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Cyber-physical systems (CPSs) are composed of heterogeneous, and networked hard-

ware and software components tightly integrated with physical elements [72]. Large-scale

CPSs are composed of complex components, subject to uncertainties [89], as though their

design and development is a challenging task. Achieving reliability and real-time adap-

tation to changing environments are some of the challenges involved in large-scale CPSs

development [51]. Addressing these challenges requires deep insights into control theory

and machine learning. This research presents a learning-based control approach for CPSs

management, considering their requirements, specifications, and constraints.

Model-based control approaches, such as model predictive control (MPC), are proven

to be efficient in the management of CPSs [26]. MPC is a control technique that uses a

prediction model to estimate future dynamics of the system and generate an optimal control

sequence over a prediction horizon. The main benefit of MPC in CPSs management comes

from its ability to take the predictions of system’s environmental conditions and disturbances



into account [26]. In this dissertation, centralized and distributed MPC strategies are

designed for the management of CPSs. They are implemented for the thermal management

of a CPS case study, smart building. The control goals are optimizing system efficiency

(lower thermal power consumption in the building), and improving users’ convenience

(maintaining desired indoor thermal conditions in the building).

Model-based control strategies are advantageous in the management of CPSs due to

their ability to provide system robustness and stability. The performance of a model-based

controller strongly depends on the accuracy of the model as a representation of the system

dynamics [26]. Accurate modeling of large-scale CPSs is difficult (due to the existence

of unmodeled dynamics and uncertainties in the modeling process); therefore, model-

based control approach is not practical for these systems [6]. By incorporating machine

learning with model-based control strategies, we can address CPS modeling challenges

while preserving the advantages of model-based control methods.

In this dissertation, a learning-based modeling strategy incorporated with a model-based

control approach is proposed to manage energy usage and maintain thermal, visual, and

olfactory performance in buildings. Neural networks (NNs) are used to learn the building’s

performance criteria, occupant-related parameters, environmental conditions, and operation

costs. Control inputs are generated through the model-based predictive controller and based

on the learned parameters, to achieve the desired performance. In contrast to the existing

building control systems presented in the literature, the proposed management system

integrates current and future information of occupants (convenience, comfort, activities),

building energy trends, and environment conditions (environmental temperature, humidity,



and light) into the control design. This data is synthesized and evaluated in each instance of

decision-making process for managing building subsystems. Thus, the controller can learn

complex dynamics and adapt to the changing environment, to achieve optimal performance

while satisfying problem constraints. Furthermore, while many prior studies in the filed

are focused on optimizing a single aspect of buildings (such as thermal management), and

little attention is given to the simultaneous management of all building objectives, our

proposed management system is developed considering all buildings’ physical models,

environmental conditions, comfort specifications, and occupants’ preferences, and can be

applied to various building management applications. The proposed control strategy is

implemented to manage indoor conditions and energy consumption in a building, simulated

in EnergyPlus software. In addition, for comparison purposes, we designed and simulated a

baseline controller for the building under the same conditions.

Keywords: Cyber-physical Systems, Smart Building Management System, Model Predictive
Control, Machine Learning, Learning-based Control, Model-based Control
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CHAPTER I

INTRODUCTION

1.1 Motivations

Cyber-physical systems (CPSs) are composed of heterogeneous, and networked hard-

ware and software components tightly integrated with physical elements. Instances of CPS

are present in many diverse technological areas, including energy, transportation, telecom-

munications, environmental monitoring, biomedical and biological systems [72]. In a CPS,

real-world data from various physical parameters, is collected, analyzed, and monitored

with the aim of optimizing resources, and enhancing users’ safety and convenience [6].

Smart building management system is an example of CPSs, in which optimal decisions

are made based on the information from physical world, to optimize the residents’ comfort

and operational costs [35]. Residential and commercial buildings account for 40% of the

total energy use in the United States, 36% of the US total greenhouse gas emissions, and

12% of US fresh water consumption. A proper building management system can help

reduce up to 30% of energy costs [97]. Moreover, according to [46], residents of the United

States spend 90% of their lives indoors. Therefore, it is clear that an efficient building

management system can save a great deal of time, money, and energy.

In a building management system, various components, such as heating, ventilation,

and air conditioning (HVAC) and lighting systems, are being controlled. The control ap-
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proaches for buildings management are classified into two main categories: classical control

approaches and modern control techniques [35]. Classical controllers, such as on/off and

proportional integral derivative (PID) controllers, have been extensively used for building

management purposes; however, they are only sufficient for linear switching components,

and they reveal poor performance for modulating, nonlinear, or noisy processes [75]. Fur-

thermore, since system uncertainties and constraints are not considered in the classical

controllers, deviations of the operating conditions from the tuning conditions can deteriorate

control performance significantly, to the point that the system becomes unstable [13].

Modern control techniques are categorized into soft control, hard control, and hybrid

control methods [94]. Hard control techniques include gain scheduling control, robust

control, model predictive control (MPC), optimal control, and nonlinear control. Fuzzy

logic control and artificial neural network (ANN)-based control methods are known as

soft control approaches [38]. Hybrid control methods are developed by integrating soft

and hard control methods. Adaptive-fuzzy control and fuzzy-PID control are examples

of hybrid control techniques [92, 93]. In this essence, hard control methods are counted

as model-based control techniques, and soft and hybrid control strategies are defined as

learning-based techniques. MPC is one of the most commonly used control approaches for

the management of CPSs. The main benefit of MPC in CPS management comes from its

ability to take the predictions about the system’s environmental conditions and disturbances

into account [26]. Cyber-physical systems are usually subject to various changes in their

structures [6]; for instance, a smart building is subject to disturbances such as occupancy

profiles, occupants’ behaviors, and weather conditions.

2



Depending on the requirements of the control problem, we can configure MPC in a

centralized or distributed structure, each of which has its advantages and disadvantages. Us-

ing centralized MPC for real-world CPSs is impractical because these systems are innately

large-scale and interconnected structures, which demand large centralized computational

effort as well as complex communications [36]. Also, there are centralized modeling issues

associated with global data collection and control actuation by a centralized agent [26].

Hence, applying distributed control methodologies for the management of real-world CPSs

is considered a more suitable approach. The idea behind the distributed control approach

is to split the centralized system into subsystems, that are controlled by local controllers

[81]. Depending on the degree of interaction between the subsystems, agents may need

to communicate to coordinate with each other. Using a distributed controller reduces the

system’s computational demand and eliminates the need for the system’s global information.

In addition, distributed control approaches are usually more accurate and tolerant to model

inaccuracies and system failures [81].

From the modeling viewpoint, MPC can be designed based on a physical model of the

system (known as model-based MPC), or based on a black-box model of the system (known

as learning-based MPC) [71]. The majority of existing control approaches for building

management systems are model-based [70, 11, 77, 21, 96, 74, 39, 44]. A model-based

controller is designed based on a mathematical representation of the system dynamics. For

instance, in a model-based building management system, it is assumed that each component

is defined based on an accurate physical model [26]. A model-based control approach can be

generalized and analyzed easily; however, it may lack sufficient accuracy for systems with

3



complex nonlinear dynamics [18]. To address this issue, learning-based control approaches

are introduced for buildings management.

A learning-based controller is designed directly using online or off-line information

of the system. An accurate mathematical representation of the system dynamics is not

required for designing learning-based control approaches. Learning-based control methods

can address various challenges in the control design [18]. Learning-based control strategies

are utilized when (1) system’s un-modeled dynamics and uncertainties can not be modeled

mathematically, (2) modeling the system is time-consuming, complicated, and expensive,

(3) an adequate control performance is infeasible through the model-based control design

[18].

1.2 An Overview of Cyber-physical Systems

A cyber-physical system (CPS) consists of a collection of computing devices interacting

with one another, and with the physical world via sensors and actuators in a feedback loop

[6]. To meet their operational requirements, CPSs are expected to adapt to the changing envi-

ronmental conditions and uncertainties. From the self-adaptation perspective, there are three

categories of CPSs; human-operated CPSs, semi-autonomous CPSs, and autonomous CPSs

[6]. Human-operated CPS learns from the environment and makes decisions in real-time

with the help of human operator; a human operator remains an integral part of the system’s

decision-making process and interacts with the system when required. Semi-autonomous

CPS operates independently in pre-defined conditions; for instance, semi-autonomous

drones operate on their own, once the user has defined the flight path. Autonomous CPS is

4



capable of making decisions and operating independently, without any human intervention.

At this point, most of the CPSs development is of the first two categories; human-operated

and semi-autonomous CPSs [6].

Cyber-physical systems offer various opportunities for transforming traditional indus-

tries into smart industries, with a high level of efficiency, cost-effectiveness, and safety;

smart healthcare systems, smart buildings, smart grids, and smart traffic systems are ex-

amples of CPSs. There are some challenges in CPS design and development; achieving

robustness, stability, and reliability are some of these challenges [51]. Deep insights

into control theory, machine learning, CPS specifications, and design requirements are

required to address CPS challenges. In this dissertation, we have studied and addressed CPS

challenges in smart building case studies, and we proposed control approaches for CPSs

management. The following two subsections present a brief overview of CPS under study

(smart buildings), and our proposed control approach for CPS management.

1.2.1 An overview of building management systems

In conventional buildings, subsystems, such as heating/cooling, ventilation, and lighting

systems, are set through simple controllers which use the current measured and desired

conditions to turn devices on or off. Furthermore, components in a conventional building

operate independently without coordination, which means that even if each device satisfies

comfort and energy savings in each zone individually, it might not meet the overall perfor-

mance requirement in the entire building. Besides, environmental factors, such as outdoor

climatic conditions, occupancy status, and occupants’ behavior, are not considered in the

5



conventional building management systems. As a result, conventional building systems can

not respond to the dynamically changing environmental factors in a space and can cause

discomfort and energy inefficiency [24]. To address these issues, smart control strategies are

used in the building management systems. For instance, using predictive control strategies

in the thermal systems can reduce overheating and overcooling in a space by considering the

future thermal conditions. Moreover, the occupant-related variables, such as the occupants’

perception of comfort, can be included in smart building management systems.

1.2.2 An overview of the proposed control approach for CPSs management

Fig. 1.1 shows an overview of our proposed control structure for CPSs management.

The structure consists of three main blocks; system module, environment module, and

control module. The system module defines CPS dynamics as a function of environmental

parameters, system states, and control inputs. The model can be tuned through model-based

forecasting strategies or machine learning. In the environment module, the environment

prediction model is trained off-line and online with the system’s historical data. Moreover,

the environment inputs are continuously sampled and fed into the prediction filter. The

predicted environmental parameters obtained in this module are used for updating the

environment parameters in the system module and control module.

6



Figure 1.1: An overview of the proposed control structure for CPS management

In the control module, an objective function containing CPS performance specifications

(in terms of safety, cost-effectiveness, and convenience) and its operating constraints is

formulated. Optimal control inputs are generated through a learning-based or model-based

optimizer. In this study, we developed predictive controllers, which utilize future states and

environmental disturbances in making control decisions. Current and future control inputs

7



are injected to the cyber-physical system to minimize operating costs and meet the desired

performance metrics.

1.3 Literature Review and Related Works

The following subsections present overviews of the related works.

1.3.1 MPC for CPS management

Literature [44, 11, 117, 96] applied centralized MPC to optimize energy consumption

and thermal properties of a smart building. Authors in [11] proposed a simulation-based

MPC to control an HVAC system in a multi-zone building; their results outperformed the

results from a standard control strategy in terms of reducing operating costs and maintaining

thermal comfort. In [117], an MPC approach is proposed to regulate the climatic condition

and energy consumption in a building, considering occupancy status and outdoor tempera-

ture. Authors in [96] proposed a scenario-based MPC to control the CO2 level and indoor

temperature of a building. The main benefit of their work was reducing the complication of

solving optimization problems in a regular implicit MPC.

Literature [40, 90, 79, 15] applied distributed MPC to the temperature regulation prob-

lem in a smart building. Authors in [90] proposed distributed MPC to control temperature

in a three-zone building. However, the presented strategy does not include the open door

situation, and only one information per time step is being exchanged. Authors in [79]

applied distributed MPC to a simplified two-masses model of a building system; they did

not consider the pressure and temperature dynamics in the control loop. Authors in [15]
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studied the distributed control of building temperature, without considering the outdoor

temperature.

1.3.2 Model-based Control for CPS management

Various control systems have been proposed for smart building management over the

last few decades. Most of these efforts are focused on using model-based control approaches

to achieve the goal of balancing two key factors in smart buildings; occupants’ comfort,

and energy-saving [112, 78, 100, 54, 20, 99, 22, 48]. The study in [112] introduced a

multi-objective optimization approach for managing users’ comfort and energy usage in a

smart building. A mathematical model of the building energy system is first developed, then

energy demand and consumption are predicted based on this model, and these predictions

are utilized in a model-based cost function. Authors in [78] employed an off-line tuning

methodology to find the optimum parameters (sampling period, prediction horizon, and

control horizon) for the model predictive controller (MPC). The modified MPC approach

is then used for the thermal control of a building. In [100], the authors utilized a modular

model predictive control (MMPC) strategy to manage cooling and heating systems in an

energy-efficient building. A thermal model of the building is considered through a nonlinear

prediction model, and the heat flows are adjusted by the model-based controller such that

energy efficiency and users’ thermal comfort are optimized. The study in [54] proposed

a management structure for controlling energy and thermal comfort in a building; authors

used a meta-modeling approach to model the building attributes, then they optimized the

building performance based on the developed meta-models. Authors in [20] proposed a
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model-based predictive control approach for managing heating and cooling systems, energy

storage devices, and photovoltaics (PV) cells in a smart building. In this work, a thermal

model is used to predict the building zones’ temperature six hours ahead; the forecasts are

then utilized in the optimization problem. Various constraints, such as occupants’ comfort,

PV generation, and storage capacity, are considered in the control problem. Another model-

based management system for smart building control is presented in [99]. The authors

introduced an MPC-based approach that learns the building’s energy system dynamics, and

regulates its multiple energy sources. Their proposed approach provides fast response times

to rapidly fluctuating energy production and consumption systems. The authors in [22]

developed a model-based controller to optimally coordinate the heating system demand,

renewable energy generation, and battery power. In this study, a simple lumped model

is developed, which describes the building’s future thermal dynamics. A model-based

controller then takes into account these thermal dynamics, renewable energy status, battery

charge, outdoor temperature, electricity price, energy demand, and occupants’ satisfaction in

order to regulate the zonal temperatures. The study in [48] investigated energy consumption

estimation and management of different kinds of appliances in a smart building. In this

research, the appliances’ models are described by modular mathematical models in a

simulator, and they are integrated into a model-based control structure.

From a conceptual viewpoint, model-based building management systems explained in

literature [112, 78, 100, 54, 20, 99, 22, 48] are similar. In all of these studies, a mathematical

representation of building dynamics is used to model the process. The process modeling is

then utilized to minimize the deviation of the controlled variables from the desired values
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[26]. In spite of the fact that a model-based control approach is a clear structure which

can be generalized and analyzed easily, creating a mathematical model for the process

with sufficient accuracy is a critical issue [18]. Furthermore, since buildings are usually

large-scale systems with complex components, and subject to uncertainties, modeling such

systems for a model-based control design is challenging [68].

1.3.3 Learning-based Control for CPS management

Data-driven or learning-based control approaches can be employed to address the issues

in a model-based control design. Unlike model-based building management systems that

require mathematical representation of the building components, learning-based building

management systems do not utilize models to describe building characteristics, and there-

fore, their performance is not affected by modeling inaccuracies. Artificial intelligence

and machine learning techniques are known to be efficient in the management and con-

trol of buildings due to their capability in capturing buildings’ nonlinear and complex

dynamics [66]. Machine learning algorithms are particularly exploited in building man-

agement systems to learn dynamic information of occupants’ activities (e.g., presence),

occupants’ comfort, environmental conditions (e.g., weather, light), energy generation (e.g.,

load profile), and energy demand. Learning and integrating this information into the man-

agement system enables optimized building operations under environmental uncertainties.

Researchers have proposed various learning-based control strategies for smart buildings

management [43, 80, 88, 85, 84, 83, 50, 120, 41].

In [80], a neural network-based management system is proposed to control the per-
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formance of boilers in a smart building. The proposed control strategy turns on/off the

boilers at the optimum time based on the data from the surrounding environment (e.g.,

thermal comfort information, weather data, energy consumption trend). Authors in [88]

proposed a data-driven modeling approach for capturing seasonal fluctuations in a building’s

thermal environment and in its occupants’ thermal comfort. In their study, thermal comfort

limits are first modified through their approach; then, an adaptive energy management

system is developed, which is able to save energy up to 34.33% over the new comfort

ranges. The study in [85] introduced an artificial neural network (ANN)-based technique

for the energy management of a zero-energy building. The proposed management system

learns from human behavior, and optimizes energy consumption/generation based on the

forecasts of renewable energy sources. The performance of this method is validated on a

real case study. Authors in [84] proposed a computational intelligence (CI)-based energy

management system for controlling thermal energy storage (TES) units in a building. The

proposed strategy is composed of three main parts: a building power requirement predictor,

a utility load predictor, and a thermal energy storage control module. Both predictions

and controls are performed based on ANN approach. The proposed system is tested under

different thermal scenarios, with the aim of achieving an optimal balance between energy

used from utility and energy used from TES. Authors in [83] compared the performance of

three deep learning algorithms (standard long short-term memory (LSTM), LSTM-based

sequence to sequence (S2S) architecture, and convolutional neural network (CNN)-based

architecture) on building energy demand forecasting problem. They concluded that all

three deep learning algorithms performed better than the baseline (standard ANN); they
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claimed that ANN algorithm is not even able to follow the general trends. They have further

shown that LSTM method failed in adapting to sudden variations in the data; however,

LSTM S2S and CNN models followed all the changes. In [50], a periodic operation plan is

introduced to use building thermal mass for energy-saving and thermal comfort management.

Energy demand forecasts are provided by the neural networks. Using the building thermal

inertia, the control strategy avoids air conditioning while the room is still within the human

comfort zone. Another learning-based building management system is presented in [120].

ANN-based predictors are trained from historical energy consumption and environment

data. The forecasts of load profiles are then utilized to monitor energy consumption, detect

anomalies/faults, and locate energy-saving opportunities.

Although learning algorithms proposed in [80, 88, 85, 84, 83, 50, 120] enable real-time

forecasting in building management systems, they ignore the knowledge embedded in the

mathematical models of building dynamics, and they require large training datasets to

cover the system behavior. Furthermore, relying only on real-time data makes it difficult to

fully understand the inference mechanism learned, and to verify the credibility of learning.

In particular, evaluating the learning algorithm performance from a holistic view is not

sufficient, and its reliability in a specific task needs to be assessed.

1.3.4 Incorporating Learning with Model-based Control for CPS management

By integrating machine learning with model-based control strategies, we can utilize

advantages of both worlds; on the one hand, we are capable of formulating system man-

agement tasks as optimal control problems in terms of performance metrics using the
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model-based design, and on the other hand, online parameters tuning is integrated within

the control structure to improve the quality of partially specified dynamical system models

as well as to adapt to changes in the system model itself over time. Recently, a few studies

are conducted on combining machine learning with model-based control techniques for

buildings management [37, 65, 98]. Authors in [37] combined learning with a model-based

predictive control approach to optimize energy consumption and control temperature in a

building. Authors used a deep time delay neural networks (TDNN) to mimic the behavior of

a model-based controller in the context of building control. In particular, learning is utilized

to develop the computational efficiency of the model-based controller. Authors in [65] inte-

grated learning within a model-based control approach to manage energy consumption in a

building equipped with HVAC, energy storage, and photovoltaic. A deep learning approach

is utilized to reduce the complexity of solving the non-convex model-based optimization

problem. Authors in [98] presented a hybrid ANN-Genetic algorithm (ANN-GA) for the

building energy management, in which building energy demand and indoor temperature

are learned through ANN models, and GA calculates the future energy consumption trend.

Then, a model-based controller determines the set-point schedules based on the learned

data, such that the loads are shifted to the cheaper price periods. In summary, in all the

above-mentioned related works, the integrated model-based and machine learning structure

for the building management is utilized in one of the following three main aspects:

• Estimating the components’ dynamics through learning-based approximations,

• Learning control laws from the training data instead of solving the actual model-based
optimization problem,

• Updating the optimization cost function, performance-related parameters, and operat-
ing constraints through learning-based techniques.
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1.4 Summary of Contributions

As found in the literature review, the works in [37, 65, 98] draw some similarities to our

study. In particular, the authors integrated a machine learning algorithm into a model-based

control design to develop a building management structure. However, these studies mainly

focused on smart buildings’ energy-saving aspect, aiming only to manage buildings’ thermal

conditions but leaving aside other subsystems of buildings which may highly affect their per-

formance. In contrast, the focus of this dissertation is on designing a building management

system that improves energy efficiency while considering all other important building subsys-

tems and objectives, including buildings’ physical models, environment conditions, comfort

specifications, and occupants’ preferences. Furthermore, in the mentioned literature on in-

corporating learning with model-based control, authors only utilized learning to include the

estimations of occupancy profiles or energy consumption patterns in the control loop. How-

ever, there exists a wide variety of factors in a building that can be learned to improve control

performance. For instance, building comfort parameters, such as thermal and visual comfort,

can be learned and included in the management system. In addition, while we acknowl-

edge the efforts of the previous studies in the context of building management and control

[11, 117, 96, 90, 79, 15, 112, 78, 100, 54, 20, 99, 22, 48, 80, 88, 85, 84, 50, 120, 37, 65, 98],

it is worth mentioning that, to the best of our knowledge, none of the previous studies have

provided an integrated building management system that considers all the design aspects,

performance requirements, and specifications of smart buildings.

This dissertation aims to develop efficient control architectures for real-time management

of CPSs. It is attempted to address computational complexity, reliability, and adaptability
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issues in CPSs management. Centralized and distributed MPC approaches are proposed

for CPSs management. To address computational complexity, a coordination mechanism

is introduced for the distributed MPC. The coordination mechanism is very important

because control performance is highly dependent on the degree of interactions between

subsystems [10]. Our proposed distributed MPC approach is applied to manage a CPS

case study, smart building. To ensure reliability and adaptability in CPSs management, we

incorporate machine learning with a model-based control strategy in three aspects: modeling

CPS components’ dynamics, generating control inputs, and real-time reconfiguration of the

operating constraints and requirements. A model-based controller is utilized where there is

a proper mathematical representation of CPS dynamics available, and learning is applied to

learn and estimate subjective CPS parameters (for instance, occupants’ behavior, building’s

energy consumption data, environmental conditions, and comfort in a smart building). The

proposed real-time building management system leads to a more efficient design structure

that: a) enables CPS subsystems to adapt to environment variations, b) allows systems to

adapt to the subjective occupant-related parameters, and c) enables real-time model and

specifications learning and improvement. To evaluate the performance of our proposed

control strategies, we have implemented them on an actual building simulated in EnergyPlus

building simulation software. The main contributions of this dissertation are:

1. Designing a centralized and a distributed model predictive control (MPC) for the

management of CPSs, and implementing them for the thermal management of a multi-

zone building, such that the maximum comfort and minimum energy consumption
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are attained. A coordination mechanism is introduced for the distributed controller to

minimize the computational complexity of the control problem.

2. Proposing a learning-based predictive management system for real-time control and

monitoring of thermal, visual, and olfactory conditions in smart buildings (CPS case

study), and implementing the system on an actual building simulated in EnergyPlus

building simulation software. The proposed management system is developed not only

for comfort management and energy efficiency, but also for addressing adaptability

and reliability issues in CPS management.

3. In comparison to the previous building management systems presented in the literature,

the proposed learning-based management structure uses a combination of model-

based predictive control strategies and learning algorithms to include all building

performance aspects (thermal, visual, auditory subsystems) in the design.

4. Compared to the previous works, the proposed management system includes a mecha-

nism to integrate the current and future information of occupants (such as preferences,

convenience, comfort criteria, activities), building energy trends (supply and demand),

and environment conditions (such as environmental temperature, humidity, and light)

into the control design. This data is synthesized and evaluated in each instance of

decision-making process for scheduling building subsystems.

5. Unlike many prior studies in the field, which were typically developed for a particular

building application with specific needs and requirements, the proposed manage-
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ment system is a generic control structure which can be applied to various building

management applications.

1.5 Dissertation Organization

The dissertation is organized as follows. Chapter 2 provides a detailed description of

smart building components, their specifications, requirements, and constraints. In chapter 3,

centralized and distributed model predictive control approaches are introduced for CPSs

management, and they are implemented for the management of CPS case study; thermal

management of smart building. The performance of distributed and centralized control

approaches are also compared and analyzed in chapter 3. In chapter 4, our proposed

learning-based management system is presented for the real-time control of CPSs, and it is

applied to an actual building simulated in EnergyPlus software to optimize its performance

(thermal, visual, and olfactory conditions) and energy consumption. Performance of the

proposed learning-based control technique is also compared to that of a baseline controller

in chapter 4. Finally, conclusions and future works are provided in chapter 5.
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CHAPTER II

REQUIREMENT SPECIFICATION FOR CYBER-PHYSICAL SYSTEMS

Cyber-physical systems integrate physical dynamics with computational processes; they

basically operate at three layers: perception layer, transmission layer, and application layer

[82]. Perception layer contains physical devices, i.e., sensors and actuators. This layer

captures real-time data (such as light, sound, and temperature), and performs commands

received from the application layer. Transmission layer performs the networking and

communication between the perception and application layers. Various network protocols

and routing devices exist in the transmission layer. In the application layer, the received

information from sensors is processed, and optimal control decisions are generated for the

actuators [82]. The dynamics of CPS components and its specifications are included in the

application layer, and they are utilized in the decision-making process. The mathematical

representation of a CPS component is as follows:

x(k + 1) = f(x(k), u(k), k), x(0) = x0

g(x(k), y(k)) = 0

(2.1)

where the first argument defines the system model, and the second one represents the

system specifications. x(k) ∈ Rn is a vector of state variables that should be monitored or

controlled (such as temperature, humidity, and sound level), and u(k) ∈ U ⊂ Rm denotes

the control inputs, at time step k. y(k) ∈ Rm represents a vector of the algebraic state
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variables as the system output. x0 is a vector of initial values for state variables. Under this

definition, we analyze the requirements, specifications, and mathematical models for CPSs;

smart buildings.

Buildings are the largest energy-consuming sector in the world [97], and therefore their

management and control are of crucial importance. The first step in designing a smart

building management system is to define its components. Some building components can

be defined in mathematical terms, such as the thermal models, HVAC systems, and comfort

parameters. There are some dynamics in a building that can not be modeled explicitly, such

as the time-varying thermal dynamics due to the changing occupancy status or occupants’

behavior.

In this chapter, we aim at providing a formal description of the building’s mathematical

models, design requirements, and specifications. The models developed for smart buildings

in this chapter are then utilized in the rest of the dissertation to design management systems

for these plants.

2.1 Building Components’ Models

Building components are modeled differently, using approaches suitable to their char-

acteristics. For instance, HVAC systems are modeled based on the thermodynamic laws,

while occupants’ behaviors are defined based on probability functions [53, 95, 58, 45]. This

section provides the formulations for modeling the building’s thermal and humidity condi-

tions, and occupants’ behavior. Each model’s characteristics, drawbacks, and advantages

are also discussed in detail.
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2.1.1 Thermal models

Thermal properties of a building can be modeled through three approaches: first-

principles, data-driven, and hybrid modeling methods [17]. First-principles modeling

methods are based on the physical knowledge to describe the system dynamics mathemati-

cally, e.g., thermal processes. In data-driven modeling, system’s parameters are measured

and fed into various mathematical algorithm, such as identification algorithm, to generate

the model. The hybrid modeling approach combines the first-principles methods with

data-driven approaches [17]. From the first-principles modeling methods, thermal models

of a storage tank, heating coil, water thermal storage tank, and heat pump in a single-zone

building are developed as follows [116]:

dTz
dt

=
1

ρaCp,aVz
[ṁaCp,a(Ta,s − Tz) + qs + αz(Tout − Tz)]

dTw,r
dt

=
1

ρwCwVtk
[−ṁwCw(Tw,s − Tw,r) + UhpUhp,mCOP + αh(Tt,mr − Tw,s)]

dTa,s
dt

= − htηs,ovAo
ρaCvA(Ta, s− T̄t)

− γṁa

ρaALc(Ta,s − Tw,r)
dTw,s
dt

= − hitAit
mwCw(Tt − Tw)

+
ṁw

mwLc(Tw,s − Tw,r)

COP = 1 + (COPmax − 1)(1− Tw,s −
To

∆Tmax
)

(2.2)

In the thermal model above, the zonal heating system warms up the area using a water

tank, heat pump, and a heating coil. The model parameters are defined in Table 2.1 [116].

There are three control variables in this model; air flow rate (ṁa), water flow rate (ṁw), and

heat pump input (Uhp), and the control objective is to regulate the zone temperature (Tz).
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Table 2.1: Thermal model parameters

Parameter Description Parameter Description

Tz Zone temperature ṁa Air flow rate

ṁw Water flow rate Vz Zone volume

Ta,s Supply air temperature Vtk Volume of tank

Tw,s Supply water temperature αz Zone heat loss

Tw,r Return water temperature αh Tank heat loss

Tt,mr Mechanical room temperature ρw Water density

Tout Outdoor air temperature ρa Air density

To Source water temperature of heat pump Uhp Heat pump input

T̄t Tube temperature Uhp,m Maximum heat pump capacity

COP Performance coefficient of the heat pump qs Internal heat gain

Cp,a Air heat constant A Cross sectional area

Cw Water heat constant Ao Total area of coil

ht Heat transfer coefficient of air Ait Inside area of tube

hit Heat transfer coefficient between water and tube Lc Heat coil length

ηs,ov Overall efficiency of fins in sensible heat transfer γ Heat transfer ratio

Many researchers utilize the electro-thermal models of buildings for thermal control

design purposes [15, 57, 16]. This kind of thermal design allows for easy modeling of

buildings with various plans as well as considering the thermal interactions between the

zones. In electro-thermal modeling, an equivalent electrical circuit, composed of resistors,

capacitors, and current sources, represents the building’s thermal model. The circuit’s

voltage and current represent the temperature and heat flux, respectively. Moreover, the

22



Figure 2.1: Electro-thermal circuit model

of a single-zone building [15]

Figure 2.2: Electro-thermal circuit model

of a multi-zone building [15]

thermal resistance and capacity of the building components are equivalent to the electrical

resistance and capacitance of the circuit. Figures 2.1 and 2.2 present the electro-thermal

circuit for a single-zone and a multi-zone building, respectively [15]. The thermal equations

for the circuits in Figs. 2.1 and 2.2 are as follows [15]:

dTi
dt

=
1

Ci
(Qheati −Qlossi +Qpdi),

Qlossi =
Tout − Ti
Reqi

+
n∑
j=1

Tj − Ti
Rij

,

Reqi =
RwalliRwindowi

Rwalli +Rwindowi

(2.3)

where Qlossi , Ti, Ci, Qheati , and Qpdi are the heating/cooling loss, indoor temperature,

thermal capacitance, heating/cooling power, and the thermal disturbances, respectively. Rij ,

Tout, and Reqi denote the thermal resistance between the zones, outdoor temperature, and

equivalent electrical (thermal) resistance of all the walls and windows, respectively. The

electro-thermal model can be developed as a first-order model as expressed in equation

(2.3), or more accurately as a second-order network with three resistors and two capacitors

[32]. Studies have shown that the second-order model is more accurate in modeling the
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building’s thermal dynamics; however, using a higher-order model makes the control

problem more complicated [32]. Using the provided thermal models in this subsection, the

zonal temperature (as the state variable) is estimated at each instant, and it is utilized to

generate optimal control inputs (airflow rate, water flow rate, and heat pump input) for the

heating/cooling systems in the building. The parameters of thermal models can be tuned

using a machine learning algorithm.

2.1.2 Humidity models

The dynamics of humidity in buildings can be defined based on the gas laws, i.e., the

rate of humidity sorption and desorption [63]. Here, we present the two most commonly

used humidity models for buildings, i.e., the American Society of Heating, Refrigerating,

and Air-conditioning Engineers (ASHRAE) 160P humidity model [107], and Building

Research Establishment (BRE) admittance humidity model [64]. The ASHRAE 160P

humidity model [107] is presented in (2.4).

Pi = Po,24h +
cQsource

Qventilation

(2.4)

where Pi and Po,24h are the indoor air vapour pressure (Pa) and outdoor air vapour pressure

(Pa), respectively. c is a constant value, 1.36 × 105m/s. Qsource and Qventilation are

the moisture generation rate (kg/s) and ventilation rate (m/s), respectively. In ASHRAE

160P humidity model, the moisture storage is not implicitly included in the humidity

balance equation, and the 24-hour running average values are used to attain the indoor
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vapour pressure. A more detailed humidity model is expressed based on BRE admittance

formulations as follows [64]:

dhi
dt

= −αhi + βhsat − nhi + nho +
Qsource

ρVa
(2.5)

where hi, ho, and hsat denote the indoor humidity (kg.kg−1), outdoor humidity (kg.kg−1),

and air saturation specific humidity (kg.kg−1), respectively. α and β are the moisture

admittance factors (s−1). n, Qsource, ρ, and Va are the air exchanging rate factor between

inside and outside air (s−1), moisture generation rate, air density (kg.m−3), and indoor air

volume (m3), respectively. The first two terms in the BRE model represent the moisture

balance between zone air and interior fabrics in the humidity sorption/desorption conditions.

The next two terms express the impact of the inside and outside air exchange on the indoor

humidity. The last term represents the impact of indoor moisture sources on the indoor

humidity value.

The BRE model is developed for the building’s humidity condition assuming that there

is no HVAC system in the building, and the zone temperature is a constant value. To make

the BRE model more compatible with modern buildings, two more terms are added to (2.5)

as follows [115]:

dhi
dt

=− αhi + βhsat − nhi + nho +
Qsource

ρVa
+ ε(Ti − Tsurf ) (2.6)

where Ti and Tsurf are the indoor temperature (K) and inside wall surface temperature (K),

respectively. The modified BRE model is more accurate than the standard BRE model

since it includes the difference of indoor temperature and wall temperature; the indoor

temperature is changing rather than being constant in the humidity balance equation.
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For considering the impact of the HVAC system on the humidity model, equation (2.6)

is updated to (2.7) [115]. During the initial cooling process of the HVAC system, the

temperature at the evaporator is lower than the dew point of the indoor air. This condensed

air causes the dehumidification of the air coming out of the evaporator. Thus, the model is

updated by adding two major terms to (2.6), i.e., the HVAC’s dehumidification effect term

(δSvent(hi − hvent)) and the humidity loss in the condensation process term ( QLṁ
hvρVa

).

dhi
dt

= −αhi + βhsat − nhi + nho +
Qsource

ρVa
+ ε(Ti − Tsurf ) + δSvent(hi − hvent) +

QLṁ

hventρVa

ṁ = k1(hi − hsurf + k2(Ti − Tsurf ))

(2.7)

where Svent, hvent, and QL are the ventilation air flow speed (m3.s−1), specific humidity of

air from ventilation system (kg.kg−1), and latent cooling rate (kg.kg−1.s−1), respectively.

k1 and k2 are the humidity driving force factor (kg.s−1) and temperature driving force factor

(kg.K.s−1), respectively. Additionally, hsurf is the air humidity of wall’s inside surface

(kg.kg−1). Using the humidity models, indoor humidity is estimated at each instant, and

it is then utilized in formulating the humidity regulation problem in the control module

(Fig. 1.1). The control input of the humidity model is the moisture generation rate.

2.1.3 Occupant behavior models

The occupants’ behavior (e.g., presence, activities, changing the windows/blinds/shades

status, clothing) alters the building parameters, including the heat gain, moisture gain, CO2

emissions, comfort criteria, and actuators’ performances. Studies have shown that human

behavior variations can lead to 40% change in building energy usage [62]. Residents’
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actions vary based on the season, time of the day, indoor and outdoor temperature, building

orientation, state of presence (i.e., arriving, present, leaving), mood, personality, and culture.

Predicting the residents’ actions toward a specific situation is not easy; for instance, when

an occupant feels cold, she or he might put on a sweater, increase the thermostat set-point,

or close the blinds. The occupants’ behavior can be modeled through the following steps:

• Collecting the environmental conditions and occupants’ action data.

• Designing a probabilistic model by mapping the residents’ actions to the environ-
mental conditions. The probabilistic model should be built generic, i.e., not only for
a specific type of building (commercial, residential, factory) or a specific season or
location. The correlation between the indoor temperature and the window opening
event is presented in Fig. 2.3 [58]. The model can be stated as a probability function,
e.g., based on the Markov functions, that correlates the system’s current state (affected
by the resident’s action) with the current environmental condition.

• Choosing an appropriate learning algorithm to refine the correlations.

• Testing and validating the model by comparing its outputs with the actual system’s
outputs.

The probability (P ) that an occupant takes specific behavioral decisions or actions (A)

is defined as a function of the occupant’s characteristic (O) and the current environmental

conditions (C), as (2.8). An occupant tends to take actions (e.g., switching lights or turning

on AC) when the environmental conditions exceed the comfort zone limits. The more the

environmental conditions exceed the occupant’s comfort zone, the more likely the occupant

will take an action (higher probability). In this regard, the probability function is cumulative

and incremental as (2.9) [58].

P (A) = f(C,O)
(2.8)
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f =



finc, if C > h

0, if C ≤ h

fdec, if C < l

0, if C ≥ l

(2.9)

where h and l denote the upper and lower limit of occupant’s comfort zone, respectively. finc

and fdec are the increasing and decreasing form of the probability function f , respectively.

In this study, we present the two most commonly used occupant behavior models: occu-

pants’ actions toward blinds and window status [53], and occupants’ presence status [95].

The Haldi model, proposed in [53], specifies whether the operable windows are open or

closed at each step of the simulation. The model is generated based on datasets collected

during a seven-year simulation in Switzerland. The probability of the window/blind status

change (P ) is calculated through the model. If the probability is greater than the random

distribution (R), the action will happen. If the action happens, the duration of the state

to remain unchanged is predicted from the Weibull distribution [67]. The model is solely

developed based on the indoor/outdoor temperature, rain level, occupancy state (arriving,

present, leaving), and environmental conditions.

In [95], a Markov chain model is developed to predict the occupancy status (present,

arriving, leaving). This model uses the daily probability profile to determine the occupancy

at each time step. Higher probability values are given to the actions taken while the occupant

is leaving or arriving; i.e., the predictions from this model are fed into the Haldi model. The

advantage of this model over the fixed-schedule model is that this model considers the long
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and short absence/presence due to possible breaks/incidents. Utilizing the provided models,

we can include the occupants’ behaviors in the building management system, for instance,

the occupants’ status information can be considered while generating the control inputs

for the heating, cooling, and ventilation systems, considering that human bodies emit heat,

carbon dioxide, odours, and water vapour pressure in an environment.

Figure 2.3: Likelihood of a window open considering the indoor temperature [58]

2.2 Building Comfort Specifications

Maintaining occupants’ comfort is one of the essential control goals in building man-

agement systems. Thermal, visual, acoustic, olfactory, and hygienic comfort are the five

categories of residents’ comfort in buildings [23]. Building comfort parameters are evaluated

based on two types of factors: environmental factors, such as the environment temperature,

humidity, light, and personal factors, such as the subjective perception of comfort by indi-

viduals. Assessing comfort based on the environmental factors is way easier than evaluating

it based on the occupant’s personal characteristics because the environmental factors can be
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measured analytically, but the personal factors are subjective parameters, which differ from

one individual to another [23].

From the control viewpoint, the initial building management systems were developed

with the aim of minimizing energy consumption and maintaining fixed set-points on environ-

mental conditions; these systems did not consider the building comfort factors. Therefore,

control designers utilize intelligent, adaptive, and predictive control techniques to design

more efficient building management systems in which comfort specifications, occupants’

preferences, and their behaviors are considered along with building energy saving aspects.

Further descriptions of each of five performance criteria (thermal, visual, olfactory, auditory,

and hygienic comfort) are provided in the following subsections. The models provided in

this section compose the high-level specifications block in Fig. 1.1. We then extract the

important environmental and personal parameters involved in each comfort criteria, and

include them in the control loop.

2.2.1 Thermal comfort

One of the common scales for quantifying thermal sensation of building residents is the

predicted mean vote (PMV ) index, which was first introduced by the American Society of

Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) [31]. PMV index is a

nonlinear function, with values ranging from [-3-+3], representing cold, cool, slight cool,
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neutral, slight warm, warm, and hot thermal states, respectively. PMV index equation is

stated in (2.10) [31].

PMV = (0.303e−0.036M+0.028)[(M −W )− 3.05× 10−3[5733− 6.99(M −W )− Pa]

− 0.42[(M −W )− 58.15]− 1.7× 10−5M(5867− Pa)− 0.0014M(34− Tai)

− 3.96× 10−8fcl[(Tcl + 273)4 − (T̄r + 273)4]− fclhc(Tcl − Tai)]

(2.10)

where M ,W , and Pa denote the occupant metabolic rate, external work, and water vapor

pressure, respectively. Tai and T̄r represent the air temperature and radiant temperature,

respectively. fcl is the portion of body area covered with clothes, which is calculated from

(2.11).

fcl = 1 + 1.29Icl Icl ≤ 0.078

fcl = 1.05 + 0.645Icl Icl ≥ 0.078 (2.11)

Tcl and hc are the clothing surface temperature and convection coefficient, respectively,

which are calculated from (2.12).

Tcl = 35.7− 0.028(M −W )− Icl[3.96× 10−8fcl[(Tcl + 273)4 − (T̄r + 273)4] + fclhc(Tcl − Tai)],

hc = 2.38(Tcl − Tai)0.25 2.38(Tcl − Tai)0.25 ≥ 12.1
√
Va

hc = 12.1
√
Va 2.38(Tcl − Tai)0.25 ≤ 12.1

√
Va

(2.12)

where Va and Icl are the air velocity and clothing thermal resistance, respectively. The

radiant temperature, T̄r, is calculated though (2.13).

T̄r = [
1.1× 108Va

0.6

εD0.4
(Tg − Tai]) + (Tg + 273)4]0.25 − 273 (2.13)

31



where Tg, D, and ε are the globe radiant temperature, diameter, and emissivity coefficient,

respectively. The water vapour pressure, Pa, is calculated from (2.14).

Pa = 10×Haie
( 16.6536−4030.183

Tai+235
) (2.14)

where Hai denotes the air humidity. Thus, thermal comfort standard (PMV ) is a function

of seven variables Tai, T̄r, Hai, Va, Icl, W , and M , as (2.15). In this study, we assess

the thermal comfort value by learning the variables in PMV equation. The estimated

parameters are then utilized to regulate the control variables (including air temperature (Tai),

and air humidity (Hai)) for the heating/cooling systems.

PMV = f(Tai, T̄r, Hai, Va, Icl,W,M) (2.15)

2.2.2 Visual comfort

Visual comfort is difficult to measure due to the lack of a universal definition for it.

Visual comfort is quantified based on three main factors: glare, luminance, and contrast [23].

Some common metrics for measuring glare, luminance, and contrast level are explained

here.

Table 2.2: Comfort glare index (DGP and DGI) values

Glare rating DGP average DGP limits DGI limits

Imperceptible 0.33 0.314− 0.352 ≤ 18

Perceptible 0.38 0.356− 0.398 18− 24

Disturbing 0.42 0.39− 0.448 24− 31

Intolerable 0.53 0.464− 0.59 ≥ 31
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Table 2.3: Comfort luminance threshold levels

Parallel to window Facing the window

Comfortable luminance ≤ 2000cd/m2 ≤ 1920cd/m2

Uncomfortable luminance ≥ 4000cd/m2 ≥ 4500cd/m2

The most common glare metrics are daylight glare probability (DGP), daylight glare in-

dex (DGI), unified glare index (UGI), CIE glare index (CGI), and visual comfort probability

(VCP). Among these glare metrics, DGP and DGI are the most commonly used and most

reliable criteria for assessing the discomfort glare [61]. DGP index is introduced in [114],

based on the subjective responses from 349 tests in a perimeter office with three window

sizes and three shading systems. This metric is expressed based on the probability that a

subject senses a disturbing glare, rather than measuring or quantifying the glare level. DGI

metric is useful for evaluating the glare index of large glare-sources such as a window. DGI

is calculated as the sum of glare contribution of each bright source [59]. The two metrics,

DGP and DGI, are expressed in the following equations, respectively [114, 59].

DGP = 5.87× 10−5Ev + 0.0918 log

(
1 +

∑
i

L2
s,iωs,i

Ev
a1Pi

2

)
+ 0.16 (2.16)

DGI = 10 log 0.48
n∑
i=1

Ls,i
1.6ωs,i

0.8

Lb + 0.07ωs,i0.5Ls,i
(2.17)

where Ls,i and ωs,i are the luminance (cd/m2) and solid angle of the source, respectively.

Lb, Ev, and Pi are the background luminance (cd/m2), vertical eye illuminance (lux), and

position index, respectively.
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Figure 2.4: DGP and DGI glare indexes versus the percentage of residents disturbed [114]

Table 2.2 shows the recommended (minimum) DGP and DGI levels for comfortable

glare [114, 59]. Fig. 2.4 presents the percentage of persons dissatisfied (PPD) metric

versus the DGP and DGI values [114]. The comfortable luminance threshold range is

dependent on the occupant’s view direction, i.e., the thresholds for a person with a view

direction parallel to or facing a window are different [60]. Furthermore, the suggested

comfort/discomfort ranges vary slightly from one study to another [103, 104, 113, 109];

however, the comfortable and uncomfortable luminance thresholds shown in table 2.3

are the recommended levels by most of the related studies. The contrast between the

luminance from an object and its background is an effective factor in determining visual

satisfaction. Suggested contrast ratios for maintaining visual comfort vary from one study

to another. For instance, authors in [101], suggested a contrast range of 3 : 1 − 40 : 1

for the highest display quality. However, the Swedish National Board for Industrial and

Technical Development (NUTEK) recommended a contrast range of 3 : 1−20 : 1 for visual

satisfaction. Also, a contrast ratio of 9 : 1− 11 : 1 is recommended as a comfortable display

range in [121]. In this dissertation, we evaluate the visual comfort criterion by learning its
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three essential contributing factors, i.e., glare, contrast, and luminance. The control inputs

(source luminance (Ls,i)) for the lighting systems are generated based on the learned visual

parameters.

2.2.3 Auditory comfort

The buildings’ acoustical comfort is typically given low priority; however, the residents’

comfort and productivity are highly dependent on their acoustical satisfaction, specifically

in workspaces, conference rooms, and educational spaces. Unwanted noises cause various

health issues for humans, such as cardiovascular diseases, sleep disorders, and hearing loss.

According to the U.S. environmental protection agency (EPA), over 100 million people

in the United States are exposed to traffic noises near their houses [106]. Furthermore, it

is declared by the world health organization (WHO) that 120 million people worldwide

are exposed to chronic noise pollution [19]. Although acoustic comfort is one of the

essential assets in buildings, there is not any clear definition for it. Two main parameters for

measuring the acoustical satisfaction/dissatisfaction are noise and loudness. The source of

noise can be from outdoors or adjacent indoor spaces. Loudness can be the result of lacking

a sound control in the building spaces.

There is a considerable amount of literature on the measurement and evaluation of

auditory comfort. Two of the most commonly used acoustic standards in the U.S. are the

sound transmission class (STC) and weighted Sound Reduction (RW) metrics [14, 2, 1].

The STC metric is introduced by the American Society for Testing and Materials, known

as ASTM International [14]. STC is a standard for indicating the resistance of building
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materials to airborne sound. Building materials with higher values of STC have a higher

ability to reduce sound transmission. Different materials have different STC levels; for

instance, STC range of glass is in the 20s or STC range of a regular wall is in the 30s.

Generally, the desired range of STC for insulating the building from undesired noises

is around 50s. The RW metric is also introduced by the international organization for

standardization (ISO) [2, 1]. RW is similar to the STC rating, except it covers a larger

frequency range than STC. RW indicates the amount of noise reduction in dB; for instance,

RW = 50 dB means that the unwanted noise is reduced by 50 decibels. The desired amount

of RW = 53 dB is usually suggested in the studies for residential buildings. Table 2.4

presents some other parameters that can be used for auditory comfort evaluation.

In literature [25, 87, 76], procedures are introduced in order to assess the buildings

acoustical comfort. Authors in [25] evaluated the residents’ acoustical comfort based

on the residents’ feedback. According to [25], since the STC parameter is profoundly

affected by the noisy behavior of the neighbors, two other factors, the sleep awakening due

to the neighbor’s noise, and the subjective rating of the tenants for the building’s sound

insulation, should also be considered in measuring the residential acoustic comfort. The

study eventually suggested STC = 60 dB as the lower bound of the acoustic comfort for the

residents. Authors in [87] considered the footfall noise of overhead neighbors in evaluating

the acoustic comfort; they suggested 55 dB as the lower bound for the apparent airborne

sound reduction index (RW) value. Authors in [76] investigated the acoustic comfort

based on feedback from the residents (n=800); they found out that the low-frequency noise

induced by impact sound was the highest recorded source in both acoustic measurements
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and self-reported noise annoyance. The comfort bound for the weighted impact sound

pressure level (Ln,w) is suggested to be 53 dB in this study [76].

Although STC and RW values can be easily determined, they are not sufficient measures

for evaluating the desired acoustic comfort because they do not consider the acoustic

outcome or residents’ opinions (i.e., satisfaction level). Furthermore, these ratings are

not fully applicable to very low frequencies; i.e., a material with a high STC value may

not provide soundproofing to a very low frequency sound caused by rumbling traffic,

reverberating construction, or droning hubbub of office voices. The noise-caused percentage

dissatisfied (NPD) is a more reliable acoustic comfort metric, which is calculated as follows

[29]:

NPD = 4.35

∫ noise level

−∞
e(−(x−58.6

13
)2)dx (2.18)

where x is the class of noise in dB. For a residential building, an NPD with a lower bound

of 20% is suggested to be acoustically comfortable [29]. Once the acoustic comfort is

evaluated, it is utilized as the system constraints of the control problem in the control

module (in Fig. 1.1).

2.2.4 Olfactory comfort

Human beings breathe in and out 12000 liters of air everyday [108], and this air quality

is evaluated based on the smell sense, which is an important sense in humans’ body. The

air quality of a building can be evaluated by measuring the amount of indoor and outdoor

pollutants, such as tobacco smokes, combustion products, and micro organisms. The air

quality is expressed as good, moderate, unhealthy for sensitive people, unhealthy, very

37



Table 2.4: Acoustic comfort parameters

STC Sound transmission class

DnT,w Apparent standardized level difference index

Ln,w Weighted impact sound pressure level

C A-weighted pink noise spectrum adaption term

C50,3150 C adaption term, frequency range 50-3150

RW Apparent airborne sound reduction index

unhealthy, and hazardous, as shown in Table 2.5. Table 2.6 shows the impact of Carbon

Dioxide on building residents’ performance and productivity [47]. The olfactory comfort

is usually measured based on the air pollutant concentration; however, this factor should

be considered along with the occupants’ own perception of smell. The intensity of air

pollutants, considering the psychological characteristics of residents, can be defined through

(2.19) [102].

S = kCβ (2.19)

where C is the pollutant concentration in ppm and β denotes the psychological aspect of

the resident; an exponent less than 1. To properly determine the residents’ sensation of

olfactory comfort, a standard known as the percentage of persons dissatisfied (PPD) with

the air contaminant is utilized. The PPD equation is stated in (2.20) [102].

PPD =


395 exp

(
−3.66Lp

0.36
)
, if Lp ≥ 0.3321/s.

100, otherwise.

(2.20)

38



where Lp is the air flow rate. In this study, the olfactory comfort criterion is assessed by

learning the ventilator’s air flow rate and pollutants intensity. The control inputs (air flow

rate (Lp)) for the ventilators are generated based on the learned olfactory parameters.

Table 2.5: Air quality index levels

Air quality index Health condition

0− 50 Good

51− 100 Moderate

101− 150 Unhealthy for sensitive people

151− 200 Unhealthy

201− 300 Very unhealthy

301− 500 Hazardous

Table 2.6: Impacts of excessive Carbon Dioxide on the residents’ body

CO2 concentration CO2 concentration Impact

3% 30000ppm Deep breathing

4% 40000ppm Dizziness, headache

5% 50000ppm Death after 0.5-1 hours

8-10% 80000− 100000ppm Death
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2.2.5 Hygienic comfort

Hygienic comfort refers to creating and maintaining an environment that promotes

human health [23]. The important distinction between the hygienic comfort and other

comfort categories is that many hygienic hazards cannot be detected by human senses; e.g.,

carbon monoxide gas is colorless, odorless, and deadly. Inadequate hygienic comfort in

the buildings may cause sick building syndrome (SBS) for its occupants. Headache and

dizziness, aches and pains, eye/throat/skin irritations, nausea, fatigue, distraction problems,

and breath shortness are the most commonly known SBS symptoms [49].

In the same vein as olfactory comfort, hygienic comfort is addressed in [7, 8] through

the proper design of ventilation and handling of exhaust. The Health and Safety Executive

(HSE) has provided required instructions on how to investigate the causes of SBS, diagnose

it, and recover from the condition before it worsens [69]. According to HSE, the necessary

parameters to be controlled for maintaining hygienic comfort are the conditions of air filters,

humidifiers, and HVAC systems. Different scales are developed to calculate the hygienic

comfort of buildings. Among these scales, the ASHRAE standard 62.1 (Ventilation for

Acceptable Indoor Air Quality) [12] and the Indoor Air Quality Design Tool (IAQDT) [111]

are the most widely used standards to express hygienic comfort. According to the ASHRAE

standard 62.1 (Appendix D), hygienic comfort is determined based on the volumetric flow

of outdoor air (Vo), volumetric flow of return air (Vr), volumetric flow of supply air from

HVAC (Vs), recirculation flow (R), contaminant concentration in the outdoor air (Co),

contaminant concentration in a zone (Cs), filter efficiency (Ef ), ventilation effectiveness

(Ev), and contaminant generation rate (N ) [12]. Assuming constant air flow for the HVACs,
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contaminant concentration is calculated through equation (2.21), and then, it is compared

with a concentration guideline for maintaining acceptable hygienic comfort level.

Cs =
N + EvVo(1− Ef )Co
Ev(Vo +RVrEf )

(2.21)

IAQDT standard calculates contaminant concentration based on the HVAC system configu-

ration. The main difference between IAQDT standard and ASHRAE standard 62.1 is that

IAQDT does not assume steady conditions in the model, it calculates the transient concen-

tration of contaminants [111]. Based on the IAQDT standard, contaminant concentration

and supply flow rates are measured as follows:

ṁscs = ṁv(1− ηv)co + ṁt(1− ηt)cz(
ρzVz
∆t

+ ṁcηc + ṁr + ṁx + ṁe +
∑

R

)
cz,t + ṁs (1− ηs) cs,t =

ρzVz
∆t

cz,t−∆t + ṁico +
∑

G

(2.22)

Parameters in (2.22) are defined in Table 2.7 [111].

By calculating and collecting the contaminant concentrations throughout the day, we can

learn and predict the hygienic comfort of buildings through machine learning algorithms.

The estimated hygienic comfort values are then included in the control problem to regulate

the HVACs, filters, and ventilation systems in buildings.

Performance of the five mentioned comfort aspects have inter-correlation; i.e., there

exist conflicts between these comfort parameters. For instance, the higher rate of ventilation

causes a higher level of olfactory comfort, but it may generate unwanted background noises,

and causes occupants’ acoustic discomfort. As another example, studies on acoustic comfort

reveal that the overall acoustic satisfaction of occupants in green buildings is lower than
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the same value for occupants of regular (not green) buildings [5]. Therefore, the building

management system designers should consider these incompatibilities/inter-relations and

create a balance between all these comfort parameters.

Table 2.7: Parameters of IAQDT standard

ṁi Infiltration flow co Contaminant concentration in the outdoor air

ṁe Exfiltration flow cs Contaminant concentration in the mixed supply air

ṁx Exhaust flow cz Contaminant concentration in the zone and return air

ṁc Air cleaner flow ηv Filter efficiency for the ventilation air stream

ṁr Return flow ηt Filter efficiency for the recirculation air stream

ṁs Supply flow ηs Filter efficiency for the air steam

ṁu Spill flow ηc Filter efficiency for the air cleaner

ṁt Recirculation flow G Contaminant generation rate

ṁv Ventilation flow R Contaminant removal coefficient

2.3 Conclusion

In this chapter, the specifications of smart buildings (CPS case study), are described.

The information provided in this chapter is utilized in the rest of this dissertation for design,

development, and realization of management systems for these CPS infrastructures.
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CHAPTER III

DISTRIBUTED AND CENTRALIZED MODEL PREDICTIVE CONTROL FOR

CYBER-PHYSICAL SYSTEMS

In this chapter, we design centralized and distributed model predictive control (MPC)

for the management of cyber-physical systems. The developed control approaches are

then applied to a CPS case study; smart building. The performance of centralized and

distributed control methods are compared on global and partitioned models, with different

specifications. Simulation results demonstrate the effectiveness of distributed MPC for

CPS management. Furthermore, a decentralized predictive control scheme is practically

implemented on a smart building testbed. The building’s features (surveillance, humidity,

temperature, light intensity, and data streaming) are managed in real-time, through the

model-based controller.

3.1 Model Predictive Control

Model Predictive Control (MPC) is an effective model-based control technique that has

been applied in many areas due to its ability to handle constrained control problems [26].

MPC uses the system model to predict the future states and make optimal control decisions

through its path. In every step, an optimization problem, including the current and future

states and operating constraints, is solved, and control signals from the current step up to
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the prediction horizon H , are generated. The first element of the control input sequence is

injected into the system at instant k, and the process is repeated in each instant [26]. It is

worth mentioning that MPC’s performance is highly dependent on the accuracy of system

model. The structure of MPC is depicted in Fig. 3.1 [26].

Model

Optimizer

Cost Function Constraints

Reference 
Trajectory

+

-

Predicted 
Output

Past Inputs 
and Outputs

Future 
Errors

Future 
Inputs

Figure 3.1: Structure of MPC [26]

3.2 Centralized Model Predictive Control

Consider a state-space model of a system as (3.1).

x(k + 1) = f(x(k), u(k)) (3.1)

where x(k) and u(k) denote the system states and control inputs, respectively, and k is the

time step. The global MPC cost function for system (3.1) is stated as (3.2):

J =
K−1∑
k=0

J(k) (3.2)
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where K is the final time step. As though, in every time step k, the objective function J(k)

is minimized with the predicted parameters up to the horizon H:

J(k) =
H∑
h=1

L(x(k + h), u(k + h− 1)) (3.3)

In MPC, typically, an objective function that reflects a “cost” is minimized, considering

the constraints on the states, system dynamics, and inputs. The cost function usually

contains the deviation of the states from the desired states, control inputs, and control input

changes (as in (3.4)) [26, 42].

L(x(k), u(k − 1)) = ‖x(k)− x∗(k)‖2
P + ‖u(k − 1)‖2

Q + ‖∆u(k − 1)‖2
R

(3.4)

where P,Q, and R are the weighting matrices. x∗(k) is the desired value of state x(k) at

time step k. u(k) and ∆u(k) denote the control input and control input changes at time

step k, respectively. By solving the optimization problem in each time step k, over the

prediction horizon H , the summation of objective terms in (3.4) from time step k + 1 to

k +H is minimized. The objective of MPC is to drive the system to the desired state x∗(k)

(minimizing the deviation of the states from the desired states) while minimizing the control

inputs and their changes. The centralized MPC algorithm is as follows:
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Algorithm 1 Centralized MPC algorithm

Step 0: Get the system model at the current time.

Step 1: At k = 0; initialize x(0), x∗(0), ∆u(0), and u(0).

Step 2: At time k > 0; apply u(k − 1 : k + h− 1) to the system model, and determine the

current and future values of the states x(k : k + h).

Step 3: At time k > 0; determine x(k : k + h), and solve the optimization problem (3.3) to

calculate u∗(k − 1 : k + h− 1).

Step 4: k = k + 1, go back to step 2, and repreat the algorithm.

For solving the optimization problem (minimizing the cost function), an appropriate

optimization solver is required. In this research, we utilize two optimization solvers, CasADi

and fmincon solvers, to solve the optimization problem throughout the MPC algorithm.

CasADi is an open-source software tool for nonlinear optimization and algorithmic differen-

tiation. CasADi is available for C++, Python, and MATLAB/Octave. This tool provides

almost all the building blocks for optimal control and is used by several high-level optimiza-

tion packages, such as MPCTools, ACADOS, do-mpc, FORCES Pro, JModelica.org, and

Casiopeia [9]. MATLAB fmincon solver is used for the nonlinear multivariable optimization

problems. This solver includes four optimization algorithms; interior-point (default), trust-

region-reflective, SQP, and active-set, which can be chosen by setting options in fmincon

function. Note that fmincon is a gradient-based method that is designed to work on problems
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where the objective and constraint functions are both continuous and have continuous first

derivatives [27].

3.3 Distributed Model Predictive Control

Distributed MPC approach is known to be effective in CPS management since large-

scale CPSs consist of large number of complex subsystems [34, 91]. In a distributed MPC

approach, local controllers are assigned to each subsystem of the plant, and they coordinate

together to achieve a specific global performance of the entire system [118, 39]. Fig. 3.2

presents the block diagram of a distributed MPC for a CPS with N subsystems. Each local

MPC controller solves a local objective function, which contains the tracking error (between

the future states and the desired states), control inputs, and control inputs increments.

Figure 3.2: Distributed MPC on N interacted subsystems
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The state-space model of each subsystem i, 1 ≤ i ≤ N , is as (3.5).

xi(k + 1) = fi(xi(k), ui(k), vi(k)), i = 1, · · · , N (3.5)

where xi(k) and ui(k) denote the states and control inputs of subsystem i, respectively, and

k is the time step. vi(k) is a vector containing all the states of neighboring subsystems

that can influence the dynamics of subsystem i. The local objective function, Ji, for each

subsystem i is expressed as follows:

Ji =
K−1∑
k=0

Ji(k), i = 1, · · · , N (3.6)

where K is the final time step. At each time step k, the cost function in (3.7) is minimized

over the prediction horizon, considering the constraints on the system dynamics and states.

Ji(k) =
H∑
h=1

Li(xi(k + h), ui(k + h− 1), wi(k + h)), i = 1, · · · , N

Li(xi(k), ui(k − 1)), wi(k)) = ‖xi(k)− x∗i (k)‖2
Pi

+ ‖ui(k − 1)‖2
Qi

+ ‖∆ui(k − 1)‖2
Ri

(3.7)

wherewi(k) is a vector containing all the states of neighboring subsystems that can influence

subsystem i through its cost. Pi, Qi, and Ri are the weighting matrices. x∗i (k) is the desired

value of state xi(k) at time step k. ui(k) and ∆ui(k) are the control input and control input

changes of subsystem i at time step k, respectively. The constraints of the local optimization

problem are stated as follows.

x̂i(k + 1) = fi(x̂i(k), ûi(k), v̂i(k))), x̂i(k) = xi(k)

v̂i(k) = vi(k), ŵi(k) = wi(k), i = 1, · · · , N (3.8)
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where x̂i(k), ûi(k) are the predicted states and inputs of subsystem i at time instant k,

respectively. v̂i(k) and ŵi(k) denote the predicted values of the states in the subsystems

that influence subsystem i’s dynamics and cost, respectively.

Utilizing the dual decomposition approach, we incorporate the optimization constraints

(3.8) into the objective function formulation (3.7). The idea is to impose the interconnecting

constraints into the objective function by the Lagrangian multipliers and solve the approx-

imated dual cost function (duality theory is explained in [73]). Thus, the optimization

problem for each local controller is the minimization of augmented function, Φi (stated in

(3.9)).

Φi(k) = Li(x̂i(k), ûi(k − 1)), wi(k) + λi(k)T (vi(k)− v̂i(k)) + ρi(k)T (wi(k)− ŵi(k))

(3.9)

where λi and ρi are the Lagrangian coefficients of subsystem i, that are being updated in

each iteration through (3.10).

λs+1
i (k) = λsi (k) + αi

s(vi
s(k)− v̂si (k))

ρs+1
i (k) = ρsi (k) + βi

s(wi
s(k)− ŵsi (k)) (3.10)

where αi and βi are gradient ascent step sizes for updating the Lagrangian multipliers. Thus,

the optimization problem for the entire system is as follows.

max
λi,ρi

N∑
i=1

min
ûi,vi,wi

K−1∑
k=0

H∑
h=1

[Li(xi(k + h), ui(k + h− 1)), wi(k + h)) + λi(k)Tvi(k + h)

+ ρi(k)T (wi(k + h)−
∑
(i,j)

λj,i(k)T x̂i(k + h)−
∑
(i,j)

ρj,i(k)T x̂i(k + h)]

(3.11)
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where i and j are the two neighboring subsystems that can have interactions. Therefore, our

proposed distributed MPC strategy for CPS is as follows.

Algorithm 2 Distributed MPC algorithm
Step 1:

• Initialize the Lagrangian multipliers (λi0(k : k + h), ρi0(k : k + h)).

Step 2:

• Send ui(k − 1 : k + h− 1) and x̂i(k : k + h) to the neighboring subsystems.

• Determine the values of v̂i(k : k + h), ŵi(k : k + h), x̂i(k : k + h), and ûi(k − 1 :
k + h− 1) in each subsystem i.

• Determine the current and future values of the desired trajectory x∗(k : k + h).

Step 3:

• Solve the augmented optimization problem (3.9), and attain the optimal control input
ui(k : k + h).

• Apply the first element of the optimal control ui(k : k + h) to the system.

Step 4:

• Update the Lagrangian multipliers (λi and ρi), from (3.10).

Step 5:

• k = k + 1, go to step 2, and repeat the algorithm until k = K.
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Fig. 3.3 shows the complete flowchart of distributed MPC.

Figure 3.3: Distributed MPC algorithm flowchart

51



3.4 Stability Analysis

The finite-horizon MPC cost function introduced in the previous sections imposes

no stability requirements by itself; therefore, inappropriate choices of design parameters

(prediction horizon H , wights P , Q, and R, and optimization constraints) may result in

unstable closed-loop system. In this section, we discuss on how to ensure stability in the

proposed MPC approaches.

Considering discrete-time system model (3.1), and assuming that the control objective

is regulation to the origin, we express the optimization problem as:

min
u
J(x(k : k + h), u(k − 1 : k + h− 1)) =

H∑
h=1

[‖x(k + h)‖2
Q + ‖u(k + h− 1)‖2

R]

subject to G(x(k : k + h), u(k − 1 : k + h− 1)) ≤ 0 h = 1, · · · , H

(3.12)

where G(x(k : k + h), u(k − 1 : k + h− 1)) denotes the constraints on the system states

and inputs. We define a compact and convex terminal set Ω, as follows:

Ω = {x ∈ Rn|xTPx ≤ α} (3.13)

where P = P T > 0 and α > 0. Assume that u∗(k−1 : k+h−1) is the optimal solution to

the optimization problem (3.12), and define the set of H-step feasible initial states as (3.14).

XF = {x ∈ Rn|G(x(k : k + h), u(k − 1 : k + h− 1)) ≤ 0 for some u(k − 1 : k + h− 1)}

(3.14)

Assuming that Ω is a control invariant set, then XF is an H-step subset of stabilizable

set. To determine P and α values, we design a linear feedback for the system such that Ω
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is positively invariant under this feedback. The system is first linearized around the origin

(equilibrium point).

A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0) (3.15)

Assume that (A,B) are stabilizable, and weights of the cost function (Q, R) are positive. If

there exists a P > 0 that satisfies the Lyapunov equation (3.16) for some values of κ > 0;

A0
TPA0 − P = −κP −Q−KTRK (3.16)

then, there exists an α > 0 such that the Ω set in (3.13), satisfies:

1. Ω ⊂ Θ = {x ∈ Rn|umin ≤ −Kx ≤ umax, xmin ≤ x ≤ xmax},

where the parameters with min and max indices represent the lower and upper

constraints on the states and inputs.

2. Nonlinear system x(k + 1) = f(x(k),−Kx(k)) is asymptotically stable for all

x(0) ∈ Ω; Ω is a positive invariant set.

3. The cost function (3.12) is bounded (J(x, u) ≤ xTPx) for all x ∈ Ω.

The proof of the arguments above is explained in detail in [73]. Therefore, the proposed

MPC approaches guarantee asymptotic stability with region of attraction equal to the

feasible set XF . An algorithm for selecting the values of P , κ, and α is proposed in [4].

3.5 Centralized and Distributed MPC on CPS Case Study

Model Predictive Control strategies have been extensively applied to control and man-

age smart buildings [70, 11, 21, 74, 39, 44]. MPC is proven to be efficient in solving the
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buildings’ constrained optimization problems; to optimize the energy efficiency of build-

ings while providing maximum comfort for the residents. Various control scenarios and

objective functions can be formulated for a building management problem. Building energy

consumption, occupants’ comfort, indoor air temperature, and indoor air humidity are some

factors that can be included in the cost function. In a centralized MPC approach, one global

objective function is defined for the building management system. Using centralized MPC

is not practical for the buildings management, because these infrastructures are large-scale

with complex components and requirements, and a centralized building management system

may demand large computational overhead.

In a distributed MPC approach, local objective functions are defined for each smart

building component. Local objective functions are then optimized by the local controllers,

which coordinate together to achieve a specific global performance of the entire system.

Therefore, various building’s properties, such as thermal and lighting conditions, and energy

consumption, can be managed with less computation and complication through a distributed

MPC structure. In this section, we implement the proposed centralized and distributed MPC

on CPS case study (multi-zone building), and analyze the simulation results.

3.5.1 Model definition

The CPS under study is a building consisting of six rooms (subsystems) with thermal

exchange between the inner walls and inner doors. The rooms also have thermal exchanges

with the environment. The physical system layout is shown in Fig. 3.4. In this system,
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each room is equipped with a heater (AC). Based on the electro-thermal model presented in

chapter II, the zonal thermal model of room i, i = 1, · · · , 6, is as follows:

dxi
dt

= (
1

miC
)[

To − xi
Rwalls−outi

+
Troomi−j − xi
Rwalls−ini

+ wcoutdoori
To − xi
Routdoori

+ wcwindowi
(To − xi)
Rwindowi

+ wfoutdooriMoutdooriC(To − xi) + wfaciMaciC(Taci − xi) + wcindoori
Troomi−j − xi
Rindoori

+ wfindooriMindooriC(Troomi−j − xi) + wfwindowiMwindowiC(To − xi)]

(3.17)

where xi is the temperature of room i, and To is the outside temperature. Rwalls−outi

and Rwalls−ini are the thermal resistance of walls from the outside and inside layers of

room i, respectively. wcindoor and wcoutdoor are the conduction weight between two rooms,

and between the rooms and outside, respectively. wcwinodwi and Rwindowi are the thermal

conduction and thermal resistance of windows in room i, respectively. Troomi−j is the heat

exchange between room i and j. Moutdoor , Mindoor , and Mwindow are the amount of airflow

from outside to inside, the amount of airflow indoors, and the amount of airflow from the

windows, respectively. Mac is the amount of airflow of the heater. C is the thermal capacity

of air. Control variables are Taci, Maci, and wfaci. The numerical values used in the system

simulations are stated in Table 3.1.

Figure 3.4: Six-room model plan
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Table 3.1: Thermal model numerical values

Parameter Value Parameter Value

C 1005.4 Rwindow3 , Rwindow4 , Rwindow6 0.0000593542

mi, i = 1, · · · , 6 102.0425 wcwindow3 , wcwindow4 , wcwindow6 1

Mindoori 20 wfwindow3 , wfwindow4 , wfwindow6 0

Rindoori 0.000208 wcoutdoor1 , wcoutdoor2 , wcoutdoor5, wcoutdoor6 1

Rwalls−ini 0.0000696 wfoutdoor1 , wfoutdoor2 , wfoutdoor5, wfoutdoor6 0

Rwalls−outi 0.0000321 Troom2−3, Troom1−5, Troom4−5, Troom4−6(initial) 10

Routdoori 0.000208 Moutdoori,Mwindow3 , Mwindow4 , Mwindow6 35

wcindoori 0 wfindoori, wfaci 1

3.5.2 Centralized MPC

Considering a discrete state-space model, state variables (zonal temperature) predictions

P steps ahead of the current time are stated as (3.18).

x̂(k|k) = Ax̂(k|k − 1) +Bu(k − 1) + Ed(k − 1) + L(ŷ(k)− ŷ(k|k − 1))

Y (k|k) = THx̂(k|k) + TG∆U(k|k) + TFu(k − 1) + TVW (k|k) (3.18)

In (3.18), A, B, and E are the state-space representation matrices. d is the disturbance,

and Y , G, T , F , H , V , and W are defined as follows.

Y T (k) =

[
y(k + 1|k)T y(k + 2|k)T · · · y(k + P |k)T

]
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G =



B 0 · · · 0

(A+ I)B B · · · 0

...
... · · ·

...

M∑
i=1

Ai−1B
M−1∑
i=1

Ai−1B · · · B

M+1∑
i=1

Ai−1B
M∑
i=1

Ai−1B · · · (A+ I)B

...
... · · ·

...

P∑
i=1

Ai−1B
P−1∑
i=1

Ai−1B · · ·
P−M+1∑
i=1

Ai−1B



T =



C 0 · · · 0

0 C
. . .

...

...
. . . . . . 0

0 · · · 0 C



F T =

[
B (A+ I)B · · ·

M∑
i=1

Ai−1B
M+1∑
i=1

Ai−1B · · ·
P∑
i=1

Ai−1B

]

HT =

[
AA2 · · ·AP

]
V =



E 0 · · · 0

AE E · · · 0

...
... · · ·

...

AP−1E AP−2E · · · E


W T (k) =

[
d(k|k)T d(k + 1|k)T · · · d(k + P − 1|k)T

]
(3.19)

The cost function J(k) in (3.20) penalizes the deviations of the predicted outputs

ŷ(k + i|k) from a reference trajectory yr(k + i|k), i = 1, 2, · · · , P . Maximizing the

thermal comfort and minimizing the cooling/heating energy consumption of the building is

the optimization problem.

J(k) =
P∑
i=1

‖(ŷ(k + i|k)− yr(k + i|k))‖2
Q +

M∑
i=1

‖u(k + i− 1|k)‖2
R1

+ ‖∆u(k + i− 1|k)‖2
R2

(3.20)

In (3.20), P and M are the prediction and control horizons, respectively. Q, R1, and

R2 are the weight matrices. y(k), and yr(k) denote the indoor temperature and desired
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temperature at time step k, respectively. u(k) and ∆u are the cooling/heating power

consumption and its increments at time step k, respectively. To minimize the cost function

(3.20) subject to the system model description and prediction equations, the centralized

MPC algorithm in Algorithm 1 is utilized. Using the centralized MPC, the whole system

is monolithic, and only one MPC controller is assigned to the system. Therefore, there is

one complicated large optimization problem with various variables being calculated at each

time step.

3.5.3 Distributed MPC

Our proposed distributed MPC algorithm in this dissertation considers not only the future

output and manipulated input predictions of the neighbor zones but also the disturbance

predictions in each local controller. The goal is to attain a satisfactory global performance

with minimum computation demand. The cost function for our case study is defined as

follows.

Ji(k) =
P∑
p=1

‖(ŷi(k + p)− yid(k + p))‖2

Qi
+

M∑
m=1

‖ui(k +m− 1|k)‖2
R1i

+ ‖∆ui(k +m− 1|k)‖2
R2i

(3.21)

In (3.21), P and M are the prediction and control horizons, respectively. Qi, R1i, and

R2i are the weight matrices of subsystem i. yid, ui, and ∆ui are the desired temperature,

heating/cooling energy consumption, and energy consumption increments in room i, respec-
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tively. yid is obtained by a smooth approximation from the current value of output yi(k)

towards the known reference ri(k) in (3.22).

yi
d(k) = yi(k),

yi
d(k + p) = αiwi(k + p− 1) + (1− αi)ri(k + p), p = 1, · · · , P

(3.22)

The control inputs, ui(k+m|k), are attained by minimizing the local objective function

(3.21) at each time step k. Then, the global objective function at each time step k is as

(3.23).

J(k) =
N∑
i=1

Ji(k) (3.23)

Above, N = 6 is the total number of subsystems. The system’s predicted outputs and states

are calculated through (3.24), and then substituted in the cost function.

x̂i(k + p|k) = Aii
px̂i(k|k) +

p∑
s=1

Aii
s−1Biiui(k + p− 1|k) +

p∑
s=1

Aii
s−1ŵi(k + p− 1|k − 1)

ŷi(k + p|k) = Ciix̂i(k + p|k) + v̂i(k + p|k − 1)

(3.24)

The states and inputs interaction equations are stated as (3.25).

wi(k) =
m∑
j=1

Aijxj(k) +
m∑
j=1

Bijuj(k) vi(k) =
m∑
j=1

Cijxj(k)

(3.25)

where we assume that m neighboring subsystems are interacting with subsystem i.

Defining the following matrices;

Ãi =

[
diagP{Ai,1}· · ·diagP{Ai,i−1}0diagP{Ai,i+1}· · ·diagP{Ai,m}

]

B̃i =

[
diagP{Bi,1}· · ·diagP{Bi,i−1}0diagP{Bi,i+1}· · ·diagP{Bi,m}

]
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C̃i =

[
diagP{Ci,1}· · ·diagP{Ci,i−1}0diagP{Ci,i+1}· · ·diagP{Ci,m}

]

Γ̃i =



0(M−1)nuinui
I(M−1)nui

0nui(M−1)nui
Inui

...
...

0nui(M−1)nui
Inui


Γ̃ = diag{Γ̃1 · · · Γ̃m} B̃i = ˜̃BiΓ̃ (3.26)

The predictions of interacting parameters, system states, and outputs are as (3.27) and

(3.28), respectively.

Ŵi(k, P |k − 1) = ÃiX̂(k, P |k − 1) + B̃iU(k − 1,M |k − 1)

V̂i(k, P |k − 1) = ĈiX̂(k, P |k − 1) (3.27)

X̂i(k + 1, P |k) = S̄i[Āi ˆxi(k|k) + B̄iUi(k,M |k) + Ŵi(k, P |k − 1)]

Ŷi(k, P |k − 1) = C̄i[X̂i(k + 1, P |k) + TiV̂i(k, P |k − 1)] (3.28)

where matrices Ti, S̄i, Āi, B̄i, and C̄i are stated as (3.29).

Ti =

0(P−1)nyinyi
I(P−1)nyi

0nyi(P−1)nyi
Inyi

 S̄i =


Aii

0 · · · 0

... . . . ...

Aii
P−1 · · · Aii

0



Āi =

 Aii

0Pnyinyi

 B̄iT =



diagM{Bii}

0nui
· · · 0nui

Bii

... . . . ...
...

0nui
· · · 0nui

Bii


C̄i = diagP{Cii}

Therefore, the control solution for the optimization problem is stated as (3.29).

Ui(k,M |k) = Γi
′ui(k − 1) + Γ̄iK̄i[Y

d
i (k + 1, P |k)− Ẑi(k + 1, P |k)] (3.29)
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where Ki, and Ẑi are defined in (3.30).

Ẑi(k + 1, P |k) = Si[B̄iΓi
′ui(k − 1) + Āix̂i(k|k) + Ŵi(k, P |k − 1)] + TiV̂i(k, P |k − 1)

K̄i = Hi
−1Ni

T Q̄i Hi = Ni
T Q̄iNi + R̄i Si = C̄iS̄i

Q̄i = diagP {Qi} R̄i = diagP {Ri} Ni = SiB̄iΓ̄i

Γi
′ =


Inui

...

Inui

 Γ̄i =


Inui · · · 0

...
. . .

...

Inui · · · Inui

 (3.30)

The subsystems’ interactions (heat exchange) are included in the cost function as

follows.

Φi(P ) = min{‖xi(K)‖2
Pi

+
K−1∑
k=0

(‖(xi(k)− xid(k))‖2

Qi
+ ‖zi(k)‖2

Si
+ ‖(Tac(k))‖2

Ri

+ Pi
T (k)[Aixi(k) +Biui(k) + Cizi(k)− xi(k + 1)] + λi

T (zi −
m∑
j=1

Lijxj))}

(3.31)

where Lijs are the coefficients used for connecting the states of neighboring subsystems. λi

and PiT are the interactions and system model constraints coefficients, respectively. Using

the Hamiltonian function Hi, defined in (3.32), (3.31) is converted to (3.33).

Hi(xi, ui, zi, k) = ‖(xi(k)− xid(k))‖2

Qi
+ ‖zi(k)‖2

Si
+ ‖(Tac(k))‖2

Ri
+ Pi

T (k)[Aixi(k)

+Biui(k) + Cizi(k)− xi(k + 1)] + λi
T (zi −

m∑
j=1

Lijxj)

(3.32)

Φi(P ) = min{‖xi(K)‖2
Pi
− Pi(K − 1)Txi(K) +

K−1∑
k=0

(Hi(k)− Pi(k − 1)Txi(k)))}

(3.33)
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In each instant, the following proposed three-level algorithm is applied iteratively up to

the prediction horizon, until the optimum input is attained.

Algorithm 3 Distributed MPC algorithm for thermal control of buildings
Step 1: k = 0; minimize Hi(xi(0), ui(0), zi(0)) with partial derivatives with respect to ui(0)

and zi(0).

Step 2: k = 1, 2, ..., K − 1; minimize Hi(xi(k), ui(k), zi(k), k) − Pi(k − 1)Txi(k)) with

respect to xi(k), ui(k) and zi(k).

Step 3: k = K; minimize ‖(xi(K))‖2
Pi
− PiT (K − 1)xi(K) with respect to xi(K).

Coordination mechanism in the distributed control approach avoids global communica-

tion in the whole network, which enhances the closed-loop system stability and feasibility.

Assuming the existence of a feasible input sequence for each subsystem i at k = 0, the

optimization problem has a feasible solution for each subsystem i at all k ≥ 0. For stability

analysis, (3.34) is defined as the Lyapunov function which will be solved off-line.

ATPA− P = −F, P =



P11 P12 · · · P1m

P21 P22 · · · P2m

...
...

. . .
...

Pm1 Pm2 · · · Pmm


F = diag(F1, F2, · · · , Fm), Fi(0) = Fi(1) = · · · = Fi(N − 1) = Fi (3.34)

Having relationship (3.35) from [73],

J(k)(x(k)) ≤ J(0)(x(0))−
K−1∑
k=0

m∑
i=0

Ji(k)(xi(k), ui(k)) ≤ J(0)(x(0)) (3.35)
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(3.36) is attained.

1

2
λmin(F )‖x(k)‖2 ≤ J(k)(x(k))

J(k)(x(k)) ≤ J(k)(x(0)) =
1

2
x(0)TPx(0) ≤ 1

2
λmax(P )‖x(0)‖2 (3.36)

Thus, it is proved that ‖x(k)‖≤
√

λmax(P )
λmin(F )

‖x(0)‖, which shows that the closed-loop

system is asymptotically stable.

3.5.4 Simulation results

The desired trajectory for each room’s temperature is between 5 ◦C to 25 ◦C in 5

different periods (0-6 AM, 6-12 AM, 12-6 PM, 6-9 PM, and 9-12 PM), regarding the

occupancy status. To maintain the occupants’ comfort, temperature set points during

occupied hours (0-6 AM and 6-12 PM) are higher than the vacant periods (6-12 AM and 0-6

PM). The environment temperatures are assumed to be between -6 to 4 ◦C. The weighting

matrices Qi and Ri are chosen as 1.5I12×12 and ( 1
1600

)I6×6, respectively.

Fig.s 3.5 and 3.6 show the six rooms’ temperatures using centralized and distributed

MPC, respectively. Fig. 3.7 shows the control input trajectories from the centralized and

distributed MPC. Table 3.2 compares the numerical values from the two rooms’ temperature

trajectories and input signals using centralized and distributed MPC. From Fig.s 3.5 and 3.6,

the distributed MPC functions better compared to the centralized MPC strategy in terms of

reference tracking performance. From Table 3.2, the overshoots and peak values of room 1

and 2 temperatures using distributed MPC are significantly smaller than the same values

in centralized case. From Fig. 3.7, the control input using the distributed MPC approach

shows lower overshoot and stabilizes sooner than the centralized MPC control trajectory.
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Figure 3.5: Six rooms’ temperature using centralized MPC

Comparing the areas under the control input trajectories (7th column in Table 3.2), the

energy consumption using distributed MPC is 25.42% lower than that of the centralized

one. Besides, the optimization time for distributed MPC controller is 60 times lower than

the centralized MPC (last column in Table 3.2). As the system gets larger, the computation

time in the centralized approach gets relatively higher. Another important innovation of

the proposed distributed MPC algorithm is that it considers the disturbances predictions

and it provides system stability. The proposed controller is applied to a practical smart

building testbed as well. Using the proposed scheme for buildings, not all the agents need
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to be connected to each other; therefore, the communication effort is significantly lower

compared to the centralized scheme.

Figure 3.6: Six rooms’ temperature using distributed MPC

Table 3.2: Numerical characteristics of the state and control signals of the two rooms using

centralized and distributed MPC

T1 overshoot T1 peak T2 overshoot T2 peak control overshoot control area run time

CMPC 89.95 22.39 80.96 25.03 78.66 7.4138e+3 1120 sec

DMPC 11.65 20.33 15.70 17.28 31.90 5.5291e+3 52 sec
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Figure 3.7: Control signal 5 using centralized and distributed MPC

3.5.5 Practical implementation

This section provides experimental results on a smart building management system. The

testbed is a four-story building equipped with sensors and actuators. Fig. 3.8 shows the 3D

plan of building prototype, and Fig. 3.9 shows the position of all the actuators and sensors

in the structure. The sensors and actuators mounted on the walls, doors, windows, elevator,

and ceilings. Each room of the building has at least one strip of LEDs as a light source,

a DTH22 as a temperature/humidity sensor, a Peltier tile as a heat source, a fan for heat

dissipation, PIR sensors to detect the movements, and micro servos to operate the doors and

windows.
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Figure 3.8: The smart home’s CAD plan

Figure 3.9: The position of all the sensors and actuators in each floor (top view)

Fig. 3.10 shows a selected sample of the actuators and sensors (e.g., PIR sensor, DHT22

sensor, servo motor, fan, heater, LEDs, and camera) mounted in a room. Sensor readings are

collected and sent to a central server by Adafruit HUZZAH ESP8266 breakout boards. Some
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actuators, such as the micro servos, are also connected to the ESP boards. LEDs, relays,

cameras, and fans are connected directly to the computation node (Raspberry Pi). The

camera records videos/capture pictures when the near-by PIR sensor detects movement. The

camera can also stream videos and pictures upon the resident’s command. The controller

unit (Raspberry Pi module), interface modules (e.g., the voltage regulator modules, power

isolation modules, and Wifi modules), and the power supplies are mounted at the back of

the building. Fig. 3.11 shows the actuators, sensors, voltage sources, and control boards

used in the testbed. The circuits for the 12V and 5V components are kept isolated by relays,

and as a precaution in the event of high current, all micro-controllers are isolated from each

other with fuses. Power can be supplied to any combination of individual floors.

Figure 3.10: Picture of one room including its actuators and sensors
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Figure 3.11: Picture of sensors, actuators, sources, and control boards used in the smart

building

For the lighting system, each LED strip contains 5 LEDs. Different voltage levels are

applied to generate different colors for each of the living areas. The voltage range required

is between 1.4 to 5 V, and the maximum current needed per LED strip is 0.29 A. The

temperature and humidity in each floor are regulated based on the residents’ desired levels.

A decentralized model-based predictive control is developed in Python 3.6 and loaded on

the micro-controller through Raspbian. The modules that are most used are numpy, csv,

pylab, matplotlib, time, RPi.GPIO, string, and scipy. The sensors’ data is updated every

5 seconds, and the control inputs are generated at the same rate. Fig. 3.12 shows the

trajectories of the first-floor temperature versus the desired temperature. Fig. 3.13 shows

the humidity trajectory and the desired humidity signal. The average temperature error and
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average humidity error are 2.5% and 10%, respectively. Fig. 3.14 illustrates the control law

and the input signal generated for the actuators (fan and heater).

Figure 3.12: First-floor temperature trajectory

Figure 3.13: First-floor humidity trajectory
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Figure 3.14: First-floor actuator input and control signal

3.6 Conclusion

In this chapter, we designed centralized and distributed predictive control approaches

for the management of cyber-physical systems. To evaluate the performance of distributed

and centralized MPC on the building, we applied these two control methods to regulate

the thermal condition of a six-zone building and minimize energy consumption. The

heat exchange between rooms, and between the outer and inner spaces are all considered

in the control design. The control variables are the heat flow amount and the heater

temperature in the zones. The proposed distributed predictive controller was able to predict

the model inputs, states, thermal exchanges, and disturbances, to rapidly compensate the

system outputs. From the simulation results, the distributed MPC approach showed better

performance in signal tracking, energy consumption, and computation time compared with

the centralized MPC. The control performance is improved by utilizing the disturbances’

predictions in the proposed MPC approach. Besides, the feasibility of the solution is
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guaranteed if the initial solution is feasible, and the controlled closed-loop system is

asymptotically stable at the system’s equilibrium point.
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CHAPTER IV

LEARNING-BASED MODEL PREDICTIVE CONTROL FOR CYBER-PHYSICAL

SYSTEMS

In this chapter, we incorporate the model-based predictive control approach with ma-

chine learning for the management and control of cyber-physical systems. Besides, we

implement our proposed learning-based control strategy to manage visual, thermal, and

olfactory performances, and energy consumption in a building. Artificial Neural Network

(ANN) is utilized to learn the parameters associated with the building’s energy consumption

data, environmental conditions, comfort, and occupant-related information. Learned param-

eters are then used in the model-based controller (MPC) to generate the optimal control

inputs for HVACs, lighting systems, blinds, and ventilators. The training data for NNs

are generated by simulating an actual building in EnergyPlus software, considering the

indoor temperature, time of the day, weather data, energy consumption data, and desired

temperatures. The model-based controller generates the optimum control inputs at each time

step, with the aim of conserving energy and improving residents’ comfort. Performance of

the proposed learning-based MPC approach is analyzed by comparing its simulation results

with the results of a baseline controller on the building under the same conditions.
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4.1 Learning-based Prediction

This section explains the learning-based approach to predict CPS parameters. The goal

of the learning-based algorithm is to predict the information, which can not be modeled,

in the long-term, and investigate its influence on CPS performance. Artificial neural net-

work (ANN) is well-known for its ability to approximate nonlinear systems without prior

knowledge of the system dynamics [105]. ANN is highly applicable and efficient for the

approximation of building nonlinear parameters [30]. In this study, a nonlinear autoregres-

sive exogenous (NARX) neural network is utilized to learn and estimate the parameters

associated with three performance indexes (thermal, visual, and olfactory conditions) in a

building. The reason we used the NARX neural network as the learning approach is that the

parameter we try to learn is a time series parameter, and one of the primary applications

of NARX is predicting the time series models [33]. Moreover, the parameter that we try

to learn is highly nonlinear, and the NARX model is suitable for nonlinear models of this

type. The NARX network can be implemented in two different architectures, parallel

and series-parallel architectures. In a series-parallel architecture, the past measurements

are utilized in a feed-forward architecture to train ANN and get the predictions one step

ahead. However, in a parallel architecture, the predictions for multi-steps ahead (e.g., i steps

ahead) can be attained through a feedback structure [86]. The series-parallel and parallel

architectures’ equations are presented in (4.1) and (4.2), respectively. Three main layers,

i.e., input, output, and hidden layer, exist in both NARX architectures [86].

ŷ(k) = f(u(k − 1), ..., u(k − na), y(k − 1), ..., y(k − nb)) (4.1)
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ŷ(k + i) = f(u(k + i− 1), ..., u(k + i− na), y(k + i− 1), ..., y(k + i− nb)) (4.2)

Above, u and y are the system’s input and output variables. na and nb denote the order of

inputs and outputs, respectively, and f is a nonlinear function. Thus, the output signal in

the next step is estimated based on its previous values and those of the exogenous inputs.

The parallel architecture can provide predictions for a long time horizon; however, the

accumulative prediction error using this architecture can be very high because all the past

predicted outputs are utilized in every step of the algorithm. In this study, the estimations of

building parameters over a long-term prediction horizon are required; therefore, the parallel

architecture is chosen for the NARX network. A training algorithm need to be chosen to

train the network. In this study, Levenbegrg-Marquardt backpropagation algorithm is used

for training. This algorithm is a well-known and efficient method to train networks with

several hidden layers [105]. After training, the network is validated. Test data is used to

evaluate the stopping criterion and expected performance of the predicted data. To evaluate

the training performance, the mean squared errors (MSE)s of the training data are calculated.

The sum of all the errors between the measured and predicted outputs over the training

stack size is defined as the MSE criterion. Thus, the NARX neural network algorithm is as

follows:

• Define input and output datasets.

• Define three sets of training, validation, and testing data.

• Choose a network architecture and a training algorithm by the trial and error method.

• Train the network and evaluate its performance.

• If the network performance is satisfactory, the problem is solved, otherwise, change
the network size, retrain, or use a larger dataset.
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4.2 Model-based Control Incorporated with Learning

In the proposed approach, online model learning is integrated within the control ap-

proach to provide self-adaptive models that are robust to the environment changes. By

integrating machine learning with model-based control technique, we will obtain a high-

fidelity model of the building system and its environment with less training data and higher

model certainty. Also, the integrated structure allows run-time reconfiguration and adap-

tation in response to the changing models, specifications, and operating conditions. The

integrated building management system is shown in Fig. 4.1. The system consists of three

main blocks; environmental module, system model module, and management module. In

the environmental module, environment variables, such as climatic conditions, are pre-

dicted through environment models or learning algorithms. In this regard, the predicted

environment variables are represented by a vector, λ̂k, as follows:

λ̂k =

λ̂Mk
λ̂Dk

 (4.3)

where λMk denotes the variables estimated using an environment model (e.g., Kalman filter

estimation method), and λDk denotes the variables learned using data analytics and machine

learning algorithms. The general representation of an environment model is as follows:

λ̂Mk+1 = φ(λMk , θ
φ
k , r), (4.4)

where λ̂Mk ∈ ΛM
k is the environment variable, θφk is the parameter of the environment

model that needs to be learned, and r denotes a set of previously observed variables. The

environment inputs and building’s historical data are sampled and fed into the prediction
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filter. The model parameters, θφk , are updated in the prediction filters (through ARIMA

modeling or Kalman filtering [110, 56]). The predicted environmental parameters obtained

in this module are used for updating the formulations in the system module and management

module.

Dynamics of the building components (models defined in subsection 2.1) are included

in the system module. The general representation of a component model is considered as

follows:

x̂k+1 = f(xk, uk, λ̂k+1, θk) (4.5)

where xk and uk are the state variables and control inputs of the building component,

respectively. x̂k is the predicted state variable, λ̂k+1 is the predicted environmental vari-

able, and θk denotes model parameters that need to be learned. For example, for linear

systems ẋk+1 = Axk + Buk, θk can be matrices A and B that need to be learned (i.e.,

θk =

[
ATBT

]T
). The model can be tuned through model-based forecasting strategies or

machine learning. The estimated state values generated at each time instant are sent to the

management module.

The management module consists of optimization block and objective function block.

In this module, an objective function, containing the building’s performance specifications

(in terms of safety, cost-effectiveness, and comfort criteria) and its operating constraints, is

formulated. Some building’s specifications (such as energy consumption) are mathemati-

cally modeled, and some other requirements (such as the personal parameters of the comfort

models defined in section 2.2) are learned using machine learning approaches.
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Figure 4.1: An integrated model-based control and data analytics approach for buildings

management

A general set-point cost function equation for formulating the building’s performance

specifications is as follows:

J(xk, uk−1) = ‖xk − x∗k‖
2
P + ‖uk−1‖2

Q + ‖∆uk−1‖2
R (4.6)
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where x∗k is the desired operating state (such as the desired comfort criteria, or thermal

condition), ∆uk−1 denotes the changes in the control inputs. P , Q, and R are the weighting

matrices. In the objective function (4.6), the first term expresses the set-point regulation

problem (for example, regulating the indoor temperature), and the second and third terms

denote the cost of control inputs and their changes (for example, the cost of lighting energy).

The operating constraints define the feasible domains on both the state variables and

control inputs. The general representation of the constraints is as:

ψ(xk) ≤ 0, U(xk) ⊆ U (4.7)

where U(xk) denotes the admissible input set in state x and ψ(xk) represents the reachable

states. Depending on the type of state variables (e.g., comfort criteria, thermal condi-

tions), control inputs, and hardware limitations, specific operating constraints are defined.

Considering the system constraints and objective functions, the optimal control inputs are

generated through a learning-based and model-based optimizer. Control inputs are then

injected to the actual building system to minimize the operating costs and meet the desired

performance metrics. The incorporated model-based control with learning approaches are

utilized for CPS management for three main purposes: (1) to model the CPS components

more accurately through learning-based approximations (2) to learn the control laws from

the training data instead of solving the actual model-based optimization problem (3) to

attain the cost function equation by learning its parameters.
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Table 4.1: Building materials description
4 inch dense face brick 2 inch insulation 4 inch concrete block 3/4 inch plaster board 1/8 inch hardwood 8 inch concrete block acoustic tile 1/2 inch stone 3/8 inch membrane

Roughness Rough Very rough Medium rough Smooth Medium smooth Rough
Medium

smooth
Rough Rough

Thickness (m) 0.1014684 0.050901 0.1014984 0.019050 0.003169 0.2033016 0.019050 0.012710 0.009540

Conductivity (W/m−K) 1.245296 0.043239 0.3805070 0.7264224 0.1591211 0.5707605 0.060535 1.435549 0.1902535

Density (kg/m3) 2082.400 32.03693 608.7016 1601.846 720.8308 608.7016 480.5539 881.0155 1121.292

Specific heat (J/kg −K) 920.4800 836.8000 836.8000 836.8000 1255.200 836.8000 836.8000 1673.600 1673.600

Thermal absorptance 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000

solar absorptance 0.930000 0.500000 0.650000 0.920000 0.780000 0.650000 0.320000 0.550000 0.750000

Visible absorptance 0.930000 0.500000 0.650000 0.920000 0.780000 0.650000 0.320000 0.550000 0.750000

4.3 Learning-based MPC for Management of Case Study I

In this section, the proposed learning-based MPC approach is applied to manage thermal

conditions in a four-zone building simulated in EnergyPlus software.

4.3.1 Case study I model definition

The building under study is a two-story office building with four zones and one HVAC

system per zone. Each zone’s thermostat is dual setpoint. Fig. 4.2 shows the CAD model of

the building under study. The total floor area is 1600m2 with the orientation to the north.

Windows include shadings, overhangs, and fins. Several materials are used in various layers

of the walls (exterior and interior), window frames, door, roof, ceiling, and inter-zone walls.

Table 4.1 contains the building materials’ specifications.

4.3.2 Learning-based MPC on case study I

This subsection explains the proposed learning-based control approach to control the

building’s indoor temperature. Considering the thermal convection and conduction equa-
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Figure 4.2: four-zone building CAD model

tions, the mathematical model of the indoor temperature is represented as (4.8) [39].

T̂in(t) = a[T̂in(t− 1) +
∆t

C
[P (t− 1)− U(T̂in(t− 1)− Tout(t− 1))]] + b̂(t) (4.8)

where T̂in and Tout are the estimated indoor temperature and outdoor temperature, respec-

tively. ∆t is the time step, and P is the heating power. a and U are the parameters to be

identified. b̂(t) is the estimated occupancy at time t. In the learning-based simulation, the

estimated value of occupancy is fed into the model-based predictor. In the model-based

controller, the occupancy profile is chosen constant at its average value (b̄(t)).

Parameters of the thermal model (4.8) are identified through the recursive least square

(RLS) identification algorithm using the EnergyPlus input/output data. To evaluate the

performance of the identification algorithm, the root mean square (RMS) criterion is used.
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The RLS algorithm is presented in brief as follows [55].

F̂ (t+ 1) =
1

λ
[F (t)− F (t)φT (t)F (t)

λ+ φT (t)F (t)φ(t)
]

e(t+ 1) = y(t+ 1)− θ̂(t)φ(t)

θ̂(t+ 1) = θ̂(t) + F (t+ 1)φ(t)e(t+ 1) (4.9)

where F , λ, φ, and θ̂ are the gain, forgetting factor, observations and estimated parameter,

respectively. e denotes the error between the measurements and identified outputs.

Having the weather and occupancy forecasts, the model predictive control (MPC) comes

into play. At each time instant, an optimal control problem is solved to obtain the optimal

control action over the time horizon. Using MPC, a plan for the HVAC system is generated

Figure 4.3: Learning-based model predictive control (MPC) for thermal management of

buildings
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based on the predicted weather conditions and occupancy profiles over the time horizon.

The first control action that minimizes the energy consumption and satisfies the comfort is

applied to the building’s HVACs, then the control algorithm is repeated with the feedback

information of building states and outputs at the next time instant. Fig. 4.3 presents the

proposed learning-based MPC approach. The cost function of MPC is defined as (4.10), such

that it penalizes the deviations from the comfort level and optimum energy consumption.

J(t) =
N∑
k=0

‖T̂in(t+ k)− Td‖Q
2

+
N∑
k=0

‖∆P (t+ k − 1)‖R
2 (4.10)

where Q and R are the weighting factors associated with the states and inputs, respectively.

N is the time horizon, and Td is the desired temperature. Therefore, the MPC problem is to

minimize (4.10) subject to the performance constraints (4.11), robustness constraints (4.12),

and limit constraints ((4.13)). It is worth mentioning that equation (4.11) includes learning,

while (4.12) is solely based on model-based design.

T̂in(t) = a[T̂in(t− 1) +
∆t

C
[P (t− 1)− U(T̂in(t− 1)− Tout(t− 1))]] + b̂(t) (4.11)

T̄in(t) = a[T̄in(t− 1) +
∆t

C
[P (t− 1)− U(T̄in(t− 1)− Tout(t− 1))]] + b̄(t) (4.12)

Tminin ≤ T̄in(t+ k) ≤ Tmaxin ,

Pmin ≤ P (t+ k − 1) ≤ Pmax (4.13)

4.3.3 Simulation results of learning-based MPC on case study I

In this section, all the simulation assumptions and results from the proposed learning-

based MPC and the model-based controller are illustrated. The simulations are performed for
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one year, with 6 time steps per hour. To provide the ANN dataset, EnergyPlus simulations on

the building model of Fig. 4.2 were completed from the 1st of January to 31st of December.

The simulation assumptions are as follows.

• The desired temperature of all zones are between 20◦C and 25◦C.

• The control variables are the HVAC setpoints.

• The maximum and minimum supply air temperatures are 50◦C and 13◦C, respectively.

• The maximum dry-bulb temperature for winter and summer days in Chicago Ohare
location are considered −16.6◦C and 31.6◦C, respectively.

• The weather data at Chicago Ohare location is used.

• The number of people per zonal area is 0.1.

• The ANN input layer includes the environmental measures, e.g., the time of day, date,
weather data, and the historical occupancy data.

• The input and output delays of the NARX model are both chosen 2.

• One output layer and 10 hidden layers are chosen.

• The Levenbegrg-Marquardt backpropagation training algorithm is chosen.

Figure 4.4: NARX neural network model

The NARX neural network implemented in MATLAB is presented in Fig. 4.4. Fig. 4.5

compares the network’s response with the actual vacancy profile and shows the error values
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between the occupancy predictions and the actual data throughout one month (To get a clear

image, these plots are presented for a one-month period). The maximum error value at each

time step is 1, i.e., the target occupancy profile is well-tracked. Fig. 4.6 presents the regres-

sion and performance plots of the training, validation, and testing datasets. The regression

values are all close to 1, and the MSE error is 0.003189, i.e., the training performance is

satisfactory. Fig. 4.7 shows the results of the indoor temperature identification throughout a

one-month simulation. From Fig. 4.7, the identification error does not exceed 0.05, i.e., the

identified outputs are very close to the actual indoor temperature values.

Figure 4.5: Neural network output response versus targets
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Figure 4.6: Regression and performance trajectories of datasets

Figs. 4.8 and 4.9 show the results of learning-based and model-based control approaches

on the building. Comparing the power consumption graphs and the corresponding values

in Table 4.2, the proposed method decreased the cooling and heating power consumption

by 40.56% and 16.73%, respectively. The deviations from the comfort level in the model-

based control method are extremely higher compared to the proposed method. The zone

temperature using the model-based control approach even deviates from the lower comfort

zone limit.

Table 4.2: Simulation results

Parameters Conventional MPC Learning-based MPC Change

Average cooling power 396.28 W 235.55 W ↓ 40.56%

Average heating power 2.43 KW 2.02 KW ↓ 16.73%
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Figure 4.7: Identified model outputs versus real outputs, and the identification error

Figure 4.8: Power consumption and zone 1 temperature using learning-based MPC
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Figure 4.9: Power consumption and zone 1 temperature using conventional MPC

4.4 Learning-based MPC for Management of Case Study II

In this section, the proposed learning-based MPC approach is applied to manage thermal,

visual, olfactory conditions in a building simulated in EnergyPlus software.

4.4.1 Case study II model definition

The building under study is a one-story, L-shaped building, with total area and volume

of 130.06m2 and 396.44m3, respectively. The area and volume of the north, west, and

east zones are (55.74m2, 169.90m3), (37.16m2, 113.27m3), and (37.16m2, 113.27m3),

respectively. The windows are double-pane, and the building is oriented to the north. The

zones are equipped with air conditioners (HVACs), light dimming, and blind control systems.

An illuminance detector is placed at the center of the west zone, at desk height.
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4.4.2 Learning-based MPC on case study II

Three NARX networks, corresponding to three performance criteria, are utilized in

this study. The network estimating the thermal comfort has five output variables, i.e.,

PMV , occupancy (Occ), cooling/heating power consumption (P ), indoor air temperature

(Tai), and radiant temperature (T̄r) from time step k to k + i. The time of day, season,

outdoor temperature (Tout), solar radiation (Sr), occupancy, radiant temperature, set-point

temperature (Tsp), and indoor air temperature at time step k compose the input layer of

ANN for estimating the thermal properties. The NARX network for estimating thermal

properties is presented in (4.14).

ŷ(k + i) = f(u(k + i− 1), ..., u(k + i− na), y(k + i− 1), ..., y(k + i− nb))

u(k) = [Time(k);Tout(k);Sr(k); T̄r(k);Tsp(k);Tai(k);Occ(k)]

y(k) = [PMV (k);Occ(k);P (k);Tai(k); T̄r(k)] (4.14)

For estimating the visual properties, visual comfort index (PPDv), occupancy, lighting

power consumption, luminance (Ls,i) and illuminance level (Ev) from time step k to k + i

are the ANN outputs. The inputs of ANN for the visual comfort evaluation are the time of

day, season, luminance, solid angle (ωs,i), position index (Pi), and occupancy at time step k.

The NARX network for estimating visual properties is presented in (4.15).

ŷ(k + i) = f(u(k + i− 1), ..., u(k + i− na), y(k + i− 1), ..., y(k + i− nb))

u(k) = [Time(k);Ls,i(k);ωs, i(k);Pi(k);Occ(k)]

y(k) = [PPDv(k);Occ(k);P (k);Lb(k);Ev(k)] (4.15)
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For learning the olfactory properties, the humidity level, CO2 concentration, air flow

rate (Lp), and occupancy at time k are the inputs. The output layer of ANN for learning

olfactory parameters is composed of the occupancy, PPDo olfactory comfort index, pollu-

tant concentration (C), humidity, and air flow rate from time step k to k + i. The NARX

network for estimating olfactory properties is presented in (4.16).

ŷ(k + i) = f(u(k + i− 1), ..., u(k + i− na), y(k + i− 1), ..., y(k + i− nb))

u(k) = [Time(k);Humidity(k);C(k);Lp(k);Occ(k)]

y(k) = [PPDo(k);Humidity(k);C(k);Lp(k);Occ(k)] (4.16)

In this study, to validate the performance of the proposed control strategy and for

comparison purposes, we first designed a PID controller for the building. One PID controller

is designed for each building zone. They are tuned such that they maintain desired thermal,

visual, and olfactory set-points in the building with minimum violations of comfort bounds

(comfort constraints satisfaction is not guaranteed). The PID parameters for each zone are

computed using pidtune in MATLAB (shown in Table 4.3). It is worth mentioning that the

building energy trend and comfort criteria are not considered as inputs for the optimization

problem (i.e., They are outputs of the PID controller). To achieve the highest (thermal,

visual, olfactory) comfort level, a conservative reference (in the middle of lower and upper

comfort limits) is chosen for PID tracking.
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Table 4.3: PID parameters

Zone P I D

North 215.1 0.172 103000

West 111.0 0.041 50300

East 117.0 0.033 49810

The control goals in this study are minimizing energy consumption in the HVACs

and lighting systems, and maximizing occupants’ comfort (thermal, visual, and olfactory

comfort). In this regard, the objective function is formulated as (4.17).

minimize J(k) =
N∑
i=0

‖ ˆPMV (k + i)− PMVd‖
2

Q1
+ ‖ ˆPPDv(k + i)− PPDd‖

2

Q2

+ ‖ ˆPPDo(k + i)− PPDd‖
2

Q3
+

N∑
i=0

‖∆P (k + i)‖2
R

(4.17)

subject to ŷ(k + i) = f(u(k + i− 1), ..., u(k + i− na), y(k + i− 1), ..., y(k + i− nb),

λ̂(k + i), θ(k))

(4.18)

where Q1, Q2, Q3, and R are the weighting factors associated with the thermal, visual,

olfactory comfort indexes, and energy usage, respectively. N is the prediction horizon, and

the d indices in comfort indexes represent the desired comfort levels. ŷ(k) is the predicted

output variable, λ̂(k) is the predicted environmental variable, and θ(k) denotes model

parameters that need to be learned. Therefore, the MPC problem is to minimize (4.17)
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subject to the system model (4.18), and system constraints (4.19).

PMV min ≤ PMV (k + i) ≤ PMV max,

PPDv
min ≤ PPDv(k + i) ≤ PPDv

max,

PPDo
min ≤ PPDo(k + i) ≤ PPDo

max,

Tminai ≤ T̄ai(k + i) ≤ Tmaxai ,

Pmin ≤ P (k + i) ≤ Pmax (4.19)

Above, PMV max and PMV min denote the upper and lower constraints of the thermal

comfort index. PPDv
max and PPDv

min denote the upper and lower constraints of the

visual comfort index. PPDo
max and PPDo

min denote the upper and lower constraints of

the olfactory comfort index. Tmaxai and Tminai are the upper and lower limits of the indoor air

temperature. Pmax and Pmin are the upper and lower limits of power consumption.

The performance of MPC is highly dependent on the accuracy of the prediction model

[26]. To improve model accuracy, in this work, NNs are utilized to learn the building

parameters, i.e., energy consumption, comfort indexes, and their associated parameters.

The learned data is then fed into the model-based controller (MPC). The control algorithm

generates control inputs for the heating/cooling systems, lighting systems, blinds, and

ventilators in each step.

Fig 4.10 shows the block diagram of our proposed integrated learning-based control

strategy. The environmental conditions, comfort parameters, and energy consumption of

the building are learned through NNs. Learned parameters are then injected into the cost

function block of MPC. In each step, MPC computes the current and future optimal control
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Figure 4.10: Proposed learning-based building control system

inputs that can minimize the accumulated power consumption and maximize the residents’

comfort. Control inputs are then applied to the building actuators, such as the blinds,
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heating/cooling systems, artificial lights, and ventilators. Our proposed learning-based MPC

approach for managing case study is as follows:

Algorithm 4 Proposed learning-based control approach for building management
Step 1: Set the time step n = 1.

Step 2: Reset optimization iteration k = 0.

Step 3: Initialize the system state and control input values.

Step 4: Get the ANN outputs, i.e., approximations of the power consumption, environmental

conditions, and comfort indexes.

Step 5: Build the cost function with the learned data, and compute the current and future

control inputs (heating/cooling set-points, airflow of the ventilator, light intensity, and blind

angle) by solving the optimization problem (4.17) subject to (4.18) and (4.19).

Step 6: Increment k, k = k + 1, and continue until k ≤ kmax. If k ≥ kmax, go to step 4.

Step 7: Apply the first control inputs to the building simulated in EnergyPlus.

Step 8: Increment n, n = n+ 1, and go to step 2.

4.4.3 Simulation results of learning-based MPC on case study II

Fig. 4.11 shows the general block diagram of the simulations. To provide learning

datasets, the building model is simulated in EnergyPlus building simulation software. The

proposed control strategy is coded in MATLAB. EnergyPlus transfers the datasets to the

MATLAB code, in which the NARX network learns the comfort indexes, environmental
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conditions, and energy consumption. Based on the learned and estimated parameters, HVAC

systems’ energy consumption, lighting energy consumption, and residents’ comfort are

optimized. For comparison purposes, a PID controller is also applied to the case study under

the same conditions. The simulation assumptions are as follows:

• Simulation is performed for one year period, from the 1st of January to 31st of
December.

• Sampling time is 10 minutes.

• Location (weather data) is San Francisco, Intl Ap, CA, USA.

• The thermal constraint is between 20 ◦C and 27 ◦C.

• The maximum dry-bulb temperature for winter and summer days are -17.30 ◦C and
31.50 ◦C, respectively.

• The average number of occupants per zonal area is 2.18, and the total occupancy
count in the whole area is 10.

• The temperature set-points for the PID controller are set in the middle of thermal
comfort limits (20 ◦C).

• The luminance and glare set-points for the PID controller are set slightly under their
upper comfortable limits (2000cd/m2 and 30, respectively).

• For the PID case, the highest contaminant concentration level is set at 800 ppm.

• Input delays of ANNs are chosen to be 2 for learning the thermal, 1 for learning the
visual, and 10 for learning the olfactory comfort.

• Output delays of ANNs are chosen 10 for learning the thermal, 20 for learning the
visual, and 70 for learning the olfactory comfort.

• The number of hidden layers for thermal, visual, and olfactory comfort learning are
10, 10, and 30, respectively.

• Training algorithm is Levenbegrg-Marquardt backpropagation.

• Control variables are the heating/cooling temperature, humidity, air flow, blind status,
and light illuminance.
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Figure 4.11: General block diagram of the simulations

Network training, testing, and validation are performed over a one year period, and the

learning results are shown over a 36-day period (for a clear illustration). Besides, for the

sake of clarity, simulation results are shown only for the north zone of the building. The

other zones show similar behavior. Fig. 4.12 shows the time-series trajectory of learning the

temperature. Based on the error trajectory in Fig. 4.12, the absolute value of the temperature

learning error does not exceed 0.5. The mean squared error (MSE) of the most optimum

temperature learning (where the testing, training, and validation curves converge) is 0.0067,

which depicts satisfying performance of the network. The time-series trajectory of learning

the clothing factor is shown in Fig. 4.13. According to Fig. 4.13, the absolute value of

the clothing learning error is less than 0.05. Moreover, the training, testing, and validation

curves converge at MSE of 3.552 × 10−6. Fig. 4.14 shows the time-series trajectory of

learning PMV thermal comfort index. The absolute value of MSE for learning the PMV

index does not exceed 0.02, which is satisfying considering the PMV values that do not

exceed the desired thermal comfort limits (±1).
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Figure 4.12: Learned temperature versus targets

Figure 4.13: Learned clothing versus targets
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Figure 4.14: Learned PMV thermal comfort index versus targets

Results of learning the visual properties are shown in Figs. 4.15 to 4.17. The time-series

trajectory of learning the illumination is shown in Fig. 4.15, in which the maximum value

of error for learning the illumination data is 0.5, with the best MSE performance of 0.0045.

According to the time-series plots in Fig. 4.16, the error between the observed and learned

glare data is 0.5. Moreover, The best validation performance value for the glare learning

is 0.0023. Fig. 4.17 shows the actual and learned values for the visual comfort index

(PPDv). The maximum error and the best performance MSE for learning PPDv are 0.5

and 0.0043, respectively. Results of learning the olfactory properties are shown in Figs.

4.18 and 4.19. Fig. 4.18 shows the actual and learned values for the CO2 concentration.

From Fig. 4.18, the maximum absolute error between the targeted and learned values is

6 (which is satisfactory considering the average value of CO2 level over the simulation

period), and the MSE value is 0.0046. Fig. 4.19 shows the time-series trajectory of learning
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the olfactory comfort index (PPDo). The MSE and maximum absolute error values of

learning the PPDo index are 0.0084 and 0.8, respectively.

Figure 4.15: Learned illumination versus targets

Figure 4.16: Learned glare versus targets
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Figure 4.17: Learned PPD visual comfort index versus targets

Figure 4.18: Learned CO2 concentration versus targets
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Figure 4.19: Learned PPD olfactory comfort index versus targets

Figs. 4.20 and 4.21 show thermal properties of the building using the proposed control

strategy and baseline controller, respectively. The clothing factor trajectories present higher

values during the winter seasons (two sides of the plots), which is expected since the

residents’ thermal perceptions are dependant on the environmental changes. In Fig 4.20,

the PMV index trajectory varies between −1 and 1, which represents slight cool (−1),

neutral (0), and slight warm (1) conditions. Moreover, thermal comfort values are lower

during the cold seasons than the hot seasons. The zonal temperature using the proposed

controller fluctuates between 20 ◦C and 27 ◦C (desired zonal temperature values), and it is

slightly higher during summer seasons than winter seasons. Therefore, it is conceived that

the thermal comfort is maintained using the proposed control strategy. According to Fig.

4.21, the PMV profile using PID controller oscillates between −0.5 and 2.5 (i.e., it reaches
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uncomfortable thermal conditions). Likewise, the temperature profile in Fig. 4.21 shows

large oscillations and time-lags. Thus, in spite of choosing a conservative temperature

set-point (slightly under the upper comfort bound) for PID, it fails to maintain thermal

comfort constraints. According to the heating/cooling power consumption plots in Figs.

4.20 and 4.21, an average of 888.68 W less heating power, and 872.78 W less cooling power

are consumed using the proposed control approach compared to the baseline. Thus, the

conventional controller is not capable of minimizing energy consumption; because unlike

the proposed learning-based controller, PID is not adaptive to the environmental changes

nor predictive, and it does not take into account the energy saving aspect as an input for the

decision-making process.

Figure 4.20: Thermal properties using the proposed control strategy
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Figure 4.21: Thermal properties using PID control

Figs. 4.22 and 4.23 show the building’s visual properties using the proposed control

strategy and baseline, respectively. According to the lighting energy consumption plots, an

average of 1012.30 J less lighting energy is consumed using the proposed control approach

compared to the baseline. The lighting energy and occupancy count trajectory curves are

proportional in Fig. 4.22, indicating that the predictions of occupancy is utilized to save

energy using the learning-based controller. From Figs. 4.22 and 4.23, the illumination

and glare levels fluctuate significantly over the simulation period. During the hot seasons,

illuminance level and lighting consumption are lower than the cold seasons. According to

section II. B, the illuminance and glare values in Figs. 4.22 and 4.23 (using both controllers)

are within the comfortable limits. The average of PPDv index using the proposed control

approach is 7.25 %; however, PPDv average using PID is 15.20%. Although the PID

controller did not violate the comfort limits, the proposed control approach has shown better
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visual comfort index by learning historical comfort data and forecasting occupancy and

environmental conditions.

Figure 4.22: Visual properties using the proposed control strategy

Figure 4.23: Visual properties using PID control
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Figs. 4.24 and 4.25 show olfactory properties of the building using the proposed control

strategy and baseline, respectively. From the air flow rate and contaminant concentration

plots in Figs. 4.24 and 4.25, it is conceived that higher air flow rates are applied to the higher

levels of CO2 and contaminant concentration. Furthermore, PPDo is lower (corresponding

to a higher comfort level) with higher air flow intake. The olfactory comfort index (PPDo)

in both figures (Figs. 4.24 and 4.25) varies from 0 to 4 (desired levels). However, the

average PPDo is slightly lower using the proposed control approach (higher olfactory

comfort satisfaction) compared to the baseline. Furthermore, Table 4.4 compares the

simulation results of the baseline and proposed control approaches. In particular, Table 4.4

summarizes all the analysis mentioned above on the simulation results. In summary, our

proposed learning-based controller ensures the highest possible overall thermal, visual, and

olfactory comfort in the building with the lowest possible energy usage in the corresponding

subsystems.

Table 4.4: Performance comparison of baseline and proposed control methods

Approach Thermal energy consumption Thermal comfort Lighting energy consumption Visual comfort Olfactory comfort]

Baseline 7463.71 W 75.52% 18052 J 84.8% 86.50%

Proposed 5702.25 W 99.86% 17039.7 J 92.75% 97.89%
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Figure 4.24: Olfactory properties using the proposed control strategy

Figure 4.25: Olfactory properties using PID control

4.5 Conclusion

In this chapter, a learning-based modeling strategy incorporated with a model-based

predictive control approach is proposed for CPS management and control. The proposed

approach is applied to two case studies; (1) to manage the thermal comfort and energy
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consumption in a four-zone building simulated in EnergyPlus software, and (2) to manage

visual, thermal, and olfactory conditions in a building simulated in EnergyPlus software. Pre-

dicting the building parameters is a challenging part of MPC since the building’s subsystems

are nonlinear, associated with uncertainties, and strongly coupled. ANN is incorporated

with the model-based control approach to address the mentioned issues. The predictions of

building’s energy consumption data, environmental conditions, occupant-related parame-

ters, and comfort criteria are generated through ANN, and then fed into the model-based

controller (MPC). EnergyPlus software is used to simulate a building with real materi-

als and components, and to test the proposed approach on it. Results from the proposed

learning-based approach in both case studies, showed significantly better performance in

maintaining residents’ comfort and minimizing energy usage, compared to the baseline

approach. From the simulation results of case study I, the proposed learning-based control

approach proved the significantly better performance in energy savings (40.56%less cooling

power consumption and 16.73%less heating power consumption), and residents’ comfort

over the conventional MPC approach. From the simulation results of case study II, the

proposed learning-based building management system performs significantly better than

the baseline controller in maintaining residents’ thermal, visual, and olfactory comfort

and energy efficiency. The average thermal, visual, and olfactory comfort rates are 92%,

88%, and 98%, respectively, throughout the simulation. The learning algorithm is over

90% accurate in predicting building comfort parameters, environmental conditions, and

energy consumption patterns. Moreover, compared to the baseline, an average of 67.53%

less heating power, 62.14% less cooling power, and 5.6% less lighting energy are consumed
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using our proposed control approach. It is worth mentioning that while most of the previous

studies on building management applications focused on optimizing one single aspect of

buildings, such as thermal aspect, our proposed building management system is set out

to address simultaneous energy and comfort management in three main components of

buildings; thermal, visual, and olfactory components. The proposed management system

ensures the highest possible overall thermal, visual, and olfactory comfort in buildings with

the lowest possible energy usage in the corresponding subsystems.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

This chapter concludes the contributions of this dissertation and states the future research

directions.

5.1 Conclusions

In this dissertation, we proposed and implemented control approaches for cyber-physical

systems management. The information revealed in this dissertation is expected to contribute

to the design, development, and evaluation of model-based and learning-based controllers

for CPSs management (smart buildings management).

Developing appropriate models has always been a significant challenge in designing and

implementing model-based controllers for CPSs management. Suitable models (thermal,

humidity, and occupants behavior models for a building) are required to be chosen based

on the application. For instance, mathematical models are typically accurate in predicting

the system’s dynamics, but they are not computationally efficient for real-time control

purposes. Other than mathematical models, learning-based models can be advantageous

when insufficient information about the physical properties is available. Learning-based

models also have the advantage of being self-adaptive/self-growing over time, for instance,

for learning the building occupants’ feedback or their perception of comfort. The second
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chapter of this dissertation is dedicated to CPS models description, specifications, and

constraints. Models of the building indoor conditions, and performance criteria (thermal,

visual, auditory, olfactory, hygienic comfort) are provided.

One of the most debated aspects of cyber-physical systems is their control and manage-

ment. The first step to design a controller for a CPS is to define its control objectives. For a

building control problem, improving the residents’ comfort, and minimizing building energy

consumption can be the control objectives. Model predictive control (MPC) is known to

be excellently suited for CPSs control and management due to its predictive properties.

Moreover, MPC takes into account the constraints and disturbances associated with the

optimal problem, which usually exists in CPS control problems. For our problem, MPC

can be utilized in a centralized or distributed control architecture. In a centralized MPC

approach, one objective function, including the system constraints, dynamics, and control

objectives, is formulated. Clearly, if the system is large-scale, the optimal control problem

will contain so many variables, and solving it demands a huge computation. In a distributed

MPC approach, the system is split into smaller subsystems; each subsystem is controlled by

a local controller through the local state and input variables. There also exists a coordinator

that shares the interaction variables with the other subsystems. The computation overhead

for solving the distributed control problem is expected to be lower than the centralized

structure.

In the third chapter of this dissertation, we provided centralized and distributed MPC

architectures, as a general guide, for the management of CPSs. We applied our proposed

MPC approaches to a CPS case study; smart building. In the building control problem,
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achieving optimal energy consumption and thermal comfort are the control objectives.

Comparing the simulation results of the distributed and centralized MPC demonstrate the

effectiveness of the distributed MPC approach for the systems under study. Distributed MPC

resulted in a good overall performance with significantly less computational complexity.

Our implemented smart building testbed is also illustrated at the end of this chapter, which

was utilized to analyze the performance of our proposed management schemes.

By incorporating learning with the model-based control approach, we are capable of

controlling two types of systems, i.e., systems with available mathematical models, and

the ones with unavailable models (due to complex non-linearity or high order). In the

integrated approach, the model-based controller allows to formulate system management

tasks as optimal control problems in terms of performance metrics. Online model learning

is utilized within the control approach to adapt the system to the changing environmental

conditions over time. The controller is integrated with the machine learning algorithm to

update formal specifications over time. Therefore, this approach integrates control and

learning algorithms into one management structure that enables systems to adapt to the

variations in their environment.

In the fourth chapter of this dissertation, we proposed a learning-based predictive control

strategy for the management and control of thermal, visual, and olfactory properties of

smart buildings. The comfort criteria, energy trends, and environmental parameters of the

underlying building are learned using neural networks. Based on the learned parameters,

a predictive model-based controller is then utilized to achieve the desired comfort levels

and energy savings. Compared to the previous building management systems presented
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in the literature, the proposed management system combines learning with model-based

control design to include the changing occupant-related data and environmental conditions

in the control loop. The proposed control strategy learns building dynamics and adapts to

the changing environment, to balance the performance of three subsystems in buildings

(thermal, visual, and olfactory components), in terms of cost-effectiveness and comfort.

Two controllers, the proposed control approach and a baseline controller, are implemented

on a building simulated in EnergyPlus building simulation software, and their results are

compared. The simulation results (in MATLAB and EnergyPlus) proved that the proposed

control structure is very effective for simultaneous optimization of visual, thermal, and

olfactory performances, by considering the forecasts of environmental conditions, comfort

parameters, and energy profiles in the control loop. Therefore, the learning-based control

strategy has shown better control performance in maintaining occupants’ comfort and

reducing building energy consumption over the baseline. An average of 92.66% comfort

(thermal, visual, and olfactory comfort) is attained using the proposed control approach.

Besides, compared to the baseline, an average of 67.53% less heating power, 62.14% less

cooling power, and 5.6% less lighting energy are consumed using the proposed control

approach. The configured learning algorithm is also over 90% accurate in predicting

building comfort parameters, environmental conditions, and energy consumption patterns.

The key findings of this dissertation are summarized as follows:

1. Existing model-based building control schemes typically require a sufficiently accu-

rate model of the building mechanism in order to achieve a desired control perfor-

mance. In situations where finding a suitable mathematical model for the building
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is difficult (due to measurement errors, lack of information, and poor understanding

of the system mechanism), machine learning techniques can be used to represent

the underlying dynamics. However, learning-based building control strategies can

not be generalized and analyzed easily, and they suffer from limitations in verifying

their accuracy. In this study, we combined the concepts of model-based control

with learning-based techniques to provide a real-time building management structure

that can learn complex dynamics and adapt to achieve optimal performance while

satisfying the problem constraints.

2. Five categories of building comfort (including thermal, thermal, visual, auditory,

olfactory, and hygienic comfort), their constraints, specifications, and requirements

are modeled and included in the proposed building management system. In addition,

building cost-effectiveness requirements are formulated and included in the control

scheme.

3. In the proposed building control scheme, estimations from the data-driven and model-

based building models are utilized to build the optimization problem. In each instance,

the dynamic information of users, energy usage, and ambient conditions are fed

back to the model-based controller to update the objective function for the next

time sample. This ensures that the system disturbances are taken into account. In

particular, in the proposed approach, a learning-based design is utilized for computing

the objective function, learning the building uncertainties and its dynamics, and

solving the optimization problem.
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4. While most of the previous studies on building management applications focused on

buildings thermal control, to optimize the energy consumption, this study is set out

to address energy and comfort management in all the subsystems in a building. The

proposed management system ensures the highest possible overall thermal, visual,

auditory, olfactory, and hygienic comfort in buildings with the lowest possible energy

usage in the corresponding subsystems.

5.2 Future Research

In this dissertation, we have proposed predictive control approaches for CPSs man-

agement and control, assuming that the actuators are free of fault. However, an actuator

malfunction in a plant may corrupt the behavior of the whole system and lead to critical

degradation in the system stability and closed-loop performance. Compensating the actuator

faults in a system is difficult since the control re-computation and reconfiguration are the

only remedies to address this issue. Studies in [52, 28] used back-up fault approaches,

in which they use back-up states of control inputs in terms of a fault. Literature [3, 119]

implemented fault-free decentralized MPC architectures on smart plants, in which no co-

ordination exists in the algorithm. For future research, fault tolerance properties can be

incorporated into the distributed MPC approach to handle the actuator faults in CPS. In the

fault-tolerant method, the faulty subsystem’s sates should be considered in the optimization

cost function of the neighboring subsystems. When a failure happens, control inputs are

computed considering the effects of the faulty subsystem on its neighboring subsystems;

the neighboring subsystems can sacrifice their performance to recover the faulty subsystem.
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This way, the system’s overall stability and performance can be preserved. Furthermore,

the plant response to some unpredicted failures, such as actuator failures, can be practically

surveyed on CPS testbeds for future research.

Cyber-physical systems are innately fragmented structures with heterogeneous compo-

nents. As though CPS control tools being developed for various types of CPSs’ requirements,

and disciplines are not necessarily compatible with each other. In this regard, the most

prominent challenge in the CPS control and management area is the lack of a generic

and integrated control tool, i.e., a framework in which different models and tools can be

integrated, combined, and modified. For instance, there are a number of simulation software

for modeling the building components, such as Energy Plus, TRNSYS, HVACSIM, BSim,

and BLAST, which are required to be linked with the programming software, like Python, to

run the specific controller on these models. All of the mentioned software requires interfaces

to be linked to other programming software. It would be easier and more user-friendly if

the designer can develop both the model and controller in one framework. The integrated

simulation software should provide the ability to quantify and compare all the aspects of the

CPS performance and costs relevant to its design, construction, operation, and controls. In a

smart building context, the simulations can be the thermal simulations, lighting simulations,

energy consumption calculations, airflow simulations, building modeling/architecture, vi-

sual comfort trends, and load trends. The benefits of using building simulation software are

as follows:

• Get a real-time view of the building operating performances by collecting all the
analytics data.
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• Instead of relying on the previous projects’ experiences, run hundreds of full building
simulations to save millions of dollars by designing efficient optimization methods.

• Get a clear understanding of the climate that the building is being constructed in and
how to best leverage passive strategies to move into the world of active and renewable
optimization.

• By updating the models as the building design changes, the designer can keep track
of the building performance with each design decision.

The inputs of this software can be the local climatic data (temperature, humidity,

solar radiation, wind speed and direction), building shape and geometry, shadings and

surroundings of the building, building plan (inside and outside), building envelope, building

materials characteristics (such as the walls thermal conductivity and resistivity), building

appliances characteristics, building operation/occupancy schedules, and type of the control

approach. Various parameters can be quantified and analyzed using the tool, such as the

zonal/surface/water/construction layer temperature trends, zonal/whole heat balances, load

profiles, energy demands of the building devices, and comfort measures (e.g., PPD or

PMV comfort standards). As though an integrated building management software can be

developed in the future, that contains the mentioned features above. The management tool

is required to include all the components with their specific constraints and attributes. This

tool should be developed generic and configurable, i.e., the user can conveniently utilize the

components to simulate and analyze a management system. Furthermore, the tool should be

developed open-source, i.e., the user can modify and configure the tool components.
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[36] J. Drgoňa and M. Kvasnica, “Comparison of MPC strategies for building control,”
2013 International Conference on Process Control (PC). IEEE, 2013, pp. 401–406.
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