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STATISTICAL APPROACHES FOR ESTIMATION AND

COMPARISON OF BRAIN FUNCTIONAL CONNECTIVITY
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A Dissertation submitted in partial fulfillment of the requirements for the degree of
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Director: Dr. Yanjun Qian, Assistant Professor, Department of Statistical

Sciences and Operations Research, VCU

Dr. Montserrat Fuentes, President of St. Edward’s University

Dr. Qiong Zhang, Assistant Professor, Mathematical and Statistical Sciences,

Clemson University ,

,

Drug addiction can lead to many health-related problems and social concerns.

Researchers are interested in the association between long-term drug usage and ab-

normal functional connectivity. Functional connectivity obtained from functional

magnetic resonance imaging (fMRI) data promotes a variety of fundamental under-

standings in such association. Due to its complex correlation structure and large

dimensionality, the modeling and analysis of the functional connectivity from neu-

roimage are challenging. By proposing a spatio-temporal model for multi-subject neu-

roimage data, we incorporate voxel-level spatio-temporal dependencies of whole-brain

measurements to improve the accuracy of statistical inference. To tackle large-scale

spatio-temporal neuroimage data, we develop a computational efficient algorithm to

viii



estimate the parameters. Our method is used to first identify functional connectivity,

and then detect the effect of cocaine use disorder (CUD) on functional connectivity

between different brain regions. The functional connectivity identified by our spatio-

temporal model matches existing studies on brain networks, and further indicates

that CUD may alter the functional connectivity in the medial orbitofrontal cortex

subregions and the supplementary motor areas. We further propose a method that

jointly estimates the graphical models which share the common structure, while al-

lowing for differences between categories in the data. By assigning different tuning

parameters for the contrast of each categorical factor, our method could estimate the

effects of multiple treatments or factors across brain regions more accurately, and

achieve computational efficiency at the same time. Simulation studies suggest that

our method achieves better accuracy in network estimation compared with the joint

graphical lasso method. We apply our method to the cocaine-use disorder data and

identify functional connectivity in brain affected by cocaine use disorder and gender.
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CHAPTER 1

INTRODUCTION

Substance use disorders have been the concern of the public over decades. Abuse of

drugs can cause serious harm to both physical and psychological health conditions.

Some of the effects of drug abuse on a body include heart disease, liver damage, de-

pression, or anxiety that last for years or even forever (Nestler, 2005). Ma et al. (2015)

demonstrates that cocaine use is associated with altered connectivity between brain

structures such as cortical-striatal regions and default mode network. Functional

connectivity, which is a useful intermediary for studying the relationship between

functional communication in brain with human behavior, has attracted attention

from the neuroimaging community on the study of the effect of cocaine dependency

(Smith et al., 2011). Functional connectivity is a manifestation of complex brain func-

tions aiming at the interaction of brain regions and their behaviors towards different

human activities and environmental stimulus. Traditionally, functional connectivity

is defined as the temporal coherence in neural activity between spatially disconnected

brain regions (Smith et al., 2011). From a statistical perspective, we adopt the defini-

tion in Friston (2011) and consider functional connectivity as groups of regions/voxels

with high correlations.

In this work, we focus on the resting state functional magnetic resonance imag-

ing (fMRI) data to study the effect of cocaine use disorder on functional connectivity.

Resting state fMRI is a tool to explore functional connectivity and examine neurolog-

ical or mental disorders (Fox and Raichle, 2007). During a typical resting state fMRI

experiment, the subject is under a resting or a task-free state. The magnetic reso-
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nance scanner captures the blood oxygenated level dependent (BOLD) signals which

reflect oxygenation and deoxygenation in neurons every two to three seconds at sev-

eral hundred time points. At each time point (referred to as a volume hereafter),

the recorded BOLD signals form a three-dimensional brain image measuring brain

activity at each brain voxel. The resulting fMRI datasets often consist of hundreds

to thousands of voxels observed at hundreds of volumes for each subject. Its high di-

mensionality, massive size and complex spatio-temporal correlation structure make it

difficult to establish a computationally feasible statistical model to accurately analyze

voxel-level spatio-temporal characteristics of the brain activity (Huettel et al., 2014).

To overcome this challenge, our goal is to develop a nonstationary computationally

efficient spatio-temporal model at the voxel-level for multi-subject resting state fMRI

data.

After estimated the voxel-level large-scale spatial structure of human brains, it

is still challenging to jointly estimate the spatial dependence of multiple functional

networks in brain across multiple factors, where the spurious signals identified from

conditional covariances will significantly increase the estimation variation. Moreover,

it’s computational complexity is high when the numbers of factors, factor levels and

the size of covariance matrices are large. In this study, we propose a method that

jointly estimates the graphical models which share the common structure, while al-

lowing for differences between categories in the data. By assigning different tuning

parameters for the contrast of each categorical factor, our method could estimate the

effects of multiple treatments or factors across brain regions more accurately, and

achieve computational efficiency at the same time.

2



CHAPTER 2

A SPATIO-TEMPORAL MODEL FOR DETECTING THE EFFECT

OF COCAINE USE DISORDER ON FUNCTIONAL CONNECTIVITY

2.1 Introduction

Substance use disorders have been the concern of the public over decades. Abuse

of drugs can cause serious harm to both physical and psychological health conditions.

Some of the effects of drug abuse on the body include heart disease, liver damage,

depression or anxiety that last for years or even forever (Nestler, 2005). Ma et al.,

2015 demonstrate that cocaine use is associated with altered functional connectivity

between brain structures such as cortical-striatal regions and default mode network.

Functional connectivity, which is a useful intermediary for studying the relation-

ship between functional communication in brain with human behavior, has attracted

attention from the neuroimaging community on the study of the effect of cocaine de-

pendency (Smith et al., 2011). Functional connectivity is a manifestation of complex

brain functions aiming at the interaction of brain regions and their behaviors towards

different human activities and environmental stimulus. Traditionally, functional con-

nectivity is defined as the temporal coherence in neural activity between spatially

disconnected brain regions (Smith et al., 2011). From a statistical perspective, we

adopt the definition in Friston, 2011 and consider functional connectivity as groups

of regions/voxels with high correlations.

In this work, we focus on the resting state functional magnetic resonance imag-

ing (fMRI) data to study the effect of cocaine use disorder on functional connectivity.

Resting state fMRI is a tool to explore functional connectivity and examine neuro-

3



logical or mental disorders (Fox and Raichle, 2007). During a typical resting state

fMRI experiment, the subject is under a resting or a task-free state. The magnetic

resonance scanner captures the blood oxygenated level dependent (BOLD) signals,

which reflect oxygenation and deoxygenation in neurons every two to three seconds at

several hundred time points. At each time point (referred to as a volume hereafter),

the recorded BOLD signals form a three-dimensional brain image measuring brain

activity at each brain voxel. The resulting fMRI datasets often consist of hundreds

to thousands of voxels observed at hundreds of volumes for each subject. Its high di-

mensionality, massive size and complex spatio-temporal correlation structure make it

difficult to establish a computationally feasible statistical model to accurately analyze

voxel-level spatio-temporal characteristics of the brain activity (Huettel et al., 2014).

To overcome this challenge, our goal is to develop a nonstationary computationally

efficient spatio-temporal model at the voxel-level for multi-subject resting state fMRI

data.

Spatio-temporal models have been introduced to brain image research in recent

years (Lindquist et al., 2008; Ombao et al., 2016). Woolrich et al. (2004) build si-

multaneous autoregressive models for adjacent voxels. Bowman (2005) aggregates

data to regions of interest (ROIs), and then adopts a two-stage hierarchical Bayesian

approach to estimate the locally-independent spatial activation patterns and the

spatial-dependent within regional mean activity profiles. Kang et al. (2012) use a

spatio-spectral mixed-effects model to capture pre-specified multi-scale spatial corre-

lation. These methods analyze regional level activation, but ignores the voxel-level

spatial dependence. Hyun et al. (2016) propose a spatio-temporal Gaussian process

framework to delineate the developmental trajectories of brain structure and func-

tion. Reich et al. (2017) introduce a multi-resolution model and a computationally

efficient methodology in the spectral domain to estimate whole-brain spatio-temporal

4



dependence structure. Their model is capable of detecting voxel-specific activation

under a spatially non-stationary anisotropy setting, but only for single-subject time-

independent fMRI data.

For multi-subject fMRI data, the existing methods are not able to incorporate

the spatio-temporal dependence efficiently in the model and meanwhile make infer-

ence on the functional connectivity, due to its complex structure. In this chapter,

we propose an efficient spatio-temporal model for multi-subject whole-brain resting

state fMRI data. Our model incorporates the voxel-level spatio-temporal dependence

of the whole-brain measurements to improve the accuracy in statistical inference.

To achieve computational efficiency, we adopt ideas from fixed rank kriging (Cressie

and Johannesson, 2008) to reduce the dimensionality of the covariance matrix in

the spatio-temporal model, and develop an empirical Bayesian approach based on

the EM algorithm to estimate the parameters. This approach is computationally

efficient in processing massive spatio-temporal data. Based on our model, the func-

tional connectivity is characterized by the correlation matrix across different brain

voxels/regions. We apply our model to a multi-subject fMRI dataset to first iden-

tify functional connectivity, and then detect the effect of cocaine use disorder on the

functional connectivity.

The rest of this chapter is organized as follows. Section 2.2 describes the multi-

subject fMRI data used for the cocaine use disorder study. Section 2.3 proposes a

spatio-temporal model to identify the functional connectivity. Section 2.4 develops

a computationally efficient approach to estimate the unknown model parameters. A

simulation study on the performance of model estimation is provided in Section 2.5.

We apply our approach to the multi-subject fMRI data in Section 2.6. A discussion

is given in Chapter 4.
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2.2 Description of Multi-subject fMRI Data for Cocaine Use Disorder

Study

This work is motivated by a multi-subject fMRI dataset collected from a cocaine

use disorder study conducted by the Institute for Drug and Alcohol Studies at Vir-

ginia Commonwealth University. Subjects with current cocaine use disorder (DSM-

IV, First et al., 1996) and non-drug-using normal controls were recruited through

advertisements for research volunteers. All subjects underwent the Addiction Sever-

ity Index (McLellan et al., 1992) to document possible lifetime drug and alcohol use,

and then been included in the cocaine use disorder group (22 subjects) or the control

group (23 subjects). Four variables representing the demographic information of each

subject are collected: 1. the gender; 2. the age (in years); 3. the years of education

taken; 4. ethnicity, with AA indicating African American, C indicating White, and H

indicating Hispanic or Latino. The summary statistics with respect to the treatment

and those demographic factors are given in Table 2.1.

Table 2.1. A summary of the study population of cocaine use disorder (CUD) partici-

pants and control participants. (Note: AA stands for African American, C

stands for White, and H stands for Hispanic or Latino)
Group Age (years) Education (years) Ethnicity

CUD Group (22, 62.5% male)
Mean 45 12.27 21 AA

Standard Deviation 8.52 2.42 1 C
Range(max-min) 32 10

Control Group (23, 60.9% male)
Mean 40.3 14.96 14 AA

Standard Deviation 10.52 2.58 8 C
Range(max-min) 35 10 1 H

For each subject, the resting state fMRI data were captured on a Philips Medical

Systems (Best, Netherlands) Ingenia wide-bore dStream 3T MRI scanner. After

acquiring the raw data, it were preprocessed using a standard pipeline for volume-
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based analysis to realign the subject’s functional images, and smooth it to remove

redundant noise. After preprocessing, the BOLD signal is transformed to 2mm ×

2mm × 2mm 3-dimensional fMRI sample size (voxel) on a 91 × 108 × 91 regular

lattice for each volume (time point). Each subject has 375 volumes. There are a total

of 185, 355 voxels within the brain template space after registration across subjects.

Further details on the participants and data preprocessing can be found in A.5.

2.3 A Spatio-temporal Model for Identifying Functional Connectivity via

Multi-subject fMRI Data

To identify the functional connectivity for one group, we propose a spatio-

temporal model for the fMRI data collected from N subjects. Let yi(v, t) be the

normalized fMRI response at voxel v and volume t for subject i. Associated with

each subject is a p-dimensional vector of demographic covariates xi, which includes

age, education, and race of the corresponding subject in our study. We assume that

the spatial location v is allocated to a three-dimensional regular grid, and the total

number of locations is M . The time volume t ranges from 1 to L, where L is the total

number of volume in data. The model for the response of subject i is

yi(v, t) = µ+ xi
>β + ηi(v, t) + ei(v, t). (2.1)

The terms in (2.1) are explained in turn as follows. The fixed effects µ+x>i β contain

a constant intercept µ, and linear additive effects associated with the demographic

covariate vector xi, where β is a common linear coefficient vector across all subjects.

The random effects ηi(v, t)’s are independent over different subjects, and the spatial

temporal dependence of the measurements from the same subjects are incorporated

through this term. The random effect ei(v, t)’s are white noise processes, which are

assumed to be independently and identically distributed across different subjects,
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voxels, and volumes, i.e., ei(v, t) ∼ N (0, σ2). The common variance of the white

noise is a popular assumption for the neruoimage data after using pre-processing

procedures. Similar assumptions can be found in Zhu et al. (2014) and Reich et al.

(2017).

Note that, the assumptions in (2.1) can be extended to more general cases for

different applications. For example, the linear coefficient β can be extended to spatial

or spatial-temporal varying coefficients. Also, the variance σ2 of the white noise

term can be assumed to be different for different subjects. This paper validates the

assumptions in (2.1) to our application using the empirical data analysis in A.6.2 and

A.6.1. Also, we include the spatial-temporal dependence between measurements with

a space-time process ηi(v, t), which is a commonly used assumption for fMRI data

due to the dense layout of spatial location and time frequency. However, it is worth

to mention that, different from observational data from a spatial/temporal process,

fMRI data in terms of time frequency and spatial location are discrete. Therefore, the

purpose of spatial temporal modeling for this case is statistical inference to unknown

parameters, but not prediction for measurements under unobserved spatial or time

point.

We are interested in estimating correlation structure of the data over a large

spatio-temporal domain, which leads the main computational challenge. To overcome

this issue, we propose to use a low rank representation model to reduce the dimension

of correlation matrix

ηi(v, t) =
L∑
l=1

ωl(t)B(v)>Γi,l (2.2)

where ωl(t)’s are known temporal basis functions at volume t; B(v) is a vector of

basis functions of size J ; Γi,l’s are independent J-dimensional random vectors that

characterize the random variation of brain networks between different subjects. Par-
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ticularly, we assume that Γi,l’s are independent realizations from the multivariate

normal distribution N(0,Σ). Since J can be much smaller than the total number of

voxels (denoted by M), we are able to reduce the dimensionality of the large-scale

spatio-temporal observations. We do not reduce the temporal dimension. Thus, the

number of temporal basis functions is the same as the total number of volumes L.

Under the proposed model in (2.1) and (2.2), the covariance between two space-

time points of the i-th subject is written as

Cov {yi(v, t), yi(v′, t′)} = B(v)>ΣB(v′)× τ(t′, t) + σ2I(v = v′, t = t′),

where τ(t′, t) is the temporal correlation functions constructed by ωl(t)’s, i.e., τ(t′, t) =∑L
l=1 ωl(t)ωl(t

′). This function implies a non-stationary space-time separable covari-

ance structure, and separable covariance model assumption of the space and time

domains, which has been used in various studies in neuroimaging study (see Benali

et al. (1997), Katanoda et al. (2002), and Shvartsman et al. (2018) for example). In

this model, the spatial dependence of the entire brain image is characterized by the

covariance matrix of BΣB>, where B = [B(v1), . . . , B(vM)]> is an M × J matrix

formed by the basis functions. Given the basis functions, the functional connectivity

is determined by the relatively small J × J covariance matrix Σ under given basis

functions. Therefore, statistical inference for the covariance matrix Σ enables the

diagnostic and comparison of functional connectivity using the proposed model.

For our application on cocaine use disorder, the subjects belong to the cocaine

use disorder group (g = 1) or the control group (g = 2). The covariance matrix of

the cocaine and control groups are specified by Σ1 and Σ2, respectively. We model

the response of subject from the g-th group by

yi,g(v, t) = µg + xi,g
>β +

L∑
l=1

ωl(t)B(v)>Γi,l,g + ei,g(v, t), (2.3)
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where Γi,l,g’s are independent realizations from N (0,Σg).Based on the estimated spa-

tial covariance matrices BΣ1B
> and BΣ2B

>, we use hypothesis testing and graphi-

cal Lasso approaches to identify the differences between these two matrices and then

assess the effects of the cocaine use disorder on functional connectivity in Section 2.6.

2.4 Model Estimation Using the EM Algorithm

For large scale spatio-temporal data, it is inefficient to implement the fully

Bayesian inference. In this section, we develop an empirical Bayesian approach to

assess the unknown parameters in (2.1) via the EM algorithm. Since the goal of

this analysis is to estimate the covariance matrix Σ, an empirical Bayesian estimate

can be obtained by maximizing the posterior (MAP) probability of Σ. We then de-

velop computational efficient update formulas for the EM algorithm to maximize the

posterior probability.

As our focus is to assess the spatial covariance, we adopt the isomorphic trans-

formation in Zhang et al. (2016) and simplify the model by removing the temporal

dependence. Let ΣT = WW> be the temporal correlation matrix, we choose W

to be the solution of U>W =
√
V , where U and V are the eigenvector matrix and

eigenvalue matrix of ΣT . The model in (2.1) can be transformed to

Ỹi,t = X̃i,tβ +
√
λtBΓi,t + Ẽi,t, (2.4)

where Ỹi,t = (U>t ⊗ IM)Yi; Yi = {Yi,1, Yi,2, . . . , Yi,L} is a vector stacking all the re-

sponses of the i-th subject; Ut is the t-th column of U ; ⊗ stands for the Kronecker

product; X̃i,t = 1M ⊗ (
∑L

l=1 U
>
t,l)x

>
i is the covariates after this transformation; and

Ẽi,t = (U>t ⊗ IM)Ei,t collects the residuals of subject i at volume t. After this trans-
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formation, the variance-covariance matrix of Ỹi,t can be expressed by

var(Ỹi,t) = var
(
(U>t ⊗ IM)Yi

)
= λtBΣB> + σ2IM .

The expressions demonstrating the relationship between the original model (2.1) and

transformed model (2.4) are deferred to the A.1.

Let Ỹ = {Ỹi,t; i = 1, . . . , N, t = 1, . . . , L} be a set containing all the transformed

responses and Γi = {Γi,t; i = 1, . . . , N, t = 1, . . . , L} be the set of all the random

factors for each subject. By inserting the prior distributions of the model parameters,

the posterior distributions of the unknown parameters can be expressed by

p(β,Σ, σ2|Ỹ) ∝ p(Ỹ|Γ1, . . . ,ΓN ,β,Σ, σ
2)p(Γ1, . . . ,ΓN |β,Σ, σ2)p(Σ, σ2)p(β). (2.5)

We obtain our parameter estimates by maximizing the posterior function. Due to

the complicated function structure and large amount of parameters, directly maxi-

mizing the above posterior function is computationally challenging. To overcome this

problem, we treat the random factors Γ1, . . . ,ΓN as hidden variables, and use the

EM algorithm to obtain the MAP estimates.

In the l + 1 iteration of the EM algorithm, the expectation step calculates the

expectation of the logarithm posterior probability function with respect to Γ =

{Γ1, . . . ,ΓN} given the parameter values βl, Σl, and σl at the previous iteration:

Q(β,Σ, σ|βl,Σl, σl) = EΓ

[
−2 log p(β,Σ, σ2|Ỹ)|βl,Σl, σl

]
.

Then, the maximization step maximizes Q(β,Σ, σ|βl,Σl, σl) to obtain the updated

parameters, βl+1, Σl+1, and σl+1. These three parameters will converge to the true

MAP estimators, thanks to the convergence of EM algorithm (Wu et al., 1983). When

closed-form update formulas are available, the EM algorithm can be computationally

efficient. The prior settings and the close-form update formulas we used in the simu-
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lation and data application is deferred to the A.2.

The order of the computational effort of the proposed update formulas in A.2 is

O(NLJ). In our application on the cocaine use disorder data, EM algorithm converges

within 30 steps. Using this efficient update formulas, the empirical Bayesian inference

on a 56.7 GB spatial temporal multi-subject fMRI data can be handled within 3

minutes on a desktop computer with a quad-core 4.00GHz processor and 16GB RAM

space.

2.5 Simulation Studies

In this section, we illustrate the performance of our method using four simulation

studies under different scenarios. We investigate the effects of model misspecification,

different levels of the noise-to-signal ratio, and complex connectivity on the parameter

estimation. We also provide a series of sensitivity analysis to obtain practical guidance

for the choice of model parameters. In general, the responses are generated from model

(2.1). Each simulated dataset includes N subjects and L volumes. The deterministic

linear trend in (2.1) is specified to be µ + β1x1 + β2x2 with µ = 0.1. The covariates

x1 and x2 are randomly sampled from uniform distributions U(0, 5) and U(5, 10),

respectively. The temporal basis functions ωl(t)’s are specified as the Fourier basis

functions (Konidaris et al., 2011). The random factors Γi,l’s in (2.2) are independently

generated from N (0,Σ0), where Σ0 is a J × J matrix. In model misspecification and

noise-to-signal ratio simuation studies, Σ0 is a prespecified positive definite matrix.

In the complex connectivity simulation study and sensitivity analysis, Σ0 is estimated

from the real data.
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2.5.1 Model Misspecification

First, we explore the effect of model misspecification on parameter estimation.

In this study, data are generated with N = 25 and L = 400. We use Σ0
i,j = 0.5|i−j|,

for i = 1, . . . , J and j = 1, . . . , J . The J = 125 basis nodes (v1, . . . ,vJ) are expanded

to 50× 50× 50 spatial grids using basis vector B(v) = {φ(v,vk), k = 1, . . . , J}. The

Gaussian kernel basis function φ(v,vk) = exp(−‖v − vk‖2
2/2h

2) is used as the basis

function in this simulation. We choose h to be a half of the distance between two

spatial basis nodes. The white noise ei(v, t) are generated from a standard Normal

distribution, N(0, 1). The datasets are generated under three scenarios: no spatio-

temporal dependence, spatial dependence exists but no temporal dependence, and

spatio-temporal dependence. For each scenario, we estimate the model parameters

using the proposed spatial-temporal model, and two alternative methods:

• Independent: fit a linear regression model on the two covariates without con-

sidering spatio-temporal dependence.

• Spatial: add spatial dependence to the linear model but ignore the temporal

dependence.

For each method, we calculate the means and the standard errors of the esti-

mation of each parameter over the 100 replications. We report the mean of squared

difference between the true spatial covariance matrix and the estimate spatial co-

variance matrix over the total number of spatial locations as a test statistic (TS) to

illustrate the accuracy of the estimation of the spatial dependence structure. The

formula of the test statistic is expressed by

TS =

∑
i,j |(BΣ0B> −BΣ̂B>)|i,j

M
(2.6)
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where Σ̂ is the estimated spatial covariance matrix. The results are reported in

Table 2.2. For the independent data, the performances of the methods incorporating

spatial or spatial-temporal dependence are similar as the independent model. When

the data is spatially correlated, the spatial model and our proposed model outperform

the independent model. When the data is spatially and temporally dependent, our

model greatly outperforms the independent and spatial model.

Table 2.2. Mean parameter estimates and standard error of mean (in parenthesis) of

over 100 replications. The best value in each row is highlighted in blue

color.

Data True Value Methods

Independent Spatial Spatio-Temporal

Independent µ = 0.1 0.0998 (1.706×10−4) 0.0996 (2.120×10−4) 0.0996 (2.142×10−4)

β1 = 0.5 0.500 (1.996×10−5) 0.500 (2.296×10−5) 0.500 (2.321×10−5)

β2 = 1 1.000 (1.735×10−5) 1.000 (2.053×10−5) 1.000 (2.077×10−5)

σ2 = 1 1.000 (6.698×10−5) 0.969 (6.525×10−5) 0.974 (6.530×10−5)

Spatial µ = 0.1 0.0850 (5.112×10−3) 0.0994 (4.427×10−4) 0.0992 (4.725×10−4)

β1 = 0.5 0.430 (2.479×10−2) 0.500 (4.563×10−5) 0.500 (2.362×10−4)

β2 = 1 0.860 (4.957×10−2) 1.000 (4.752×10−5) 1.000 (2.523×10−4)

σ2 = 1 1.701 (9.807×10−2) 1.000 (6.443×10−5) 0.999 (1.221×10−4)

TS 9.509×10−5 (1.396×10−6) 9.509×10−5 (1.374×10−6)

Spatio- µ = 0.1 0.00555 (1.791×10−3) 0.00407 (8.206×10−4) 0.100 (5.570×10−4)

Temporal β1 = 0.5 0.0155 (2.260×10−4) 0.0176 (1.128×10−4) 0.500 (7.035×10−5)

β2 = 1 0.0314 (1.716×10−4) 0.0353 (8.127×10−5) 1.000 (4.674×10−5)

σ2 = 1 83.20 (8.007×10−3) 5.005 (2.057×10−4) 1.000 (6.235×10−5)

TS 24.360 (7.497×10−4) 1.854×10−4 (2.457×10−6)
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2.5.2 Noise to Signal Ratio Analysis

Next, we investigate the effect of different levels of noise to signal ratio on pa-

rameter estimation. We define the noise-signal ratio (NSR) by

NSR =
Jσ2∑J
j Σ0

j,j

.

We generate the simulation datasets the same way as the model misspecification

simulation study, but the white noise generation scenarios vary by the variance σ2.

The means and the standard errors of the estimation of each parameter over 100

replications are given in Table 2.3. As we increase the noise to signal ratio, the

proposed spatio-temporal model consistently gives accurate parameter estimates. The

results demonstrate that the proposed method is robust with respect to large noise

to signal ratio.

2.5.3 Model Performance on Complex Connectivity

To evaluate our model performance on a complex connectivity matrix, we gener-

ate the simulation dataset using the Σ̂ estimated from the cocaine use disorder fMRI

dataset in section 2.6. As none of the linear coefficients is significant in the real data,

we use the same coefficients as simulation studies in Section 2.5.1. We report the

mean estimates and standard error of the mean for both the linear regression model

and our proposed model over 50 replications in Table A.4. The results show the stable

performance of with covariance estimated using real data.

2.5.4 Sensitivity Analysis

To obtain practical guidance for the choice of model parameters, i.e., the number

of subjects N , the number of volumes L, the number of spatial basis nodes J , and
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Table 2.3. Mean parameter estimates and standard error of mean (in parenthesis) of

over 100 replications under different noise-signal ratio.

Noise-Signal Ratio True Value Spatiao-Temporal Model

NSR=0.01 µ = 0.1 0.100 (1.521×10−4)
β1 = 0.5 0.500 (1.661×10−5)
β2 = 1 1.000 (1.482×10−5)
σ2 = 0.1 0.100 (6.718×10−6)

TS 1.265 ×10−4 (1.831×10−6)

NSR=0.1 µ = 0.1 0.100 (5.570×10−4)
β1 = 0.5 0.500 (7.035×10−5)
β2 = 1 1.000 (4.674×10−5)
σ2 = 1 1.000 (6.235×10−5)

TS 1.854 ×10−4 (2.457×10−6)

NSR=1 µ = 0.1 0.100 (1.421×10−3)
β1 = 0.5 0.500 (1.896×10−4)
β2 = 1 1.000 (1.385×10−4)
σ2 = 10 9.998 (7.848×10−4)

TS 1.872 ×10−4 (3.409×10−6)

NSR=10 µ = 0.1 0.0987 (1.988×10−3)
β1 = 0.5 0.500 (2.320×10−4)
β2 = 1 1.001 (2.730×10−4)
σ2 = 100 99.99 (7.327×10−3)

TS 2.032 ×10−4 (3.966×10−6)

Table 2.4. Simulation study mean parameter estimates and standard error of mean (in

parenthesis) for data simulated from real data spatial covariance structure

over 50 replications.

True Value
Model

Linear Regression Spatio-Temporal Model

µ = 0.1 0.00314 (2.313 ×10−4) 0.0996 (2.522 ×10−4)

β1 = 0.5 0.01577 (3.157 ×10−5) 0.5001 (3.099 ×10−5)

β2 = 1 0.03146 (2.213 ×10−5) 1.000 (2.143 ×10−5)

σ2 = 1 83.305 (1.264 ×10−3) 0.9997 (7.626 ×10−5)

TS 4.413 ×10−6 (2.830 ×10−8)
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different types of basis functions. The simulated datasets are generated in the same

way as those in Section 2.5.3, with varying model parameters. We demonstrate the

detailed experimental settings and results in A.7.

In our sensitivity analysis, we first verify that the parameter estimation of the

proposed model is accurate and stable with small numbers of subjects N and volumes

L. Second, we analyze the model misspecification with different numbers of nodes

J and three types of basis functions: the Gaussian, exponential, and bisquare. We

find that the Gaussian basis function and J = 125 work well even when the data are

generated from other basis functions and different J . Thus we adopt this setting for

the real data analysis in Section 2.6.

2.6 Application to Multi-Subject FMRI Data

We apply the proposed spatio-temporal model to the multi-subject FMRI data

described in Section 2.2. The real data is standardized before processed to our model

since the range of the data is very different across subjects. The modeling details and

some model fitting results are given in the A.3. The scientific objective of this study

is to detect the effect of cocaine use disorder on functional connectivity. Based on the

proposed spatio-temporal model, it is equivalent to test whether or not the subjects

from the cocaine use disorder group and the control group share the same spatial

covariance structure. In this section, we first compare the functional connectivity

identified by the proposed model with benchmark brain networks in the literature to

confirm the effectiveness of our model. Then we use the estimated spatial covariance

to identify the difference of functional connectivity between cocaine use disorder and

control groups.
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2.6.1 A Comparison with Benchmark Brain Networks

We compare the functional connectivity identified by the proposed spatio-temporal

model with benchmark brain networks in the literature. The objective of this com-

parison is to demonstrate the effectiveness of using the proposed spatial model to

identify functional connectivity. In this study, we use atlas of Intrinsic Connectivity

of Homotopic Areas (AICHA, Joliot et al., 2015) to define regions of interest (ROIs),

that partitions human brain into cortical and subcortical areas based on different

structures and functions. The resulted atlas contains 384 ROIs.

Based on the proposed model, the functional connectivity is characterized by

the covariance matrices of the large-scale spatial structure fi,l(v) in (2.1). When

the spatial conditional covariance between two regions are higher than those between

any pair of two arbitrary regions, we claim that those two regions have identifiable

functional connectivity. Based on ROIs from the AICHA brain atlas, we average the

estimated voxel-level brain spatial covariance values within the same region to create

a 384 × 384 by-regional spatial covariance matrix S. To identify the region pairs

with higher conditional covariance, we applied the graphical lasso method (Friedman

et al., 2007) to obtain a sparse precision matrix R̂ by solving

R̂ ∈ argminR�0

{
tr(SR)− log det(R) + ρ

∑
i 6=j

|Rij|

}
, (2.7)

where ρ is the penalty parameter, and we specify it to be 0.3 in this study. A non-zero

entry in R̂ represents a high conditional covariance value between two regions, which

indicates the functional connectivity.

We compare the functional connectivity identified from our model with four well-

studied brain networks based on AICHA atlas:

• The default mode network (DM): it is usually active in resting state or mind-
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wandering, and known to be involved in experience that are related to external

task performance.

• The dorsal attention network (DA): it is one of two sensory orienting systems

in the human brain, and known been related to voluntary orienting.

• The executive control (CE) network: it is involved in cognitive functions, prob-

lem solving, and decision making.

• The salience network (SA): it is involved in detecting and filtering salient stimuli.

These well-studied functional networks are known to have relatively stronger

spatial dependence than random region pairs which do not belong to one of them.

For each well-studied network, we compute the mean difference between the absolute

values of conditional covariance in this network and those do not belong to any of

these four networks, and use t-test to assess the significance of this mean difference.

The results are given in Table 2.5. We see that the differences are all positive and

significant at certain levels for both groups, which indicates that the conditional

covariance values led by the proposed model match the results from those four well-

studied networks (Smith et al., 2009).

Table 2.5. The mean differences and their significance between the absolute condition

covariance values of each well-studied network and those do not belong to

any of the well-studied networks.

Cocaine Use Disorder Group Control Group

Networks Difference p-value Difference p-value

DM 0.054 <0.0001 0.055 <0.0001
DA 0.002 0.1029 0.003 0.0153
CE 0.022 <0.0001 0.023 <0.0001
SA 0.005 0.0008 0.005 0.0030
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2.6.2 Statistical Comparisons on the Functional Connectivity between

the Cocaine Use Disorder Group and the Control Group

In this section, we compare the differences of the functional connectivity between

the cocaine use disorder group and the control group. According to model (2.3),

the differences of functional connectivity are determined by the differences between

the covariance matrices Σ1 and Σ2. Therefore, we first test the hypothesis that

H0 : Σ1 = Σ2. If H0 is rejected, we conclude that the global difference on the

functional connectivity between the two groups are significant.

Since the number of subjects is small and the number of unknown parameters is

large, a parametric test procedure (i.e., goodness of fit test) is inaccurate in assessing

the significance of the hypothesis. Alternatively, we propose to use a nonparametric

test procedure to test the hypothesis. Let Σ̂c be the estimated covariance matrix

under H0 (i.e., the two groups share the same covariance matrix), and Σ̂1 and Σ̂2 be

the estimated covariance matrices of the cocaine use disorder group and the control

group, respectively. Then the test statistic is constructed by

2∑
g=1

{
J∑
j=1

(λg,j − λc,j)2

}
, (2.8)

where {λc,1, λc,2, . . . , λc,J} and {λg,1, λg,2, . . . , λg,J} are ordered eigenvalues of Σ̂c and

Σ̂g for g = 1, 2. If the value of the test statistic is large, we conclude that the difference

of Σ1 and Σ2 is large. We permute the group indexes of the subjects to construct

an empirical distribution of this test statistic. After 400 permutations, the p-value

is 0.582, which shows that, the global difference on functional connectivity between

the two groups is not significant. In addition, a simulation study is provided in the

A.4 (see Table A.1 in the A.4) to verify the effectiveness of the test procedure on

synthetic datasets.
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To further explore the local-level differences of functional connectivity between

the two groups, we apply the joint graphical lasso method (JGL, Danaher et al.,

2013) with a group penalty to obtain sparse precision matrices (denoted by R1 and

R2) based on the estimated spatial covariance matrices (Σ1 and Σ2) of the two groups

by solving

R̂1, R̂2 ∈ argmaxR1,R2�0

{
2∑

k=1

(log detRk − tr(ΣkRk))− P ({R1, R2})

}
, (2.9)

P ({R1, R2}) = λ1

2∑
k=1

∑
i 6=j

|Rk,i,j|+ λ2

∑
i 6=j

√√√√ K∑
k=1

(Rk,i,j)2,

where λ1 and λ2 are two penalty parameters-associated with the Lasso penalty and

the group penalty, respectively. The Lasso penalty encourages sparsity, while the

group penalty will drive spatial covariance values in two groups to be the same. After

obtaining R̂1 and R̂2 from (2.9), we take the difference between these two matrices

and denote it as ∆R (∆R = R̂1− R̂2). The region pairs that associate with non-zero

values in ∆R are considered to have different spatial covariance between two groups.

By specifying λ1 = 0.4 and λ2 = 0.5, the identified region pairs are provided in Table

2.6.

Table 2.6. The brain regions with large differences (∆R) on functional connectivity

(in terms of estimated spatial covariance) between the cocaine use disorder

and control groups.

Region Pair
Estimated functional connectivity

∆R
Cocaine Control

R MOFC subregion #2 & R MOFC subregion #1 0.9960 1.3349 -0.3389
L MOFC subregion #2 & R MOFC subregion #1 0.9243 1.2395 -0.3152
R MOFC subregion #2 & L MOFC subregion #2 0.8122 1.0948 -0.2826

R SMA subregion #1 & L SMA subregion #1 0.5336 0.6034 -0.0698
R SMA subregion #1 & R SMA subregion #3 0.3416 0.3870 -0.0454
R SMA subregion #1 & L cingulate cortex #2 0.3136 0.3512 -0.0376
R SMA subregion #1 & R cingulate cortex #2 0.3163 0.3551 -0.0388

In the top panel of Table 2.6, we see that the participants with cocaine use
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disorder (CUD) had smaller functional connectivity (within the default mode net-

work) between right medial orbitofrontal cortex (MOFC) subregion #2 and right

MOFC subregion #1 (Cocaine-Control=-0.3389), between left MOFC subregion #2

and right MOFC subregion #1 (Cocaine-Control=-0.3152), and between right MOFC

subregion #2 and left right MOFC subregion #2 (Cocaine-Control=-0.2826). The

anatomical region MOFC largely overlays with the functional region ventromedial

prefrontal cortex (VMPFC) in the DM network (Hiser and Koenigs, 2018). Thus,

the results suggest that the CUD had altered VMPFC functional connectivity (i.e.,

reduced VMPFC function) than the controls. Consistently, the linkage between de-

creased VMPFC function and transition to cocaine use disorder has been well doc-

umented (see Bolla et al., 2003; Franklin et al., 2002; Lim et al., 2002 and Volkow

et al., 1992). The VMPFC is critically involved in impulsivity (Ben-Shahar et al.,

2012). Thus, reduced VMPFC function in the CUD groups could suggest the reduced

ability of CUD individuals in inhibitory control over behavior.

In addition, the results in the bottom panel of Table 2.6 show that the CUD

individuals have lower functional connectivity between the bilateral supplementary

motor areas than controls, which have not been documented in the literature to the

best of our knowledge. The supplementary motor area (SMA) plays important roles

in the planning, initiation, and execution of motor acts (Amador and Fried, 2004).

Impaired sensor-motor performance and altered functional connectivities involving

supplementary motor area during finger tapping task have been reported in cocaine

use disorder individuals (Lench et al., 2017). Thus, our finding on the supplementary

motor area suggests that the connectivity between bilateral supplementary motor

areas may be part of neuronal circuits underlying impaired sensor-motor performance.

Given the sample size and relatively small group difference, these novel results need

to be replicated in future studies with different sample.
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CHAPTER 3

A MULTI-LAYER REGULARIZATION APPROACH FOR GAUSSIAN

GRAPHICAL MODELING WITH APPLICATION TO THE

COMPARISON OF FUNCTIONAL CONNECTIVITY ACROSS

DIFFERENT FACTORS

3.1 Introduction

Functional connectivity in brain is a representation of the complex relationship

among billions of highly interactively brain neurons or regions (Bullmore and Sporns,

2009). Functional connectivity between neurons or brain region of interests (ROIs) is

defined as the statistical correlation between the measures of their activities (Fox and

Raichle, 2007). It is an effective tool for studying brain diseases, such as Alzheimer’s

disease (AD), Parkinson’s disease, attention deficit hyperactivity disorder (ADHD),

and substance use disorders (Filippi et al., 2019, Sutherland et al., 2012). In such

studies, it is crucial to create sparse functional activity maps in brain under different

treatment conditions and identify their difference.

In spatial statistics, the conditional correlation between different parts of human

brains can be represented by the precision matrix using multivariate Gaussian models.

Each element of the precision matrix is corresponding to the conditional dependency

between a pair of brain neurons, voxels, or ROIs. Bayesian shrinkage methods have

been long proposed for precision matrix estimation. A number of multiple graphs joint

estimation approaches were introduced to brain network research in recent years (Car-

valho et al., 2010, Piironen and Vehtari, 2017, Li et al., 2019). Yajima et al. (2012)

proposed a framework and an efficient computational algorithm to study Gaussian
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directed acyclic graphs. Peterson et al. (2015) used the Bayesian Markov random field

approach for estimating multiple interaction networks. Piironen and Vehtari (2017)

developed an integrative modeling approach for jointly modeling multiple brain net-

works, which allows flexible priors on the edge probabilities. Although these methods

are very powerful in estimating functional connectivity in brain, they are often prob-

lematic in analyzing large-scale spatial-temporal data collected from multiple subjects

because of their heavy computational burden (Cohen et al., 2017).

Many researchers use Gaussian graphical models to study functional connectiv-

ity in brain (Smith et al., 2011) by considering it as a graph. Borrowing ideas from

graph theory, the functional network in brain can be represented by a graph, which is

defined as the set of neurons as random variables and the set of their pairwise condi-

tional dependencies, as edges among them (Butts, 2009). Gaussian graphical model

(GGM) is a modeling technique that represents the relationships between a set of ran-

dom variables through their joint (Gaussian) distribution. In recent years, numerous

studies (for example Meinshausen and Bühlmann, 2006, Yuan and Lin, 2007, Fried-

man et al., 2008, Witten et al., 2009, Rothman et al., 2008, Zhang and Wang, 2010)

have been published on learning differential networks under GGM due to its compu-

tational convenience and straightforward interpretation (Uhler, 2017). The majority

of these studies are focused on the generalization of the graphical lasso method, which

obtains symmetric positive definite sparse precision matrices of Gaussian graphical

models via conditional distributions of random variables using L1 penalty. For ex-

ample, Zhang and Wang (2010) and Chiquet et al. (2010) used the neighborhood

selection method with the fused lasso penalty, graphical intertwined lasso penalty,

and cooperative-lasso penalty, respectively, to effectively extract structural changes

in Gaussian graphical models. Zhao et al. (2014) directly estimated the difference

between the precision matrices using a constrained L1 regularization. Friedman et al.
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(2008) introduced a coordinate descent procedure to efficiently solve the graphical

lasso. Rothman et al. (2008) further studied the theoretical properties of the L1 pe-

nalized maximum likelihood estimator for high-dimensional precision matrix, which

can use the L1 penalty to shrink some of the insignificant off-diagonal elements to

zero. These methods estimate graphical models under different categories separately

and use multiple hypothesis testing to compare estimated sparse precision matrices

and obtain the difference between treatment conditions.

Based on the development of the Gaussian graphical model, methods that jointly

estimate multiple Gaussian graphical models were proposed to improve the estimation

for different categories sharing common features. Guo et al. (2011) used a hierarchical

penalty to jointly estimate multiple graphical models in a non-convex setting. Yuan

and Lin (2006) penalized the joint log-likelihood using the group penalty to encourage

similarities of the estimated precision matrices. Danaher et al. (2014) imported the

fused graphical lasso penalty and used the alternating direction method of multipliers

(ADMM) to find the estimator. However, these methods suffer from a high false

discovery rate (Liu, 2013). The main reason is their underlying assumption that

treatment conditions have equivalent effects across the entries of precision matrices,

which makes the spurious signals identified from conditional covariances significantly

increase the estimation variation. Also, the computational costs of these methods

increase dramatically while increasing the number of categories.

To accomplish an accurate and efficient joint estimation of multiple functional

networks across multiple factors, we borrow ideas from the joint graphical lasso

method (Danaher et al., 2014), and propose to use an additional joint hierarchi-

cal fused lasso penalty on the graphical lasso model. Our method assigns different

tuning parameters for the contrast of each factor to allow different treatments or

factors having different impacts across brain regions, and at the same time, achieves
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computational efficiency.

3.2 Joint Graphical Lasso

Joint graphical lasso (JGL) is a sparse penalized maximum likelihood estimator

for the precision matrix of multivariate distributions introduced by Danaher et al.

(2014). The original JGL method is proposed to estimate Gaussian graphical models

on multiple distinct classes of high-dimensional datasets. Consider K independently

identically distributed multivariate Gaussian datasets. The covariance structure of

each dataset is Σ(k). Let S(k) be the empirical estimation of Σ(k), and Θ(k) be the

estimated sparse precision matrix for Σ(k), the JGL objective function is:

maxΘ

{
K∑
k=1

nk
(
log det Θ(k) −

(
S(k)Θ(k)

))
− P (Θ)

}
(3.1)

subject to the constraint that Θ(1), . . . ,Θ(K) are positive definite. Here, {Θ} =

{Θ(k); k = 1, . . . , K}, and P (Θ) is a convex penalty function. Danaher et al. (2014)

introduced two useful penalty functions with the original JGL method:

1. The fused penalty:

P ({Θ}) = λ1

K∑
k=1

∑
i 6=j

|Θ(k)
i,j |+ λ2

∑
k<k′

∑
i,j

|Θ(k)
i,j −Θ

(k′)
i,j | (3.2)

2. The group penalty:

P ({Θ}) = λ1

K∑
k=1

∑
i 6=j

|Θ(k)
i,j |+ λ2

∑
i 6=j

√√√√ K∑
k=1

(
Θ

(k)
i,j

)2

(3.3)

For both of the penalty functions, λ1 controls the sparsity of the estimated precision

matrices, and λ2 controls the similarity of the estimated precision matrices across

factor levels. Danaher et al. (2014) used the ADMM algorithm to solve this problem.

This problem has a closed-form solution for K = 2.
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Our goal is to study the effect of factors, such as gender, ethnicity, and genetic

phenotype, on functional connectivity in brain. As noted earlier, we define functional

connectivity as groups of regions/voxels with high spatial correlations (Friston, 2011).

To solve this problem, we need to estimate a sparse precision matrix for each level of

each factor and then compare these matrices to identify similar or distinct covariance

patterns across factors.

Suppose we have a dataset which includes a total of N fMRI brain image scans

fromN subjects. Each subject is associated P categorical factors, denoted by z1, . . . , zp,

. . . , zP , and pth factor has Kp levels. Let Yn be a tensor observation of four dimensions

for the subject n, Yn ∈ IRr1,...,r4 , where r1, r2, and r3 represent the three-dimensional

brain space, and r4 represents the time. The JGL method can not be directly used

to estimate the sparse precision matrices for this type of data due to its high dimen-

sion. Instead, we can first estimate the spatial covariance matrix of this type of data

and adopt the JGL method with slight modification to obtain their sparse precision

matrices.

Assume that each combination of factor expression, (z1, . . . , zP ), has a unique

manifestation of the functional connectivity in brain. In this study, each combination

of factors corresponds to a brain voxel spatial covariance matrix pattern, which is

denoted by Σz1,...,zP . For notational convenience, we denote a unique combination of

factor expression (z1, . . . , zP ) as l and simplify the notation of Σz1,...,zP as Σl. As a

result, the total number of unique combination is L =
∏P

p=1Kp. We can also denote

Θl as the corresponding sparse precision matrix of spatial covariance matrix Σl, and

let Θl,i,j be the entry of Θl at location (i, j). The JGL objective function with a fused

penalty can be expressed as follows:

max{Θ}

{
L∑
l=1

(log det Θl − (ΣlΘl))− P (Θ)

}
(3.4)
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P (Θ) = λ1

L∑
l=1

∑
i,j

|Θl,i,j|+ λ2

L∑
l=1

L∑
l′=1

l>l′

∑
i,j

|Θl,i,j −Θl′,i,j|

Basically, the JGL method considers P factors with a total number of
∏P

p=1Kp

levels. Following this approach, the sparse precision matrices estimation suffers two

major drawbacks:

• Factors could impact functional connectivity in brain on different brain areas

at different levels. In JGL, all entries of the precision matrices share the same

penalty λ2. On such a type of highly noisy data, it would possibly create false

signals or ignore mild signals by using inappropriate λ1 and λ2.

Consider a case in which factor A has big impacts on functional connectivity

in brain. Different factor levels of A will create large signal differences on some

parts of the brain between subjects, while factor B has significant impacts, but

the signal differences it creates are not large. The JGL method will erase the

impact of factor B if we try to verify the impact of factor A using large tuning

parameters. Or we could create false signals on some parts of the brain which

are affected by neither factor if we use small tuning parameters to embrace the

effect of factor B.

• It’s computational complexity is high when the number of factors, factor levels,

and the size of covariance matrices is large. This method needs to process

a total of C(
∏P

p=1Kp, 2) pairs of covariance matrices. Let J be the size of

the covariance matrices, this computational complexity of this method will be

O(J2(
∏P

p=1Kp)
2).
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3.3 Proposed Method

We propose a hierarchical penalty function which uses different penalties for

each of the factors to estimate sparse precision matrices associated with multiple

categorical factors. If we denote Θz1,...,zp=kp,...,zP as the corresponding sparse precision

matrix of spatial covariance matrix Σz1,...,zp=kp,...,zP when pth factor zp is at level kp,

and {Θ} = {Θz1,...,zp,...,zP ; zp = 1, . . . , Kp, p = 1, . . . , P} is the set of all Θz1,...,zP ’s.

This hierarchical penalty function can be expressed by

P (Θ) =λ0

P∑
p=1

Kp∑
kp=1

∑
i,j

|Θz1,...,zp=kp,...,zP ,i,j |

+

P∑
p=1

λp


K1∑
z1=1

· · ·
Kp−1∑
zp−1=1

Kp+1∑
zp+1=1

· · ·
KP∑
zP =1

 ∑
kp<k′p

∑
i,j

|Θz1,...,zp=kp,...,zP ,i,j −Θz1,...,zp=k′p,...,zP ,i,j
|


 .

(3.5)

Here, λ0 and λp’s are nonnegative penalty parameters. This penalty will provide

sparse estimations of {Θ} when the tuning parameter λ0 is large. λp’s control the

within-class similarity. Elements of Θz1,...,zp,...,zP ’s will be identical across classes of

factor zp when the tuning parameter λp is large. By assigning a different penalty

parameter, λp, to each factor, we are able to obtain a better estimation of precision

matrices by weighting different factors. Instead of comparing C(
∏P

p=1Kp, 2) pairs

of covariance matrices as JGL method does, our method only compares a total of∑P
q=1(

∑P
p=1 Kp−Kq)

(
Kq
2

)
pairs of covariance matrices. The computational complexity

is reduced from O(J2(
∏P

p=1 Kp)
2) to O(J2

∑P
p=1K

2
p).

We modify the ADMM algorithm in Danaher et al. (2014) to solve the objective in

(3.4). Under the constraint that Θz1,...,zp=kp,...,zP is positive definite for all p = 1, . . . , P

and kp = 1, . . . , Kp, the scaled augmented Lagrangian (Boyd, 2011) for this problem

is given by:
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Lρ ({Θ}, {Z}, {U}) =−
P∑
p=1

Kp∑
kp=1

(
log det Θz1,...,zp=kp,...,zP −

(
Σz1,...,kp,...,zP Θz1,...,zp=kp,...,zP

))

+P ({Z}) +
ρ

2

P∑
p=1

Kp∑
kp=1

||Θz1,...,zp=kp,...,zP − Zz1,...,zp=kp,...,zP + Uz1,...,zp=kp,...,zP ||
2
F , (3.6)

where Zz1,...,zp=kp,...,zP = Θz1,...,zp=kp,...,zP , {Z} = {Zz1,...,zp=kp,...,zP } for kp = 1, . . . , Kp.

{U} = {Uz1,...,zp=kp,...,zP } for kp = 1, . . . , Kp are dual variables. The ADMM algorithm

to solve our problem is given as follows:

(a) Initialize the variables: Θz1,...,zp=kp,...,zP = I, {Z} = 0, {U} = 0, for p = 1, . . . , p

and kp = 1, . . . , Kp.

(b) Select a scalar ρ > 0.

(c) For i = 1, 2, 3, . . . until convergence:

(i) For p = 1, . . . , P and kp = 1, . . . , Kp, update Θ
(i)
z1,...,zp=kp,...,zP

as the mini-

mizer (with respect to Θz1,...,zp=kp,...,zP ) of

−
(
log det Θz1,...,zp=kp,...,zP −

(
Σz1,...,zp=kp,...,zPΘz1,...,zp=kp,...,zP

))
+
ρ

2
||Θz1,...,zp=kp,...,zP − Z

(i−1)
z1,...,zp=kp,...,zP

+ U
(i−1)
z1,...,zp=kp,...,zP

||2F , (3.7)

Let {VDV}> denotes the eigendecomposition of {Σz1,...,zp=kp,...,zP−

ρZ
(i−1)
z1,...,zp=kp,...,zP

+ρU
(i−1)
z1,...,zp=kp,...,zP

}, the solution of Θ
(i)
z1,...,zp=kp,...,zP

is given

(Witten et al., 2009) by {VD̃V}> , where D̃ is the diagonal matrix with

jth diagonal element:

1

2ρ

(
−Djj +

√
D2
jj + 4ρ

)
(3.8)

(ii) Update {Zi} as the minimizer (with respect to {Z}) of
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ρ

2
||Zz1,...,zp=kp,...,zP −

(
Θ

(i)
z1,...,zp=kp,...,zP

+ U
(i−1)
z1,...,zp=kp,...,zP

)
||2F + P ({Z})

(3.9)

(iii) For p = 1, . . . , P and kp = 1, . . . , Kp, update

U
(i)
z1,...,kp,...,zP

← U
(i−1)
z1,...,zp=kp,...,zP

+
(
Θ

(i)
z1,...,zp=kp,...,zP

− Z
(i)
z1,...,zp=kp,...,zP

)
(3.10)

.

The final
{

Θ̂
}

that result from this algorithm are the estimates of
{

Σ̂−1
}

. This

algorithm is guaranteed to converge to the global optimum (Boyd, 2011).

Now consider a simple case when P = 2 and Kp = 2 for p = 1, 2. The penalty

function in (3.5) takes the form:

min{Z}

{
2∑
p=1

2∑
q=1

||Zp,q −Ap,q||2F + λ0

2∑
p=1

2∑
q=1

∑
i,j,i6=j

|Zp,q,i,j |

+
2∑
p=1

λ1

∑
i,j

|Zp,2,i,j − Zp,1,i,j |+
2∑
q=1

λ2

∑
i,j

|Z2,q,i,j − Z1,q,i,j |

}
. (3.11)

(3.11) is completely separable with respect to each pair of matrix elements (i, j),

then this function can be further simplified for each (i, j) as:

min{Z}

{
2∑
p=1

2∑
q=1

(Zp,q,i,j −Ap,q,i,j)2 + λ0

2∑
p=1

2∑
q=1

|Zp,q,i,j |

+
2∑
p=1

λ1|Zp,2,i,j − Zp,1,i,j |+
2∑
q=1

λ2|Z2,q,i,j − Z1,q,i,j |

}
. (3.12)

Note that, under λ0 = 0, the solution to this problem does not have a closed-form

expression. Here, we use a numerical optimizer to solve this problem and then use

the soft-thresholding operator defined as S(x, c) = sgn(x)(|x| − c)+ to find the initial

solution of {Z}.
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3.4 Simulation Studies

In this section, we conduct a simulation to compare the performance of our

method and the JGL method. We consider a simple case that includes two factors,

each with two levels. We generate four precision matrices of size 10 × 10 with pre-

specified covariance structures (denote by Θ0
(1,1), Θ0

(2,1), Θ0
(1,2) and Θ0

(2,2)) to represent

the true spatial precision matrices of functional connectivity in brain. Each precision

matrix associates with one level combination. We take the inversion of these matrices

to obtain the covariance matrices (denote by Σ0
(1,1), Σ0

(2,1), Σ0
(1,2) and Σ0

(2,2)). To mimic

the noise contained in real data, we generate 2000 samples from each N (0,Σ0
z1,z2

) with

a standard normal white noise as samples from each level of the factors, and calculate

their empirical covariance matrices. We then apply the original JGL method and

our method to this data to estimate the sparse precision matrices for this simulation

dataset.

We are interested in the accuracy of the estimation on the areas with prespeci-

fied covariance structures, so we use the summation of absolute differences of elements

within these prespecified areas between the true precision matrix and the estimated

sparse precision matrix as the test statistic (TS) to choose the best combinations of

λ’s as the final results of our method and the JGL method. A smaller TS means the

estimated precision matrix is closer to the true one in targeting areas. We also use

this TS to compare the performance of our method with JGL.

Four precision matrices we generated as the true spatial precision matrices are:
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Σ1,1 =


φ
|i−j|
1 if i, j ∈ [1, 3]

φ
|i−j|
2 if i, j ∈ [7, 10]

1 on diagonal

0 otherwise

Σ1,2 =


φ
|i−j|
1 if i, j ∈ [1, 3]

1 on diagonal

0 otherwise

Σ2,1 =


φ
|i−j|
2 if i, j ∈ [7, 10]

1 on diagonal

0 otherwise

Σ2,2 =

{
1 on diagonal

0 otherwise
(3.13)

We vary φ1 and φ2 from 0.1 to 0.5 to test the performance of our method and JGL

when two factors have a different level of impact on the covariance. The structure

of the precision matrices generated when φ1 = 0.1 and φ2 = 0.5 and their associated

spatial covariance matrix is shown in Figure 2.1.

We report the mean and standard error of the best (smallest) test statistic for

each combination of φ’s over 10 replications as long as associating λ’s. The results

are shown in Table 3.1.

These results show that our method provides better estimations of the true pre-

cision matrices in terms of our test statistics than JGL when two factors have a very

different level of impact on the covariance structure. And when two factors have

similar impacts on the covariance structure, our method performs as good as JGL.

3.5 Case Study

In this section, we evaluate the method on the cocaine-use disorder data. This

data is a multi-subject resting-state functional magnetic resonance imaging (fMRI)

dataset collected by the Institute for Drug and Alcohol Studies at Virginia Common-

wealth University. This data includes a total of 45 subjects, in which 22 subjects

were identified as having current cocaine use disorder and 23 non-drug-using subjects

were recruited as the control group. Researchers also collected their gender (male or
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Fig. 2.1. Structure of the spatial precision matrices and covariance matrices generated

when φ1 = 0.1 and φ2 = 0.5.
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Table 3.1. Mean and standard error of mean (in parenthesis) of the best (smallest)

TS under each scenario and associating λ combinations over 10 simulation

replications.

Φ1 Φ2 Method λ1 λ2 λ3 Test Statistic

0.1 0.5 Proposed 0.0026 (0.0026) 0.0331 (0.0092) 0.0036 (0.0034) 1.4573 (0.1886)

JGL 0.0016 (0.0024) 0.0026 (0.0026) NA 1.7799 (0.2436)

0.2 0.5 Proposed 0.0021 (0.0026) 0.0326 (0.0072) 0.0016 (0.0034) 1.5320 (0.1434)

JGL 0.0026 (0.0026) 0.0006 (0.0016) NA 1.8101 (0.1760)

0.3 0.5 Proposed 0.0031 (0.0035) 0.0196 (0.0072) 0.0016 (0.0024) 1.6575 (0.2116)

JGL 0.0031 (0.0035) 0.0011 (0.0022) NA 1.8553 (0.1990)

0.4 0.5 Proposed 0.0006 (0.0016) 0.0171 (0.0109) 0.0031 (0.0042) 1.6682 (0.3358)

JGL 0.0016 (0.0034) 0.0011 (0.0021) NA 1.8938 (0.2459)

0.5 0.5 Proposed 0.0006 (0.0016) 0.0106 (0.0060) 0.0076 (0.0035) 1.6313 (0.1284)

JGL 0.0041 (0.0034) 0.0001 (0.0000) NA 1.8956 (0.1917)

0.5 0.4 Proposed 0.0016 (0.0024) 0.0196 (0.0083) 0.0031 (0.0068) 1.6769 (0.2265)

JGL 0.0036 (0.0032) 0.0006 (0.0016) NA 1.8163 (0.2632)

0.5 0.3 Proposed 0.0021 (0.0026) 0.0151 (0.0058) 0.0136 (0.0047) 1.4133 (0.1370)

JGL 0.0036 (0.0041) 0.0031 (0.0026) NA 1.5641 (0.1254)

0.5 0.2 Proposed 0.0016 (0.0024) 0.0081 (0.0075) 0.0191 (0.0074) 1.6537 (0.2100)

JGL 0.0031 (0.0048) 0.0031 (0.0026) NA 1.8024 (0.2070)

0.5 0.1 Proposed 0.0026 (0.0026) 0.0141 (0.0081) 0.0221 (0.0079) 1.4892 (0.2300)

JGL 0.0041 (0.0039) 0.0041 (0.0021) NA 1.6520 (0.2513)

female) and age (in years). Each subject in this data has 375 volumes of brain fMRI

scan image, and each volume is partitioned into a 91 × 109 × 91 rectangular lattice

(voxels) of size 2 × 2 × 2mm. The data were preprocessed using the CONN toolbox

(Whitfield-Gabrieli and Nieto-Castanon, 2012a).

We are interested in studying the potential effect of cocaine dependence on brain
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connectivities as long as the genders. Following the previous studies in cocaine usage

disorder, we focus on five well-studied functional networks (WSFNs) that are closely

related to cocaine addiction. The five WSFNs studied is (1) the default mode net-

work (DM); (2) the dorsal attention network (DA); (3) the executive control network

(CE); (4) the salience network (SA), and (5) the sensory motor network (SM). Brain

regions in these WSFNs play important roles in external task performance, voluntary

orienting, cognitive functions, problem-solving, and decision making. Similar to Razi

et al. (2017), 27 regions of interest were selected from the five WSFNs. Each region of

interest was defined as a sphere with a radius of 12 mm, and the center of each sphere

was determined based on previous studies (Razi et al., 2017). These WSFNs contain

a total of 6154 voxels. See Table 3.2 for the details of these regions of interest.

To investigate the effect of cocaine dependence and gender on brain connectivi-

ties, we first divide subjects into four groups by their cocaine usage status and gender

and label them from group 1 to group 4 (Group 1: cocaine male. Group 2: cocaine

female. Group 3: control male. Group 4 control female). Group 1-4 contains 16, 6,

14, and 9 subjects, respectively. The differences of spatial correlation between Group

1/Group 3 and Group 2/Group 4 illustrate the effect of cocaine dependence on brain

connectivity. Similarly, the differences of spatial correlation between Group 1/Group

2 and Group 3/Group 4 illustrate the effect of gender on brain connectivity.

Before model fitting, we first estimate the whole-brain voxel-level spatial correla-

tion structure for each group from the cocaine use disorder data as the representation

of functional connectivity map in brain using the method introduced in Zhao et al.

(2021). Then we collect all voxel-to-voxel spatial correlations which belong to five

WSFNs. We calculate mean voxel-to-voxel spatial correlations between each pair of

brain regions and create four 27× 27 spatial correlation matrices for each group. We

then apply the proposed method to these four matrices and obtain group-level sparse
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Table 3.2. The detailed information about the 27 spherical regions. DM = default

mode, DA = dorsal attention, EC = executive control, SA = salience, SM

= sensory motor network. IPS = inferior parietal sulcus, MT = middle

temporal, PFC = prefrontal cortex. L = left, R = right.
Node # Abbreviation Name Center Coordinates [x y z]

1 DM PCP Posterior cingulate/Precuneus 0, 52, 12
2 DM mPFC Medial Prefrontal 2, 60, 16
3 DM L LP Left lateral parietal 38, 74, 30
4 DM R LP Right lateral parietal 46, 64, 26
5 DA L FEF Left frontal eye field 32, 6, 60
6 DA R FEF Right frontal eye field 32, 6, 58
7 DA L pIPS Left posterior IPS 22, 54, 52
8 DA R pIPS Right posterior IPS 24, 56, 56
9 DA L aIPS Left anterior IPS 36, 40, 58
10 DA R aIPS Right anterior IPS 36, 38, 58
11 DA L MT Left MT 48, 68, 0
12 DA R MT Right MT 50, 60, 12
13 EC DMPFC Dorsal medial PFC 2, 22, 48
14 EC L aPFC Left anterior PFC 30, 50, 4
15 EC R aPFC Right anterior PFC 38, 46, 4
16 EC L SP Left superior parietal 60, 36, 34
17 EC R SP Right superior parietal 60, 30, 34
18 SA dACC Dorsal anterior cingulate 4, 38, 36
19 SA L aPFC Left anterior PFC 46, 20, 26
20 SA R aPFC Right anterior PFC 42, 22, 38
21 SA L INS Left insula 32, 20, 8
22 SA R INS Right insula 36, 20, 8
23 SA L LP Left lateral parietal 42, 66, 36
24 SA R LP Right lateral parietal 52, 50, 40
25 SM L MC Left motor cortex 40, 30, 56
26 SM R MC Right motor cortex 42, 28, 46
27 SM SMA Supplementary motor area 2, 0, 52

precision matrices for different factors at different levels.

A major challenge in the study of the graphical lasso method is the choice of tun-

ing parameters. In the literature, parameter tuning is often done by splitting the data

into training and testing sets and using the model misspecification rate as the criterion

to guide parameter selection. Other works choose tuning parameters on experience or

conventions. Given the lack of prior knowledge on tuning these parameters and the

37



small sample size, we use a p-value based method to choose all three tuning parame-

ters (one for the L1 penalty and two for fused penalties) in this study. WSFNs are sets

of brain regions that perform cognitive tasks by networks (Smith et al., 2011). They

are known to have relatively stronger within-network spatial dependency than out-

of-network spatial dependency. So, we assume all five WSFNs we studied have higher

within-network spatial correlations. We can evaluate the significance of these WSFNs

with respect to the estimated sparse precision matrices and find the tuning parameter

combination. First, we estimate sparse precision matrices for four groups under nu-

merous combinations of tuning parameters ({λ1, λ2, λ3} = {0 <= λi <= 1, i = 1, 2, 3}

for our proposed method, and {λ1, λ2} = {0 <= λi <= 1, i = 1, 2} for the JGL

method) using the proposed method and the JGL method. For each combination

of lambdas, we aggregate all estimated sparse precision matrix values from all four

groups as the dependent variable and define the regions within or out of each network

as a binary indicator. We fit five linear regression models, each for every network,

and record the p-value for five WSFNs. Then, we choose the combination of lambdas

which has all five WSFNs significant under the smallest significance level as the best

choice of tuning parameters.

For our proposed method, the tuning parameters we choose are λ1 = 0.1, λ2 = 0

and λ3 = 0.2. The estimated sparse precision matrices under the chosen combination

of tuning parameters are visualized in Figure 2.2. For the JGL method, the tuning

parameters we choose are λ1 = 0.1 and λ2 = 0.1. The estimated sparse precision

matrices using the JGL method under the chosen combination of tuning parameters

are visualized in Figure 2.3.

To find the effect of cocaine dependence and gender on brain connectivities,

we further take the differences of estimated sparse precision matrices between Group

1/Group 3, Group 2/Group 4, Group 1/Group 2, and Group 3/Group 4 and mark the
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Fig. 2.2. Sparse precision matrices for four groups estimated by our proposed method

when λ1 = 0.1, λ2 = 0 and λ3 = 0.2. The square areas along the diagonal are

within network correlation structure for WSFNs. DM = default mode, DA

= dorsal attention, EC = executive control, SA = salience, SM = sensory

motor network.
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Fig. 2.3. Sparse precision matrices for four groups estimated by the JGL method when

λ1 = 0.1 and λ2 = 0.1. The square areas along the diagonal are within net-

work correlation structure for WSFNs. DM = default mode, DA = dorsal

attention, EC = executive control, SA = salience, SM = sensory motor net-

work.
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region pairs with higher between-group difference values than a prespecified threshold

as regions strongly affected by a factor. We visualize these regions provided by our

proposed method in Figure 2.4. By specifying λ1 = 0.1, λ2 = 0 and λ3 = 0.2, the

identified region pairs are provided in Table 3.3 and Table 3.4.

The JGL method fail to identify the effect of both factors. The precision matrices

estimated using the JGL method are identical across groups.

Table 3.3. Effect of cocaine use disorder on functional connectivity in terms of differ-

ence of estimated spatial correlation between group 1/group 3 and group

2/group 4 in regions detected by our proposed model. Illustrating the effect

of cocaine use disorder on functional connectivity in brain. IPS = inferior

parietal sulcus, MT = middle temporal, PFC = prefrontal cortex.

Region Pair
Difference of Estimated Spatial Correlation

Group 1 - Group 3 Group 2 - Group 4

Posterior Cingulate/Precuneus vs. Right lateral parietal 4.472e-02 4.471e-02

Right Anterior IPS vs. Left MT -8.501e-02 -8.511e-02

Left MT vs. Right MT -5.116e-02 -5.119e-02

Left Superior Parietal vs. Right Superior Parietal 4.660e-02 4.658e-02

Right Anterior PFC vs. Right Insula 2.266e-02 2.248e-02

Right Anterior PFC vs. Left Lateral Parietal 8.846e-02 8.859e-02

Right Insula vs. Left Lateral Parietal -6.308e-02 -6.324e-02

Left Lateral Parietal vs. Right Lateral Parietal 9.020e-02 9.028e-02

Following the definition of functional connectivity in brain in Chapter 2, we need

to take a close look at the spatial correlation in regions affected by cocaine use disorder

(CUD) and gender in order to study the effect of these two factors on the functional

connectivity. We first take the spatial correlations associated with regions identified

by our proposed method for all four groups, and then take difference between groups.

Table 3.3 shows the difference of Estimated Spatial Correlation between group

1/group 2 and group 3/group 4 in regions detected by our proposed method. We
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Table 3.4. Effect of gender on functional connectivity in terms of difference of esti-

mated spatial correlation between group 1/group 2 and group 3/group 4 in

regions detected by our proposed model. Illustrating the effect of gender

on functional connectivity in brain. IPS = inferior parietal sulcus.

Region Pair
Difference of Estimated Spatial Correlation

Group 1 - Group 2 Group 3 - Group 4

Left Posterior IPS vs. Left Anterior IPS -2.052e-04 -5.685e-04

Right Posterior IPS vs. Left Anterior IPS -1.091e-04 -7.529e-05

Left Anterior IPS vs. Right Anterior IPS -2.041e-04 -5.287e-04

can see that the participants with CUD had larger functional connectivity in terms of

spatial correlation than the control participants between posterior cingulate and right

lateral parietal (4.472e-02 for male and 4.471e-02 for female), between left superior

parietal and right superior parietal (4.660e-02 for male and 4.658e-02 for female),

between right anterior PFC and right insula (2.266e-02 for male and 2.248e-02 for

female), between right anterior PFC and left lateral parietal (8.846e-02 for male

and 8.859e-02 for female), and between left lateral parietal and right lateral parietal

(9.020e-02 for male and 9.028e-02 for female). The CUD participants also had smaller

functional connectivity than the control participants between right anterior IPS and

left MT (-8.501e-02 for male and -8.511e-02 for female), between left MT and right

MT (-5.116e-02 for male and -5.119e-02 for female) and between right insula and left

lateral parietal (-6.308e-02 for male and -6.324e-02 for female). This result is also

consistent with previous clinical studies on cocaine use in Chapter 2, validating the

clinical reliability of our proposed method.

In Table 3.4, we see that the male participants had smaller functional connectivity

in terms of spatial correlation than female participants between left posterior IPS

and left anterior IPS (-2.052e-04 for cocaine group and -5.685e-04 for control group),
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between right posterior IPS and left anterior IPS (-1.091e-04 for cocaine group and

-7.529e-05 for control group), and between left anterior IPS and right anterior IPS

(-2.041e-04 for cocaine group and -5.287e-04 for control group).

The functional connectivity differences between cocaine use disorder subjects and

control subjects identified by our method in the precuneus and the lateral parietal area

are consistent with previous clinical studies on cocaine use in Chapter 2, validating

the clinical reliability of our proposed method.
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Fig. 2.4. Difference of estimated sparse precision matrices between groups to show

the effect of cocaine use disorder and gender when λ1 = 0.1, λ2 = 0 and

λ3 = 0.2 under prespecified threshold. The cubic areas along the diagonal

are within network correlation structure for WSFNs. DM = default mode,

DA = dorsal attention, EC = executive control, SA = salience, SM = sensory

motor network.
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CHAPTER 4

CONCLUSION

In Chapter 2, we proposed a Spatio-temporal model for multi-subject fMRI data

that efficiently incorporates voxel-level Spatio-temporal dependencies of whole-brain

measurements to improve the accuracy of statistical inferences. This model addresses

common challenges in fMRI brain imaging data, including large-scale nonstationary

spatial covariance and complex Spatio-temporal dependence. From the simulated

study, we show that properly accounting for spatial and temporal correlation is crit-

ical for efficient estimation and valid inference from the simulated study. Using our

efficient estimation method, we successfully reduce the computational effort to ana-

lyze multi-subject fMRI data from days to minutes. We also developed a permutation

test to test the brain global spatial dependence difference between two groups and a

graphical-lasso based method to identify the local difference. We applied our method

to the cocaine use disorder data and identified multiple brain region pairs with sig-

nificant connectivity difference between the cocaine and control groups. Our results

are consistent with literatures that cocaine use disorder may be associated with the

functional connectivity in the medial orbitofrontal cortex subregions and the sup-

plementary motor areas. Particularly, the cocaine use disorder individuals showed

lower functional connectivity between the bilateral supplementary motor areas than

controls. Given the sample size and relatively small group difference, the novel re-

sults need to be replicated in future studies with a different sample. Specifically, it

is critical to improve the design and/or modeling with respect to the demographic

covariates, such as increasing the number of subjects in each demographic group or
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including confound modeling (Alfaro-Almagro et al., 2021).

In Chapter 3, we propose a lasso-based hierarchical penalty function for estimat-

ing sparse precision matrices for large-scale multi-subject fMRI data with multiple

categorical factors. To improve the estimation accuracy and reduce computational

effort, we assign different penalties for each of the multiple distinct level factors. We

also propose a significance-level-based approach to choose the best combination of

tuning parameters. We further apply with applications to the cocaine-use disorder

fMRI data. The simulation studies show that our method is more accurate in esti-

mating sparse precision matrices than the JGL method. The real data application

demonstrates the effectiveness of our method in studying the effect of multi-level fac-

tors in fMRI data. We identify regions with different spatial correlations between the

cocaine use disorder group and the control group. Our results are consistent with the

literature that the cocaine use disorder individuals show lower functional connectivity

between the bilateral supplementary motor areas than controls. The main limitation

of this study is the computational time. The average computational time for the JGL

method is 1.276 seconds on a desktop computer with a quad-core 4.00GHz processor

and 16GB RAM space. The average computational time for our proposed method is

150 seconds on the same system. This result does not meet our expectation in section

3.3 which is based on the analysis of the algorithm cost. This difference is because

(1) we use a numerical optimizer to solve for the Z matrix instead of the generalized

fused lasso approximator used by the JGL R package; and (2) we conduct simulation

studies on a simple case that includes two factors, each with two levels. In the future

study, we will adopt a more efficient optimization procedure to improve the compu-

tational time of our method and then conduct simulation studies on a larger size of

factors to further evaluate the performance of the proposed method.
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Appendix A

APPENDICES

A.1 Transformation from model (2.1) to (2.4)

Let Yi,t be the vector that collects all the responses of subject i at volume t

and let Yi = [Y >i,1, Y
>
i,2, . . . , Y

>
i,L]> stack all the responses of subject i. Following the

notation in Section 2.3 and Section 2.4, we can rewrite our model in matrix form as:

Yi = Xiβ + (W ⊗B)Γi + Ei, (A.1)

where ⊗ shows the Kronecker product, Xi = 1ML ⊗ x>i , x>i = [1,x>i ], 1ML is the

vector of all 1’s of size ML× 1, β = [µ(v, t), β], Ei stacks all the random errors. The

variance-covariance matrix of Yi can be expressed by

var(Yi) = ΣT ⊗BΣB> + σ2IML, (A.2)

where IML is the identity matrix of size ML×ML.

Let Ỹi = (U> ⊗ IM)Yi be the transformed response vector of subject i at volume

t, and we will have Ỹi,t = (U>t ⊗ IM)Yi, where U>t = [Ut,1, Ut,2, . . . , Ut,L] is the t-th

row of matrix U>. Then, the variance-covariance matrix of Ỹi is

var(Ỹi) = var
(

(U> ⊗ IM )Yi

)
= (U> ⊗ IM )>(ΣT ⊗BΣB> + σ2IML)(U ⊗ IM )

= U>ΣTU ⊗BΣB> + σ2(U>U ⊗ IM )

= V ⊗BΣB> + σ2IML, (A.3)
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where V is an L×L diagonal matrix with element λt, t = 1, . . . , L. We can see that

Ỹi,t’s are independent after this transformation, and the variance-covariance matrix

of Ỹi,t is

var(Ỹi,t) = λtBΣB> + σ2IM . (A.4)

Now, the transformed model can be expressed by

Ỹi,t = (U>t ⊗ IM)Yi

= (U>t ⊗ IM) (Xiβ + (W ⊗B)Γi + Ei)

= (U>t ⊗ IM)
(
1ML ⊗ x>i β + (W ⊗B)Γi + Ei

)
=

(
1M ⊗ (

L∑
l=1

U>t,l)x
>
i

)
β + (U>t W ⊗B)Γi + (U>t ⊗ IM)Ei,t. (A.5)

If we choose W to be the solution of U>W =
√
V , we will have U>t W to be a row

vector whose tth element is
√
λt and all other elements are 0’s. Then the transformed

model can be further simplified as

Ỹi,t = X̃i,tβ +
√
λtBΓi,t + Ẽi,t (4)

where X̃i,t = 1M ⊗ (
∑L

l=1 U
>
t,l)x

>
i , and Ẽi,t = (U>t ⊗ IM)Ei,t.

A.2 Prior Settings and The Close-form Update Formulas

In this section, we derive the updating formula of each parameters using the EM

algorithm. Following the notation setting in Section 2.3, Section 2.4 and A.1, our

model is

Ỹi,t = X̃>i,tβ +
√
λtBΓi,t + Ẽi,t. (4)
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The prior settings we use to develop the update formulas for the EM algorithm are

Γi,t|Σ ∼ N (0,Σ), for i = 1, . . . , N and t = 1, . . . , L

Σ|Ψ, ν ∼ IW(Ψ, ν)

σ2|a, b ∼ IG(a, b)

β|µβ, Rβ ∼ N (µβ, σ
2Rβ) (A.6)

By inserting the prior distributions for the model parameters, the posterior dis-

tributions of the unknown parameters can be expressed by

p(β,Σ, σ2|Ỹ) ∝ p(Ỹ|Γ1, . . . ,ΓN ,β,Σ, σ
2)p(Γ1, . . . ,ΓN |β,Σ, σ2)p(Σ, σ2)p(β)

∝
N∏
i=1

{
L∏
t=1

[
p(Ỹi,t|Γi,t,β, σ2)

]
p(Γi,t|Σ)

}
p(Σ)p(σ2)p(β) (A.7)

Taking Ỹi,t as observed data and Γi,t’s as missing data. At iteration l + 1, EM algo-

rithm expectation step is to find
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Q(β,Σ, σ|βl,Σl, σl) =EΓ

[
−2 log p(β,Σ, σ|Y )|βl,Σl, σl

]
=− 2EΓ

[
N∑
i=1

L∑
t=1

log p(Ỹi,t|Γi,t,β, σ2) +
N∑
i=1

L∑
t=1

log p(Γi,t|Σ)

+ log p(Σ) + log p(σ2) + log p(β)

∣∣∣∣βl,Σl, σl
]

=− 2EΓ

[
N∑
i=1

L∑
t=1

log

{
(2π)−

M
2 |σ2IM |−

1
2 exp

{
−

1

2

(
Ỹi,t − X̃i,tβ −

√
λtBΓi,t

)>
(σ2IM )−1

(
Ỹi,t − X̃i,tβ −

√
λtBΓi,t

)}}

+

N∑
i=1

L∑
t=1

log

{
(2π)−

J
2 |Σ|−

1
2 exp

{
−

1

2
Γ>i,tΣΓi,t

}}

+ log p(Σ) + log p(σ2) + log p(β)

∣∣∣∣βl,Σl, σl
]

=(NML+NLJ) log 2π +NML log σ2 +NL log |Σ|

+
1

σ2

N∑
i=1

L∑
t=1

Ỹ >i,tỸi,t −
2

σ2

N∑
i=1

L∑
t=1

Ỹ >i,tX̃i,tβ +
1

σ2
β>

(
N∑
i=1

L∑
t=1

X̃>i,tX̃i,t

)
β

−
2

σ2

N∑
i=1

L∑
t=1

√
λtỸ

>
i,tBE

[
Γi,t|Ỹi,t,βl,Σl, σl

]

+
2

σ2

N∑
i=1

L∑
t=1

√
λtβ
>X̃>i,tBE

[
Γi,t|Ỹi,t,βl,Σl, σl

]

+
N∑
i=1

L∑
t=1

tr

{(
λtB>B

σ2
+ Σ−1

)
E
[
Γi,tΓ

>
i,t|Ỹi,t,βl,Σl, σl

]}
− 2 log p(Σ)− 2 log p(σ2)− 2 log p(β). (A.8)

We need to find the distribution of Γi,t|Ỹi,t,βl,Σl, σl. From the Bayesian theorem,
we have

p(Γi,t|Ỹi,t,βl,Σl, σl) =
p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl)∫

Γi,t
p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl)

(A.9)

and
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p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl) =(2π)−
M
2 |(σ2)lIM |−

1
2 exp

{
−

1

2

(
Ỹi,t − X̃i,tβl −

√
λtBΓi,t

)>
((σ2)lIM )−1

(
Ỹi,t − X̃i,tβl −

√
λtBΓi,t

)}
(2π)−

J
2 |Σl|−

1
2 exp

{
−

1

2
Γ>i,t(Σ

l)−1Γi,t

}
=(2π)−

M+J
2 |(σ2)lIM |−

1
2 |Σl|−

1
2

exp

{
−

1

2(σ2)l
(Ỹi,t − X̃i,tβl)>(Ỹi,t − X̃i,tβl)

+
1

(σ2)l
(Ỹi,t − X̃i,tβl)>

√
λtBΓi,t

−
1

2
Γ>i,t

(
λtB>B

(σ2)l
+ (Σl)−1

)
Γi,t

}
. (A.10)

Let

Σlt =

[
λtB>B

(σ2)l
+ (Σl)−1

]−1

, t = 1, . . . , L (A.11)

µli,t =

[
λtB>B

(σ2)l
+ (Σl)−1

]−1 √
λtB>(Ỹi,t − X̃i,tβl)

(σ2)l
, t = 1, . . . , L, i = 1, . . . , N. (A.12)

We have

p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl) =

(2π)−
M+J

2 |(σ2)lIM |−
1
2 |Σl|−

1
2 exp

{
−

1

2(σ2)l
(Ỹi,t − X̃i,tβl)>(Ỹi,t − X̃i,tβl)

}
exp

{
−

1

2
(Γi,t − µli,t)>(Σlt)

−1(Γi,t − µli,t)
}

exp

{
1

2
(µli,t)

>Σ−1
t µli,t

}
. (A.13)

Then
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∫
Γi,t

p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl) =

∫
Γi,t

(2π)−
M+J

2 |(σ2)lIM |−
1
2 |Σl|−

1
2

exp

{
−

1

2(σ2)l
(Ỹi,t − X̃i,tβl)>(Ỹi,t − X̃i,tβl)

}
exp

{
−

1

2
(Γi,t − µli,t)>(Σlt)

−1(Γi,t − µli,t)
}

exp

{
1

2
(µli,t)

>(Σlt)
−1µli,t

}
=(2π)−

M
2 |(σ2)lIM |−

1
2 |Σl|−

1
2 |Σlt|

1
2

exp

{
−

1

2(σ2)l
(Ỹi,t − X̃i,tβl)>(Ỹi,t − X̃i,tβl)

}
exp

{
1

2
(µli,t)

>(Σlt)
−1µli,t

}
∫

Γi,t

(2π)−
J
2 |Σlt|−

1
2 exp

{
−

1

2
(Γi,t − µli,t)>(Σlt)

−1(Γi,t − µli,t)
}

=(2π)−
M
2 |(σ2)lIM |−

1
2 |Σl|−

1
2 |Σlt|

1
2

exp

{
−

1

2(σ2)l
(Ỹi,t − X̃i,tβl)>(Ỹi,t − X̃i,tβl)

}
exp

{
1

2
(µli,t)

>(Σlt)
−1µli,t

}
(A.14)

Then we have

p(Γi,t|Ỹi,t,βl,Σl, σl) =
p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl)∫

Γi,t
p(Ỹi,t|Γi,t,βl, σl)p(Γi,t|Σl)

=(2π)−
J
2 |Σlt|−

1
2 exp

{
−

1

2
(Γi,t − µli,t)>(Σlt)

−1(Γi,t − µi,t)
}

(A.15)

Now, we know that Γi,t|Ỹi,t,βl,Σl, σl ∼ N(µli,t,Σ
l
t). Then, E

[
Γi,t|Ỹi,t,βl,Σl, σl

]
= µli,t

and E
[
Γi,tΓ

>
i,t|Ỹi,t,βl,Σl, σl

]
= Σl

t + Ωl
i,t, where Ωl

i,t = µli,t(µ
l
i,t)
>.

Finally, the EM algorithm expectation step objective function is

Q(β,Σ, σ|βl,Σl, σl) =(NML+NLJ) log 2π +NML log σ2 +NL log |Σ|

+
1

σ2

N∑
i=1

L∑
t=1

Ỹ >i,tỸi,t −
2

σ2

N∑
i=1

L∑
t=1

Ỹ >i,tX̃i,tβ +
1

σ2
β>

(
N∑
i=1

L∑
t=1

X̃>i,tX̃i,t

)
β

−
2

σ2

N∑
i=1

L∑
t=1

√
λtỸ

>
i,tBµ

l
i,t +

2

σ2

N∑
i=1

L∑
t=1

√
λtβ
>X̃>i,tBµ

l
i,t

+

N∑
i=1

L∑
t=1

tr

{(
λtB>B

σ2
+ Σ−1

)
(Σlt + Ωli,t)

}
− 2 log p(Σ)− 2 log p(σ2)− 2 log p(β). (A.16)
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In the M-step of the EM algorithm, we need to find βl+1, Σl+1, σl+1 to minimize
Q(β,Σ, σ|βl,Σl, σl). We first take derivative of Q(β,Σ, σ|βl,Σl, σl) with respect to
each parameters

∂Q(β,Σ, σ|βl,Σl, σl)
∂β

=2
(

(σ2)lRβ

)−1
β − 2

(
(σ2)lRβ

)−1
µβ −

2

(σ2)l

(
N∑
i=1

L∑
t=1

Ỹ >i,tX̃i,t

)

+
2

(σ2)l

(
N∑
i=1

L∑
t=1

X̃>i,tX̃i,t

)
β +

2

(σ2)l

N∑
i=1

L∑
t=1

√
λtX̃

>
i,tBµ

l
i,t (A.17)

∂Q(β,Σ, σ|βl,Σl, σl)
∂σ2

=
2(a+ 1)

σ2
−

2b

(σ2)2
−

1
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∂Q(β,Σ, σ|βl,Σl, σl)
∂Σ
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(
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By letting each partial derivatives be 0, we solve βl+1, Σl+1, σl+1 as:
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A.3 Modeling Detail in Sections 2.5 and 2.6

In this section, we list all prior settings we use to conduct the simulation study

and analyze the cocaine use disorder data in this research.

We denote the cocaine use disorder group as group 1 and the control group as

group 2. Following the transformed model in (2.4), we set:

• Ut is the t-th column of U , the eigenvector matrix from the eigenvalue decom-

position (ΣT =WW> = UV U>), of the temporal covariance matrix ΣT .

• λt is the tth diagonal element of V .

• ΣT is the time series covariance matrix of a AR2 time series model:

Yi(v, t) = φ1Yi(v, t− 1) + φ2Yi(v, t− 2) + ei(v, t) (A.20)

εi(v, t) ∼ N(0, σ2
ε ) (A.21)

In this research, we use φ1 = 1.723, φ2 = −0.904 and σ2
ε = 3.121× 10−2. These

values are estimated from the cocaine use disorder data. More details on the

parameter choice can be found in Appendix A.6.3. If we ignore the spatial

dependence, the data for each voxel and each subject is a time series. We fit a

time series model for each of these time series. We use AIC to select the model

of the best order and estimate their parameters. As a result, autoregressive

model of order 2 has the best AIC value for almost all the time series, and the

variations of all three parameters estimated are very small. So, we choose the

median of these parameters estimated as the final value we use for the real data.

• We use the isotropic Gaussian kernel as the basis function over the 3-dimensional
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voxel space

φ(v,vk) = exp(−‖v − vk‖2
2/2h

2). (A.22)

We conduct an empirical analysis with respect to the isotropic Gaussian kernel

we used in real data analysis through empirical variogram to show that the

spatial variability in the real data does not vary along with three-dimensional

spatial directions. We fit variogram models for each subject at each volume.

For each volume, we fix a dimension and fit a two-dimension variogram for the

other 2 spatial dimensions and then switch to other dimensions. We record all

the fitting results. Figure A.1 shows the distributions of sill and range of all

these models. We can see that both sill and range are roughly at the same range

across three directions. Thus, the isotropic Gaussian kernel basis functions over

3-dimensional voxel space is adequate.

Fig. A.1. Histograms of sill and range parameters on each directions.

• In this research, we choose h to be a half of the distance between two spatial
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basis nodes.

• We use, J = 5× 5× 5, a total of 125 equally spaced spatial basis nodes for the

whole brain. Thus, the size of the spatial dependence matrix Σ is 125× 125.

For the real data in Section 2.6, the linear factors described in Table 2.1 are not

significant to the response via a z-test with significant level 0.0001.

A.4 A Simulation Study on the Permutation Test in Section 2.6.2

We use synthetic datasets to assess the effectiveness of the permutation test for

H0 : Σ1 = Σ2 in Section 2.6.2. We generate our simulation dataset the same way

as in Section 2.5, but instead of generating one set of data, for each replication, we

generate two sets of data as two treatment groups. For each group, we also use

exponential Toeplitz covaraince matrix Σ0
g with parameter θg as the true reduced

spatial dependence matrix:

Σ0
g,i,j = θ|i−j|g , i = 1, . . . , J, j = 1, . . . , J. (A.23)

By changing the value of θg for each group, we are able to assess the our proposed

test statistic under different level of variation. This test statistic is always positive,

and the larger it is, more different Σ1 and Σ2 are. In this study, we choose θg from

0.1 to 0.7, where a large θg indicates strong spatial dependence.

We use permutation test over 100 permutation samples to test the power of this

test statistics. For each combination of θg’s, we run 50 replications. The significance

of our test is determined by the p-value, which is defined as the number of permutation

samples that has larger test statistic value than the permutation population over 100

permutation samples. Here, we report the ratio of the number of replications with

significant p-value (smaller than 0.05) over 50 replications for each combination of
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θg’s. The result is shown in Table A.1.

Table A.1. Median, first and third quantiles of the p-values of the permutation test

over 50 replications.

θ1 θ2 First Quantile Median Third Quantile

H0 is True 0.100 0.100 0.010 0.060 0.275

0.300 0.300 0.140 0.420 0.730

0.500 0.500 0.180 0.335 0.610

0.700 0.700 0.188 0.455 0.697

H0 is Not True 0.100 0.300 <0.0001 <0.0001 <0.0001

0.100 0.500 <0.0001 <0.0001 <0.0001

0.100 0.700 <0.0001 <0.0001 <0.0001

0.300 0.500 <0.0001 <0.0001 <0.0001

0.300 0.700 <0.0001 <0.0001 <0.0001

0.500 0.700 <0.0001 <0.0001 <0.0001

A.5 Participants and Data Preprocessing

This study was approved by the institutional review board at the Virginia Com-

monwealth University and was performed in accordance with the Code of Ethics

of the World Medical Association (Declaration of Helsinki). Subjects with current

cocaine use disorder (DSM-IV) and non-drug-using normal controls were recruited

through advertisements for research volunteers. Informed consent was obtained from

all subjects.

All subjects were screened for psychiatric disorders using the Structured Clinical

Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edi-
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tion (DSM-IV; First et al., 1996). All subjects underwent physical examination, and

their medical history was obtained. Subjects also underwent the Addiction Severity

Index (McLellan et al., 1992) to document possible lifetime drug and alcohol use.

All female subjects underwent a urine pregnancy test immediately before MRI scan-

ning. Each subject’s urine was screened for amphetamine, barbiturates, buprenor-

phine, benzodiazepines, cocaine, methamphetamine, MDMA (ecstasy), methadone,

opiates, oxycodone, phencyclidine (PCP), propoxyphene (PPX), tricyclic antidepres-

sants, marijuana (THC) using a device called 14 PANEL URINE DRUG SCREENS

| T-CUP TDOA-1145A3 (Wondfo Biotech Co., Ltd, Guangzhou, China), and each

subject was screened for alcohol using Alco-Sensor FST (Intoximeters, St. Louis,

MO) immediately before MRI scanning.

Subject inclusion criteria were: (1) 18-55 years old; (2) free of alcohol (per breath

alcohol screen) at the time of MRI scanning; (3) cocaine use disorder (CocUD) sub-

jects met Diagnostic and Statistical Manual Fourth Edition (DSM-IV) (American

Psychiatric Association, 2000) criteria for current cocaine use disorder based on Struc-

tured Clinical Interview for DSM-IV (First et al., 1996) , and (4) normal control

subjects had no current or lifetime history of any DSM-IV substance use or psychi-

atric disorder. Exclusion criteria were: (1) left-handed; (2) CocUD subjects who met

current or past DSM- IV Axis I disorder other than substance abuse or substance

dependence; (3) medical disorders or taking medication that may affect the central

nervous system; (4) claustrophobia experienced during MRI or MRI simulator ses-

sions; (5) any definite or suspected clinically significant abnormalities of the brain

on Fluid Attenuated Inversion Recovery (FLAIR) MRI scans, as read prior to data

analysis by a board certified radiologist; (6) positive urine drug screen for control

subjects; (7) positive pregnancy test result. After applying for the inclusion and ex-

clusion criteria, a total of 22 CocUD subjects (cocaine group) and 23 control subjects
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(control group) were included in this study.

The fMRI data were preprocessed using the CONN toolbox version 17.f (http:

//www.nitrc.org/projects/conn) (Whitfield-Gabrieli and Nieto-Castanon, 2012b),

based on Statistical Parametric Mapping 12 (SPM12) software (http://www.fil.

ion.ucl.ac.uk/spm/), and Matlab R2015a (Mathworks Inc. Sherborn MA, USA).

The T1-weighted MPRAGE image and the resting state fMRI images were input to

CONN as the structural image and functional images respectively. All preprocess-

ing steps were conducted using the pipeline for volume-based analysis (to Montreal

Neurological Institute or MNI space). Specifically, each subject’s functional images

were realigned to the first volume. Then they were unwarped, slice-timing corrected

(ascending-sequential or foot to head), co-registered with structural image, and spa-

tially normalized into the standard MNI space. The final images were smoothed using

a Gaussian kernel of 8 mm isotropic full width at half maximum. After these, de-

fault aComCor fMRI denoising (Behzadi et al., 2007) and fMRI band-pass filtering

(0.008-0.10 Hz) were applied as pre-processing.

A.6 Model Justification

A.6.1 Common Variance Assumption

In this section, we justify the common variance assumption in our proposed

model (2.1). We estimate the white noise variance for each subject in the cocaine use

disorder multi-subject FMRI data separately using our proposed method. Mean and

standard deviation of the white noise variance of each subject separately are compared

with the estimated white noise variance when assuming homogeneity in Table A.2 and

in histogram A.6.1. The results show that the homogeneous assumption makes little

difference in the estimation. It is worth noting that We standardized the data to
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range (-1, 1) for each subject before feed it into our model since the range of the

real data is very different across subjects. Then we can conclude that the common

variance assumption is appropriate for this data.

Table A.2. Mean and standard deviation of white noise variances for each subject in

the cocaine use disorder multi-subject FMRI, and the estimated white noise

variance when assuming homogeneity.

Mean Standard Deviation

Single Subject Estimation 0.7825 3.107× 10−2

All subjects assuming Homogeneous Variance 0.7824

Fig. A.2. Histogram of separately estimated white noise variances for each subject in

the cocaine use disorder multi-subject FMRI. The blue vertical line is the

estimated white noise variance when assuming homogeneity.

A.6.2 Common Linear Coefficients

In this section, we explore the significance of linear coefficients (β). We fit a

linear regression model on each voxel at each volume using the standardized Bold

signal from all subjects as the dependent variable and four demographic variables
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as independent variables. We record p-value’s for all coefficients. The results show

that all coefficients have p-value greater than 0.9999 at all voxel locations. This

demonstrates that the demo-graphical covariates are insignificant to Bold signal, and

it is not necessary to make further exploration to more complex structure of the linear

covariates.

A.6.3 Choice of Temporal Basis Function and Spatio-Temporal Separa-

bility

The fMRI data is a 4-dimensional spatio-temporal data. There is a time series

at each spatial (voxel) location. Before analyzing the real data, we first explore the

temporal nature of the cocaine use disorder dataset. We fit multiple time series model

for each voxel for each subject in the dataset including AR(1), AR(2), AR(3), MA(1)

and MA(2). We record all the parameter estimates and BIC value for each of the

model at each location. We found that AR(2) model fits the best for almost all time

series according to the BIC value. Histograms A.6.3 show all parameter estimates

of AR(2) model at all voxel locations, and table A.3 reports the mean, standard

deviation of the mean, p-value and standard deviation of p-values of these AR(2)

model estimates. The results show that the time series fitted at different spatial

location for different subjects are very similar. Thus, we use a homogeneous AR(2)

temporal basis function with mean estimates as parameters from the real data model,

to represent the temporal dependence of the cocaine use disorder data. We can also

conclude from these results that the space and time domain in our data are separable,

since the temporal correlation does not affected by spatial locations of the data.
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Fig. A.3. Histogram of all parameter estimates of AR(2) model at all voxel locations

for real data AR(2) time series models.
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Table A.3. Mean parameter estimates, standard deviation of mean (in parenthesis),

p-value and standard deviation of p-value (in parenthesis) for real data

AR(2) time series models.

mean estimates (standard deviation of the mean) p-value (standard deviation of p-values)

Intercept 1.852 ×10−5 (1.062 ×10−3) 0.9259 (5.719 ×10−2)

φ1 1.723 (3.469 ×10−2) < 0.0001 (< 0.00001)

φ2 -0.904 (1.514 ×10−2) < 0.0001 (< 0.00001)

σ2 3.121 (3.640 ×10−2)

A.6.4 Model Performance on Complex Connectivity

In section 2.5, the random factors Γi,l’s in (2.2) are independently generated from

N (0,Σ0), where Σ0 is a J ×J matrix with Σ0
i,j = 0.5|i−j|. In this section, we generate

the simulation dataset using the Σ̂ of the cocaine group estimated from the cociane

use disorder fMRI dataset to study the performance of our model when the true Σ0

are more complex. Since none of the linear coefficients is significant in the real data,

we still use the same coefficients as simulation studies in section 2.5. We also report

the mean estimates and standard error of mean for both linear regression model and

our proposed model over 50 replications. Table A.4 reports the estimation results.

The results show that our model performs very well for real connectivity.

A.6.5 Isotropic Gaussian Kernel

Here, we conduct an empirical analysis with respect to the isotropic Gaussian

kernel we used in real data analysis through empirical variogram to show that the

spatial variability in the real data does not vary along with three-dimensional spatial

directions. We fit variogram models for each subject at each volume. For each

volume, we fix a dimension and fit a two-dimension variogram for the other 2 spatial

dimensions and then switch to other dimensions. We record all the fitting results.
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Table A.4. Simulation study mean parameter estimates and standard error of mean (in

parenthesis) for data simulated from real data spatial covariance structure

over 50 replications.

True Value
Model

Linear Regression Spatio-Temporal Model

µ = 0.1 0.00314 (2.313 ×10−4) 0.0996 (2.522 ×10−4)

β1 = 0.5 0.01577 (3.157 ×10−5) 0.5001 (3.099 ×10−5)

β2 = 1 0.03146 (2.213 ×10−5) 1.000 (2.143 ×10−5)

σ2 = 1 83.305 (1.264 ×10−3) 0.9997 (7.626 ×10−5)

TS 4.413 ×10−6(2.830× 10−8)

A.7 Sensitivity Analysis

In this section, we conduct a series of simulation studies under different model

settings to obtain practical guidance regarding the choice of number of subjects N ,

number of spatial basis nodes J , number of volumes L and different types of basis

functions on the real data.

The simulation datasets are generated the same way as in section 2.5. We use

the covariance matrix estimated from the cocaine use disorder group of the real data

in section 2.6 as the true Σ0 matrix. We vary the N , L, J in the simulated datasets to

explore the effects of parameter misspecification on the inference. We also study the

performance of our model when data is generated using different basis functions. We

applied our proposed model to each of the simulation dataset, and report the mean,

standard error of the mean and the test statistic (2.6) proposed in section 2.5 over 50

replications under each scenario. We still use the same uniform distributions for the

covariates x1 and x2 as we did in section 2.5 in the sensitivity analysis.
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A.7.1 Number of Subjects (N)

First, we would like to study the performance of our model when the number of

subjects are small. We generate simulation dataset with number of subjects from 5

to 100. The results are shown in table A.5. The parameter estimation is accurate

and stable even when there is only 5 subjects in the simulated dataset.

Table A.5. Simulation study mean parameter estimates and standard error of mean (in

parenthesis) for data with different number of subjects over 50 replications.

True Value
N

5 10 25 50 100

µ = 0.1 0.09913 (6.779 ×10−4) 0.1002 (1.034 ×10−3) 0.1004 (4.905 ×10−4) 0.1006 (4.031 ×10−4) 0.1000 (2.235 ×10−4)

β1 = 0.5 0.500 (3.075 ×10−4) 0.4999 (1.337 ×10−4) 0.5000 (7.092 ×10−5) 0.4999 (4.993 ×10−5) 0.5000 (3.094 ×10−5)

β2 = 1 1.000 (1.683 ×10−4) 1.000 (7.996 ×10−5) 1.000 (5.473 ×10−5) 1.000 (4.083 ×10−5) 1.000 (2.721 ×10−5)

σ2 = 1 0.9996 (1.329 ×10−4) 0.9996 (1.011 ×10−4) 0.9997 (6.188 ×10−4) 1.000 (5.111 ×10−4) 1.000 (4.024 ×10−5)

TS 2.002 ×10−4 (3.981 ×10−6) 2.154 ×10−4 (3.511 ×10−6) 1.747 ×10−4 (2.415 ×10−6) 1.145 ×10−4 (2.347 ×10−6) 6.886 ×10−5 (1.088 ×10−6)

A.7.2 Number of Total Volumes (L)

Next, we vary the number of total volumes (L) of each subject from 25 to 400

to see if our model can estimate parameters and spatial covariance matrix accurately

when L is small. The results are shown in table A.6. We can see that when each

subject have only 25 volumes our model still performance very well.

A.7.3 Number of Spatial Basis Nodes (J)

The number of spatial basis nodes (J) is a very important feature in Kriging

methods. Using a small number of basis nodes could significantly reduced the com-

putational time for very large spatial datasets. However, the smaller J we use, the

more details we lose in the data. Choosing J for a dataset is truly a balance between

accuracy and computational cost. Through this study, we would like to find a J value

that can achieve computational efficiency, at the same time, without losing too much
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Table A.6. Simulation study mean parameter estimates and standard error of mean (in

parenthesis) for data with different number of volumes over 50 replications.

True Value
L

25 100 400

µ = 0.1 0.1019 (2.437 ×10−3) 0.1005 (1.004 ×10−3) 0.1004 (4.905×10−4)

β1 = 0.5 0.4994 (3.310 ×10−4) 0.5001 (1.990 ×10−4) 0.5000 (7.092×10−5)

β2 = 1 1.000 (2.631 ×10−4) 0.9998 (1.533 ×10−5) 1.000 (5.473×10−5)

σ2 = 1 0.9991 (2.412 ×10−4) 0.9995 (1.258 ×10−4) 0.9997 (6.188×10−4)

TS 1.127 ×10−4 (2.168 ×10−6) 2.164 ×10−4 (3.674 ×10−6) 1.816×10−4 (2.080×10−6)

information.

We first estimate the covariance matrix of the cocaine use disorder group in

section 2.6 using J0 = 8 (23), 125 (53) and 1000 (103) from the real data. We then

generate data from it, and estimate parameters using J = 8 (23) , 27 (33) and 125 (53)

. The results are shown in table A.7. We can see that even though we can achieve the

most accuracy by using the same basis nodes in estimation as that in generating the

simulation datasets, J = 125 (53) always provides good estimation results. Hence, we

choose J = 125 (53) in this study to estimate the spatial covariance structure for the

cocaine use disorder fMRI data.

A.7.4 Basis Function

The types of basis functions will also affect the performance of dimension reduc-

tion methods. Some basis functions imply strong relationships among close spatial

locations, while some others have impacts across large spatial domain.

The Gaussian basis function is widely used for large scale spatial datasets due

to its computational convenience and flexibility. In all simulation studies above, we

generate simulation datasets using the Gaussian basis function and explore the model
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Table A.7. Simulation study mean parameter estimates and standard error of mean

(in parenthesis) for data with different number of spatial basis nodes J

under different true J0 over 50 replications.

J0 True Value
J

2× 2× 2 3× 3× 3 5× 5× 5

2× 2× 2

µ = 0.1 0.0997 (2.896 ×10−4) 0.1017 (1.459 ×10−3) 0.100 (3.327 ×10−4)

β1 = 0.5 0.5000 (2.688 ×10−5) 0.4999 (2.064 ×10−4) 0.500 (3.010 ×10−5)

β2 = 1 1.000 (3.879 ×10−5) 0.9998 (2.309 ×10−4) 1.000 (4.030 ×10−5)

σ2 = 1 1.000 (6.473 ×10−5) 1.0438 (1.585 ×10−4) 0.9944 (6.773 ×10−5)

TS 6.047 ×10−5 (6.342 ×10−6) 1.789 ×10−2 (1.557 ×10−4) 4.647 ×10−3 (1.028 ×10−4)

5× 5× 5

µ = 0.1 0.1028 (1.758 ×10−2) 0.1005 (1.384 ×10−3) 0.1001 (4.772 ×10−4)

β1 = 0.5 0.4997 (2.029 ×10−4) 0.5000 (1.730 ×10−4) 0.5000 (6.592 ×10−5)

β2 = 1 0.9997 (2.093 ×10−4) 1.000 (1.675 ×10−4) 1.000 (7.139 ×10−5)

σ2 = 1 1.603 (8.583 ×10−4) 1.355 (4.760 ×10−4) 0.9997 (5.841 ×10−5)

TS 2.225 ×10−2 (2.693 ×10−5) 1.700 ×10−2 (7.802 ×10−5) 1.729 ×10−4 (2.459 ×10−6)

10× 10× 10

µ = 0.1 0.0997 (1.401 ×10−3) 0.0994 (7.767 ×10−4) 0.1007 (8.662 ×10−4)

β1 = 0.5 0.4999 (1.511 ×10−4) 0.5001 (8.875 ×10−5) 0.4999 (8.961 ×10−5)

β2 = 1 1.000 (1.548 ×10−4) 1.000 (9.645 ×10−5) 1.000 (9.454 ×10−5)

σ2 = 1 1.902 (4.776 ×10−4) 1.784 (4.193 ×10−4) 1.496 (2.621 ×10−4)

TS 1.930 (8.845 ×10−4) 1.234 (86..659 ×10−4) 2.944 ×10−2 (2.655 ×10−4)

performance using the same basis function. The simulation results are satisfying.

However, we don’t not know the truth for the real data. We would like to investigate

if Gaussian basis function would work well under different scenarios. In this simulation

study, we use the Gaussian basis function to estimate the model when the datasets

are generated from the exponential basis function and the bisquare basis function.

The expression of Gaussian basis function is

φ(∆) = exp

(
−||∆||

2

2σ2

)
, (A.24)
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exponential basis function is

φ(∆) = exp

(
−||∆||

τ

)
, (A.25)

and bisquare basis function is

φ(∆) =

(
1−

(
||∆||
R

)2
)2

I(||∆|| < R), (A.26)

where ∆ is the Euclidean distance between a pair of spatial locations. The parameters

σ, τ , R are scale arguments. We choose τ = 5 and 10 for the exponential basis

function and R = 5 and 10 for the bisquare basis function to test the performance of

Gaussian basis function in more complex scenarios. We use J = 125 (53) in both data

generating and estimating. In model estimating, we use σ = 5 as the scale parameter

for the Gaussian basis function.

The simulation results are shown in table A.8. We can see that the Gaussian

basis function works very well even when the data are generated from exponential

and bisquare basis functions with different scale parameters. Thus, we are confident

to use Gaussian basis function to analyze the real data.
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Table A.8. Simulation study mean parameter estimates and standard error of mean (in

parenthesis) when using Gaussian basis function to estimate exponential

and bisquare data over 50 replications.

Basis Functions Scale Parameter True Value Estimates

Exponential τ = 5 µ = 0.1 0.0992 (8.217 ×10−4)

β1 = 0.5 0.4999 (8.532 ×10−5)

β2 = 1 1.000 (9.298 ×10−5)

σ2 = 1 1.016 (7.344×10−5)

TS 1.790 ×10−3 (1.757 ×10−5)

τ = 10 µ = 0.1 0.0990 (1.295 ×10−3)

β1 = 0.5 0.5001 (1.571 ×10−4)

β2 = 1 1.000 (1.588 ×10−4)

σ2 = 1 1.017 (7.265 ×10−5)

TS 8.333 ×10−3 (1.125 ×10−4)

Bisquare R = 5 µ = 0.1 0.1002 (4.970 ×10−4)

β1 = 0.5 0.5000 (5.585 ×10−5)

β2 = 1 0.9999 (4.750 ×10−5)

σ2 = 1 1.089 (1.107 ×10−4)

TS 4.223 ×10−3 (1.297 ×10−5)

R = 10 µ = 0.1 0.0997 (4.640 ×10−4)

β1 = 0.5 0.5000 (4.360 ×10−5)

β2 = 1 1.000 (6.073 ×10−5)

σ2 = 1 1.018 (6.767 ×10−5)

TS 1.854 ×10−3 (5.883 ×10−6)
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