
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2021

K-NEAREST NEIGHBORS DENSITY-BASED CLUSTERING K-NEAREST NEIGHBORS DENSITY-BASED CLUSTERING

Avory C. Bryant
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Data Science Commons, and the Theory and Algorithms Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6772

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarscompass.vcu.edu%2Fetd%2F6772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarscompass.vcu.edu%2Fetd%2F6772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6772?utm_source=scholarscompass.vcu.edu%2Fetd%2F6772&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Avory C. Bryant, August 2021

All Rights Reserved.

DISSERTATION K-NEAREST NEIGHBORS DENSITY-BASED CLUSTERING

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

AVORY C. BRYANT

B.S., Virginia Commonwealth University, USA - August 1999 to May 2003

M.S., Virginia Commonwealth University, USA - August 2003 to May 2008

Director: Dissertation Krzysztof Cios,

Professor and Chair, Department of Computer Science

Virginia Commonwewalth University

Richmond, Virginia

August, 2021

i

TABLE OF CONTENTS

Chapter Page

Table of Contents . ii

List of Tables . iii

List of Figures . iv

List of Algorithms . viii

Abstract . x

1 Introduction . 1

1.1 Overview . 1

1.2 Reconsidering DBSCAN . 4

1.3 Contributions . 12

1.4 Assumptions & Limitations . 13

2 Literature Review . 16

2.1 Introduction . 16

2.2 Density-based Clustering . 16

2.3 Level-Set-Based Methods . 18

2.4 kNN-based outlier detection . 24

2.5 kNN Graph Construction and Properties 25

2.6 Non-Parametric Density Estimation 27

3 Methodology . 31

3.1 Introduction . 31

3.2 kNN Graph . 31

3.3 k-Density . 33

3.4 k-Density Clustering . 36

3.4.1 RNN-DBSCAN . 37

3.4.2 RNN-DBSCAN : Choice of k 41

3.4.3 RNN-DBSCAN Complexity 44

3.5 Hierarchical k-Density Clustering (Hk-DC) 45

3.5.1 Hk-DC : Extracting a Flat Clustering 50

ii

3.5.2 Hk-DC : Cluster Expansion 57

3.5.3 Hk-DC : Complexity . 61

4 Results & Discussion . 64

4.1 Introduction . 64

4.2 RNN-DBSCAN . 67

4.2.1 RNN-DBSCAN : Choice of k 67

4.2.2 RNN-DBSCAN : Effect of dataset size n on k 67

4.2.3 RNN-DBSCAN : Performance Evaluation 73

4.2.4 RNN-DBSCAN : Approximate k Nearest Neighbor Results . 78

4.3 Hk-DC . 82

4.3.1 Hk-DC : Choice of k for the kNN graph 82

4.3.2 Hk-DC : Choice of min cluster size m 83

4.3.3 Hk-DC : Performance Evaluation 86

5 Conclusions . 97

Appendix A Abbreviations . 99

References . 100

Vita . 121

iii

LIST OF TABLES

Table Page

1 Matrix H Returned by Hk-DC . 51

2 Artificial Datasets . 65

3 Real-World Datasets . 66

4 Performance of RNN-DBSCAN on Artificial Datasets as Measured by

ARI and Purity . 74

5 Performance of RNN-DBSCAN on Artificial Datasets as Measured by ARI 77

6 Performance of RNN-DBSCAN on Real-World Datasets as Measured

by ARI and Purity . 79

7 Performance of RNN-DBSCAN on Real-World Datasets as Measured

by NMI . 80

8 Wilcoxon Signed-Rank Test p-values for ARI Performance in Tables 4 and 6 80

9 Performance of RNN-DBSCAN for an Approximate kNN Graph as

Measured by ARI . 82

10 Optimal Performance of Hk-DC as Measured by ARI 87

11 Performance of Hk-DC as measured by ARI 88

12 Wilcoxon Signed-Rank Test p-values for ARI Performance in Table 11 . . 93

iv

LIST OF FIGURES

Figure Page

1 Adjusted Rand Index (ARI) performance of DBSCAN forMINPTS =

1..100 for several synthetic datasets from Table 2. For each MINPTS,

the value of ε was chosen by optimizing ARI. 7

2 Example of a dataset with ground truth clustering C = (red elements,

green elements) that is not relaxed simultaneously discoverable (Definition 2). 9

3 Overview of density-based clustering approaches. 17

4 (a) Rank order r(i, ·) and nearest neighborhoods Ni,k of element i = 1,

given the order statistics of sample d(i, ·), for k ∈ {1..4}. (b) kNN

graph (k = 2) with edge weights w((i, ·)) for element i = 1. 33

5 kNN graphs ((a) k = 1 and (b) k = 2) showing the RkNN density and

k-density of vertex i = 3 (reverse nearest neighbors indicated by red arrows). 35

6 (a) Set of ε-dense vertices (colored red), (b) dense-vertex-induced sub-

graph, (c) subgraph connected components (indicated by color), and

(d) resulting k-density clustering (clusters indicated by color with

black elements indicating noise) for the kNN graph of the aggregate

dataset (see Table 2), k = 10 and ε = k. 38

7 Parameter k versus the number of clusters (log) for RNN-DBSCAN

clusterings produced over the range k = 1..100 for several datasets

from Table 2. 42

8 (a) k-density and (b) mutual reachability graph for a kNN graph (k =

2). Note here ε = k and graph edges show k-density and mutual

reachability graph edge weight. 47

9 (a) Sample dataset and (b) corresponding minimum spanning tree of

the weighted mutual reachability graph for k = n − 1 and ε = 2. In

(a), element colors represent a notional clustering with black elements

representing noise. 51

v

10 (a) Dendrogram of matrix H shown in Table 1. Note that the x-axis

represents elements, y-axis values of k′, and red lines indicate element

transitions to noise. (b) Directed rooted tree of matrix H shown in Table 1. 52

11 Hk-DC dendrograms for the dataset shown in Figure 9a. Note that

e = [1..4] ((a)-(d)), k = n − 1, m = 1, x-axis represents elements,

y-axis values of k′, and red lines indicate element transitions to noise. . . 55

12 (a) (malsc versus c)-plot (colored by gmalsc) for the dataset shown

in Figure 9, with maximal aggregate persistence flat clusterings for

c = [2..4] ((b)-(c) color indicating clusters and black points indicating

noise). Note that in (a), x-axis is malsc, y-axis is c, and color is gmalsc;

and that the parameters w = 1, k = n− 1, and m = 1 were used. 58

13 Expansion of the flat clustering (colors indicating clusters and black

points indicating noise) shown in Figure 12c for recursive = true.

Note that the directed edge indicates the assignment of noise (9)

through a cluster element (11). 60

14 Number of clusters histogram (bars) and ARI performance (maximum

solid line and at minimum k dashed line) for RNN-DBSCAN cluster-

ings produced over the range k = [1..100] using several datasets from

Table 2. Note that occurrences of number of clusters equal to 1 are

not shown. 68

15 Number of clusters histograms for RNN-DBSCAN clusterings pro-

duced over the range k = [1, 200] for the (a) t4 and (b) t7 datasets

from Table 2. Note that occurrences of number of clusters equal to 1

are not shown. RNN-DBSCAN clustering results (number of clusters,

6 and 9, determined from (a) and (b) and corresponding minimum k

values used) for the (c) t4 and (d) t7 datasets. 69

16 Clustering performance (ARI (black) and DBCV (gray)) vs. k for

RNN-DBSCAN clusterings produced over the range k = [1..100] using

several datasets from Table 2. 70

17 ARI performance vs k for RNN-DBSCAN clusterings produced over

the range k = [1..75] using several datasets from Table 2 of sizes 1K

(solid), 10K (dash), 100K (dot), and 1M (dot-dash). 72

vi

18 (a) DBSCAN and (b) RNN-DBSCAN clustering results (maximum

ARI solution) for the grid dataset from Table 2. Note that elements

colored black were identified as noise by the clusterings. 75

19 (a) ISB-DBSCAN and (b) RNN-DBSCAN clustering results (maxi-

mum ARI solution) for the flame dataset from Table 2. Note that

elements colored black were identified as noise by the clustering. 76

20 (a) IS-DBSCAN and (b) RNN-DBSCAN clustering results (maximum

ARI solution) for the d31 dataset from Table 2. Note that elements

colored black were identified as noise by the clustering. 76

21 Number of leaf vertices (scaled by n) versus m in the k-density hier-

archical clustering (H) of datasets in Tables 2 and 3 for ε = {1, 10}.
The dashed curve representing the fit over all datasets using k = n− 1. . 84

22 Optimal ARI performance versus m for datasets in Table 3 with the

large deviation in performance over m (minimum optimal ARI less

than 90% of the maximum). The ε value used corresponds to the

optimal solutions by ARI shown in the second column of Table 10. 85

23 (malsc versus c)-plots with number of cluster c shown in the x-axis,

malsc in the y-axis, and colored by gmalsc for ten datasets from Table 2. 90

24 Maximum aggregate persistence flat clustering solutions (with recur-

sive cluster expansion) for the can3147 dataset at number of clusters

c equal to three and four. Clusters are indicated by color and noise by

black elements. 91

25 Ground truth (gt) clustering of the d31 and fire datasets, and the

maximal aggregate persistence clustering (with and without cluster

expansion) for d31 at c∗ = 31 and fire at c∗ = 2. Note clusters are

indicated by color and noise by black elements. 92

26 (malsc versus c)-plot of the banknote dataset with number of cluster

in the x-axis, malsc in the y-axis, and colored by gmalsc. The ground

truth (gt) and maximal aggregate persistence clustering at c = 2 and

c = 3 are shown using a t-SNE projection of the data. Note that

recursive expansion was used and that clusters are indicated by color

and noise by black elements. 94

vii

27 (malsc versus c)-plot of the iris dataset with number of cluster in the

x-axis, malsc in the y-axis, and colored by gmalsc. The ground truth

(gt) and maximal aggregate persistence clustering at c = 2 and c = 3

are shown using a t-SNE projection of the data. Note that recursive

expansion was used and that clusters are indicated by color and noise

by black elements. 95

viii

LIST OF ALGORITHMS

Algorithm Page

1 RNNDBSCAN . 40

2 RNNDBSCAN Neighborhood . 40

3 RNNDBSCAN ExpandClusters . 41

4 HkDC . 49

5 HkDC flat clusterings . 53

6 HkDC cluster expansion . 60

ix

Abstract

DISSERTATION K-NEAREST NEIGHBORS DENSITY-BASED CLUSTERING

By Avory C. Bryant

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2021.

Director: Dissertation Krzysztof Cios,

Professor and Chair, Department of Computer Science

Traditional density-based clustering approaches rely on a distance-based param-

eter to define data connectivity and density. However, an appropriate value of this

parameter can be difficult to determine as it is highly dependent on the underly-

ing distribution of the data. In particular, distribution parameters affect the scale

of inter-group distances (e.g., variance); this dependence leads to a well-known in-

ability to simultaneously detect clusters at varying levels of density. In this work,

connectivity and density are defined according to the rank-order induced by the dis-

tance metric (i.e., invariant to the expected scale of the distances). Connectivity by

k-nearest neighbors and density by the number of reverse k-nearest neighbors (i.e.,

vertex in-degree in the directed k-nearest neighbors graph).

Two novel density-based clustering algorithms are proposed, the non-hierarchical

RNN-DBSCAN and its hierarchical generalization Hk-DC. The advantage of RNN-

DBSCAN is that it requires a single parameter k and is robust to varying levels of

cluster density, whereas Hk-DC provides an efficient solution for producing a hier-

archical clustering of RNN-DBSCAN solutions over k for a fixed density threshold.

x

Importantly, heuristics are proposed for selecting k and density threshold for RNN-

DBSCAN and Hk-DC, along with a method for extracting a flat clustering solution

from the hierarchy. Additionally, a cluster-dependent solution for handling noise is

proposed.

xi

CHAPTER 1

INTRODUCTION

1.1 Overview

Clustering is an important and challenging problem in machine learning [1] when

there is no additional information about data elements (no labels). It is generally

described as the process of grouping data elements, often according to the assumption

that intra-element pairs (within-group) are more similar than inter-element pairs

(between groups). More formally, assuming the data are a sample drawn i.i.d. from a

mixture of component densities, clustering is the task of uncovering each component’s

support (a subset of sample elements). Applications of clustering can be found in

almost any discipline; examples are image segmentation [2], document organization

[3], analysis of gene expression data [4, 5, 6, 7, 8], business [9], and engineering [10,

11].

Clustering algorithms can be categorized according to differences in their defini-

tion of a cluster and their strategy to search for clusters (brute-force being intractable

due to combinatorial explosion). A commonly used categorization identifies five, non-

mutually exclusive, types of clustering algorithms: hierarchical [12], centroid-based

[13], density-based [14], model-based [15], and grid-based [16, 17]. Additionally, clus-

tering algorithms can be categorized according to the type of grouping performed,

such as strict partitioning (elements belong to exactly one cluster) or overlapping (el-

ements may belong to more than one cluster). This work focuses on a density-based

clustering that groups data elements into a strict partitioning while also identifying

noise (elements not belonging to any cluster).

1

In density-based clustering, clusters are defined as high-density regions separated

by regions of low-density. Specifically, clusters are assumed to be disjoint, compact,

and connected subsets of the embedding space for a given density level. Several

desirable properties of density-based clustering include handling noise, discovering

clusters with arbitrary shapes, and automatically discovering the number of clusters.

Hierarchical clustering is represented as a rooted tree of clusters (tree vertices). The

tree’s root is a cluster containing all elements of a dataset, with descendant clusters

being proper subsets of their ancestors. In other words, the hierarchy consists of

multiple clusterings, such that as level (distance from the root) increases, clusterings

become more refined (number of clusters increases).

This work focuses on non-parametric, level-set density-based clustering, which

can be broken up into two tasks. First, non-parametric density estimation is applied

to identify elements lying within dense regions. Second, traversals of dense elements

define dense regions (clusters) using a definition of element reachability restricted to

dense regions. For example, one such approach, popularized by DBSCAN [14], defines

clusters as connected components of dense elements in the undirected ε-neighbors

graph, density defined by vertex degree. A common criticism of such an approach is

an inability to simultaneously discover clusters appearing at varying levels of density.

This inability, in part being due to the use of a single distance-based parameter (ε)

to define connectivity and density, ignoring differences in the scale of intra-group

distances (i.e., local cluster density).

In contrast to DBSCAN, Reverse Nearest Neighbor-DBSCAN (RNN-DBSCAN) [18]

is proposed, which defines connectivity and density by the directed k-nearest neigh-

bor (kNN) graph and vertex in-degree (i.e., number of reverse k-nearest neighbors

(RkNN) or k occurrences). The primary reasoning is that kNN graph connectivity

and the in-degree density of a cluster are invariant to the scale of its intra-cluster

2

distances. Instead, it depends on the ordering induced by the distance metric. Ad-

ditional reasoning being that k is generally considered easier to choose and does not

tend to lead to disconnected graphs (as opposed to ε), though it is less geometri-

cally intuitive. Finally, the size of the parameter input domain and solution range

is reduced making exploratory analysis more tractable. Thus, the primary goal of

this research can be described as investigating the benefits of kNN over ε-neighbors

in density-based clustering, in addition to proposing novel kNN-based variants of

existing ε-neighbors-based clustering algorithms.

As an appropriate choice of k remains sensitive to varying levels of cluster support

(size), an extension of RNN-DBSCAN, Hierarchical k-Density Clustering (Hk-DC), is

also proposed. Advantages of the hierarchical approach include the ability to discover

cluster structure at varying levels of k, an improved ability to handle noise, and an

overall better tool for exploratory data analysis. Beginning with a weighted, directed

kNN graph (edges weighted according to kNN rank), Hk-DC defines density by in-

degree, which is monotonically increasing for k. The k-density of an element is defined

as the minimum value k′ ≤ k at which an element is dense (i.e., the smallest k′NN

graph in which the element is dense). For any value k′ ≤ k, a k-density clustering

can be defined as the set of connected components in the dense-vertex subgraph

consisting of vertices/edges whose k-density and edge-weight are greater than or equal

to k′ (i.e., the RNN-DBSCAN clustering at k′). Finally, hierarchical clustering is

performed to produce all k-density clusterings over k′ = [1..k] (i.e., Hk-DC is a

hierarchical clustering over connectivity parameter k). Thus, clusters of variable size

are discovered at differing levels of k (e.g., larger clusters at larger values of k and

vice versa).

In the remainder of this Chapter, a thorough discussion on the underlying as-

sumptions and limitations of DBSCAN is given in Section 1.2, contributions of this

3

work are highlighted in Section 1.3, and underlying assumptions and limitations of

the proposed clustering algorithms are presented in Section 1.4. A review of the re-

lated literature is given in Chapter 2, while Chapters 3 and 4 present the proposed

clustering algorithms and experimental results. Finally, the findings of this work are

summarized in Chapter 5.

1.2 Reconsidering DBSCAN

DBSCAN models data by connectivity/density parameter ε and density thresh-

old parameter MINPTS, ε defining the neighborhood of an element (i.e., within

an ε distance radius), and MINPTS the minimum number of neighbors required

for a dense element (i.e., considered to be lying within a dense region). Assum-

ing a symmetric distance d(·, ·), let G = (V,E) define the undirected ε-neighbors

graph where ∀{u, v} ∈ E : d(u, v) ≤ ε. The set of core (dense) elements is defined

as the subset of V such that all members have at least MINPTS neighbors in G,

Core = {v ∈ V : |{{u, v} ∈ E}| ≥MINPTS}.

A clustering of core elements C = {C1, ..., C`} is defined by the set of connected

components in the core-vertex-induced subgraph of G, (Core, {{u, v}) ∈ E : u, v ∈

Core}) ⊆ G (i.e., C is a partitioning of Core). Clusters in C are expanded by border

elements defined as the set of non-core elements belonging to the ε-neighborhood

of any core element, Border = {v ∈ V \ Core : ∪{u,v}∈E{u} ∩ Core 6= ∅}. A

border element v ∈ Border is assigned to a cluster Ci ∈ C where ∃u ∈ Core :

u ∈ Ci ∧ {u, v} ∈ E. As multiple such Ci’s may exist for v, DBSCAN is non-

deterministic for border elements with ties broken at random (dependent on data

ordering). Remaining elements are identified as noise, Noise = V \ (Core+Border).

Ignoring the non-deterministic nature of assigning border elements to clusters, the

minimum size of a cluster Ci ∈ C is MINPTS.

4

Recall DBSCAN ’s inability to simultaneously discover clusters at varying levels

of density. To simplify the discussion of this inability, let us begin by ignoring the

existence of border or noise elements, in which case a ground truth clustering C is

said to be simultaneously discoverable iff C is strictly simultaneously discoverable

(Definition 1).

Definition 1 (Strictly Simultaneously Discoverable). For ground truth clustering

C = {C1, .., C`}, C is strictly simultaneously discoverable by DBSCAN (with density

function fε(·)) iff ε and MINPTS exists such that:

1. ε ≥ εlb where εlb = max (εC1 , .., εC`
) and εCi

is equal to the maximum edge

weight in the minimum spanning tree of Ci (i.e., the minimum value of ε such

that all members of cluster Ci belong to the same connected component in the

ε-neighbors graph).

2. ε < εub where εub = min {d(x,y) : (x ∈ Ci ∧ y ∈ Cj 6=i) ∧ Ci, Cj ∈ C} (i.e., no

two clusters belong to the same connected component in the ε-neighbors graph)

3. MINPTS ≤ min{x ∈ C : fε(x)} (i.e, all elements are dense or ∀x ∈ C : fε(x) ≥

MINPTS)

It follows from Definition 1 that C is strictly simultaneously discoverable by DB-

SCAN iff εub > εlb for ε ∈ [εlb, εub) and MINPTS ≤ min{x ∈ C : fε(x)}. In other

words, the minimum inter-cluster distance must be larger than the maximum of the

minimum intra-cluster distances required to connect all member elements of each

cluster. Associating εCi
with the density of Ci (e.g., higher values of εCi

correspond

to lower density), one can say that discoverability is dependent on the lowest density

cluster in C. Specifically, the lowest density cluster defines the threshold for inter-

cluster distances (i.e., the minimum distance at which two clusters are considered

5

separable). As density and this threshold are negatively correlated (i.e., as density

decreases, the threshold will increase), this dependence becomes increasingly trou-

blesome as the range of cluster densities increases. For example, two highly dense

clusters that are separable relative to their densities may be otherwise non-separable

given the existence of a third cluster of lower density.

Commonly, parameter selection of DBSCAN is performed over ε for some fixed

value of MINPTS, implicitly assuming the existence of an appropriate value of

ε for any MINPTS. In Definition 1, one sees the reasoning behind such an

assumption given the dependence between MINPTS and ε (i.e., MINPTS ≤

min{x ∈ C : fε(x)}). However, one also sees the flaw in this assumption as MINPTS

is bounded within the range defined by ε ∈ [εlb, εub). Figure 1 highlights this fact

where DBSCAN clustering performance in several cases is highly dependent on the

choice of MINPTS independent of ε. In any case, an intuitive positive correlation

between ε and MINPTS exists given that ∀x ∈ C : ε ≤ ε′ ←→ fε(x) ≤ fεε(x). Note

that the domain of ε may be defined discretely according to the pairwise distances of

C as connectivity and density are only affected at these distances.

From Definition 1, one can also see the dependence of DBSCAN on the scale

of intra-cluster distances of C. Specifically, consider the minimum distance εC of a

cluster C ∈ C. Assume that distance d(·, ·) is absolute homogeneous (e.g., Euclidean)

such that ∀x,y ∈ C and α ∈ R, |α|d(x,y) = d(αx, αy) where α controls the scale of

intra-cluster distances in C. Note the orderings induced by d(·, ·) on C are invariant

to the choice of α (i.e., ∀x,y, z ∈ C : d(x,y) ≤ d(y, z)←→ |α|d(x,y) ≤ |α|d(y, z)).

Consequently, the set of edges defining the minimum spanning tree of C are likewise

invariant to α (assuming identical orderings in the case of ties), though |α| scales their

weights. Thus, for any α, C is connected at minimum distance |α|εC (i.e., dependent

on the scale of intra-cluster distances of C). In contrast, the kNN graph of C is

6

Fig. 1.: Adjusted Rand Index (ARI) performance of DBSCAN forMINPTS = 1..100

for several synthetic datasets from Table 2. For each MINPTS, the value of ε was

chosen by optimizing ARI.

identical for any α (i.e., invariant to the scale of intra-cluster distances of C).

Extending Definition 1, relax the strictly dense assumption by allowing for noise

elements, continuing to ignore the handling of border elements. Now, a ground truth

clustering C is said to be simultaneously discoverable iff C is relaxed simultaneously

discoverable (Definition 2).

Definition 2 (Relaxed Simultaneously Discoverable). For ground truth clustering

C = {C1, .., C`}, C is relaxed simultaneously discoverable by DBSCAN (with density

function fε(·)) iff ε and MINPTS exists such that:

1. C ′ = {C ′1, .., C ′`} such that ∀i = 1..` : C ′i ⊆ Ci where C ′i = {x ∈ Ci : fε(x) ≥

MINPTS} and C ′i 6= ∅ (i.e., a non-empty subset of each cluster at density level

MINPTS).

2. C ′ is strictly simultaneously discoverable (i.e., dense elements of C are strictly

7

simultaneously discoverable at density level MINPTS)

By introducing noise (Definition 2) DBSCAN relaxes the definition of simulta-

neously discoverable to allow for error (i.e., cluster elements incorrectly identified as

noise, N = {x ∈ C : fε(x) < MINPTS}). Note that if ground truth clustering C

satisfies Definition 1, then C also satisfies Definition 2, else MINPTS must be cho-

sen such that MINPTS > min{x ∈ C : fε(x)} regardless of ε. As such, MINPTS

controls the amount of error in a DBSCAN clustering (e.g., increasing MINPTS

increases the size of N). Following this reasoning, the optimal value of MINPTS is

the minimum value at which such a C ′ (Definition 2) exists (i.e., the clustering that

minimizes the error or size of N). Note that even with the introduction of noise, a

ground truth clustering C may exist such that C is not relaxed simultaneously discov-

erable (Definition 2). For example, the ground truth clustering C shown in Figure 2,

which is not relaxed simultaneously discoverable for two reasons. First, for any ε, all

elements in the green cluster are denser than (fε(x) is greater than or equal to) all

elements in the red cluster (i.e., for any value of MINPTS that identifies a green

element as noise, all red elements are identified as noise). Second, there exists an

element x in the red cluster with the following properties: (1) x defines the minimum

inter-cluster distance, and (2) for any ε, fε(x) is greater than or equal to the density

of all other elements in the red cluster.

The implicit assumption of DBSCAN is that by removing elements as noise

in increasing order by density (e.g., by increasing MINPTS or decreasing ε), one

increases the upper bound of ε and/or decreases its lower bound (i.e., one assumes

that a relaxed simultaneously discoverable solution is approached such that εub > εlb

for C ′). Ignoring the requirement that noise elements are determined according to

density, the optimal relaxed simultaneously discoverable solution (i.e., the solution

8

Fig. 2.: Example of a dataset with ground truth clustering C = (red elements, green

elements) that is not relaxed simultaneously discoverable (Definition 2).

9

which minimizes the size of N) can be determined by directly removing elements that

define the ε bounds (e.g., element x or y, which define the minimum inter-cluster

distance εub). As such, in DBSCAN, the removal of low-density elements can be

viewed as a heuristic for identifying such elements where ground truth is unknown.

Expressly, one assumes that elements that define the ε bounds correspond to low-

density elements.

In the remainder of this section, an argument is made for the correctness of

this assumption. To simplify the discussion, as in Definition 1, assume ε = εlb =

max (εC1 , .., εC`
), MINPTS = min{x ∈ C : fε(x)} , and εlb ≥ εub (i.e., C is not

strictly simultaneously discoverable). Furthermore, assume that ε is fixed such that

the amount of noise elements is increased by increasing MINPTS. Of course, one

could fix MINPTS and decrease ε, or adjust both simultaneously to obtain sim-

ilar (increased noise) though non-identical results. Let MINPTS be increased to

MINPTS ′ = MINPTS + 1 with new upper and lower bounds ε′ub and ε′lb. At a

minimum, one needs to make the argument that removing low-density elements (i.e.,

those below density level MINPTS ′) is more likely to result in a case where εub < ε′ub

or εlb > ε′lb than removing elements at random.

For the upper bound (minimum inter-cluster distance), the argument is relatively

straightforward. Note that by definition, minimum inter-cluster distance elements lie

on the border between their respective clusters and that such elements should likewise,

by definition, lie in regions of relatively low density (for their clusters). As such, by

selecting a low-density element, one increases the likelihood of the selected element

being a border element, which likewise increases the likelihood of said element defining

the upper bound (i.e., those elements whose removal would increase the upper bound).

For the lower bound (maximum of the maximum edge weight in the minimum

spanning tree of each cluster), the argument is more complex. Given cluster C ∈ C

10

with minimum spanning tree T and maximum edge weight εC , removing element

x ∈ C decreases εC iff x belongs to a single edge in T whose weight is equal to εC ,

and the multiplicity of εC in the multiset of T ’s edge weights is equal to 1. In other

words, when x belongs to multiple edges in T , the maximum edge weight in the new

minimum spanning tree is guaranteed to be greater than or equal to εC . However, if

εC decreases given the removal of x, then by definition, x has the largest 1-nearest

neighbor distance in C. Note that density in DBSCAN can be equivalently defined by

MINPTS-nearest neighbor distance, such that the lowest density element in C has

the largest MINPTS-nearest neighbor distance. Thus, assuming a positive correla-

tion between 1- and MINPTS-nearest neighbor distance (the degree of correlation

decreasing as MINPTS increases), one can say that removing the lowest density

element is more likely to decrease the lower bound than random selection.

Similar reasoning can be applies in the kNN graph, where a clustering is discov-

erable where the minimum k required to ensure intra-cluster connectivity (klb) must

be less than the minimum k of an inter-cluster edge (kub). Here the removal of low-

density elements is expected to decrease klb or increase kub. The assumption being that

those likely to have the above effect correspond to isolated vertices in the kNN graph

(i.e., those with low in-degree). Finally, the handling of border elements (assignment

of noise elements to clusters) can be viewed as a heuristic for further reducing error

(number of noise elements) after cluster discovery. In general, the interpretation of

noise should be consistent with their usage (i.e., increasing cluster separability). In

other words, though they may be viewed as outliers, this interpretation is inconsistent

with their usage.

11

1.3 Contributions

Due to the popularity of DBSCAN (owing to its simplicity), there exists a long

list of related works seeking to improve upon its results (see Section 2.3). This work

follows along this vain by suggesting two novel level-set, density-based clustering algo-

rithms. First, RNN-DBSCAN is introduced, which replaces ε-neighborhoods connec-

tivity with kNN and total-degree density by in-degree (RkNN). Novel contributions

of this work include the following:

• Empirical demonstration that the model could be reduced to a single parameter

k, using expected in-degree (k) as a natural choice of the density threshold.

• Introduction of a cluster-dependent expansion procedure, with expansion radius

dependent on local cluster density.

• Introduction of two heuristics for the selection of an optimal k based on model

stability and an internal evaluation measure.

• Empirical demonstration of the applicability of approximate kNN to improve

run-time complexity with minimal impact to clustering performance.

Second, the Hk-DC algorithm is introduced, which provides a hierarchical solu-

tion for efficiently computing RNN-DBSCAN -like clusterings over a range of connec-

tivity parameter k, reintroducing the density threshold parameter. Novel contribu-

tions of this work include the following:

• Introduction of a kNN graph structure and density measure for efficiently com-

puting RNN-DBSCAN -like clusterings over a range of connectivity parameters

k.

• Introduction of a non-distance-based, recursive cluster expansion procedure.

12

• Introduction of a heuristic for selecting a final flat clustering over a density

threshold range based on cluster persistence.

1.4 Assumptions & Limitations

As is generally the case with real-world data, in clustering, one implicitly as-

sumes that elements form natural groups, where each group is assumed to be depen-

dent on a unique component distribution. Furthermore, in distance-based clustering,

one assumes a meaningful distance measure useful in distinguishing between groups.

Specifically, one assumes the scale of inter-group distances dominates that of intra-

group distances (i.e., groups are separable within the data embedding). However, this

assumption becomes increasingly tenuous as dimensionality increases due to various

reasons (e.g., poor discrimination of distances and the presence of irrelevant or redun-

dant features in the embedding [19]). In particular, poor discrimination due to the

concentration of distances phenomenon where distance becomes indiscernible (i.e.,

the curse of dimensionality). For example, as dimensionality increases, an element’s

nearest neighbor distance approaches its farthest neighbor distance [20].

Given these concerns, a common approach is to apply unsupervised dimensional-

ity reduction to the data. For example, using matrix factorization (PCA [21], manifold

learning (UMAP [22]), or Autoencoders [23]. Note that here one primarily addresses

the problem of redundant features in the embedding, the goal being to reduce the

data embedding to its lower intrinsic dimensionality such that distances are mean-

ingful. Another approach is subspace clustering, where distance becomes dependent

on local feature selection/transformation of the embedding [16, 24, 25]. In this case,

one primarily addresses the problem of irrelevant features, the goal being to limit

distance calculations to a subset of group-dependent relevant features.

This work does not directly address these concerns, though undoubtedly, some

13

solutions may be directly applicable (e.g., by first applying PCA to the data). In-

stead, a discussion on the effects of high-dimensionality on the kNN graph is provided.

In [20], the question of when nearest neighbors queries are meaningful in high dimen-

sional embeddings is addressed, specifically, scenarios likely to retain good separation

between the farthest and nearest neighbors. Such scenarios include instances where

the query is increasingly close to a sample element and falls within some group. Note

that both scenarios correspond to the case of clustering using the kNN graph.

Such queries remain meaningful due to the effect of distance concentration on

multimodal data (i.e., assuming natural groups). Specifically, while intra-group dis-

tances do become meaningless (each group corresponding to a unimodal distribution),

inter-group distances retain meaning. Thus, nearest neighbors are likely to belong to

the same group, whereas the ordering of intra-group neighbors becomes increasingly

meaningless (e.g., the ordering of k-nearest neighbors). However, this does affect the

use of vertex in-degree to estimate density.

In [26], this phenomenon is further investigated for the distribution of RkNN

(referred to as k-occurrences) as dimensionality increases. Specifically, in low-

dimensions, this distribution resembles a random graph model (i.e., Erdos-Renyi,

which is binomial and Poisson in the limit), whereas dimensionality increases the

distribution skews to the right, becoming log-normal. The positive skew is due to

the emergence of hubs, elements with a high number of RkNN (i.e., popular nearest

neighbors). In multimodal data, hubs correspond to elements closer to the mean of

a component distribution, expected distance to the mean becoming smaller than the

distance to other elements (i.e., spatial centrality becomes amplified). Note that anti-

hubs also emerge with low in-degree that are farthest away from their component’s

mean.

In distance-based clustering, this is problematic as hubs exhibit both relatively

14

low intra- and inter-group distances (i.e., they are close to both inter- and intra-

group elements). Thus, the effect of hubs on clustering requires further investigation,

specifically with respect to the distance induced ordering of their intra- versus inter-

group elements.

15

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents a review of the related literature, with a primary focus

on level-set density-based clustering and the kNN graph. Section 2.2 provides an

overview of density-based clustering approaches, and Section 2.3 a more thorough

discussion on level-set density-based clustering approaches. Section 2.4 discusses the

related field of outlier detection, while Section 2.5 discusses kNN graph construction

cost and connectivity properties. Finally, Section 2.6 provides a formal discussion on

non-parametric density estimation techniques seen in level-set density-based cluster-

ing.

2.2 Density-based Clustering

Density-based clustering can be described as a two-step procedure, density esti-

mation followed by cluster discovery (see Figure 3 for an overview of approaches). For

density estimation, algorithms can be categorized as parametric or non-parametric.

In parametric, density estimation is performed using a finite mixture model where

component densities are assumed to be of parametric form (e.g., Gaussian). As an

example, assuming some number of clusters, model parameters can be estimated us-

ing the EM algorithm [15] (density estimation), with each element being assigned to a

component using Bayes rule (cluster discovery). The parametric form of density-based

clustering is commonly referred to as model-based clustering [27].

In non-parametric, density estimation is not restricted by assumptions regard-

16

Fig. 3.: Overview of density-based clustering approaches.

ing the parametric form of the underlying density function (e.g., histograms, naive

estimator, kernel estimator, or nearest neighbor method [28]). Such estimates are

not parameter-free (e.g., bandwidth for kernel estimators or k for nearest neighbor

methods); instead, parameters result in less rigid distributional assumptions of the

data. Specifically, the data are not assumed to be drawn from a known parametric

family of distributions. For example, in a kernel estimator, the bandwidth parameter

controls the estimator’s smoothness, a trade-off between the estimator’s bias and vari-

ance. Note that for efficiency, density estimates with compact support are commonly

preferred (i.e., estimates whose support size are not of order n).

Non-parametric density estimate approaches can be further categorized accord-

ing to their approach to cluster discovery, identifying level-sets (density borders) or

density peaks (mode seeking). In density peak-based clustering, cluster discovery

is performed dynamically by iteratively moving elements along the direction of the

steepest density ascent, where clusters are identified as the set of elements converging

17

to the same density peak. For example, gradient- and non-gradient-based algorithms

seen in [29, 30, 31].

Level-set-based clustering, popularized in [14], was first observed as a solution

to the chaining phenomenon in single-linkage clustering [32, 33] and later formalized

in [34]. Here a cluster is defined as a set of maximally connected elements above a

density threshold, with all such sets defining a clustering. In other words, given a

non-parametric density estimate and definition of element connectivity (e.g., a kNN

graph), a clustering is defined as the set of connected components in the dense ver-

tex subgraph of the element connectivity graph. For example, [14] defines element

connectivity by an ε-neighbors graph and element density by vertex degree. Such

a density estimate is equivalent to using a uniform or boxcar kernel estimator, with

bandwidth set to ε. Note that for efficiency, the connectivity graph generally defines

the support of each element’s density estimate.

The above description of level-set-based clustering corresponds to a single-level

case, which may be extended to the multi-level case using hierarchical clustering.

Naively, this can be performed by single-level-set clustering over a range of density

thresholds given a fixed connectivity parameter value (e.g., ε in the case of an ε-

neighborhood graph), or range of connectivity parameter values given a fixed density

threshold. Efficient examples of the latter are described in [35, 36, 37].

2.3 Level-Set-Based Methods

As previously stated, level-set-based methods were initially proposed to solve the

chaining phenomenon in single-linkage clustering [32, 33]. An example of the chaining

phenomenon is when two clusters lying in distinct high-density regions are connected

by a chain of elements traversing a low-density region, resulting in the two separate

clusters incorrectly identified as a single cluster. To address this phenomenon, [32]

18

suggested limiting single-linkage clustering to elements satisfying a minimum density

requirement (number of neighboring elements within a distance threshold). Similarly,

[33] extended single-linkage clustering with the condition that both elements of a

minimum distance split had to satisfy a minimum density requirement (number of

neighboring elements within a distance equal to their pairwise distance).

These earlier concepts were later extended and formalized in [34], which described

a density-contour clustering (Definition 3) and density-contour tree in the context of

single-linkage clustering.

Definition 3 (Density-Contour Cluster). Let X be a set of elements and function

f(x) a density function for elements x ∈ X . A density-contour cluster C at density

level λ is a non-empty subset of X , C ⊆ X , satisfying the following conditions:

1. ∀ x ∈ C : f(x) ≥ λ (density level)

2. ∀ x,y ∈ C : x and y are linked by a path whose members all lie in C (con-

nected)

3. ∀ x,y ∈ X : if x ∈ C and x and y are linked by a path whose members z all

satisfy f(z) ≥ λ, then y ∈ C. (maximal)

For cluster C at density level λ, the density inside C is no less than λ, and for

every path connecting x ∈ C to y /∈ C, the density somewhere along the path is less

than λ. Thus, cluster C conforms to the requirement that C is a high-density region

surrounded by lower-density regions. A density-contour clustering at density level λ

is the collection of all such maximal connected subsets covering the set of elements

{x ∈ X | f(x) ≥ λ} (i.e., a clustering of the λ level-set). A density-contour tree is

a tree of nested density-contour clusters constructed by varying density threshold λ.

Increasing λ refines the clustering while decreasing λ coarsens the clustering (i.e., a

19

density-contour tree defines a hierarchical density-based clustering or a multi-level-set

clustering).

While Definition 3 directly assumes a given density estimate, there is an implicit

assumption of connectivity required to define paths between elements, realized in

practice by some definition of an element’s neighborhood (e.g., ε-neighbors or kNN).

Thus, Definition 3 has a simple graph interpretation given the resulting neighborhood

graph where a density-contour cluster is a connected component (i.e., connected and

maximal) in the λ level-set vertex-induced subgraph (i.e., density level). As the

prototypical example of a single-level-set method, DBSCAN extended Definition 3 to

include non-level-set elements (border) while presenting an O(n log n) scan procedure

for computing a density-contour clustering (complexity dependent on dimensionality

ant the choice of ε). Concerning the former, level-sets simplify the clustering problem

by focusing on dense elements, effectively increasing the cluster separability. However,

the drawback is that non-dense elements are considered noise and remain unclustered.

Thus, a typical third step is to expand a density-contour clustering with elements that

border neighboring clusters (i.e., bordering elements are assigned to clusters).

Concerning complexity, the scan procedure of DBSCAN performs at most n

breadth-first traversals that are restricted to elements not visited by a prior traversal.

In other words, each element is visited exactly once and requires an ε-neighbors query

to continue the traversal (i.e., n ε-neighbors queries). Thus, given a spatial index of

X with O(log n) ε-neighbors query time complexity, the complexity of DBSCAN

is O(n log n). Given its popularity, most prior work in level-set clustering seek to

improve upon DBSCAN, though they might more correctly be considered variants of

density-contour clustering or trees.

A categorization of level-set clustering research includes approaches for handling

varying levels of cluster density (i.e., multi-level-set), improving computational effi-

20

ciency [17, 29, 38, 39, 40, 41, 42, 43, 44, 45, 46], parameter reduction/selection [35,

47, 48], handling high-dimensional data [24, 25, 49], and domain-specific solutions

[50, 51] (e.g., streaming or non-spatial proximity graphs). Note that these categories

are not necessarily exhaustive or mutually exclusive. Furthermore, the focus here is

on handling varying levels of cluster density, which can be further categorized into

hierarchical [35, 52, 53, 40, 41, 36, 37, 54] and non-hierarchical [48, 51, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64, 18, 65, 66, 67] approaches to multi-level-set clustering.

Non-hierarchical solutions to the varying levels of cluster density problem fo-

cus on identifying homogeneous density clusters and using density estimates robust

to variation in local density. Technically, the former case is not a form of level-set

clustering, though it is included here as it is usually contrasted with DBSCAN. For

this case (as described above), a cluster is redefined as a connected set of vertices

of homogeneous density. Clusters are formed by neighborhood graph traversals that

terminate at vertices whose inclusion significantly affects current cluster density (i.e.,

does not fit the cluster’s density distribution). In other words, the density threshold

(level-set requirement) is replaced by a threshold defining significant change in den-

sity. Here elements are generally processed by decreasing density (i.e., clusters are

discovered by increasing density). Thus, clusters are identified at varying levels of

density corresponding to a form of multi-level-set clustering.

For example, in [55], elements are processed in descending order by kNN distance.

Like DBSCAN, a kNN graph graph traversal is performed for each unvisited element

that terminates at vertices whose density is below some threshold of the cluster’s

center vertex density. A center vertex is the initial element of the cluster (i.e., the

vertex with the highest density). As another example, in [48], a cluster is defined as

a set of elements whose observed nearest neighbor distribution fits its expected prob-

ability distribution within some confidence level. Cluster traversals are performed by

21

ε-neighbors queries where ε is dependent on the cluster’s current expected nearest

neighbor distance distribution and terminates at vertices that fail the above distri-

bution check. For a third example, in [58], a vertex’s neighborhood is only used in

a cluster traversal if the densities of its neighbors are within some threshold of its

density (i.e., the homogeneous density check is performed locally to the neighborhood

of a vertex).

A density estimate robust to variation in local density refers to an estimate that

is adaptive to fluctuations in local density (i.e, intended to be comparable across an

entire sample). As an example, consider some unimodal distribution; such an estimate

would be one whose expected mean value is to some degree robust to changes in

variance or sample size. In other words, estimates from two such distributions with

different variance and sample size would remain comparable. An example of such an

estimate is the number of RkNN, where an element’s density depends on its neighbors’

local density and is independent of its local density (see Section 2.6). Similarly,

the number of mutual k-nearest neighbors is dependent on the local density of its

neighbors and its local density. Additionally, for RkNN, the estimate’s expected value,

upper bound, and distribution are all to some degree independent of distributional

parameters and sample size (e.g., the expected value is k, and the upper bound is

dependent on dimensionality and k, see the kissing number problem). Note mutual

k-nearest neighbors exhibit similar desirable properties for comparability (e.g., the

upper bound is k).

Other robust estimates can be found in local outlier detection (Section 2.4),

though most of these correspond to normalized local density measures, normalized

according to the local density of neighboring elements (i.e., they are measures of

density homogeneity). As examples in level-set clustering, in [62, 18] and [63, 64], an

element’s density is defined by the number of RkNN and mutual k-nearest neighbors

22

in the kNN graph. Similarly, in [59], density is defined as a function of mutual k-

nearest neighbors and their ranks. Whereas in [57], density is defined by local outlier

factor [68, 69], where cluster traversals are restricted by a change in vertex density

(i.e., a combination of both non-hierarchical approaches).

Hierarchical approaches can be differentiated from other approaches by gener-

ating a hierarchical clustering structure - specifically, a hierarchical structure for ex-

tracting single-level-set clusterings over various densities (i.e., multi-level-set). An

example of a hierarchical approach is OPTICS [35, 52] which generates a type of

dendrogram (reachability plot) of DBSCAN clusterings over a range of ε, using the

concepts of core and reachability distance. The core distance of an element is defined

by its MINPTS-nearest neighbor distance (i.e., the minimum ε at which the element

is in the core set). The reachability distance of element x from y is defined as the

maximum of d(x,y) and the core distance of y (i.e., the minimum ε where x and y

belong to the same cluster).

Given MINPTS and an upper bound of ε, let G be the weighted directed graph

defined by reachability distance. Like DBSCAN, OPTICS performs a scan procedure

using reachability distance for each unvisited vertex v. This procedure is equivalent to

computing the spanning arborescence (rooted directed out-tree) A rooted at v with

minimum weight terminating at non-core vertices. An ordering of vertices is returned

by the weighted path from v in A, along with vertex minimum reachability distance,

defined by a vertex’s reachability distance to its parent in A. Plotting minimum

reachability distance by the returned vertex ordering (i.e., the reachability plot),

clusters are identified as valleys in the plot where deeper valleys indicate increased

density. A DBSCAN clustering at density ε′ ≤ ε is identified as contiguous regions

in the plot having a minimum reachability distance less than or equal to ε′.

An extension of OPTICS is HDBSCAN [36, 37], which introduced mutual reach-

23

ability distance. Mutual reachability distance between elements x and y is defined as

the maximum of the MINPTS-nearest neighbor distance of x and y and distance

d(x,y). Given MINPTS, let G be the weighted undirected graph defined by mutual

reachability distance. A hierarchical density-based clustering over ε is produced by

performing single-linkage clustering on G, by computing its minimum spanning tree

and iteratively removing edges in descending order by edge weight. This hierarchical

clustering contains all DBSCAN clusterings of core elements over ε. Additionally, [37]

presents a heuristic for extracting a flat clustering from a hierarchical, density-based

clustering based on the concept of cluster stability. Extending [37], [70] presents a

method for selecting a final flat clustering over a range of density threshold values

based on hierarchy similarity.

2.4 kNN-based outlier detection

Similar to the clustering problem, outlier detection identifies outlier elements in

data given some assumption describing the property(s) that an outlier exhibits [61].

For example, kNN-based outlier detection approaches use the same concept of density

seen in DBSCAN [71, 72, 73, 74, 75]. A commonly used categorization of outlier

detection approaches includes classification-, clustering-, kNN-, and statistical-based

approaches [76]. This section focuses on kNN-based outlier detection, commonly

referred to as local outlier detection. In [77], an overview of kNN -based local outlier

detection approaches is given and defined as relative measures of local density (i.e.,

an element’s local density relative to the local density of its neighboring elements). In

other words, outlier measures that are robust to variation in local density. Hence, the

relationship to density estimates that are robust to varying levels of cluster density.

As an example, the popular Local Outlier Factor (LOF) [68, 69, 78] and its

variants [77, 79, 80, 81, 82], which is a measure of density homogeneity, or relative

24

measure of kNN distance local density (i.e., the local density of an element normalized

by the local densities of its neighbors). Similar to the approach taken here, RkNN

approaches are presented in ODIN [83] and Antihub [84], the latter presenting a

relative RkNN measure or the mutual k-nearest neighbors approaches presented in

INFLO [85], SCAN [51]. Examples of other measures include those which are rank-

based (as opposed to distance) [86, 87], path-based [88], and those focused on high-

dimensional data [89].

An interesting categorization of these approaches lies in their dependence on

the size of the neighborhood in the kNN. For example, an element’s LOF score is

dependent on its two-hop neighborhood (i.e., paths of length two originating from

the element). However, with respect to the work here, many are not monotonically

increasing with k, making them difficult to model hierarchically (i.e., over a range of

k).

2.5 kNN Graph Construction and Properties

As with most kNN-based algorithms, the complexity of the proposed clustering

algorithms is bounded by the cost of constructing the kNN graph. This complexity is

dependent on the solution to the nearest neighbor search problem and its generaliza-

tion to kNN. The naive solution to this problem is a simple sequential scan which is

linear O(n). Thus, a desirable (efficient) solution to this problem is sub-linear. Note

that for the kNN graph one requires the all-pairs solution to this problem, which is

naively O(kn2) (i.e., a desirable solution being sub-quadratic for n).

In the case of low-dimensional data (d ≤ 2), numerous O(n log n) solutions ex-

ist for this problem [42, 43], O(kn log n) for kNN. Similarly, for higher dimensions,

numerous space- and data-partitioning solutions with average case O(n log n) com-

plexity exists (e.g., R∗-tree [90, 91], ball-tree [92], kd-tree [93] and cover-tree [94]).

25

Note that we do not differentiate between metric versus non-metric spaces, though

solutions for the latter are more difficult to design given the lack of generic prop-

erties (e.g., triangle inequality). Unfortunately, the performance of such approaches

degrades rapidly as dimensionality increases, rarely outperforming sequential scan in

relatively low-dimensions (e.g., d > 10 [95]). As an example, the authors’ of DBSCAN

suggests an R∗-tree for an efficient solution to the related ε-neighbors search problem

in the case of low-dimensional data and relatively small values of ε (small values of ε

likely corresponding to cluster solutions of interest [96, 97]), making an argument for

O(n log n) complexity.

Approximate solutions have been presented as no efficient (sub-quadratic) solu-

tion exists to the exact all-pairs nearest neighbor problem in high-dimensions; approx-

imate referring to the expected accuracy (recall) of a k-nearest neighbors query. For

example, the greedy nearest neighbor propagation approaches introduced in [98, 99,

100, 101]. Given the significance of the problem, numerous approximate solution exist

approaching or surpassing O(n log n) complexity (see the benchmark [102]). Addi-

tionally, the suitability of approximate solutions to density-based clustering has been

previously demonstrated [42, 43, 49, 18].

For clustering, an important question involves the expected connectivity of the

kNN graph for k as n increases. Specifically, given multi-modal data of size n, one

is interested in the lower bound of k such that with high probability, each group is

connected (i.e., all group elements belong to a single connected component). Note

that this problem may be considered for the symmetric (weakly connected), directed

(strongly connected), or mutual k-nearest neighbors graphs and that the value of k

increases such k symmetric ≤ k directed ≤ k mutual.

In all cases, this value is known to be of the form k ∼ log n [103, 104, 105],

equivalent to the value of k for the connectedness of a uni-modal dataset. However,

26

numerous proofs have shown k ∼ c log n such that c < 1 under various conditions [104,

105]. Furthermore, k can be further reduced for the purposes here due to the emer-

gence of a giant connected component, where the maximum size of isolate components

(i.e., those not belonging to the connected component) have been shown to decrease

rapidly as k increases. The latter point is important given a minimum cluster size

(i.e., isolated components do not result clusters).

2.6 Non-Parametric Density Estimation

Level-set density-based clustering algorithms rely on non-parametric methods to

estimate the density of an element from a given sample. This section presents several

estimators, adapted from the univariate discussion of [106] (generalizable to multi-

variate), for commonly used densities seen in level-set clustering. Perhaps the most

used definition of an element’s density is the number of sample elements within an ε-

neighbors neighborhood centered at the element. A Level-set is defined as the subset

of elements with a density greater than or equal to MINPTS (i.e., the MINPTS

density level-set). For simplicity, this definition is referred to as the DBSCAN density

estimator.

Begin by assuming sample X of size n containing element x. The DBSCAN

density estimator is equivalent to a kernel estimator (Equation 2.1) with a uniform

(box) kernel (Equation 2.2) and bandwidth h = ε.

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(2.1)

K(x) =

1
2
, if |x| ≤ 1

0, otherwise

(2.2)

27

For Equation 2.1, an element belongs to the MINPTS density level-set if∑n
i=1K

(
x−Xi

h

)
≥ MINPTS

2
(i.e., at least MINPTS sample elements are within band-

width h of x). Accordingly, MINPTS density level-set indicator function can be

defined as f̂(x) ≥ MINPTS
2nh

or simply f̂(x) ≥MINPTS for the unnormalized density

as commonly used in level-set clustering. The unnormalized density being adequate

for finding samples lying in high-density regions. Note that the use of a compactly sup-

ported kernel (e.g., uniform) has computational advantages. Specifically, the density

of an element is dependent on the subset of sample elements within the bandwidth,

where the kernel is 0 for all other elements.

Similarly, the DBSCAN density estimator can be defined as the distance to an

element’s kNN in the sample where k = MINPTS. The level-set of dense sample

elements being defined as the subset with kNN distance less than or equal to ε (i.e.,

the ε density level-set). This interpretation is equivalent to the kNN density estimate

(Equation 2.3) with k = MINPTS.

f̂(x) =
k

2ndk(x)
(2.3)

Note in Equation 2.1 dk(x) defines the distance from x to its kNN in the sample

and is inversely proportional to the minimum bandwidth required to contain k sample

elements when centered at x. Furthermore, assuming a uniform kernel, Equation 2.3

is a special case of the generalized kNN estimator (Equation 2.4). Nearest neighbor

estimators adapt smoothing to the local density of a sample element where k controls

the degree of smoothing.

f̂(x) =
1

ndk(x)

n∑
i=1

K

(
x−Xi

dk(x)

)
(2.4)

For Equation 2.3, an element belongs to the ε density level-set if dk(x) ≤ ε (i.e.,

28

by definition, at least k sample elements are within dk(x) of x). Accordingly, the

indicator function of the ε density level-set can be defined as f̂(x) ≥ k
2nε

or simply

f̂(x) ≥ 1
ε

for the unnormalized density. The inversion of epsilon and reversal of the

inequality is due to the inverse relationship between density and kNN distance (i.e.,

f̂(x) ≥ 1
ε

= 1

f̂(x)
≤ ε). Note the equivalence of the MINPTS and ε density level-set

indicator functions when h = ε and k = MINPTS (i.e., MINPTS
2nh

= k
2nε

).

For both cases, a smoothing parameter defines the neighborhood (bandwidth) of

a sample element (i.e., the distance-based smoothing parameter h = ε in Equation 2.1

and the size-based smoothing parameter k = MINPTS in Equation 2.3). Simi-

larly, a threshold parameter is used to define the density level-set (i.e., the size-based

threshold parameter MINPTS for Equation 2.1 and the distance-based threshold

parameter ε for Equation 2.3). Equality of the two cases is due to the following

reasons: (1) use of a uniform kernel, (2) inversion of the smoothing and threshold

parameters, and (3) inversely proportional relationship between kNN distance and

the minimum bandwidth required to contain k samples. In either case, density is a

local estimate (i.e., dependent on the neighborhood of a sample element defined by a

fixed bandwidth or size).

A less common definition of an element’s density is its number of RkNN in

a sample. As with the DBSCAN density estimator, the level-set of dense sample

elements is defined as the subset with a density greater than or equal to MINPTS,

differing by the definition of density. Again, for simplicity, this definition will be

referred to as the RNN-DBSCAN density estimator. The RNN-DBSCAN density

estimator is equivalent to the variable (adaptive) kernel method (Equation 2.5) with

a uniform kernel and bandwidth h = 1.

29

f̂(x) =
1

n

n∑
i=1

1

hdk(Xi)
K

(
x−Xi

hdk(Xi)

)
(2.5)

In the unnormalized case, for Equation 2.5, an element belongs to the MINPTS

density level-set if
∑n

i=1K
(

x−Xi

hdk(Xi)

)
≥MINPTS (i.e., x is within the kNN distance

(dk(Xi)) of at least MINPTS sample elements Xi). Accordingly, the MINPTS

density level-set indicator function of the unnormalized density is f̂(x) ≥MINPTS.

As with the DBSCAN density estimator, a smoothing parameter is used to define

neighborhood size (i.e., k used to define the variable bandwidths). Note that the vari-

able bandwidths are themselves local density estimates (e.g., Equation 2.3). However,

unlike the DBSCAN density estimator, in the RNN-DBSCAN density estimator, a

sample element’s density is independent of its local density; instead, it is dependent

on the local densities of the other sample elements (i.e., variable bandwidths). Thus,

density is a global estimate (i.e., an element’s density is dependent on a sequence of

local estimates computed over the entire sample).

As a final abbreviated example, in IS-DBSCAN, an element’s density is defined

as its number of mutual k-nearest neighbors in a sample. This density is equivalent

to a variable kernel, as shown in Equation 2.6 for a uniform kernel and bandwidth

h = 1. Note that here density is a combination of a local and global element.

f̂(x) =
1

n

n∑
i=1

1

hmin (dk(x), dk(Xi))
K(

x−Xi

hmin (dk(x), dk(Xi))
) (2.6)

30

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, the two proposed clustering algorithms, RNN-DBSCAN and

Hk-DC, are presented. Sections 3.2, 3.3, and 3.4 formally describe the single-level-

set algorithm RNN-DBSCAN with respect to the kNN graph, density, and level-set

clustering. The Pseudo-code of RNN-DBSCAN with its method for handling noise

is presented in Section 3.4.1, and a proposed heuristic for selecting k is presented

in Section 3.4.2. The extension to a multi-level-set algorithm Hk-DC is formally

described in Section 3.5. A proposed heuristic for extracting a flat clustering is

presented in Section 3.5.1, along with a method for handling noise in Section 3.5.2.

Assume dataset X = (x1..xn), a tuple consisting of n elements drawn from the

real coordinate space of dimension d such that ∀i ∈ {1..n} : xi ∈ Rd. Let N = {1..n}

define the set of implicit element indices of X such that i ∈ N ⇐⇒ xi ∈ X , i and xi

are used interchangeably throughout to refer to the ith element in X . A clustering is

defined as a strict partitioning of X , or an equivalent partitioning of N , with noise.

In the latter case, each noise element may be viewed as either belonging to a single

noise partition (i.e., containing all noise elements) or its own singleton partition (i.e.,

one singleton partition for each noise element).

3.2 kNN Graph

First, for all elements i, j ∈ N , assume a symmetric distance function d : X ×

X → [0,∞) such that d(xi,xj) = d(xj,xi). Next, let rank order function r(i, j)

31

(Definition 4) define the rank of j for i such that there exist no more than r(i, j)

elements in N with distance to i smaller than d(xi,xj). In other words, r(i, j) = k

indicates that j is the kNN of i. According to Definition 4, an element is not the

nearest neighbor of itself, and distance ties are broken at random (i.e., an ordinal

ranking).

Definition 4. Rank Order Let function r : N ×N → N define the rank orders of X

where r(i, ·) is the rank order of i, according to the order statistics of sample d(xi, ·),

such that:

1. ∀i, j, j′ ∈ N : r(i, j) ≤ r(i, j′) ⇐⇒ d(xi,xj) ≤ d(xi,xj′) where j, j′ 6= i

(ascending order by distance)

2. ∀i ∈ N :
∑

j∈N\i {r(i, j)} = N \ n (ordinal ranking)

3. ∀i ∈ N : r(i, i) =∞ (rank of an element wrt. itself is ignored)

Given rank order function r(i, j), the set of kNN of i (i.e., i’s k-nearest neigh-

borhood) can be defined as:

Ni,k = {j ∈ N : r(i, j) ≤ k} (3.1)

For example, Figure 4a shows the rank order and k-nearest neighborhood(s) of

a small dataset. Recalling that an element is not considered the nearest neighbor

of itself, the neighborhood’s size is restricted to k ∈ [1..n − 1]. In practice, kNN

definitions may vary (e.g., wrt. the handling of distance ties and the inclusion of an

element as the nearest neighbor of itself).

Given Equation 3.1, the kNN graph of X is defined as:

Gk = (V = N,E = {(u, v) ∈ V × V : v ∈ Nu,k}) (3.2)

32

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

0.14 0.18

0.2
1

0.53

d(1,) = [0, 0.18, 0.14, 0.21, 0.53]

r(1,) = [, 2, 1, 3, 4]

N1, k = 1 = {3}, N1, k = 2 = {2, 3},
. . , N1, k = 4 = {2, 3, 4, 5}

(a) rank order

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

0.14 0.18

0.21

0.210.25

0.40

0.53

V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1),
(3, 2), (4, 1), (4, 3), (5, 1), (5, 2)}

r(1,) = [, 2, 1, 3, 4]
wk((1, 2)) = r(1, 2) = 2
wk((1, 3)) = r(1, 3) = 1
wk((1, 1)) = wk((1, 4)) = wk((1, 5)) =

(b) edge weight

Fig. 4.: (a) Rank order r(i, ·) and nearest neighborhoods Ni,k of element i = 1, given

the order statistics of sample d(i, ·), for k ∈ {1..4}. (b) kNN graph (k = 2) with edge

weights w((i, ·)) for element i = 1.

where Gk is the directed graph with vertices equal to N and a directed edge from

each vertex to each of its kNN. Assume for any graph functions v and e (e.g., v(Gk)

and e(Gk)) that refer to a graph’s set of vertices and edges, respectively.

Finally, Gk is extended to be edge-weighted according to weighting function wk,

such that for all edges (u, v) ∈ v(Gk)× v(Gk), wk is defined as:

wk((u, v)) =

r(u, v) (u, v) ∈ e(Gk)

∞ otherwise

(3.3)

where the weight of edge (u, v) ∈ e(Gk) is equal to k′ ∈ [1..k] such that v is the

k′NN of u (i.e., the minimum value of k such that v is in the k-nearest neighborhood

of u). As an example, Figure 4b shows a kNN graph with edge weights.

3.3 k-Density

Given kNN graph Gk, for all vertices v ∈ v(Gk), let function fk(v) (Definition 5)

define a neighborhood density estimate of v such that fk(v) is dependent on a local

33

subgraph of Gk centered at v. More intuitively, one may consider fk a measure of

local vertex centrality or isolation (e.g., degree-based centrality).

Definition 5. Neighborhood Density Estimate Let function fGk
: N → R≥0 (or

simply fk = fGk
) define a mapping from vertices in N to a neighborhood density

estimate such that:

1. ∀k ∈ {1..n − 1} and v ∈ v(Gk) : fk(v) is dependent on the proper subset of

vertices and edges in Gk within some graph distance from v (compact support)

2. ∀k, k′ ∈ {1..n − 1} and v ∈ N : fk′(v) ≤ fk(v) ←→ k′ ≤ k (monotonically

increasing wrt. k)

As a simple yet effective example of density function fk, let fk(v) be defined as

the number of RkNN of v in Gk (i.e., the in-degree of v):

f rnn
k (v) = |{(u,w) ∈ e(Gk) : w = v}| (3.4)

In the remainder of this work, fk assumes Equation 3.4 (i.e., fk = f rnn
k), though

other valid examples of Definition 5 exist (e.g., the number of mutual k-nearest neigh-

bors). Given fk and a density threshold ε ∈ [0, n − 1], let a vertex’s k-density be

defined as the minimum value k′ ∈ [1..k] such that fk′(v) ≥ ε (or ∞ if no such k′

exists for k):

gfk(v, ε) =

arg mink′∈[1..k] fk′(v) ≥ ε fk(v) ≥ ε

∞ otherwise

(3.5)

In other words, for gfk(v, ε) = k′, k′ defines the smallest kNN graph (i.e., sub-

graph Gk′ ⊆ Gk) at which v is dense for ε. As an example, Figure 5 shows kNN

graphs, RkNN densities, and k-densities. Note the following properties of k-density

function gfk :

34

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

f rnn
k (3) = |{(1, 3)}| = 1

gf rnn
k

(3, = 0) = 0
gf rnn

k
(3, = 1) = 1

gf rnn
k

(3, > 1) =

(a) k = 1

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

f rnn
k (3) = |{(1, 3), (2, 3), (4, 3)}| = 3

gf rnn
k

(3, = 0) = 0
gf rnn

k
(3, = 1) = 1

gf rnn
k

(3, = 2) = 2

gf rnn
k

(3, = 3) = 2
gf rnn

k
(3, > 3) =

(b) k = 2

Fig. 5.: kNN graphs ((a) k = 1 and (b) k = 2) showing the RkNN density and

k-density of vertex i = 3 (reverse nearest neighbors indicated by red arrows).

Remark 1. ∀k ∈ {1..n−1}, v ∈ v(Gk), and ε, ε′ ∈ [0, n−1] : gfk(v, ε′) ≤ gfk(v, ε)←→

ε′ ≤ ε (gfk is monotonically increasing for ε).

Remark 2. ∀v ∈ N, ε ∈ [0, n − 1], and k, k′ ∈ {1..n − 1} : gfk(v, ε) ≥ gfk′ (v, ε) ←→

k ≤ k′ (gfk is monotonically decreasing for k, specifically, for cases where gfk(v, ε) =

∞).

Remark 3. ∃k ∈ {1..n−1} such that ∀v ∈ v(Gk) and ε ∈ [0, n−1] : gfk(v, ε) ≤ n−1

(there exists a k at which all vertices satisfy the ε density threshold).

Remark 4. ∀k ∈ {1..n − 1} and ε ∈ [0, n − 1] : {v ∈ v(Gk) : fk(v) ≥ ε} = {v ∈

v(Gk) : gfk(v, ε) ≤ k} (gfk can replace fk in identifying ε-dense vertices).

Finally, given k-density function gfk and density threshold ε ∈ [0, n− 1], the set

of ε-dense vertices in Gk is defined as the subset of vertices whose local density is

greater than or equal to ε (or equivalently whose k-density is less than or equal to k):

Dfk,ε = {v ∈ v(Gk) : gfk(v, ε) ≤ k} (3.6)

35

3.4 k-Density Clustering

Given definitions of density and connectivity, let a k-density cluster be defined

as a set of elements C such that: (1) all elements in C are dense, (2) all elements in C

are connected by a path whose members all lie in C, and (3) C is maximal. Thus, a

k-density clustering is a set of all clusters C in X with non-dense elements identified

as noise.

Given a neighborhood graph and set of dense vertices, let a k-density clustering

be defined as the set of connected components in the graph’s dense-vertex-induced

subgraph. In other words, a k-density clustering of X is a partitioning defined as the

set of connected components in the dense-vertex-induced subgraph (e.g., the set of

weakly or strongly connected components given a directed neighborhood graph).

Formally, given neighborhood graph G = Gk and dense vertex set D = Dfk,ε,

let the dense-vertex-induced subgraph of G be defined as:

G(D) = (V = D,E = {(u, v) ∈ e(G) : u, v ∈ D}) (3.7)

Assuming dense-vertex-induced subgraph G = G(D), let partitioning function

p(·) (Defintion 6) define the set of connected components of G:

Definition 6. Partitioning Let function p : G→ P define a partitioning of G such

that:

1. (1) ∅ /∈ P , (2)
⋃

P∈P P = v(G), and (3) ∀P, P ′ ∈ P : P ∩ P ′ = ∅ ←→ P 6= P ′ :

(partitioning).

2. ∀P ∈ P and u, v ∈ P : u is reachable from v in G (connected).

3. ∀P, P ′ ∈ P where P ′ 6= P : @v ∈ P ′ reachable from all u ∈ P in G (maximal).

Note that for vertices u, v ∈ v(G), u is reachable from v if there exists an undi-

36

rected path from v to u in G. In which case, p(G) is the set of weakly connected

components when G is directed. Likewise, one could define the set of strongly con-

nected components by requiring a directed path from v to u, or G could be undirected

(e.g., the mutual kNN graph).

To summarize, a k-density clustering of X is defined as a partitioning of the ε-

dense vertices in Gk (P = p(Gk(Dfk,ε))), the set of non-dense vertices being identified

as noise O = v(Gk) \ Dfk,ε. Note that if O 6= ∅ then P + O defines a partitioning

of X , else P defines a partitioning of X . As an example, Figure 6 shows the ε-

dense vertices, dense-vertex-induced subgraph, connected components, and resulting

k-density clustering for a sample dataset.

3.4.1 RNN-DBSCAN

k-density clustering is an example of single-level-set clustering, where connectiv-

ity is defined by the kNN graph and density by the k-density function. In the case

of single-level-set clustering, k-density is not strictly required as the level-set can be

identified directly using its underlying density function (i.e., {v ∈ v(Gk) : gfk(v, ε) ≤

k} = {v ∈ v(Gk) : fk(v) ≥ ε}). The advantages of k-density are shown in Section 3.5

for the case of multi-level-set clustering.

In RNN-DBSCAN [18], we proposed a single-level-set clustering algorithm equiv-

alent to the k-density clustering described above (i.e., using kNN graph connectivity

and RkNN density). In addition, a fixed minimum density threshold of ε = k was

suggested to simplify parameter selection, representing the expected density of an

element drawn randomly from dataset X . Algorithm 1 lists the pseudo-code of RNN-

DBSCAN, presented as a scanning procedure similar to that of DBSCAN.

For dataset X and parameter k, elements are traversed in arbitrary order. If

the current (seed) element has yet to be assigned to a cluster and is a core (dense)

37

5 10 15 20 25 30 35

5

10

15

20

25

30

(a) ε-dense vertices

5 10 15 20 25 30 35

5

10

15

20

25

30

(b) dense-vertex-induced subgraph

5 10 15 20 25 30 35

5

10

15

20

25

30

(c) subgraph connected components

5 10 15 20 25 30 35

5

10

15

20

25

30

(d) k-density clustering

Fig. 6.: (a) Set of ε-dense vertices (colored red), (b) dense-vertex-induced subgraph,

(c) subgraph connected components (indicated by color), and (d) resulting k-density

clustering (clusters indicated by color with black elements indicating noise) for the

kNN graph of the aggregate dataset (see Table 2), k = 10 and ε = k.

38

element, it is assigned to a new cluster. The new cluster is expanded by a breadth-

first traversal of the undirected kNN graph starting at the current element, traversals

terminating at non-core elements (Algorithm 2). For core elements, the returned

clustering (assign) corresponds to the partitioning defined by the connected compo-

nents in the core-vertex-induced undirected kNN graph of X (i.e., is equivalent to

the k-density clustering). Clustered non-core elements correspond to elements that

are within the kNN of a core element. Note that the cluster assignment of non-core

elements is non-deterministic and is conceptually equivalent to the cluster expansion

seen in DBSCAN.

In addition to the above expansion of non-core elements, RNN-DBSCAN further

expands clusters by the local distance-based density of each cluster. For the returned

cluster assignments assign, let the resulting partitioning be defined by P = (P1..P`)

where ` = max assign and ∀Pi ∈ P : Pi = {j = 1..n : assign[j] = i}, along with

the set of noise elements O = {i = 1..n : assign[i] = NOISE}. The distance-based

density of partition P ∈ P is defined as the maximum pairwise distance between

elements in P , restricted to the set of pairs occurring as edges in the kNN graph

(Equation 3.8).

d(P) = max{d(xi,xj) : i, j ∈ P ∧ ((i, j) ∈ e(Gk) ∨ (j, i) ∈ e(Gk))} (3.8)

39

Algorithm 1 RNNDBSCAN

Input: X , k
Output: assign
1: Compute kNN graph Gk of X
2: assign[∀v ∈ v(Gk)] = UNCLASSIFIED
3: cluster = 1
4: for v ∈ v(Gk) do
5: if assign[v] = UNCLASSIFIED then
6: if f rnn

k (v) < k then
7: assign[x] = NOISE
8: else
9: initialize empty queue seeds
10: neighbors = RNNDBSCAN Neighborhood(Gk, v)
11: seeds.enqueue(neighborsv)
12: assign[v + seeds] = cluster
13: while seeds 6= ∅ do
14: w = seeds.dequeue()
15: if f rnn

k (w) ≥ k then
16: neighbors = RNNDBSCAN Neighborhood(Gk, w)
17: for z ∈ neighbors do
18: if assign[z] = UNCLASSIFIED then
19: seeds.enqueue(z)
20: assign[z] = cluster
21: else if assign[z] = NOISE then
22: assign[z] = cluster

23: cluster = cluster + 1

24: ExpandClusters(Gk, assign)
25: return assign

Algorithm 2 RNNDBSCAN Neighborhood

Input: G, v
Output: neighbors
1: neighbors = {u ∈ v(G) : (v, u) ∈ e(G) or ((u, v) ∈ e(G) and f rnn

k (u) ≥ k)}
2: return neighbors

40

Given distance-based density function d(·), Algorithm 3 lists the pseudo-code

for this additional cluster expansion step. For all noise elements o ∈ O, o is

assigned to partition P ∈ P if a kNN of o is a core element in P whose dis-

tance to o is less than or equal to d(P), ∃p ∈ P : (o, p) ∈ e(Gk) ∧ fk(o) ≥

k ∧ d(xo,xp) ≤ d(P). In the case of multiple assignee partitions, o is assigned

to the nearest partition P defined by minimum distance to core element p, P =

arg min{P∈P,p∈P :(o,p)∈e(Gk)∧fk(o)≥k∧d(xo,xp)≤d(P)} d(xo,xp).

Algorithm 3 RNNDBSCAN ExpandClusters

Input: G, assign
Output: assign
1: for cluster = 1..max assign do
2: den[i] = d(Pi)

3: for v ∈ v(G) do
4: if assign[v] = NOISE then
5: neighbors = {u ∈ v(G) : (v, u) ∈ e(G)}
6: mincluster = NOISE
7: mindist =∞
8: for u ∈ neighbors do
9: cluster = assign[u]
10: dist = d(v, u)
11: if f rnn

k (u) ≥ k & dist ≤ den[i] & dist < mindist then
12: mincluster = cluster
13: mindist = dist
14: assign[v] = mincluster

15: return assign

3.4.2 RNN-DBSCAN : Choice of k

Given the dependence of RNN-DBSCAN on k, in this section, two heuristics

are presented to aid in selecting an appropriate value of k for a given dataset. The

first heuristic is based on the assumption that a correct clustering solution is stable

with respect to the model parameter(s) (i.e., stable over a range of k). A simple

yet effective strategy for observing this stability is to examine the number of clusters

41

Fig. 7.: Parameter k versus the number of clusters (log) for RNN-DBSCAN cluster-

ings produced over the range k = 1..100 for several datasets from Table 2.

produced by RNN-DBSCAN versus k (i.e., stable wrt. the number of clusters).

Recall that RNN-DBSCAN returns partitioning P = (P1..P`), along with a set of

noise elements O, with the number of partitions (clusters) ` = |P |. Let Pk and Ok be

the RNN-DBSCAN clustering for parameter k. As shown in Figure 7, the number of

clusters is not monotonically decreasing for k (i.e., no guarantee that |Pk| ≥ |Pk+1|).

However, a strong negative correlation exists such that as k → n − 1 : |Pk| → 1.

Additionally, one can observe elbows in the plot, after which the number of clusters

maintains some degree of stability as k increases.

Assuming that the correct clustering solution exists at the elbows and is stable,

they can be identified by spikes in the histogram of |Pk| over an appropriate range

of k, dependent on the size of the dataset. Specifically, by ordering the histogram

in decreasing order by the number of clusters, we propose the first spike in the his-

togram observed at the number of clusters c∗ (i.e., the assumed correct number of

42

clusters). As by definition, multiple values of k should result in c∗ clusters, we fur-

ther propose selecting the correct value of k, k∗, as the minimum value of k with

c∗ clusters, k∗ = arg mink |Pk| = c∗ (i.e., the k corresponding to the first elbow).

Note that by examining the histogram, instead of the plot, no strict definition of

the stability’s range is required (i.e., a sequence of some length), relying instead on

the negative correlation between k and the number of clusters. Similarly, given the

negative correlation, k∗ should correspond to the first elbow in the plot.

This heuristic is driven by the assumption that the correct choice of k is related

to the stable solution, which simultaneously maximizes the number of clusters while

minimizing k. In Section 4.2.1, empirical evidence is presented in support of this

heuristic. As a second heuristic, we considered DBVC [107], an internal validation

measure for density-based clustering. Specifically, we consider a simplification of

DBVC [43]. DBCV is based on the assumption that elements in a cluster should be

tightly connected while elements belonging to different clusters are well separated.

First, defining ’tightly connected’, let function d(·) define the density of a partition

P ∈ Pk as the maximum distance in the minimum spanning tree of core-elements in

P . Next, to define cluster separability, let function s(·, ·) define the separability of

two partitions P, P ′ ∈ Pk as the minimum pairwise distance between core-elements

from P to P ′.

For partitioning P = {P1, ..., Pl}, the validity of partition P ∈ P is defined by

function v (Equation 3.9), which compares the density of P to its minimum separa-

bility.

v(P) =
minP ′∈P\P s(P, P

′)− d(P)

max (minP ′∈P\P s(P, P ′), d(P))
(3.9)

The validity index of partitioning P is defined by function vi (Equation 3.10) as

43

the weighted average of the validity indices of all partitions in P :

vi(P) =

|P|∑
i=1

|Pi|
n
× v(Pi) (3.10)

where vi(P) ∈ [−1,+1] with larger values indicating a better clustering. Thus,

the assumed correct choice of k, k∗, is the k which maximizes Equation 3.10, k∗ =

arg maxk vi(Pk). Empirical evidence in support of this approach is presented in

Section 4.2.1.

3.4.3 RNN-DBSCAN Complexity

The complexity of RNN-DBSCAN is dependent on the cost of computing the

exact or approximate kNN graph, along with the choice of k. Here will assume that

the kNN graph is given (see Section 2.5 for a discussion on kNN graph complexity).

Given Gk, the RkNN density function (Equation 3.4) has complexity O(1), with an

overall complexity of O(n) to compute the density of all elements. Algorithm 1 is

equivalent to the cost of performing ` breadth-first searches of core-elements in Gk,

equivalent to the cost of computing the core-element connected components in Gk

with the number of components equal to `. Thus, the complexity of Algorithm 1 is

O(n + nk), where n is the number of vertices and nk is the number of edges in Gk.

Of course, this complexity becomes quadratic when k ≈ n, though in practice, the

correct choice of k is such that k << n.

Algorithm 3 has complexity O(kn), as the k-neighborhood of each noise element

is searched for candidate partitions. Note that this complexity covers the cost of

computing the density of each partition (i.e., the maximum pairwise distance be-

tween core-elements for edges in Gk, which is likewise O(kn)). Thus, the cost of

RNN-DBSCAN is O(n+ nk) plus the cost of computing the kNN graph, which will

44

assuredly dominate the complexity (e.g., O(kn log n) or O(kn2)).

With respect to the heuristics for choosing k, given some maximum value kmax,

note that the kmaxNN graph contains all nearest neighbor graphs in the range of

k = 1..kmax. Furthermore, for each k, the (k − 1)NN graph can be obtained by

removing n edges from the kNN graph. Thus, the cost of computing all kNN graphs

is equal to the cost of computing the kmaxNN graph plus O(nkmax) (i.e., the cost of

removing n edges kmax times, assuming O(1) cost of edge removal). Additionally,

RNN-DBSCAN (Algorithm 1) is run on each kNN graph for a total complexity of

O((n + nkmax) + (n + n(kmax − 1)) + .. + (n + n)). Note that as neither heuristic is

dependent on Algorithm 3, it need not be considered.

3.5 Hierarchical k-Density Clustering (Hk-DC)

Recall that k-density clustering uses two parameters to define the connectivity

(k) and density level-set (ε) of all elements in X . Inspired by [36], for a fixed density

threshold of ε ∈ [1, n − 1] and connectivity k ∈ [1, n − 1], an efficient hierarchical

k-density clustering algorithm is proposed to compute all k′-density clusterings over

the range k′ ∈ [1, k] within a single hierarchical clustering.

For k and ε, let mutual reachability graph Gfk,ε be defined as the undirected

collapsed graph of Gk (i.e., v(Gfk,ε) = v(Gk) and (u, v) ∨ (v, u) ∈ e(Gk) ⇐⇒

{u, v} ∈ e(Gfk,ε)). Furthermore, Gfk,ε is extended to be edge-weighted according to

weighting function wfk,ε, such that for all edges {u, v} ∈ v(Gfk,ε)× v(Gfk,ε), wfk,ε is

defined as:

45

wfk,ε({u, v}) =

max(gfk(u, ε), gfk(v, ε),

min (wk(u, v), wk(v, u)))

{u, v} ∈ e(Gfk,ε)

∞ otherwise

(3.11)

Equation 3.11 defines the weight of an edge {u, v} in Gfk,ε as the minimum

(k′ ≤ k)NN graph such that: (1) both u and v are ε-dense, and (2) an undi-

rected edge exists between u and v. In other words, for k′ = wfk,ε({u, v}),

Gk′ ⊆ Gk is the smallest nearest neighbor graph in which u and v are both ε-dense

(gfk(u, ε) ≤ k′ and gfk(v, ε) ≤ k′) and u is in the k′NN neighborhood of v or vice versa

(min (wk(u, v), wk(v, u)) ≤ k′). This definition is similar to the mutual reachability

graph of [36], inspired by the concept of mutual reachability [35]. The difference being

in definitions of connectivity and density.

Figure 8 shows the resulting mutual reachability graph for the kNN graph and

k-density of a sample dataset. Note that other valid definitions of the mutual reach-

ability graph exist, including using the undirected mutual graph of Gk (as opposed

to the collapsed graph) or taking the maximum edge weight between two vertices (as

opposed to the minimum).

Using the subgraph notation from Equation 3.7, let Gfk,ε(k
′) define the subgraph

of Gfk,ε obtained by removing all vertices and edges whose k-density and edge weight

are greater than k′ ∈ [1..k]:

Gfk,ε(k
′) = (V = {v ∈ v(Gfk,ε) : gfk(v) ≤ k′},

E = {{u, v} ∈ e(Gfk,ε) : u, v ∈ V ∧ wfk,ε({u, v}) ≤ k′}) (3.12)

The resulting k′ mutual reachability subgraph Gfk,ε(k
′) has the following prop-

46

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1 (1)

2 (2)

3 (2)

4 ()

5 ()

(2
,1

)(1,1)

(
,1)

(,2)

(2,2)

(,1)

(
,2)

gfk(1,) = 1
gfk(2,) = 2

wk((1, 2)) = 2
wk((2, 1)) = 1

(a) k-density
0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

2

2

2

wfk, ({1, 2})
 = max(gfk(1,), gfk(2,), min(wk(1, 2), wk(2, 1))
 = max(1, 2, min(1, 2)) = 2

(b) mutual reachability graph

Fig. 8.: (a) k-density and (b) mutual reachability graph for a kNN graph (k = 2).

Note here ε = k and graph edges show k-density and mutual reachability graph edge

weight.

erties:

Remark 5. ∀k′ ∈ [1..k] : partitioning Pk′ = p(Gfk,ε(k
′)) is equal to p(Gk′(Dfk′ ,ε

))

(all k′-density clusterings can be obtained from Gfk,ε).

Remark 6. ∀k′, k′′ ∈ [1..k] such that k′′ ≤ k′ : p(Gfk′′ ,ε
(k′′)) = p(Gfk′ ,ε

(k′′)) =

p(p(Gfk,ε(k
′′)) (all k′′-density clusterings can be obtained from Gfk,ε(k

′)).

Remark 7. ∀k′, k′′ ∈ [1..k] such that k′′ ≤ k′ : partitioning Pk′′ is a refinement of Pk′

(Pk′ and Pk′′ represent cuts in a single hierarchical partitioning).

Consequently, all k′-density clusterings for k′ ∈ [1..k] can be produced in a nested,

hierarchical way by removing edges in decreasing order of weight from the minimum

spanning tree of Gfk,ε [36]. This procedure is equivalent to divisive single-linkage clus-

tering of a neighborhood graph (e.g., Gfk,ε). The k′-cut of the resulting dendrogram

being equal to the k′-density clustering.

Let H be a matrix of size n × (k + 1) representing the hierarchical k-density

47

clustering. Matrix entry H i,j equal to the ith element’s cluster assignment at the

jth-cut in the hierarchical clustering. In other words, H i,j is the k-density clustering

assignment of element i where k = j. Note that k+ 1 is done strictly for convenience

when the k-density clustering does not yield a single cluster. It represents the root of

a divisive hierarchical clustering where all elements are assigned to a single cluster. In

practice, H might be defined more compactly as a cut might not exist for all values of

k′ (e.g., when k′ is not an edge weight in the minimum spanning tree of Gfk,ε). Algo-

rithm 4 lists the pseudo-code of hierarchical k-density clustering (Hk-DC) returning

matrix H . Inputs include dataset X , connectivity parameter k, density threshold ε,

and minimum cluster size m (elements of clusters smaller than m identified as noise).

Lines 1-3 compute the weighted mutual reachability graph Gfk,ε as discussed

above. Line 4 computes the minimum spanning tree M of the mutual reachability

graph, used in place of the mutual reachability graph to perform the hierarchical

clustering, improving efficiency while producing identical results, a common technique

used in single linkage clustering. As the existence of a minimum spanning tree is not

guaranteed for all instances of Gfk,ε (i.e., M may be a minimum spanning forest),

lines 5-6 convert M to a tree by adding a minimum set of edges with weight∞. Line

7 adds self-edges for all vertices in M of weight equal to the k-density of each vertex,

as done in [36]. Self-edges distinguishes between the case of a singleton cluster versus

noise when m = 1. Finally, line 8 initializes the root vertex, assigning all vertices to

a single cluster.

Lines 9-23 perform the divisive hierarchical clustering by removing M ’s edges in

decreasing order by weight (from k to 1). At each iteration k′, this is performed by

first removing all edges from M with weight greater than k′ (lines 10 and 11) and

then computing the k′-density clustering (partitioning P) using M (line 12). Next,

P is used to compute H ·,k′ by updating the (k′ + 1)-density clustering in H ·,k′+1 to

48

Algorithm 4 HkDC

Input: X , k, ε,m
Output: H
1: Compute weighted k-nearest neighbor graph Gk of X
2: Compute k-density (gfk(v, ε)) for all vertices v ∈ v(Gk)
3: Compute weighted mutual reachability graph Gfk,ε of Gk and gfk(·, ε)
4: Compute minimum spanning tree M of Gfk,ε

5: if M is a forest then
6: Randomly add # of trees - 1 edges of weight ∞ such that M is a tree

7: Extend M by adding a self-edge for each vertex v ∈ v(M) with edge weight
equal to gfk(v, ε)

8: Set c id=0 and initialize matrix H ·,k+1 = c id
9: for k′ = k to 1 do
10: Compute set of edges E in M with edge weight greater than k′

11: Remove edges E from M , M = M \ E
12: Compute k′ partitioning P = p(M)
13: Compute set of k′ + 1 clusters inter-connected by an edge in E, C =⋃

{u,v}∈E {Hu,k′+1}
14: For all clusters c ∈ C, compute number of non-spurious partitions nc of c in

partitioning P
15: for P ∈ P do
16: c = Hv,k′+1 for any v ∈ P
17: if c /∈ C or nc < 2 then
18: Hv∈P,k′ = c
19: else if |P | < m or (m == 1 and the current degree of v ∈ P in T is zero)

then
20: Hv∈P,k′ = −1
21: else
22: c id = c id+ 1
23: Hv∈P,k′ = c id

24: return H

49

the k′-density clustering (lines 13-23). Note that only clusters in the (k′ + 1)-density

clustering with vertices adjacent to the set of removed edges require updating. Line

13 computes this set of clusters C. Next, for each cluster c ∈ C, the number of

non-spurious partitions nc is computed in line 14. A non-spurious partition of cluster

c is a partition P ∈ P such that P is a subset c and |P | ≥ m.

H ·,k′ is updated in lines 15-27 by iterating over all partitions P ∈ P , and as-

signing all vertices v ∈ P to one of the following three values: (1) v’s (k′+ 1)-density

cluster (Hv,k′+1), (2) noise (−1), or (3) a new cluster (c id + 1). In the first case

(lines 17-18), v’s (k′+ 1)-density cluster c (line 16) has not changed or, P is the only

non-spurious partition of the partitioning of c. For the second case (lines 19-20), P

is a spurious partition or a singleton partition of v where v is not ε-dense. Finally,

in the third case (lines 21-23), P is a new cluster as P is one of several non-spurious

partitions of the partitioning of c.

For example, for the small dataset and corresponding minimum spanning tree

(computed from the weighted mutual reachability graph) shown in Figure 9, Table 1

shows matrix H produced by Hk-DC, with the dendrogram representation of H

shown in Figure 10a.

3.5.1 Hk-DC : Extracting a Flat Clustering

One straightforward solution for extracting a flat clustering is to select a single cut

in the hierarchy (e.g., a k′-cut in the k-density hierarchical clustering). However, this

assumes the correct clustering is discoverable using a single global cut. Unfortunately,

such a solution may fail to simultaneously detect clusters at varying levels of density

(i.e., significant differences in k-density), which would require multiple local cuts (at

different levels). Furthermore, recall that HK-DC is dependent on density threshold

ε. Thus, in addition to discovering a final flat clustering, discovering an appropriate

50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1 2

34

5 6

78
9

10

11

12

13
14

15

(a) sample dataset

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1 2

34

5 6

78
9

10

11

12

13
14

15

1

2

2 2

2

2

2

2

2

3

4

4

4

6

(b) minimum spanning tree

Fig. 9.: (a) Sample dataset and (b) corresponding minimum spanning tree of the

weighted mutual reachability graph for k = n − 1 and ε = 2. In (a), element colors

represent a notional clustering with black elements representing noise.

Table 1.: Matrix H Returned by Hk-
DC†‡

k′ 1 2 3 4 5 6 . . . 14

x1 -1 1 1 0 0 0 . . . 0
x2 1 1 1 0 0 0 . . . 0
x3 -1 1 1 0 0 0 . . . 0
x4 -1 1 1 0 0 0 . . . 0
x5 2 2 2 0 0 0 . . . 0
x6 -1 2 2 0 0 0 . . . 0
x7 -1 2 2 0 0 0 . . . 0
x8 2 2 2 0 0 0 . . . 0
x9 -1 -1 -1 0 0 0 . . . 0
x10 -1 -1 3 0 0 0 . . . 0
x11 5 3 3 0 0 0 . . . 0
x12 -1 3 3 0 0 0 . . . 0
x13 -1 3 3 0 0 0 . . . 0
x14 4 3 3 0 0 0 . . . 0
x15 -1 -1 -1 -1 -1 0 . . . 0
† For the sample dataset with cor-

responding minimum spanning tree
shown in Figure 9.

‡ Note that k = n−1, ε = 2, andm = 1,
also, column k + 1 has been excluded
as a singleton cluster exists at k.

51

(a) dendrogram

(b) directed rooted tree

Fig. 10.: (a) Dendrogram of matrix H shown in Table 1. Note that the x-axis

represents elements, y-axis values of k′, and red lines indicate element transitions to

noise. (b) Directed rooted tree of matrix H shown in Table 1.

value of ε is essential. A heuristic solution is proposed below for extracting a final

flat clustering addressing both issues.

We being by defining a rooted directed trees for each Hk-DC matrix H over a

range of density threshold ε values. Let e define a range of density thresholds (ε’s),

e = [1..εmax] for maximum value εmax. For j = [1..|e|], let T j represent the directed

rooted tree of the Hk-DC matrix H for ε = ej (indicated by Hj). Vertices of T j

are defined as the set of clusters in Hj, v(T j) = {0..max (Hj)} where max (Hj) is

the largest cluster index in Hj. For each vertex v ∈ v(T j), let Cj
v define the set of

member elements of cluster v, Cj
v = {i ∈ N : ∃k′ such that Hj

i,k′ = v}.

To define the edges of T j, for each vertex v ∈ v(T j), let k′birth(v) define the maxi-

mum value of k′ below which cluster v exists in Hj, k′birth(v) = (arg maxk′ H
j
·,k′ = v)+

1. Similarly, let k′death(v) define the minimum value of k′ at which cluster v exists

in Hj, k′death(v) = arg mink′ H
j
·,k′ = v. A directed edge (u, v) exists iff cluster u is a

parent of cluster v in Hj (i.e., T j is an out-tree with edges pointing away from the

52

root vertex), e(T j) = {(u, v) ∈ v(T j) × v(T j) : Cj
v ⊂ Cj

u and k′death(u) = k′birth(v)}.

As an example, Figure 10b shows the directed rooted tree of the Hk-DC matrix shown

in Table 1.

Next, we define the set of all flat clusterings within each rooted directed tree. Let

F j define the set of all flat clusterings in T j such that ∀c = [1..|F j|] : F j
c ⊆ v(T j).

A flat clustering F j
c requires that all paths from the root vertex to the leaf vertices

in T j traverse exactly one vertex in F j
c. This requirement ensures that F j

c clusters

are non-overlapping and fully cover the elements in T j (i.e., F j
c is a partitioning,

excluding noise elements). For example, the directed rooted tree T j in Figure 10b

contains three flat clusterings, F j = {{Cj
0}, {C

j
1 , C

j
2 , C

j
3}, {C

j
1 , C

j
2 , C

j
4 , C

j
5}}. As the

size of F increases exponentially for the depth of T (see Section 3.5.3), the first mF

flat clusterings are selected by greedily traversing T by vertex size |C| (Algorithm 5).

Algorithm 5 HkDC flat clusterings
Input: T ,mF
Output: F
1: Initialize priority queue Q (sorted in descending order by vertex size |C|)
2: Insert root vertex of T into Q
3: Initialize F with the root vertex clustering
4: while |Q| > 0 and |F | < mF do
5: v = dequeue Q
6: S = successors of v in T
7: enqueue S into Q
8: for C ∈ F where v ∈ C do
9: Insert (C \ v) + S into F
10: if |F | ≥ mF then
11: break
12: return F

Intuitively, given T 1, ..,T |e|, the problem of extracting the correct flat clustering

involves identifying the most prominent clusters. For a cluster at density threshold j,

prominence is defined as the cluster’s persistence over a local window centered at j.

Given local window size w ≥ 1, the persistence of cluster v ∈ v(T j) is defined as the

53

average of the maximum similarity (Jaccard index) between v and all clusters within

the window of trees T `∈W (w,j), W (w, j) = {0 ≤ ` ≤ |e| : j − w ≤ ` < j or j < ` ≤

j + w}:

ls(v) =
1

|W (w, j)|
∑

`∈W (w,j)

max
u∈T `

Cj
v ∩ C`

u

Cj
v ∪ C`

u

(3.13)

Note that the persistence of cluster v ∈ v(T j) is a measure of local similarity

(i.e., local with respect to the choice of density threshold ε). For example, consider

the directed rooted trees T j (j = [1..4]) shown as dendrograms in Figure 11. For

window size w = 2, the persistence score of cluster two at j = 2 (C2
2 = {5, 6, 7, 8}) is

(1 + 1 + 1/8)/3 as the window of j is W = {1, 3, 4} and the most similar clusters to

C2
2 in W are C1

2 = {5, 6, 7, 8}, C3
3 = {5, 6, 7, 8}, and C4

1 = {1, 2, 3, 4, 5, 6}.

Next, cluster persistence is aggregated to compute a flat clustering’s overall per-

sistence. For a flat clustering C ∈ F j, the aggregate persistence of C is defined as the

minimum cluster persistence for all clusters v ∈ C:

als(C) = min
v∈C

ls(v) (3.14)

Now, one might consider selecting the flat clustering with maximum aggregate

persistence. However, such a solution would not be of interest as aggregate persistence

is biased towards flat clusterings consisting of fewer clusters (e.g., the root vertex

cluster is guaranteed a maximum value of one). In general, a cluster’s persistence

can be expected to decrease as the distance from the root vertex increases, which

correlates to an increase in the size of the flat clustering (i.e., the number of clusters).

Thus, a flat clustering should be selected by simultaneously maximizing aggre-

gate persistence and clustering size. We propose plotting the relationship between

aggregate persistence and clustering size to select an appropriate size c∗ (number

54

(a) j = 1 (b) j = 2

(c) j = 3 (d) j = 4

Fig. 11.: Hk-DC dendrograms for the dataset shown in Figure 9a. Note that e = [1..4]

((a)-(d)), k = n − 1, m = 1, x-axis represents elements, y-axis values of k′, and red

lines indicate element transitions to noise.

55

of clusters). Given c∗, the final flat clustering solution is assumed to be the solu-

tion of size c∗ that maximizes aggregate persistence. Let cmax define the size of the

largest flat clustering in T 1, ..,T |e|, c
max = max1≤j≤|e|,C∈Fj |C|. For each flat cluster

size c ∈ [2..cmax], maximum aggregated persistence for size c (malsc) in T 1, ..,T |ε| is

defined as:

malsc = max
1≤j≤|ε|,C∈Fj

c

als(C) (3.15)

where F j
c is the subset of flat clusterings in F j of size c, F j

c = {C ∈ F j : |C| = c}.

Note that singleton clusterings (c = 1) are ignored. Thus, c∗ is selected by observing

the maximum aggregated local similarity at each size c.

In general, the (malsc versus c)-plot can be expected to decrease as c increases.

However, sharp decreases in this plot at the ground truth number of clusters have

been consistently observed (see Section 4.3.3). These results suggest that the (malsc

versus c)-plot can be used to select the number of clusters c∗. Additionally, given c∗,

the solution with c∗ clusters that maximizes aggregate persistence has been observed

to be strongly correlated with the optimal solution (see Section 4.3.3).

In addition to maximum aggregate persistence, to capture the persistence of flat

clusterings of size c over the global range of e, each c in the (malsc versus c)-plot is

colored according to the average maximal aggregate persistence over T 1, ..,T |e| for

size c:

gmalsc =
∑

1≤j≤|e|

max
C∈Fj

c

als(C)/|e| (3.16)

In Equation 3.16, maximal aggregate persistence for size c is computed separately

for each ε ∈ e and averaged. Thus, gmalsc is a measure of how persistent size c is

across the global range of ε. Similar to malsc, gmalsc decreases as c increases, with

56

sharp decreases observed at the ground truth number of clusters (see Section 4.3.3).

For example, Figure 12 shows the (malsc versus c)-plot for the dataset in Fig-

ure 9a. The correct number of clusters (c∗ = 3) is identifiable by the significant

decrease in malsc and gmalsc observed at c = 4. Given this observation, the max-

imal aggregate persistence flat clustering of size c∗ = 3 correlates with the ground

truth.

3.5.2 Hk-DC : Cluster Expansion

Recall a clustering is defined as a partitioning of a subset of X , P , with remain-

ing elements identified as noise, O. If O is empty, P covers X . However, as discussed

in Section 1.2, the purpose of identifying noise is to increase separability, where clus-

tering error can be reduced by the assignment of noise to neighboring clusters. In

other words, for noise element o ∈ O, o might be better described as lying on the

boundary of a cluster P ∈ P (lying within a low-density region of P). Thus, o should

be assigned to cluster P (i.e., P should be expanded by o) in such cases. As an

example, see Figure 12c, which identifies two noise elements, one correctly and the

other incorrectly.

From Section 3.5.1, recall k′birth(P) defines the maximum value of k′ below which

cluster P exists in a Hk-DC solution, k′death(P) defining the smallest. Consequently,

k′birth(P) defines the largest kNN graph (k = k′birth(P)) in which k-density cluster P

exists. Thus, a natural upper bound for expanding cluster P is to limit its expansion

to the (k′birth(P) − 1)NN of elements in P . In other words, noise o ∈ O should be

assigned to cluster P if o is a (k′birth(P) − 1)NN of any element in P , ∃v ∈ P :

w((v, o)) ≤ k′birth(P) − 1. In the case of ties, o is assigned to the P maximizing the

inverse sum of nearest neighbor edge weights:

57

(a) (malsc vs. c)-plot
(b) c = 2

(c) c = 3 (d) c = 4

Fig. 12.: (a) (malsc versus c)-plot (colored by gmalsc) for the dataset shown in

Figure 9, with maximal aggregate persistence flat clusterings for c = [2..4] ((b)-(c)

color indicating clusters and black points indicating noise). Note that in (a), x-axis

is malsc, y-axis is c, and color is gmalsc; and that the parameters w = 1, k = n− 1,

and m = 1 were used.

58

nnw(P, o) =
∑

v∈P :w((v,o))≤k′birth(P)−1

1

w((v, o))
(3.17)

Note that this expansion of clusters P ∈ P with noise O can be applied

recursively. For example, assuming noise o ∈ O is assigned to P , noise in o’s

(k′birth(P) − 1)NN could likewise be assigned to P . This is being performed itera-

tively, terminating when no new noise assignments exist, or O has been exhausted.

Note that each iteration increases the graph distance from P ’s original elements by

one in the (k′birth(P)−1)NN graph. Thus, ones confidence in o belonging to P should

decrease after each iteration.

Algorithm 6 lists the pseudo-code for cluster expansion, returning an updated

clustering (P , O). Inputs include the previously selected Hk-DC flat clustering

(P , O), kNN graph Gk, and boolean indicator recursive. Lines 3-5 compute the

inverse sum of nearest neighbor edge weights (Equation 3.17) for each cluster-noise

pair (P, o). This value is zero when o is not in P ’s (k′birth(P)− 1)NN. Lines 6-10 as-

signs noise o to cluster P that maximizes the inverse sum of nearest neighbor weights

if this value is greater than zero and removes o from the set of noise. This process

is continued (Line 11) if recursive is true, the set of noise is nonempty, and new

assignments were performed in the previous iteration.

As an example, Figure 13 shows an expansion of the flat clustering in Figure 12c.

Element x9 is assigned to cluster 3 because it is the second nearest neighbor of x11

in 3, while element x15 remains noise as it is not in the third nearest neighborhood

of any cluster element. Further discussion of this expansion procedure is provided in

Section 4.3.3.

59

Algorithm 6 HkDC cluster expansion
Input: P , O,Gk, recursive
Output: P , O
1: do
2: W |P|×|O| = 0
3: for P ∈ P do
4: for o ∈ O do
5: W P,o = nnw(P, o)

6: for o ∈ O do
7: P = arg maxP W P,o

8: if W P,o > 0 then
9: P = P + o
10: O = O \ o
11: while recursive and |O| > 0 and max(W) > 0
12: return P,O

Fig. 13.: Expansion of the flat clustering (colors indicating clusters and black points

indicating noise) shown in Figure 12c for recursive = true. Note that the directed

edge indicates the assignment of noise (9) through a cluster element (11).

60

3.5.3 Hk-DC : Complexity

Hk-DC ’s complexity depends on the cost of computing the exact or approximate

kNN graph, along with the choice of k. Here will assume that the kNN graph is

given (see Section 2.5 for a discussion on kNN graph complexity). Then, given Gk,

edge weights of Gk (Equation 3.3) require kNN to be sorted by distance, which has

a complexity of O(kn log k), using an efficient sorting method such as quicksort [108]

or mergesort [109]. Note that this cost may be built into the cost of computing the

kNN graph.

The RkNN density function (Equation 3.4) has complexityO(1). The complexity

of k-density is O(k log k), as k-density (Equation 3.5) can be efficiently computed by

sorting incoming edges by edge weight and selecting the weight at index ε (i.e., the

minimum value of k with at least ε reverse nearest neighbors). Thus, overall k-density

complexity is O(kn log k). This complexity may increase depending on the chosen

density function (e.g., densities with greater than one-hop neighborhood support).

Construction of the mutual reachability graph Gfk,ε requires computing Gk’s

collapsed graph, O(kn). Hk-DC (Algorithm 4) computes the minimum spanning tree

of Gfk,ε and sorts the resulting tree’s edges by weight. The minimum spanning tree

is O(kn log n) using an efficient version of the Prim [110] or Kruskal [111] algorithm,

while sort is O(n log n) (minimum spanning tree edges may be returned in order by

weight). The divisive clustering cost depends on the height of the resulting hierar-

chical clustering tree, which is at most k, along with the cost of computing the set

of connected components after each split. Thus, complexity is O(kn), where at each

level of the tree, computing connected components cost at most O(n) as at most

n elements exist at each level, and a vertex belonging to each component is known

(vertices incident to the removed edge). Thus, the cost of Hk-DC is O(kn log k) plus

61

the cost of computing the kNN graph, which may dominate the complexity (e.g.,

O(kn2)).

The cost of running Hk-DC over the range of density threshold e isO(|e|kn log k).

Without loss of generality, assume that hierarchical clustering tree T is a binary tree

as an arbitrary m-ary tree can be converted to a binary tree of equivalent height

(O(log2 |T |) ≡ O(logm |T |)). Computing cluster persistence (Equation 3.13) is worst-

case O(|e|w4k) as a perfect binary tree of depth k contains 2(2k) − 1 = O(2k)

vertices with O((2k)2) = O(4k) pairs. The number of flat clusterings |F | in T

is equal to the number of full rooted subtrees in T . For a perfect binary tree

T of depth dT , the number of full rooted subtrees is equal to the number of full

rooted subtrees (minus one) of a perfect binary tree of depth dT − 1 squared (e.g.,

|F | = 1, 4, 25, 676, 458329, 210066388900, .. for dT = 1, 2, 3, 4, 5, 6, ..). Thus, comput-

ing all flat clusterings F of T is intractable for even small values of k. Instead, a

subset FmF ⊆ F such that |FmF | ≤ mF is used, where FmF is computed by greedily

traversing T by vertex size.

The complexity of computing the aggregate cluster persistence scores (Equations

[3.14,3.15,3.16]) is O(|e|mF2k) as the maximum size of a flat clustering in a perfect

binary tree of depth k is equal to 2k (number of leaf vertices). Finally, expansion

(Algorithm 6) has a complexity of O(nk), where each edge in Gk is traversed. Note

that minimum cluster size m can be used to decrease complexity by significantly

decreasing the size of T . For example, given a perfect binary tree T of depth k

with uniform vertex size, m = n/2k decreases the size of T by 2k vertices (effectively

reducing the depth of T by one). Similarly, increasing the value of density threshold

ε decreases the size of T . Let p(gfk(v, ε) ≤ k) be the probability that the k-density

of element v ∈ v(Gk) is less than or equal to k for ε. As ∀v ∈ v(Gk) : p(gfk(v, ε) ≤

k) ≥ p(gfk(v, ε+ 1) ≤ k), increasing ε decreases the probability that any element will

62

be k-dense, decreasing the number of elements at depth k in T .

63

CHAPTER 4

RESULTS & DISCUSSION

4.1 Introduction

In this chapter, the two proposed clustering algorithms, RNN-DBSCAN and

Hk-DC, are evaluated, and their performance is discussed. Section 4.2 presents the

results for RNN-DBSCAN, with performance evaluation in Section 4.2.3. Addition-

ally, Section 3.4.2 presents results on the choice of k heuristic, while Section 4.2.2

discusses the effect of n on k. Finally, Section 4.2.4 investigates the effect of using an

approximate kNN graph on performance. Section 4.3 presents the results for Hk-DC,

with performance evaluation in Section 4.3.3. Additionally, Sections 4.3.1 and 4.3.2

discuss the effect of n and m (minimum cluster size) on k.

The artificial datasets in Table 2 and the real-world datasets in Table 3 were used

to evaluate RNN-DBSCAN and Hk-DC. Short descriptions of the real-world datasets

are banknote (banknote authentication), ctg (cardiotocography fetal state), digits

(optical recognition of handwritten digits), ecoli (ecoli protein localization sites),

htru2 (pulsar candidates), iris (iris plant type), seeds (varieties of wheat kernels),

farm (farm satellite image), and house (individual household electric power consump-

tion).

Clustering performance was measured using external evaluation metrics Adjusted

Rand Index (ARI) [120] and Normalized Mutual Information (NMI) [121, 122]. ARI

is a similarity measure between two clusterings adjusted for chance that is related

to accuracy, while NMI quantifies the amount of information obtained about one

clustering through the other (i.e., the mutual dependence between the two). In the

64

Table 2.: Artificial Datasets

Name Size # Classes # Dimensions

aggregation [112] 788 7 2

blobs [113] 1K,10K,100K,1M 5 3

can3147 [63] 3147 4 2

can473 [63] 473 8 2

circle [113] 1K,10K,100K,1M 2 2

clust3 2d [114] 330 3 2

clust3 3d [114] 330 3 3

compound [112] 399 6 2

d31 [112] 3100 31 2

fire [112] 1025 2 2

flame [112] 240 2 2

grid 1250 2 2

jain [112] 373 2 2

moons [113] 1K,10K,100K,1M 2 2

pathbased [112] 300 3 2

r15 [112] 600 15 2

spiral [112] 312 3 2

swissroll [113] 1K,10K,100K,1M 2 3

t4†[115] 8000 6 2

t7†[115] 10000 9 2

t8†[115] 8000 8 2

† Original dataset was unlabeled requiring elements to be labeled man-
ually.

65

Table 3.: Real-World Datasets

Name Size # Classes # Dimensions

banknote [116] 1372 2 4

ctg [116] 2126 10 19

digits [116] 1,797 10 64

ecoli [116] 336 8 7

farm†[117, 118] 3,627,086 - 4

house†[117, 116] 2,049,280 - 6

htru2 [116, 119] 17,898 2 8

iris [116] 150 3 4

seeds [116] 210 3 7

† Datasets are unlabeled.

case of elements being identified as noise, each noise element was treated as a distinct

singleton cluster for both ARI and NMI. Additionally, clustering Purity was used, a

weighted average of the percentage of elements belonging to the dominant class in

each cluster.

Recall that RNN-DBSCAN requires one model parameter defining the k-nearest

neighbor graph size (k), while Hk-DC requires additional model parameters: density

threshold (ε) and minimum cluster size (m). In both cases, a Euclidean distance

measure was used to compute the k-nearest neighbor graph.

66

4.2 RNN-DBSCAN

4.2.1 RNN-DBSCAN : Choice of k

Two heuristics for selecting k based on clustering stability and the internal eval-

uation metric DBVC were proposed in Section 3.4.2. First, for clustering stability,

it was assumed that a correct choice of k could be discovered by examining the his-

togram of clustering size for a range of k and selecting the first spike in the histogram

(in descending order by cluster size). Empirical evidence for this assumption is shown

in Figure 14, where optimal clustering performance is highly correlated with this first

spike. However, this only suggests an appropriate number of clusters that may be

obtained using multiple values of k.

Additionally, Figure 14 shows maximum ARI performance (solid line) and ARI

performance at the minimum value of k (dashed line). Here a strong correlation is

observed between the two measures suggesting that the minimum value of k is an

appropriate choice for the selected number of clusters. Results for two unlabeled

datasets are shown in Figure 15, where ARI performance is unknown. Here one sees

the resulting cluster solutions corresponding to the minimum value of k at the first

spike in the histogram.

Finally, Figure 16 shows the correlation between DBCV (gray line) and ARI

(black line), suggesting it can also be used to select an appropriate value of k (i.e.,

k, which maximizes DBVC). Though in some cases, high values of DBCV result in

relatively low values of ARI wrt. the optimal.

4.2.2 RNN-DBSCAN : Effect of dataset size n on k

As the computational complexity of RNN-DBSCAN is dependent on the cost

of constructing the kNN graph, the effect of n on k is considered here. Intuitively,

67

(a) aggregation (b) r15 (c) flame

(d) spiral (e) d31 (f) jain

(g) path-based

Fig. 14.: Number of clusters histogram (bars) and ARI performance (maximum solid

line and at minimum k dashed line) for RNN-DBSCAN clusterings produced over

the range k = [1..100] using several datasets from Table 2. Note that occurrences of

number of clusters equal to 1 are not shown.

68

(a) (b)

(c) (d)

Fig. 15.: Number of clusters histograms for RNN-DBSCAN clusterings produced over

the range k = [1, 200] for the (a) t4 and (b) t7 datasets from Table 2. Note that

occurrences of number of clusters equal to 1 are not shown. RNN-DBSCAN clustering

results (number of clusters, 6 and 9, determined from (a) and (b) and corresponding

minimum k values used) for the (c) t4 and (d) t7 datasets.

69

(a) aggregation (b) r15 (c) flame

(d) spiral (e) d31 (f) jain

(g) path-based

Fig. 16.: Clustering performance (ARI (black) and DBCV (gray)) vs. k for RNN-

DBSCAN clusterings produced over the range k = [1..100] using several datasets

from Table 2.

70

one would expect the correct choice of k to increase as n increases, for example,

at a logarithmic rate k ≈ log n which at a high probability ensures intra-cluster

connectivity. However, for reasons discussed in Section 2.5, a much smaller value of k

may be chosen. As empirical evidence of this phenomenon, Figure 17 shows plots of

ARI performance over a range of k for several artificial datasets, for which the data

generation process remained constant while varying the number of drawn elements

(n = 1K, 10K, 100K, 1M).

Surprisingly, Figure 17 suggests some degree of independence between k and n.

For example, in all cases, the lower bound of k at performance convergence (ARI ≈ 1)

occurs at the largest sample (i.e., at around k ≈ 10 for the n = 1M element datasets).

This perceived independence is likely due to finite sample size, along with several

other factors, such as the effect of expansion, minimum cluster size given k, and

the expected intra-cluster connectivity of elements with high in-degree (i.e., likely

belonging to the emerging giant connected component of each cluster).

Less unexpectedly, one observes less variability in clustering performance as sam-

ple size increases. One observes relatively stable performance over the selected range

of k after convergence for samples of sufficient size. This stability provides some

evidence supporting tying the density threshold to k (i.e., increasing the density

threshold as k increases). Additionally, an appropriate value of k may exist over a

large range of possible values; another interesting observation is that performance

decreases slightly as k increases and sample size decreases. This decrease is likely due

to more identified noise elements (relative to sample size) as the sample size decreases

and k increases.

71

(a) blobs (b) circle

(c) moons (d) swissroll

Fig. 17.: ARI performance vs k for RNN-DBSCAN clusterings produced over the

range k = [1..75] using several datasets from Table 2 of sizes 1K (solid), 10K (dash),

100K (dot), and 1M (dot-dash).

72

4.2.3 RNN-DBSCAN : Performance Evaluation

To evaluate RNN-DBSCAN we compared it to RECORD [62], IS-DBSCAN [63],

and ISB-DBSCAN [64]. The latter two model density by mutual nearest neighbors

and connectivity by the mutual k-nearest neighbor graph. DBSCAN [14] and OP-

TICS [35] were also used. For OPTICS, the authors’ proposed approach for auto-

matically extracting a clustering from the reachability plot was used.

For model parameters, for each of the kNN graph algorithms, k was chosen

from the range k ∈ [1..100]. For DBSCAN, MINPTS was chosen from the set

{1, 5, 10, 20}, and ε was chosen over the set of ε values defined by the MINPTS-

nearest neighbor distance of each element. Like DBSCAN, OPTICS MINPTS was

chosen from the same set of values with the maximum value of ε set to the maximum

MINPTS-nearest neighbor distance, and steepness parameter ξ chosen from the

range ξ ∈ [0, 1]. For each algorithm, two sets of parameters were selected, which

maximized ARI and NMI, respectively. Note that the element order was fixed for

each dataset.

Table 4 shows the ARI performance, Purity, number of clusters, and number

of elements identified as noise for RNN-DBSCAN (RNN), RECORD (REC), IS-

DBSCAN (IS), ISB-DBSCAN (ISB), DBSCAN (DBS), and OPTICS (OPT) on the

artificial datasets. In Table 4, RNN-DBSCAN performance is optimal in six of eight

datasets (tied for first in one case) while coming in second for the other two (two

tied for first in one case). Importantly, in each case, RNN-DBSCAN identified the

underlying classes of each dataset (i.e., at the maximum ARI solution number of

clusters was equal to the ground truth), whereas other approaches failed at this task

in at least one case.

DBSCAN performs poorly on the grid dataset by design, whereas each other

73

Table 4.: Performance of RNN-DBSCAN on Artificial Datasets as Measured by ARI

and Purity

Data RNN REC IS ISB DBS OPT

aggregate ARI 0.998 0.752 0.872 0.914 0.994 0.979

clusters 7 7 6 6 7 8

Purity 0.999 1.0 0.956 0.956 0.999 0.987

noise 0 163 34 0 2 0

d31 ARI 0.896 0.539 0.71 0.739 0.868 0.874

clusters 31 38 34 43 31 60

Purity 0.975 0.928 0.901 0.861 0.982 0.95

noise 167 1051 492 244 286 0

flame ARI 0.971 0.631 0.682 0.215 0.944 0.928

clusters 2 2 2 23 2 3

Purity 0.996 0.995 0.981 1.0 0.992 0.983

noise 2 43 31 33 4 0

jain ARI 0.983 0.417 0.819 1.0 0.941 1.0

clusters 2 2 2 2 4 2

Purity 1.0 1.0 1.0 1.0 1.0 1.0

noise 2 115 34 0 1 0

pathbased ARI 0.917 0.763 0.759 0.789 0.655 0.684

clusters 3 3 5 5 10 7

Purity 0.99 1.0 0.986 0.989 0.986 0.957

noise 11 50 21 16 11 0

r15 ARI 0.984 0.751 0.807 0.993 0.979 0.956

clusters 15 14 15 15 15 16

Purity 0.995 0.932 0.986 0.997 0.995 0.977

noise 3 103 91 0 6 0

spiral ARI 1.0 1.0 0.947 1.0 1.0 0.653

clusters 3 3 3 3 3 6

Purity 1.0 1.0 1.0 1.0 1.0 0.888

noise 0 0 11 0 0 0

grid ARI 1.0 0.922 0.994 0.997 0.5 0.997

clusters 2 2 2 2 1 3

Purity 1.0 1.0 0.999 0.999 1.0 0.999

noise 0 50 2 0 625 074

(a) (b)

Fig. 18.: (a) DBSCAN and (b) RNN-DBSCAN clustering results (maximum ARI

solution) for the grid dataset from Table 2. Note that elements colored black were

identified as noise by the clusterings.

approach can identify each grid. For example, Figure 18 shows that DBSCAN in-

correctly identifies one grid as noise, while RNN-DBSCAN correctly identifies both

grids. Overall, DBSCAN performs well across all the datasets, excluding grid and

pathbased, though it does require the choice of two parameters (MINPTS and ε).

Note that the pathbased dataset consists of three classes (two blobs and one chain

with varying densities).

IS-DBSCAN and ISB-DBSCAN fail in several cases that can be attributed to

one of two reasons. First, the influence-space-based approach cannot uncover the

underlying class structure as shown in Figure 19 (splits classes amongst multiple

clusters) and Figure 20 (splits classes amongst multiple clusters and merges classes

into single clusters). Second, for IS-DBSCAN, many elements are incorrectly iden-

tified as noise, as shown in Figure 20 and Table 4. Like IS-DBSCAN, the main

shortcoming of RECORD is that many elements are incorrectly identified as noise,

as seen in Table 4.

For OPTICS, using the automated technique to extract clusters by identifying

dents in the reachability should be considered. For example, performing a single cut

75

(a) (b)

Fig. 19.: (a) ISB-DBSCAN and (b) RNN-DBSCAN clustering results (maximum

ARI solution) for the flame dataset from Table 2. Note that elements colored black

were identified as noise by the clustering.

(a) (b)

Fig. 20.: (a) IS-DBSCAN and (b) RNN-DBSCAN clustering results (maximum ARI

solution) for the d31 dataset from Table 2. Note that elements colored black were

identified as noise by the clustering.

in the reachability is identical to DBSCAN. However, the automated technique is

an early form of multi-level-set density-based clustering, explaining the improvement

over DBSCAN (e.g., see OPTICS results on the grid dataset compared to DBSCAN).

Table 4 shows that the automated version of OPTICS tends to overestimate the

number of clusters. Additionally, the number of noise elements is shown to always be

zero due to the maximum MINPTS-nearest neighbor distance used as the maximum

ε value).

76

Table 5.: Performance of RNN-DBSCAN on Artificial Datasets as Measured by ARI

Data RNN REC IS ISB DBS OPT

aggregate 0.996 0.742 0.888 0.954 0.991 0.969

d31 0.934 0.772 0.844 0.879 0.911 0.921

flame 0.931 0.54 0.567 0.362 0.869 0.875

jain 0.97 0.376 0.709 1.0 0.862 1.0

pathbased 0.872 0.706 0.735 0.772 0.704 0.686

r15 0.988 0.881 0.871 0.994 0.984 0.964

spiral 1.0 1.0 0.917 1.0 1.0 0.685

grid 1.0 0.824 0.983 0.991 0.301 0.991

Purity performance is good overall for each clustering approach. However, Purity

must be considered for the number of clusters and noise elements. Hence, the dis-

crepancies in ARI/NMI versus Purity performance. Table 5 shows NMI performance

results on the set of artificial datasets. RNN-DBSCAN performance is identical to

those discussed for ARI (i.e., optimal for six of eight datasets and second for the other

two).

Table 6 shows ARI performance, Purity, number of clusters, and number of

noise elements for RNN-DBSCAN (RNN), RECORD (REC), IS-DBSCAN (IS), ISB-

DBSCAN (ISB), DBSCAN (DBS), and OPTICS (OPT) on the real-world datasets.

RNN-DBSCAN ranks first in three, second in three, and third in one of the datasets.

On the other hand, DBSCAN ranks first in four of the seven datasets, though ranking

no better than third (fourth in one case) on the remaining datasets. Additionally,

for two of the dataset DBSCAN ranks first in, both RNN-DBSCAN and DBSCAN

perform relatively well (ctg) or poorly (htru).

Similar to the artificial datasets, RECORD performs the worst, and ISB-

DBSCAN slightly outperforms its predecessor IS-DBSCAN. In the case of RECORD

77

and IS-DBSCAN, from Table 6 one can again see that both methods have issues with

identifying noise observations. Finally, Table 7 shows NMI performance results on

the same set of real-world datasets. Again, one sees that these results correlate with

the ARI observations.

Table 8 shows comparison tests using ARI performance for each pair of clustering

algorithms following the approach in [123]. The results suggest that RNN-DBSCAN

performance is significantly better (p−value ≤ 0.05) than all other evaluated methods

except DBSCAN. In the case of DBSCAN, no significant conclusions can be drawn,

though RNN-DBSCAN is optimal in more cases. However, this is still significant as

in RNN-DBSCAN, the density threshold is fixed, whereas in DBSCAN, the threshold

is varied. Additionally, the connectivity parameter is selected from a smaller input

domain. Given the difficulty in handling noise of the prior kNN approaches, we sug-

gest that the performance gains in RNN-DBSCAN are due to better noise handling.

Furthermore, we suggest this is not observed in DBSCAN due to its larger connectiv-

ity input domain. In other words, cluster boundaries defined by the region enclosed

by a set of intersecting hyper-spheres may be more precisely adjusted by ε.

4.2.4 RNN-DBSCAN : Approximate k Nearest Neighbor Results

An approximate solution is investigated, given the reliance of RNN-DBSCAN on

computing the kNN graph and the associated high computational cost to solve this

problem exactly in high dimensions. The NN-DESCENT [98] algorithm produces an

approximate kNN graph based on the assumption that a neighbor of a neighbor is

also likely a neighbor. NN-DESCENT assumes that an approximate kNN graph can

be incrementally improved by exploring an element’s neighbors’ neighborhoods.

Given approximate kNN graph Gk, let B(x) define the neighborhood of element

x ∈ v(Gk) as the union of the kNN and RkNN of x, B(x) = Nx,k ∪{(u,w) ∈ e(Gk) :

78

Table 6.: Performance of RNN-DBSCAN on Real-World Datasets as Measured by

ARI and Purity

Data RNN REC IS ISB DBS OPT

banknote ARI 0.771 0.086 0.596 0.594 0.558 0.225

clusters 3 4 2 3 8 35

Purity 0.985 0.828 0.894 0.896 0.896 0.98

noise 34 580 25 10 1 0

ctg ARI 0.951 0.057 0.883 0.902 0.992 0.892

clusters 10 14 6 9 13 17

Purity 1.0 0.372 0.999 0.999 1.0 0.995

noise 91 796 409 179 5 0

digits ARI 0.739 0.011 0.462 0.695 0.684 0.315

clusters 34 3 25 18 21 29

Purity 0.936 0.245 0.957 0.977 0.983 0.733

noise 104 1524 564 298 355 0

ecoli ARI 0.526 0.14 0.474 0.46 0.639 0.591

clusters 8 2 4 3 3 5

Purity 0.736 0.538 0.714 0.711 0.582 0.708

noise 10 89 63 55 100 0

htru2 ARI 0.334 0.146 0.147 0.166 0.552 0.146

clusters 204 56 310 204 4 26

Purity 0.976 0.915 0.981 0.949 0.977 0.976

noise 236 1909 4206 2270 2289 0

iris ARI 0.644 0.289 0.566 0.568 0.703 0.643

clusters 4 2 2 2 7 4

Purity 0.963 0.674 0.671 0.667 0.978 0.847

noise 16 55 1 0 16 0

seeds ARI 0.617 0.416 0.383 0.361 0.491 0.498

clusters 4 3 2 9 4 6

Purity 0.898 0.903 0.653 0.888 0.95 0.857

noise 4 65 34 22 51 0

79

Table 7.: Performance of RNN-DBSCAN on Real-World Datasets as Measured by

NMI

Data RNN REC IS ISB DBS OPT

banknote 0.68 0.213 0.59 0.585 0.579 0.363

ctg 0.934 0.399 0.803 0.886 0.99 0.902

digits 0.824 0.47 0.648 0.775 0.77 0.67

ecoli 0.569 0.538 0.551 0.571 0.6 0.55

htru2 0.195 0.116 0.117 0.109 0.25 0.109

iris 0.683 0.445 0.723 0.734 0.734 0.734

seeds 0.618 0.48 0.487 0.495 0.533 0.525

Table 8.: Wilcoxon Signed-Rank Test p-values for ARI Performance in Tables 4 and 6

RNN REC IS ISB DBS OPT

RNN 0.0005485 3.052e-05 0.001586 0.1292 0.002136

REC 0.9996 0.999 0.994 0.9958 0.995

IS 1 0.001312 0.9696 0.9908 0.8349

ISB 0.9987 0.007177 0.03452 0.9063 0.5279

DBS 0.8835 0.005029 0.0107 0.1046 0.06027

OPT 0.9983 0.006018 0.1796 0.5 0.9465

80

w = x}. A basic implementation of NN-DESCENT is described as follows. Begin

with a random approximation of the kNN graph. Then, for each element x, x is

compared with its neighbors’ neighbors z such that z ∈ B(y) and y ∈ B(x). At each

comparison attempting to update the kNN of x with z. This process is repeated over

all elements until no updates of the current k-nearest neighbor graph approximation

are found (i.e., no new kNN are discovered).

In addition to the basic implementation of NN-DESCENT, improvements are

also presented in [98] based on local join, incremental search, sampling, and early ter-

mination. These improvements reduce the number of comparisons and improve data

locality for distributed implementations. Two parameters, ρ and δ, are introduced in

this improved implementation with ρ defining the neighborhood sampling rate and δ

defining early termination (i.e., the minimum number of updates). The complexity

of each iteration of NN-DESCENT is O(ρ × n × k2), with the number of required

iterations to convergence being low (empirically observed to be less than 12 iterations

in [98]).

Table 9 shows NN-DESCENT ’s performance along with the ARI performance

of RNN-DBSCAN using NN-DESCENT on several large artificial and real-world

datasets using parameters of k = 100, ρ = 0.1, and δ = 0.001 were used. Note that

scan rate is defined as the number of distance calculations made relative to the number

of comparisons required to compute an exact solution, (n× (n− 1))/2, whereas recall

is the average percentage of correctly identified kNN in the approximate solution.

ARI performance is computed by comparing RNN-DBSCAN clustering results of the

approximate solution versus the exact solution (i.e., the RNN-DBSCAN clustering of

the exact kNN graph is considered the ground truth). Recall from Section 4.2.2 that

the ARI performance of RNN-DBSCAN for the listed artificial datasets of sample

size 1M is approximately one at both k = 10 and k = 100.

81

Table 9.: Performance of RNN-DBSCAN for an Approximate kNN Graph as Mea-

sured by ARI

Data Scan Rate Recall ARIk = 10 ARIk = 100

blobs 0.0038 0.996 0.998 0.999

circle 0.0042 0.997 0.973 0.998

moons 0.0042 0.997 0.982 0.998

swissroll 0.0038 0.997 0.982 0.997

farm 0.0013 0.999 0.942 0.982

house 0.0022 0.996 0.978 0.988

In Table 9, nearly perfect ARI performance is observed at k = 100, with a

slight performance decrease at k = 10. Note that better ARI performance might be

obtained for both cases by increasing the value of k used in NN-DESCENT. Addi-

tionally, different values of ρ and δ may likewise improve performance. Concerning

complexity, scan rates indicate an observed complexity of n1.5 (i.e., subquadratic),

though again, this might be improved by adjusting ρ and δ. Overall, from these

results, we conclude that using an approximate kNN graph has a minimal effect on

RNN-DBSCAN performance.

4.3 Hk-DC

4.3.1 Hk-DC : Choice of k for the kNN graph

Recall that a cluster is defined by a connected component of (k′ ≤ k)-dense

elements in the k′NN subgraph of the kNN graph. The effect of k is such that no

clusters split at a value greater than k are discoverable. In other words, by increasing

k, a new coarser flat clustering is potentially discoverable. For the fully connected

kNN graph (k = n− 1), all possible flat clusterings are discoverable and contained in

the k-density hierarchical clustering. However, it is desirable for efficiency if k << n.

82

Note that k must be chosen linear to n to ensure connectivity in the kNN graph

given well-separated multimodal data. Thus, clusters only discoverable at k = O(n)

may be considered uninteresting and safely ignored, as they correspond to the joining

of well-separated groups in the data. In other words, they correspond to highly

significant clusters which define a suitable minimum level of coarseness in the data.

A good choice of k should ensure intra-group connectivity of the well-separated

modalities within the data, know to be k = O(log n). In fact, in practice, with a

high probability, this value has been proven to be of the order α log n where α < 1.

Furthermore, as density threshold ε increases, assuming a minimum cluster size m =

ε, a minimal value of α has been observed to ensure intra-group connectivity of the

ε-dense vertices (see Section 4.2.2). This decrease is due to the emergence of a giant

connected component in the group as k increases. Dense vertices being more likely to

belong to the giant connected component given their high vertex degree. Similarly,

the giant connected component is likely to remain connected given the removal of k.

Thus, in practice, k may be chosen much smaller than log (n).

4.3.2 Hk-DC : Choice of min cluster size m

Minimum cluster size m ensures that no cluster of size less than m, pre-expansion,

is discoverable by Hk-DC. Increasing m reduces the effect of chaining in the hierar-

chical clustering (splits resulting in spurious clusters) while improving overall com-

putational efficiency (reducing the number of vertices in the resulting tree). Spurious

clusters are better characterized as noise resulting in cluster shrinkage as opposed to

an actual split. In practice a good heuristic for m is ε, equal to the minimum size of

a connected component containing an ε-dense vertex.

In the best case, one selects the maximum value of m such that no non-spurious

clusters are removed. Figure 21 shows the effect of m on the number of vertices in the

83

0 5 10 15 20 25
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
(#

 le
af

s i
n

H)
/ n

(a) ε = 1

0 5 10 15 20 25
m

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(#
 le

af
s i

n
H)

/ n

(b) ε = 10

Fig. 21.: Number of leaf vertices (scaled by n) versus m in the k-density hierarchical

clustering (H) of datasets in Tables 2 and 3 for ε = {1, 10}. The dashed curve

representing the fit over all datasets using k = n− 1.

k-density hierarchical clustering. For ε = 1, Figure 21(a) shows that tree size relative

to n decreases exponentially as m increases. Figure 21(b) shows that this effect is

dampened as ε increases. This damping is because increasing ε also decreases the size

of the tree.

For most of the datasets in Tables 2 and 3, the choice ofm = [1..25] had a minimal

effect on the optimal ARI performance shown in the second column of Table 10

(minimum optimal ARI within 90% of the maximum). This minimal effect is likely

due to the choice of ε > 1 having a similar effect as m (see Figure 21). Figure 22 shows

the effect of m on the remaining three datasets on ARI performance. All cases show

a decrease in ARI performance as m increases, likely due to removing non-spurious

clusters given the small size of the datasets (See Table 3).

Overall, we suggest a value of m less than log (n), which may be replaced with

m = ε as ε increases (i.e., the minimum of the two values).

84

0 5 10 15 20 25
m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AR
I

ecoli
iris
seeds

Fig. 22.: Optimal ARI performance versus m for datasets in Table 3 with the large

deviation in performance over m (minimum optimal ARI less than 90% of the maxi-

mum). The ε value used corresponds to the optimal solutions by ARI shown in the

second column of Table 10.

85

4.3.3 Hk-DC : Performance Evaluation

In this section, Hk-DC ’s performance is investigated using the collection of

datasets shown in Tables 2 and 3. As a hierarchical solution is generated over a

range of k, Hk-DC, performance is dependent on the density threshold parameter ε

and the extraction of a flat clustering. Thus, the flat clustering extraction heuristic

presented in Section 3.5.1 is evaluated, attempting to address both of these concerns.

Additionally, the performance of Hk-DC is compared with a hierarchical algorithm

using the ε-neighbors graph, HDBSCAN [36, 37].

Recall from Section 3.5.1 the (malsc versus c)-plot is used to select an appropriate

number of clusters c∗, where the flat clustering is the solution with c∗ clusters with

maximal aggregate persistence over a range of density threshold ε. For the following

results, the density threshold range was set to ε = 1..50, window size to w = 5,

maximum number of flat clusterings to mF = 2000, and min cluster size m to value

relative to n.

Table 10 shows the optimal ARI performance of Hk-DC for each dataset. Opti-

mal referring to the flat clustering solution that maximizes ARI performance, identi-

fied by exhaustive search over ε and all flat clusterings. These optimal results are used

to evaluate the proposed flat clustering extraction heuristic’s performance. Table 11

shows Hk-DC ’s ARI performance using the sub-optimal flat clustering heuristic. For

comparison, Table 11 also lists the performance of HDBSCAN. As Hk-DC results

were generated through exploratory analysis, the reported HDBSCAN performance

is the optimal solution over ε, referred to as the MINPTS parameter in HDBSCAN.

In Tables 10 and 11, one observes that the heuristic selects a flat clustering

whose ARI is within 6% of the optimal solution in all but four cases. Additionally,

the correct number of clusters is identifiable in all but five cases, with most errors

86

Table 10.: Optimal Performance of Hk-DC † as Mea-
sured by ARI

dataset opt ARI w/ exp 1 opt ARI w/ exp r
aggregation 0.996 0.996
banknote 0.829 0.847
blobs 1.0 1.0
can3147 0.978 0.981
can473 0.769 0.759
clust3 2d 0.976 0.986
clust3 3d 0.945 0.918
compound 0.907 0.926
d31 0.927 0.944
digits 0.560 0.833
ecoli 0.469 0.702
fire 0.999 0.997
flame 0.962 1.0
iris 0.745 0.811
moon 1.0 1.0
r15 0.993 0.993
seeds 0.626 0.800
spiral 1.0 1.0
t4 0.945 0.912
t7 0.951 0.893
t8 0.966 0.941
† With cluster expansion (single (exp 1) and recursive

(exp r) iteration).

87

Table 11.: Performance of Hk-DC †‡ as measured by ARI

dataset c∗ Hk-DC w/o exp Hk-DC w/ exp 1 Hk-DC w/ exp r HDBSCAN

aggregation 7 0.550 0.990 0.990 0.838
banknote 2 0.012 0.011 0.011 0.327
blobs 5 1.0 1.0 1.0 1.0
can3147 3 0.769 0.924 0.927 0.912
can473 8 0.605 0.659 0.650 0.868
clust3 2d 3 0.904 0.971 0.945 0.956
clust3 3d 3 0.724 0.922 0.860 0.920
compound 5 0.810 0.844 0.853 0.913
d31 31 0.105 0.923 0.941 0.603
digits 10 0.020 0.521 0.791 0.526
ecoli 3 0.008 0.457 0.651 0.399
fire 2 0.805 0.993 0.758 0.948
flame 2 0.325 0.967 0.955 0.824
iris 2 0.558 0.558 0.558 0.548
moon 2 0.988 1.0 1.0 1.0
r15 15 0.810 0.982 0.982 0.957
seeds 3 0.011 0.500 0.744 0.257
spiral 3 1.0 1.0 1.0 1.0
t4 6 0.457 0.933 0.892 0.969
t7 9 0.668 0.935 0.885 0.977
t8 6 0.493 0.691 0.664 0.940
† With and without cluster expansion (single (exp 1) and recursive

(exp r) iteration).
‡ Note that c∗ corresponds to the number of clusters selected by exam-

ining the (malsc versus c)-plot.

88

within +/− 1 cluster of the ground truth. Thus, using this heuristic, in most cases,

one can use the heuristic to select the correct number of clusters and flat clustering

whose performance resembles that of the optimal solution.

Figure 23 shows (malsc versus c)-plots of several datasets from Table 2. In all

but two cases, the ground truth number of clusters is discoverable using the (malsc

versus c)-plots, indicated by sharp decreases in malsc as c increases (e.g., at c = 31

for the d31 dataset or c = 7 for the aggregate dataset). Note that in the case of

multiple elbows, preference is given to the larger solution. Similarly, the spiral and

fire datasets show a sharp decrease in the gmalsc score (indicated by color). One

deviation in the heuristic is seen for the can3147 dataset, where the plot indicates

three as opposed to the ground truth of four clusters. However, Figure 24 shows that

the selection of three clusters is not a poor choice. Finally, the selection of ten clusters

(vs. eleven) is less evident for the digits dataset. Here ten was selected due to the

sharp decrease in gmalsc.

Returning to Table 11, one observes that cluster expansion improves ARI per-

formance in all but one case. However, no meaning can be derived from the deviating

case (banknote) as overall performance is low. Of interest are the deviations in ARI

performance between the two expansion methods (single iteration (exp 1) and re-

cursive (exp r)). First, recall that recursive expansion is a multi-iteration variant

of single iteration expansion (i.e., the number of expanded elements for recursive is

strictly greater than or equal to the case of single iteration). Unsurprisingly, the more

aggressive expansion method (exp r) performs better on datasets without noise. In

contrast, exp 1 performs better on datasets containing noise (see ARI performances

results in Tables 10 and 11). As an example, Figure 25 shows expansion for the d31

and fire datasets. Here a more aggressive expansion is preferred given a lack of noise

(d31), whereas the less aggressive strategy is preferred given noise.

89

(a) aggregate (b) can3147 (c) clust3 2d

(d) d31 (e) digits (f) fire

(g) moon (h) r15 (i) spiral

(j) t7

Fig. 23.: (malsc versus c)-plots with number of cluster c shown in the x-axis, malsc

in the y-axis, and colored by gmalsc for ten datasets from Table 2.

90

(a) c=3 (b) c=4

Fig. 24.: Maximum aggregate persistence flat clustering solutions (with recursive

cluster expansion) for the can3147 dataset at number of clusters c equal to three and

four. Clusters are indicated by color and noise by black elements.

Interestingly, the difference in the performance of the two expansion methods is

less pronounced in the optimal solutions (see Tables 10 and 11). This result is likely

due to ε’s effect on cluster birth/death in the tree, which is monotonically increasing.

Specifically, increasing ε increases the amount of noise. Thus, the optimal solutions

likely correspond to those with the correct number of clusters and minimal value of ε.

Overall, given the increased performance on the real datasets (see Tables 10 and 11),

coupled with the fact that a complete clustering of the data is generally preferred, we

suggest that preference should be given to the recursive expansion procedure.

Next, we more closely examine the banknote and iris dataset for failures in the

heuristic on the real-world data. Note that as the dimensionality of these datasets

was greater than two, we apply dimensionality reduction (t-SNE [124]) to aid in the

visual interpretation of the results. For the banknote dataset, Figure 26 shows the

maximal aggregate persistence clustering solutions for c∗ = 2 (selected due to the

sharp decrease in gmalsc) and c = 3 (whose performance closely aligns with that of

91

(a) d31 gt (b) fire gt

(c) d31 w/o exp (d) fire w/o exp

(e) d31 w/ exp 1 (f) fire w/ exp 1

(g) d31 w/ exp r (h) fire w/ exp r

Fig. 25.: Ground truth (gt) clustering of the d31 and fire datasets, and the maximal

aggregate persistence clustering (with and without cluster expansion) for d31 at c∗ =

31 and fire at c∗ = 2. Note clusters are indicated by color and noise by black elements.

92

Table 12.: Wilcoxon Signed-Rank Test p-values for ARI Performance in Table 11

Hk-DC w/o exp Hk-DC w/ exp 1 Hk-DC w/ exp r HDBSCAN

Hk-DC w/o exp 0.9999 0.9997 0.9999

Hk-DC w/ exp 1 0.000127 0.3649 0.3316

Hk-DC w/ exp r 0.0003407 0.6584 0.448

HDBSCAN 8.406e-05 0.684 0.5692

the optimal solution reported in Table 10). The two classes of the banknote dataset

are correctly split at c = 3, where one of the classes is further refined into two clusters.

Here the failure of the heuristic is likely because one of the clusters appears to be

significantly separated from the remaining data.

Figure 27 shows results for the iris dataset. Here two clusters were selected due

to the sharp decrease in malsc and gmalsc at c = 2. One observes that one of the

iris classes is correctly split at c = 2 and further refined at c = 3. Not shown is

the c = 4 solution, which splits the remaining two classes. Note that a c = 3 flat

clustering does exist that performs the correct order of splits (as indicated by the

increased performance in Table 10). However, this solution does not have maximal

aggregate persistence. Here the failure of the heuristic is likely because the data is

well separated into two clusters.

Finally, Table 12 shows comparison tests using ARI performance for each pair of

clustering algorithms. Results suggest that neither Hk-DC nor HDBSCAN are signif-

icantly better, though Hk-DC does outperform HDBSCAN in more cases. However,

this is still significant as it shows that Hk-DC can still discover cluster structure

(comparable to HDBSCAN) in its smaller input domain. Additionally, one observes

that expansion significantly improves the performance of Hk-DC. This result is likely

because clusters are discoverable within a reduced range of k (e.g., in the range of

93

(a) c vs. mapc (b) bank gt

(c) c=2 (d) c=3

Fig. 26.: (malsc versus c)-plot of the banknote dataset with number of cluster in

the x-axis, malsc in the y-axis, and colored by gmalsc. The ground truth (gt) and

maximal aggregate persistence clustering at c = 2 and c = 3 are shown using a t-SNE

projection of the data. Note that recursive expansion was used and that clusters are

indicated by color and noise by black elements.

94

(a) c vs. mapc (b) iris gt

(c) c=2 (d) c=3

Fig. 27.: (malsc versus c)-plot of the iris dataset with number of cluster in the x-

axis, malsc in the y-axis, and colored by gmalsc. The ground truth (gt) and maximal

aggregate persistence clustering at c = 2 and c = 3 are shown using a t-SNE projection

of the data. Note that recursive expansion was used and that clusters are indicated

by color and noise by black elements.

95

1.. log (n)). This reduced range reduces the size of the tree (as compared to HDB-

SCAN), where more elements are likely to be identified as noise at the cluster splits.

96

CHAPTER 5

CONCLUSIONS

This work investigated the use of the kNN graph with RkNN density in level-set,

density-based clustering. Two novel clustering algorithms, RNN-DBSCAN and Hk-

DC, were proposed and their performance analyzed. In Hk-DC, rank-based edge

weights and k-density were introduced to perform RNN-DBSCAN over a range of k

resulting in a hierarchical clustering solution. Both algorithms exhibited statistically

equivalent performance to approaches using the more popular ε-neighbors approach.

This result being significant as kNN-based approaches have a much smaller solution

space, where k is easier to select than ε. Additionally, RNN-DBSCAN was shown

to improve performance over prior non-hierarchical approaches using kNN signifi-

cantly, Hk-DC being unique in its use of kNN in hierarchical level-set, density-based

clustering.

For both algorithms, novel approaches for handling noise and heuristics for pa-

rameter selection were proposed. For handling noise, in RNN-DBSCAN, a hybrid

kNN- and ε-neighborhood-based traversal approach (ε being cluster dependent), and

for Hk-DC, a recursive kNN-based traversal approach (k being cluster dependent).

These noise handling techniques lead to significant improvement in performance over

prior approaches and the case of ignoring the noise. An important finding of this work

is the increased importance of handling noise using kNN compared with ε-neighbors.

This result being due to the reduced solution space of kNN, where elements are more

likely to be identified as noise at values of k compared with ε. Given this importance,

suggested future work includes investigating new stopping criteria for the recursive

97

approach.

Novel elbow method heuristics for selecting parameters whose clustering solu-

tions produced an appropriate number of clusters were proposed for both algorithms.

The problem of selecting clustering resolution (number of clusters) being the most

challenging in clustering analysis. The proposed approach is based on the assumption

that the correct number of clusters is the largest solution that is persistent (stable)

over the range of parameters. Exploratory analysis showed that the heuristics identi-

fied significant grouping within the datasets, leading to the optimal solution in most

cases. Suggested future work includes developing an internal measure of evaluation

based on k (e.g., the ratio between intra-cluster and inter-cluster connectivity) and

combining the internal measure with our concept of persistence. Finally, the com-

plexity of both heuristics can be reduced by considering dynamic solutions for the

connected components and minimum spanning tree problems [125, 126, 127, 128, 129,

130, 131].

The overall conclusion of this work is that kNN approaches offer several key

advantages over ε-neighborhoods approaches while producing comparable results.

Specifically, the reduced parameter and solution space of kNN approaches simplify

parameter selection by reducing the space of the input and solutions. Thus, the prob-

lem of identifying a correct clustering resolution becomes more tractable, where one

can explore the set of possible solutions more completely.

98

Appendix A

ABBREVIATIONS

ARI Adjusted Rand Index

Hk-DC Hierarchical k-Density Clustering

kNN k-nearest neighbors

RkNN reverse k-nearest neighbors

NMI Normalized Mutual Information

RNN-DBSCAN Reverse Nearest Neighbor-DBSCAN

RVA Richmond Virginia

VCU Virginia Commonwealth University

99

REFERENCES

[1] Krzysztof J. Cios et al. Data Mining: A Knowledge Discovery Approach.

Berlin, Heidelberg: Springer-Verlag, 2007. isbn: 0387333339.

[2] Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina

Chanu. “Image Segmentation Using K -means Clustering Algorithm and Sub-

tractive Clustering Algorithm”. In: Procedia Computer Science 54 (2015).

Eleventh International Conference on Communication Networks, ICCN 2015,

August 21-23, 2015, Bangalore, India Eleventh International Conference on

Data Mining and Warehousing, ICDMW 2015, August 21-23, 2015, Banga-

lore, India Eleventh International Conference on Image and Signal Processing,

ICISP 2015, August 21-23, 2015, Bangalore, India, pp. 764 –771. issn: 1877-

0509. doi: https://doi.org/10.1016/j.procs.2015.06.090. url: http:

//www.sciencedirect.com/science/article/pii/S1877050915014143.

[3] Claudio Carpineto et al. “A Survey of Web Clustering Engines”. In: ACM

Comput. Surv. 41.3 (July 2009). issn: 0360-0300. doi: 10.1145/1541880.

1541884. url: https://doi.org/10.1145/1541880.1541884.

[4] Daniel Dvorkin, Valerie Fadok, and Krzysztof Cios. “SiMCAL 1 Algorithm

for Analysis of Gene Expression Data Related to the Phosphatidylserine Re-

ceptor”. In: Artif. Intell. Med. 35.1–2 (Sept. 2005), 49–60. issn: 0933-3657.

doi: 10.1016/j.artmed.2005.01.010. url: https://doi.org/10.1016/j.

artmed.2005.01.010.

[5] Cao Nguyen et al. “ClusFCM: An algorithm for predicting protein func-

tion using homologies and protein interactions”. In: Journal of bioinformat-

100

https://doi.org/https://doi.org/10.1016/j.procs.2015.06.090
http://www.sciencedirect.com/science/article/pii/S1877050915014143
http://www.sciencedirect.com/science/article/pii/S1877050915014143
https://doi.org/10.1145/1541880.1541884
https://doi.org/10.1145/1541880.1541884
https://doi.org/10.1145/1541880.1541884
https://doi.org/10.1016/j.artmed.2005.01.010
https://doi.org/10.1016/j.artmed.2005.01.010
https://doi.org/10.1016/j.artmed.2005.01.010

ics and computational biology 6 (Mar. 2008), pp. 203–22. doi: 10.1142/

S0219720008003333.

[6] Lani Wu et al. “Large-scale prediction of Saccharomyces cerevisiae gene func-

tion using overlapping transcriptional clusters”. In: Nature genetics 31 (Aug.

2002), pp. 255–65. doi: 10.1038/ng906.

[7] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. “Clustering Gene Expres-

sion Patterns”. In: Journal of computational biology : a journal of compu-

tational molecular cell biology 6 (Aug. 1999), pp. 281–97. doi: 10.1089/

106652799318274.

[8] G. Kerr et al. “Techniques for clustering gene expression data”. In: Computers

in Biology and Medicine 38.3 (2008), pp. 283 –293. issn: 0010-4825. doi:

https://doi.org/10.1016/j.compbiomed.2007.11.001. url: http:

//www.sciencedirect.com/science/article/pii/S0010482507001801.

[9] Der-Chiang Li, Wen-Li Dai, and Wan-Ting Tseng. “A two-stage cluster-

ing method to analyze customer characteristics to build discriminative cus-

tomer management: A case of textile manufacturing business”. In: Expert

Systems with Applications 38.6 (2011), pp. 7186 –7191. issn: 0957-4174. doi:

https://doi.org/10.1016/j.eswa.2010.12.041. url: http://www.

sciencedirect.com/science/article/pii/S0957417410014041.

[10] D.T. Pham and A.A. Afify. “- Engineering applications of clustering tech-

niques”. In: Intelligent Production Machines and Systems. Ed. by D.T. Pham,

E.E. Eldukhri, and A.J. Soroka. Oxford: Elsevier Science Ltd, 2006, pp. 326

–331. isbn: 978-0-08-045157-2. doi: https://doi.org/10.1016/B978-

008045157-2/50060-2. url: http://www.sciencedirect.com/science/

article/pii/B9780080451572500602.

101

https://doi.org/10.1142/S0219720008003333
https://doi.org/10.1142/S0219720008003333
https://doi.org/10.1038/ng906
https://doi.org/10.1089/106652799318274
https://doi.org/10.1089/106652799318274
https://doi.org/https://doi.org/10.1016/j.compbiomed.2007.11.001
http://www.sciencedirect.com/science/article/pii/S0010482507001801
http://www.sciencedirect.com/science/article/pii/S0010482507001801
https://doi.org/https://doi.org/10.1016/j.eswa.2010.12.041
http://www.sciencedirect.com/science/article/pii/S0957417410014041
http://www.sciencedirect.com/science/article/pii/S0957417410014041
https://doi.org/https://doi.org/10.1016/B978-008045157-2/50060-2
https://doi.org/https://doi.org/10.1016/B978-008045157-2/50060-2
http://www.sciencedirect.com/science/article/pii/B9780080451572500602
http://www.sciencedirect.com/science/article/pii/B9780080451572500602

[11] Michael Chau et al. “Uncertain Data Mining: An Example in Clustering Lo-

cation Data”. In: Advances in Knowledge Discovery and Data Mining. Ed. by

Wee-Keong Ng et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 199–204. isbn: 978-3-540-33207-7.

[12] P. H. A. Sneath. “The Application of Computers to Taxonomy”. In: Microbi-

ology 17.1 (1957), pp. 201–226. url: http://mic.microbiologyresearch.

org/content/journal/micro/10.1099/00221287-17-1-201.

[13] J. Macqueen. “Some methods for classification and analysis of multivariate

observations”. In: In 5-th Berkeley Symposium on Mathematical Statistics and

Probability. 1967, pp. 281–297.

[14] Martin Ester et al. “A Density-based Algorithm for Discovering Clusters a

Density-based Algorithm for Discovering Clusters in Large Spatial Databases

with Noise”. In: Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI

Press, 1996, pp. 226–231. url: http://dl.acm.org/citation.cfm?id=

3001460.3001507.

[15] Arthur Dempster, Natalie Laird, and Donald B. Rubin. “Maximum Likelihood

From Incomplete Data Via The EM algorithm”. In: 39 (Jan. 1977), pp. 1–38.

[16] Rakesh Agrawal et al. “Automatic Subspace Clustering of High Dimensional

Data for Data Mining Applications”. In: SIGMOD Rec. 27.2 (June 1998),

94–105. issn: 0163-5808. doi: 10.1145/276305.276314. url: https://doi.

org/10.1145/276305.276314.

[17] S. Mahran and K. Mahar. “Using grid for accelerating density-based cluster-

ing”. In: 2008 8th IEEE International Conference on Computer and Informa-

tion Technology. 2008, pp. 35–40. doi: 10.1109/CIT.2008.4594646.

102

http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-17-1-201
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-17-1-201
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1145/276305.276314
https://doi.org/10.1145/276305.276314
https://doi.org/10.1145/276305.276314
https://doi.org/10.1109/CIT.2008.4594646

[18] Avory Bryant and Krzysztof Cios. “RNN-DBSCAN: A Density-based Cluster-

ing Algorithm using Reverse Nearest Neighbor Density Estimate”. In: IEEE

Transactions on Knowledge and Data Engineering (2017), pp. 1–1. doi: 10.

1109/TKDE.2017.2787640.

[19] Michael E. Houle et al. “Can Shared-Neighbor Distances Defeat the Curse of

Dimensionality?” In: Scientific and Statistical Database Management. Ed. by

Michael Gertz and Bertram Ludäscher. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 482–500. isbn: 978-3-642-13818-8.

[20] Kevin Beyer et al. “When Is “Nearest Neighbor” Meaningful?” In: Database

Theory — ICDT’99. Ed. by Catriel Beeri and Peter Buneman. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 1999, pp. 217–235. isbn: 978-3-540-49257-3.

[21] Ian Jolliffe. “Principal Component Analysis”. In: International Encyclopedia

of Statistical Science. Ed. by Miodrag Lovric. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 1094–1096. isbn: 978-3-642-04898-2. doi: 10.

1007/978-3-642-04898-2_455. url: https://doi.org/10.1007/978-3-

642-04898-2_455.

[22] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction. 2020. arXiv: 1802.

03426 [stat.ML].

[23] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of

Data with Neural Networks”. In: Science 313.5786 (2006), pp. 504–507. issn:

0036-8075. doi: 10.1126/science.1127647. eprint: https://science.

sciencemag . org / content / 313 / 5786 / 504 . full . pdf. url: https : / /

science.sciencemag.org/content/313/5786/504.

103

https://doi.org/10.1109/TKDE.2017.2787640
https://doi.org/10.1109/TKDE.2017.2787640
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.1126/science.1127647
https://science.sciencemag.org/content/313/5786/504.full.pdf
https://science.sciencemag.org/content/313/5786/504.full.pdf
https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504

[24] Sanjay Goil, Harsha Nagesh, and Alok Choudhary. MAFIA: Efficient and

Scalable Subspace Clustering for Very Large Data Sets. Tech. rep. Nothwestern

University, 1999.

[25] C. Bohm et al. “Density connected clustering with local subspace preferences”.

In: Fourth IEEE International Conference on Data Mining (ICDM’04). 2004,

pp. 27–34. doi: 10.1109/ICDM.2004.10087.

[26] Miloš Radovanovi, Alexandros Nanopoulos, and Mirjana Ivanovi. “Hubs in

Space: Popular Nearest Neighbors in High-Dimensional Data”. In: Journal of

Machine Learning Research 11.86 (2010), pp. 2487–2531. url: http://jmlr.

org/papers/v11/radovanovic10a.html.

[27] Volodymyr Melnykov and Ranjan Maitra. “Finite mixture models and model-

based clustering”. In: Statist. Surv. 4 (2010), pp. 80–116. doi: 10.1214/09-

SS053. url: https://doi.org/10.1214/09-SS053.

[28] Bernard W Silverman. Density estimation for statistics and data analysis.

Monographs on Statistics and Applied Probability. London: Chapman and

Hall, 1986. url: https://cds.cern.ch/record/1070306.

[29] Alexander Hinneburg and Daniel A. Keim. “An Efficient Approach to Clus-

tering in Large Multimedia Databases with Noise”. In: Proceedings of the

Fourth International Conference on Knowledge Discovery and Data Mining.

KDD’98. New York, NY: AAAI Press, 1998, pp. 58–65. url: http://dl.

acm.org/citation.cfm?id=3000292.3000302.

[30] Dorin Comaniciu and Peter Meer. “Mean shift: A robust approach toward fea-

ture space analysis”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 24 (2002), pp. 603–619.

104

https://doi.org/10.1109/ICDM.2004.10087
http://jmlr.org/papers/v11/radovanovic10a.html
http://jmlr.org/papers/v11/radovanovic10a.html
https://doi.org/10.1214/09-SS053
https://doi.org/10.1214/09-SS053
https://doi.org/10.1214/09-SS053
https://cds.cern.ch/record/1070306
http://dl.acm.org/citation.cfm?id=3000292.3000302
http://dl.acm.org/citation.cfm?id=3000292.3000302

[31] Teng Qiu et al. Nearest Descent, In-Tree, and Clustering. 2018. arXiv: 1412.

5902 [cs.LG].

[32] D. Wishart. “Mode Analysis: a generalization of nearest neighbour which

reduces chaining effects”. In: Numerical Taxonomy (1969), pp. 282–311.

[33] R. F. Ling. “On the theory and construction of k-clusters”. In: The Com-

puter Journal 15.4 (1972), pp. 326–332. doi: 10.1093/comjnl/15.4.326.

eprint: /oup/backfile/content_public/journal/comjnl/15/4/10.1093/

comjnl/15.4.326/2/150326.pdf. url: http://dx.doi.org/10.1093/

comjnl/15.4.326.

[34] John A. Hartigan. Clustering Algorithms. 99th. New York, NY, USA: John

Wiley & Sons, Inc., 1975. isbn: 047135645X.

[35] Mihael Ankerst et al. “OPTICS: Ordering Points to Identify the Clustering

Structure”. In: Proceedings of the 1999 ACM SIGMOD International Con-

ference on Management of Data. SIGMOD ’99. Philadelphia, Pennsylvania,

USA: ACM, 1999, pp. 49–60. isbn: 1-58113-084-8. doi: 10.1145/304182.

304187. url: http://doi.acm.org/10.1145/304182.304187.

[36] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-

Based Clustering Based on Hierarchical Density Estimates”. In: Advances in

Knowledge Discovery and Data Mining. Ed. by Jian Pei et al. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2013, pp. 160–172. isbn: 978-3-642-37456-2.

[37] Ricardo J. G. B. Campello et al. “Hierarchical Density Estimates for Data

Clustering, Visualization, and Outlier Detection”. In: ACM Trans. Knowl.

Discov. Data 10.1 (July 2015), 5:1–5:51. issn: 1556-4681. doi: 10.1145/

2733381. url: http://doi.acm.org/10.1145/2733381.

105

https://arxiv.org/abs/1412.5902
https://arxiv.org/abs/1412.5902
https://doi.org/10.1093/comjnl/15.4.326
/oup/backfile/content_public/journal/comjnl/15/4/10.1093/comjnl/15.4.326/2/150326.pdf
/oup/backfile/content_public/journal/comjnl/15/4/10.1093/comjnl/15.4.326/2/150326.pdf
http://dx.doi.org/10.1093/comjnl/15.4.326
http://dx.doi.org/10.1093/comjnl/15.4.326
https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/304182.304187
http://doi.acm.org/10.1145/304182.304187
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
http://doi.acm.org/10.1145/2733381

[38] Y. El-Sonbaty, M. A. Ismail, and M. Farouk. “An efficient density based clus-

tering algorithm for large databases”. In: 16th IEEE International Conference

on Tools with Artificial Intelligence. 2004, pp. 673–677. doi: 10.1109/ICTAI.

2004.27.

[39] Alexander Hinneburg and Daniel A. Keim. “A General Approach to Cluster-

ing in Large Databases with Noise.” In: Knowl. Inf. Syst. 5.4 (Mar. 14, 2005),

pp. 387–415.

[40] Xin Wang and Howard J. Hamilton. “DBRS: A Density-Based Spatial Clus-

tering Method with Random Sampling”. In: Advances in Knowledge Discov-

ery and Data Mining. Ed. by Kyu-Young Whang et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2003, pp. 563–575. isbn: 978-3-540-36175-6.

[41] Johannes Schneider and Michail Vlachos. “Fast parameterless density-based

clustering via random projections”. In: CIKM. 2013.

[42] Junhao Gan and Yufei Tao. “DBSCAN Revisited: Mis-Claim, Un-Fixability,

and Approximation”. In: Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data. SIGMOD ’15. Melbourne, Victo-

ria, Australia: ACM, 2015, pp. 519–530. isbn: 978-1-4503-2758-9. doi: 10.

1145/2723372.2737792. url: http://doi.acm.org/10.1145/2723372.

2737792.

[43] Junhao Gan and Yufei Tao. “On the Hardness and Approximation of Eu-

clidean DBSCAN”. In: ACM Trans. Database Syst. 42.3 (July 2017), 14:1–

14:45. issn: 0362-5915. doi: 10.1145/3083897. url: http://doi.acm.org/

10.1145/3083897.

106

https://doi.org/10.1109/ICTAI.2004.27
https://doi.org/10.1109/ICTAI.2004.27
https://doi.org/10.1145/2723372.2737792
https://doi.org/10.1145/2723372.2737792
http://doi.acm.org/10.1145/2723372.2737792
http://doi.acm.org/10.1145/2723372.2737792
https://doi.org/10.1145/3083897
http://doi.acm.org/10.1145/3083897
http://doi.acm.org/10.1145/3083897

[44] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. “A Fast Parallel Cluster-

ing Algorithm for Large Spatial Databases”. In: Data Min. Knowl. Discov.

3.3 (Sept. 1999), pp. 263–290. issn: 1384-5810.

[45] Y. He et al. “MR-DBSCAN: An Efficient Parallel Density-Based Cluster-

ing Algorithm Using MapReduce”. In: 2011 IEEE 17th International Confer-

ence on Parallel and Distributed Systems. 2011, pp. 473–480. doi: 10.1109/

ICPADS.2011.83.

[46] Benjamin Welton, Evan Samanas, and Barton P. Miller. “Mr. Scan: Ex-

treme Scale Density-based Clustering Using a Tree-based Network of GPGPU

Nodes”. In: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. SC ’13. Denver, Colorado:

ACM, 2013, 84:1–84:11. isbn: 978-1-4503-2378-9. doi: 10.1145/2503210.

2503262. url: http://doi.acm.org/10.1145/2503210.2503262.

[47] Xiaoming Chen et al. “APSCAN: A parameter free algorithm for clustering.”

In: Pattern Recognition Letters 32.7 (2011), pp. 973–986.

[48] Xiaowei Xu et al. “A distribution-based clustering algorithm for mining in

large spatial databases”. In: Proceedings 14th International Conference on

Data Engineering. 1998, pp. 324–331. doi: 10.1109/ICDE.1998.655795.

[49] Alessandro Lulli et al. “NG-DBSCAN: Scalable Density-based Clustering for

Arbitrary Data”. In: Proc. VLDB Endow. 10.3 (Nov. 2016), pp. 157–168. issn:

2150-8097. doi: 10.14778/3021924.3021932. url: https://doi.org/10.

14778/3021924.3021932.

[50] Feng Cao et al. “Density-based clustering over an evolving data stream with

noise”. In: In 2006 SIAM Conference on Data Mining. 2006, pp. 328–339.

107

https://doi.org/10.1109/ICPADS.2011.83
https://doi.org/10.1109/ICPADS.2011.83
https://doi.org/10.1145/2503210.2503262
https://doi.org/10.1145/2503210.2503262
http://doi.acm.org/10.1145/2503210.2503262
https://doi.org/10.1109/ICDE.1998.655795
https://doi.org/10.14778/3021924.3021932
https://doi.org/10.14778/3021924.3021932
https://doi.org/10.14778/3021924.3021932

[51] Xiaowei Xu et al. “SCAN: A Structural Clustering Algorithm for Networks”.

In: Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’07. San Jose, California, USA:

ACM, 2007, pp. 824–833. isbn: 978-1-59593-609-7. doi: 10.1145/1281192.

1281280. url: http://doi.acm.org/10.1145/1281192.1281280.

[52] Mihael Ankerst et al. “OPTICS: Ordering Points to Identify the Clustering

Structure”. In: SIGMOD Rec. 28.2 (June 1999), pp. 49–60. issn: 0163-5808.

doi: 10.1145/304181.304187. url: http://doi.acm.org/10.1145/

304181.304187.

[53] Elke Achtert, Christian Böhm, and Peer Kröger. “DeLi-Clu: Boosting Ro-

bustness, Completeness, Usability, and Efficiency of Hierarchical Clustering

by a Closest Pair Ranking”. In: Advances in Knowledge Discovery and Data

Mining. Ed. by Wee-Keong Ng et al. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2006, pp. 119–128. isbn: 978-3-540-33207-7.

[54] G. Gupta, A. Liu, and J. Ghosh. “Automated Hierarchical Density Shaving:

A Robust Automated Clustering and Visualization Framework for Large Bi-

ological Data Sets”. In: IEEE/ACM Transactions on Computational Biology

and Bioinformatics 7.2 (2010), pp. 223–237. issn: 1545-5963. doi: 10.1109/

TCBB.2008.32.

[55] Ergun Biçici and Deniz Yuret. “Locally Scaled Density Based Clustering”. In:

Adaptive and Natural Computing Algorithms. Ed. by Bartlomiej Beliczynski

et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 739–748. isbn:

978-3-540-71618-1.

[56] Anant Ram et al. “Article:A Density Based Algorithm for Discovering Density

Varied Clusters in Large Spatial Databases”. In: International Journal of

108

https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1145/1281192.1281280
http://doi.acm.org/10.1145/1281192.1281280
https://doi.org/10.1145/304181.304187
http://doi.acm.org/10.1145/304181.304187
http://doi.acm.org/10.1145/304181.304187
https://doi.org/10.1109/TCBB.2008.32
https://doi.org/10.1109/TCBB.2008.32

Computer Applications 3.6 (2010). Published By Foundation of Computer

Science, pp. 1–4.

[57] L. Duan et al. “A Local Density Based Spatial Clustering Algorithm with

Noise”. In: 2006 IEEE International Conference on Systems, Man and Cy-

bernetics. Vol. 5. 2006, pp. 4061–4066. doi: 10.1109/ICSMC.2006.384769.

[58] B. Borah and D. K. Bhattacharyya. “DDSC: A Density Differentiated Spatial

Clustering Technique”. In: Journal of Computers 3.2 (2008).

[59] Levent Ertoz, Michael Steinbach, and Vipin Kumar. “A New Shared Nearest

Neighbor Clustering Algorithm and its Applications”. In: Workshop on Clus-

tering High Dimensional Data and its Applications at 2nd SIAM International

Conference on Data Mining. 2002.

[60] Levent Ertoz, Michael Steinbach, and Vipin Kumar. “Finding Clusters of Dif-

ferent Sizes, Shapes, and Densities in Noisy, High Dimensional Data”. In: Pro-

ceedings of the Third SIAM International Conference on Data Mining (SDM

2003). Ed. by Daniel Barbara and Chandrika Kamath. Vol. 112. Proceedings

in Applied Mathematics. Society for Industrial and Applied Mathematics,

2003. url: http://www.siam.org/meetings/sdm03/proceedings/sdm03_

05.pdf.

[61] Y. Tao and D. Pi. “Unifying Density-Based Clustering and Outlier Detection”.

In: 2009 Second International Workshop on Knowledge Discovery and Data

Mining. 2009, pp. 644–647. doi: 10.1109/WKDD.2009.127.

[62] S. Vadapalli, S. R. Valluri, and K. Karlapalem. “A Simple Yet Effective Data

Clustering Algorithm”. In: Sixth International Conference on Data Mining

(ICDM’06). 2006, pp. 1108–1112.

109

https://doi.org/10.1109/ICSMC.2006.384769
http://www.siam.org/meetings/sdm03/proceedings/sdm03_05.pdf
http://www.siam.org/meetings/sdm03/proceedings/sdm03_05.pdf
https://doi.org/10.1109/WKDD.2009.127

[63] Carmelo Cassisi et al. “Enhancing Density-based Clustering: Parameter Re-

duction and Outlier Detection”. In: Inf. Syst. 38.3 (May 2013), pp. 317–330.

issn: 0306-4379.

[64] Yinghua Lv et al. “An Efficient and Scalable Density-based Clustering Algo-

rithm for Datasets with Complex Structures”. In: Neurocomput. 171.C (Jan.

2016), pp. 9–22. issn: 0925-2312.

[65] Lian Duan et al. “A local-density based spatial clustering algorithm with

noise.” In: Inf. Syst. 32.7 (Sept. 14, 2007), pp. 978–986.

[66] S. Vadapalli, S. R. Valluri, and K. Karlapalem. “A Simple Yet Effective Data

Clustering Algorithm”. In: Sixth International Conference on Data Mining

(ICDM’06). 2006, pp. 1108–1112. doi: 10.1109/ICDM.2006.9.

[67] P. Liu, D. Zhou, and N. Wu. “VDBSCAN: Varied Density Based Spatial

Clustering of Applications with Noise”. In: 2007 International Conference

on Service Systems and Service Management. 2007, pp. 1–4. doi: 10.1109/

ICSSSM.2007.4280175.

[68] Markus M. Breunig et al. “LOF: Identifying Density-based Local Outliers”.

In: SIGMOD Rec. 29.2 (May 2000), pp. 93–104. issn: 0163-5808. doi: 10.

1145/335191.335388. url: http://doi.acm.org/10.1145/335191.

335388.

[69] Markus M. Breunig et al. “LOF: Identifying Density-based Local Outliers”.

In: Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data. SIGMOD ’00. Dallas, Texas, USA: ACM, 2000, pp. 93–104.

isbn: 1-58113-217-4. doi: 10.1145/342009.335388. url: http://doi.acm.

org/10.1145/342009.335388.

110

https://doi.org/10.1109/ICDM.2006.9
https://doi.org/10.1109/ICSSSM.2007.4280175
https://doi.org/10.1109/ICSSSM.2007.4280175
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
http://doi.acm.org/10.1145/335191.335388
http://doi.acm.org/10.1145/335191.335388
https://doi.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388

[70] A. Cavalcante Araujo Neto et al. “Efficient Computation and Visualization

of Multiple Density-Based Clustering Hierarchies”. In: IEEE Transactions on

Knowledge and Data Engineering (2019), pp. 1–1. doi: 10.1109/TKDE.2019.

2962412.

[71] Edwin M. Knorr and Raymond T. Ng. “A Unified Notion of Outliers: Prop-

erties and Computation”. In: Proceedings of the Third International Confer-

ence on Knowledge Discovery and Data Mining. KDD’97. Newport Beach,

CA: AAAI Press, 1997, pp. 219–222. url: http://dl.acm.org/citation.

cfm?id=3001392.3001438.

[72] Edwin M. Knorr and Raymond T. Ng. “Algorithms for Mining Distance-

Based Outliers in Large Datasets”. In: Proceedings of the 24rd International

Conference on Very Large Data Bases. VLDB ’98. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1998, pp. 392–403. isbn: 1-55860-566-5.

url: http://dl.acm.org/citation.cfm?id=645924.671334.

[73] Fabrizio Angiulli and Clara Pizzuti. “Fast Outlier Detection in High Dimen-

sional Spaces”. In: Principles of Data Mining and Knowledge Discovery. Ed.

by Tapio Elomaa, Heikki Mannila, and Hannu Toivonen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2002, pp. 15–27. isbn: 978-3-540-45681-0.

[74] F. Angiulli and C. Pizzuti. “Outlier mining in large high-dimensional data

sets”. In: IEEE Transactions on Knowledge and Data Engineering 17.2

(2005), pp. 203–215. issn: 1041-4347. doi: 10.1109/TKDE.2005.31.

[75] Tianming Hu and Sam Y. Sung. “Detecting Pattern-based Outliers”. In: Pat-

tern Recogn. Lett. 24.16 (Dec. 2003), pp. 3059–3068. issn: 0167-8655. doi:

10.1016/S0167-8655(03)00165-X. url: http://dx.doi.org/10.1016/

S0167-8655(03)00165-X.

111

https://doi.org/10.1109/TKDE.2019.2962412
https://doi.org/10.1109/TKDE.2019.2962412
http://dl.acm.org/citation.cfm?id=3001392.3001438
http://dl.acm.org/citation.cfm?id=3001392.3001438
http://dl.acm.org/citation.cfm?id=645924.671334
https://doi.org/10.1109/TKDE.2005.31
https://doi.org/10.1016/S0167-8655(03)00165-X
http://dx.doi.org/10.1016/S0167-8655(03)00165-X
http://dx.doi.org/10.1016/S0167-8655(03)00165-X

[76] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection:

A Survey”. In: ACM Comput. Surv. 41.3 (July 2009), 15:1–15:58. issn: 0360-

0300. doi: 10.1145/1541880.1541882. url: http://doi.acm.org/10.

1145/1541880.1541882.

[77] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. “Local outlier detec-

tion reconsidered: a generalized view on locality with applications to spatial,

video, and network outlier detection”. In: Data Mining and Knowledge Dis-

covery 28.1 (2014), pp. 190–237. issn: 1573-756X. doi: 10.1007/s10618-

012-0300-z. url: https://doi.org/10.1007/s10618-012-0300-z.

[78] A. L. M. Chiu and Ada Wai chee Fu. “Enhancements on local outlier detec-

tion”. In: Seventh International Database Engineering and Applications Sym-

posium, 2003. Proceedings. 2003, pp. 298–307. doi: 10.1109/IDEAS.2003.

1214939.

[79] S. Papadimitriou et al. “LOCI: fast outlier detection using the local correla-

tion integral”. In: Proceedings 19th International Conference on Data Engi-

neering (Cat. No.03CH37405). 2003, pp. 315–326. doi: 10.1109/ICDE.2003.

1260802.

[80] Longin Jan Latecki, Aleksandar Lazarevic, and Dragoljub Pokrajac. “Out-

lier Detection with Kernel Density Functions”. In: Machine Learning and

Data Mining in Pattern Recognition. Ed. by Petra Perner. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 61–75. isbn: 978-3-540-73499-4.

[81] Ke Zhang, Marcus Hutter, and Huidong Jin. “A New Local Distance-Based

Outlier Detection Approach for Scattered Real-World Data”. In: Advances

in Knowledge Discovery and Data Mining. Ed. by Thanaruk Theeramunkong

112

https://doi.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
https://doi.org/10.1007/s10618-012-0300-z
https://doi.org/10.1007/s10618-012-0300-z
https://doi.org/10.1007/s10618-012-0300-z
https://doi.org/10.1109/IDEAS.2003.1214939
https://doi.org/10.1109/IDEAS.2003.1214939
https://doi.org/10.1109/ICDE.2003.1260802
https://doi.org/10.1109/ICDE.2003.1260802

et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 813–822. isbn:

978-3-642-01307-2.

[82] Hans-Peter Kriegel et al. “LoOP: Local Outlier Probabilities”. In: Proceedings

of the 18th ACM Conference on Information and Knowledge Management.

CIKM ’09. Hong Kong, China: ACM, 2009, pp. 1649–1652. isbn: 978-1-60558-

512-3. doi: 10.1145/1645953.1646195. url: http://doi.acm.org/10.

1145/1645953.1646195.

[83] V. Hautamaki, I. Karkkainen, and P. Franti. “Outlier detection using k-

nearest neighbour graph”. In: Proceedings of the 17th International Confer-

ence on Pattern Recognition, 2004. ICPR 2004. Vol. 3. 2004, 430–433 Vol.3.

doi: 10.1109/ICPR.2004.1334558.

[84] M. Radovanović, A. Nanopoulos, and M. Ivanović. “Reverse Nearest Neigh-

bors in Unsupervised Distance-Based Outlier Detection”. In: IEEE Transac-

tions on Knowledge and Data Engineering 27.5 (2015), pp. 1369–1382. issn:

1041-4347. doi: 10.1109/TKDE.2014.2365790.

[85] Wen Jin et al. “Ranking Outliers Using Symmetric Neighborhood Relation-

ship”. In: Advances in Knowledge Discovery and Data Mining. Ed. by Wee-

Keong Ng et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 577–

593. isbn: 978-3-540-33207-7.

[86] Huaming Huang, Kishan Mehrotra, and Chilukuri K. Mohan. Outlier De-

tection Using Modified-ranks and Other Variants. 72. Syracuse University,

College of Engineering and Computer Science, 2011.

[87] Huaming Huang, Kishan Mehrotra, and Chilukuri K. Mohan. “Rank-based

outlier detection”. In: Journal of Statistical Computation and Simulation 83.3

(2013), pp. 518–531. doi: 10.1080/00949655.2011.621124. eprint: https:

113

https://doi.org/10.1145/1645953.1646195
http://doi.acm.org/10.1145/1645953.1646195
http://doi.acm.org/10.1145/1645953.1646195
https://doi.org/10.1109/ICPR.2004.1334558
https://doi.org/10.1109/TKDE.2014.2365790
https://doi.org/10.1080/00949655.2011.621124
https://doi.org/10.1080/00949655.2011.621124
https://doi.org/10.1080/00949655.2011.621124

//doi.org/10.1080/00949655.2011.621124. url: https://doi.org/10.

1080/00949655.2011.621124.

[88] Jian Tang et al. “Enhancing Effectiveness of Outlier Detections for Low Den-

sity Patterns”. In: Advances in Knowledge Discovery and Data Mining. Ed.

by Ming-Syan Chen, Philip S. Yu, and Bing Liu. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2002, pp. 535–548. isbn: 978-3-540-47887-4.

[89] Hans-Peter Kriegel, Matthias S hubert, and Arthur Zimek. “Angle-based Out-

lier Detection in High-dimensional Data”. In: Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing. KDD ’08. Las Vegas, Nevada, USA: ACM, 2008, pp. 444–452. isbn: 978-

1-60558-193-4. doi: 10.1145/1401890.1401946. url: http://doi.acm.

org/10.1145/1401890.1401946.

[90] Antonin Guttman. “R-trees: A Dynamic Index Structure for Spatial Search-

ing”. In: SIGMOD Rec. 14.2 (June 1984), pp. 47–57. issn: 0163-5808. doi:

10.1145/971697.602266. url: http://doi.acm.org/10.1145/971697.

602266.

[91] Norbert Beckmann et al. “The R*-tree: An Efficient and Robust Access

Method for Points and Rectangles”. In: SIGMOD Rec. 19.2 (May 1990),

pp. 322–331. issn: 0163-5808. doi: 10 . 1145 / 93605 . 98741. url: http :

//doi.acm.org/10.1145/93605.98741.

[92] S. Omohundro. “Five Balltree Construction Algorithms”. In: 2009.

[93] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associa-

tive Searching”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn:

0001-0782. doi: 10.1145/361002.361007. url: http://doi.acm.org/10.

1145/361002.361007.

114

https://doi.org/10.1080/00949655.2011.621124
https://doi.org/10.1080/00949655.2011.621124
https://doi.org/10.1080/00949655.2011.621124
https://doi.org/10.1080/00949655.2011.621124
https://doi.org/10.1145/1401890.1401946
http://doi.acm.org/10.1145/1401890.1401946
http://doi.acm.org/10.1145/1401890.1401946
https://doi.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266
https://doi.org/10.1145/93605.98741
http://doi.acm.org/10.1145/93605.98741
http://doi.acm.org/10.1145/93605.98741
https://doi.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007

[94] Alina Beygelzimer, Sham Kakade, and John Langford. “Cover Trees for

Nearest Neighbor”. In: Proceedings of the 23rd International Conference on

Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: ACM, 2006,

pp. 97–104. isbn: 1-59593-383-2. doi: 10 . 1145 / 1143844 . 1143857. url:

http://doi.acm.org/10.1145/1143844.1143857.

[95] R. Weber, H. Schek, and S. Blott. “A Quantitative Analysis and Performance

Study for Similarity-Search Methods in High-Dimensional Spaces”. In: VLDB.

1998.

[96] Erich Schubert et al. “DBSCAN Revisited, Revisited: Why and How You

Should (Still) Use DBSCAN”. In: ACM Trans. Database Syst. 42.3 (July

2017), 19:1–19:21. issn: 0362-5915. doi: 10.1145/3068335. url: http://

doi.acm.org/10.1145/3068335.

[97] Junhao Gan and Yufei Tao. “DBSCAN Revisited: Mis-Claim, Un-Fixability,

and Approximation”. In: Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data. SIGMOD ’15. Melbourne, Victo-

ria, Australia: ACM, 2015, pp. 519–530. isbn: 978-1-4503-2758-9. doi: 10.

1145/2723372.2737792. url: http://doi.acm.org/10.1145/2723372.

2737792.

[98] Wei Dong, Charikar Moses, and Kai Li. “Efficient K-nearest Neighbor Graph

Construction for Generic Similarity Measures”. In: Proceedings of the 20th

International Conference on World Wide Web. WWW ’11. Hyderabad, India:

ACM, 2011, pp. 577–586. isbn: 978-1-4503-0632-4. doi: 10.1145/1963405.

1963487. url: http://doi.acm.org/10.1145/1963405.1963487.

[99] Kiana Hajebi et al. “Fast Approximate Nearest-neighbor Search with K-

nearest Neighbor Graph”. In: Proceedings of the Twenty-Second International

115

https://doi.org/10.1145/1143844.1143857
http://doi.acm.org/10.1145/1143844.1143857
https://doi.org/10.1145/3068335
http://doi.acm.org/10.1145/3068335
http://doi.acm.org/10.1145/3068335
https://doi.org/10.1145/2723372.2737792
https://doi.org/10.1145/2723372.2737792
http://doi.acm.org/10.1145/2723372.2737792
http://doi.acm.org/10.1145/2723372.2737792
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1145/1963405.1963487
http://doi.acm.org/10.1145/1963405.1963487

Joint Conference on Artificial Intelligence - Volume Volume Two. IJCAI’11.

Barcelona, Catalonia, Spain: AAAI Press, 2011, pp. 1312–1317. isbn: 978-

1-57735-514-4. doi: 10.5591/978- 1- 57735- 516- 8/IJCAI11- 222. url:

http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-222.

[100] Yury Malkov et al. “Approximate nearest neighbor algorithm based on naviga-

ble small world graphs”. In: Information Systems 45 (2014), pp. 61 –68. issn:

0306-4379. doi: https://doi.org/10.1016/j.is.2013.10.006. url: http:

//www.sciencedirect.com/science/article/pii/S0306437913001300.

[101] Y. A. Malkov and D. A. Yashunin. “Efficient and Robust Approximate Near-

est Neighbor Search Using Hierarchical Navigable Small World Graphs”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 42.4 (2020),

pp. 824–836. doi: 10.1109/TPAMI.2018.2889473.

[102] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. “ANN-

Benchmarks: A benchmarking tool for approximate nearest neighbor algo-

rithms”. In: Information Systems 87 (2020), p. 101374. issn: 0306-4379. doi:

https://doi.org/10.1016/j.is.2019.02.006. url: https://www.

sciencedirect.com/science/article/pii/S0306437918303685.

[103] Markus Maier, Matthias Hein, and Ulrike von Luxburg. “Cluster Identifica-

tion in Nearest-Neighbor Graphs”. In: Algorithmic Learning Theory. Ed. by

Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 196–210. isbn: 978-3-540-75225-7.

[104] M.R. Brito et al. “Connectivity of the mutual k-nearest-neighbor graph in

clustering and outlier detection”. In: Statistics & Probability Letters 35.1

(1997), pp. 33–42. issn: 0167-7152. doi: https://doi.org/10.1016/S0167-

116

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
https://doi.org/https://doi.org/10.1016/j.is.2013.10.006
http://www.sciencedirect.com/science/article/pii/S0306437913001300
http://www.sciencedirect.com/science/article/pii/S0306437913001300
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/https://doi.org/10.1016/j.is.2019.02.006
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://doi.org/https://doi.org/10.1016/S0167-7152(96)00213-1
https://doi.org/https://doi.org/10.1016/S0167-7152(96)00213-1

7152(96)00213- 1. url: https://www.sciencedirect.com/science/

article/pii/S0167715296002131.

[105] Paul Balister et al. “Connectivity of random k-nearest-neighbour graphs”.

In: Advances in Applied Probability 37.1 (2005), 1–24. doi: 10.1239/aap/

1113402397.

[106] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Lon-

don: Chapman & Hall, 1986.

[107] Jadson Castro Gertrudes et al. “A Unified Framework of Density-Based Clus-

tering for Semi-Supervised Classification”. In: Proceedings of the 30th Inter-

national Conference on Scientific and Statistical Database Management. SS-

DBM ’18. Bozen-Bolzano, Italy: Association for Computing Machinery, 2018.

isbn: 9781450365055. doi: 10.1145/3221269.3223037. url: https://doi.

org/10.1145/3221269.3223037.

[108] C. A. R. Hoare. “Algorithm 64: Quicksort”. In: Commun. ACM 4.7 (July

1961), p. 321. issn: 0001-0782. doi: 10.1145/366622.366644. url: https:

//doi.org/10.1145/366622.366644.

[109] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.)

Sorting and Searching. USA: Addison Wesley Longman Publishing Co., Inc.,

1998. isbn: 0201896850.

[110] R. C. Prim. “Shortest Connection Networks And Some Generalizations”. In:

Bell System Technical Journal 36.6 (Nov. 1957), pp. 1389–1401. doi: 10.

1002/j.1538-7305.1957.tb01515.x.

[111] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem”. In: Proceedings of the American Mathematical

117

https://doi.org/https://doi.org/10.1016/S0167-7152(96)00213-1
https://doi.org/https://doi.org/10.1016/S0167-7152(96)00213-1
https://www.sciencedirect.com/science/article/pii/S0167715296002131
https://www.sciencedirect.com/science/article/pii/S0167715296002131
https://doi.org/10.1239/aap/1113402397
https://doi.org/10.1239/aap/1113402397
https://doi.org/10.1145/3221269.3223037
https://doi.org/10.1145/3221269.3223037
https://doi.org/10.1145/3221269.3223037
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145/366622.366644
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

Society 7.1 (1956), pp. 48–50. issn: 00029939, 10886826. url: http://www.

jstor.org/stable/2033241.

[112] University of Eastern Finland. Clustering Datasets: Shape sets. url: https:

//cs.joensuu.fi/sipu/datasets/ (visited on 12/08/2016).

[113] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

[114] Erich Schubert and Arthur Zimek. “ELKI: A large open-source library for

data analysis - ELKI Release 0.7.5 ”Heidelberg””. In: CoRR abs/1902.03616

(2019). arXiv: 1902.03616. url: http://arxiv.org/abs/1902.03616.

[115] G. Karypis, Eui-Hong Han, and V. Kumar. “Chameleon: hierarchical clus-

tering using dynamic modeling”. In: Computer 32.8 (1999), pp. 68–75. doi:

10.1109/2.781637.

[116] M. Lichman. UCI Machine Learning Repository. 2013. url: http : / /

archive.ics.uci.edu/ml.

[117] Junhao Gan and Yufei Tao. ApproxDBSCAN Datasets. 1999. url: https://

sites.google.com/view/approxdbscan/datasets (visited on 07/01/2017).

[118] M. Varma and A. Zisserman. “Texture classification: are filter banks nec-

essary?” In: 2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003. Proceedings. Vol. 2. 2003, II–691–8 vol.2. doi:

10.1109/CVPR.2003.1211534.

[119] R. J. Lyon et al. “Fifty Years of Pulsar Candidate Selection: From simple fil-

ters to a new principled real-time classification approach”. In: Monthly Notices

of the Royal Astronomical Society 459 (1), pp. 1104–1123.

118

http://www.jstor.org/stable/2033241
http://www.jstor.org/stable/2033241
https://cs.joensuu.fi/sipu/datasets/
https://cs.joensuu.fi/sipu/datasets/
https://arxiv.org/abs/1902.03616
http://arxiv.org/abs/1902.03616
https://doi.org/10.1109/2.781637
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://sites.google.com/view/approxdbscan/datasets
https://sites.google.com/view/approxdbscan/datasets
https://doi.org/10.1109/CVPR.2003.1211534

[120] L. Hubert and P. Arabie. “Comparing partitions”. In: Journal of classification

2.1 (1985), pp. 193–218. url: http://scholar.google.de/scholar.bib?q=

info:IkrWWF2JxwoJ:scholar.google.com/\&output=citation\&hl=de\

&ct=citation\&cd=0.

[121] Alexander Strehl and Joydeep Ghosh. “Cluster Ensembles — a Knowl-

edge Reuse Framework for Combining Multiple Partitions”. In: J. Mach.

Learn. Res. 3 (Mar. 2003), pp. 583–617. issn: 1532-4435. doi: 10 .

1162 / 153244303321897735. url: http : / / dx . doi . org / 10 . 1162 /

153244303321897735.

[122] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. New

York, NY, USA: Wiley-Interscience, 1991. isbn: 0-471-06259-6.

[123] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple Data

Sets”. In: J. Mach. Learn. Res. 7 (Dec. 2006), 1–30. issn: 1532-4435.

[124] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-

SNE”. In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.

url: http://jmlr.org/papers/v9/vandermaaten08a.html.

[125] D. Ediger et al. “Tracking Structure of Streaming Social Networks”. In: 2011

IEEE International Symposium on Parallel and Distributed Processing Work-

shops and Phd Forum. 2011, pp. 1691–1699. doi: 10.1109/IPDPS.2011.326.

[126] A. Eldawy, R. Khandekar, and K. L. Wu. “Clustering Streaming Graphs”. In:

2012 IEEE 32nd International Conference on Distributed Computing Systems.

2012, pp. 466–475. doi: 10.1109/ICDCS.2012.20.

[127] Mindi Yuan et al. “Efficient Processing of Streaming Graphs for Evolution-

aware Clustering”. In: Proceedings of the 22Nd ACM International Conference

119

http://scholar.google.de/scholar.bib?q=info:IkrWWF2JxwoJ:scholar.google.com/\&output=citation\&hl=de\&ct=citation\&cd=0
http://scholar.google.de/scholar.bib?q=info:IkrWWF2JxwoJ:scholar.google.com/\&output=citation\&hl=de\&ct=citation\&cd=0
http://scholar.google.de/scholar.bib?q=info:IkrWWF2JxwoJ:scholar.google.com/\&output=citation\&hl=de\&ct=citation\&cd=0
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1162/153244303321897735
http://dx.doi.org/10.1162/153244303321897735
http://dx.doi.org/10.1162/153244303321897735
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/IPDPS.2011.326
https://doi.org/10.1109/ICDCS.2012.20

on Information & Knowledge Management. CIKM ’13. San Francisco, Califor-

nia, USA: ACM, 2013, pp. 319–328. isbn: 978-1-4503-2263-8. doi: 10.1145/

2505515.2505750. url: http://doi.acm.org/10.1145/2505515.2505750.

[128] Yossi Shiloach and Shimon Even. “An On-Line Edge-Deletion Problem”. In: J.

ACM 28.1 (Jan. 1981), 1–4. issn: 0004-5411. doi: 10.1145/322234.322235.

url: https://doi.org/10.1145/322234.322235.

[129] P. M. Spira and A. Pan. “On Finding and Updating Spanning Trees and

Shortest Paths”. In: SIAM Journal on Computing 4.3 (1975), pp. 375–380.

doi: 10.1137/0204032. eprint: https://doi.org/10.1137/0204032. url:

https://doi.org/10.1137/0204032.

[130] Francis Chin and David Houck. “Algorithms for updating minimal spanning

trees”. In: Journal of Computer and System Sciences 16.3 (1978), pp. 333–

344. issn: 0022-0000. doi: https://doi.org/10.1016/0022- 0000(78)

90022-3. url: https://www.sciencedirect.com/science/article/pii/

0022000078900223.

[131] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. “Poly-Logarithmic

Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Span-

ning Tree, 2-Edge, and Biconnectivity”. In: J. ACM 48.4 (July 2001),

723–760. issn: 0004-5411. doi: 10.1145/502090.502095. url: https://

doi.org/10.1145/502090.502095.

120

https://doi.org/10.1145/2505515.2505750
https://doi.org/10.1145/2505515.2505750
http://doi.acm.org/10.1145/2505515.2505750
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/322234.322235
https://doi.org/10.1137/0204032
https://doi.org/10.1137/0204032
https://doi.org/10.1137/0204032
https://doi.org/https://doi.org/10.1016/0022-0000(78)90022-3
https://doi.org/https://doi.org/10.1016/0022-0000(78)90022-3
https://www.sciencedirect.com/science/article/pii/0022000078900223
https://www.sciencedirect.com/science/article/pii/0022000078900223
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095

VITA

Avory C. Bryant

EDUCATION

Masters of Science in Computer Science (Dec 2008), Virginia Commonwealth
University, Richmond, Virginia.

Bachelors of Science in Computer Science (May 2003), Virginia Commonwealth
University, Richmond, Virginia.

EMPLOYMENT

Data Scientist, Naval Surface Warfare Center Dahlgren Division, July 2001 -
present. Responsible for the development of decision support systems
leveraging supervised and unsupervised machine learning techniques. Primarily
in the domains of text analysis and computer vision.

PUBLICATIONS

A. C. Bryant and K. J. Cios (2021), Hk-DC: Hierarchical k-Density Clustering.
Manuscript submitted for publication.

A. C. Bryant and K. J. Cios (2018), RNN-DBSCAN: A Density-based
Clustering Algorithm using Reverse Nearest Neighbor Density Estimates, in
IEEE Transactions on Knowledge and Data Engineering, vol. PP, no. 99, pp.
1-1. doi: 10.1109/TKDE.2017.2787640.

A. C. Bryant and K. J. Cios (2017), SOTXTSTREAM: Density-based
self-organizing clustering of text streams, PlosOne. doi:
10.1371/journal.pone.0180543.

C. E. Priebe, J. L. Solka, D. J. Marchette, and A. C. Bryant (2012),
Quantitative Horizon Scanning for Mitigating Technological Surprise:
Detecting the Potential for Collaboration at the Interface, Stat. Anal. Data
Min. 5, 3, 178-186. DOI=http://dx.doi.org/10.1002/sam.11143.

J. L. Solka, A. C. Bryant, and Edward J. Wegman (2005), Text Data Mining
with Minimal Spanning Trees, in Handbook of Statistics 24 on Data Mining
and Visualization, C. R. Rao, Edward J. Wegman, and J. L. Solka, Eds,
Elsevier North Holland.

J. L. Solka, A. C. Bryant, and E. J. Wegman (2004), Identifying cross corpus
document association via minimal spanning tree, Computing Science and
Statistics, 36.

PRESENTATIONS AT PROFESSIONAL MEETINGS

121

A. C. Bryant (2018), Fast k Nearest Neighbor Graph Construction Experiments
on a Large Scientific Publication Corpus, Symposium on Data Science &
Statistics.

A. C. Bryant (2015), Tracking Evolution in Text Data Streams via Online
Density-Based Clustering, Joint Statistical Meetings.

J. L. Solka and A. C. Bryant (2010), Exploratory Data Analysis on Document
Collections, Joint Statistical Meetings.

A. C. Bryant (2010), Quantitative Horizon Scanning for Mitigating
Technological Surprise, Interface.

J. L. Solka and A. C. Bryant (2010), Multi-feature Clustering and Visualization
of Large Document Collections, Interface.

A. C. Bryant (2008), Semantic Analysis of the Term-Document Matrix, U.S.
Army Conference on Applied Statistics.

A. C. Bryant (2008), Cross Corpus Discovery via Nearest Neighbor
Change-point Analysis, Interface.

J. L. Solka and A. C. Bryant (2007), Exploratory Data Analysis of Large
Document Collections, Quantitative Methods in Defense and National Se-
curity.

J. L. Solka, A. C. Bryant, and E. J. Wegman (2004), Identifying cross corpus
document association via minimal spanning tree, Interface.

J. L. Solka, A. C. Bryant, and E. J. Wegman (2004), Recursive Bipartite
Spectral Clustering for Document Categorization, U.S. Army Conference on
Applied Statistics.

ACADEMIC AWARDS

Outstanding Paper Award (2018), Computer Science Department, Virginia
Commonwealth University.

122

	K-NEAREST NEIGHBORS DENSITY-BASED CLUSTERING
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	 Introduction
	Overview
	Reconsidering DBSCAN
	Contributions
	Assumptions & Limitations

	 Literature Review
	Introduction
	Density-based Clustering
	Level-Set-Based Methods
	kNN-based outlier detection
	kNN Graph Construction and Properties
	Non-Parametric Density Estimation

	 Methodology
	Introduction
	kNN Graph
	k-Density
	k-Density Clustering
	RNN-DBSCAN
	RNN-DBSCAN: Choice of k
	RNN-DBSCAN Complexity

	Hierarchical k-Density Clustering (Hk-DC)
	Hk-DC: Extracting a Flat Clustering
	Hk-DC: Cluster Expansion
	Hk-DC: Complexity

	 Results & Discussion
	Introduction
	RNN-DBSCAN
	RNN-DBSCAN: Choice of k
	RNN-DBSCAN: Effect of dataset size n on k
	RNN-DBSCAN: Performance Evaluation
	RNN-DBSCAN: Approximate k Nearest Neighbor Results

	Hk-DC
	Hk-DC: Choice of k for the kNN graph
	Hk-DC: Choice of min cluster size m
	Hk-DC: Performance Evaluation

	 Conclusions
	Appendix Abbreviations
	References
	Vita

