
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2021

Improving Space Efficiency of Deep Neural Networks Improving Space Efficiency of Deep Neural Networks

Aliakbar Panahi
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

© Aliakbar Panahi

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6757

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

TABLE OF CONTENTS

Chapter Page

Table of Contents . i

List of Figures . iii

Abstract . v

1 Introduction . 1

2 Background . 4

2.1 Supervised Learning . 4
2.2 Cross-Entropy Loss . 7
2.3 Optimization . 8
2.4 Neural Network Architectures . 12

2.4.1 Fully Connected Neural Networks 12
2.4.2 Convolutional Neural Networks 14
2.4.3 Recurrent Neural Networks . 16

2.5 Attention-based Networks . 19
2.5.1 Transfer Learning . 20
2.5.2 Self-Supervised Learning . 20
2.5.3 Word Embeddings . 21
2.5.4 Self-Attentional Neural Networks and Transformers 23

3 Improving Space Efficiency of Word Embeddings 25

3.1 Introduction . 25
3.2 Our Contribution . 26
3.3 From Tensor Product Spaces to word2ket Embeddings 27

3.3.1 Tensor Product Space . 27
3.3.2 Entangled Tensors . 28
3.3.3 The word2ket Embeddings . 29

3.4 Linear Operators in Tensor Product Spaces and word2ketXS 32
3.4.1 Linear Operators in Tensor Product Spaces 32
3.4.2 The word2ketXS Embeddings 32

3.5 Experimental Evaluation of word2ket and word2ketXS in NLP Tasks 33

4 Improving Space Efficiency of Transformer Model 40

4.1 Introduction . 40

i

4.2 Limitations of Factorized Matrices in Deep Networks 44
4.3 Stacked Kronecker Product-based Representations 44

4.3.1 Expressiveness of stacked Kronecker-product Layers 45
4.4 Experimental Results . 52

4.4.1 Comparison with PHM Layers 53
4.4.2 Comparison with DeLighT . 55
4.4.3 Comparison with Standard Low-rank Factorization 56

5 Conclusions . 58

Bibliography . 60

ii

List of Algorithms

1 Stochastic Gradient Descent . 10

iii

LIST OF FIGURES

Figure Page

1 A schematic view of a feedforward neural network (also called Multilayer
Perceptron) that maps inputs from R2 to R2. Each layer has trainable
weights that are adjusted during the training phase using backpropagation
algorithm. 13

2 A convolutional neural network with a convolutional layer, a ReLU layer,
and a max pooling layer and 3 fully connected layers. In this example,
the network maps an input image, a bar chart, to an output vector,
representing the probability of each of the classes. 15

3 Architecture of the word2ket (left) and word2ketXS (right) embeddings.
The word2ket example depicts a representation of a single-word 256-
dimensional embedding vector using rank 5, order 4 tensor ∑5

k=1
⊗4

j=1 vjk
that uses twenty 4-dimensional vectors vjk as the underlying trainable
parameters. The word2ketXS example depicts representation of a full
81-word, 16-dimensional embedding matrix as ∑5

k=1
⊗4
j=1 Fjk that uses

twenty 3× 2 matrices Fjk as trainable parameters. 31

4 Dynamics of the test-set F1 score on SQuAD dataset using DrQA model
with different embeddings: rank-2 order-2 word2ketXS, rank-1 order-4
word2ketXS, and regular embedding. 37

5 Test set questions and answers from DrQAmodel trained using rank-1 order-4
word2ketXS embedding that utilizes only 380 parameters (four 19× 5
matrices Fjk, see eq. 3.4) to encode the full, 118,655-word embedding
matrix. As each parameter is saved as a single-precision floating-point
number, this translates to 1.5 Kilobytes memory usage. Here the True
Answers are the manually labeled and the model is able to correctly
answer the questions by a F1 measure of 70.65. The two points loss
in F1 compared to the regular trained model is hardly noticeable in
practice. We did not notice any trends in which types of questions either
consistently remained correct or consistently were incorrect when using
the word2ket embeddings as compared to the regular embeddings. 39

iv

Abstract

IMPROVING SPACE EFFICIENCY OF DEEP NEURAL NETWORKS

By Aliakbar Panahi

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2021.

Director: Dr. Tomasz Arodz,

Associate Professor, Department of Computer Science

Language models employ a very large number of trainable parameters. Despite
being highly overparameterized, these networks often achieve good out-of-sample test
performance on the original task and easily fine-tune to related tasks. Recent observations
involving, for example, intrinsic dimension of the objective landscape and the lottery
ticket hypothesis, indicate that often training actively involves only a small fraction of
the parameter space. Thus, a question remains how large a parameter space needs to
be in the first place — the evidence from recent work on model compression, parameter
sharing, factorized representations, and knowledge distillation increasingly shows that
models can be made much smaller and still perform well. Here, we focus on factorized
representations of matrices that underpin dense, embedding, and self-attention layers.
We use low-rank factorized representation of a reshaped and rearranged original matrix
to achieve fast, space efficient, and expressive embeddings and linear layers. We prove
that stacking such low-rank layers increases their expressiveness, providing theoretical
understanding for their effectiveness in deep networks. Our approach achieves a hundred-
fold or more reduction in the space required to store the embeddings with almost no
relative drop in accuracy in practical natural language processing tasks. In Transformer
models, our approach leads to more than ten-fold reduction in the number of total
trainable parameters, including embedding, attention, and feed-forward layers, with little
degradation in on-task performance. The approach operates out-of-the-box, replacing
each parameter matrix with its compact equivalent while maintaining the architecture
of the network.

v

CHAPTER 1

INTRODUCTION

We may hope that machines will
eventually compete with men in all
purely intellectual fields.

–Alan Turing, Computing
Machinery and Intelligence [1]

Artificial neural networks [2] are among the most successful methods for modeling

complex systems. There have been numerous success stories of using neural networks

in a diverse set of problems in fields like machine vision, natural language processing,

physics, chemistry, medicine, bio-informatics, drug discovery, robotics, and transporta-

tion. Although artificial neural networks with their current format existed since the 80s,

recent technological advancement in computation power and data acquisition opened the

door for harnessing neural networks’ immense power. As more data and computation

becomes available for training deep networks, their size has grown rapidly: for example,

BERT model for natural language understanding has 110 million trainable weights [3].

The need for methods that allow efficient storage of these models becomes critical.

Our work is focused on methods for reducing the space needed to represent a

model not only once the model is trained, but also during training. Methods like

parameter pruning, knowledge distillation, and quantization are only applicable where

we already trained the models. We proposed a novel factorization method using a sum

of Kroneckor products for reducing models’ size. Though the method would add some

extra computation, we hypothesized that the gain in memory decrease is much more

valuable than the overhead in computation, and the model would still be able to get

a comparable performance. We validated this approach for embedding matrices used

in natural language processing (NLP) models and the weight matrix of linear layers in

1

Transformer [4] models and compared this method with other state-of-the-art methods

for reducing the size of neural networks. The results show that the proposed method

can achieve up to 100 folds reduction in the size of embedding matrices and up to 6 folds

reduction in the size of the NLP models while maintaining the model’s performance

with less than 50% increase in training or inference time.

The main contributions are as follows:

• Proposed a novel factorization method using a sum of Kroneckor products for

reducing size of embedding matrices in deep neural networks.

• Proposed a low-rank factorized representation of a reshaped and rearranged weight

matrices to achieve fast, space efficient, and expressive embeddings and linear

layers

• Proved that stacking low-rank factorized representation of a reshaped and re-

arranged weight matrices increases their expressiveness, providing theoretical

understanding for their effectiveness in deep networks.

• Proposed a novel model based on transformer architecture, Shapeshifter, that

leads to more than ten-fold reduction in the number of total trainable parameters,

including embedding, attention, and feed-forward layers, with little degradation in

on-task performance

This dissertation is organized as follows. Section 2 gives an introduction to the

deep neural networks and attention based networks. Section 3 describes word2ket,

our proposed approach for word embeddings with experimental evaluations on text

summarization, machine translation, and question answering tasks. Section 4 discusses

how factorized representations of matrices can be applied to all layers in Transformer

architecture, and proves the expressiveness power of the proposed method. We also

experimentally validated this approach by comparing the results with two state-of-

the-art methods for reducing the memory of neural networks in machine translation

2

task. Finally, in Section 5 we summarize the proposed methods, identify the remaining

challenges and discuss the path forward.

3

CHAPTER 2

BACKGROUND

In this chapter, we provide a brief introduction to the main concepts of neural networks.

Interested readers can find further details in [2].

2.1 Supervised Learning

Consider the problem of recognizing if an image contains a cat or not. We can

formulate this problem and many other similar practical problems as a mapping f :

X → Y , where X is the space of inputs, and Y is the space of the outputs. In the cat

recognition problem, X is the space of all images, and Y is a number between 0 and

1, showing the probability of a cat being in the image. In most practical cases, it is

challenging, if not impossible, to specify function f manually but it is easy to gather

pairs of labeled examples (x, y) ∈ X × Y for this mapping. In our example, this means

we have to collect a dataset of images, and for each image, a “supervisor” labels if they

see a cat or not. The goal of supervised learning is to find the mapping f using the

input-label pairs.

Supervised Learning Objective. More formally, the objective of supervised learning

can be formulated in the following way. Given a training dataset of n independent and

identically distributed (i.i.d.) samples {(x1, y1), ...(xn, yn)} coming from an unknown

distribution D over X × Y (i.e., (xi, yi) ∼ D for all i), our goal is to learn the mapping

f : X → Y . To achieve this goal, we search over a class of functions F : X → Y , known

often as the space of possible hypotheses or space of possible models, and find a function

f ∗ in F that approximates the unknown function f well. One way to measure how well

f ∗ approximates f is to see if it is good at predicting the labels of the training examples.

4

Precisely, we select a scalar-valued loss function L(ŷ, y) that measures the disagreement

between the label yi and the function output ŷi = f(xi) for any f ∈ F . Our learning

objective is to find f ∗ ∈ F that satisfies:

f ∗ = arg min
f∈F

E(x,y)∼DL(f(x), y) (2.1)

Once we can find the function f ∗ we can discard the training samples and only use

it to map any elements from X to Y . In our visual recognition example, this means we

can use this function on any unlabeled image to get its label.

Unfortunately, we can not evaluate Equation 2.1 or simplify it analytically without

making any strong assumptions about the form of D, L, or f as we do not have access

to all the elements in D. Since we assumed the samples are i.i.d., we can approximate

the expected loss by averaging over the training dataset.

f ∗ = arg min
f∈F

1
n

n∑
i=1

L(f(x), y) (2.2)

This approximation is only optimizing the loss on the training data, but the hope

is that it serves as a good proxy to the actual objective in Equation 2.1.

Regularization. Optimizing Equation 2.2 instead of Equation 2.1 can lead to

problems. For example, consider a function f that returns zero everywhere but returns

corresponding yi for each xi in the training data. This function could be a solution

to Equation 2.2, and for any sensible loss function, we expect a very high loss for all

examples with y 6= 0 that are not in our training data. This means that the described

function does not generalize to all (x, y) pairs. To increase the generalization capability

of f , it is common to introduce a scalar-valued function R to the objective function as

follows:

f ∗ = arg min
f∈F

1
n

n∑
i=1

L(f(x), y) +R(f) (2.3)

5

The new objective term R measures the complexity of functions regardless of their fit

on the training data. This can be partly justified by the Occam’s razor principle, which

states: “given two explanations of the data, all other things being equal, the simpler

explanation is preferable” [5]. With the addition of this regularization term, Equation 2.3

results in simple solutions that also fit well with the training data. This regularization

term is intended to decrease the disparity between the objective in Equation 2.2 and

Equation 2.1.

Linear Regression. To illustrate the formalization of regularized supervised learning

outlined above, we focus on linear regression. Linear regression quantifies the relationship

between one or more predictor variable(s) and one response variable. Linear regression is

also known as multiple regression, multivariate regression, ordinary least squares (OLS),

and regression. As a simple example of linear regression, assume a dataset of (n = 100)

2-dimensional samples such that each data point is represented by a vector from X = R2

and annotated with a scalar response value (i.e., Y = R). Informally, linear regression

consists of finding the best-fitting straight line (called a regression line) through the

points. Linear regression line has an equation of the form of a linear function from X to

Y , that is, the set of possible models is F = {wTx+b | w ∈ R2, b ∈ R}). In this example,

our set of hypothesis linear regression line has three trainable parameters (w1, w2, b),

where w = [w1, w2] is coefficients weights, and b is an intercept or bias. Training of the

model translates to finding the values for these parameters through an optimization

process.

To train the linear regression model, we need is a cost function so that we can start

optimizing our weights. The most commonly used cost function for linear regression

is mean squared error (MSE) that measures the average squared difference between

an observation’s actual and predicted values, L(ŷ, y) = (ŷ − y)2. To avoid the risk of

overfitting and increasing model interpretability, we use R(w, b) = λ(w2
1 + w2

2) as the

regularization term to discourage the parameters from being too large. The variable λ

6

controls the importance of the regularization term and is a hyperparameter - that is,

it is chosen prior to training by the user, and not changed during training. When a

regularizer is added to the loss function, the full optimization problem is to minimize

the objective:

f ∗ = arg min
w1,w2,b

[
1
n

n∑
i=1

(w1xi1 + w2xi2 + b− yi)2
]

︸ ︷︷ ︸
fit the training data

+
λ(w2

1 + w2
2)

︸ ︷︷ ︸
regularization

(2.4)

Interestingly, in most of the classification problems like linear regression, the bias

term is ignored while regularizing because overfitting usually requires the model’s output

to be sensitive to small changes in the input data, and the bias parameters do not

contribute to the curvature of the model, so there is usually little point in regularizing

them as well.

Neural Network Regression. Neural networks are similar to regression models,

except we make the hypothesis function space F more complex. For example, instead

of linear forms for hypothesis, we can use more complex nonlinear functions like f(x) =

w tanh(V Tx+ b1) + b2 where hyperbolic tangent is a nonlinear function that always has

an output value in [−1, 1], and the set of {V,w, b1, b2} are all trainable parameters: V is

a matrix of size H × 2, w, and b1 are vectors of size H, and b2 has a scalar value. Then,

the optimization problem is as follows:

f ∗ = arg min
V,b1,w,b2

[
1
n

n∑
i=1

(w tanh(V Tx+ b1) + b2 − yi)2
]

︸ ︷︷ ︸
fit the training data

+
λ(‖V ‖2 + ‖w‖2)

︸ ︷︷ ︸

regularization

(2.5)

2.2 Cross-Entropy Loss

Mean squared error is the typical loss function in regression problems, but is not

often used in classification problems, where we are predicting probabilities of the input

belonging to one of several classes. Specifically, for a problem with k classes, the space

7

of targets Y is a space of k-dimensional vectors that represent probability distribution

over k possibilities. One of the most commonly uses loss function in machine learning

models and optimization is cross-entropy loss, or log loss. Cross-entropy measures

the performance of a classification model whose output is a probability value between

0 and 1. There is a trade off between predicted probability and cross-entropy loss,

when the predicted probability approaches 1, loss slowly decreases and if predicted

probability decreases then loss increases rapidly. The cross entropy formula takes in

two distributions, p(c) and q(c), with c ∈ {1, ..., k} as the true distribution over possible

classes c and estimated distribution, respectively and it is defined as follows:

H(p, q) =
∑

∀c=1,...,k
p(c) log(q(c)). (2.6)

We often normalize the model’s output, the k-dimensional vector f(x), to form a

distribution over possible k classes, and then directly use q = f(x) as the estimated

distribution.

In most cases, the true distribution p(c) assigns full, unit probability to one class

(i.e., p(true_class) = 1), and null probabilities to all other classes (e.g., the image for

sure contains a cat). Then, only one term in the cross-entropy definition is non-zero,

and the formula simplifies to H(p, q) = log(q(true_class)), where q(true_class) is the

probability assigned by the model for the true class of the sample.

2.3 Optimization

Optimization is at the heart of almost all machine learning techniques. In the

last section of the linear regression problem, we ended up with solving an optimization

problem of the form θ∗ = arg minθ g(θ), where θ is the vector of parameters that can

be learned by minimizing loss function and g is the sum of average loss of all training

samples and the regularization term. Below we will cover some of the well-known

optimization methods.

8

Derivative-free Optimization. Derivative-free optimization does not use derivative

information in the classical sense to find optimal solutions: sometimes, information

about the derivative of the objective function f is unavailable, unreliable, or impractical

to obtain. For example, f might be non-smooth or defined over a discrete set, so that

methods that rely on derivatives are of little use. Instead, we can evaluate g(θ) for any

random values of θ and take the one that minimizes g, and this is a “trial and error”

approach to solving this optimization problem. Another method is to give perturbations

to θ and iteratively monitor the loss g(θ). However, this “guess-and-check” approach

and perturbing weights approach are computationally intractable because we usually

train neural networks with hundreds of thousands or millions of parameters.

First-order methods. First-order method is the most popular nowadays, and is

suitable for large-scale data optimization due to relatively low computational cost of

calculating first-order derivatives. Instead of the naive method like derivative-free

optimization, we can improve optimization time by changing some assumptions about g

to find the optimal value for parameters. For instance, if we assume g to be differentiable,

we can compute gradient (∇θg), the vector of partial derivatives, giving us the slope

of g with respect to parameters θ. The gradient allows us to construct the first-order

approximation in the Taylor expansion of g, and use it to change the parameters in a

way that minimizes the approximation.

The gradient vector can be interpreted as the direction of locally steepest growth

of the function. Thus, we can improve θ by adding to it a small amount of the negative

gradient direction. This process is continued until we reach the value of θ for which the

loss function is locally minimum. This gradient descent (GD) algorithm alternates the

two steps: 1) evaluate the gradient with backpropagation (with respect to parameters at

the current point) and 2) update the parameters by taking a small step in the direction

opposite to the gradients. To make GD practically feasible for very large datasets, we

divide samples to minibatch of data at a given time and then compute the gradients, and

9

then update the parameters. The resulting algorithm is Stochastic Gradient Descent

(SGD) which is summarized in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent
Given a starting point θ ∈ domg

Given a step size ε ∈ R+

repeat

1. Sample a minibatch of m examples {(x1, x2), ..., (xm, xm)} from training data

2. Estimate the gradient ∇θg(θ) with backpropagation

3. Compute the update direction: ∆θ := −ε∇θg(θ)

4. Update the parameter: θ := θ + ∆θ

until convergence

One of the most critical hyperparameters in the SGD algorithm is step size ε, also

called learning rate. This hyperparameter controls how much to change the model in

response to the estimated error each time the model weights are updated. Choosing the

learning rate is challenging. If learning rate is set too low, training will progress very

slowly as the model is making tiny updates to the weights. However, if learning rate is

set too high, it can cause undesirable divergent behavior in the loss function and an

unstable training process.

A simple example illustrates how learning rate can affect the optimizing process:

consider the function y = x2 and dy
dx

= 2x as its gradient with respect to x. Starting

from x = 1 and ε > 1 will cause the gradient descent update to oscillate and diverge to

infinity. On the other hand, ε = 1 will make the algorithm wobble between x = 1 and

x = −1. Only if ε < 1 it will cause to converge to the optimal minimum value, x = 0.

Unfortunately, in practice an optimal learning rate cannot be analytically calculated

for a given model on a given dataset. Instead, a good enough learning rate must be

discovered via trial and error, or a good heuristic method is to binary search to find the

lowest setting of the learning rate that makes the optimization diverge. Typical values

10

for a neural network with standardized inputs are less than 1 and greater than 10−6, but

we can not rely exclusively on this default value. There are several ways to automatically

pick hyper-parameters, such as grid search and Population-based training. However,

gradually decaying the learning rate over time is a good rule of thumb, which can be

achieved by multiplying the learning rate by a small factor. The other option is Polyak

Averaging, an optimization technique that sets final parameters to an average of recently

updated parameters. Precisely, for parameters θ1, ..., θt in t iterations Polyak Averaging

suggests setting θt = 1
t

∑
i θi. Learning the hyperparameters of different prediction

functions and testing them on the same data depends on the problem, so it is common

to evaluate the learning rate performance using the cross-validation, a technique we

discuss below.

Backpropagation. Neural networks could learn their hyperparameters using gradient

descent algorithm. However, we did not discuss how to compute the gradient of the

cost function and train the model. This training is usually associated with the term

backpropagation, which essentially refers to chain rule of differentiation. In simple terms,

after each forward pass through a network, backpropagation performs a backward pass

while adjusting the model’s parameters. As we explained, we are interested in computing

the gradient of the cost function g(θ) (dg
dθ

or (∇θg)) with respect to the parameter θ.

Also, we can compute the gradients for the inputs xi with the same process.

By using the chain rule, evaluating the gradient of the output with respect to the

input reduces to a product of Jacobian matrices. In neural networks, we first need to do

a forward pass in which we take a mini-batch {(xi, yi)}mi=1 and current parameters of the

network θ and calculate all intermediate values (saving them for later use) and the cost

g. Then we do the backward pass in which we chain the local gradients by multiplying

the next Jacobian matrix in the full product.

11

Cross-validation. Once we are done with training our model, we need some assurance

of the accuracy of the predictions that our model is putting out. Cross-validation is

a technique to evaluate predictive models by partitioning the original sample into a

training set to train the model and a test set to evaluate it. The most common variant

of cross-validation is the k-fold cross-validation. The procedure has a single parameter

called k that refers to the number of groups that a given data set is to be split. The

model is trained using k − 1 groups and the one remaining group is denoted as the

validation set to evaluate the trained model. This process is repeated k times, with each

of the k groups serving as the validation set. The average of their performance produces

cross-validated performance.

2.4 Neural Network Architectures

In the previous sections, we explained how to define a differentiable cost function

f to map each data point x in input to a response value ŷ and then how to optimize

the model using gradient descent. We now turn to the details of the function f , which

we have so far left unexplained. We first introduce the basic architecture of fully-

connected feed-forward neural networks, and then describe two specialized architectures:

convolutional and recurrent networks.

2.4.1 Fully Connected Neural Networks

Neural networks are composed of input, hidden, and output layers; the input

layer is the first, representing data that is fed into the network; the hidden layers

include the “neurons” that adjust the weight and bias for each number of times machine

learning model pass through the entire dataset; the last is the output layer where we

receive a response from our model, based on the specified task (see figure 1). The

network is fully connected, that is, each neuron receives input from all neurons from the

preceding layer. As a simple example, a 2-layer neural network would be implemented

12

hidden
layer

output
layer

trainable

weights

tra
inable

weights

neuron
outputsinputs

Figure 1: A schematic view of a feedforward neural network (also called Multilayer

Perceptron) that maps inputs from R2 to R2. Each layer has trainable weights that are

adjusted during the training phase using backpropagation algorithm.

as f(x) = W2σ(W1x), where W1,W2 are matrices and σ is an element-wise non-linearity

function. Historically, frequently used for the non-linearities were sigmoid functions

tanh or 1
1+e−x . More recently, the rectified linear unit (ReLU) defined as max(0, x) is

the standard choice. Note that the last layer of the neural network normally does not

contain the non-linearity. Also, note that a 1-layer neural network is a simple linear

function.

Biological inspiration. Although neural networks are very far from real biological

neural networks, a crude model of biological neurons was the motivation behind neural

network. Each row of the parameters corresponds to one neuron and its synaptic

connection strengths to its inputs. The negative weights are inhibitory, the positive

13

weights relate to excitation, and a zero represents no dependence. After some compu-

tation process, the weighted sum of the inputs connects to a cell body, and then an

activation function like sigmoid produce an output between [0, 1], so it identifies the

firing neurons. In the human body, the connection between two neurons represents

weights in a computing neural network, and it helps to transfer activation signal to

neurons in other layers.

2.4.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a class of deep neural networks used for

inputs that form a regular lattice. The input x is a multi-dimensional array; such arrays

are referred to in deep learning as a tensor. It can be an image, video or text. For

example, a 256 × 256 color image is a 256 × 256 × 3 tensor (for 3 color channels red,

green, blue). A 112-character sentence could be represented on a character level as a

112× 30, indicating which of 30 possible characters occupies any one of 112 positions

in the sentence. Usually, the dimensionality of input is high and using fully connected

layers is not efficient – the number of possible weights to be trained is very large and the

network is prone to overfitting. Therefore, neural network architectures can be designed

using specific local connectivity and parameter sharing schemes.

CNN are made of neurons that have trainable weights that describe filters, which

are applied to various parts of the image. As shown in Figure 2, a single filter/neuron is

applied not to all inputs as in a fully-connected network, but only to a small subset of

inputs – an image region that matches the size of the filter. For example, a two-by-two

filter only focuses on a two-by-two patch of the image, with one trainable weight in the

filter corresponding to one pixel in the image patch. The same single filter is applied, in

parallel, to all possible locations in the image, using the same set of trainable weights to

produce multiple outputs. Essentially, the output of applying a single filter to an image

is also an image, but altered by the filter. We can view a single filter as equivalent to a

14

pie chart

bar graph

…

flow chart

…

image
max. pooling layerconvolutional layer

filter fully connected
layers

ReLU
output

Figure 2: A convolutional neural network with a convolutional layer, a ReLU layer, and

a max pooling layer and 3 fully connected layers. In this example, the network maps an

input image, a bar chart, to an output vector, representing the probability of each of

the classes.

large number of neurons, each producing one pixel of the output, but instead of each

neuron having its own set of weights for its connections to pixels in the input, these

weights are shared. This drastically reduces the number of trainable parameters, and

can prevent overfitting.

Edge Detection Example. Suppose we are given an image with many vertical and

horizontal edges. The first question is, how do we detect these edges? To answer this

question, let us take a 6× 6 grayscale image with only one channel. Then, we convolve

this 6× 6 matrix with a 3× 3 filter, by doing the convolution, we will get a 4× 4 image.

Higher pixel values represent the brighter portion of the image, and the lower pixel

values represent the darker portions. The pixel values help to detect a vertical edge in

an image. The values of the filter’s matrix help to detect the vertical or horizontal edges.

There are some commonly used filters to detect different edges, such as Sobel or Scharr

filters. In the convolutional network, instead of relying on a pre-defined filter design,

the matrix defining the filter is trained from data. The weights in the filter matrix are

treated as parameters which the model will learn using backpropagation.

15

A simple neural network can detect the edges of an image at the early layers of the

network. Then, subsequent layers might be able to detect the cause of the objects, and

even deeper layers might detect the cause of complete objects.

CNN architecture is built by stacking three types of layers, including convolutional

layers and possibly introducing pooling layers that are generally used to reduce the size of

the inputs and hence speed up the computation. A series of convonlutional and pooling

layers is typically followed by several fully connected layers. A typical CNN architecture

that processes images might take the structure [INPUT, [CONV,CONV, POOL] ×

3, FC, FC]. Here, INPUT represents a tensor of a batch of images and CONV is a

convolutional layer with 3×3 filters applied with the padding of 1 and stride of 1, POOL

stands for a typical 2× 2 filter max pooling layer with a stride of 2, and FC the last one

computes the logits of different classes just before a softmax classifier.

2.4.3 Recurrent Neural Networks

Recurrent neural networks, also known as RNNs, are a class of artificial neural

networks that allow previous outputs to be used as inputs while having hidden states,

and the connections between nodes form a directed graph along a temporal sequence.

While fully-connected and convolutional layers expect inputs of a fixed size, RNNs can

use their internal memory to process variable-length sequences of inputs. This makes

them applicable to many NLP tasks like commonsense reasoning, question/answering

problems, and many others.

An RNN processes a sequence of vectors {x1, ..., xT} using a recurrence formula of

the form ht = fθ(ht−1, xt), where f and θ are a function and parameters, respectively.

They are used at every time step and help to process sequences with an arbitrary number

of vectors. fθ is a connectivity pattern that can process the sequence of a vector with

arbitrary length. The hidden vector ht can be interpreted as a running summary of all

vectors x until the current time step, and the recurrence formula updates the summary

16

based on the next vector (xt′). For initialization, we can either treat h0 as vector

parameters and learn the starting hidden state or set h0 = ~0. The mathematical form

of the recurrence (ht−1, xt)→ ht varies depending on the specific network architecture.

Some of the formula in the computation process of RNN can be:

1. xt is the input at time step t. For example, x1 could be a one-hot vector corre-

sponding to the first word of a sentence.

2. ht is the hidden state at time step t. It is the “memory” of the network. ht is

calculated based on the previous hidden state and the input at the current step:

ht = a(Uxt + Wht−1). The function a usually is a nonlinearity such as tanh or

ReLU. The first hidden state, is typically initialized to all zeroes.

3. ot is the output at step t. In some architectures ot = ht, but more generally these

two can differ, with ot = softmax(V ht). For example, if we wanted to predict the

next word in a sentence it would be a vector of probabilities across our vocabulary.

RNN models are mostly used in the fields of natural language processing (NLP)

and speech recognition. Different types of RNNs are applied for various applications.

For example, one-to-one RNN is referred to as a traditional neural network, one-to-many

RNN is mostly used for music generation; many-to-one RNN has high performance

in sentiment classification, and many-to-many RNN is widely applied in name entity

recognition and machine translation task. The advantages and disadvantages of a typical

RNN architecture are summed up as follow:

Advantages

• Possibility of processing input of any length

• Model size not increasing with the size of the input

17

• Computation takes into account historical information

• Weights are shared across time

Drawbacks

• Computation being slow

• Difficulty of accessing information from a long time ago

• Cannot consider any future input for the current state

Long Short-Term Memory. Despite the incredible success of applying RNNs to a

variety of problems, there are problems with Long-Term Dependencies and RNNs become

unable to learn to connect the information. However, a special kind of RNN, called

Long Short-Term Memory (LSTM) does not have this problem. LSTMs are explicitly

designed to avoid the long-term dependency problem, and they remember information

for long periods of time. Like any RNNs, LSTMs have a chain of repeating modules of

the neural network, but the repeating module has a specific structure. Instead of having

a single neural network layer, there are four that are interacting differently. Rather than

go into the equations that control how LSTMs work, we explain operations within the

LSTM’s cells to quickly show how they work step by step.

The core concept of LSTM’s are the cell state and its various gate units. The cell

state is the memory of the network and transfers relative information down the sequence

chain. Cell state reduces the side effect of short-term memory, and information from

the earlier time steps can access later time steps. So, information is added or removed

to the cell state via gates. The gates can learn what information is relevant to keep

or forget during training. The next operation is gates that contain unipolar sigmoid

activation function. As we mentioned before, sigmoid squishes values between 0 and 1.

Zero value causes some values to be forgotten because multiplication by 0 is 0, and some

18

information is kept when values are multiplied by 1. Therefore, the sigmoid function

helps the network to learn which data are more important than the others.

The other gates regulate information flow in an LSTM cell. Forget gate decides

what information should be thrown away or kept. It is straightforward, and information

from the previous hidden state and current input is passed through the sigmoid function.

As we expect, values come out between 0 and 1. The closer to 0 means to forget, and

the closer to 1 means to keep. The next is the input gate in order to update the cell

state after every change. Bypassing the previous hidden state and current input into

a sigmoid function, it decides which values will be updated. Null means throw away

information, and 1 means keep them. Also, tanh function gets the hidden state and

current input and gives us values between -1 and 1; then multiplication of tanh output

with the sigmoid output helps to decide which information is essential to keep from the

tanh output. Now it is time to calculate the new cell state with achieved information.

The cell state gets pointwise multiplied by the forget vector. It drops values in the cell

state if it gets multiplied by values near 0. Then we take the input gate’s output and do

a pointwise addition that updates the cell state to new values that the neural network

finds relevant. The last is the output gate that decides what the next hidden state is.

So we pass the previous hidden state and the current input into a sigmoid function. We

pass the newly modified cell state to the tanh function. By multiplying the tanh output

with the sigmoid output, we decide what information the hidden state should carry.

The output is the hidden state. The new cell state and the new hidden is then carried

over to the next time step.

2.5 Attention-based Networks

Recently, an approach that relies on attention mechanism and a combination of

transfer and self-supervised learning has been shown to outperform RNN-based networks.

Below, we describe the components behind this approach in more detail.

19

2.5.1 Transfer Learning

Transfer learning is a problem in machine learning where a trained model on a large

dataset for a specific task is used and applied to a different but related task. Typically,

the second task the the one that the user is interested in, but scarcity of training data

prevents training the network towards that task directly. Transfer learning focuses on

storing achieved knowledge from the the related, data-rich task and then using that

information as a starting point in training the network towards the desired task. Using

a pre-trained model is a popular approach in deep learning as a starting point instead

of designing neural network layers from scratch to learn features. Transfer learning was

a game-changer in computer vision and natural language processing tasks.

2.5.2 Self-Supervised Learning

Deep learning can be applied to different learning paradigms, including supervised

learning, reinforcement learning, as well as unsupervised or self-supervised learning. As

we discussed, supervised learning is the category of machine learning algorithms that

require annotated training data, which is one the limitations of deep learning. However,

unsupervised learning is not easy and usually works much less efficiently than supervised

learning. We can modify a supervised learning task to hide some parts of the input

x and train the system to predict it, instead of requiring a separate label y. This is

known as self-supervised learning. The idea behind self-supervised learning is to develop

a deep learning system that can learn to fill in the blanks and buy doing so, learn to

understand the structure of inputs it is being trained on. Once this is achieved, the

model can be fine tuned towards a specific supervised learning task by training it on a

much small dataset of labeled pairs (x, y). Therefore, self-supervised learning is typically

used together with transfer learning to increased performance without needing a huge

amount of labeled data.

20

Real-World Applications of Self-Supervised Learning. Many ideas have been

proposed for self-supervised representation learning on images. One of the typical

applications is to train a model on one or more pretext tasks with unlabeled images and

then use one of the model’s features layers as inputs of the logistic regression classifier

on image classification task. The accuracy of the final model tells us the performance of

the learned model. Another popular used self-supervised learning systems are the so-

called "Transformers" based on the idea of attention, used primarily in natural language

processing and designed to handle sequential data without the need for large labeled

datasets. In the next section, we discuss word embeddings that form the basis of

modern natural language processing networks, and then follow up with the description

of Transformers in more details along with Self-Attentional Neural Networks.

2.5.3 Word Embeddings

Word embedding is a method to capture the meaning of the word, some of the

semantics of the input, and represent it as a vector, so that it can be easily provided as

input to the neural network. The most basic method for word representation is one-hot

encoding, which encodes each word in the vocabulary by creating a zero vector with

length equal to the vocabulary, then placing a one in the index that corresponds to the

word. Despite its simple approach, one-hot encoding has limitations: the dimensionality

of the transformed vector unmanageable in high-cardinality variables (e.g. for NLP,

the length of the vector would have to be equal to the number of words in the English

language) and also “similar” categories are not placed closer to each other in embedding

space.

A more convenient way to represent words using vectors is to use low dimension real-

valued vectors, with words that have the same or nearly the same meaning represented

with a similar vector. Machine learning models take the advantages of such word

embedding techniques to work with huge amount of input data like sparse vectors

21

representing words. On most of the challenging NLP tasks, word embedding play a

key role for the impressive performance of deep learning methods. The basis technique

to learn a word embedding from text data is Word2Vec, a statistical method using

probabilities of groups of words for efficiently learning a standalone word embedding

from a text corpus. For example, the male/female relationship is automatically learned,

and with the induced vector representations, “King – Man + Woman” results in a vector

very close to “Queen.” [6] . Word2Vec can be obtained using two algorithms: Skip

Gram model and Common Bag Of Words (CBOW). Both models are shallow neural

networks and focus on learning about words given their neighborhood context, where

the context is defined by a window over the sequence of words. This size of the window

is a configurable parameter of the model. The CBOW model learns the embedding by

predicting the next word based on previously seen context, however the skip-gram model

learns by predicting the surrounding words given a current word. CBOW’s memory

usage is low because it does not need to store co-occurrence matrix and it performs

superior in deterministic methods. Although, CBOW takes the average of the context of

a word before predicting the center word and also training a CBOW can take very long

if not properly optimized. On the other hand, in skip-gram model there is no averaging

of embedding vectors so it can capture two semantics for a single word, therefore it

needs more data so will learn to understand even rare words.

Word embeddings can also be constructed using GloVe (Global Vectors for Word

Representation), an extension to the word2vec method for efficiently learning word

vectors. GloVe has the best of both worlds of global statistics of matrix factorization

techniques like LSA and the local context-based learning in word2vec. Training process

in GloVe is performed on aggregated global word-word co-occurrence statistics from

a corpus based on matrix factorization techniques on the word-context matrix. The

result is a learning model that may result in generally better word embeddings in word

analogy, word similarity, and named entity recognition tasks[7]. Also, GloVe adds some

22

more practical meaning into word vectors by considering the relationships between word

pair, however, as the model is trained on the co-occurrence matrix of words it takes a

lot of memory for storage.

2.5.4 Self-Attentional Neural Networks and Transformers

The paper ‘Attention Is All You Need’ [4] describes transformers, and a sequence-

to-sequence architecture using them. Sequence-to-Sequence (or Seq2Seq) is a neural

network that transforms a given sequence of words into another sequence, for example

provides a summary sentence for an article. Before the introduction of Transformers and

self-attention mechanism, most state-of-the-art NLP systems relied on RNNs, LSTMs

and gated recurrent units (GRUs). However, these models are sensitive to the length

of sentences so that when sentences are too long, they do not perform too well. The

Transformer built on the attention mechanism for learning to focus on specific, potentially

distant words in the sequence without using an RNN architecture. The idea behind

self-attention the neural network is that in interpreting the information contained in a

single specific word in the sentence, there might be relevant information in every other

word in a sentence.

Self-attentional neural networks or Seq2Seq models consist of an Encoder and a

Decoder. The Encoder takes the input sequence encoded using a pre-defined word

embedding approach, and maps it into an n-dimensional output vector. In that sense,

the encoded can be seen as a more elaborate way to provide word embeddings. That

vector resulting from the Encoder is fed into the Decoder, which turns it into an

output sequence. The output sequence can, for example, be in another language. The

attention-mechanism looks at an input sequence and decides at each step which other

parts of the sequence are important. In other words, for each input that the Encoder

receives, the attention-mechanism takes into account several other inputs at the same

time and decides which ones are important by attributing different weights to those

23

inputs. Then the Decoder will take the encoded sentence and the weights provided by

the attention-mechanism.

A transformer is a specific model that implements self-attention approach in an

efficient manner. The Transformer consists of six encoders and six decoders. All encoders

have the same architecture, and decoders share the same property. Each encoder consists

of two parts: Self-attention layer and a small number of full-connected layers. Encoders

and decoders can be stacked on top of each other multiple times. The inputs and outputs

(target sentences) are first embedded in an n-dimensional space. The self-attention layer

first takes the encoder’s inputs, so during the encoding of a specific word, the encoder

can see and have information about other words in the input sentence. The decoder has

both those layers, but between them is an attention layer that helps the decoder focus on

relevant parts of the input sentence. After the multi-attention heads in both the encoder

and decoder, there is a feed-forward layer. This feed-forward network has identical

parameters for each position, described as a separate, identical linear transformation of

each element from the given sequence.

The Transformers are behind Google’s BERT and T5, OpenAI’s GPT2 and GPT3,

Facebook’s RoBERTa, XLNet, and ALBERT. They outperform many other prede-

cessors at different NLP tasks like Winograd Schema Challenge, answering questions,

understanding human linguistics, machine translation and time series prediction.

24

CHAPTER 3

IMPROVING SPACE EFFICIENCY OF WORD EMBEDDINGS

3.1 Introduction

Modern deep learning approaches for natural language processing (NLP) often rely

on vector representation of words to convert discrete space of human language into

continuous space best suited for further processing through a neural network. For a

language with vocabulary of size d, a simple way to achieve this mapping is to use one-hot

representation – each word is mapped to its own row of a d× d identity matrix. There

is no need to actually store the identity matrix in memory, it is trivial to reconstruct

the row from the word identifier. Word embedding approaches such as word2vec [8]

or GloVe [7] use instead vectors of dimensionality p much smaller than d to represent

words, but the vectors are not necessarily extremely sparse nor mutually orthogonal.

This has two benefits: the embeddings can be trained on large text corpora to capture

the semantic relationship between words, and the downstream neural network layers

only need to be of width proportional to p, not d, to accept a word or a sentence. We

do, however, need to explicitly store the d× p embedding matrix in GPU memory for

efficient access during training and inference. Vocabulary sizes can reach d = 105 or 106

[7], and dimensionality of the embeddings used in current systems ranges from p = 300

[8, 7] to p = 1024 [3]. The d× p embedding matrix thus becomes a substantial, often

dominating, part of the parameter space of a learning model. Our goal is to explore

approaches to reduce the size of the embedding matrix.

Given the current hardware limitation for training and inference, it is crucial to

be able to decrease the amount of memory these networks requires to work. A number

of approaches have been used in lowering the space requirements for word embeddings.

25

Dictionary learning [9], word embedding clustering [10] and Bit encoding [11] are among

some of the approaches that have been proposed. An optimized method for uniform

quantization of floating point numbers in the embedding matrix has been proposed

recently by May et al[12]. To compress a model for low-memory inference, Han et al. [13]

used pruning and quantization for lowering the number of parameters. For low-memory

training, methods like sparsity [14] [15] [16] and low numerical precision [17] [18] have

been proposed. In approximating matrices in general, Fourier-based approximation

methods have also been used [19, 20]. None of these approaches can match the space

saving factors achieved by word2ketXS. The methods based on bit encoding, such as

the one proposed by Andrews et al. [10], Gupta et al. [11], and May et al. [12] are

limited to space saving factor of at most 32 for 32-bit architectures. Other methods,

for example based on parameter sharing [21] or based on PCA, can offer higher saving

factors, but their storage requirement is limited by d + p, the vocabulary size and

embedding dimensionality. In more distantly related work, tensor product spaces have

been used in studying document embeddings, by using sketching of a tensor representing

n-grams in the document [22].

3.2 Our Contribution

Here, we propose tensor product-based methods, 1 word2ket and word2ketXS, for

storing word embedding matrix during training and inference in a highly efficient way.

The first method operates independently on the embedding of each word, allowing

for more efficient processing, while the second method operates jointly on all word

embeddings, offering even higher efficiency in storing the embedding matrix, at the

cost of more complex processing. Empirical evidence from three NLP tasks shows that

the new word2ket embeddings offer high space saving factor at little cost in terms of

accuracy of the downstream NLP model.

1PyTorch implementation available at https://github.com/panaali/word2ket

26

https://github.com/panaali/word2ket

3.3 From Tensor Product Spaces to word2ket Embeddings

3.3.1 Tensor Product Space

Consider two separable2 Hilbert spaces3 V and W. A tensor product space of V

and W, denoted as V ⊗W, is a separable Hilbert space H constructed using ordered

pairs v ⊗ w, where v ∈ V and w ∈ W. In the tensor product space, the addition and

multiplication in H have the following properties

c {v ⊗ w} = {cv} ⊗ w = v ⊗ {cw} , (3.1)

v ⊗ w + v′ ⊗ w = {v + v′} ⊗ w,

v ⊗ w + v ⊗ w′ = v ⊗ {w + w′} .

The inner product between v ⊗w and v′ ⊗w′ is defined as a product of individual inner

products

〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉〈w,w′〉. (3.2)

It immediately follows that ‖ v ⊗ w ‖ = ‖ v ‖ ‖w ‖; in particular, a tensor product of

two unit-norm vectors, from V and W, respectively, is a unit norm vector in V ⊗W.

The Hilbert space V ⊗W is a space of equivalence classes of pairs v ⊗ w; for example

{cv} ⊗ w and v ⊗ {cw} are equivalent ways to write the same vector. A vector in a

tensor product space is often simply called a tensor.

Let {ψj} and {φk} be orthonormal basis sets in V and W, respectively. From eq.

2That is, with countable orthonormal basis.
3We use here finite-dimensional Hilbert spaces over real numbers, that is real vector

spaces endowed with an inner product.

27

3.1 and 3.2 we can see that∑
j

cjψj

⊗
{∑

k

dkφk

}
=
∑
j

∑
k

cjdkψj ⊗ φk,

〈ψj ⊗ φk, ψj′ ⊗ φk′〉 = δj−j′δk−k′ ,

where δz is the Kronecker delta, equal to one at z = 0 and to null elsewhere. That is,

the set {ψj ⊗ φk}jk forms an orthonormal basis in V ⊗W , with coefficients indexed by

pairs jk and numerically equal to the products of the corresponding coefficients in V

and W. We can add any pairs of vectors in the new spaces by adding the coefficients.

The dimensionality of V ⊗W is the product of dimensionalities of V and W .

We can create tensor product spaces by more than one application of tensor product,

H = U ⊗ V ⊗W , with arbitrary bracketing, since tensor product is associative. Tensor

product space of the form

n⊗
j=1
Hj = H1 ⊗H2 ⊗ . . .⊗Hn

is said to have tensor order4 of n.

3.3.2 Entangled Tensors

Consider H = V ⊗ W. We have seen the addition property v ⊗ w + v′ ⊗ w =

{v + v′} ⊗ w and similar property with linearity in the first argument – tensor product

is bilinear. We have not, however, seen how to express v⊗w+ v′⊗w′ as φ⊗ψ for some

φ ∈ V, ψ ∈ W. In many cases, while the left side is a proper vector from the tensor

product space, it is not possible to find such φ and ψ. The tensor product space contains

not only vectors of the form v ⊗ w, but also their linear combinations, some of which

cannot be expressed as φ ⊗ ψ. For example, ∑1
j=0

∑1
k=1

ψj⊗φk√
4 can be decomposed as{∑1

j=0
1√
2ψj

}
⊗
{∑1

k=1
1√
2φk

}
. On the other hand, ψ0⊗φ0+ψ1⊗φ1√

2 cannot be decomposed

4Note that some sources alternatively call n a degree or a rank of a tensor. Here, we
use tensor rank to refer to a property similar to matrix rank, see below.

28

as a tensor product of two matrices; no matter what we choose as coefficients a, b, c, d,

we have

1√
2
ψ0 ⊗ φ0 + 1√

2
ψ1 ⊗ φ1 6= (aψ0 + bψ1)⊗ (cφ0 + dφ1)

= acψ0 ⊗ φ0 + bdψ1 ⊗ φ1 + adψ0 ⊗ φ1 + bcψ1 ⊗ φ0,

since we require ac = 1/
√

2, that is, a 6= 0, c 6= 0, and similarly bd = 1/
√

2, that is,

b 6= 0, c 6= 0, yet we also require bd = ad = 0, which is incompatible with a, b, c, d 6= 0.

For tensor product spaces of order n, that is, ⊗n
j=1Hj, tensors of the form v =⊗n

j=1 vj, where vj ∈ Hj, are called simple. Tensor rank5 of a tensor v is the smallest

number of simple tensors that sum up to v; for example, ψ0⊗φ0+ψ1⊗φ1√
2 is a tensor of rank

2. Tensors with rank greater than one are called entangled. Maximum rank of a tensor

in a tensor product space of order higher than two is not known in general [23].

3.3.3 The word2ket Embeddings

A p-dimensional word embedding model involving a d-token vocabulary is6 a

mapping f : [d]→ Rp, that is, it maps word identifiers into a p-dimensional real Hilbert

space, an inner product space with the standard inner product 〈·, ·〉 leading to the L2

norm. Function f is trained to capture semantic information from the language corpus

it is trained on, for example, two words i, j with 〈f(i), f(j)〉 ∼ 0 are expected to be

semantically unrelated. In practical implementations, we represent f as a collection of

vectors fi ∈ Rp indexed by i, typically in the form of d× p matrix M , with embeddings

of individual words as rows.

We propose to represent an embedding v ∈ Rp of each a single word as an entangled

5Note that some authors use rank to denote what we above called order. In the
nomenclature used here, a vector space of n ×m matrices is isomorphic to a tensor
product space of order 2 and dimensionality mn, and individual tensors in that space
can have rank of up to min(m,n).

6We write [d] = {0, ..., d}.

29

tensor. Specifically, in word2ket, we use tensor of rank r and order n of the form

v =
r∑

k=1

n⊗
j=1

vjk, (3.3)

where vjk ∈ Rq. The resulting vector v has dimension p = qn, but takes rnq =

O (rq log p/q) space. We use q ≥ 4; it does not make sense to reduce it to q = 2 since

a tensor product of two vectors in R2 takes the same space as a vector in R4, but not

every vector in R4 can be expressed as a rank-one tensor in R2 ⊗ R2.

If the downstream computation involving the word embedding vectors is limited

to inner products of embedding vectors, there is no need to explicitly calculate the

qn-dimensional vectors. Indeed, we have (see eq. 3.2)

〈v, w〉 = 〈
r∑

k=1

n⊗
j=1

vjk,
r∑

k′=1

n⊗
j=1

wjk′〉 =
r,r∑

k,k′=1

n∏
j=1
〈vjk, wjk′〉.

Thus, the calculation of inner product between two p-dimensional word embeddings, v

and w, represented via word2ket takes O (r2q log p/q) time and O (1) additional space.

In most applications, a small number of embedding vectors do need to be made

available for processing through subsequent neural network layers – for example, em-

beddings of all words in all sentences in a batch. For a batch consisting of b words,

the total space requirement is O (bp+ rq log p/q), instead of O (dp) in traditional word

embeddings.

Reconstructing a b-word batch of p-dimensional word embedding vectors from

tensors of rank r and order n takes O (brpn) arithmetic operations. To facilitate parallel

processing, we arrange the order-n tensor product space into a balanced tensor product

tree (see Figure 3), with the underlying vectors vjk as leaves, and v as root. For example,

for n = 4, instead of v = ∑
k((v1k⊗v2k)⊗v3k)⊗v4k we use v = ∑

k(v1k⊗v2k)⊗(v3k⊗v4k).

Instead of performing n multiplications sequentially, we can perform them in parallel

along branches of the tree, reducing the length of the sequential processing to O (log n).

Typically, word embeddings are trained using gradient descent. The proposed

30

embedding representation involves only differentiable arithmetic operations, so gradients

with respect to individual elements of vectors vjk can always be defined. With the

balanced tree structure, word2ket representation can be seen as a sequence of O (log n)

linear layers with linear activation functions, where n is already small. Still, the gradient

of the embedding vector v with respect to an underlying tunable parameters vlk involves

products ∂
(∑

k

∏n
j=1 vjk

)
/∂vlk = ∏

j 6=l vjk, leading to potentially high Lipschitz constant

of the gradient, which may harm training. To alleviate this problem, at each node in

the balanced tensor product tree we use LayerNorm [24].

Figure 3: Architecture of the word2ket (left) and word2ketXS (right) embeddings. The

word2ket example depicts a representation of a single-word 256-dimensional embedding

vector using rank 5, order 4 tensor ∑5
k=1

⊗4
j=1 vjk that uses twenty 4-dimensional

vectors vjk as the underlying trainable parameters. The word2ketXS example depicts

representation of a full 81-word, 16-dimensional embedding matrix as ∑5
k=1

⊗4
j=1 Fjk

that uses twenty 3× 2 matrices Fjk as trainable parameters.

31

3.4 Linear Operators in Tensor Product Spaces and word2ketXS

3.4.1 Linear Operators in Tensor Product Spaces

Let A : V → U be a linear operator that maps vectors from Hilbert space V into

vector in Hilbert space U ; that is, for v, v′,∈ V, α, β ∈ R, the vector A(αv + βv′) =

αAv + βAv′ is a member of U . Let us also define a linear operator B :W → Y .

A mapping A⊗B is a linear operator that maps vectors from V ⊗W into vectors

in U ⊗ Y . We define A⊗B : V ⊗W → U ⊗Y through its action on simple vectors and

through linearity

(A⊗B)
∑

jk

ψj ⊗ φk

 =
∑
jk

(Aψj)⊗ (Bφk),

for ψj ∈ V and φk ∈ U . Same as for vectors, tensor product of linear operators is bilinear∑
j

ajAj

⊗ (∑
k

bkBk

)
=
∑
jk

ajbk (Aj ⊗Bk) .

In finite-dimensional case, for n × n′ matrix representation of linear operator A

and m×m′ matrix representing B, we can represent A⊗ B as an mn×m′n′ matrix

composed of blocks ajkB.

3.4.2 The word2ketXS Embeddings

We can see a p-dimensional word embedding model involving a d-token vocabulary

as a linear operator F : Rd → Rp that maps the one-hot vector corresponding to a word

into the corresponding word embedding vector. Specifically, if ei is the i-th basis vector

in Rd representing i-th word in the vocabulary, and vi is the embedding vector for that

word in Rp, then the word embedding linear operator is F = ∑d
i=1 viei

T . If we store the

word embeddings a d× p matrix M , we can then interpret that matrix’s transpose, MT ,

as the matrix representation of the linear operator F .

Consider q and t such that qn = p and tn = d, and a series of n linear operators

32

Fj : Rt → Rq. A tensor product ⊗n
j=1 Fj is a Rd → Rp linear operator. In word2ketXS,

we represent the d× p word embedding matrix as

F =
r∑

k=1

n⊗
j=1

Fjk, (3.4)

where Fjk can be represented by a q × t matrix. The resulting matrix F has dimension

p× d, but takes rnqt = O (rqtmax(log p/q, log d/t)) space. Intuitively, the additional

space efficiency comes from applying tensor product-based exponential compression not

only horizontally, individually to each row, but horizontally and vertically at the same

time, to the whole embedding matrix.

We use the same balanced binary tree structure as in word2ket. To avoid recon-

structing the full embedding matrix each time a small number of rows is needed for a

multiplication by a weight matrix in the downstream layer of the neural NLP model,

which would eliminate any space saving, we use lazy tensors [25, 26]. If A is an m× n

matrix and matrix B is p× q, then ijth entry of A⊗B is equal to

(A⊗B)ij = ab(i−1)/pc+1,b(j−1)/qc+1bi−b(i−1)/pcp,j−b(j−1)/qcq.

As we can see, reconstructing a row of the full embedding matrix involves only single

rows of the underlying matrices, and can be done efficiently using lazy tensors.

3.5 Experimental Evaluation of word2ket and word2ketXS in NLP Tasks

In order to evaluate the ability of the proposed space-efficient word embeddings in

capturing semantic information about words, we used them in three different downstream

NLP tasks: text summarization, language translation, and question answering. In

all three cases, we compared the accuracy in the downstream task for the proposed

space-efficient embeddings with the accuracy achieved by regular embeddings, that is,

embeddings that store p-dimensional vectors for d-word vocabulary using a single d× p

matrix.

33

Table 1.: Results for the GIGAWORD text summarization task using Rouge-1, Rouge-2,

and Rouge-L metrics. The space saving factor is defined as the total number of parameters

for the embedding divided by the total number of parameters in the corresponding

regular embedding.

Embedding Order/Rank Dim RG-1 RG-2 RG-L #Params Space saving

factor

Regular 1/1 256 35.80 16.40 32.47 7,789,568 1

word2ket 4/1 256 33.65 14.87 30.47 486,848 16

word2ketXS 2/10 256 34.59 15.90 31.35 56,000 139

word2ketXS 4/1 256 34.05 15.39 30.75 224 34,775

Regular 1/1 8,000 36.71 17.48 33.37 243,424,000 1

word2ketXS 3/10 8,000 35.17 16.35 31.72 19,200 12,678

In text summarization experiments, we used the GIGAWORD text summarization

dataset [27] using the same preprocessing as [28], that is, using 200K examples in training.

We used an encoder-decoder sequence-to-sequence architecture with bidirectional forward-

backward RNN encoder and an attention-based RNN decoder [29], as implemented in

PyTorch-Texar [30]. In both the encoder and the decoder we used internal layers with

dimensionality of 256 and dropout rate of 0.2, and trained the models, starting from

random weights and embeddings, for 20 epochs. We used the validation set to select

the best model epoch, and reported results on a separate test set. We used Rouge-1,

Rouge-2, and Rouge-L [31] as evaluation metrics. Rouge-1 and Rouge-2 measures the

number of unigram and bigram that overlaps between the model predictions and the

true labels respectively. Rouge-L measures the number of longest matching sequence of

words using longest commons subsequence method.

34

Table 2.: Results for the IWSLT2014 German-to-English machine translation task. The

space saving factor is defined as the total number of parameters for the embedding

divided by the total number of parameters in the corresponding regular embedding.

Embedding Order/Rank Dimensionality BLEU #Params Space saving factor

Regular 1/1 256 26.44 8,194,816 1

word2ketXS 2/30 400 25.97 214,800 38

word2ketXS 2/10 400 25.33 71,600 114

word2ketXS 3/10 1000 25.02 9,600 853

In addition to testing the regular dimensionality of 256, we also explored 8000, but

kept the dimensionality of other layers constant. Increasing the dimension from 256 to

8,000 leads to a better performance but incur additional memory and computation costs.

The word2ketXS is able to gain this performance increase while keeping the memory

footprints very low.

The results in Table 1 show that word2ket can achieve 16-fold reduction in trainable

parameters at the cost of a drop of Rouge scores by about 2 points. This roughly

translates to 2 percent less number of overlapping words between the machine generated

summary and the reference. As expected, word2ketXS is much more space-efficient,

matching the scores of word2ket while allowing for 34,000 fold reduction in trainable

parameters. More importantly, it offers over 100-fold space reduction while reducing

the Rouge scores by only about 0.5. Thus, in the evaluation on the remaining two NLP

tasks we focused on word2ketXS.

The second task we explored is German-English machine translation, using the

IWSLT2014 (DE-EN) dataset of TED and TEDx talks as preprocessed in [32]. We used

the same sequence-to-sequence model as in GIGAWORD summarization task above.

35

Table 3.: Results for the Stanford Question Answering task using DrQA model. The

space saving factor is defined as the total number of parameters for the embedding

divided by the total number of parameters in the corresponding regular embedding.

Embedding Order/Rank F1 #Params Space saving factor

Regular 1 72.73 35,596,500 1

word2ketXS 2/2 72.23 24,840 1,433

word2ketXS 4/1 70.65 380 93,675

We explored embedding dimensions of 100, 256, 400, 1000, and 8000 by using different

values for the tensor order and the dimensions of the underlying matrices Fjk.

We used BLEU score [33] to measure test set performance. The BLEU metric is

defined for a range of 0 to 1 and BLEU score of 1 shows a perfect translation. BLEU

evaluates how similar a machine translation is to a human reference translation, taking

into account translation length, word choice, and word order. The results in Table 2

show a drop of about 1 point on the BLEU scale for 100-fold reduction in the parameter

space, with drops of 0.5 and 1.5 for lower and higher space saving factors, respectively.

Increasing the dimensions leads to better performance. We noticed that for experiments

with the same number of parameters, i.e., same memory footprints, models with larger

dimensions generally lead to better performance. However, this increase in dimension

might introduce some additional computation time.

The third task we used involves the Stanford Question Answering Dataset (SQuAD)

dataset. We used the DrQA’s model [34], a 3-layer bidirectional LSTMs with 128 hidden

units for both paragraph and question encoding. We trained the model for 40 epochs,

starting from random weights and embeddings, and reported the test set F1 score. DrQA

uses an embedding with vocabulary size of 118,655 and embedding dimensionality of

36

300. As the embedding matrix is larger, we can increase the tensor order in word2ketXS

to four, which allows for much higher space savings.

Results in Table 3 show a 0.5 point drop in F1 score with 1000-fold saving of the

parameter space required to store the embeddings. For order-4 tensor word2ketXS, we

see almost a 105-fold space saving factor, at the cost of a drop of F1 by less than two

points, that is, by a relative drop of less than 3%. We also investigated the computational

overhead introduced by the word2ketXS embeddings. While the training time increased,

as shown in Fig. 4, the dynamics of model training remains largely unchanged. For

tensors order 2, the training time for 40 epochs increased from 5.8 for the model using

regular embedding to 7.4 hours for the word2ketXS-based model. Using tensors of

order 4, to gain additional space savings, increased the time to 9 hours. Though we

see a trade-off between memory usage and increased training time, for most practical

purposes, the gain is much more than the time we lose. For example, for tensor order

2, we get a 99.93% decrease in memory usage by increasing training time by 27%. We

Figure 4: Dynamics of the test-set F1 score on SQuAD dataset using DrQA model

with different embeddings: rank-2 order-2 word2ketXS, rank-1 order-4 word2ketXS, and

regular embedding.

37

estimate the increase in inference time is in the same order as the increase in training

time. Each run was executed on a single NVIDIA Tesla V100 GPU card, on a 2 Intel

Xeon Gold 6146 CPUs, 384 GB RAM machine.

The results of the experiments show substantial decreases in the memory footprint

of the word embedding part of the model, used in the input layers of the encoder and

decoder of sequence-to-sequence models. These also have other parameters, including

weight matrices in the intermediate layers, as well as the matrix of word probabilities

prior to the last, softmax activation, that are not compressed by our method. During

inference, embedding and other layers dominate the memory footprint of the model.

Recent successful transformer models like BERT by [3], GPT-2 by [35], RoBERTa by

[36] and Sparse Transformers by [37] require hundreds of millions of parameters to work.

In RoBERTaBASE, 30% of the parameters belong to the word embeddings.

During training, there is an additional memory need to store activations in the

forward phase in all layers, to make them available for calculating the gradients in the

backwards phase. These often dominate the memory footprint during training, but one

can decrease the memory required for storing them with e.g. gradient checkpointing

[38] used recently in [37].

38

Figure 5: Test set questions and answers from DrQA model trained using rank-1 order-4

word2ketXS embedding that utilizes only 380 parameters (four 19 × 5 matrices Fjk,

see eq. 3.4) to encode the full, 118,655-word embedding matrix. As each parameter

is saved as a single-precision floating-point number, this translates to 1.5 Kilobytes

memory usage. Here the True Answers are the manually labeled and the model is able

to correctly answer the questions by a F1 measure of 70.65. The two points loss in F1

compared to the regular trained model is hardly noticeable in practice. We did not

notice any trends in which types of questions either consistently remained correct or

consistently were incorrect when using the word2ket embeddings as compared to the

regular embeddings.

39

CHAPTER 4

IMPROVING SPACE EFFICIENCY OF TRANSFORMER MODEL

4.1 Introduction

Natural language models involve large number of parameters. A single encoder-

decoder Transformer [4] in its base variant has about 44 million parameters, not counting

the word embedding matrix, which adds another 10 million or more, depending on

the chosen vocabulary or tokenization scheme. Base variant of encoder-only BERT [3],

including the embedding, has about 108 million parameters. GPT-3 [39] has about 175

billion parameters, and the largest of the Switch Transformer [40] models has 1.5 trillion.

This explosion in the model size has led to increased interest in approaches for reducing

the number of parameters in the model.

Models with high-dimensional parameter space have much lower intrinsic dimension

[41], that is, training trajectory can be successfully restricted to a random, smaller-

dimensional subspace, even though training a small-parameter architecture is often less

successful. These observations have been recently extended to the fine-tuning trajectories

of language models [42]. Lottery ticket hypothesis [43, 44], recently demonstrated to

hold also for language model fine-tuning [45, 46], shows that smaller subnetworks can be

selected from a large model, re-trained in isolation, and perform as well as the large model;

what those subnetworks are is not known a prior, in absence of the trained large model,

though. Some approaches for reducing model size build on this observation to train a

smaller model based on an existing large model, for example a 66 million parameter

DistillBERT [47] student has been distilled from 108 million parameter BERT-base [3]

teacher with little loss in quality. Many other approaches train a reduced-parameter

model de novo, without relying on an already trained large model. For example, DeLighT

40

[48] uses an alternative parameterization of the multi-headed self-attention based on

group linear transform to reduce a 62 million parameter Transformer to 22 million.

One simple way to reduce model size involves factorized matrix representations.

ALBERT [49] employs a rank r decomposition of a d× nvocab embedding matrix storing

d-dimensional embedding vectors for each of the nvocab tokens by using a stack of two

linear layers, d × r on top of r × nvocab. Similar low-rank decomposition is also used

implicitly in the multi-headed self-attention in the generic Transformer [4] with hidden

dimension d and nheads self-attention heads. In each Transformer head, a r = d/nheads-

rank factorized representation involving d×d/nheads key (K) and query (Q) matrices are

used, with the pairwise self-attention scores for sequence x calculated using xTKTQx,

instead of xTWx involving a full general attention d×d trainable matrix W as originally

considered in trainable-attention encoder-decoder LSTM models [29]. In both cases,

the models are trained from a random initialization of the factorized parameter space,

instead of attempting to find the lowest-error factorized representation of an already

trained original model.

We explore here a Transformer model that uses an alternative way to decompose a

matrix into two smaller matrices. Instead of standard low-rank factorization as above,

it involves reshaping and reordering matrix dimensions prior to the decomposition, and

is equivalent to a sum of Kronecker products with an efficient implementation. For non-

square matrices, the approach allows for increased reduction in parameters for the same

decomposition rank. For square matrices, the benefits come from increased expressiveness

of the decomposition for the same rank, allowing for reducing the rank needed to preserve

model accuracy, and thus reducing the model size. Our main contribution is proving that

stacking multiple linear layers decomposed this way increases the expressiveness of the

network, unlike stacking multiple low-rank layers factorized in the standard way, which

can only map into a subspace of dimensionality equal to the rank. Empirically, we show

that the decomposition can reduce the size of a simple encoder-decoder Transformer to

41

as little as 4 million parameters, including 2 million for the model and 2 million for the

embeddings. The technique can be employed automatically to any matrix, including

embedding, dense, attention, and output layers, without requiring any modification of

the model architecture.

Parameterized hypercomplex multiplication (PHM) linear layers [50] has an ap-

proach that most closely related to ours. PHM linear layers [50] arise from generalizing

hypercomplex number layers [51] to arbitrary dimensionality r, with the arithmetic

over the numbers learned during training. For a given dimensionality r, the arithmetic

takes form of a sum of r Kronecker products. Irrespective of the original matrix size

n×m, each Kronecker product involves a small r × r matrix and a larger n/r ×m/r

matrix, which together have r3 + nm/r trainable parameters. For r used in practice,

the second term dominates, resulting in r-fold reduction in size. PHM layers with r as

large as 16 have been demonstrated to be effective, leading to a reduction of a 44 million

parameter Transformer to a 2.9 million parameter PHM-Transformer. These numbers

do not include the embedding matrix for token embeddings which is not reduced in size

by the PHM approach; and which for example for 32, 000 BPE tokens requires about

16 million parameters.

Our word2ket results from Section 3, as well as results from PHM [50], Kronecker-

based convolutional [52] and recurrent networks [53], demonstrate that a sum of Kro-

necker products leads to very compact representations. Here, we advance theoretical

understanding of why this low-rank representation has advantages in terms of expressiv-

ity compared to a standard matrix factorization with the same rank. We also provide a

more efficient, more general Kronecker-based representation. This approach can be used

in linear transformations anywhere in the model and unlike PHM it also applies to em-

bedding matrices. To represent an n×m matrix, our approach requires 2r
√
mn instead

of r3 + nm/r parameters required by PHM. For example, for r = 16, the highest used

by PHM, for a Transformer with hidden dimension of 512, each 512× 2048 feed-forward

42

matrix in the self-attention head would be reduced from 1 million parameters to 69,632

parameters by PHM, but to 16,384 by our approach.

Kronecker product of two matrices is a concrete-basis representation of a finite-

dimensional linear operator defined by a tensor product of two underlying linear operators.

Thus, Kronecker-product-based representations, including PHM layers and ours, can

be seen as special case of a more general family of higher-order tensor-product-based

representations. Kronecker-based representation unfolds a n × m matrix from two

smaller matrices, n1 × m1 and n2 × m2, with m = m1m2 and n = n1n2. In tensor-

based representations, this is generalized to m = ∏o
j=1 mj and n = ∏o

j=1 nj for some

tensor order o, leading to unfolding the n × m matrix from an o-way tensor that is

then decomposed using low rank leading to reduction in parameters. For example,

the tensor-train representation [54] represents a matrix using a series of core tensors

with matching ranks. Tensor decomposition has been used successfully in convolutional

networks [55, 56] and recurrent networks [57]. In the context of language models,

tensor-train representation has been used to construct tensorised embeddings [58], which

use order-three tensor representation to obtain 60-fold reduction in embedding in a

sequence-to-sequence Transformer, and also use order-six tensors to achieve almost

400-fold reduction in an LSTM model for sentiment analysis. Beyond embeddings,

Tensorized Transformer [59] uses block-term tensor decomposition – a combination of

CP and Tucker decompositions – to reduce the multi-headed self-attention layer with

nheads by a factor 1/nheads, leaving other layers intact; this allowed for reducing a 52M

Transformer down to 21M trainable parameters. So far, none of the Kronecker- or

tensor-product-based approaches have been applied comprehensively to all components

of a Transformer model – embeddings, attention, and feed-forward layers.

43

