in the common basal type TNBCs, however recent work has shown that luminal 

androgen receptor-positive TNBCs are sensitive to CDK 4/6 inhibitors [64], and thus they are becoming a 

more clinically relevant class of drugs for this disease.    

Drugs that target the CDK cell cycle control pathway have not been previously tested using HSLCI.  

Because they specifically target the G1 cell cycle checkpoint, timing of exposure and the window in which 

the mass accumulation measurement occurs may impact the observed response differently than do drugs 

such as bortezomib, which are not cell cycle specific. 

To gain insight into the timing and magnitude of response measurable with HSLCI, we prepared cells from 

the luminal androgen receptor-positive PDX HCI09 as described in the Methods (section 5.3) and exposed 

them to CDK4/6 inhibitors palbociclib or abemaciclib at a range of escalating concentrations for 64 hours.   

We monitored the samples for 16 hours with HSLCI, starting at hour 48 after dosing. (Figure 19).   

The median hourly mass accumulation rate of cells treated with palbociclib was slightly reduced for three 

of the four doses above 0.01 µM (median treated growth rate ~0.8% per hour vs. 0.9% for control; p <0.001).  

Though statistically significant, the small magnitude of response and the lack of a clear relationship to 

escalating doses suggests that palbociclib would not be an effective treatment in vivo for this tumor. Past 

experience with HSLCI dose response curves informs us that a fluctuation of this magnitude (~0.1%) is 

relatively insignificant and within typical random error (such as tumor sampling heterogeneity or pipetting 

error) for such samples [49, 55]. This conclusion is supported by the results of a luciferase assay, which 

showed a similar marginal response at the highest tested dose of 10 µM.  However, we note that 10 µM is 

well above the maximum tolerated serum concentration in humans (0.01 µM). 

In the HSLCI assay, the magnitude of response to abemaciclib was similar to that seen with palbociclib, 

except that the dose response was more clearly defined.   Above 1 µM, the maximum tolerated serum 

concentration in humans, the reduction in median mass accumulation rate versus control became 

statistically significant.  Similarly, the luciferase assay showed a scaled reduction in viability corresponding 

to increasing doses which also became significant at 1 µM, but again the small magnitude of response 

indicates abemaciclib may only be marginally effective in vivo.   Due to smaller than anticipated tumor size, 

the number of doses tested in the luciferase assay was limited by the amount of material available at the 

time.   

Screening UCD52 with abemaciclib provided even more insight to cell cycle specificity and ex vivo data 

collection. Figure 20 shows the same UCD52 cells screened after 24 and 48 hours of drug exposure. The 

48 hours screen agrees with a replicate done independently (not shown). After 48 hours, the ex vivo 

untreated UCD52 cells have lost a significant amount of growth from a median of ~1% to only ~0.25%. This 

is not unsurprising as most cells extracted from a tumor stop growing eventually without 3-D organoid 

culture or special stimulants. Overcoming this limitation, the screen after 24 hours matches the luciferase 

assay data collected after 72 hours. The metabolism of these PDX cells that the luciferase assay measures 

may be greatly reduced 72 hours ex vivo leading to large amounts of noise. While HSLCI matches gold 

standard ex vivo, further comparison to in vivo treatments is necessary.  

5.3 Methods 

HSLCI Screens 

PDX cells were plated on 24-well glass bottom plates at 5-7.5 x 104 cells per well in M87 medium [50]. Cells 

were treated for 24 or 48 hours depending on whether the drug was cell cycle specific and then monitored 

for the following 16 hours by HSLCI using a 40x objective (Nikon, NA 0.75).  
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As in past experiments, data was quality filtered such that only biomass tracks (mass vs. time) exhibiting 

linear fit standard errors of less than 0.002 normalized mass units per hour and a total mass of greater than 

300 pg but less than 3000 pg were included. These error bounds ensure our confidence in the hourly mass 

accumulation rates is +/- 0.2% and that only true physiologic cell growth is measured.  The minimum mass 

filter ensures that our data only include individual cells or two-three cell clusters, and not cell debris. 

Luciferase Assays 

HCI09 and UCD52 cells were plated in M87 medium [50], in triplicate (25,000 cells/100 μl per well) in 96-
well plates and incubated at 37°C for 3 days with each drug by the Harrell Lab. To assess cell viability over 
time, D-luciferin (10 μl/well) was added and plates were imaged using an In Vivo Imaging System (IVIS) on 
day 3. 

Fine Needle Biopsy 

Tumors were excised and then biopsied with a 22-gauge needle. Debris and dead cells were removed with 

Easy Sep ® Dead Cell Removal kits. Cells were then plated and dosed for 24 hours, and then monitored 

by HSLCI for 12 hours. 

6 Chapter 6: Isolation of Cells 

The technologic improvements to enable real-time processing discussed in Chapter 4.2 allow a new type 

of experiment to be performed with HSLCI. As the cell’s biomass growth is identified in real-time, those 

cells which are drug resistant, continued biomass growth despite drug treatment, could be isolated for 

analysis. 

6.1 Addition of micropipette system 

While data could now be processed in real-time, it was necessary to build an addition to the system which 

enabled isolation of cells of interest due to their biomass growth. Various methods exist for single cell 

isolation including microfluidic channels, acoustic trapping, or fluorescent activated cell sorting, but the most 

suitable to integration in to the HSLCI system is semi-automated cell picking with a micropipette [65, 66].  
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Figure 21: Additions to HSLCI system for cell isolation 

To isolate cells by micropipette two micromanipulators (blue, Sutter Instruments MPC-200) were added 
above stage (one in use). With micron precise movement in the x, y, & z directions (yellow) a micropipette 
inserted into the micropipette holder (green) could be raised and lowered into wells to collect cells with 
capillary pressure. The micropipette holder is connected to a syringe through thin tubing for ejection of 
cells into a PCR collection tube at the end of experiments. Objects previously described in Figure 3  are 
written in gray for reference.  

 

With the micropipette in place, software additions were required to enable use. After all the data has been 

processed in real-time (Chapter 4.2), the user determines which cells they would like to isolate based on 

the cell’s or cells’ growth rate. Typically, the top 1-10% of growing cells are of interest. On the Processing 

computer, script_IsolateResistantCells is run to bring up the biomass growth track of an identified cell of 

interest (Figure 22) and the location of cell is sent to the control computer. On the control computer, the 

“isolate cell” button is selected, and the stage is automatically moved to the location of the cell of interest.  

After the user confirms the cell of interest is present, the user selects it on an image, and that cell is moved 

to the center of image. The micropipette automatically lowers below the media level for 0.4 seconds to pick 

up the cells with an image taken before and after collection. After the user confirms capture, the processing 

computer moves on to the next cell of interest. After all cells of interest have been captured, the tip of the 

micropipette is broken into a PCR tube and the media (~2 uL) is retrieved using a syringe.  

 

Figure 22: Use of micropipette system 

Basics steps of collection are shown above.  

 

This system was then trialed on isolating drug resistant cells from a mixed population of drug sensitive 

(99%) and drug resistant (1%) cells with the eventual goal of studying drug tolerance after the initial drug 

exposure.  

6.2 Targeted therapy and the need to study drug tolerance   

Targeted therapies use novel agents that specifically target one or more proteins in a cell and are 
administered based on the genetic make-up of the patients’ cancer. As these drugs are personalized to the 
patients’ specific cancer, they can be very effective and are considerably less toxic to normal cells than are 
chemotherapies. While targeted therapies continue to change the landscape of cancer therapeutics and 
lead to tumor shrinkage in many cases, the major drawback is patients’ cancers eventually grow back in 
the presence of the drug, a phenomenon known as “acquired resistance.”  Unfortunately, this usually occurs 
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within one year, and afterwards there are limited treatment options [67].    In some cases, secondary 
mutations that confer resistance to targeted inhibitors can exist-- usually at hard-to detect frequencies-- 
prior to initiation of treatment, or alternatively, appear de novo [68]; similarly, other non-genetic-based 
resistant mechanisms can also appear de novo, in response to the selection pressure of the targeted 
inhibitor [69].  

In the case of non-pre-existing resistant clones (whether mutation based or otherwise), it remains largely 
unknown how some cancer cells survive initial treatment, allowing them to eventually acquire resistance, 
usually by multiple, heterogeneous mechanisms.  An increasingly-recognized reason for treatment failure 
involves a subpopulation of cells possessing immediate drug tolerance, at least for some period of time [70-
72].  These drug-tolerant cells survive long enough during initial treatment to spontaneously acquire genetic 
or non-genetic changes that confer long-term (stable) resistance.  There remains no precise method to 
study these drug-tolerant subpopulations because transient growth and survival at the single cell level 
during initial treatment is very difficult to measure.  

In this work we overcome this hurdle and quickly identify and isolate rare diffuse large B cell lymphoma 
(DLBCL) cells tolerant of the targeted therapeutic agent, idelalisib, using a novel single cell biomass tracking 
approach.  Idelalisib is an inhibitor of phosphatidylinositol 3-kinase (PI3K) that is sometimes used for 
salvage therapy in treatment refractory DLBCL patients to simulate rare drug tolerant cells.  We created an 
ex vivo, drug-resistant-clone-containing tumor using a 1:100 mixture of two DLBCL cell lines, SU-DHL-10 
and SU-DHL-6 [73], which have differential sensitivity to idelalisib.  We then identified idelalisib-tolerant 
cells in real time by their substantial and distinct biomass growth in the presence of drug using High Speed 
Live Cell Interferometry (HSLCI), a multi-well biomass accumulation assay [18, 24, 55].   Fast growing cells 
were isolated via an automated micropipette system and re-cultured to confirm their idelalisib resistance. 
Both cell lines have IGH-BCL2 (t14:18) fusions. SU-DHL-6 has a breakpoint in the major breakpoint region 
(MBR). SU-DHL-10 has a different breakpoint, in the intermediate cluster region (ICR), of chromosome 18. 
This difference in translocation breakpoints between the two cell lines enables the identification of the two 
lines through PCR [74]. SU-DHL-10 cells were isolated within 40 hours of drug exposure. This quick 
turnaround enables future quantification of epigenetic and metabolic changes of drug tolerant cells in 
treatment naïve tumors. 
 
While DLBCL provides a specific scenario in which characterizing drug-resistant subpopulations before 
relapse becomes clinically relevant, cancer relapse is a problem affecting nearly all cancers and isolating 
and studying drug-resistant subpopulations at an early stage could inform clinical decision making in nearly 
all of them.  

6.3 SU-DHL-10 & SU-DHL-6 differential sensitivity to idelalisib 

To measure the sensitivity of both SU-DHL-6 and -10 to idelalisib, cells were dosed at a range of 
concentrations from 0 µM to 50 µM for 24 hours, followed by monitoring biomass growth by HSLCI for 12 
hours (Figure 23).  We found that SU-DHL-6 had a half maximal effective concentration (EC50) of 46 +/- 13 
nM (n= 3), while SU-DHL-10 had an EC50 of 7,703+/- 452 nM (n = 4).  Therefore, SU-DHL-10 requires 
greater than two orders of magnitude more idelalisib to experience a similar effect on biomass growth as 
SU-DHL-6.  For reference, a patient taking the recommended dose of idelalisib and the dose used in the 
clinical trial, 150 mg, will have an maximum concentration of idelalisib of approximately 2-3 µM in their blood 
[75]. At 2.5 µM, SU-DHL-10 cell growth remains close to untreated cell growth (97.8%+/-4.9% of the 
normalized response), while the median growth of SU-DHL-6 cells is negative even at 1 µM (p<0.001 vs 
untreated cells).  Of note, while SU-DHL-6 untreated cells appear to have an even spread of hourly growth 
rates from -2%-5%, SU-DHL-10 untreated or low dosed cells appear to fall into one of two categories: 
growing at ~4% or dying or dormant at ~0%.  
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Figure 23: SU-DHL-6 & SU-DHL-10 differential sensitivity to idelalisib 

a & b) Representative boxplots of SU-DHL-6 and SU-DHL-10 cells treated with idelalisib. Individual dots 
in the overlaying box plot represent the mass accumulation rates of single cells measured over the 
interval 24–36 h post-dosing. The carrot “^” indicates the maximum dose reached in the blood of human 
patients given the prescribed dose.  c & d) EC50 calculated by sigmoidal fit to the median mass 
accumulation rates for SU-DHL-6 (N=3) and SU-DHL-10 (N=4). 

 

6.4 SU-DHL-10/SU-DHL-6 1:100 idelalisib resistant cell isolation 

Individual cultures of SU-DHL-10 and -6 cells were collected and counted, and then mixed at a 1:100 ratio 
on a six well plate.  Cells were then treated with either 0 or 2.5 µM of idelalisib, which is a dose 
commensurate with the highest concentration seen in the blood of patients. After 24 hours the biomass 
growth of single cells or cell clusters was measured every 8 minutes by HSLCI for the next 12-16 hrs.  At 
the end of the observation period, single fast growing cells or clusters were located and automatically 
collected into a micropipette (Supplementary Figure 1).  This process was repeated until the desired 
number of cells were collected.  These isolated cells were then re-cultured for two to three weeks and then 
re-screened in 2.5 µM idelalisib to confirm that they were indeed resistant to the drug. 

Three drug resistant cell isolations were performed with a representative example shown in Figure 24 (see 
also Supplementary Figure 2). The median hourly growth rates of the untreated 1:100 cell mixtures ranged 
from 1.5% +/- 0.1% to 1.9%+/- 0.1% in the three trials.  In contrast, the median hourly growth rates of the 
cells treated with 2.5 µM idelalisib ranged from -0.3% +/- 0.02% to 0% +/- 0.07%, indicating idelalisib had 
significant growth inhibition effects at 2.5 µM on the 1:100 mixture.  When evaluated with two sample t-test, 
the comparison of corresponding treated and untreated population for each trial yields p<0.0001 for all three 
trials. 
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The fastest growing 1% of cells were isolated from each of the treated population, as indicated by the red 
asterisk “*”. These cells were then re-cultured for approximately two to three weeks. Median growth rates 
of untreated populations ranged from 4.0% +/- 0.1% to 4.4 +/- 0.1% while median growth rates of treated 
populations ranged from 3.8% +/- 0.1% to 4.4 +/- 0.07% in the three trials. When evaluated with two sample 
t-test, the comparison of corresponding treated and untreated population for each trial yields p>0.30 for all 
three trials.  The identity of the re-cultured resistant cells as SU-DHL-10 was further confirmed through PCR 
(Figure 24d, Supplementary Figure 3) [74]. These results indicate the successful isolation of the 1% 
idelalisib tolerant sub-population.  As a further control, cultures of media from micropipettes that were 
exposed in the media but collected no cells resulted in no cell growth.  Additionally, collection of 
approximately 10 random cells in the bottom 95% of growth rates resulted in no cell growth (Figure 24c, 
Supplementary Figure 4). 

Future developments of this technique will include adaptation to primary cells extracted from tissue, which 
typically have a shorter viability window, versus cell lines which grow robustly in culture for extended 
periods.  HSLCI has been used successfully with primary tissue from triple negative breast cancer patient-
derived xenografts, including very limited quantity samples obtained from a fine needle biopsy [55, 76].  
However, it is likely that additional optimization of media conditions would be needed for some types of 
primary samples.   

Traditional dye exclusion cell viability assays conducted via microscopy at a single point in time could 
differentiate live cells from apoptotic or necrotic cells for isolation.  However, this method would not 
discriminate slow growing or quiescent cells from vigorously growing cells, as does biomass tracking.  
Biologically, the cells growing vigorously in the presence of drug are likely to be the most interesting 
candidates for mechanistic studies.  Furthermore, in contrast to the snapshot nature of dye exclusion 
assays, the kinetics of single cell responses captured by biomass tracking may prove to be particularly 
informative in fragile primary cultures which remain viable for only short periods after isolation.  

In addition to biomass tracking, other single cell analytical methodologies can explore the heterogeneity of 
the drug response such as fluorescence lifetime assays (FLT) or Raman spectroscopy[77, 78].  While both 
techniques provide insights into metabolic responses to drugs, they have not been used to isolate low 
abundance drug-tolerant cells from mixed samples. Higher throughput FLT assays are prone to photo 
bleaching, can have trouble resolving multi exponential decays, and data processing is not yet real-time[78]. 
High throughput Raman based methods have only been able to provide a snapshot in time of drug response 
unlike the time dynamic measurements acquired by HSLCI[79].   

The ability to identify and isolate live resistant subpopulations via HSLCI can be a valuable tool for both 
basic research and clinical decision making in solid and liquid tumors alike.  Identification and re-culturing 
of resistant subpopulations in cell lines or primary samples could facilitate the study of mechanisms of drug-
resistance.  In the clinical setting, HSLCI could be used to identify and characterize drug resistant clones, 
before disease relapse becomes evident in the patient.  
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Figure 24: Isolation and re-culture of idelalisib resistant cells 

a) Representative example (n=3) of the isolation of the top 1% of growing cells from 1:100 SU-DHL-
10/SU-DHL-6 mixture.  Cells were treated with 2.5 µM idelalisib for 24 hours and mass accumulation 
rates were measured from 24-40 hours post dosing at which point the top 1% of growing cells were 
isolated by micropipette.  b) Cells isolated in (a) were cultured for 20 days then rescreened at 2.5 µM 
idelalisib. The median growth rate at 2.5 µM idelalisib increased from -0.2% +/- 0.02% per hour in the 
isolation to 4.1% +/- 0.12% per hour after re-culture. c). In an experiment identical to (a), cells in the 
bottom <95th percentiles were isolated and cultured, but no growth occurred. d) PCR at the IGH-BCL2 
loci for the cell line-specific breakpoints was performed on cells from stock SU-DHL-6 and -10 lines, and 
re-cultured cells indicating SU-DHL-10 cells were isolated from the 1:100 mixture.  

 

6.5 Methods 

Cells and Cell Culture 

SU-DHL-6 and -10 cells were obtained from American Type Culture Collection (ATCC) and maintained with 
RMPI 1640 supplemented with 10% FBS also obtained from ATCC. Cells isolated from HSLCI screenings 
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were at first maintained in 200 µL of RMPI 1640 in a 96-well plate until they had grown out to about 100,000 
cells at which point cells were maintained in a 24 well plate, and then finally in T25s.  

HSLCI Screening Experiments 

The HSLCI platform is a custom-built inverted optical microscope coupled to an off axis quadriwave lateral 
shearing interferometric camera (SID4BIO, Phasics, Inc.). Cells are imaged in single, standard-footprint 
(128 × 85 mm), glass-bottomed, 6 or 24 well plates (Cellvis). Acquired images are processed by a 
downstream PC using NVIDIA K2000 GPU and a MATLAB pipeline. All of the platform's hardware and 
software components are available commercially. A 40x objective (Nikon, NA 0.75) was used for all the 
studies. The imaging platform is installed within a standard cell culture incubator.  

Between 50,000-100,000 cells per well were plated in either 24 or 6 well plates. Cells were then treated 
with the proper doses of idelalisib (ApeXBio). After 24 hours for treatment to take effect, cells were 
monitored for 12-16 hours.  

To ensure the quality of hourly growth rates recorded, data was filtered such that only biomass tracks (mass 
vs. time) exhibiting linear fit standard errors less than 0.002 normalized mass units per hour were included. 
This excludes tracks where noise is introduced by cell debris or drifting interrupts the tracks of otherwise 
stable cells. Only cells greater than 300 pg were included, as objects smaller than that never grew and 
appeared to be just debris.  

HSLCI Isolation Experiments 

100,000 cells per well were plated in 6 well plates. Cells were treated with either 0 or 2.5 µM of idelalisib. 
After 24 hours, cells were monitored for 12-16 hours. Data from 2.5 µM condition was processed in real-
time, and the 0 µM data processed after the experiment. Images are then tracked frame to frame and hourly 
growth rates determined. Cells were then isolated with a micropipette (0.5 mm, borosilicate glass, Sutter 
Instruments) that was pulled using P-2000 micropipette puller (Heat=290, Pull=25, Delay=150, Velocity=20, 
Sutter Instruments).  

The locations of cells with growth rates in top ~1% are then sent from a processing computer to a control 
computer. HSLCI machine then automatically goes to each location, the user then indicates whether the 
tracked cell or cell cluster is present and should be isolated. Then the micropipette automatically comes 
down and retrieves the cell or cell cluster using capillary pressure. The micropipette then goes back above 
the surface of the media, and machine moves to the next location. After completion of collection, the liquid 
is deposited into 100 µL of RPMI 1640 media for re-culture. 

PCR  

PCR was performed on the re-cultured samples from Trials #1, 2, and 3 for detection of distinct breakpoints 
in BCL2 due IGH-BCL2 fusions in SU-DHL-6 and SU-DHL-10. Primer sequences and genomic coordinates 
are available in Supp. Table #1.  Genomic DNA was extracted with Qiagen’s MagAttract HMW DNA kit. 
DNA concentration was then measured with ThermoFisher’s Quibit dsDNA HS Assay kit. Next the PCR 
solution composed of primers identified by Bouamar et al [74] for identifying SU-DHL-6 and SU-DHL-10 
cells, millipure water and New England Biotechnologies Long AMP PCR Master Mix, was mixed with the 
samples. The solution was then heated to 95C for 1 minute and cycled 45 times at 95C for 15 seconds, 
57C for 15 seconds and then 60C for 1 minute. 5µL aliquots were run on a 2% agarose gel.  

 

7 Chapter 7: Senescence 

Biomass is a dynamic biomarker that provides more information on the single cell level than just a binary 

designation of drug resistance or sensitivity. In fact, biomass growth captures a spectrum of responses. 

There exist multiple processes through which cells exhibit effects from drugs without succumbing to the 

drugs. One of these processes is known as senescence and involves large scale changes in biomass 

distribution.  
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7.1 Introduction 

Cellular senescence was first characterized by Leonard Hayflick when he demonstrated that fibroblasts 

have a finite capacity for replication in vitro. He considered it as aging at the cellular level [80]. Since the 

1960s, there has been considerable progress in characterizing senescence with new molecular techniques 

that identify it with specific features [81] such as changes in cell size, activation of the DNA damage repair 

response [82], enhanced lysosomal biogenesis as measured by increased Senescence-Associated-β-

galactosidase (SA-β-gal) enzyme activity [83], alterations in gene expression [84-86], epigenetic 

modifications known as Senescence-Associated Heterochromatic Foci (SAHF) [87, 88], and finally 

secretion of a spectrum of chemokines and cytokines collectivity known as Senescence-Associated 

Secretory Phenotype (SASP) [89, 90]. 

The primary characteristic of senescence is still considered to be proliferative arrest [91].  This response of 

proliferative arrest and changes in DNA expression at every level of regulation is not just limited to aging 

but also the response to various DNA damaging anti-tumor drugs[92]. Permanent proliferative arrest would 

be a desirable outcome of drug therapy if secondary to cell killing, but evidence is beginning to mount that 

senescence is not a homogenous response and this proliferative arrest is not uniformly durable [85, 93-98]. 

These cells which enter a “senescence-like state” and then escape emerge with dynamic genotypic and 

phenotypic changes which tend to make them more malignant and likely to lead to cancer recurrence [97, 

99].   

In this chapter, we will address some of these questions by first using HSLCI to distinguish senescent cells 

based on cell size and cell growth. Next, we evaluate cells that escape from senescence and finally test 

BCL-2 inhibitor navitoclax (ABT-263) as a potential therapy for eliminating senescent cells.  

Before, these HSLCI studies are elaborated upon a matter of semantics must be addressed. Frequently 

the debate about senescence has suffered from a circular argument. Even if cells express all the hallmarks 

of senescence (changes in size, increased SA-β-gal expression, SASP, and SAHF) if they are observed to 

recover, these cells must not be senescent because senescence is irreversible by definition.  

Many studies cited above and reviewed here [92] (including our own) have demonstrated either the 

heterogeneity of cells with senescent features and/or the ability of these cells to proliferatively recover. This 

work therefore views senescence on a spectrum of drug response ranging from cell death to quiescence 

to completely unaffected.     

7.2 Changes in cell size 

To investigate the observed change in single cell size at a population level, H460 lung cancer cells were 

exposed to the DNA-damaging drug etoposide for 24 hours. Mass and area measurements of control and 

etoposide-treated single cells were taken on day 4 post-etoposide exposure (
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Figure 25). The etoposide treated H460 cells were comprised of a heterogeneous population that differed 

markedly in mass and area, consistent with the heterogeneous response to drug exposure in previous 

qualitative observations. As can be seen in the population histograms in 
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Figure 25, a subpopulation of cells in the etoposide treated group retained essentially the same mass as 

control cells while the majority of the population increased in mass and area. For example, in the same 

inset image of the etoposide treated, but unsorted population, cell b has a mass and area of 853 pg and 

423 μm2, respectively, which is roughly comparable to that of control cell a (618 pg, 207 μm2) while cell c, 

which exhibits a senescent-like, flat, enlarged morphology, has a mass of 4981 pg and an area of 2646 μm2  
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Figure 25: Mass and area distribution of etoposide-treated and etoposide-treated and enriched high- 
C12FDG and low- C12FDG H460 cells. 

A) Vehicle (n = 272). (B) Etoposide-treated (n = 447) (C) Low- C12FDG (n = 199) and (D) High- C12FDG 
cells (n = 505). The etoposide treated population appears to be composed of at least two populations, 
specifically the high- C12FDG and low- C12FDG cells, indicative of the heterogeneous size response to 
etoposide. Cell which are labeled in the histograms are shown in the insets. 
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When flow cytometry-based enrichment for SA-β-gal fluorogenic substrate C12FDG was coupled to HSLCI, 

we were able to generate a profile of mass and area for the high and low expression populations. 

Representative example cells of the low C12FDG population, cell d (727 pg, 279 μm2), and high C12FDG 

population, cell e (2515 pg, 2250 μm2), reflect the observation that the high- C12FDG cells were increased 

in mass and area while the low C12FDG remained similar in mass and area to control cells. Table 1 provides 

a summary of the median mass and area for control cells, unsorted cells after etoposide treatment, and 

high and low C12FDG populations. On a population level, control cells had a median mass of 917 ± 79 pg 

and a median area of 431 ± 71 μm2 while the unsorted etoposide-treated cells had a median mass and area 

of 1799 ± 149 pg and 1355 ± 117 μm2, respectively (p < 0.001). High- C12FDG cells (i.e. after sorting) had a 

median mass of 2491 ± 171 pg, and median area per cell of 1683 ± 131 μm2, while in the low- C12FDG 

population of cells, median mass was 1386 ± 147 pg and median area was 627 ± 99 μm2 (p < 0.001). These 

observations indicate that etoposide treatment results in a dramatic dysregulation of cellular biomass; the 

majority of cells are large in size, consistent with the cellular flattening that characterizes the senescence-

like phenotype, while the minority of cells that maintain biomass regulation are unlikely to enter a 

senescence-like state after exposure to etoposide.  These observations have been confirmed by other 

groups [3]. 

 

Table 1: HSLCI biomass and area measurements of pre and post sorted H460 cells.  

Post sorting high- C12FDG cells (n = 505) exhibit higher mass and area than the post-sorted low- C12FDG 
cells (n = 199) and the pre-sorted etoposide-treated H460 cells (n = 447). 
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7.3 Changes in cell growth and escape from senescence 

Predictably, cell mass growth was depressed in the etoposide-treated population after about 12 hours of 

treatment. It then began to recover on day 2 as cells began to increase in size without dividing as shown in 

an example in Figure 26. As H460 cells often cluster tightly, analysis had to be performed on clusters 

instead of single cells. 

The broad range of responses is shown in Figure 27.  The normalized mass vs time plots for individual cell 

clusters is shown with each gray dot representing a measurement at one time point. The blue line is the 

median normalized mass at each time point and black lines representing the 95% confidence interval in the 

median at each point. Only biomass growth tracks which fit either linear or exponential model of growth 

with R2>0.85 were included. 

Vehicle treated cells grew exponentially at a rate of 3.58% [3.56-3.59%] ([95%CI]) per hour. Cells treated 

with etoposide for 24 hours showed significantly delayed growth with median growth at 1.29% [1.27-1.31%] 

but with significant variance with exponential growth from 0.6% to 2.6%.  

Four days after treatment, cells lacking the characteristic size increase and with low C12FDG expression 

grew at an exponential hourly growth rate of 3.41% [3.38-3.45%] per hour recovering growth similar to cells 

never treated with etoposide (vehicle), 3.58% [3.56-3.59%] per hour. In contrast, C12FDG- high cells 

continued expanding much more slowly (1.33% [1.30-1.35%] per hour) over the same 48 hour time period 

with some heterogeneity and a few cell clusters recovering modest growth, as previously published [94].   

 

Figure 26: HSLCI observation of 1 µM etoposide treated H460 cells and cell clusters 

(a) Three metrics were collected: the mass and area of single cells and the hourly growth rate of clusters. 
(b) An example of biomass measurements of an individual cluster over time. Upon treatment the cluster 
pauses in growth but then recovers around day 2 with steady growth to day 6. (c) HSLCI biomass images 
of the cluster pictured in b. This cluster is three cells that do not grow in number but in mass and area 
over time demonstrating classic senescent behavior. All scale bars are 45 um. 
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In clusters in which the number of cells was clearly countable, the mean single cell area and mean single 

cell mass were determined. A relatively linear relationship is evident between average cell size and mass 

growth rate of the cluster (Supplementary Figure 5). Clusters composed of small cells grew quickly while 

those with larger cells grew more slowly.  

The heterogeneity of response to etoposide treatment extends not only to those cells which exhibit the 

characteristic signatures of senescent cells (C12FDG-high) versus those that do not (C12FDG-low) but even 

within the senescent population where some cluster grew at a rate of 3-4% which is almost equal to median 

growth of control cells while the majority of cells grew much more slowly. 

Of special interest are cells that recover robustly from drug treatment. Cells that recover from drug treatment 

could be sources of resistance in patients and being able to identify them in a heterogenous population 

through biomass change can enable isolation and further study for research or clinical information.  

Figure 28 details examples of three biomass growth tracks. A control cell (orange) had steady exponential 

growth (4.0% [3.97-4.04%]) by day 5 of observation control cells had begun to overrun the plate. Tx Track 

#1 (1.9% [1.87-1.98%]) (blue) starts with three cells that maintain their morphology dividing multiple times, 

while Tx track #2 (grey) has cells that during the Tx period (0-24 hours) enlarge size at 1.49% [1.44-1.53%]. 

At day five there is a temporary loss in cell mass as division occurs and growth resumes. This loss is similar 

to what others have seen if slightly larger [25]. As etoposide is known to lead to mitotic dysfunction, it is 

perhaps unsurprising that an exaggerated loss of mass might occur [100].   

During the screening period of 24-48 hours after drug treatment both tracks have growth rates above the 

median growth rate of C12FDG-high cells of 1.2% [1.23-1.34] per hour four to six days after treatment. 

Similar trends can be seen in sorted cells four to nine days after treatment. In Figure 29, examples of 

untreated (vehicle), non-senescent recovery (C12FDG-low), senescence with recovery (C12FDG-high #1) 

and senescence without recovery are shown (C12FDG-high #2). The vehicle (black, 1st panel) and C12FDG-

low (orange, 2nd panel) grew exponentially at 4.37% [4.21-4.54] and 4.55% [4.45-4.66%] respectively while 

remaining small and overrunning the wells shortly after six days after treatment.  

C12FDG-high #1 (blue, 3rd panel) has cell divisions on days four and six (images shown) after which cells 

regain their larger sizes, but by day nine many divisions have occurred, and cell size has shrunk. This 

behavior results in exponential growth at 1.99 [1.83-2.15%] over the days four to nine after treatment. In  
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contrast, C12FDG-high #2 (orange, 4th panel) demonstrates more typical senescent growth in size at 1.04% 

[1.00-1.07%] with a decreasing density.  

 

Figure 27: Biomass growth rates of etoposide treated and C12FDG sorted H460 cells from 0 to up to 9 days 
after treatment 

Four representative examples of biomass growth rates of vehicle treated (a,3 replicates, day 0-2), 
etoposide treated (b, Tx, 2 replicates day 0-5), C12FDG-high (d, 2 replicates, day 4-9), and C12FDG-low 
(c, 2 replicates, day 4-6) H460 cells. The n above the graphs refers to the number of cell cluster biomass 
growth tracks in the replicates shown. Only biomass growth tracks which fit either linear or exponential 
model of growth with R2>0.85 were included.  
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Just as previous work has shown heterogeneity in the senescent population with subpopulations of cells 

escaping senescence [94, 96, 97], this is yet another example that the expression of classical senescent 

phenotypes does not lead to one-type-fits-all behavior. This heterogeneity, which can lead to undesirable 

consequences such as the development of cancer stem cell characteristics, indicates a compelling need 

for careful considerations when using therapies which may produce senescent outcomes.  A caveat must 

be made that H460 is an immortal robustly growing cell line, and these results must be taken in context. 

Studies in primary tissues would be an appropriate follow on.  

 

 

Figure 28: HSLCI analysis of low-dose etoposide treatment shows variable patterns of growth arrest 
including a senescence phenotype 

A. A schematic representing the treatment (Rx) and live interferometry tracking periods for B & C which 
were performed at 10x. B. One control and two representative Rx growth tracks cell clusters shown in C. 
Mass is normalized to the median mass for each cell cluster over the tracking time period. Tracking 
began during the Rx period and an arrest of growth is seen between day 0-1. Rx track #1 cells show 
exponential growth by day 5. Rx track #2 shows continued growth with a decrease and subsequent 
recovery after a cell division C. Control cells remain small and grow quickly into a colony by day 3. Rx 
track #1 cells stay morphologically similar to control cells and have recovered exponential growth by day 
5. Rx track #2 two cells become large similar to senescent cells and by day 5 have gone through two 
divisions.  All scale bars are 45 um 
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Figure 29: HSLCI analysis of H460 sorted, senescent cells shows that proliferative recovery originates in β-
gal positive cells.   

A. A schematic representing the treatment, sorting, and live interferometry tracking periods for B & C 
which were performed at 10x. B. The norm. mass versus time plots for the four cell clusters shown in C. 
C.  Control and C12FDG-low cells remained small and formed larger colonies by day 6 after treatment. 
The wells were overrun with cells shortly after day 6. In contrast, C12FDG-high #1 cells in the 3rd panel 
demonstrated proliferative recovery. These cells had the larger senescent phenotype and grew into 
colonies by day 9 with single cell sizes gradually shrinking. Recent cell divisions are shown in the images 
for days 4 and 6. The C12FDG-high #2 cells demonstrated more common growth with continue 
enlargement with a decrease in density. All scale bars are 45 µm. Outlier points were removed from 
C12FDG-high #1. 
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7.4 Treatment with ABT-263 

 

As it has become apparent that senescent cells could be a source of tumor recurrence, interest in targeting 

them with therapy has grown. The selective removal of senescent cells from progeroid animals has been 

shown to ameliorate several aging phenotypes and established pathologies where senescent cells play a 

pathogenic role such as myocardial infarction, obesity and diabetes [101, 102].   In this context, a powerful 

model to eliminate senescent cells is the use of the established BCL‐2/BCL‐XL inhibitor, ABT‐263 

(navitoclax) as a senolytic adjuvant in cancer therapy [103, 104]. BCL-2/BCL-XL are typically redundantly 

upregulated in senescent cells preventing apoptosis from clearing the cells [103]. 

While ABT‐263 is usually applied in combination with chemotherapy, we have tested a novel sequential 

therapeutic approach; specifically, once the tumor cells enter into an established state of senescence, ABT‐

263 is used as a ‘clearing’ agent in an effort to eliminate the residual senescent tumor cells 

 

Figure 30:  Cells that escape ABT-263 effects are smaller 

A) A549 cells that were untreated, treated with only ABT-263, treated with only etoposide, and treated 
with etoposide and then ABT-263 were monitored by HSLCI. Individual dots in the underlying scatter plot 
represent the mass accumulation rates of single cells 0-14 hours post ABT-263 treatment. B) MDAMB 
cells that were similarly untreated, treated with only ABT-263, treated with doxorubicin, and treated with 
doxorubicin and then ABT-263 were monitored by HSLCI C) The median starting mass for A549 cells 
that escaped ABT-263 effects (Top 10%, upper black box in A), those cells most effected by ABT-263 
(Bottom 10%, lower black box in A), control, and separately treated and sorted  C12FDG-high cells were 
determined to further characterize each group. D) The median starting mass for MDA-MB-231 cells that 
escaped ABT-263 effects (Top 10%, upper black box in B), those cells most effected by ABT-263 (Bottom 
10%, lower black box in B), control, and separately treated and sorted  C12FDG-high cells were 
determined to further characterize each group. 
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To investigate which cells specifically responded to ABT‐263, A549 lung cancer and MDA-MB-231 breast 

cancer cell lines were treated with either etoposide (Eto) or doxorubicin (Dox) respectively and then 

exposed to ABT-263.  HSLCI was employed to monitor biomass changes of individual cells during this ABT‐

263 treatment. The addition of ABT‐263 depressed median growth to 0% or below, indicating loss of mass 

and therefore cell death, but only in cells pretreated with Eto or Dox (Figure 30A,B), as shown previously. 

However, a small population within the Eto‐ and Dox‐treated populations maintained a positive growth rate, 

indicating that some cells had escaped the effects of ABT‐263 (Figure 30A,B). Determination of the single 

cell mass at the initiation of ABT exposure (time 0) confirmed our previous finding that SA‐β‐gal‐positive 

cells are significantly larger than either control or SA‐β‐gal‐negative cells [94].  

In three replicates, A549 median control cell mass ranged from 963 ± 90 pg to 1047 ± 56 pg, while the 

median SA‐β‐gal‐positive cell mass ranged from 1356 ± 186 pg to 1818 ± 114pg. MDA‐MB‐231 median 

control cell mass ranged from 730 ± 36 pg to 900 ± 13 pg, while the median SA‐β‐gal‐positive cell mass 

ranged from 1124 ± 102 pg to 1414 ± 139 pg.  

For MDA‐MB‐231 cells treated with Dox + ABT‐263, the top 10% of growing cells (cells that do not die with 

ABT‐263) were consistently smaller than SA‐β‐gal‐positive cells, while the bottom 10% of cells by growth 

rate (dying cells) were the same size (Figure 30D ). These cell size measurements suggest that the cells 

that are unaffected by ABT‐263 are likely not senescent. Similar trends were observed in Eto + ABT‐263‐

treated A549 cells (Figure 30C). Overall, these size analyses emphasize ABT‐263 specificity, as ABT‐263 

affects characteristically large senescent cells while sparing smaller cells which have not undergone 

senescence as a response to the topoisomerase inhibitors. 

7.5 Methods 

Cell staining and sorting 

The C12FDG staining protocol was adopted from Debacq-Chainiaux et al and performed by members of the 

Gewirtz Lab [105]. For the enrichment assay, H460, MDAMB-231, and A549 cells were seeded at 1-2 x 

106/150 mm dish and cultured overnight before being exposed to etoposide or doxorubicin (1 µM) for 24 h.  

On day 3, the cells were exposed to bafilomycin A1 (100 nM) for 1 h, followed by incubation with C12FDG 

in complete medium for 2 h. Cells were then harvested and sorted by flow cytometry (using BD FACSCanto 

II and BD FACSDiva software at the Virginia Commonwealth University Flow Cytometry Core Facility) 

based on parameters detailed in previous work [94]. 

HSLCI H460 senescence characterization experiments  

For the unsorted cell experiment, H460 cells were plated in a 24-well optical glass-bottomed plate (catalog 

no. P24-0-N, Cellvis) at 1 x104 cells/ml with a total of 1 ml of medium (DMEM described above) in each 

well. Plated cells were allowed to adhere overnight. Cells were then exposed to 1 µM of etoposide and put 

inside the HSLCI for imaging for 6 days at 10x or 20x, 37o C, and 5% CO2. Media was replaced after 24 

hours of drug exposure and then every 48 hours after that. When using sorted cells, high- C12FDG, low- 

C12FDG and untreated control cells were plated and allowed to adhere overnight, followed by monitoring in 

the HSLCI for 5 days at 10x or 20x at 37o C, and 5% CO2. Media was replaced every 48 hours. 

HSLCI ABT-263 experiments 

For these experiments, MDA‐MB‐231 or A549 cells were plated in a 24‐well optical glass‐bottomed plate 

(Cellvis, Mountain View, CA, USA) at 1–5 × 104 cells per well and allowed to adhere. Cells were then 

exposed to 8.7 µM of etoposide for 3 days (A549) or 0.75 µM doxorubicin (MDA‐MB‐231) for 2 h. ABT‐263 

was given the same day as removal of etoposide or 4 days after the removal doxorubicin. After ABT‐263 

dosing, the plate was placed inside the HSLCI for imaging for 14 h at 20x, 37 °C, and 5% CO2. When using 

sorted cells, high‐ C12FDG cells were plated and allowed to adhere overnight, followed by monitoring in the 

HSLCI for 14 h at 20x, 37 °C, and 5% CO2. Cell mass is tracked from image to image, either individually 

or in a cluster. 
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8 Conclusions and Future Directions 

8.1 HSLCI as a clinical screening tool 

The work comparing biomass growth rates of three TNBC PDXs treated with carboplatin in vitro to in vivo 

treatment in Chapter 3 was the first step in developing HSLCI as a screening tool. Additionally, the work in 

Chapter 5.1 proving HSLCI’s compatibility with fine needle biopsy procedures demonstrates the feasibility 

of screening material from patients. While additional in vivo-in vitro correlations have been made 

(Supplementary Figure 6), what is still needed is a larger scale screen of more drugs both in vivo and in 

vitro to assess the strength and weakness of HSLCI as a screening tool.  

Current gold standard in vitro drug screening methods are based on metabolic fluorescence assays, but 

their bulk averaging nature leads to low specificity (~70%) for identifying drug sensitivity [106].  When many 

drugs (30%) are considered sensitive in vitro, but fail in vivo, it is hard for a clinician to rely on such an 

assay for decision making. This high false positive rate could be due to the bulk averaging nature of 

metabolic fluorescence-based assays as the measurement of metabolic rate as read by fluorescence for 

the entire well.  

The question that still must be answered is: will the single cell nature of HSLCI measurements lower this 

false positive rate by identifying significant drug resistant subpopulations? The first steps on how to answer 

this question are shown in Figure 31.  

At the relevant doses (indicated by “^”) does a lack of drug tolerant cells in ABT-263 treated WHIM2 cells 

predict better in vivo response than afatinib where single cells continue growing robustly well above the 

max concentration of afatinib seen in patients? 

 

Figure 31: HSLCI as a clinical screening tool  

HSLCI’s advantage as a screening tool is its single cell level detection. Although both ABT-263 and 
afatinib have median growth below zero at corresponding maximum concentrations seen in patient’s 
blood “^”, afatinib has a significant number of cells growing robustly while ABT-263 does not. Will the 
presence of these drug tolerant cells in afatinib lead to the development of drug resistance in vivo and 
can HSLCI predict this by detecting these cells at early stages? 
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The advantage of HSLCI in comparison to metabolic fluorescence assays is evident even with only these 

two drugs. While the median rates of single cells at relevant doses for both drugs is just below 0%, only 

afatinib has cells growing well above 1%, information that would be lost by bulk averaging. But only multiple 

in vitro-in vivo experiments will be able to answer these questions.  

8.2 HSLCI as a translational research tool 

With the micropipette cell isolation system now built and extensively tested, HSLCI can be used to identify 

drug tolerant cells and compare them to the greater population to identify possible druggable targets to 

prevent the development of drug resistance. In a first attempt at this, H1975 lung cancer cells were treated 

with 1µM of the epidermal growth factor receptor (EGFR) inhibitor osimertinib.  

Six different groups of cells were isolated, demonstrating our systems compatibility with attached cells.  

First, drug tolerant cells were isolated. Next, senescent cells identified by their decreased cell density, 

increased cell size, and decreased biomass growth rates were isolated. Then single cells with little growth 

and cells that were actively losing mass were isolated. Finally control cells displaying growth equivalent to 

the drug tolerant cells, and control cells with slightly depressed growth were isolated.  

The messenger RNA in these six samples was then amplified by Eberwine amplification, which is linear 

anti-sense RNA amplification[107, 108]. Single cell PCR tends to favor high-abundance, while linear 

amplification preserves the expression of the lower expressed genes but is 3’ biased [107-109]. The 

samples will be sent off for sequencing. 

 

Figure 32: H1975 osimertinib-tolerant cell isolation 

Six different groups of 10 cells distinguished by growth rates, treatment conditions, and cell density were 
isolated and then their mRNA amplified by linear amplification. Comparisons will be performed once the 
mRNA has been sequenced in hopes to learn more about the osimertinib tolerant state shortly (~40 hrs) 
after treatment. 
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8.3 HSLCI as basic research tool 

Using HSLCI and other mass measurements tools we have begun to understand the process of the 

senescence in a new dynamic way [3, 94]. But in most cases basic understanding of how cells control their 

size under no perturbations and with drug treatments is still sorely lacking [1, 2]. Utilizing HSLCI’s built in 

throughput connected with fluorescent reporting of specific gene expression may be key to unlocking a 

deeper understanding of how single size control works. This space remains open for exploration.  

8.4 Conclusion 

Over the course of this work, HSLCI has matured to maximize throughput reaching the maximum speed of 

the camera (32 frames per second) and the ability to process data for thousands of cells in real time. While 

technological improvements will always continue, the groundwork has been laid for larger scale studies to 

test HSLCI’s ability for clinical screening patient samples, isolating drug resistant cells and understanding 

the basic mechanisms of cell size regulation.  
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9 Appendix 

9.1 Data Collection and Processing Details 

Collection 

Improved bandwidth of the autofocus feedback loop enabled the system to reach speeds of 8 mm/s (~32 

fps), maxing out the camera’s ability. New problems arose due to the file size of a single subcolumn (420 

images, 100mm down or back). A single subcolumn was now approximately 1.6 gigabytes. When this was 

saved as “.mj2” file, it took approximately ~40 seconds to save. Originally saving the files was done after 

the completion of image collection for that subcolumn.  At 32 fps, this meant image collection took ~12.5 

seconds (100mm/8mm/s) with 40 seconds of saving for a total of 52.5 seconds per subcolumn. This wait 

removed any benefits from moving faster.  

To improve this, saving was then changed so that images are saved as a binary file, the simplest and 

quickest format to save.  “.mj2” files include specifications on how to encode and decode the images as 

well as some compression. As more images are added, the encoding and compression takes longer and 

longer. Binary files lack these specifications and compression, so this step is removed, and the files can be 

saved immediately. On the downside, the files increase in size due to the lack of compression, and the user 

must know what is in the binary file and how to interpret. This latter step is easy as every file contains 420 

images of a certain pixel size, while the former step just requires more hard drive space. 

Next instead of saving at the end of each loop, the previously collected subcolumn is saved from memory 

while the next subcolumn is being collected. With saving times now ~12.5 seconds, the same speed as 

collection, the system operated close to its theoretical maximum.  

Processing 

When performing real-time processing at 40x, the bottleneck remains the processing. Eight subcolumns 

can be processed in <10 minutes. For comparison, 32 subcolumns can be imaged in 10 minutes. For 

experiments that don’t require real-time processing, all 32 subcolumns can be imaged and then processed 

later. For experiments that require real-time processing, a six-well plate is used (two columns: A and B). 

When resistant cells need to be isolated, the column “A”, in which the treated cells of interest are, is 

processed in real-time. As this processing occurs, the control column (“B”) can be imaged and analyzed 

later. 

But before the column B is imaged, a MATLAB worker (one CPU core) on the Control computer starts 

sending the files from column A to an internal SSD hard drive on the Processing computer.  Columns A and 

B are originally saved on two separate external hard drives.   

These two things are necessary to prevent the Control computer from trying to save images from column 

B on the same hard drive that the MATLAB worker in the background of the Control computer is trying to 

move Column A to the Processing computer. If accessed at the same time, either the image collection or 

the moving of files over would come to a halt. This same dance is happening on the Processing Computers 

SSD. Files are only moved to Processing computer SSD when Control computer knows the Processing 

computer is not accessing that SSD hard drive.  

As these files are big and saving them takes around ~12.5 seconds, if there is constantly a queue forming 

at the different hard drives, both collection and processing would slow significantly. After the collection of 

column “B” is complete of loop n, and files from column “A” loop n have been moved to the Processing 

computer, the Control computer waits for the Processing computer to finish processing column A loop n-1 

before collection of loop n+1 column A begins. 

From the perspective of the Processing computer, files appear on its internal SSD hard drive and begins 

processing them. If loop n is being unwrapped, unwrapped images from loop n-1 are sent to 12 workers to 
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be processed. Once the unwrapping of loop n is complete, MATLAB waits for processing to be completed 

(from 0-5s) and then the unwrapping of loop n+1 and processing of loop n begins.  

These processing changes enabled a doubling (4->8 sub columns) of the amount of the data that could be 

processed within 10 minutes.   Continued improvements will come from parallelizing the unwrapping 

through multiple GPUs, and more workers to parallelize the processing.   

 

9.2 Supplementary Figures 

 

Supplementary Figure 1: Cell collection 

An isolated cell cluster (tracked together) from the 
experiment in Figure 24 grew at 4.8% +/- 0.06% 
per hour with before and after collection images 
shown demonstrating specificity of micropipette 
collection 
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Supplementary Figure 2: Idelalisib resistant isolation replicates 

Replicates of resistant cell isolation. a) The 1:100 SU-DHL-10/-6 mixture was exposed to 2.5 µM idelalisib 
for 24 hours with mass accumulation measured from 24-40 hours post dosing. Of 814 cells exposed to 
2.5 µM idelalisib with biomass growth measured, 9 were isolated. Isolated cells were grown for 20 days 
and then rescreened at 2.5 µM of idelalisib with median growth rate of treated cells increased to 3.8% 
+/- 0.1% per hour from 0% +/- 0.07% per hour in the isolation screen. An example of an isolated cell 
grew at 4.5% +/- 0.06% per hour.  b) In an identical experiment, of 1,310 cells exposed to 2.5 µM idelalisib 
with biomass growth measured, 9 were isolated. Isolated cells were grown for 20 days and then 
rescreened at 2.5 µM of idelalisib with median growth rate of treated cells increasing to 4.4% +/- 0.07% 
per hour from was -0.3% +/- 0.02% per hour in the isolation screen. An isolated cell which grew at 3.1% 
+/- 0.05% per hour.  
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Supplementary Figure 3: PCR identification of drug resistant cells 

 PCR of re-cultured cells from all replicates (Trials #1-3) with 
controls. Trials #1-3 demonstrated amplification at the SU-DHL-
10 breakpoint but not the SU-DHL-6 breakpoint further 
confirming that SU-DHL-10 cells were isolated. 

 

 

Supplementary Figure 4: Replicates of drug senstive cell isolations 

a) median growth rate of untreated cells is 2.5% +/- 0.1% per hour while the median 
growth of treated cells was -0.1% +/-0.05%. 12 cells were isolated. b) median growth 
rate of untreated cells was 1.1% +/- 0.2% per hour while the median growth of 
treated cells was 0% +/-0.05%. 10 cells were isolated. Isolated cells were re-cultured 
for 20 days and no cell replication was observed. 
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Supplementary Figure 5: Cell clusters with smaller single cells grow faster after etoposide treatment 

H460 cells were sorted for C12FDG and monitored by HSLCI from day 4 to day 5 after treatment. With 
significant noise, there appears to be an inverse relationship between cell size and growth rate.  
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Supplementary Figure 6:  TOK-001 HCI09 in vitro-in vivo correlation 

TOK-001, also known as Galeterone, is a steroidal antiandrogen with unique three pronged mechanism 
of action: it is an androgen receptor antagonist, androgen receptor down regulated and a CYP17A1 
inhibitor, preventing androgen biosynthesis [110-112]. With limited treatment options in triple negative 
breast cancer, TOK-001 was screened on the androgen receptor positive HCI-09 PDX. a).  HSLCI screen 
of TOK-001 24-36 hrs after treatment. Maximum concentration seen in mice is highlighted by the carrot 
“^”, indicating TOK-001 is unlikely to be effective in vivo [113]. b) in vivo treatment data from HCI-09 mice 
treated with TOK-001 5 days a week from day 25 onward showed no significant difference in tumor 
growth. c & d) A second HSLCI screen performed 36-42 hrs after treatment, and 72-78 hrs after 
treatment. Monitoring was only six hours in attempt to see if looking more frequently would boost cell 
counts as PDX cells remain relatively unattached and can float away. HCI-09 cells still demonstrated 
resistance at 1µM well above the CMax of 100 nM. While the 10 µM dose did appear to be more effective 
as time went on, a lack of cells due to the only 6 hours of monitoring hardly makes this a firm conclusion. 
Together these data show the correct prediction of in vivo resistance by HSLCI.   
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