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ABSTRACT 

Radiation therapy (RT) is one of the primary treatment modalities for head and neck 

squamous cell carcinoma (HNSCC). At the time of diagnosis two-thirds of HNSCC 

patients have local-advanced disease and 50-60% of these patients will experience a 

local-regional or metastatic relapse within three years. Improving the immunogenic 

response of RT may help address this clinical problem. However, current RT regimens 

have failed to reliably generate robust antitumor immunity as evidenced by the rarity of 

clinical abscopal responses. Recently we engineered a chimeric fusion molecule called 

Flagrp170, a novel immunostimulatory agent highly capable of promoting antigen 

presentation and T-cell activation. We hypothesize that the combination of RT and 

Flagrp170 provides superior immunogenic signals producing effective and durable 

antitumor immunity against HNSCC. We report that administration of Flagrp170 to the 

tumor sites upon RT using a small animal radiation research platform (SARPP) results 

in potent activation of antigen-presenting cells, increased functionality of tumor-

infiltrating T-cells, and systemic immune augmentation. Additionally, the combination 

treatment is able to reduce the dose of RT required for tumor control and protects 

previously cured animals from subsequent tumor re-challenge. Finally, the combination 

treatment can successfully control the contralateral untreated tumors, supporting the 

superior activity of Flagrp170 in potentiating abscopal responses of RT. Our data 

suggest that the Flagrp170 may be used to enhance immunogenic cancer cell death in 

RT and resultant protective antitumor immunity can potentially help reduce post-RT 

recurrence of HNSCC.
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INTRODUCTION 

 
A Historic Review and Rationale for Heat Shock Protein Cancer Vaccines 
 
Heat shock proteins (Hsp) are a set of highly conserved molecules common to all 

kingdoms of life. The heat shock response that is associated with induction of Hsp was 

first discovered unexpectedly in 1962 by Ferruccio Ritossa when cells derived from 

Drosophila salivary glands were accidentally exposed to hyperthermic conditions (1). A 

striking pattern of polytene chromosome puffs were described in these cells and later 

identified as the transcription sites of the common “heat shock response” genes (2). 

Based on their molecular sizes, mammalian Hsp are categorized into several major 

families, including small Hsp (e. g., Hsp27), the Hsp40, the Hsp60, the Hsp70, the 

Hsp90, and the large Hsp (e.g., Hsp110, glucose-regulated protein 170 or Grp170). In 

addition to hyperthermia, Hsp expression can be induced by a broad range of cellular 

stressors including oncogenic stress, the accumulation of unfolded proteins, hypoxia, 

oxidative stress, and the genotoxic stress caused by ionizing radiation or 

chemotherapeutic drugs (3, 4). 

 

Hsp are constitutively expressed at basal levels and primarily function as 

intracellular chaperones in the folding, assembly, transportation, and degradation of 

misfolded proteins. These functions are necessary for the recovery of protein 

homeostasis in response to cellular stressors (5). However, extensive studies over the 

past twenty years indicate that, upon release into the extracellular environment, Hsp 

can assume an immunostimulatory role by facilitating the delivery of multiple 

intracellular antigens, sometimes referred to as an ‘antigenic fingerprint’ to specialized 
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antigen-presenting cells (APCs). Hsp can also act as damage-associated molecular 

patterns (DAMPs) to promote immune activation. This interaction between extracellular 

Hsp and the immune system is believed to represent an endogenous and ancient form 

of immune surveillance (6, 7). This also provides an immunological basis for utilizing 

cancer cell-derived or reconstituted Hsp-antigen complexes to elicit potent antitumor 

immunity for cancer immunotherapy (8, 9). 

The ‘abscopal effect’ is a rare immune phenomenon wherein an adaptive 

antitumor immune response generated by radiation therapy (RT) results in the inhibition 

of metastases outside of the field of radiation (10). In the past two decades, an ever-

growing body of evidence suggests that RT also has potent local immunomodulatory 

effects (11-17). As these effects have become more appreciated, the clinical potential of 

combining RT and immunotherapy to immunologically sensitizing irradiated tumors to 

RT has become an active area of research (18-25). Next-generation immunotherapies 

such as Hsp vaccines and immune checkpoint blockade (ICB) may be strategically 

developed to amplify RT-associated ‘abscopal’ effect and to generate systemic 

antitumor immunity capable of controlling metastatic diseases. In this thesis, we will 

discuss the current understanding of the immunostimulatory features of Hsp, their 

preclinical and clinical utilizations to date, as well as their potential for modulation of 

tumor microenvironment which can be exploited to synergize with RT to achieve lasting 

clinical effects in the treatment of head and neck squamous cell carcinomas (HNSCC).  
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Historical Tumor-derived Hsp for Cancer Vaccination 
 
Different subcellular compartments have their own dedicated species of Hsp. Under 

physiological conditions, Hsp70, Hsp90 and Hsp110 are localized in the nucleus or 

cytosol, while their corresponding homologues Grp78, Grp94 and Grp170 are 

endoplasmic reticulum (ER) residents (2). While Grp are functionally and structurally 

related to Hsp, they are induced by different sets of stressors including chronic hypoxia, 

calcium ionophores, and inhibition of glycosylation (26, 27). The nomenclatures of Hsp 

and Grp were derived from their original discoveries. However, these two terms have 

been used interchangeably in some cases due to the fact that both are essential integral 

components of cellular stress responsive network. Intracellular Hsp and Grp play a 

cytoprotective role in normal and cancerous cells by interacting with their client proteins, 

minimizing stress-induced protein denaturation, and promoting cell survival. As a result, 

Hsp overexpression has been shown to facilitate tumor development and to positively 

correlate with poor prognosis in multiple cancers such as ovarian, prostate, breast, and 

colorectal cancer (7, 28-30).   

The key chaperoning function of Hsp is facilitating the correct folding of nascent 

or misfolded proteins via the binding of hydrophobic regions exposed to the cytosol. 

This function also prevents the aggregation of misfolded proteins in cancer cells which 

may otherwise accumulate as a result of oncogenic stress, leading to apoptosis. This is 

also believed to represent a major mechanism by which Hsp overexpression confers 

tumor resistance to chemotherapy or RT (31-33) Additionally, other cytoprotective 

activities of Hsp have also been elucidated. For instance, Hsp were shown to bind and 

neutralize chemotherapeutic agents, free radicals, and cytotoxic cytokines such as 
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tumor necrosis factor (TNF)α/β (34-37). Given that Hsp often interact with several 

oncogenic drivers of tumorigenesis and that Hsp protect cancer cells from the cytotoxic 

effects of cancer therapeutics, a large number of small molecule inhibitors of Hsp are 

being tested as potential therapeutic agents (38). 

Despite the well documented tumor-promoting properties of Hsp, other 

investigations demonstrate that tumor-derived Hsp carry an array of antigenic tumor-

associated peptides and can be utilized to generate potent antitumor responses with 

lasting immunological memory against cancers (39-43). In addition to the conventional 

Hsp prepared from cancer cell lines, treatment with large Hsp such as Hsp110 and 

Grp170 derived from autologous tumors (e.g., methylcholanthrene-induced 

fibrosarcoma, colon carcinoma, and melanoma) also elicit a robust T-cell-mediated 

antitumor immunity (44, 45). This immunotherapeutic effect has been attributed to the 

ability of Hsp to efficiently chaperone tumor-associated antigens (TAAs) and to enhance 

the cross-priming of antigen-specific T lymphocytes (46-48)   

 

Reconstitution of Hsp-TAA Complexes for Cancer Immunotherapy 
 
While autologous Hsp vaccines carry an immunological “fingerprint” of the patient’s 

tumor and represent a personalized medicine, its clinical use is often limited by the 

needs for excised patient specimen and the complex ex vivo procedure of vaccine 

preparation. The lack of antigenic information on targeted TAAs also reduces immune 

monitoring capability in the clinic (49-51). To circumvent these limitations, we developed 

a chaperoning technology to reconstitute Hsp-TAA complexes by taking advantage of 

the superior protein or polypeptide-holding capacity of the large Hsp (i.e., Hsp110, 
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Grp170) (45, 52-56). The clinically relevant TAAs that have been tested using this 

recombinant chaperone vaccine include melanoma antigen glycoprotein 100 (gp100), 

breast cancer antigen human epidermal growth factor receptor 2 protein (i.e., 

HER2/Neu), and renal cell carcinoma antigen carbonic anhydrase IX. In one study, 

immunization with Hsp110 coupled to human HER2/neu antigen successfully 

suppressed the development of murine spontaneous breast cancer (53). 

This recombinant approach has the advantages of not requiring patient specimen 

as well as easy bulk preparation of the “off-the-shelf” products for clinical applications. 

This vaccine can be used in an adjuvant setting to treat patients with completely 

resected disease, or those at a high risk for recurrence. However, the antigenic 

repertoire from the targeted TAAs may not be sufficient for eradicating heterogeneous 

cancer cells in solid tumors, and tumors may become resistant to single-valent 

vaccination by simply downregulating the target antigen. Nonetheless, this synthetic 

approach can serve as a building block to formulate recombinant chaperone vaccines 

concurrently targeting multiple TAAs to augment multivalent T-cell responses, which 

can help minimize cancer escape. Using the B16 melanoma model, our lab 

demonstrated that the combination of melanoma antigens tyrosinase-related protein 2 

and gp100 complexed with Grp170 or Hsp110 provided better antitumor protection as 

compared to either of the single antigen-targeted vaccine (57).  

TAAs (e.g., HER2/Neu) are antigens that are often highly expressed by tumors 

and are not strictly unique epitopes to tumor tissues. Another group of tumor antigens 

are those genes whose expression is normally restricted to a particular tissue or period 

of embryonic development. Inappropriate acquisition of expression of these genes may 
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impart a degree of “stemness” to cancer cells, making them more capable of rapid 

division, invasion, and avoiding apoptosis. These antigens are collectively referred to as 

cancer testis antigens (CTAs), which include MAGE-1, NY-ESO-1, SSX, and CAGE 

(58). However, TAAs including CTAs are also expressed in normal tissues and 

autoimmune complications from immunotherapy can occur. One recent example of a 

severe adverse event occurred in a clinical trial of chimeric antigen receptor-T-cell 

therapy targeting the MAGE-3. Two out of nine patients that received this treatment 

developed periventricular necrotizing leukoencephalopathy and subsequently lapsed 

into comas and died. This study suggests that the immunotoxicity was likely due to the 

unforeseen expression of the targeted isoform in the brain (59). Although reports of 

Hsp-reactive autoantibodies have been detected in certain strains of mice, no 

autoimmunity-related adverse events have been reported to date in clinical trials 

utilizing Hsp vaccinations (49, 60). Other major antigen targets that should be 

considered for immunotherapy with recombinant Hsp vaccinations are neoantigens 

resulting from oncogenic mechanisms, such as E6 and E7 proteins found in human 

papillomavirus-driven head and neck cancers, and the BCR-ABL fusion protein from 

chromosome rearrangement that is common in chronic myeloid leukemia. These unique 

proteins with neoepitopes not found elsewhere in the body are referred to as tumor-

specific antigens (TSAs). They represent attractive targets for Hsp vaccination due to 

their diminished risk for off-target autoimmunity, and the chance for a potent immune 

response not hindered by tolerogenic processes in the body. Indeed, recent studies 

suggested a strong correlation between patient response to immune checkpoint 

inhibitors and the presence of tumor microsatellite instability. It is hypothesized that the 



7 
 

microsatellite instability is a mechanism for rapid chromosomal rearrangement 

responsible for the production of neoantigens (61, 62). However, not all cancers 

express highly immunogenic neoepitopes available for generating specific antitumor 

immune responses.  

In addition to full-length protein antigens, antigenic peptides can also be 

complexed to Hsp for cancer vaccination. For example, the large Hsp-TRP2175-192 

peptide complex readily induced a potent TRP2175-192 cytotoxic T-lymphocyte (CTL) 

response. However, the protective antitumor efficacy induced by such a peptide-

targeted vaccine is much weaker than that achieved by the chaperone vaccine targeting 

the TRP2 protein (57). This superiority of protein antigen-targeted vaccination may be 

due to multiple antigenic epitopes inherent to a whole protein, providing APC many 

opportunities to produce a peptide that will fit into its major histocompatibility complex 

(MHC) and generating T helper signals for optimized or sustained CTL activation. 

Considering the heterogeneity of human MHC allotypes, possible human leukocyte 

antigen (HLA) restrictions as well as the differences between individual peptides, 

vaccination with large Hsp-protein antigen complexes may prove to be more effective 

for a wider variety of patients.  

Targeting single antigen or epitope clearly has its disadvantage in the treatment 

of heterogenous cancer cell populations. Advances in next generation sequencing and 

bioinformatics are now beginning to mitigate some of the shortcomings associated with 

using recombinant Hsp-TAA complexes and the ambiguity of selecting peptide targets 

for different cancers and patients. There are several in silico prediction tools for tumor 

protein or peptide sequencing, aiding in predicting HLA binding of specific tumor 
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antigens, and T-cell receptor sequencing for analysis of the T-cell antigenic repertoire 

after immunotherapeutic interventions (63). 

 

Immunostimulatory Features of Hsp 
 
Clinically significant antitumor immunity is dependent upon the activation of tumor-

specific CD8+ T-cells by APCs that have taken up TAAs. MHC I molecule is present on 

all nucleated cells and functions to randomly present endogenous peptides for the 

purpose of intracellular immune surveillance. MHC II molecule, on the other hand, is 

expressed only on APCs. It functions to present exogeneous peptides from 

phagocytosed pathogens and dying cells to other cells of immune system. The peptide 

binding cleft of MHC I is smaller (8-11 amino acids) and it is restricted to interactions 

with the T-cell receptor (TCR) of CD8+ CTLs (64). MHC II, on the other hand, has a 

larger peptide binding groove (13-17 amino acids), and is restricted to interactions with 

CD4+ helper T-cells. ‘Cross-presentation’ is the less-understood process by which 

internalized antigens from the extracellular environment, typically loaded onto the MHC 

II complex, are instead shuttled to a pathway that results in formation of MHC I 

complexed with processed peptide epitopes for priming CD8+ T-cells. This cross-

priming process greatly facilitates the generation of antitumor CD8+
 T-cells by allowing 

their direct activation in the lymph node by APCs that have captured exogenous TAAs, 

such as the case of cancer vaccination with tumor-derived Hsp preparations (64). 

Indeed, one of the critical features of Hsp in cancer immunotherapy is their capability to 

introduce associated TAAs into the endogenous antigen-processing pathways for cross-

presentation by APCs, e.g., dendritic cells (DCs) (65-67). 
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The mechanism underlying Hsp-enhanced antigen cross-presentation is not well 

understood. It has been shown that Grp170 can direct the chaperoned peptide into the 

Rab5+EEA1+ static early endosomes, where the peptides are loaded onto the recycling 

MHC-I molecules (68). Our study of the trafficking pathway of Grp170 complexed with 

melanoma antigen gp100 revealed that the internalized chaperone complex gained 

access to the ER following uptake by DCs (69). Strikingly, the Grp170-facilitated antigen 

cross-presentation requires the ER-associated protein degradation pathway involving 

Sec61, a protein quality control machinery in the ER, which targets antigen for 

proteasome-mediated degradation in the cytosol and integration into the conventional 

MHC I-restricted antigen-processing pathway. Our observation also suggests that 

Grp170 chaperoning allows protein antigen to escape from lysosomal degradation and 

facilitate its entry into the ER from the early endosomes, possibly through a “ER-

endosome fusion” structure. However, additional studies are necessary to fully define 

the exact role of Hsp in antigen cross-presentation. 

In addition to their cross-presentation promoting activity, Hsp upon release from 

injured or stressed cells to the extracellular milieu are believed to serve as ‘danger’ 

signals or DAMPs to alert the immune system. Several studies suggest that Hsp bind to 

toll-like receptor (TLR) 2/4 on the surface of APCs, stimulating the NF-ᴋB pathway 

necessary for the activation of APCs and for the production of pro-inflammatory 

cytokines. Specifically, binding of Hsp to DCs or macrophages increases their 

expression of maturation markers and co-stimulation molecules such as CD80, CD86 

and CD40 as well as the pro-inflammatory cytokines IL-6 and TNF-α (70). The 

expression of these co-stimulatory molecules represents the additional signals required 
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to prime antitumor T-cells and to prevent immune tolerance during antigen presentation 

(71-74). However, other studies suggest that contamination of recombinant Hsp with 

lipopolysaccharide, the natural ligand for TLR2/4, may explain the reported Hsp-

associated TLR activation (75). While this confounding variable has complicated the 

issue of whether Hsp themselves retain innate-stimulatory activity, additional studies 

using different experimental models instead of Hsp-derived from bacteria protein 

expression systems continue to support this intrinsic immunostimulatory feature in Hsp 

(76, 77). Further supporting evidence demonstrates that cancer cells engineered to 

secrete GRP170 were more efficient than unmodified cells in stimulating DCs to 

produce TNF-α (78). It has also been reported that high doses of Hsp-TAA complexes 

are capable of inducing immune-tolerance by expansion of regulatory T-cells, which 

suggests that any endogenous DAMP activity carried by Hsp may be insufficient to 

stimulate APC activity on their own (79, 80). Therefore, Hsp-based antitumor 

vaccination may be considerably enhanced by the integration of pathogen-associated 

molecular patterns (PAMPs) or microbial signals capable of activating the TLRs or other 

signaling pattern recognition receptors on APCs.  

 

Scavenger Receptors and Hsp in Immune Modulation 
 
Scavenger receptors (SRs) were originally defined by their ability to bind to modified 

lipoproteins and facilitate their removal from the extracellular environment. However, 

members of this family of receptors can bind to a wide array of non-self or self-ligands, 

including lipopolysaccharide, lipoteichoic acid, double stranded DNA (dsDNA), Hsp, 

dying cells or apoptotic bodies. SRs are primarily expressed on APCs such as myeloid 
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cells but are also reported to be present on endothelial cells (ECs) and fibroblasts (81-

83). SRs can be categorized into multiple classes based on their sequence similarities 

or shared structural features, but there is little or no sequence homology between the 

different classes of SRs (84). Early studies support the important roles of SRs as major 

innate pattern recognition receptors in tissue homeostasis and host defense against 

microbial infection (81). Investigations of the binding structures of Hsp vaccines on the 

surface of APCs have led to the discovery of their previously unrecognized functions in 

mediating antigen uptake and cross-presentation, as well as myeloid cell polarization 

and APC activation (83). While SRs are required for recognizing, binding, and 

internalization of Hsp-TAA complexes, different SRs appear to have different levels of 

specificity for Hsp species and may control the fate of any TAAs to which they bind. 

Therefore, involvement of specific SRs in the uptake of different TAAs may have distinct 

immunological consequences, potentially determining the antitumor efficacy of Hsp-

based vaccination (83). 

Class A SRs are characterized by one or more collagen domains as well as a 

possible C type lectin (CLEC) and/or a type A scavenger receptor cysteine rich (SRCR) 

domain (81). Scavenger receptor A (SRA), also called macrophage scavenger receptor 

1 or CD204, is the prototypic member of this class. SRA is believed to bind ligands 

through its SRCR while its collagen domain is dedicated to mediating interactions with 

binding partners. Using in vitro systems, we and others have demonstrated that SRA is 

required for uptake of Hsp110, Grp94, and Grp170 by APCs and subsequent cross-

presentation of Hsp-associated antigens (85, 86). Unexpectedly, we found that genetic 

ablation of SRA in mice strongly promoted antitumor immune responses generated by 
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autologous tumor-derived Hsp, recombinant Hsp-antigen complex, or TLR4-targeting 

cancer vaccines, indicating an immunosuppressive role of SRA in antitumor immunity 

(87, 88). Further mechanistic studies reveal that SRA expression in DCs dampens their 

immunostimulatory function by interfering with the NF-B activation. This reduces 

expression of co-stimulatory molecules and pro-inflammatory cytokines or chemokines, 

thereby attenuating tumor-reactive CTL response in vivo (89-92). Not surprisingly, 

downregulation of SRA expression in DCs markedly improves the immunogenicity of 

DC-based vaccination and resultant antitumor immunity (93).  In addition, the overall 

level of this receptor in the tumor has been reported to correlate with poor prognosis in 

human cancer patients (83). Other than its role for negative regulation of DC function, 

this may also be due to its ability to contribute to macrophage M2 polarization through 

ER stress signaling or by its ability to sequester interferon regulatory factor 5, a master 

regulator of pro-inflammatory gene expression in myeloid cells (94, 95). While SRA on 

DCs or macrophages clearly presents an opportunity for immunotherapeutic targeting, 

the relevance of endothelial and fibroblast SR expression also deserves consideration 

due to the reports that these cell types can function to suppress antitumor immunity by 

directing deletion of antigen-specific CD8+ T-cells (82, 96).  

Lectin-like oxidized LDL receptor 1 (LOX-1), the only member of the class E SRs, 

has a single CLEC domain and is primarily expressed on ECs, B cells, macrophages, 

and DCs (81).  This SR appears to play an important permissive role in the antitumor 

activity of CD103+BATF3+ DCs and T-cell priming in response to Hsp70-TAA complexes 

or apoptotic bodies induced by radiation (97, 98). LOX-1 has been shown to bind to 

Hsp70 and direct their associated antigens to the endogenous cross-presentation 
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pathways. Furthermore, anti-LOX-1 antibodies inhibit Hsp70-TAA complex induced T-

cell mediated antitumor immunity. Although the data remains limited, LOX-1 may 

represent a preferable pathway for the processing of Hsp-TAA complexes to mount an 

antitumor CTL response. 

Scavenger receptor expressed by endothelial cells-I (SREC-I) is a member of 

class F SRs that often have multiple epidermal growth factor (EGF) and EGF-like 

domains (81). SREC-I can bind to multiple chaperones including Hsp70, Hsp90, 

Hsp110, Grp170, and calreticulin (86, 99-101). Additionally, SREC-I expression is 

elevated on DC exposed to Hsp70-TAA based vaccine. Whether this SR has a 

permissive or suppressive effect on antitumor immunity generated by Hsp-TAA has yet 

to be explored in a therapeutic setting in vivo. However, given its wide range of Hsp-

binding partners, exploring SREC-I function in the context of Hsp-based immunotherapy 

is an attractive future research direction. 

Stabilin-1 is a member of class H SRs that contain multiple EGF and EGF-like 

domains, a fasciclin-1 and LINK domains, and a hyaluronan- binding domain typical of 

proteins that interact with the extracellular matrix (81). Stabilin-1 is constitutively 

expressed on lymphatic ECs and tissue resident macrophages but can also be induced 

on vascular endothelial cells in response to inflammation. Stabilin-1 on APCs has been 

shown to bind to Hsp70-TAA complexes and to mediate their internalization (99). 

However, the overall effect of this SR on antitumor immunity induced by Hsp70-TAA 

vaccination is unclear. Interestingly, stabilin-1 knockout or blockade reinvigorates T-cell 

response to solid tumors by reducing tumor-infiltrating immunosuppressive cells and 

enhancing recruitment of effector T-cells (102). Other studies linked this SR to 
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mobilization of regulatory T-cells by ECs as well as the immunosuppressive function of 

tumor-associated macrophages (103, 104). Although its role in Hsp-based vaccination 

has not been thoroughly investigated, stabilin-1 has been implicated in multiple 

immunosuppressive processes of the cancer-immune cycle. Therefore, Hsp-based 

immunotherapy may benefit from blockade or pharmaceutical inhibition of this receptor.  

LDL receptor-related protein 1 (LRP1/CD91) is a type 1 transmembrane receptor 

that is expressed on the surface of APCs such as macrophages and DCs. Similar to 

SRs, CD91 partners with many different co-receptors on the cell surface to facilitate 

endocytosis of structurally diverse ligands and to modulate the resulting immune 

response. Unlike other endocytic receptors for Hsp, CD91 can directly transmit 

immunostimulatory signals upon phosphorylation of its cytoplasmic domain. Although 

the complete signaling apparatus associated with CD91 remains to be elucidated, 

engagement of this receptor results in immunostimulatory cytokine expression via the 

activation of NF-B and p38, as well as phosphorylation of ERK and PI3K (105-107).  

This receptor has been suggested to be a common receptor for Grp94/Gp96, Hsp90, 

Hsp70, and calreticulin, which is necessary for cross-presentation of tumor antigens 

chaperoned by these Hsp and can directly stimulate NF-B and p38 in response to its 

Hsp ligands (106). To what extent CD91 partners with other known Hsp receptors for 

modulation of Hsp-induced T-cell response is currently unknown. It is likely that other 

receptors also participate in this coordinated process, because Hsp stimulation of 

myeloid cells results in the production of cytokines not regulated by CD91.  

Although these SRs are identified as Hsp-binding molecules on APCs, the 

individual SRs appear to display distinctly different effects on antitumor immune 
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responses elicited by Hsp-based anticancer vaccination or possibly immunotherapy in 

general. Although the different classes of SRs are structurally unrelated, their ligand 

binding domains share a common motif: centrally located cationic clusters surrounded 

by anionic residues. This, along with the preference of many SRs to bind to anionic 

ligands, suggests that SR-ligand interactions are electrostatic in nature (81). In addition 

to allowing for ligand binding, the involvement of a specific SR during antigen uptake is 

likely to affect the trafficking and processing of antigens inside the cell. For instance, 

this can determine whether an internalized antigen carried by Hsp is silently degraded in 

the lysosomes or shuttled into endogenous antigen-processing pathways for cross-

presentation by MHC I molecules. Additionally, SRs have been demonstrated to alter 

the cytokine response of APCs to different antigens, making their potential impact on T-

cell differentiation and function especially relevant (106). The diversity of SR 

functionality may also be compounded by the fact that many SRs participate with other 

receptors in large signaling complexes termed “signalosomes.” This capacity for 

cooperative actions further enhances functional versatility of these receptors, making it 

possible for an individual SR to play different roles on the surface of various cell types 

(81). As a result, other than optimization of antigen presentation and APC activation, 

rational design of Hsp-based tumor vaccination requires careful consideration of their 

interactions with these receptors.  

 

Clinical Trials of Hsp-based Cancer Vaccines 
 
The promising preclinical results of Hsp-based immunotherapies have led to multiple 

clinical trials to date, some of which have yet to be completed and published. In a phase 
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II trial of autologous tumor-derived Grp94/Gp96-peptide vaccination (HspPC-96, 

Vitespen or Oncophage) paired with granulocyte-macrophage colony stimulating factor 

(GM-CSF) and interferon (IFN)-α for the treatment of metastatic melanoma, 11 of 18 

patients with measurable disease post-surgery showed disease stabilization. Addition of 

IFN-α and GM-CSF did not enhance the vaccine effects compared to vaccination alone 

(108). The autologous Grp94/Gp96-peptide complex vaccine has also been tested in a 

phase III trial for the treatment of stage IV melanoma patients. Results of the trial 

showed that there was no difference in overall survival between the standard of care 

and the Grp94/Gp96 vaccination. However, a more detailed patient subclassification 

revealed a survival benefit for the early-stage IV melanoma patients (M1a, distant skin, 

subcutaneous or nodal metastasis; M1b, lung metastasis) (109). This autologous 

Grp94/Gp96 vaccine was also recently tested in a phase II multi-center trial for treating 

patients with recurrent glioblastoma post-surgery. The treatment resulted in a median 

overall survival of 42.6 weeks, with 90.2% of patients surviving longer than 6 months, 

which is improved compared to historical controls (110). Currently, two randomized 

trials are open to assess survival in recurrent glioblastoma patients receiving the 

Grp94/Gp96 vaccine plus Bevacizumab or plus standard treatment (RT and 

temozolomide) vs. patients receiving Bevacizumab or standard treatment alone.  

The large Hsp110-gp100 protein antigen complex has also been investigated in a 

phase I trial through the National Cancer Institute Rapid Access to Intervention 

Development or RAID program. Patients with recurrent and advanced stage melanoma 

were vaccinated with different doses of recombinant human Hsp110-gp100 complex 
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vaccine as seen in the pre-clinical studies (45, 57). The immune correlative studies 

have been completed and are under review. 

An ex vivo Hsp70 activated NK-cell therapy was tested in a phase II trial for 

treatment of patients with non-small cell lung carcinoma who were refractory to cisplatin 

and RT. Patients in the trial first underwent leukapheresis to have their NK cells 

expanded and stimulated with Hsp70 peptide and low doses of IL-2 ex vivo, and then 

were re-infused with the activated NK cells. There was only moderate clinical activity 

observed, perhaps due to the advance stage of the disease. However, immunological 

activity was evident and generally well tolerated in all patients (111).  

Two ongoing clinical trials use allogenic injections of irradiated human lung 

cancer cell lines transfected to secrete Grp94/Gp96 (HS-110; viagenpumatucel-L) or 

OX40 antibodies (HS-130) with agonistic activity for co-stimulatory molecules on T-cells. 

In the current phase Ib/II (DURGA trial), HS-110, the allogenic cell line expressing 

Grp94/Gp96 will be irradiated and used to vaccinate patients in combination with ICB. 

The second clinical trial is testing the combined HS-110/HS-130 treatment for 

concurrent vaccination and co-stimulation.  

 

Next-generation Hsp-based Immunotherapy 
 
Although numerous studies have documented the intrinsic innate-immunostimulating 

property of Hsp, this effect in most cases is very modest and may not be adequate to 

efficiently mount an adaptive antitumor immune response. Given that pathogen-sensing 

signaling pathways in APCs are instrumental in bridging innate and adaptive immune 

responses, its use may aid in driving robust T-cell activation. Therefore, integrating 
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PAMPs into Hsp-based antigen delivery cargo could further promote immune activation 

(112). Recently, we engineered a chimeric Hsp molecule, termed Flagrp170, by fusing a 

defined NF-κB-stimulating sequence from the NLRC4 and TLR5 agonist flagellin to the 

chaperone GRP170. This molecular engineering takes advantage of the superior 

antigen-binding capacity of the large Hsp and the NF-κB-stimulating activity of microbial 

signal to create a next-generation Hsp-based immunotherapeutic agent with enhanced 

immunogenicity. This unique molecule in the form of protein or DNA can be used to 

develop multimodal immunotherapeutic applications, including recombinant chaperone-

TAA protein complex vaccine, DNA vaccine, cancer cell vaccine, and viro-

immunotherapy. 

Inspired by the first cancer immunotherapy conducted by Dr. William Coley who 

successfully treated his patients with intratumoral injections of microbial materials in late 

1800s, we recently evaluated the therapeutic efficacy of intratumoral administration of 

an adenovirus expressing Flagrp170, Grp170, or flagellin (113). We demonstrated that 

Flagrp170 is much more potent than either Grp170 or flagellin alone in eliciting a robust 

antitumor response in models of melanoma, colorectal, and prostate cancer. This 

therapeutic activity is dependent upon BATF3+ DCs, CD8+ T-cells, and NK cells as well 

as Gm-CSF, IL-12, and IFN-. Furthermore, this local treatment generates a systemic 

immune response capable of eradicating distant metastases (114, 115).  Given the 

presence of abundant TAA/TSAs present in the tumor sites, this Flagrp170-based in-

situ vaccination may be used to generate CTLs directed against the entire antigenic 

repertoire within the tumors. Since the ER retention KDEL motif has been removed from 

native Grp170, this allows for constitutive secretion of Hsp-TAA/TSA complexes from 
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infected cancer cells. Hsp-TAA/TSA complexes targeting APCs with the NK-B-

stimulating ‘danger’ signal carried by the chimeric Flagrp170 molecule will help optimize 

antigen cross-presentation and T-cell activation (115). A recent study published from 

our lab showed the mechanistic importance of the Nod-like-receptor CARD domain-

containing protein 4 (NLRC4), which functions as the intracelluar cytosolic pathogen 

senseing pathway for flagllin. In this publication we discovered that NLRC4 was more 

critical than TLR5 for the immune protection generated by Flagrp170, and that Gm-CSF 

produced by CD8 T-cells after Flagrp170 was indespensable in generating antitumor 

immunity. We hypothesis that since Flagrp170 is delivered virally, the cytosolic pattern 

recogniation receptor NLRC4 would likely be the target of immune activation as 

opposed to the membrane expressed TLR5 (116).  Although studies are still ongoing to 

better understand the molecular and cellular alterations within the tumor 

microenvironment following administration of this novel agent, our results strongly 

support the use of this next-generation Hsp molecule for improved vaccine development 

as well as for reprograming the tumor immune compartment to covert immunologically 

‘cold’ tumors into ‘hot’ ones. Furthermore, future studies using this platform will assess 

the feasibility of combining this agent with other conventional treatment modalities for 

improved therapeutic outcomes. 

Another recently created Hsp fusion molecule involved the modification of M. 

tuberculosis derived Hsp70 fused to a single chain variable fragment (scFv) antibody 

specific for mesothelin, an antigen expressed primarily in mesothelioma and ovarian 

cancer. This fusion protein, called scFvMTBHsp70, takes advantage of the inherent 

immunogenicity and peptide-chaperoning capacity of the M. tuberculosis-derived 
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reports showing that tumors with a scarcity of cross presenting DCs aid the CD4 T-cell 

response. This is due to the abundance of MHC II peptide expression, and the known 

increased MHC II peptide binding promiscuity as compared to MHC I (205). 

Furthermore, a study showed that long peptide vaccine-based immunotherapy in the 

melanoma setting also showed that CD4 T-cell activation was responsible for an 

efficient cytotoxic CD8 T- cell response in tumor rechallenge settings (206).  Given 

Flagrp170’s mechanism of action, it is scientifically possible for anyone of these 

aforementioned scenarios to be the rationale for our experimental observations.  

 
Flagrp170s Potential for Clinical Translation and Efficacy in HNSCC and Future 
Directions 
 
This therapy is well situated in the field given the dire need for an immune potentiating 

agent capable of vaccinating patients, and generating pre-existing immunity given the 

prevalence of ICB implementation in the clinic.  The Grp170 backbone is well reported 

to deliver whole proteins and therefore could provide the most diverse repertoire of 

peptide antigens of any given TAA or TSA. This will increase the probability of an MHC I 

or MHC II peptide binding of cognate CD8 or CD4 T-cells.  This in turn can benefit a 

wide variety of patients considering the vast heterozygosity of the HLA classes between 

patients, and the antigenic determinant effects caused by those differences. This means 

this therapy will serve as an off-the-shelf immunotherapeutic agent, which can provide 

personalized vaccination to the current antigens being expressed by patient’s tumors. 

This concept further analyzed, also means that if there is a loss of antigenicity, or 

patients become refractory after treatment, additional vaccinations may reorient the 

immune response to the new antigen targets expressed by the tumor. The data 
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Figure 4. Head and neck tumor cells infected with Ad. Flagrp170 promotes 

immunity to tumor challenges via CD4 effector function. 
 
Immune antibody depletion of previously cured SCC VII and rechallenged tumor bearing 

animals showed that CD4
+
 T-cells were required for protection (Figure 4A) 
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Figure 5. SCC VII Contralateral tumor Model: Combination treatment of Flagrp170 

and RT therapy provides improved antitumor immunity at distant and metastatic 

sites.  

Animals had SCC VII tumors implanted in both flanks on day0 (2x10
5
 cells/right flank; 

1x10
5
 cells/left flank) and were treated with adenoviral intertumoral treatments of empty 

viral vector (CMV) or Flagrp170 for five doses q.a.d. once tumors reached 5-6mm.  
Radiation therapy was also delivered with on the first day of viral treatments with three 
fractions of 10 Gys on days 5,6, and 7. (Figure 5A) Primary and contralateral tumor 
growth curve of SCC VII tumor model. (Figure 5B) Flow cytometry of TILs in the 
contralateral tumor. (Figure 5C) TIL analysis of myeloid derived suppressor cells CD11b+ 
gating for analysis of Ly6C and Ly6G. (Figure 5D) Splenocyte whole tumor cell lysate 
activation assay of tumor bearing animals. (Figure 5E) Analysis of immune related genes 
of at the contralateral tumor site. (Figure 5F) Experiments representative of three or more 
independent experiments. Two-way ANOVA analysis was conducted with GraphPad 
Prism. Asterisks denotes statistical significance of: * P≤ 0.05, ** P≤0.01, *** P≤0.001, **** 
P≤0.0001 
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Figure 6. Combination treatment of Flagrp170 and RT therapy provides 

improved anti-tumor immunity against a naturally metastatic HNSCC model.  

 

Animals had MOC II cells implanted subcutaneously on Day 0. Intertumoral 
treatments of empty viral vector (null) or Flagrp170 for five doses q.a.d. began 
once the primary tumors reached 5-6mm.  Radiation therapy was also delivered 
with on the first day of viral treatments with three fractions of 2.5Gys on days 5,6, 
and 7. (Figure 6A) Analysis of immune related genes via qPCR from MOC II 
treated tumors (Figure 6B) Primary tumor growth curve of MOC II-Luc tumor 
model treated with higher dose RT, (10Gy x3) for long term analysis of survival. 
(Figure 6C) Tumor growth monitored via luciferase activity in vivo using an IVIS 
(Figure 6D) Experiments representative of two or more independent experiments. 
Two-way ANOVA analysis was conducted with GraphPad Prism. Asterisks 
denotes statistical significance of: * P≤ 0.05, ** P≤0.01, *** P≤0.001, **** P≤0.0001 
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Figure 7. B16 Melanoma Primary and Lung Metastatic Model 

C57/B6 mice were subcutaneously injected with B16 (2x10
5
 cells/animal) for a primary 

tumor on day 0, then had an intravenous injection of B16 (1x10
5
 per/animal) cells on day 3. 

Animals received treatment once the primary tumor reached 5-6mm with radiation 30Gys 

fractionated into three doses, and five doses of Flagrp170 2x10
8 
PFU/animal delivered 

q.a.d. (Figure 7A) Representative ex vivo gross observational image of lungs from tumor 
bearing mice. (Figure 7B) Lung nodules of B16 colonies were counted in a blinded fashion 
and then lungs were digested and a single cell suspension was prepared for TIL isolation 

and seeding for a clonogenic assay (1x10
4
 cells/well). (Figure 7C) Two-way ANOVA 

analysis was conducted with GraphPad Prism. Asterisks denotes statistical significance of: 
* P≤ 0.05, ** P≤0.01, *** P≤0.001, **** P≤0.0001 
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Figure 8. Combination Therapy Induces Increased T-cell Activation 

Concomitantly with Strong Inhibitory Signals at the Tumor Site.   

TIL analysis of CD4
+
 and CD8

+
 T-cell IFN-γ production from the primary tumor. (Figure 

8A) Tumor tissue was obtained from the primary (treated) tumor and analyzed via 
qPCR for expression of various immunological genes. IFN-γ increased in the 
combination group while granzyme B expression decreased and IL-10, PD-1, and 
PDL2 all increased with the combination group. (Figure 8B) 
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Figure 9. Metastatic Site Experienced Increased Immune Stimulation and while 

Undergoing Robust Inhibitory Signals. 

 

 TIL analysis of CD4
+
 and CD8

+
 T-cell IFN-γ production from the metastatic tumor site 

(lung). (Figure 9A) Lung tissue was harvested from animals and used for qPCR 
analysis of gene expression at the tissue level.  IFN-γ and granzyme B expression were 
increased in the combination treatment groups indicating a strong inflammatory 
response. IFN-Β induction seemed to be driven by groups that included RT as a 
treatment modality. Inhibitory markers (PD-1, PDL1, PDL2), tolerogenic transcription 
factors (FoxP3), and soluble factors like IL-10 were most present in the combination 
treatment group (RT+ Flagrp170). (Figure 9B) 
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