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Professor, Department of Mathematics and Applied Mathematics

In this dissertation, we investigate a number of open problems related to

products of palindromic graphs. The notion of a palindromic graph was first defined by

Robert Beeler [1]. A graph G on n vertices is palindromic if there is a vertex-labeling

bijection f ∶ V (G) → {1,2, . . . , n} with the property that for any edge vw ∈ E(G)

there is an edge xy ∈ E(G) for which f(x) = n − f(v) + 1 and f(y) = n − f(w) + 1.

Beeler gives sufficient conditions on the factors of a Cartesian product of graphs

that ensure the product is palindromic. He states that it is unknown whether the

conditions are necessary. We prove that the conditions are indeed necessary. Further,

we prove parallel results for the strong product and the lexicographic product.

Parallel results for the direct product hold when both factors are non-bipartite,

however, they do not hold when at least one factor is bipartite. Instead, we use the

notion of 2-fold involutions to help us address the case where one factor is bipartite

and the other is non-bipartite.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

In this dissertation, we investigate several problems related to products of special

classes of graphs. Palindromic graphs are a class of graphs introduced by Robert

Beeler [1]. The underlying inspiration for these graphs comes from the notion of

palindromes in words and sequences. Palindromic graphs have an appealing, mirror-

like symmetry. Beeler’s paper introduced some basic conditions on palindromic graphs

and explored some basic operations. This new class of graphs presents us with plenty

of interesting open questions. Beeler covers sufficient conditions on the factors of

a Cartesian product that ensure the product will be palindromic, namely, if G and

H are palindromic graphs, then their product is palindromic. He states that the

necessary conditions are unknown.

We are motivated to explore the necessary conditions on the Cartesian product,

namely, if the Cartesian product of graphs is palindromic, then its factors will be

palindromic, as well as investigate parallel palindromic conditions in the other three

standard associative graph products - the strong product, the direct product, and the

lexicographic product. At this time, we are only considering cases where the product

is connected, and we leave any cases where the product is disconnected to conjecture.

The only published paper on palindromic graphs (prior to the projects in this

dissertation) is by Robert Beeler [1]. In Beeler’s paper, we are presented with the first

major theorem that characterizes sufficient and necessary conditions on palindromic

graphs. This theorem can be found in Section 1.3.
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As Beeler notes in his paper, the necessary conditions on the factors of a palin-

dromic Cartesian product are unknown. This is a clear gap in the literature, and the

proof of which is nontrivial. We settle this question in Theorem 2.3 and also prove

analagous results for the other standard graph products. As we expand the study

of palindromic products to the remaining three standard graph products, the proof

techniques become even more involved, and each requires a different approach.

Hammack [6] notes in his paper “On uniqueness of prime bipartite factors of

graphs” that, given an involution in the direct product of two graphs where one of

the factors is bipartite, it is surprisingly nontrivial to find an involution in the bipartite

factor. The techniques and results found in Hammack’s paper (which can be found

in Section 1.5.3) are helpful in proving some of the main results in this dissertation.

1.2 Basic Definitions

Before introducing the projects, it will be helpful to introduce some basic defini-

tions to establish notation. The standard definitions and other related terms can be

found in [12], [3]. Unless stated, all graphs considered here are finite and undirected.

The set of simple graphs will be denoted Γ, and the set of graphs with loops will be

denoted Γ0, where Γ ⊂ Γ0.

A subgraph H of a graph G is a graph with vertex set V (H) ⊆ V (G) and edge

set E(H) ⊆ E(G). Further, H is an induced subgraph of G if all of the edges

between vertices of V (H) from E(G) are in E(H). We will use the notation ⟨G⟩ to

denote an induced subgraph of G. The complement of a graph G is denoted by

G, has the same vertex set as G, and edges are formed such that two vertices are

adjacent in G if and only if they are not adjacent in G.

The open neighborhood of a vertex v ∈ V (G) is the set N(v) = {u ∈ V (G) ∣

uv ∈ E(G)}, and the closed neighborhood of a vertex v ∈ V (G) is the set N[v] =
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{v} ∪N(v). A graph is called R-thin if no two distinct vertices have the same open

neighborhood, and a graph is called S-thin if no two distinct vertices have the same

closed neighborhood.

The following two definitions and accompanying information come from the

Handbook of Product Graphs [3]. We say that vertices x and y of a graph are in

the relation S, written xSy, provided that each has the same closed neighborhood,

that is, N[x] = N[y]. We define the quotient G/S to be the graph whose vertices are

the S-classes of G, and for which XY ∈ E(G/S) provided that X ≠ Y and G has an

edge joining X to Y . Likewise, we say that vertices x and y of a graph are in the

relation R, written xRy, provided that each has the same open neighborhood, that

is, N(x) = N(y). We define the quotient G/R to be the graph whose vertices are the

R-classes of G, and for which XY ∈ E(G/R) provided that G has an edge joining X

to Y .

A graph G is called bipartite if its vertex set can be divided into two distinct

sets G1 and G2, called partite sets, such that every edge of G connects a vertex of G1

to a vertex of G2.

We say a subset A of V (G) is externally related if every vertex x ∈ V (G)/A

that is adjacent to at least one vertex in A is adjacent to all vertices of A. In such a

case, we will also say that the subgraph ⟨A⟩ is externally related.

We will denote by Kn and Dn the complete graph on n vertices and the edgeless

graph on n vertices, respectively.

1.3 Palindromic Graphs

Before defining a palindromic graph, we will quickly review the basics of graph

automorphisms. A graph automorphism is an isomorphism of a graph to itself,

that is, it is a permutation ϕ of V (G) such that uv is an edge if and only if ϕ(u)ϕ(v)

3



is an edge. The set of all automorphisms on a graph G, denoted Aut(G), is called

the automorphism group of G.

We say that a graph G on n vertices is a palindromic graph [1] if it has a vertex-

labeling bijection f ∶ V (G) → {1,2, ..., n} with the property that uv ∈ E(G) if and

only if there is an edge xy ∈ E(G) such that f(x) = n−f(u)+1 and f(y) = n−f(v)+1.

Beeler [1] also notes that because a graph G and its complement G have the same

automorphism groups, a graph G is palindromic if and only if its complement G is

palindromic.

Before introducing Beeler’s first major theorem, some definitions are required.

A palindromic graph admits an involution, that is, an automorphism of order 2, so

ϕ2
(u) = u for all u ∈ G. If ϕ(u) = u for some u ∈ G, then u is a fixed point of ϕ.

From now forward, an involution that fixes at most one vertex is called a palindromic

involution. Using the definition of a fixed point, we are able to classify palindromic

involutions based on the parity of the vertex set, which impacts whether they have a

fixed point or not. We say that a graph G is even palindromic if it is palindromic

and has an even number of vertices, and a graph G is odd palindromic if it is

palindromic and has an odd number of vertices. A palindromic involution that fixes

no vertex is called an even palindromic involution, and one that fixes exactly one

vertex is called an odd palindromic involution.

In the following theorem, Beeler characterizes the circumstances under which

a graph is palindromic. Figure 1 shows a graph that admits an even palindromic

involution.

Theorem 1.3.1. ([1], Beeler) A graph of even order is palindromic if and only if

it admits an involution with no fixed vertices. A graph of odd order is palindromic if

and only if it admits an involution with exactly one fixed vertex.
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In other words, a graph is even palindromic if and only if admits an even palin-

dromic involution, and a graph is odd palindromic if and only if it admits an odd

palindromic involution. This definition grants us a certain mirror symmetry, demon-

strated in Figure 2.

1.4 2-Fold Automorphisms

The following definition from [7] will be used regularly in our proof for the direct

product.

Definition 1.4.1. Given a graph G, a pair (α,β) of permutations of V (G) that has

the property xy ∈ E(G) ⇐⇒ α(x)β(y) ∈ E(G) is called a 2-fold automorphism.

Because we are concerned with palindromic involutions, it is natural to extend

the above definition of a 2-fold automorphism to that of a 2-fold involution whose

definition can be found below.

Definition 1.4.2. A 2-fold involution is a 2-fold automorphism with permutations

(α,β) such that α2
= id and β2

= id.

Because we have classified palindromic involutions as either even or odd, meaning

that either the involution has no fixed points or has one fixed point, we can extend

the notion of a 2-fold involution to either have no or one fixed point, and we can

classify them as even or odd, respectively. The following two definitions do just that.

G
1

2

3 4 5 6

7

8

Fig. 1. A graph G that admits an even palindromic involution.
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v w y x

1 2 3 4 n

v w y x

1 2 3 4 n

Fig. 2. Palindromic graphs of even order admit an involution with no fixed points,

while palindromic graphs of odd order admit an involution with exactly one

fixed point.

Definition 1.4.3. An even 2-fold involution is a 2-fold involution with permuta-

tions (α,β) such that α and β have no fixed points.

Definition 1.4.4. An odd 2-fold involution is a 2-fold involution with permuta-

tions (α,β) such that at least one of α or β has exactly one fixed point.

1.5 The Four Products

There are four standard associative graph products. What follows is a description

of how to form each product, and examples of each product can be found in Figure

3. The subsections of this section provide more information about each product as

well as relevant results. All of the following information and more can be found in

the Handbook of Product Graphs [3].

The Cartesian product G ◻H of graphs G and H is constructed as follows:

V (G ◻H) = V (G) × V (H)

E(G ◻H) = {(x, y)(x′, y′) ∣ (xx′ ∈ E(G) and y = y′) or (yy′ ∈ E(H) and x = x′)}.
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The strong product G ⊠H of graphs G and H is constructed as follows:

V (G ⊠H) = V (G) × V (H)

E(G ⊠H) = {(x, y)(x′, y′) ∣ (xx′ ∈ E(G) or y = y′) and (x = x′ or yy′ ∈ E(H))}.

The direct product G ×H of graphs G and H is constructed as follows:

V (G ×H) = V (G) × V (H)

E(G ×H) = {(x, y)(x′, y′) ∣ xx′ ∈ E(G) and yy′ ∈ E(H)}.

The lexicographic product G ○H of graphs G and H is constructed as follows:

V (G ○H) = V (G) × V (H)

E(G ○H) = {(x, y)(x′, y′) ∣ xx′ ∈ E(G) or (x′ = x and yy′ ∈ E(H))}.

1.5.1 The Cartesian Product

The Cartesian product is commutative and associative in the sense that the maps

(x, y)↦ (y, x) and ((x, y), z)↦ (x, (y, z)) are isomorphisms from G◻H →H ◻G and

(G ◻H) ◻K → G ◻ (H ◻K), respectively. Letting H +K denote the disjoint union

of graphs H and K, we also get the distributive law G ◻ (H +K) = G ◻H +G ◻K.

A nontrivial graph G is prime over the Cartesian product ◻ if for any factoring

G ≅ A ◻ B, one of A or B is K1 and the other is G. Certainly every graph can be

factored into prime factors. Sabidussi and Vizing [8, 10] proved that each connected

graph has a unique prime factoring up to order and isomorphism of the factors. More

precisely, we have the following.

Theorem 1.5.1 ([3], Theorem 6.8). Let G and H be isomorphic connected graphs G =

G1◻⋯◻Gk and H =H1◻⋯◻H`, where each factor Gi and Hi is prime. Then k = `, and

7



G

H G ◻H

G

H G ⊠H

G

H G ×H

G

H G ○H

Fig. 3. The four standard associative graph products

for any isomorphism ϕ ∶ G→H, there is a permutation π of {1,2, . . . , k} and isomor-

phisms ϕi ∶ Gπ(i) →Hi for which ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

Cancellation is a consequence of unique prime factorization. For connected

graphs A, B, and C, A ◻B ≅ A ◻C implies that B ≅ C [3].

1.5.2 The Strong Product

The strong product is commutative and associative. If NG[x] is the closed neigh-

borhood of a vertex x ∈ V (G), then

NG⊠H[(x, y)] = NG[x] ×NH[y]. (1.1)

Also K1 ⊠G ≅ G for all graphs G. A graph G is prime over the strong product ⊠ if

for any factoring G = A ⊠B, one of A or B is K1 and the other is isomorphic to G.

Recall from Section 1.2 that we say that vertices x and y of a graph are in

8



relation S, written xSy, provided that each has the same closed neighborhood, that

is, N[x] = N[y]. It is easy to check that S is an equivalence relation the graph’s

vertex set. Given a vertex x of G, we denote the S-equivalence class that contains

x as [x] = {x′ ∈ V (G) ∣ NG[x′] = NG[x]}. We call an S-equivalence class of V (G)

an S-class of G. (Note that a graph is S-thin if and only if each S-class consists of

a single vertex.) In general, if X is an S-class of graph G, then the subgraph of G

induced on X is the complete graph K∣X ∣. Also, for any distinct S-classes X and Y ,

X and Y are externally related.

Regarding factoring over the strong product, we have the following result that is

analogous to 1.5.1 with the minor caveat that it only applies to S-thin graphs.

Theorem 1.5.2 ([3], Theorem 7.16). Let ϕ be an automorphism of an S-thin con-

nected graph G with prime factorization G = G1⊠G2⊠⋯⊠Gk. Then there is a permu-

tation π of {1,2, . . . , k} and isomorphisms ϕi ∶ Gπ(i) → Gi for which ϕ(x1, x2, . . . , xk) =

(ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

Because S is defined in terms of the adjacency structure of a graph, any iso-

morphism ϕ ∶ G → H sends S-classes of G bijectively onto S-classes of H. From

the discussion above it should be clear that any isomorphism ϕ ∶ G → H induces an

isomorphism ϕ̃ ∶ G/S → H/S where ϕ̃(X) = ϕ(X), that is, ϕ̃(X) is the image of the

S-class X under ϕ.

But the existence of an isomorphism ϕ̃ ∶ G/S → H/S does not necessarily mean

that there is an isomorphism ϕ ∶ G → H. However, if ∣X ∣ = ∣ϕ̃(X)∣ for each X ∈

V (G/S), then we can lift ϕ̃ to an isomorphism ϕ ∶ G → H simply by declaring ϕ to

restrict to a bijection X → ϕ̃(X) for each X.

Using Equation (1.1), one can show that the S-classes of G⊠H are precisely the

Cartesian products X × Y (of sets), where X is an S-class of G and Y is an S-class

9



of H. In other words, the vertices of (G ×H)/S are X × Y , where X ∈ V (G/S) and

Y ∈ V (H/S). Further, there is a natural isomorphism

(G ⊠H)/S Ð→ G/S ⊠H/S

X × Y z→ (X,Y ).
(1.2)

1.5.3 The Direct Product

The following theorem is well-known and establishes the structure of the direct

product given bipartite or non-bipartite factors.

Theorem 1.5.3 ([11], Weichsel). A direct product A×B of connected graphs is con-

nected if and only if at least one factor has an odd cycle; if both factors are bipartite,

then the product has exactly two components. If general, if both A and B have odd

cycles, then so does A ×B. Moreover, if B is bipartite, with bipartition X ∪ Y , then

A ×B is bipartite, with bipartition (V (A) ×X) ∪ (V (A) × Y ).

Recall from Section 1.2 that we say two vertices x and y of a graph G are in the

relation R, written xRy, provided that NG(x) = NG(y) (where NG(x) is the open

neighborhood of x ∈ V (G)). Given a vertex x of G, we denote the R-equivalence class

that contains x as [x] = {x′ ∈ V (G) ∣ NG(x′) = NG(x)}. We refer to an R-equivalence

class as an R-class. We define the quotient G/R of G to be the graph whose vertices

are the R-classes of G, and for which XY ∈ E(G/R) provided G has an edge joining

X to Y . Note that G is bipartite if and only if G/R is bipartite. As the relation R

is defined entirely in terms of adjacencies, given an isomorphism ϕ ∶ G→H, we have

xRy ∈ G if and only if ϕ(x)ϕ(y) ∈ H. Thus ϕ maps R-classes of G bijectively to R-

classes of H. In particular, ϕ([x]) = [ϕ(x)]. Moreover, any isomorphism ϕ ∶ G → H

induces an isomorphism ϕ̃ ∶ G/R → H/R defined as ϕ̃([x]) = [ϕ(x)]. Conversely, if

∣X ∣ = ∣
̃ϕ(X)∣ for all X ∈ G/R, then we can lift any automorphism ϕ̃ ∶ G/R → G/R to

10



an automorphism ϕ of G by simply declaring that each R-class X maps bijectively

to some ϕ(X).

Proposition 1.5.1 ([3], Proposition 8.4). Suppose G,H ∈ Γ0. Then G ≅ H if and

only if G/R ≅ H/R and there is an isomorphism ϕ̃ ∶ G/R → H/R with ∣X ∣ = ∣ϕ̃(X)∣

for each X ∈ V (G/R). In fact, given an isomorphism ϕ̃ ∶ G/R → H/R, any map

ϕ ∶ V (G)→ V (H) that restricts to a bijection ϕ ∶X → ϕ̃(X) for every X ∈ G/R is an

isomorphism from G to H.

Also proven in Section 8.2 of [3], we have that ϕ ∶ (G×H)/R → G/R×H/R such

that [(v,w)] ↦ ([v], [w]). In general, [(v,w)] = [v] × [w] (as sets). Consequently,

∣[(v,w)]∣ = ∣[v]∣ ⋅ ∣[w]∣.

1.5.4 The Lexicographic Product

The lexicographic product does not admit desirable factorization qualities like the

other three products. The proof for this product will require a significantly different

approach. The identity G ○H = G ○H [3, Section 10.2] will be needed in our proofs.

1.6 The Cartesian Skeleton

We will use the notion of the Cartesian Skeleton (see [2] for a thorough intro-

duction and description) to link the direct product to the Cartesian product, al-

lowing us to use some results on the Cartesian product to guide our proof. The

Cartesian skeleton S(G) is a graph on the vertex set of G that has the property

S(A×B) = S(A)◻S(B) in the class of R-thin graphs. What follows is a description

of how to construct the Cartesian skeleton S(G) of a graph G ∈ Γ0 (where Γ0 is the

set of isomorphism classes of graphs that may have loops).

The Cartesian skeleton S(G) is constructed as a subgraph of the Boolean square

of G with specific properties. The Boolean square of G is the graph Gs with

11



V (Gs
) = V (G) and E(Gs

) = {xy ∣ NG(x) ∩NG(y) ≠ ∅}. It follows that xy is an edge

of Gs if and only if G has an x − y walk of length two. Moreover, if G has an x − y

walk W of even length, then Gs has an x−y walk of length ∣W ∣/2 on alternate vertices

of W . Observe that Gs is connected if G is connected and has an odd cycle. If G is

connected and bipartite, then Gs has exactly two components, and their respective

vertex sets are the two partite sets of G.

As stated above, the Cartesian skeleton S(G) is a certain spanning sugraph of the

Boolean square Gs. The following is a description of how to construct the Cartesian

skeleton S(G) from Gs. An edge xy of Gs is dispensable if x = y or there exists

z ∈ V (G) for which both of the following statements hold:

1. NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) or NG(x) ⊂ NG(z) ⊂ NG(y),

2. NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z) or NG(y) ⊂ NG(z) ⊂ NG(x).

Now the Cartesian skeleton of a graph G is the spanning subgraph S(G) of

Gs obtained by removing all dispensable edges from Gs. The following proposition

from [2] links the Cartesian and direct products together.

Proposition 1.6.1. ([2]) If G,H are R-thin graphs, then S(G×H) = S(G)◻S(H),

provided that neither G nor H has any isolated vertices. This is equality, not mere

isomorphism; the graphs S(G ×H) and S(G) ◻ S(H) have identical vertex and edge

sets.

As S(G) is defined entirely in terms of the adjacency structure of G, the following

result is an immediate consequence.

Proposition 1.6.2 (([2]), Hammack and Imrich). Any isomorphism ϕ ∶ G → H, as

a map V (G)→ V (H), is also an isomorphism ϕ ∶ S(G)→ S(H).

12



We also have the following result from [2] which concerns the connectivity of

Cartesian skeletons.

Proposition 1.6.3 (([2]), Hammack and Imrich). Suppose G is connected.

1. If G has an odd cycle, then S(G) is connected.

2. If G is nontrivial bipartite, then S(G) has two connected components. Their

respective vertex sets are the two partite sets of G.

13



CHAPTER 2

THE CARTESIAN PRODUCT OF PALINDROMIC GRAPHS

2.1 Summary of Project

We are motivated to prove that the sufficient conditions of the Cartesian product

of palindromic graphs (proven by Beeler [1]) are necessary.

The following is the main theorem of this project.

Theorem 2.1.1. Suppose G and H are connected:

1. G ◻H is even palindromic if and only if G or H is even palindromic

2. G ◻H is odd palindromic if and only if G and H are odd palindromic

This project was included in a paper published with Richard Hammack in The

Art of Discrete and Applied Mathematics [4].

2.2 Preliminary Information

In order to prove the necessary conditions, we can make use of the following

theorem mentioned in 1.5.1.

Theorem 2.2.1 ([3], Theorem 6.8). Let G and H be isomorphic connected graphs

G = G1◻⋯◻Gk and H =H1◻⋯◻H`, where each Gi and Hi is prime. Then k = `, and

for any isomorphism ϕ ∶ G→H, there is a permutation π of {1,2, . . . , k} and isomor-

phisms ϕi ∶ Gπ(i) →Hi for which ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

This theorem tells us that any automorphism ϕ permutes prime factors over the

Cartesian product. We can prime factor the factors G and H of G◻H, and since any
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palindromic involution ϕ only permutes the prime factors of G and H, we can group

prime factors together based on observations made about the way in which they must

be permuted. Each group has an associated automorphism, so utilizing the behavior

of the palindromic involution in the product, we can prove that the automorphism(s)

in the factor(s) are palindromic involutions.

2.3 Major Theorems

We begin with a restatement of Beeler’s theorem.

Theorem 2.3.1 ([1], Beeler). If G or H is even palindromic, then G ◻H is even

palindromic. If G and H are odd palindromic, then G ◻H is odd palindromic.

Proof. Let one of G or H (say G) be even palindromic. Theorem 1.3.1 yields an even

palindromic involution α ∶ G → G. Form the even palindromic involution (x, y) ↦

(α(x), y) of G ◻H. Thus the product is even palindromic because it has no fixed

points. For the second statement, say both G and H are odd palindromic. By

Theorem 1.3.1, G has an involution α with exactly one fixed point x0. (That is,

α(x0) = x0). For the same reason, H has an involution β with exactly one fixed point

y0. Then (x, y) ↦ (α(x), β(y)) is an involution of G ◻H that has exactly one fixed

point (x0, y0). Therefore G ◻H is odd palindromic.

The following is the main theorem of this project.

Theorem 2.3.2. Suppose G and H are connected:

1. G ◻H is even palindromic if and only if G or H is even palindromic.

2. G ◻H is odd palindromic if and only if G and H are odd palindromic.

Proof. The forward direction is Theorem 2.3.1.
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Conversely, suppose G◻H is palindromic and let ϕ be a palindromic involution

of it. Take prime factorings G = G1 ◻⋯ ◻Gj and H = Gj+1 ◻⋯ ◻Gk, so we have an

involution ϕ of G ◻H = (G1 ◻⋯◻Gj) ◻ (Gj+1 ◻⋯◻Gk).

The involution ϕ permutes the prime factors of this product in the sense of

Theorem 1.5.1, where the permutation π satisfies π2
= id. Using commutativity of

◻, group together the prime factors Gi of G for which 1 < π(i) ≤ j, and call their

product A. (By convention, A =K1 if there are no such factors Gi. The same applies

for the graphs B and D defined below.) Let B be the product of the remaining factors

Gi of G. Also group together the prime factors Gi of H for which j+1 < π(i) ≤ k, and

call their product D. The Cartesian product of the remaining factors of H is then a

graph isomorphic to B. The structure of ϕ under this scheme is as indicated below,

where the arrows represent isomorphisms ϕi ∶ Gπ(i) → Gi between factors.

ϕ

G

G

H

H

=

=

(

(

(

(

)

)

)

)

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻

G1

G1

G2

G2

G3

G3

G4

G4

G5

G5

G6

G6

G7

G7

G8

G8

G9

G9

G10

G10

G11

G11

G
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

H
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

A
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

B
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

B
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

D
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

B
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

We have now coordinatized G and H as G = A ◻ B and H = B ◻ D, and

ϕ is an involution of G ◻ H = (A ◻ B) ◻ (B ◻ D) for which ϕ((a, b), (b′, d)) =

((α(a), β(b′)), (γ(b), δ(d))), for automorphisms α ∶ A → A, β, γ ∶ B → B and

δ ∶ D → D. But because ϕ2 is the identity, it must be that α2
= id, γ = β−1 and

δ2 = id. Thus we have involutions α and δ of A and D, respectively, and

ϕ((a, b), (b′, d)) = ((α(a), β(b′)), (β−1(b), δ(d))), (2.1)
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From (2.1) it is evident that the fixed points of ϕ (if any) are precisely

((a0, β(b)), (b, d0)) with α(a0) = a0, δ(d0) = d0, and b ∈ V (B). (2.2)

Thus ϕ has a fixed point if and only if both α and δ have fixed points. Further, if ϕ

has a fixed point, then it has exactly ∣V (B)∣ of them.

Now suppose G◻H is even palindromic. Let ϕ be an even palindromic involution

of G◻H (having no fixed point). From (2.2), at least one of α or δ has no fixed point;

say it is α. Then α is an even palindromic involution of A, so A is even palindromic.

By the first part of the theorem, G = A ◻B is even palindromic. Similarly H is even

palindromic if δ has no fixed points.

Suppose G ◻ H is odd palindromic. Let ϕ be an odd palindromic involution

whose sole fixed point is ((a0, β(b0)), (b0, d0)). The remark following (2.2) implies ϕ

has at least ∣V (B)∣ fixed points, so B =K1. Thus we can drop B from our discussion,

so G = A, H =D and ϕ(a, d) = (α(a), δ(d)). We now have involutions α ∶ G→ G and

δ ∶H →H with fixed points a0 and d0, respectively. Also (a0, d0) is a fixed point of ϕ.

If the involution α of G had a second fixed point a1, then (a0, d0) and (a1, d0) would

be two distinct fixed points of ϕ. Thus a0 is the only fixed point of α, so α (hence

also G) is odd palindromic. By the same reasoning H is odd palindromic.
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CHAPTER 3

THE STRONG PRODUCT OF PALINDROMIC GRAPHS

3.1 Summary of Project

The structure of strong product is similar to the Cartesian product with respect

to their edge sets, so after proving the main theorem on the Cartesian product, we

are inspired to prove analogous results for the strong product.

The following is the main theorem of this project.

Theorem 3.1.1. Suppose G and H are connected graphs. Then:

(1) G or H is even palindromic if and only if G ⊠H is even palindromic.

(2) G and H are odd palindromic if and only if G ⊠H is odd palindromic.

This project was included in a paper published with Richard Hammack in The

Art of Discrete and Applied Mathematics [4].

3.2 Preliminary Information

Recall from the definitions of the Cartesian and strong product that the edge

set of the Cartesian product is contained in the edge set of the strong product. This

suggests that proving analogous results for the strong product will be similar to the

proof for the Cartesian product. However, the extra edges in the strong product

provides concerns around the neighborhoods in the graph. When two vertices have

the same open or closed neighborhood, an automorphism may swap them. This

introduces an extra restriction in Theorem 3.2.1 (analogous to Theorem 2.2.1) shown

below.
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Theorem 3.2.1 ([3], Theorem 7.16). Let ϕ be an automorphism of an S-thin con-

nected graph G with prime factorization G = G1⊠G2⊠⋯⊠Gk. Then there is a permu-

tation π of {1,2, . . . , k} and isomorphisms ϕi ∶ Gπ(i) → Gi for which ϕ(x1, x2, . . . , xk) =

(ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

Utilizing this theorem will help us get a handle on how the proof works for an

S-thin strong product and S-thin factors, however, we would like it to work for all

general strong products and factors, and the existence of an isomorphism ϕ̃ ∶ G/S →

H/S does not necessarily mean that there is an isomorphism ϕ ∶ G → H. However,

as we noted in 1.5.2, if ∣X ∣ = ∣ϕ̃(X)∣ for each X ∈ V (G/S), then we can lift ϕ̃ to an

isomorphism ϕ ∶ G → H simply by declaring ϕ to restrict to a bijection X → ϕ̃(X)

for each X. Thus to complete the proof, we will need to show that ∣X ∣ = ∣ϕ̃(X)∣ for

each X ∈ V (G/S), and then we can lift a palindromic involution ϕ̃ to a palindromic

involution ϕ using the method described above.

3.3 Major Theorems

What follows is the main theorem of this project.

Theorem 3.3.1. Suppose G and H are connected graphs. Then:

(1) G or H is even palindromic if and only if G ⊠H is even palindromic.

(2) G and H are odd palindromic if and only if G ⊠H is odd palindromic.

Proof. If G or H (say G) is even palindromic, then there exists an even palindromic

involution α of G, so (x, y) ↦ (α(x), y) is an even palindromic involution of G ⊠

H. Next suppose G and H are odd palindromic. Then G has an odd palindromic

involution α with fixed point x0, and H has an odd palindromic involution β with

fixed point y0. Then (x, y)↦ (α(x), β(y)) is an odd palindromic involution of G⊠H

whose sole fixed point is (x0, y0).
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It remains to prove the converses of the two statements. We will do this in three

parts. The first part codifies the structure of involutions of G ⊠H.

Part I (Involution structure) Let ϕ ∶ G ⊠H → G ⊠H be an involution. By the

remarks preceding this theorem, ϕ induces an automorphism ϕ̃ of the S-thin graph

(G ⊠H)/S ≅ G/S ⊠H/S. Because ϕ is an involution, we have ϕ̃2
= id. (Note that ϕ̃

could be the identity even if ϕ is not. This is the case if ϕ fixes each S-class, i.e., it

restricts to a permutation on each S-class.)

Take prime factorings G/S = G1 ⊠⋯ ⊠Gj and H/S = Gj+1 ⊠⋯ ⊠Gk. Then ϕ̃ is

an automorphism (of order 1 or 2) of the graph

G/S ⊠H/S = (G1 ⊠⋯⊠Gj) ⊠ (Gj+1 ⊠⋯⊠Gk).

Now, ϕ̃ permutes the prime factors of this product in the sense of Theorem 1.5.2,

where the permutation π satisfies π2
= id. As in the proof of Theorem 2.3, group

together the prime factors Gi of G/S for which 1 < π(i) ≤ j, and call their product A.

Let B be the product of the remaining factors of G/S. Also group together the prime

factors Gi of H/S for which j + 1 < π(i) ≤ k, and call their product D. The product

of the remaining factors of H/S is then a graph isomorphic to B. Now we have

G/S = A ⊠B and H/S = B ⊠D, and ϕ̃ is an automorphism of

G/S ⊠H/S = (A ⊠B) ⊠ (B ⊠D)

satisfying ϕ̃2
= id, and for which (as in the proof of Theorem 2.3) we have

ϕ̃((a, b), (b′, d)) = ((α(a), β(b′)), (β−1(b), δ(d))) (3.1)

for automorphisms α ∶ A → A, β ∶ B → B and δ ∶ D → D, for which α2
= id and

δ2 = id.
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In Equation (3.1) the ordered pairs (a, b) and (α(a), β(b′)) label vertices of G/S,

which are S-classes of G, and hence they have cardinalities ∣(a, b)∣ and ∣(α(a), β(b′))∣.

Similarly, (b′, d) and (β−1(b), δ(d)) are S-classes of H/S.

By the remarks preceding this theorem, the involution ϕ of G ⊠ H sends the

S-class (a, b) × (b′, d) bijectively to S-class (α(a), β(b′)) × (β−1(b), δ(d)), so

∣(a, b)∣ ⋅ ∣(b′, d)∣ = ∣(α(a), β(b′))∣ ⋅ ∣(β−1(b), δ(d))∣ (3.2)

for all a ∈ V (A), b, b′ ∈ V (B) and d ∈ V (D). Putting b′ = β−1(b) yields

∣(a, b)∣ ⋅ ∣(β−1(b), d)∣ = ∣(α(a), b))∣ ⋅ ∣(β−1(b), δ(d))∣. (3.3)

In (3.3) replace d with δ(d) (and use δ2 = id) to get

∣(a, b)∣ ⋅ ∣(β−1(b), δ(d))∣ = ∣(α(a), b))∣ ⋅ ∣(β−1(b), d)∣. (3.4)

Equations (3.3) and (3.4) imply ∣(a, b)∣ = ∣(α(a), b)∣. Form an automorphism

α̃ ∶ A ⊠B → A ⊠B as α̃(a, b) = (α(a), b)). Then α̃2
= id, so we have an involution (if

it is not the identity map) α̃ ∶ G/S → G/S that maps each vertex (S-class) (a, b) to

the vertex (S-class) (α(a), b) of the same cardinality.

Also (3.3) and (3.4) yield ∣(β−1(b), δ(d))∣ = ∣(β−1(b), d)∣, and this implies ∣(b, δ(d))∣ =

∣(b, d)∣ for all b ∈ V (B) and d ∈ V (D). Form the automorphism δ̃ ∶ B ⊠D → B ⊠D

where δ̃(b, d) = (b, δ(d)). Then δ̃2 = id, so we have an involution (if not the identity

map) δ̃ ∶H/S →H/S mapping each S-class (b, d) to the S-class (b, δ(d)) of the same

cardinality.

In summary, given an involution ϕ of G⊠H, we have constructed automorphisms

α̃ and δ̃ of G/S and H/S, respectively, satisfying α̃2
= id and δ̃2 = id. Further,

∣α̃((a, b))∣ = ∣(a, b)∣ for any S-class (a, b) of G. Thus we can lift α̃ to an automorphism

λ ∶ G → G by declaring that λ restricts to a bijection (a, b) → (α(a), b), for each
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S-class (a, b) of G. Similarly, ∣δ̃((b, d))∣ = ∣(b, d)∣ for any S-class (b, d) of H, so we can

lift δ̃ to an automorphism µ ∶ H → H. In parts II and III of the proof these lifts will

be palindromic involutions.

To carry out this plan we will need to consider S-classes of G⊠H that are fixed

by ϕ (i.e. the S-classes whose vertices are permuted by ϕ.) By Equation (3.1), the

fixed points of ϕ̃ (respectively, the fixed S-classes of ϕ) are

((a0, β(b)), (b, d0)) where α(a0) = a0, δ(d0) = d0 and b ∈ V (B) (3.5)

(a0, β(b)) × (b, d0) where α(a0) = a0, δ(d0) = d0 and b ∈ V (B). (3.6)

We call an S-class even (odd) if it has even (odd) cardinality.

Part II (Converse of Statement (1)) Suppose G ⊠H is even palindromic. Then

there is an even palindromic involution ϕ of G ⊠H. We adopt the development and

notation of Part I of the proof.

Our strategy is to show that one of α̃ ∶ G/S → G/S or δ̃ ∶ H/S → H/S has no

odd fixed point (S-class). For if this is the case for (say) α̃, then α̃ can be lifted to an

automorphism λ ∶ G→ G sending any S-class (a, b) bijectively to (α(a), b). Whenever

α̃ fixes an S-class (a, b), we can arrange for λ to restrict to an order-2 fixedpoint-free

permutation of the even set (a, b). Then λ will be an even palindromic involution of

G, so G is even palindromic.

Suppose to the contrary that α̃ had an odd fixed point (a, b) and δ̃ had an odd

fixed point (b′, d). (So α(a) = a and δ(d) = d.) By (3.2),

∣(a, b)∣
´¹¹¹¹¹¸¹¹¹¹¹¶

odd

⋅ ∣(b′, d)∣
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

odd

= ∣(a, β(b′))∣ ⋅ ∣(β−1(b), d)∣.

Then (a, β(b′)) is odd, so (a, β(b′)) × (b′, d) is an odd S-class of G ⊠ H. But the

involution ϕ fixes this odd S-class, by (3.6). Thus ϕ fixes some point of this S-class,
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contradicting the fact that ϕ is even palindromic.

Part III (Converse of Statement (2)) Suppose G ⊠H is odd palindromic. Then

there is an odd palindromic involution ϕ of G ⊠H with fixed point (x0, y0). Then ϕ

fixes the S-class X that contains (x0, y0), which necessarily has form X = (a0, β(b0))×

(b0, d0), where α(a0) = a0 and δ(d0) = d0. (See (3.6) in Part I.) As the involution

ϕ fixes exactly one vertex, which is in X, we know X has odd cardinality. Thus

(a0, β(b0)) is an odd S-class of G/S, and (b0, d0) is an odd S-class of H/S. Note

that (a0, β(b0)) is a fixed point of α̃ and (b0, d0) is a fixed point of δ̃. Suppose δ̃ had

another odd fixed point (b1, d1). Then δ(d1) = d1 and by Equation (3.2),

∣(a0, β(b0))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

odd

⋅ ∣(b1, d1)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

odd

= ∣(a0, β(b1))∣ ⋅ ∣(b0, d1)∣.

Therefore ∣(a0, β(b1))∣ and ∣(b0, d1)∣ are odd. Then (a0, β(b1))×(b1, d1) and (a0, β(b0))×

(b0, d1) are odd S-classes of G×H that are fixed by ϕ. But X = (a0, β(b0))×(b0, d0) is

the only such S-class, hence β(b1) = β(b0) and d1 = d0. This means (b1, d1) = (b0, d0).

Conclusion: (b0, d0) is the only odd S-class of H/S that is fixed by δ̃. Therefore we

can lift δ̃ ∶ H/S → H/S to an odd palindromic involution µ ∶ H → H sending each

S-class (b, d) bijectively to (b, δ(d)), having only one fixed vertex on the odd fixed

class (b0, d0) and no fixed points on any other fixed (even) S-class. Thus H is odd

palindromic.

By a symmetric argument, G is also odd palindromic.
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CHAPTER 4

THE DIRECT PRODUCT OF PALINDROMIC GRAPHS

4.1 Summary of Project

After successfully proving results for the Cartesian and strong product, we would

like to prove analogous results for the direct product. Unfortunately, the following

conjecture has been disproven, but it holds true for the case where G and H are

nonbipartite.

Conjecture 4.1.1. Suppose G and H are connected. Then:

1. G ×H is even palindromic if and only if G or H is even palindromic.

2. G ×H is odd palindromic if and only if G and H are odd palindromic.

The conjecture breaks down when the direct product has a bipartite factor.

Figure 4 is an even palindromic direct product for which neither factor is even palin-

dromic. In the figure, the graph G, a nonbipartite graph, is not even palindromic

because any involution will fix both vertices 7 and 8, and the graph H is bipartite

with an odd number of vertices, so neither factor is even palindromic. However, the

product G ×H is even palindromic, displaying a mirror symmetry about the dashed

line, so this is a counterexample to the conjecture. However, G does admit the fol-

lowing even 2-fold involution (α,β):

α ∶ (1,13)(2,14)(3,11)(4,12)(5,10)(6,9)(7,8)

β ∶ (1,12)(2,11)(3,14)(4,13)(5,9)(6,10)(7,8)
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2a 3b 2c

3a 2b 3c

4a 1b 4c

Fig. 4. Counterexample to Conjecture 4.1.1
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We modify the conjecture in the case where one factor is nonbipartite and the

other is bipartite, found below in the following proposition.

Proposition 4.1.1. Let G and H be connected where G is nonbipartite and H is

bipartite. Then:

1. G ×H is even palindromic if and only if:

● G has an even 2-fold involution, or

● H is even palindromic, or

● H has an involution η that preserves partite sets where all fixed points of

η are in the same partite set, and G has a 2-fold involution (α,β) where

only one of α or β is fixed-point free.

2. G ×H is odd palindromic if and only if G has an odd 2-fold involution and H

is odd palindromic.

4.2 Preliminary Information

Similar to the connection between the Cartesian and strong product, there is

a connection between the direct and strong products. The edge set of the direct

product is contained in the edge set of the strong product (in fact, the edge set of the

strong product is the edge set of the Cartesian product unioned with the edge set of

direct product). After successfully proving results on the strong product, one might

conjecture that proving results on the direct product would be very similar to that of

the Cartesian and strong products. It would be convenient to have a theorem that is

analogous to 1.5.1 and 1.5.2, and indeed, we have the following:

Theorem 4.2.1 ([3], Theorem 8.18). Suppose ϕ is an automorphism of a connected

nonbipartite R-thin graph G that has a prime factorization G = G1 × G2 × ... × Gk.
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Then there exists a permutation of π of {1,2, ..., k}, together with isomorphisms

ϕi ∶ Gπ(i) → Gi such that ϕ(x1, x2, ..., xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), ..., ϕk(xπ(k))). Thus

Aut(G) is generated by the automorphisms of the prime factors and transpositions of

isomorphic factors. Consequently, Aut(G) is isomorphic to the automorphism group

of the disjoint union of the prime factors of G.

Unfortunately, this theorem only applies to connected, nonbipartite, R-thin graphs.

However, if we work exclusively in the case of two nonbipartite factors (resulting in

a nonbipartite product), then the proof of this case will be remarkably similar to the

proof of the strong product.

While the above result will help us prove the case of a palindromic direct product

resulting from two nonbipartite factors, it does not apply to the cases where one or

both factors are bipartite. As a result, we will need to turn our attention to a different

technique for proving such cases. Further, because the direct product of two bipartite

graphs is disconnected, we will only provide results on the case where the direct

product is formed by one bipartite factor and one nonbipartite factor. We will briefly

discuss the case where both factors are bipartite, leaving much to conjecture.

Regarding the case where one factor is bipartite and the other is nonbipartite,

observe that an automorphism of any connected bipartite graph will either preserve

or reverse its partite sets, and an involution that reverses the partite sets of a bipartite

graph is, by definition, an even palindromic involution. We can break up the afore-

mentioned case even further and focus on the instance where a palindromic involution

preserves the products partite sets and the instance where it reverses the partite sets.

The following theorem by Hammack [5] will help us quickly address the case where

a palindromic product, formed by one nonbipartite factor and one bipartite factor,

admits a partition-reversing involution.

27



Theorem 4.2.2 ([5], Hammack). Suppose G and H are connected graphs, and H is

bipartite but G is not. If G ×H admits an involution that reverses its partite sets,

then H also admits an involution that reverses its partite sets.

Moreover, the technique used to prove Theorem 4.2.2 is the key to proving the

necessary conditions presented in Section 4.4. Using the Cartesian skeleton to link

the direct product to the Cartesian product, as discussed in Section 1.6, we can

use Theorem 1.5.1 in addition to the techniques from strong product and the two

nonbipartite factors case to help us prove the main results in that section.

4.3 Major Theorems for Two Nonbipartite Factors

The following proposition describes the sufficient conditions for a palindromic

direct product.

Proposition 4.3.1. If G or H is even palindromic, then G×H is even palindromic.

If G and H are odd palindromic, then G ×H is odd palindromic.

Proof. Suppose, without loss of generality, that G is even palindromic. Let α ∶ G→ G

defined by x ↦ α(x) be even palindromic. Then ϕ ∶ G × H → G × H defined by

(x, y) ↦ (α(x), y) is an even palindromic involution. Since α has no fixed points,

G ×H is even palindromic.

Suppose G and H are odd palindromic. Then G has an involution α with exactly

one fixed vertex x0, so α(x0) = x0. Likewise, H has an involution β with exactly one

fixed vertex y0, so β(y0) = y0. Then ϕ ∶ G×H → G×H defined by (x, y)↦ (α(x), β(y))

is an involution of G × H with exactly one fixed vertex (x0, y0), so G × H is odd

palindromic.

The following proposition will be used in proving the case of the main theorem

where G and H are nonbipartite and G ×H is palindromic.
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Proposition 4.3.2. Suppose G and H are connected, R-thin, nonbipartite graphs.

Then:

(1) G or H is even palindromic if and only if G ×H is even palindromic.

(2) G and H are odd palindromic if and only if G ×H is odd palindromic.

Proof. Suppose G ×H is palindromic with palindromic involution ϕ. Consider the

connected, nonbipartite, R-thin, prime factorings G = G1 ×⋯×Gj and H = Gj+1 ×⋯×

Gk, so we have an involution ϕ of G ×H = (G1 ×⋯ ×Gj) × (Gj+1 ×⋯ ×Gk).

Utilizing Theorem 4.2.1, the involution ϕ permutes the prime factors of this

product such that the permutation π satisfies π2
= id. Using commutativity of ×, we

can group together the prime factors Gi of G for which 1 < π(i) ≤ j, and call their

product A. Note that A = K∗
1 , where K∗

1 is a single vertex with a loop, if no such

factors Gi exist. The same applies for the graphs B and D defined below. Let B be

the product of the remaining factors Gi of G. Also group together the prime factors

Gi of H for which j + 1 < π(i) ≤ k, and call their product D. The direct product

of the remaining factors of H is then a graph isomorphic to B. The structure of ϕ

under this scheme is as indicated below, where the arrows represent isomorphisms

ϕi ∶ Gπ(i) → Gi between factors.

ϕ

G

G

H

H

=

=

(

(

(

(

)

)

)

)

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

G1

G1

G2

G2

G3

G3

G4

G4

G5

G5

G6

G6

G7

G7

G8

G8

G9

G9

G10

G10

G11

G11

G
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

H
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

A
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

B
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

B
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

D
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

B
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

We have now coordinatizedG andH asG = A×B andH = B×D, and ϕ is an invo-

lution ofG×H = (A×B)×(B×D) for which ϕ((a, b), (b′, d)) = ((α(a), β(b′)), (γ(b), δ(d))),

for automorphisms α ∶ A → A, β, γ ∶ B → B and δ ∶ D → D. But because ϕ2 is the
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identity, it must be that α2
= id, γ = β−1 and δ2 = id. Thus we have involutions α and

δ of A and D, respectively, and

ϕ((a, b), (b′, d)) = ((α(a), β(b′)), (β−1(b), δ(d))), (4.1)

From (4.1) it is evident that the fixed points of ϕ (if any) are precisely

((a0, β(b)), (b, d0)) with α(a0) = a0, δ(d0) = d0, and b ∈ V (B). (4.2)

Thus ϕ has a fixed point if and only if both α and δ have fixed points. Further, if ϕ

has a fixed point, then it has exactly ∣V (B)∣ of them.

Now suppose G×H is even palindromic. Let ϕ be an even palindromic involution

of G × H (having no fixed point). From (4.2), at least one of α or δ has no fixed

point, so suppose it is α. Then α is an even palindromic involution of A, so A is

even palindromic. By the first part of the theorem, G = A ×B is even palindromic.

Similarly H is even palindromic if δ has no fixed points.

Suppose G × H is odd palindromic. Let ϕ be an odd palindromic involution

whose sole fixed point is ((a0, β(b0)), (b0, d0)). The remark following (4.2) implies ϕ

has at least ∣V (B)∣ fixed points, so B =K1. Thus we can drop B from our discussion,

so G = A, H =D and ϕ(a, d) = (α(a), δ(d)). We now have involutions α ∶ G→ G and

δ ∶H →H with fixed points a0 and d0, respectively. Also (a0, d0) is a fixed point of ϕ.

If the involution α of G had a second fixed point a1, then (a0, d0) and (a1, d0) would

be two distinct fixed points of ϕ. Thus a0 is the only fixed point of α, so α (hence

also G) is odd palindromic. By the same reasoning H is odd palindromic.

The following proposition is the desired result for connected and nonbipartite

graphs.

Proposition 4.3.3. Suppose G and H are connected and non-bipartite. Then:
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1. G or H is even palindromic if and only if G ×H is even palindromic.

2. G and H are odd palindromic if and only if G ×H is odd palindromic.

Proof. The forward direction is Proposition 4.3.1.

The converses of the two statements will be broken up into three parts. The first

part codifies the structure of the involutions of G ×H.

Part I (Involution Structure) Let ϕ ∶ G×H → G×H be an involution. By the

remarks preceding this theorem, ϕ induces an automorphism ϕ̃ of the R-thin graph

(G ×H)/R ≅ G/R ×H/R. Because ϕ is an involution, we have ϕ̃2
= id.

Take prime factorings G/R = G1× ...×Gj and H/R = Gj+1× ...×Gk. Then ϕ̃ is an

automorphism (of order 2, or possibly of order 1, if ϕ fixes each R-class) of the graph

G/R×H/R = (G1 × ...×Gj)× (Gj+1 ×Gk). Now, ϕ̃ permutes the prime factors of this

product in the sense of Theorem 4.2.1, where the permutation π satisfies π2
= id. As

in the proof of Proposition 4.3.2, group together the prime factors Gi of G/R for which

1 < π(i) ≤ j, and call their product A. Let B be the product of the remaining factors

of G/R. Also group together the prime factors Gi of H/R for which j + 1 < π(i) ≤ k,

and call their product D. The product of their remaining factors of H/R is then a

graph isomorphic to B. Now we have G/R = A × B and H/R = B ×D. So ϕ̃ is an

automorphism of G/R ×H/R = (A ×B) × (B ×D) satisfying ϕ̃2
= id. As in the proof

of Proposition 4.3.2, we have

ϕ̃((a, b), (b′, d)) = ((α(a), β(b′)), (β−1(b), δ(d))) (4.3)

with automorphisms α ∶ A → A, β ∶ B → B, and δ ∶ D → D for which α2
= id and

δ2 = id.

In Equation (4.3), the ordered pairs (a, b) and (α(a), β(b′)) label vertices of G/R

which are R-classes of G. Hence, they have cardinalities ∣(a, b)∣ and ∣(α(a), β(b′))∣.
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Likewise, (b′, d) and (β−1(b), δ(d)) are R-classes of G which cardinalities ∣(b′, d)∣ and

∣(β−1(b), δ(d))∣.

By the remarks preceding this theorem, the involution ϕ of G × H sends the

R-class (a, b) × (b′, d) bijectively to the R-class (α(a), β(b′)) × (β−1(b), δ(d)), thus

∣(a, b)∣ ⋅ ∣(b′, d)∣ = ∣(α(a), β(b′))∣ ⋅ ∣(β−1(b), δ(d))∣ (4.4)

for all a ∈ V (A), b, b′ ∈ V (B), and d ∈ V (D). Putting b′ = β−1(b) yields

∣(a, b)∣ ⋅ ∣(β−1(b), d)∣ = ∣(α(a), b))∣ ⋅ ∣(β−1(b), δ(d))∣. (4.5)

In Equation (4.13), replace d with δ(d) and use δ2 = id to get

∣(a, b)∣ ⋅ ∣(β−1(b), δ(d))∣ = ∣(α(a), b))∣ ⋅ ∣(β−1(b), d)∣. (4.6)

Equations (4.13) and (4.6) imply that ∣(a, b)∣ = ∣(α(a), b)∣. Form an automorphism

α̃ ∶ A ×B → A ×B as α̃(a, b) = (α(a), b)). Then α̃2
= id, so we have an involution (if

it is not the identity map) α̃ ∶ G/R → G/R that maps each vertex (R-class) (a, b) to

the vertex (R-class) (α(a), b) of the same cardinality.

Also, (4.13) and (4.6) imply that ∣(β−1(b), δ(d))∣ = (β−1(b), d)∣. This implies

that ∣(b, δ(d))∣ = ∣(b, d)∣ for all b ∈ V (B) and d ∈ V (D). Form the automorphism

δ̃ ∶ B ×D → B ×D where δ̃(b, d) = (b, δ(d)). Then δ̃2 = id, so we have an involution

(if not the identity map) δ̃ ∶ H/R → H/R mapping each R-class (b, d) to the R-class

(b, δ(d)) of the same cardinality.

In summary, given an involution ϕ of G×H, we have constructed automorphisms

α̃ and δ̃ of G/R and H/R, respectively, satisfying α̃2
= id and δ̃2 = id. Further

∣α̃((a, b))∣ = ∣(a, b)∣ for any R-class (a, b) of G. Thus we can lift α̃ to an automorphism

λ ∶ G→ G by declaring that λ restricts to a bijection (a, b)↦ (α(a), b) for each R-class

(a, b) of G. Similarly, ∣δ̃((b, d))∣ = ∣(b, δ(d))∣ for any R-class (b, d) of H, so we can lift
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δ̃ to an automorphism µ ∶ H → H. In parts II and III of the proof, these lifts will be

palindromic involutions.

To carry out this plan, we will need to consider R-classes of G×H that are fixed

by ϕ (i.e. the R-classes whose vertices are permuted by ϕ). By Equation (4.3), the

fixed points of ϕ̃ (respectively, the fixed R-classes of ϕ) are

((a0, β(b)), (b, d0)) where α(a0) = a0, δ(d0) = d0, and b ∈ V (B) (4.7)

(a0, β(b)) × (b, d0) where α(a0) = a0, δ(d0) = d0, and b ∈ V (B) (4.8)

We call an R-class even (odd) if it has even (odd) cardinality.

Part II (Converse of Statement (1))

Suppose G×H is even palindromic. Then there is an even palindromic involution

ϕ of G ×H. We adopt the development and notation of Part I of the proof.

Our strategy is to show that one of α̃ ∶ G/R → G/R or δ̃ ∶ H/R → H/R has no

odd fixed point (R-class). If one of the above, say α̃, has no odd fixed point, then α̃

can be lifted to an automorphism λ ∶ G → G sending any R-class (a, b) bijectively to

(α(a), b). Whenever α̃ fixes an R-class (a, b), we can arrange for λ to restrict to a

permutation (of order 2 with no fixed points) of the even set (a, b). Now, λ will be

an even palindromic involution of G, so G is even palindromic.

Suppose to the contrary that α̃ had an odd fixed point (a, b) and δ̃ had an odd

fixed point (b′, d). (So α(a) = a and δ(d) = d). By (4.11), we have that

∣(a, b)∣ ⋅ ∣(b′, d)∣ = ∣(a, β(b′))∣ ⋅ ∣(β−1(b), d)∣

where ∣(a, b)∣ is odd and ∣(b′, d)∣ is odd, so (a, β(b′)) is odd. Thus, (a, β(b′)) ×

(b′, d) is an odd R-class of G ×H. However, the involution ϕ fixes this odd R-class,

by (4.8). Thus ϕ fixes some point of this R-class, which contradicts that ϕ is even
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palindromic.

Part III (Converse of Statement (2))

Suppose G×H is odd palindromic. Then, there is an odd palindromic involution

ϕ of G×H with fixed point (x0, y0). Then ϕ fixes the R-class X that contains (x0, y0),

which, by (4.8), has form X = (a0, β(b0)) × (b0, d0), where α(a0) = a0 and δ(d0) = d0.

As the involution ϕ fixes exactly one vertex, which is in X, we know X has odd

cardinality. Thus (a0, β(b0)) is an odd R-class of G/R, and (b0, d0) is an odd R-class

of H/R. Note that (a0, β(b0)) is a fixed point of α̃ and (b0, d0) is a fixed point of δ̃.

Suppose δ̃ had another fixed point, say (b1, d1). Then, δ(d1) = d1, and by Equa-

tion (4.11), we have

∣(a0, β(b0))∣ ⋅ ∣(b1, d1)∣ = ∣(a0, β(b1))∣ ⋅ ∣(b0, d1)∣,

where ∣(a0, β(b0))∣ is odd and ∣(b1, d1)∣ is odd, so ∣(a0, β(b1))∣ and ∣(b0, d1)∣ are odd.

Then, (a0, β(b1))×(b1, d1) and (a0, β(b0))×(b0, d1) are odd R-classes of G×H that are

fixed by ϕ. However, X = (a0, β(b0))×(b0, d0) is the only such R-class, so β(b1) = β(b0)

and d1 = d0, meaning (b1, d1) = (b0, d0). So, we can conclude that (b0, d0) is the only

odd R-class of H/R that is fixed by δ̃. Therefore, we can lift δ̃ ∶ H/R → H/R to

an odd palindromic involution µ ∶ H → H, sending each R-class (b, d) bijectively to

(b, δ(d)), having only one fixed vertex on the odd fixed class (b0, d0), and no fixed

points on any other fixed (even) R-class. Thus, H is odd palindromic. Likewise, by

a symmetric argument, G is also odd palindromic.

4.4 Major Theorems for One Nonbipartite Factor and One Bipartite Fac-

tor

Using the counterexample from Section 4.1 as our guide, we can adjust the case

of one bipartite factor and one nonbipartite by including the possibility of 2-fold invo-
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lutions in the factors. The following two proposition present sufficient conditions for a

palindromic direct product when one factor is bipartite and the other is nonbipartite.

We begin with sufficient conditions for an even palindromic direct product.

Proposition 4.4.1. Let G and H be connected graphs where G is nonbipartite and

H is bipartite. Then:

1. If G has an even 2-fold involution, then G ×H is even palindromic.

2. If H is even palindromic, then G ×H is even palindromic.

3. If H has an involution η that preserves partite sets where all fixed points of η

are in the same partite set, and G has a 2-fold involution (α,β) where only one

of α or β is fixed-point free, then G ×H is even palindromic.

Proof. Proof of Statement (1): Suppose G has an even 2-fold involution, so G

admits permutations (α,β) such that α and β are of order 2 and have no fixed

points. Suppose H is bipartite with partite sets H0 and H1. Define ϕ ∶ G×H → G×H

such that

ϕ(g, h) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

(α(g), h) if h ∈H0

(β(g), h) if h ∈H1.

To see that ϕ is an automorphism, let (g, h)(g′, h′) ∈ E(G × H) for h ∈ H0 and

h′ ∈ H1. This implies that gg′ ∈ E(G), so α(g)β(g′) ∈ E(G), and hh′ ∈ E(H). Thus

(α(g), h)(β(g′), h′) ∈ E(G ×H), so ϕ(g, h)ϕ(g′, h′) ∈ E(G ×H). Moreover, ϕ is an

even palindromic involution because both α and β are of order 2 with no fixed points.

So G ×H is even palindromic.

Proof of Statement (2): Suppose H is even palindromic, so there exists an

even palindromic involution η of H. Then (g, h) ↦ (g, η(h)) is an even palindromic

involution of G ×H.
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Proof of Statement (3): Suppose H has an even palindromic involution η that

preserves the partite sets H0 and H1 of H. The restrictions of η to the two partite

sets H0 and H1 give us two bijections η0 ∶ H0 → H0 and η1 ∶ H1 → H1. Let all fixed

points of η be in one partite set, say H0. So η0 may have fixed points, and η1 has

no fixed points. Let (α,β) be a 2-fold involution of G such that only one of α or

β is fixed point free. Without loss of generality, let α be fixed point free. Define

ϕ ∶ G ×H → G ×H such that

ϕ(g, h) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

(α(g), η0(h)) if h ∈H0

(β(g), η1(h)) if h ∈H1.

To see that ϕ is an automorphism, let (g, h)(g′, h′) ∈ E(G×H) for h ∈H0 and h′ ∈H1.

This implies that gg′ ∈ E(G) and hh′ ∈ E(H), so α(g)β(g′) ∈ E(G) and η0(h)η1(h′) ∈

E(H). Thus (α(g), η0(h))(β(g′), η1(h′)) ∈ E(G×H), so ϕ(g, h)ϕ(g′, h′) ∈ E(G×H).

Moreover, observe that (g, h) ↦ (α(g), η0(h)) for h ∈ H0 is a bijective map with

no fixed points because α has no fixed points. Similarly, (g, h) ↦ (β(g), η1(h)) for

h ∈ H1 is a bijective map with no fixed points because η1 has no fixed points. So

ϕ is an automorphism with no fixed points. Because α, β, and η1 have order 2 (η0

may have order 1 or 2), ϕ is an involution with no fixed points. Thus G ×H is even

palindromic.

The following proposition provides sufficient conditions for an odd palindromic

direct product. Recall that an odd 2-fold involution is a 2-fold involution with per-

mutations (α,β) such that at least one of α or β has exactly one fixed point.

Proposition 4.4.2. Let G and H be connected where G is nonbipartite and H is

bipartite. If G has an odd 2-fold involution and H is odd palindromic, then G ×H is

odd palindromic.
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Proof. Suppose G admits an odd 2-fold involution and H is odd palindromic. Then

G admits permutations (α,β) where α and β are of order 2 and at least one of α or

β has exactly one fixed point. Say α has exactly one fixed point at g0. Also H has an

involution η with exactly one fixed point h0, so η(h0) = h0. Let H be bipartite with

partite sets H0 and H1, and let the fixed point of η be in H0.

Then ϕ ∶ G ×H → G ×H such that

ϕ(g, h) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

(α(g), η(h)) if h ∈H0

(β(g), η(h)) if h ∈H1

is an involution with a fixed point at (g0, h0). Suppose ϕ had another fixed point

at, say, (g1, h1). Suppose h1 ∈ H0. Then α has another fixed point at g1 and η has

another fixed point at h1, so it must be the case that g0 = g1 and h0 = h1 to preserve

that α and η each have exactly one fixed point at g0 and h0, respectively. Similarly, if

ϕ had another fixed point at (g1, h1) where h1 ∈H1, then β would have a fixed point

at g1 and η would have another fixed point at h1. This contradicts that η has exactly

one fixed point at h0. Thus ϕ is an odd palindromic involution with exactly one fixed

point at (g0, h0), so G ×H is odd palindromic.

The following proposition addresses the sufficient and necessary conditions on a

palindromic direct product where one factor is bipartite and the other is nonbipartite.

Proposition 4.4.3. Let G and H be connected where G is nonbipartite and H is

bipartite. Then:

1. G ×H is even palindromic if and only if:

● G has an even 2-fold involution, or

● H is even palindromic, or
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● H has an involution η that preserves partite sets where all fixed points of

η are in the same partite set, and G has a 2-fold involution (α,β) where

only one of α or β is fixed-point free

2. G ×H is odd palindromic if and only if G has an odd 2-fold involution and H

is odd palindromic

Proof. The converse of Statement (1) is proven in Proposition 4.4.1, and the converse

of Statement (2) is proven in Proposition 4.4.2.

Forward Directions of Statement (1) and (2): Suppose G×H has a palin-

dromic involution ϕ. Observe that the direct product G ×H will be bipartite given

a nonbipartite G and bipartite H. Assuming that G and H are connected, any

palindromic involution ϕ of G ×H will either reverse the bipartition or preserve the

bipartition. This splits the proof up into two cases.

Case 1: The palindromic involution ϕ reverses the bipartition of G×H

In this case, we will show that H must be even palindromic. If ϕ is a palindromic

involution that reverses the bipartition of G×H, then ϕ must be an even palindromic

involution because it has no fixed points. Then by Theorem 4.2.2, H admits an

involution that reverses its partite sets, which is an even palindromic involution, so

H is even palindromic. This completes the proof of Case 1.

Case 2: The palindromic involution ϕ preserves the bipartition of G×H

This case will be broken up into three parts. The first part will codify the

structure of involutions of G ×H. The remaining two parts will address Statements

(1) and (2).

Part I: Involution Structure

Suppose G and H are connected, where G is nonbipartite, and H is bipartite

with partite sets H0 and H1. Suppose the palindromic involution ϕ ∶ G ×H → G ×
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H preserves the partite sets of G × H, that is, ϕ(V (G) × H0) = V (G) × H0 and

ϕ((V (G) × H1) = V (G) × H1. Further, let ϕ(g, h) = (ϕG(g, h), ϕH(g, h)). By the

remarks preceding this theorem, ϕ induces an automorphism ϕ̃ of the R-thin graph

(G ×H)/R ≅ G/R ×H/R. Because ϕ is an involution, we have ϕ̃2
= id.

Applying the Cartesian skeleton operator and using Proposition 1.6.2, this is an

involution

ϕ̃ ∶ S(G/R ×H/R)→ S(G/R ×H/R).

By Proposition 1.6.1, this is an involution

ϕ̃ ∶ S(G/R) ◻ S(H/R)→ S(G/R) ◻ S(H/R).

Because H/R is connected and bipartite, by (Proposition 1.6.3), S(H/R) has two

connected components H ′
0 and H ′

1 whose respective vertex sets are the partite sets of

H. Thus this is an involution

ϕ̃ ∶ S(G/R) ◻ (H ′
0 +H

′
1)→ S(G/R) ◻ (H ′

0 +H
′
1).

By the distributive property of the Cartesian product, we have:

ϕ̃ ∶ S(G/R) ◻H ′
0 + S(G) ◻H ′

1 → S(G/R) ◻H ′
0 + S(G) ◻H ′

1.

Now the restrictions of ϕ̃ to the two components S(G/R)◻H ′
0 and S(G/R)◻H ′

1

give us two isomorphisms:

ϕ̃0 ∶S(G/R) ◻H ′
0 → S(G) ◻H ′

0

ϕ̃1 ∶S(G/R) ◻H ′
1 → S(G) ◻H ′

1.

Make note that as V (G/R) = V (S(G/R)) and V (H) = V (H ′
0)+V (H ′

1), the map

ϕ̃ is an involution of both G/R ×H/R and S(G/R) ◻ S(H/R).
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Prime factor S(G/R) = G1 ◻ ⋯ ◻ Gj and H ′
0 = H01 ◻ ⋯ ◻ H0k. Then ϕ̃0 is an

automorphism (of order 2, or possibly of order 1, if ϕ fixes each R-class) of the graph

S(G/R)◻H ′
0 = (G1◻⋯◻Gj)◻(H01◻⋯◻H0k). Similarly, prime factorH ′

1 =H11◻⋯◻H1`.

Then ϕ̃1 is an automorphism (of order 2, or possibly of order 1, if ϕ fixes each R-class)

of the graph S(G/R) ◻H ′
1 = (G1 ◻⋯◻Gj) ◻ (H11 ◻⋯◻H1`).

Now by Theorem 1.5.1, ϕ̃ permutes the prime factors of S(G/R) ◻ H ′
0 and

S(G/R) ◻ H ′
1 in the following way: There is a permutation π0 (of order 2) that

permutes the prime factors of S(G/R) ◻H ′
0, and there is a permutation π1 (of order

2) that permutes the prime factors of S(G/R) ◻H ′
1. Now π0 may send some prime

factors of S(G/R) to H ′
0. If π0 sends prime factors of S(G/R) to H ′

0, let X be the

product of such factors. If π0 sends prime factors of S(G/R) to itself, let GX be

the product of such factors. If π0 sends prime factors of H ′
0 to itself, let HX be the

product of such factors. Similarly, π1 may send some prime factors of S(G/R) to H ′
1.

If π1 sends prime factors of S(G/R) to H ′
1, let Y be the product of such factors. If

π1 sends prime factors of S(G/R) to itself, let GY be the product of such factors. If

π1 sends prime factors of H ′
1 to itself, let HY be the product of such factors. Figure

5 provides a visual of the above, where the factors have been re-ordered and grouped

by product.

For α ∶ GX → GX , χx, γx ∶ X → X, and ηx ∶ HX → HX , we can express ϕ̃0 as

follows:

ϕ̃0((gx, x), (x
′, hx)) = ((α(gx), χx(x

′
)), (γx(x), ηx(hx))).

Because ϕ is an involution, we have that α2
= id, η2x = id, and χx = γ−1x , so we can

update the expression of ϕ̃0:

ϕ̃0((gx, x), (x
′, hx)) = ((α(gx), χx(x

′
)), (χ−1x (x), ηx(hx))). (4.9)
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Fig. 5. Permutation of prime factors in the Cartesian skeleton

Similarly, we have

ϕ̃1((gy, y), (y
′, hy)) = ((β(gy), χy(y

′
)), (χ−1y (y), ηy(hy))) (4.10)

for β ∶ GY → GY , χy ∶ Y → Y , and ηy ∶HY →HY .

Recall that ϕ̃0 and ϕ̃1 are simply restrictions of the involution ϕ̃ and have order

1 or 2, so α2
= id, β2

= id, η2x = id, and η2y = id.

In Equation (4.9), the ordered pairs (gx, x) and (α(gx), χx(x′)) label vertices of

S(G/R) which are R-classes of S(G). Hence, they have cardinalities ∣(gx, x)∣ and

∣(α(gx), χx(x′))∣. Likewise, (x′, hx) and (χ−1x (x), ηx(hx)) are R-classes of H ′
0 with

cardinalities ∣(x′, hx)∣ and ∣(χ−1x (x), ηx(hx))∣.

In Equation (4.10), the ordered pairs (gy, y) and (β(gy), χy(y′)) label vertices of

S(G/R) which are R-classes of S(G) with cardinalities ∣(gy, y)∣ and ∣(β(gy), χy(y′))∣.

Likewise, (y′, hy) and (χ−1y (y), ηy(hy)) are R-classes of H ′
1 with cardinalities ∣(y′, hy)∣
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and ∣(χ−1y (y), ηy(hy))∣.

By the remarks preceding this theorem, ϕ sends the R-class (gx, x) × (x′, hx)

bijectively to the R-class (α(gx), χx(x′)) × (χ−1x (x), ηx(hx)), thus

∣(gx, x)∣ ⋅ ∣(x
′, hx)∣ = ∣(α(gx), χx(x

′
))∣ ⋅ ∣(χ−1x (x), ηx(hx))∣ (4.11)

for all gx ∈ V (GX), x,x′ ∈ V (X), and hx ∈ V (HX).

Putting x′ = χ−1x (x) yields

∣(gx, x)∣ ⋅ ∣(χ
−1
x (x), hx)∣ = ∣(α(gx), x)∣ ⋅ ∣(χ

−1
x (x), ηx(hx))∣. (4.12)

Replacing hx with ηx(hx) and using η2x = id yields

∣(gx, x)∣ ⋅ ∣(χ
−1
x (x), ηx(hx))∣ = ∣(α(gx), x)∣ ⋅ ∣(χ

−1
x (x), hx)∣. (4.13)

We will show that ∣(gx, x)∣ = ∣(α(gx), x)∣. Dividing the left side of Equation (4.12)

by the right side of Equation (4.13) and the right side of Equation (4.12) by the left

side of Equation (4.13), then simplifying by clearing fractions, we get

∣(gx, x)∣ ⋅ ∣(gx, x)∣ = ∣(α(gx), x)∣ ⋅ ∣(α(gx), x)∣.

which implies that

∣(gx, x)∣ = ∣(α(gx), x)∣. (4.14)

Define α̃ ∶ V (GX ◻X) → V (GX ◻X) as α̃(gx, x) = (α(gx), x). Then α̃2
= id, so we

have an order-2 permutation (if it is not the identity map) α̃ ∶ S(G/R) → S(G/R)

that maps each vertex (R-class) (gx, x) to the vertex (R-class) (α(gx), x) of the same

cardinality.

Similarly, ϕ sends the R-class (gy, y) × (y′, hx) bijectively to the R-class
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(β(gy), χy(y′)) ×(χ−1y (y), ηy(hy)). Following similar reasoning, we have

∣(gy, y)∣ = ∣(β(gy), y)∣. (4.15)

Define β̃ ∶ V (GY ◻ Y ) → V (GY ◻ Y ) as β̃(gy, y) = (β(gy), y). Then β̃2
= id, so

we have an order-2 permutation (if it is not the identity map) β̃ ∶ S(G/R)→ S(G/R)

that maps each vertex (R-class) (gy, y) to the vertex (R-class) (β(gy), y) of the same

cardinality.

We will now show that (α̃, β̃) is a 2-fold automorphism of G/R, that is, given

(g, z)(g′, z′) ∈ E(G/R), we will show α̃(g, z)β̃(g′, z′) ∈ E(G/R). Select an edge

(w,h)(w′, h′) ∈ E(H/R) where h ∈H ′
0 and h′ ∈H ′

1. Then ((g, z), (w,h))((g′, z′), (w′, h′))

∈ E(G/R×H/R) where ((g, z), (w,h)) ∈ V (GX ◻X ◻X ◻HX) and ((g′, z′), (w′, h′)) ∈

V (GY ◻ Y ◻ Y ◻HY ).

Apply ϕ̃:

((α(g), χx(w)), (χ−1x (z), ηx(h)))((β(g′), χy(w′
)), (χ−1y (z′), ηy(h′))) ∈ E(G/R×H/R).

This implies that (χ−1x (z), ηx(h))(χ−1y (z′), ηy(h′)) ∈ E(H/R). Because (g, z)(g′, z′) ∈

E(G/R), we have ((g, z), (χ−1x (z), ηx(h)))((g′, z′), (χ−1y (z′), ηy(h′))) ∈ E(G/R×H/R).

Apply ϕ̃ again:

((α(g), χx(χ−1x (z)), (χ−1x (z), η2x(h)))((β(g
′
), χy(χ−1y (z′))), (χ−1y (z′), η2y(h′))) ∈ E(G/R

×H/R). This implies that (α(g), z)(β(g′), z′) ∈ E(G/R), so α̃(g, z)β̃(g′, z′) ∈ E(G/R).

Thus G/R admits a 2-fold automorphism. Now because α̃2
= id and β̃2

= id, (α̃, β̃) is

a 2-fold involution of G/R.

Also, because we know that ∣(gx, x)∣ = ∣(α(gx), x)∣, equation (4.13) quickly implies

that ∣(χ−1x (x), ηx(hx))∣ = (χ−1x (x), hx)∣. This implies that

∣(x, ηx(hx))∣ = ∣(x,hx)∣, (4.16)

for all x ∈ V (X) and hx ∈ V (HX). Define the permutation η̃x ∶ V (X ◻ HX) →
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V (X ◻HX) such that η̃x(x,hx) = (x, ηx(x)). Similarly, we can conclude that

∣(y, ηy(hy))∣ = ∣(y, hy)∣. (4.17)

Define the permutation η̃y ∶ V (Y ◻HY )→ V (Y ◻HY ) such that η̃y(y, hy) = (y, ηy(y)).

Now define the partition-preserving permutation η̃ ∶H/R →H/R such that

η̃(z, h) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

η̃x(z, h) = (z, ηx(h)) if (z, h) ∈ V (X ◻HX)

η̃y(z, h) = (z, ηy(h)) if (z, h) ∈ V (Y ◻HY ).

We need to show that η̃ is an automorphism, that is, given (z, h)(z′, h′) ∈

E(H/R), we need to show that η̃(z, h)η̃(z′, h′) ∈ E(H/R). Let h ∈ H ′
0 and h′ ∈

H ′
1. Select an edge (g,w)(g′,w′

) ∈ E(G/R). Then ((g,w), (z, h))((g′,w′
), (z′, h′)) ∈

E(G/R ×H/R) where ((g,w), (z, h)) ∈ V (GX ◻X ◻X ◻HX) and ((g′,w′
), (z′, h′)) ∈

V (GY ◻ Y ◻ Y ◻HY ).

Apply ϕ̃ ∶

((α(g), χx(z)), (χ−1x (w), ηx(h)))((β(g′), χy(z′)), (χ−1y (w′
), ηy(h′))) ∈ E(G/R ×H/R).

This implies that (α(g), χx(z))(β(g′), χy(z′)) ∈ E(G/R). Because (z, h)(z′, h′) ∈

E(H/R), we have ((α(g), χx(z)), (z, h))((β(g′), χy(z′)), (z′, h′)) ∈ E(G/R ×H/R).

Apply ϕ̃ again:

((α2
(g), χx(z)), (χ−1x (χx(z)), ηx(h)))((β2

(g′), χy(z′)), (χ−1y (χy(z′)), ηy(h′))) ∈ E(G/R×

H/R). This implies that (z, ηx(h))(z′, ηy(h′)) ∈ E(H/R), so η̃(z, h)η̃(z′, h′) ∈ E(H/R).

Thus η̃ is an automorphism and η̃2 = id, so we have a partition-preserving involution

(if not the identity map) η̃ ∶H/R →H/R mapping each R-class (x,hx) ∈H ′
0 to the R-

class (x, ηx(hx)) ∈ H ′
0 of the same cardinality and mapping each R-class (y, hy) ∈ H ′

1

to the R-class (y, ηy(hy)) ∈H ′
1 of the same cardinality.

Now consider the fixed points of ϕ̃. These will be fixed R-classes (whose vertices
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are permuted) of ϕ. By equations (4.9) and (4.10), the fixed points of ϕ̃ are:

((gx0 , χx(x)), (x,hx0)) where α(gx0) = gx0 , ηx(hx0) = hx0 , and x ∈ V (X) (4.18)

((gy0 , χy(y)), (y, hy0)) where β(gy0) = gy0 , ηy(hy0) = hy0 , and y ∈ V (Y ) (4.19)

By the remarks preceding this theorem, (4.18) and (4.19) can be represented as:

(gx0 , χx(x)) × (x,hx0) where α(gx0) = gx0 , ηx(hx0) = hx0 , and x ∈ V (X) (4.20)

(gy0 , χy(y)) × (y, hy0) where β(gy0) = gy0 , ηy(hy0) = hy0 , and y ∈ V (Y ) (4.21)

We call an R-class even (odd) if it has even (odd) cardinality.

Part II: Proof of Statement (1): Suppose G is nonbipartite and H is

bipartite. If G × H is even palindromic with even palindromic partition

preserving ϕ then:

● G has an even 2-fold involution, or

● H is even palindromic, or

● H has an involution η that preserves partite sets where all fixed points

of η are in the same partite set, and G has a 2-fold involution (α,β)

where only one of α or β is fixed-point free.

Suppose G ×H is even palindromic with even palindromic involution ϕ with no

fixed points. By the remarks in Part I, ϕ induces an automorphism ϕ̃ of (G ◻H)/R

that restricts to involutions ϕ̃0 and ϕ̃1 of S(G/R)◻H ′
0 and S(G/R)◻H ′

1, respectively.

Because ϕ is even palindromic, any R-class fixed by ϕ must be even.

Consider (α̃, β̃) ∶ G/R → G/R and η̃ ∶ H/R → H/R from Part I. These functions

may have fixed points (R-classes), and if so, the cardinalities of those fixed points will

either be even or odd. In what follows, we will lift the 2-fold involution of G/R to a
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2-fold involution of G, and we will lift the involution of H/R to an involution of H.

As we will see shortly, if any of the fixed R-classes of α̃, β̃, or η̃ are odd, the 2-fold

involution of G or the involution of H may contain fixed points. We will consider

several possible cases where fixed R-classes, if there are any, may be even or odd, and

we will conclude from those cases that G admits an even 2-fold involution, or H is

even palindromic, or G admits a 2-fold involution (α̃′, β̃′) where only one of α̃′ or β̃′

has no fixed point and H admits an involution with fixed points in only one partite

set.

First, we can lift α̃ to α̃′ ∶ G → G sending any R-class (gx, x) bijectively to

(α(gx), x) (by Equation (4.14)) where α̃′ is an order-2 permutation. Similarly, β̃

can be lifted to an order-2 permutation β̃′ ∶ G → G sending any R-class (gy, y)

bijectively to (β(gy), y) (by Equation (4.15)). By Proposition 1.5.1, (α̃′, β̃′) is a 2-

fold automorphism of G. Because α̃′2 = id and β̃′2 = id, (α̃′, β̃′) is a 2-fold involution

of G, by definition.

Next, we can lift η̃x to an order-2 permutation η̃′x ∶H0 →H0, sending each R-class

(x,hx) bijectively to (x, ηx(hx)) (by Equation (4.16)). We can also lift η̃y to an order-

2 permutation η̃′y ∶ H1 → H1, sending each R-class (y, hy) bijectively to (y, ηy(hy))

(by Equation (4.17)). Now we can define η̃′ ∶ H → H such that η̃′(z, h) = η̃′x(z, h)

for (z, h) ∈ H0 and η̃′(z, h) = η̃′y(z, h) for (z, h) ∈ H1. By Proposition 1.5.1, η̃′ is an

automorphism of H. Because η̃′x and η̃′y each have order 2, we can arrange for η̃′ to

be an involution of H.

Now we will consider several cases of the parity of fixed R-classes of α̃, β̃, and η̃

(if there are any fixed R-classes).

Case 1: G has no odd R-classes.

Given that (α̃, β̃) is a 2-fold involution of G/R, this implies that α̃ and β̃ fix

only even R-classes, if they fix any at all. If α̃ or β̃ (say α̃) fixes an even R-class
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(gx, x), we can arrange for α̃′ (defined above) to restrict to an order-2 fixed point free

permutation of (gx, x) that swaps vertices of the even class pairwise. Similarly, we

can arrange for β̃′ to be an order-2 fixed point free permutation, swapping vertices of

any even fixed R-class of β̃. Thus (α̃′, β̃′) is an even 2-fold involution of G.

Case 2: H has no odd R-classes.

Given that η̃ is an involution of H/R, this implies η̃ fixes only even R-classes,

if it fixes any at all. If η̃ fixes an even R-class, say (x,hx) ∈ H0, we can arrange for

η̃′x (defined above) to restrict to an order-2 fixed point free permutation of the even

set (x,hx). The same is true if η̃ fixes an even class in H1, so we can arrange for

η̃′y (defined above) to restrict to an order-2 fixed point free permutation of any fixed

even set of η̃y. Now η̃′ (defined above) is an even palindromic involution of H, so H

is even palindromic.

Case 3: G and H both have at least one odd R-class.

Given that (α̃, β̃) is a 2-fold involution of G/R, it is either the case that neither

α̃ nor β̃ fixes any odd R-class (and swaps them pairwise with other odd R-classes of

the same cardinality) or at least one of α̃ or β̃ fixes an odd R-class. Similarly, given

that η̃ is an involution of H/R, it is either the case that η̃ does not fix any odd R-class

or at least one of η̃x or η̃y fixes an odd R-class.

Suppose first that neither α̃ nor β̃ fix any odd R-classes. We can lift α̃ to α̃′

(defined above), and if α̃ fixes any even R-classes, we can arrange for α̃′ to restrict

to an order-2 fixed point free permutation of the even R-class. We can also lift β̃ to

β̃′ (defined above). If β̃ fixes any even R-classes, we can arrange for β̃′ to restrict to

an order-2 fixed point free permutation of the even R-class. Now (α̃′, β̃′) is an even

2-fold involution of G. Similarly, suppose η̃ does not fix any odd R-classes. We can

lift η̃y to η̃′y (defined above), and if η̃y fixes any even R-classes, we can arrange for

η̃′y to restrict to an order-2 fixed point free permutation of the even R-class. We can
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also lift η̃x to η̃′x (defined above). If η̃x fixes any even R-classes, we can arrange for

η̃′x to restrict to an order-2 fixed point free permutation of the even R-class. Now η̃′

(as defined above) is an even palindromic involution of H.

Now suppose that at least one of α̃ and β̃ fix an odd R-class, and suppose η̃ fixes

an odd R-class. We will first show by contradiction that α̃ and β̃ cannot both fix

odd R-classes. Suppose to the contrary that α̃ fixes the odd R-class (gx, x) and β̃

fixes the odd R-class (gy, y). We have assumed η̃ fixes an odd R-class, say (z, hz),

and suppose (z, hz) is in H ′
1, so η̃y fixes (z, hz). By the remarks in Part I, we have

β(gy) = gy, η̃y(hz) = hz. By Equation (4.11), we have

∣(gy, y)∣ ⋅ ∣(z, hz)∣ = ∣(gy, χy(z))∣ ⋅ ∣(y, hz)∣. (4.22)

Because ∣(gy, y)∣ and ∣(z, hz)∣ are odd, we get that ∣(gy, χy(z))∣ is odd, so (gy, χy(z))×

(z, hz) is an odd R-class of G ×H. However, ϕ fixes this odd R-class, which implies

that ϕ has a fixed point, which contradicts that ϕ is even palindromic. Because α̃ also

fixes an odd R-class, we would reach the same conclusion if (z, hz) had been in H ′
0.

Thus it cannot be the case that both α̃ and β̃ fix odd R-classes, so only one of α̃ or β̃

fixes odd R-classes, say β̃ with a fixed odd R-class (gy, y). Because we have assumed

that η̃ fixes an odd R-class, such an R-class will either be fixed by η̃x or η̃y. Suppose

towards a contradiction that η̃y fixes an odd R-class (z, hz). As we have previously

concluded using Equation (4.22), this would imply that (gy, χy(z))× (z, hz) is a fixed

odd R-class of G ×H which implies that there is a fixed point in ϕ, a contradiction.

Thus an R-class fixed by η̃y (if there are any) must be even. Further, it must be that

η̃x fixes an odd R-class, so η̃ fixes odd R-classes only in H ′
0. Now α̃ and η̃y fix no odd

R-classes while β̃ and η̃x each fix at least one odd R-class.

We can lift α̃ to α̃′ (defined above), and if α̃ fixes any even R-classes, we can

arrange for α̃′ to restrict to an order-2 fixed point free permutation of the even R-
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class. We can also lift β̃ to β̃′ (defined above). If β̃ fixes any even R-classes, we

can arrange for β̃′ to restrict to an order-2 fixed point free permutation of the even

R-class. When β̃ fixes an odd R-class, we can arrange for β̃′ to have a fixed point

on the odd R-class. We can lift η̃y to η̃′y (defined above), and if η̃y fixes any even

R-classes, we can arrange for η̃′y to restrict to an order-2 fixed point free permutation

of the even R-class. We can also lift η̃x to η̃′x (defined above). If η̃x fixes any even

R-classes, we can arrange for η̃′x to restrict to an order-2 fixed point free permutation

of the even R-class. When η̃′x fixes an odd R-class, we can arrange for η̃′x to have a

fixed point on the odd R-class. Now η̃′ (as defined above) is an involution of H with

fixed points only in the partite set H0, and (α̃′, β̃′) is a 2-fold involution of G such

that only β̃′ has fixed points.

Part III: Proof of Statement (2): Suppose G is nonbipartite and H

is bipartite. If G × H is odd palindromic, then G admits an odd 2-fold

involution and H is odd palindromic.

Suppose G×H is odd palindromic. Then there is an odd palindromic involution

ϕ of G ×H with fixed point (x0, y0). Without loss of generality, let y0 ∈ V (X ◻HX).

Then ϕ fixes the R-class Z that contains (x0, y0), which, by Equation (4.20), has form

Z = (gx0 , χx(x0)) × (x0, hx0), where α(gx0) = gx0 and ηx(hx0) = hx0 . Because ϕ fixes

Z, we know that Z has odd cardinality. Thus (gx0 , χx(x0)) is an odd R-class of G/R,

and (x0, hx0) is an odd R-class of H/R. Note that (gx0 , χx(x0)) is a fixed point of α̃

and (x0, hx0) is a fixed point of η̃.

Suppose η̃ fixes another odd R-class, say (x1, hx1), without loss of generality.

Then η̃x has a fixed point at (x1, hx1), meaning that ηx(hx1) = hx1 , and by Equation

(4.11), we have

∣(gx0 , χx(x0))∣ ⋅ ∣(x1, hx1)∣ = ∣(gx0 , χx(x1))∣ ⋅ ∣(x0, hx1)∣,
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where ∣(gx0 , χx(x0))∣ is odd and ∣(x1, hx1)∣ is odd, so ∣(gx0 , χx(x1))∣ and ∣(x0, hx1)∣ are

odd. Then, (gx0 , χx(x1)) × (x1, hx1) and (gx0 , χx(x0)) × (x0, hx1) are odd R-classes of

G ×H that are fixed by ϕ. However, Z = (gx0 , χx(x0)) × (x0, hx0) is the only such

R-class, so χx(x1) = χx(x0) and hx1 = hx0 , meaning (x1, hx1) = (x0, hx0). So, we can

conclude that (x0, hx0) is the only odd R-class of H/R that is fixed by η̃x.

We will show that (gx0 , χx(x0)) is the only odd R-class fixed by α̃ (note that

this would be β̃ if y0 was in V (Y ◻HY )). Suppose α̃ had another odd fixed point at

(gx1 , χx(x1)), which implies that α(gx1) = gx1 . Then, by Equation (4.11), we have

∣(gx1 , χx(x1))∣ ⋅ ∣(x0, hx0)∣ = ∣(gx1 , χx(x0))∣ ⋅ ∣(x1, hx0)∣

where ∣(gx1 , χx(x1))∣ and ∣(x0, hx0)∣ are odd, so ∣(gx1 , χx(x0))∣ and ∣(x1, hx0)∣ are odd.

Then (gx1 , χx(x1))×(x1, hx0) is odd and (gx1 , χx(x0))×(x0, hx0) is odd and are fixed by

ϕ. However, (gx0 , χx(x0))×(x0, hx0) is the only odd R-class fixed by ϕ, so gx0 = gx1 and

χx(x0) = χx(x1), thus (gx1 , χx(x1)) = (gx0 , χx(x0)). This implies that (gx0 , χx(x0)) is

the only odd R-class fixed by α̃.

Therefore, we can lift α̃ to a permutation α̃′ ∶ G → G sending any R-class

(gx, x) bijectively to (α(gx), x) (by Equation (4.14)). When α̃ fixes the odd R-class

(gx0 , χx(x0)), we can arrange for the order-2 permutation α̃′ to fix exactly one vertex

on the odd R-class (gx0 , χx(x0)). Likewise, we can lift β̃ to a permutation β̃′ ∶ G→ G

sending any R-class (gy, y) bijectively to (β(gy), y) (by Equation (4.15)). Because β̃

is an order 2 permutation of an odd cardinality set of R-classes, β̃ will fix one or more

odd R-classes. When β̃ fixes one or more odd R-class (gy0 , χy(y0)), we can arrange

for the order-2 permutation β̃′ to fix a vertex on the odd R-class (gy0 , χy(y0)). As

we showed in Part II, (α̃′, β̃′) is a 2-fold involution, and because α̃′ and β̃′ each have

exactly one fixed point, (α̃′, β̃′) is an odd 2-fold involution of G.

Similarly, we can lift η̃x to an order-2 permutation η̃′x ∶ H0 → H0, sending each
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R-class (x,hx) bijectively to (x, ηx(hx)) (by Equation (4.16)). We can also lift η̃y

to an order-2 permutation η̃′y ∶ H1 → H1, sending each R-class (y, hy) bijectively to

(y, ηy(hy)) (by Equation (4.17)). We can define η̃′ ∶ H → H such that η̃′(z, h) =

η̃′x(z, h) for (z, h) ∈H0 and η̃′(z, h) = η̃′y(z, h) for (z, h) ∈H1. We can let η̃′ have only

one fixed vertex on the odd fixed class (x0, hx0), and no fixed points on any other

fixed (even) R-class. As we showed in Part II, η̃′ is an involution, and because it has

only one fixed point, η̃′ is an odd palindromic involution. Thus H is odd palindromic.

Thus G has an odd 2-fold involution (α̃′, β̃′) and H is odd palindromic.

4.5 Discussion on the Case of Two Bipartite Factors

Although this dissertation focuses only on connected products, it is worth briefly

noting that there are some pre-existing theorems that may help us make sense of the

complexity of a palindromic direct product of two bipartite factors, which results in

a disconnected product with exactly two components. These components may either

be isomorphic or nonisomorphic, so there are two cases to consider here.

The following theorem by Hammack characterizes conditions under which the

direct product of two bipartite graphs results in two isomorphic components of the

product.

Theorem 4.5.1 ([6], Hammack). Suppose G and H are connected bipartite graphs.

The two components of G ×H are isomorphic if and only if at least one of G or H

admits an automorphism that interchanges its partite sets.

This theorem implies that if a direct palindromic product is disconnected with

two isomorphic components, meaning that there is an even palindromic involution

that interchanges the components, then at least one of G or H admits an automor-

phism that interchanges its partite sets. In an ideal scenario, this automorphism
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would be an involution, which would mean that one of G or H is even palindromic.

However, we are not guaranteed that the automorphism will have order two, so in

general, it is not necessarily the case that an even palindromic direct product with two

isomorphic components requires that at least one of its factors is even palindromic.

Any conjecture related to a direct palindromic product of two bipartite factors will

need to reflect this situation.

The above scenario detailed complications with a direct palindromic product

that has two isomorphic components. The other possible scenario is that the com-

ponents are nonisomorphic, so a palindromic involution of the product will preserve

the components. Each component will be bipartite, so a palindromic involution will

either preserve the partitions of each component, reverse the partitions of each com-

ponent, or preserve the partition of one component and reverse the partition of the

other component. Because the product is bipartite, this problem is reminiscent of the

challenges presented in the case where one factor is bipartite and the other factor is

nonbipartite. In that case, we were presented with a scenario where the partite sets in

the product were preserved by the palindromic involution, restricted to each partite

set, and we ultimately showed that a 2-fold involution existed in the nonbipartite

factor. This occurred because the product was bipartite, giving the product’s partite

sets their own freedom to behave in their own separate ways, and we showed that

those two separate behaviors formed a 2-fold involution in the nonbipartite factor.

With this in mind, returning to the case where both factors are bipartite, not

only do we have a bipartite product, but we have two components, each of which is

bipartite. If we could conclude that the partitions of each component are preserved,

then we may be in a place to reasonably conjecture that at least one of the factors

admits a 2-fold involution, but it could be more complex than that, especially given

the differences between even versus odd palindromic involutions in the product and
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what that could mean in the factors. Moreover, this ideal scenario would require

elimination of the cases where the partite sets of both components are reversed, or

one component’s partite sets are preserved while the other’s is reversed, which may

be difficult, involved, and not necessarily possible.

At this time, we leave the case where both factors are bipartite to conjecture.

Conjecture 4.5.1. Suppose G and H are connected and bipartite. Then:

1. G ×H is even palindromic if and only if

● G or H admits an automorphism that interchanges its partite sets or

● G or H admits an even 2-fold involution

2. G ×H is odd palindromic if and only if G and H admit odd 2-fold involutions.
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CHAPTER 5

THE LEXICOGRAPHIC PRODUCT OF PALINDROMIC GRAPHS

5.1 Summary of Project

We are left with just one more standard associative graph product: the lexico-

graphic product.

The following two theorems are the main results of the paper.

Theorem 5.1.1. G○H is even palindromic if and only if G or H is even palindromic.

Theorem 5.1.2. G○H is odd palindromic if and only if G and H are odd palindromic.

This project was included in a paper submitted in The Art of Discrete and

Applied Mathematics [9].

5.2 Preliminary Information

The structure of the lexicographic product is unusual, and as a result, the lexico-

graphic product has fewer desirable theorems for us to utilize. Because the definition

of the edge set of the lexicographic product resembles only a partial definition of the

edge set of the strong product, the lexicographic product is not commutative nor does

it follow the standard factoring methods that are presented in the Cartesian, strong,

and direct products. As a result, we do not have a theorem analogous to Theorem

1.5.1, Theorem 1.5.2, and Theorem 4.2.1.

With this in mind, we will need to take a different approach. We can utilize a

specific structure within the lexicographic product called an S - or R-tower. If X is

an S-class, then the subgraph ⟨X⟩ ○H of G ○H is called the S -tower over X , or

54



simply an S -tower. Note that an S-tower ⟨X⟩ ○H is isomorphic to K∣X ∣ ○H. If X is

an R-class, then the subgraph ⟨X⟩ ○H of G ○H is called the R-tower over X , or

simply an R-tower. Note that an R-tower ⟨X⟩ ○H is isomorphic to D∣X ∣ ○H.

Observe that S-classes and R-classes are externally related in G, because any two

vertices in an S-class must have the same closed neighborhood, and any two vertices

in an R-class must have the same open neighborhood, so any vertex adjacent to a

vertex in an S- or R-class will be adjacent to all vertices in an S- or R-class. Similarly,

S-towers and R-towers are externally related in G ○H because if xx′ ∈ E(G) where x

and x′ are in different S- or R-classes, then by definition of the lexicographic product,

(x, y)(x′, y′) ∈ E(G○H) for every y, y′ ∈ V (H). We show that S-towers (R-towers) are

mapped bijectively to S-towers (R-towers) if H is connected (disconnected), which

has a similar theme to Theorem 1.5.1, Theorem 1.5.2, and Theorem 4.2.1. After

showing that towers map to towers, we can very carefully proceed with a proof that

is similar to those presented in prior chapters.

5.3 Major Theorems

Before proving our main result, we need the following lemma. The proof is an

immediate consequence of the definitions.

Lemma 5.3.1. If α ∈ Aut(G) and β ∈ Aut(H), then the map (α,β) ∶ (x, y) ↦

(α(x), β(y)) is an automorphism of G ○H.

Lemma 5.3.1 and the lexicographic product seen in Figure 3 suggest that if both

factors are odd palindromic, then the product itself will be odd palindromic. Indeed,

we have the following result.

Proposition 5.3.1. If G or H is even palindromic, then G ○H is even palindromic.

If G and H are odd palindromic, then G ○H is odd palindromic.
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Proof. Let G be even palindromic. Then there exists an even palindromic involution

α ∶ G → G. Then (x, y) ↦ (α(x), y) is an involution of G ○H, by Lemma 5.3.1, and

it has no fixed points. So G ○H is even palindromic.

Now let H be even palindromic. Then there exists an even palindromic involution

β ∶ H → H. Then (x, y) ↦ (x,β(y)) is an involution of G ○H, by Lemma 5.3.1, and

it has no fixed points. So G ○H is even palindromic.

Let G and H be odd palindromic. Then G has an involution α with exactly

one fixed point, x0 = α(x0), and H has an involution β with exactly one fixed point,

y0 = β(y0). So (x, y) ↦ (α(x), β(y)) is an involution of G ○H, by Lemma 5.3.1, that

has exactly one fixed point at (x0, y0). So G ○H is odd palindromic.

The following proposition shows that S-towers are mapped to S-towers under

any automorphism of G ○H when H is connected.

Proposition 5.3.2. Suppose G is arbitrary and H is connected. If ϕ is an automor-

phism of G ○H, then ϕ maps S-towers to S-towers.

Proof. Let ϕ be an automorphism of G ○H for an arbitrary G and a connected H.

To show that ϕ maps S-towers to S-towers, it suffices to show that each S-tower is

connected and that two adjacent vertices in the same S-tower ⟨X⟩ ○H map to two

adjacent vertices in the same S-tower ⟨X ′
⟩ ○H.

First, we will show that S-towers are connected. Let X be an S-class of G.

If ∣X ∣ = 1, then ⟨X⟩ ○H is isomorphic to H, where H is connected, so ⟨X⟩ ○H is

connected. Suppose ∣X ∣ ≥ 2. Now ⟨X⟩○H =K∣X ∣ ○H is connected by definition of the

lexicographic product. Thus all S-towers are connected.

Let (x, y) and (x′, y′) be adjacent vertices in the same S-tower. Suppose ϕ(x, y) =

(x′′, y′′) and ϕ(x′, y′) = (x′′′, y′′′). See Figure 3. Note that, as mentioned earlier,

⟨X⟩ ○H is externally related, so ϕ(⟨X⟩ ○H) is externally related as well.
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G ○H

ϕ(⟨X⟩ ○H)

⟨X⟩ ○H

G

H

X x̄ x′′ x′′′

y

y′

x x′

(x, y)

(x′, y′)

(x′′, y′′)

(x′′′, y′′′)

(x̄, ȳ)

Fig. 6. Visual Aid for Proof of Proposition 5.3.2 – the image of an S-tower is an

S-tower.

We need to show that (x′′, y′′) and (x′′′, y′′′) are in the same S-tower, which

means we need to show that NG[x′′] = NG[x′′′]. This is trivially true if x′′ = x′′′, so

for the remainder of the proof, we can assume that x′′ ≠ x′′′. First, we will show that

NG[x′′] ⊆ NG[x′′′]. Let x̄ ∈ NG[x′′]. We will show that x̄ ∈ NG[x′′′].

If x̄ = x′′′, then clearly x̄ ∈ NG[x′′′], so assume x̄ ∈ NG[x′′] and x̄ ≠ x′′′.

Because x̄x′′ ∈ E(G), it follows that (x̄, ȳ)(x′′, y′′) ∈ E(G○H) for some ȳ ∈ V (H).

Consider the case where (x̄, ȳ) ∉ ϕ(⟨X⟩○H). Because ϕ(⟨X⟩○H) is externally related,

(x̄, ȳ)(x′′, y′′) ∈ E(G ○ H) implies that (x̄, ȳ)(x′′′, y′′′) ∈ E(G ○ H). It follows that

x̄x′′′ ∈ E(G), so x̄ ∈ NG[x′′′].

Thus we must consider the case where (x̄, ȳ) ∈ ϕ(⟨X⟩ ○ H) for all ȳ ∈ V (H).

We claim there exists a ȳ ∈ V (H) for which the pre-image (x̄′, ȳ′) of (x̄, ȳ) does not

have the form (x′, ȳ′), that is, x̄′ ≠ x′. Suppose towards a contradiction that for all

ȳ ∈ V (H), (x̄, ȳ) has a pre-image of the form (x′, ȳ′). Note that the pre-image of
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(x′′′, y′′′) is (x′, y′). Then there are ∣V (H)∣+1 vertices whose pre-image is of the form

(x′, ȳ′) which is a contradiction because there are only ∣V (H)∣ such vertices. Thus

there must exist a ȳ ∈ V (H) for which the pre-image (x̄′, ȳ′) of (x̄, ȳ) does not have

the form (x′, ȳ′), that is, x̄′ ≠ x′. Now x̄′ ∈ X where x̄′x′ ∈ E(G), which implies

that (x̄′, ȳ′)(x′, y′) ∈ E(G ○ H). Thus (x̄, ȳ)(x′′′, y′′′) ∈ E(G ○ H) where x̄ ≠ x′′′,

so x̄x′′′ ∈ E(G), which implies that x̄ ∈ NG[x′′′], so NG[x′′] ⊆ NG[x′′′]. Similarly,

NG[x′′′] ⊆ NG[x′′], so NG[x′′] = NG[x′′′]. Now NG[x′′] = NG[x′′′] implies that x′′ and

x′′′ are in the same S-class, so (x′′, y′′) and (x′′′, y′′′) are in the same S-tower. Thus

the image of an S-tower under ϕ is itself an S-tower.

The following proposition shows that R-towers are mapped to R-towers under

any automorphism of G ○H where H is disconnected.

Proposition 5.3.3. Suppose G is arbitrary and H is disconnected. If ϕ is an auto-

morphism of G ○H, then ϕ maps R-towers to R-towers.

Proof. Let ϕ be an automorphism of G ○H for an arbitrary G and a disconnected

H. To show that ϕ maps R-towers to R-towers, it suffices to show that each R-tower

is disconnected and that two nonadjacent vertices in the same R-tower ⟨X⟩ ○H map

to two nonadjacent vertices in the same R-tower ⟨X ′
⟩ ○H. This is sufficient for the

following reason. Suppose some vertex (x, y) is in ⟨X⟩ ○H and ϕ(x, y) ∈ ⟨X ′
⟩ ○H.

Let (x′, y′) be any other vertex of ⟨X⟩ ○H. If (x′, y′) is in a different component of

⟨X⟩ ○H than (x, y), then (x, y) and (x′, y′) are nonadjacent and both must map to

the same R-tower ⟨X ′
⟩○H. However, if (x, y) and (x′, y′) are in the same component

of ⟨X⟩ ○H, then there must be a vertex (x′′, y′′) in a different component of ⟨X⟩ ○H.

Then (x, y) and (x′′, y′′) must map to ⟨X ′
⟩ ○H while (x′, y′) and (x′′, y′′) must map

to ⟨X ′
⟩ ○H, so (x, y) and (x′, y′) must map to ⟨X ′

⟩ ○H.

First we will show that R-towers are disconnected. Let X be an R-class of G.
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If ∣X ∣ = 1, then ⟨X⟩ ○H is isomorphic to H, where H is disconnected, so ⟨X⟩ ○H

is disconnected. Suppose ∣X ∣ ≥ 2. Then ⟨X⟩ ○H = D∣X ∣ ○H is ∣X ∣ disjoint copies of

the form {v} ○H for each v ∈ X, so ⟨X⟩ ○H is disconnected. Thus all R-towers are

disconnected.

Let (x, y) and (x′, y′) be nonadjacent vertices in G ○ H in the same R-tower

⟨X⟩ ○H in G ○H. Suppose ϕ(x, y) = (x′′, y′′) and ϕ(x′, y′) = (x′′′, y′′′). We need to

show that (x′′, y′′) and (x′′′, y′′′) are in the same R-tower, so we need to show that

NG(x′′) = NG(x′′′). First, we will show that NG(x′′) ⊆ NG(x′′′). Let x̄ ∈ NG(x′′). We

need to show that x̄ ∈ NG(x′′′). Because x̄x′′ ∈ E(G), then (x̄, ȳ)(x′′, y′′) ∈ E(G ○H)

for some ȳ ∈ V (H). It is either the case that (x̄, ȳ) ∈ ϕ(⟨X⟩○H) or (x̄, ȳ) ∉ ϕ(⟨X⟩○H).

We will show it is impossible that (x̄, ȳ) ∈ ϕ(⟨X⟩ ○H). First, we need the following

claim.

Claim: If (x̄, ȳ) ∈ ϕ(⟨X⟩ ○H), then for all ỹ ∈ V (H), (x̄, ỹ) ∈ ϕ(⟨X⟩ ○H).

Suppose towards a contradiction that some (x̄, ỹ) ∉ ϕ(⟨X⟩ ○H). Because x̄x′′ ∈

E(G), it follows that (x̄, ỹ)(x′′, y′′) ∈ E(G ○ H). Because the R-tower ⟨X⟩ ○ H

is externally related, ϕ(⟨X⟩ ○ H) is externally related as well, so it follows that

(x̄, ỹ)(x̄, ȳ) ∈ E(G ○ H). This implies that ỹȳ ∈ E(H) for all ȳ ∈ V (H), so H

is connected, which is a contradiction. Thus it must be that for all ỹ ∈ V (H),

(x̄, ỹ) ∈ ϕ(⟨X⟩ ○H).

Because (x̄, ỹ) ∈ ϕ(⟨X⟩ ○ H) for all ỹ, the pre-images of such are in ⟨X⟩ ○ H.

Consider the pre-image (x̄′, ȳ′) of (x̄, ȳ). Because x̄′ ∈X and (x̄′, ȳ′)(x, y) ∈ E(G○H),

then x̄′x ∈ E(G) or x̄′ = x. If x̄′x ∈ E(G), this contradicts that ⟨X⟩ is the edgeless

graph D∣X ∣, so it must be that x̄′ = x. Similarly, it must be that for all ỹ ∈ V (H), the

pre-image of (x̄, ỹ) is of the form (x, ỹ). Now because (x̄, ỹ)(x′′, y′′) ∈ E(G ○H) for

all ỹ ∈ V (H), we have that (x, ỹ′)(x, y) ∈ E(G ○H) for all ỹ′ ∈ V (H). This implies

that ỹ′y ∈ E(H) for all ỹ′ ∈ V (H) which implies that H is connected, a contradiction.
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Thus it is impossible that (x̄, ȳ) ∈ ϕ(⟨X⟩ ○H).

Now it is only possible that (x̄, ȳ) ∉ ϕ(⟨X⟩ ○H). Since ϕ(⟨X⟩ ○H) is externally

related, (x̄, ȳ)(x′′, y′′) ∈ E(G ○H) implies that (x̄, ȳ)(x′′′, y′′′) ∈ E(G ○H), so x̄x′′′ ∈

E(G). Thus x̄ ∈ NG(x′′′), so NG(x′′) ⊆ NG(x′′′). Similarly, NG(x′′′) ⊆ NG(x′′), so

NG(x′′) = NG(x′′′).

Now NG(x′′) = NG(x′′′) means that x′′ and x′′′ are in the same R-class, so (x′′, y′′)

and (x′′′, y′′′) are in the same R-tower. Thus the image of the R-tower over X in G○H

is itself an R-tower.

The following two propositions, corollary, and two lemmas will be used in proving

the main theorem. Recall that Dn is the edgeless graph on n vertices.

Proposition 5.3.4. If Dn ○H is odd palindromic where H is arbitrary, then Dn and

H are odd palindromic.

Proof. Suppose Dn○H is odd palindromic, and let ϕ be an odd palindromic involution

of Dn ○H.

First, observe that Dn ○ H must have an odd number of vertices, so Dn and

H must have an odd number of vertices. Now, because Dn has an odd number of

vertices, any arbitrary involution of V (Dn) with exactly one fixed point is an odd

palindromic involution, so Dn is odd palindromic.

Next, we want to show that H is odd palindromic. Observe that Dn ○H is the

disjoint union of n copies of H, each of the form {v} ○H, for a vertex v of Dn. Let

(x0, y0) be the fixed point of ϕ. Let C be the component of G ○ H that contains

(x0, y0). Then ϕ restricts to an odd palindromic involution of C. We claim that

the number k of components of H that are isomorphic to C is odd. Observe that

Dn ○H (with n odd) has kn components isomorphic to C, and ϕ fixes one of these

components and interchanges the others in pairs. Hence kn is odd, so k is odd. Let
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C ′
≇ C be a component of H that is not even palindromic. We claim that H has

an even number j of components isomorphic to C ′. Observe that Dn ○ H has jn

components isomorphic to C ′, and ϕ interchanges these components in pairs. Hence

jn is even, so j must be even. Thus we can construct an odd palindromic involution

β of H as follows: β restricts to an odd palindromic involution on one copy of C

and interchanges the others in pairs. If H has any even palindromic components,

then β restricts to an even palindromic involution on each one of them. Finally, β

interchanges the remaining components in pairs. Thus H is odd palindromic.

The following two propositions, corollary, and two lemmas will be used in proving

the main theorem. Recall that Dn is the edgeless graph on n vertices.

Proposition 5.3.5. If Dn ○H is even palindromic where H is arbitrary, then Dn or

H is even palindromic.

Proof. Suppose Dn ○H is even palindromic, and let ϕ be an even palindromic invo-

lution of Dn ○H.

Observe that Dn○H must have an even number of vertices, so Dn or H (or both)

must have an even number of vertices. If Dn has an even number of vertices, then

Dn is even palindromic.

Now suppose Dn is not even palindromic, so n is odd. We want to show that H

is even palindromic. Again, Dn ○H is the disjoint union of n copies of H. Suppose

ϕ fixes some component C in Dn ○H. Because ϕ is fixed point free, C must be even

palindromic, so C in H is even palindromic. Suppose there exists a component C ′ in

H that is not even palindromic and H has k components isomorphic to C ′. We claim

that k is even. Observe that Dn ○H (with n odd) has kn components isomorphic to

C ′, and ϕ interchanges these in pairs. Hence kn is even, so k must be even. Thus H

is composed of components that are either even palindromic or can be interchanged
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in pairs by an involution, so H is even palindromic.

Corollary 5.3.1. If Kn ○H is odd palindromic, then Kn and H are odd palindromic.

If Kn ○H is even palindromic, then Kn or H is even palindromic.

Proof. Let Kn ○ H be odd palindromic. Then Kn ○H = Kn ○ H = Dn ○ H is odd

palindromic. By Proposition 5.3.4, Dn and H are odd palindromic. Then Dn = Kn

and H =H are odd palindromic.

Let Kn ○ H be even palindromic. Then Kn ○H = Kn ○ H = Dn ○ H is even

palindromic. By Proposition 5.3.5, Dn or H is even palindromic. If Dn is even

palindromic, then Dn = Kn is even palindromic. If H is even palindromic, then

H =H is even palindromic. Thus Kn or H is even palindromic.

Lemma 5.3.2. Let H be connected. Any involution ϕ of G ○ H induces an auto-

morphism α′ of G/S defined as α′(X) = X ′, where ϕ(⟨X⟩ ○H) = ⟨X ′
⟩ ○H. Hence

∣α′(X)∣ = ∣X ∣ for each X ∈ G/S. Moreover, any permutation α of V (G) with the

property that α(X) = α′(X) for each X in G/S is an automorphism of G.

Proof. Because H is connected, ϕ permutes S-towers by Proposition 5.3.2, so it fol-

lows that ϕ induces a corresponding permutation α′ of S-classes which is clearly

bijective. Suppose α is a permutation of V (G) with the property that α(X) = α′(X)

for each X in G/S, that is, α(x) = x′ for x ∈ X and x′ ∈ α′(X), so α is bijective. Let

xx′ ∈ E(G). Suppose x and x′ are in the same S-class X. Then α(x) and α(x′) are in

the same S-class of their own, and because ⟨X⟩ is a complete graph, it must be that

α(x)α(x′) ∈ E(G). Now suppose x and x′ are in different S-classes, say X and X ′

respectively. Then in G ○H, there is an edge running from ⟨X⟩ ○H to ⟨X ′
⟩ ○H, thus

an edge running from ϕ(⟨X⟩ ○H) to ϕ(⟨X ′
⟩ ○H), so there is an edge running from

α′(X) to α′(X ′
). Now because S-classes are externally related, the existence of one

edge between α′(X) and α′(X ′
) implies that each vertex in α′(X) is adjacent to every
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vertex in α′(X ′
). Thus α(x)α(x′) ∈ E(G) which means that α is a homomorphism,

and further, an automorphism.

Lemma 5.3.3. Let H be disconnected. Any involution ϕ of G ○H induces an auto-

morphism α′ of G/R defined as α′(X) = X ′, where ϕ(⟨X⟩ ○H) = ⟨X ′
⟩ ○H. Hence

∣α′(X)∣ = ∣X ∣ for each X ∈ G/R. Moreover, any permutation α of V (G) with the

property that α(X) = α′(X) for each X in G/R is an automorphism of G.

Proof. If we invoke Proposition 5.3.3 (instead of Proposition 5.3.2) along with the

observation that R-classes are externally related, then this proof is the same as the

proof of Lemma 5.3.2.

The following two theorems are the main results of the paper.

Theorem 5.3.1. G○H is odd palindromic if and only if G and H are odd palindromic.

Proof. The converse direction of this statement is Proposition 5.3.1.

LetG○H be odd palindromic with odd palindromic involution ϕ. We will consider

two cases: the case where H is connected and the case where H is disconnected.

Case 1: H is connected.

We will first show that H is odd palindromic. Let (x0, y0) be the fixed point of ϕ,

and suppose (x0, y0) is in the S-tower over X0. By Proposition 5.3.2, ϕ(⟨X0⟩ ○H) =

⟨X0⟩ ○H. Then ϕ restricts to an automorphism of ⟨X0⟩ ○H ≅ K∣X0∣ ○H, where ∣X0∣

is odd, so K∣X0∣ ○ H is odd palindromic. By Corollary 5.3.1, K∣X0∣ and H are odd

palindromic. Thus H is odd palindromic.

Now we will show that G is odd palindromic using Lemma 5.3.2 to construct

an odd palindromic involution of G. Observe that ϕ will fix the S-tower ⟨X0⟩ ○H

that contains the fixed point (x0, y0). Any remaining odd-ordered S-towers must be

interchanged in pairs by ϕ, and even-ordered S-towers are either fixed or interchanged
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in pairs by ϕ. By Lemma 5.3.2, ϕ induces an automorphism α′ of G/S (recall:

α′(X) = X ′, where ϕ(⟨X⟩ ○H) = ⟨X ′
⟩ ○H). Since ϕ fixes the odd-ordered S-tower

⟨X0⟩○H, α′(X0) =X0. If ϕ interchanges odd-ordered S-towers ⟨X1⟩○H and ⟨X2⟩○H,

then α′(X1) =X2 and α′(X2) =X1. If ϕ fixes an even-ordered S-tower ⟨X⟩ ○H, then

α′ will also fix X. In what follows, we will construct an involution α of V (G) such

that α(X) = α′(X) for each X ∈ G/S. Since α′ fixes the odd-ordered S-class X0,

we can let α(x0) = x0 for exactly one x0 ∈ X0, and let α interchange the remaining

vertices of X0 in pairs. If α′ interchanges S-classes X and X ′, we can let α interchange

vertices pairwise between X and X ′. If α′ fixes an even-ordered S-class X, we can

let α interchange vertices of X in pairs. Now observe that, by Lemma 5.3.2, α is an

involution of G with exactly one fixed point, so G is odd palindromic.

Case 2: H is disconnected.

We will first show that H is odd palindromic. Let (x0, y0) be the fixed point of ϕ,

and suppose (x0, y0) is in the R-tower over X0. By Proposition 5.3.3, ϕ(⟨X0⟩ ○H) =

⟨X0⟩ ○H. Then ϕ restricts to an automorphism of ⟨X0⟩ ○H ≅ D∣X0∣ ○H, so D∣X0∣ ○H

is odd palindromic. By Proposition 5.3.5, D∣X0∣ and H are odd palindromic. Thus H

is odd palindromic.

Now G is also odd palindromic using the same proof as in Case 1 but invoking

Lemma 5.3.3 in place of Lemma 5.3.2.

Theorem 5.3.2. G○H is even palindromic if and only if G or H is even palindromic.

Proof. The converse direction of this statement is Proposition 5.3.1.

Let G○H be even palindromic with even palindromic involution ϕ. We will con-

sider two cases: the case where H is connected and the case where H is disconnected.

Case 1: H is connected.

Suppose ϕ fixes some S-tower ⟨X⟩ ○H where ∣X ∣ is odd. Then ⟨X⟩ ○H ≅Kn ○H
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is even palindromic, where Kn is not even palindromic because n is odd, so H must

be even palindromic by Corallary 5.3.1.

Suppose ϕ fixes no S-tower ⟨X⟩○H where ∣X ∣ is odd. Observe that ϕ must inter-

change odd-ordered S-towers in pairs. By Lemma 5.3.2, ϕ induces an automorphism

α′ of G/S. Moreover, because ϕ interchanges odd S-towers ⟨X1⟩ ○H and ⟨X2⟩ ○H,

α′(X1) = X2 and α′(X2) = X1. If ϕ fixes any even S-tower ⟨X⟩ ○ H, then α′ will

also fix X. In what follows, we will construct an involution α of V (G) such that

α(X) = α′(X) for each X in G/S. Since α′ interchanges odd-ordered S-classes X

and X ′ in pairs, we can let α interchange vertices pairwise between X and X ′. If α′

fixes an even S-class X, we can let α interchange vertices of X in pairs. Now observe

that, by Lemma 5.3.3, α is an involution of G with no fixed points, so G is even

palindromic.

Case 2: H is disconnected.

Suppose ϕ fixes some R-tower ⟨X⟩ ○H where ∣X ∣ is odd. Then ⟨X⟩ ○H ≅Dn ○H

is even palindromic, where Dn is not even palindromic because n is odd, so H must

be even palindromic by Proposition 5.3.5.

Suppose ϕ fixes no R-tower ⟨X⟩ ○H where ∣X ∣ is odd. Using the same proof as

in Case 1, invoking Lemma 5.3.3 instead of Lemma 5.3.2, it can be concluded that G

is even palindromic.
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CHAPTER 6

CONCLUDING REMARKS

This dissertation set out to prove that palindromic factors result in palindromic prod-

ucts and vice versa. The results were quite clean for the Cartesian, strong, and lexico-

graphic products, and although the results for the direct product were not analogous

in the way we had hoped, we were still able to establish meaningful conditions.

While the conditions on palindromic products have been fully fleshed out, the

restrictions that arose during the exploration of the direct product added an unex-

pected twist. An overarching goal of this dissertation was to provide evidence that

automorphisms of the direct product transfer to the factors of the product, and while

this was not true in general in the case of transferring a palindromic involution from

the direct product to its factor, it was true when both factors were nonbipartite. It

would be interesting to investigate and establish suitable conditions for transferring

an automorphism of, say, order 3 from the direct product to its factors, starting with

two nonbipartite factors and adding appropriate restrictions when we move to one or

two bipartite factors. As we established in Chapter 4, transferring an automorphism

of order 2 can be tricky, is surprisingly nontrivial, and does not always work. It is

reasonable to believe that transferring automorphisms of any order other than 2 will

require much more care for the case of two nonbipartite factors, and it may not hold

for one or two bipartite factors.
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