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Visualization of liver tumors on simulation CT scans is challenging even with contrast-

enhancement, due to the sensitivity of the contrast enhancement to the timing of the CT acquisition. 

Image registration to magnetic resonance imaging (MRI) can be helpful for delineation, but 

differences in patient position, liver shape and volume, and the lack of anatomical landmarks 

between the two image sets makes the task difficult. This study develops a U-Net based neural 

network for automated liver and tumor segmentation for purposes of radiotherapy treatment 

planning. Non-contrast simulation based abdominal CT axial scans of 52 patients with primary 

liver tumors were utilized. Preprocessing steps included HU windowing to isolate livers from the 

scan and creating masks for liver and tumor using the radiotherapy structure set (RTSTRUCT) 

DICOM file, and converting the images to a PNG format. The RTSTRUCT file contained the 

ground truth contours that were manually labelled by the physician for both liver and tumor. The 

image slices were split into 1400 for training and 600 for validation. Two fully convolutional 

neural networks with a U-Net architecture were used in this study. The first U-Net segments the 

livers. The second U-Net segments the tumor from the liver segments produced from the first 

network. The dice coefficient for liver segmentation was 89.5% and the dice coefficient for liver 
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tumor segmentation was 44.4%. The results showed that the proposed algorithm had good 

performance in liver segmentation and shows areas for improvement for liver tumor segmentation.  
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1. Introduction 

Cancer is the second leading cause of death worldwide.1 According to the data from World 

Health Organization (WHO), liver cancer was the third most common cause of cancer death in 

2020.1 Liver cancers are categorized into primary or secondary malignancies. Primary liver cancer 

starts within the liver tissue, whereas secondary or metastatic liver cancer develops when cancer 

cells from another organ spread to the liver through the bloodstream or the lymphatic system.2 

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 

approximately 80% of the cases. HCC is statistically much more likely to occur in people who 

have severe liver damage due to alcohol abuse, hepatitis B and C, and fatty liver disease caused 

by obesity.2 The survival rates depend on the stage of the cancer at the time of diagnosis; however, 

the reported survival rate for all comers is 10% at five years. 

Liver cancer, unlike most other malignancies, can be diagnosed based on computed 

tomography (CT) or magnetic resonance imaging (MRI) findings. A CT scan gives detailed cross-

sectional images of the abdominal region. Further processing of the scan is needed to segment the 

liver and distinguish the tumorous areas from the rest of the CT scan. However, segmentation of 

the tumor is still a difficult task due to the intensity similarity between the tumor and other tissues 

in the abdominal CT scan. As a result, the images need to be processed and enhanced to 

differentiate the cancerous tissue. 

 

 

Figure 1: Shows the gray level similarities between liver and nearby organs (spleen) even after applying 

Hounsfield windowing. 
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Recently, there have been many developments in medical imaging that have allowed 

medical professionals to greatly improve diagnostic and radiation treatment delivery techniques, 

leading to earlier detection and better treatment of cancers.3,4 Several imaging procedures with 

their own advantages and disadvantages have been utilized. These include CT, MRI, positron 

emission tomography (PET), ultrasound (US), etc. Liver diagnosis usually utilizes CT, MRI or US 

for characterization of HCC.  For treatment planning, on the other hand, CT scans are typically the 

imaging modality of choice.   In this research, simulation CT scans have been used for liver and 

liver tumor segmentation given their prevalence in radiotherapy treatment planning. 4 

 

1.1. Radiation Therapy Process 

The radiation therapy (RT) process depends on the patient’s treatment needs and the type 

of program their physician chooses. There are usually five steps, including initial consultation with 

the patient, simulation to localize the target and manage respiratory motion, creating a treatment 

plan, delivering the treatment, and following-up with the patient after treatment.  Provided below 

are the simulation for radiation therapy including motion management strategies, and planning 

procedures. 

 

1.1.1. Simulation 

The purpose of simulation is to ensure patient immobilization, control or account for tumor 

motion, and acquire data for treatment planning and image guided treatment delivery. A RT 

simulation serves to provide visualization of the patient’s anatomy and gather three-dimensional 

data while the patient is in the treatment position.5  This data acquired is used for designing a 

treatment plan that will result in appropriate dose coverage of the target while limiting the dose 

given to adjacent organs at risk (OAR), as dictated by various target coverage requirements and 

OAR constraints established through clinical trials and other studies. Some commonly used 

scanning methods in the simulation are MRI, CT, and PET scans. The use of a particular type of 

scan is dependent on the characteristics of the tissue that is being scanned. Although, CT scan is 

the most common one, MRI and PET often complement CT scans. 
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A CT scan utilizes radiation to acquire a volumetric image representation of the patient’s 

anatomy.6 The acquired information is processed by a computer to construct images that are stored 

usually in a digital imaging and communications in medicine (DICOM) format. Frequently, 

contrast agents are used to highlight blood vessels and other regions of interest to achieve better 

results. In the case of HCC, intravenous contrast timed to arterial phase is important to highlight 

HCC as it feeds from the arterial blood supply in the liver. Hyper-vascular HCC will be clear in 

the late arterial phase versus hypo-vascular HCC will be enhanced poorly in the late arterial phase. 

As can be seen, there are many difficulties with using contrast medium for imaging, including 

choosing the type and amount of contrast agent, route of administration, and sensitivity of the 

contrast agent to the time of image acquisition (the tumor will not be highlighted unless the timing 

of the contrast agent is appropriate).7 

Even with the use of contrast agents for acquiring a simulation scan, the possibility of 

misrepresentation of the tumor still exists due to artifacts induced by respiratory motion. In the 

case of abdominal imaging for identifying and contouring regions of interest for treatment 

planning, respiratory organ motion causes severe geometric distortion in free breathing CT scans. 

The extent of distortion along the patient’s longitudinal axis can expand or shorten the target. As 

a result, we need techniques that will aid in reducing the motion artifacts.8  

 

1.1.2. Respiratory Motion Management Techniques 

Geometric distortions in the scan due to breathing motion can be minimized by using 

respiratory motion management techniques. This is particularly important for hypo-fractionated 

treatments such as SBRT, commonly used to treat liver tumors as described later. Some of the 

categories of methods used in the management of respiratory motion include motion-

encompassing methods, respiratory gates techniques, breath-hold techniques, forced shallow-

breathing methods and respiratory-synchronized techniques.8 At VCU, patients are first simulated 

using free breathing scans. In patients whose breathing amplitude exceeds 5mm, a breath-hold 

technique utilizing active breathing control (ABC) is attempted. The 4D-CT scan to account for 

breathing related motion and the ABC technique are described below: 



12 

 

 

1) Four-dimensional computed tomography (4D-CT) 

There are two image binning approaches available for 4D-CT imaging: phase binning and 

amplitude binning. The approach that is commonly used at VCU is the phase binning approach, 

which will be described here. In a 4D-CT, the scans are acquired continuously during respiration. 

The scans acquired are reconstructed at specific phases of the breathing cycle for each patient 

location. The data at the same phase is combined from multiple breathing cycles. The overall result 

is a series of three-dimensional CT images depicting a different phase in the breathing cycle. The 

phase at a point on the respiratory cycle is defined as the amount of cycle in percentage that has 

elapsed compared to the beginning of the cycle, and at each phase, multiple CT volumes are taken. 

The breathing cycle is divided into ten respiratory phases and ranges from 0% phase from full 

inspiration to 50% phase from full expiration and back to 100% phase from full inspiration. The 

position of the abdominal surface and diaphragm act as surrogates for the respiratory phase.9 

 

2) Active breathing control (ABC) 

Active breathing control (ABC) is a method developed by the radiation oncology 

department at William Beaumont hospital for the purposes of achieving reproducible breath-hold 

without reaching maximum inspiration.10 The goal of this technique is to reduce tumor motion or 

in case of mostly left-sided breast cancer treatments, to reduce the dose to the heart. In this 

technique, a mouthpiece connected to the breathing tube is placed between the teeth with the 

patient's lips tightly grasping the mouthpiece. A nose clamp is placed on the patient’s nose to 

prevent accidental breathing through the nose. The patient is then instructed to take deep breaths, 

and once the breathing pattern becomes stable, an optimum volume or phase in the breathing cycle 

is determined. Air volumes with breathing are displayed as a breathing trace by the system, and 

the appropriate patient specific breath-hold duration (typically 15-30 seconds) and level are 

determined during simulation.10,11 The air volume threshold for the breath-hold will be determined 

based on the patient-specific data and on the breath hold type (exhale, inhale, deep inhale, etc.).  
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 When the patient breathes to the predetermined volume, the patient is asked to hold their 

breath. A small valve closes in the breathing tube to prevent additional air from entering the lungs 

during the breath-hold duration. During this time, CT images are acquired with minimal respiratory 

motion artifacts. A timer embedded into the ABC system is used to count down the remaining 

duration of breath-hold in seconds.11 

 

1.1.3. Treatment Planning 

The primary process of treatment planning involves determining the exact target/tumor 

volume that will be treated, defining radiation dose, and designing radiation fields for treatment 

delivery. The main focus here is to ensure that the target receives the maximum dose, while 

reducing the dose to organs at risk (OAR). In order to achieve this goal, it is important that we 

clearly define our target. This includes figuring out the extent of the disease in all the slices, 

accounting for patient movement and setup uncertainties. The volumes defined by the International 

Commission on Radiation Units and Measurements (ICRU) 50 and 62 reports are described below, 

and shown in Figure 2.12,13  

In the treatment planning, it is critical to evaluate the coverage of the target being treated 

and the risk to nearby organs to avoid complications. This is done by contouring the targets and 

all the OAR. The clinical target volume (CTV) is usually proportional to the gross tumor volume 

(GTV) which allows for a decreased risk to the normal tissue surrounding the tumor. Alternatively, 

the adjustments suited for tumor motions are done by extending CTV to ITV.12,13 The three 

important volumes are gross tumor volume (GTV), internal target volume (ITV) and planning 

target volume (PTV), and are described below. 

 

i.            Gross Tumor Volume (GTV) 

GTV measures the spread and the location of the tumor. It may contain the primary tumor 

and the metastases. It is possible to delineate the GTV through imaging, depending on the 

visibility, location, and tangibility of the tumor. If the tumor has been removed, GTV cannot be 
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defined, although preoperative and postoperative images can allow to visualize the outline of the 

tumor bed.12,13  

 

Figure 2: Shows the ICRU volumes used for treatment planning.
12,13 

 

ii.  Clinical Target Volume (CTV) 

CTV contains the present tumor and any other microscopic disease that might be malignant 

or tissue that needs to be eliminated. This overestimate allows for a true representation of the 

spread and location of the tumor. The CTV delineation assumes that no tumor cells exist outside 

the CTV boundary. It is critical that the CTV receives sufficient dose for proper treatment.12,13  

      

iii.  Internal Target Volume (ITV) 

ITV is the internal margin (IM) added to the CTV. It accounts for the changes in position, 

shape and size of the CTV during treatment due to the internal movements resulting from 

respiration, bladder/bowel contents, etc.12,13  
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[ITV = CTV + IM] 

iii.         Planning Target Volume (PTV) 

PTV consists of the CTV along with an internal margin (IM) and incorporates a setup 

margin (SM) to account for any uncertainties in treatment setup and changes in the patient 

movement. The CTV margin in all directions must account for any possible movements inside the 

body as well as any possible patient movement and setup inaccuracies.12,13 

[PTV= CTV + 5 mm for SBRT] 

 

Despite the advances in imaging, liver tumor segmentation on CT for treatment planning 

still remains a challenging task. This is mainly due to the fact that the liver organ shape and volume 

differs for each patient, Secondly, as mentioned briefly earlier, liver tumors vary in shape, 

appearance and location, and in general, there are slight visible differences between normal and 

tumor tissues.14 Furthermore, the appearance of each tumor lesion depends on the imaging 

equipment and settings, and thus may vary for each patient and institution. 

In order to overcome this issue and aid radiation oncologists in identifying the GTV, other 

imaging studies can be used to supplement the information provided by the simulation CT scan.  

MRI is often used for this purpose because of its superior soft tissue contrast. An image registration 

between CT and MRI can be used for accurate radiotherapy planning and delivery, however, the 

lack of calibrated intensity scale, electron density, MRI distortion and other artifacts in MRI and 

CT makes it challenging to register the images.15 Image registration can be divided into two types: 

rigid image registration (RIR) and deformable image registration (DIR). RIR is typically used 

when there are no anatomical changes expected. In the case of liver and liver tumors, the major 

disadvantage of the RIR is that it only accounts for whole organ motion of the liver between CT 

and MRI datasets, but it does not compensate for the deformation caused by breathing, changes in 

weight, tumor shrinkage and so on.16 

Deformable image registration (DIR) can be done using an MRI. This process involves 

calculating the geometric transformation between the CT and MRI, and then mapping them into a 
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common coordinate system. It is called deformable or nonlinear as the transformation includes 

both rigid transformations such as translation and/or rotation, as well as deformations such as 

shrinking and/or stretching. However, DIR has certain disadvantages. It is usually difficult to 

estimate the accuracy of registration when there are no landmarks. It is generally difficult to define 

anatomical landmarks in some organs, and effective use of large deformations between images 

with large anatomical differences is limited. Additionally, more complications arise in registration 

from using images with large differences in appearances from multiple imaging modalities.15,16  

To understand the importance of correctly identifying the volume of interest, it is beneficial 

to know about the common type of radiation therapy for treating liver tumors, which is described 

in the following section. 

 

1.2. Stereotactic Body Radiation Therapy (SBRT) 

Stereotactic Body Radiation Therapy (SBRT) is a form of stereotactic radiation therapy 

procedure that delivers high doses to the target in 5 or less fractions. This treatment modality is 

typically used for tumors in the liver, lung, pancreas and spine, amongst others. Since SBRT 

delivers a high dose per fraction, it is important to conform dose to the target and create a rapid 

dose fall off outside of it to prevent damage to adjacent normal tissue. It needs to be ensured that 

any foreseen motion of the tumor is taken into account during planning and that the dose is 

delivered accurately.5  Hence, respiratory motion management techniques are used for liver SBRT 

treatments, and other tumors located in the thorax and abdomen, where breathing can lead to tumor 

location changes. Additionally, it is necessary to properly delineate target volumes such as GTV, 

ITV and PTV. If the GTV is not delineated accurately then it will affect the ITV and henceforth 

the PTV as the ITV and PTV are margins added to the GTV to account for motion (in this case, 

respiratory motion) and setup uncertainties respectively. This will in turn result in the patient being 

delivered an excess dose to the surrounding normal tissue, or patient not receiving enough dose to 

adequately cover the target volumes. 
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1.3.  Neural Networks 

 

With the advancement in computer vision technology, machine learning and deep learning 

became common for segmentation problems. In recent years, several deep learning models have 

been developed for liver tumor segmentation. Convolutional neural networks (CNN) are used 

commonly today for this purpose. As described in the literature review section below, one of the 

successful types of CNN is a U-Net based on previous studies conducted for liver and liver tumor 

segmentation.  Therefore, it is beneficial to explain both CNN and U-Net Architecture 

 

 

1.3.1 Convolutional Neural Network (CNN)  

 

One of the subfields of machine learning is deep learning (DL). DL utilizes layers of 

representations. The number of layers that are utilized in the model of the data are represented as 

the depth of the model. These structured representations or layers built upon each other are learned 

using neural networks. The idea of computational neural networks arose from the biological 

neurons, where messages are transferred from one neuron to another. Although deep learning 

requires understanding of the brain, the DL models are not actually part of the human brain. Rather, 

deep learning serves as an algorithmic framework for learning hierarchy of data.17 

 

Before diving more deeply into neural networks, it is necessary to become familiar with 

two common types of machine learning. First type of learning is called supervised learning. In this 

type of learning, a model is given an input and an output (or a label). The algorithm learns or makes 

connections between the given data and is able to apply the knowledge to new data. Supervised 

learning is most commonly used in machine learning applications. The second type of learning is 

unsupervised learning. In unsupervised learning, the algorithm learns to find information and 

hidden patterns from the given unlabeled input data.17 

 

Furthermore, it is also beneficial to understand how the computer analyzes images. But 

first, let us see how humans interpret images. When a human sees an object, the primary visual 
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cortex interprets the signal sent by the light receptors in the eye. It does this by increasing 

complexity- the first layer differentiates lines, edges and curves. As the layers increase, the brain 

starts recognizing colors and combines previous information, and is thus able to tell if the image 

is, for example, a cat or a butterfly.18 

 

However, the computer sees an image as an array of numbers (0s and 1s). An image is 

stored as a combination of pixels, usually a 3-D pixel array. A pixel contains a different number 

of channels. If the image is grayscale, then it has only one pixel, but if the image is colored, it 

contains three channels- red, green and blue. For example, red would be (255, 0, 0) and green 

would be (0, 255, 0). The computer makes sense of the input (image) just like humans as described 

earlier. First, it detects simple edges and then recognizes complex information, thus learning 

spatial hierarchies of patterns. This forms the basis of machine learning and computer vision 

applications.18
,
19

 

 

Now that we know how visual images are processed by computers, it is time to dig deeper 

into neural networks, specifically the CNN. A CNN is a type of DL model used in computer vision 

applications. It takes in an input image and assigns importance using weights and biases to 

differentiate various components in an image. CNN have gained popularity due to their faster 

processing time and higher generalization when there are few training images. As stated by Chollet 

in his book, the two main characteristics that make CNN interesting are: the patterns CNN learn 

are “translation invariant”, meaning that the CNN can recognize a pattern anywhere in the image 

that is learnt from one part of the image. Second characteristic is the network’s ability to learn 

“spatial hierarchies of patterns”.17  

 

The key characteristic of CNN is the convolution operation. The convolution operation is 

a linear operation that multiplies an array of input (image) by a set of weights, called a kernel or a 

filter just as in a regular neural network. Convolutions operate using feature maps, which result 

from application of the kernel to the input repeatedly, thus creating a map of activations (or feature 

map).20 
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Much like the convolutional layer, the pooling layer is used for lowering the spatial size of 

the feature map. This helps to reduce the computational power by the reduction of dimensionality 

for data processing. Additionally, it also helps in filtering dominant features that are perpetual in 

their rotation and position, thus allowing to train the model effectively. Max pooling and average 

pooling are the two types of pooling techniques. Max pooling returns the largest value from the 

section of the image surrounded by the kernel, and average pooling returns the average value from 

all the values from the section of the image surrounded by the kernel.20,21,22 

 

Max pooling acts as a noise suppressant by eliminating the activations that are noisy and 

also helps in downsampling by reducing dimensionality, which thereby aids in noise suppression. 

Contrary to the max pooling, average pooling only helps in downsampling, as a mechanism for 

noise suppression. Hence, it can be concluded that max pooling is a better pooling technique. 

 

After applying a pooling layer, the feature map needs to be flattened. This process 

transforms the whole pooled matrix into a single feature column. It performs this by getting the 

output from previous convolution layers and then flattening the structure into a single vector for 

classification.17,21 

 

The final classification is performed using fully connected layers. The fully connected 

layers have connections to every activation in the other layers, and therefore a final output is 

created from data obtained from previous layers.17 

 

An activation function is needed to aid the network in learning complex patterns from the 

training dataset and it also determines the type of predictions the model can make. Without an 

activation action, a neural network has limited learning power. A commonly used activation 

function for hidden layers is a rectified linear activation function (ReLU). ReLU helps models to 

perform better by overcoming the vanishing gradient problem. It returns 0 if it receives a negative 

input and returns the same value if it receives a positive input. The choice of activation function 

for output layers depends on the expected output (for example: sigmoid is used for binary 

classification).23  
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 Finally, in order to ensure that the network trains properly, it needs to have a loss function, 

an optimizer and parameters that need monitoring during training and testing. A loss function 

determines the performance of the network on the training data and basically serves to direct the 

network in the right direction accordingly. An optimizer is a way the network updates itself based 

on the information acquired from the loss function. 

 

 Furthermore, to ensure best results, tuning of hyperparameters is recommended. The 

hyperparameters determine the network structure and how well the model can train. 

 

 In summary, the aim of a machine learning or a deep learning model is to generalize 

predictions to new data. CNN are considered one of the best models for computer vision 

applications as they can train on small datasets and obtain good results. The basic steps involved 

in a convolutional neural network as can be seen in Figure 3 are choosing an input (and labels for 

supervised learning), applying a convolution operation and using an activation function, applying 

a pooling layer, flattening, applying a fully connected layer, compiling CNN by using loss function 

and optimizer, fitting the CNN and finally obtaining the desired output.  

 

 
Figure 3: Depicts the architecture of a typical convolutional neural network.24  

 

 

2. Objective 

  

Visualization of liver tumors on simulation CT scans is challenging even with contrast-

enhancement, due to the sensitivity of the contrast enhancement to the timing of CT acquisition. 



21 

 

There is a need for tools that will aid in accurate localization to help physicians in contouring target 

regions, thus facilitating better treatment planning and delivery, and decreasing toxicity to nearby 

structures.  The goal of this research is to develop a neural network that will use simulation based 

non-contrast CT scans for automated liver and liver tumor segmentation. 

 

 

3.      Literature Review 

  

As mentioned earlier, liver tumor segmentation is a difficult task due to the liver having 

CT values close to other nearby organs, low contrast between tumor and normal liver tissue, and 

differences in shape and size of the liver tumors. Given the increasing incidence and emerging role 

of liver SBRT, there is a need for better automatic liver and liver tumor segmentation algorithms.  

 

In recent years, several types of segmentation algorithms have been developed for 

automatic liver and liver tumor segmentation.25,26,27,28 In 2017, a liver segmentation challenge was 

organized by the liver tumor segmentation benchmark (LiTS).26 In summary, the data for this 

challenge was acquired from various clinical sites around the world, and the dataset contained a 

total of 200 contrast-enhanced CT scans of diagnostic quality with hyper/hypo intense tumor 

contrast levels and varying amount of lesions. The CT scans had reference annotations (ground 

truths) manually labelled by radiologists. The training data contained 130 scans and the test data 

contained 70 scans. The first ranked model in this challenge was built by Han , who used two 

models with U-Net like architecture consisting of long and short skip connections.27 The first 

model was used to segment liver regions as input to the second network, and the second model 

was trained to segment liver and tumor in the same step. The two models worked in 2.5D by taking 

a stack of adjacent slices to produce segmentation of the center slice. The average Dice coefficient 

score was 67% for liver lesion segmentation.27 Other top-scoring models also used convolutional 

neural networks with a U-Net-like architecture.29 

 

In another study performed by Meng et al.28, the researchers used a three-dimensional dual 

path multiscale convolutional neural network (TDP-CNN) for liver and tumor segmentation.28 

They used a dual path to balance the performance of the segmentation network, and make efficient 
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use of computational resources. The feature maps were combined from both paths at the end. In 

this study, the publicly available contrast-enhanced CT dataset from the liver tumor segmentation 

(LiTS) was utilized to analyze the proposed model. Liver and liver tumor labels manually labelled 

by a radiologist were used. For both the segmentation results of the liver tumor and the liver, the 

quantitative metrics used were Hausdorff distance, Dice, and the average distance. The dice 

coefficient results for liver and tumor were 96.5% and 68.9% respectively.28 

 

A similar study conducted by Alirr14 also used a fully convolutional neural network with 

region-based level set function. The proposed framework in this study consisted of three steps: 

first to use a U-Net FCN to segment liver, second to use another U-Net to segment liver tumors, 

and then apply localized level set on predicted masks for enhancement to get final liver and tumor 

masks. Localized level set-based technique was utilized to refine and match the liver and tumor  

boundaries in the predicted segmentations.14 

 

The accuracy of this proposed method was compared against the two datasets: LiTS and 

3D image reconstruction for comparison of algorithm databases (3D-IRCAD). The 3D-IRCAD 

dataset consisted of 20 venous phase-enhanced CT volumes of diagnostic quality, and also 

contained manual labels created by clinical experts. The number of slices for each patient ranged 

between 148-260, and the in-plane resolution for this dataset was between 0.56-0.86 mm and inter-

slice spacing was between 1.0-4.0mm. The Dice scores for liver segmentation in the LiTS dataset 

was 95.6% and liver tumor segmentation was 70%. The Dice scores for liver segmentation in the 

IRCAD dataset was 95.2% and liver tumor segmentation was 76.1%. Alirr14 concluded that the 

proposed network performed well for CT scans from various scanners, thus serving as a promising 

tool for automation methods in liver and liver segmentation in clinical use.14 

 

 

4. Methodology 

 

The first part of the process was gathering patient data, and identifying and selecting the 

data to be used based on the type of disease and type of imaging used. The next part of the process 

included cleaning the selected data to have homogeneity, selecting an appropriate convolutional 

neural network architecture that would meet the purposes of this project, and then finally 
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evaluating the model’s performance and attaining visuals. All of these parts are described later in 

this section. 

 

Figure 4 shows the proposed workflow for training the network. First, CT volumes were 

preprocessed using HU windowing and then masked to get liver and tumor ground truths. The 

data was augmented using rotation and flipping to artificially create more images. The first U-

Net segments the liver from the preprocessed and augmented abdominal CT scans. The second 

U-Net segments the liver tumor from preprocessed and augmented liver segments. 

 

 

 

Figure 4: Represents the liver and tumor segmentation workflow for training. 
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4.1. Patient Data 

 

The images used in this research were obtained from the Virginia Commonwealth 

University Health System (VCUHS) under institutional review board (IRB) approval. The 

anonymized images were in DICOM format and were downloaded using the software MIM. 

Fifty-two patients (Table 1) with HCC treated with SBRT at VCU between 2013 and 2020 were 

identified. The images consisted of non-contrast simulation abdominal CT scans acquired using 

either ABC or free breathing. 4D-CT technique was used for free breathing scans. For the 4DCT 

set, the 30% phase was selected as this is the mid-ventilation phase used for planning as it 

represents the average target position during the respiratory cycle. Each scan covered the entire 

abdomen and chest cavity. The dataset also contained several contours of relevant structures-- 

most importantly in this case the contours for liver, planning target volume (PTV), internal target 

volume (ITV), clinical target volume (CTV), and gross tumor volume (GTV) were stored as 

coordinates in a radiotherapy structure set (RTSTRUCT) DICOM file.  

 

These contours were generated by the radiation oncology team at VCU and thus might 

have variability in contouring depending on the creator of the contours. ITV was the chosen 

structure for ground truth because in an SBRT treatment, a high dose is delivered in a few fractions. 

ITV encompasses a whole range of tumor and tumor motion due to respiration. A few patients did 

not have an ITV structure and thus CTV was used in this case.  

  

      

Total number of HCC patients  52 

Original Image Size (px) 512 x 512 

Slice Thickness (mm) 3.0 

Pixel Spacing Range (mm) 0.95 - 1.36 

Type of CT Scanner Philips (Brilliance Big Bore) 

Table 1: Shows VCUHS data characteristics used in this research 



25 

 

 

4.2. Computational Environment 

  

The program was implemented using Python as the programming language and executed 

using Google Colab, which requires mounting of the Google drive and importing the required 

packages. Dicomplyer was used to visualize DICOM CT volumes and associated radiotherapy 

structures. For more details on the versions of each software, refer to Table 2 below. 

 

 

Environment Configuration 

GPU Google TPU 

Operating System Ubuntu 18.04.5 LTS 

RAM 36 GB 

Software tools GoogleColab; Python 3.7; 

Dicomplyer 0.4.2 

Table 2: Summarizes the computational environment used for the research 

 

 

4.3. Data Preprocessing 

 

The program was given a folder consisting of an RTSTRUCT file and its corresponding 

DICOM CT volumes. The CT volumes were converted to pixel-array, and the CT images were 

enhanced using Hounsfield (HU) windowing. HU windowing was used to exclude irrelevant 

organs from CT scan images. The HU window in the range of [40, 80] was used to remove the 

soft tissues around the liver. 

 

The program then iterates through the RTSTRUCT file which contains a list of an array of 

coordinates for different types of contours. The program searched for the liver contours. Each 

liver contour contains an array of coordinates that corresponds to a specific DICOM slice.  

 



26 

 

The next step was mapping the coordinates to the image and creating a liver mask. To do 

this, the program used the Python CV2 library to map out the coordinates, fill in the coordinates, 

and set the pixel value to be true or false (1 or 0). A copy of the original CT image was made, 

and then looped through comparing the pixel value to the masked value at the same coordinate. 

If the masked value was true, then the new image value was set to be the max pixel value of 255. 

Otherwise, if the value of the masked image pixel was false, then the final value was set to 0, or 

blank. The original size of the images was 512 × 512. For better handling and due to storage 

reasons, the images were resized to 128 x 128. 

 

 

4.4. Data Augmentation 

 

Data augmentation is a technique used to prevent the issue of overfitting, which is caused 

by having a few data to train or learn from, and as a result, the network is unable to generalize 

predictions to new data. Data augmentation is done by creating more data from existing data by 

applying various transformations such as flipping, padding, and cropping.17  

 

In the proposed network, data augmentation was done by using rotation and horizontal 

flipping. The images were randomly rotated between -25 degrees and +25 degrees. This helps to 

increase the amount of data, and allows the network to be exposed to more data and therefore 

generalize better. 

 

 

4.5. Network Architecture, Network Training and Validation 

  

The U-Net architecture used in this research is based on the original U-Net created by Olaf 

Ronneberger as described earlier (Figure 5).30 This architecture was used for liver as well as tumor 

segmentation. It is a fully convolutional neural network as it contains convolutional layers and no 

dense layers, and thus can accept images of any size. Figure 4 shows the structure of the U-Net. 

The major changes to the architecture in this research were the addition of dropout layer, change 

in learning rate, and addition of batch normalization in each path.  
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The drop-out layer randomly sets input units to 0 at a given rate. The benefit of adding this 

layer to the network is to prevent overfitting, which is a strong concern when using a small dataset. 

The decision to add more convolutional layers than the original U-Net design contains was made 

in an attempt to increase the accuracy of the network. Batch normalization was added to increase 

the speed and stability of the network by normalizing the layers inputs. 

 

 

 

 

Figure 5: Shows an example U-Net architecture.31 

 



28 

 

The first part of the network is the downsampling path. This path serves to get the feature 

information of the image or ‘what is in the image’, while ignoring the spatial information. High 

level feature information from the image is obtained by reducing the size of the image. It extracts 

the feature information using the convolution and max pooling layers.  In the proposed network, 

the downsampling path was divided into three blocks. The first block had a ReLU activation layer, 

followed by a convolution layer, and batch normalization. The second block contained the same 

components from the first block, but maxpooling layer of poolsize 3 and strides set to 2 was added. 

In the third block, a residual layer was added.  The filter size increases by a multiplier of 2 in each 

of the three blocks. The first, second and third block had a filter size of 64, 128 and 256 

respectively. A dropout layer of 0.25 was also added to minimize overfitting. 

 

The final part of the network is the upsampling part. This path serves to acquire the location 

or spatial information of the image, and retrieve the original size of the image. It uses 

deconvolution layers and skip connections to transfer the information from the downsampling path 

to the upsampling path. In the proposed network, this path consisted of three blocks. The first and 

second blocks consisted of a ReLU activation layer, a transposed convolution layer (same as 

deconvolution layer) and batch normalization. An upsampling layer was also added to the second 

block. The third block consisted of a residual layer. 

 

Furthermore, a Softmax function was used as the last activation function to normalize the 

output to a probability distribution over predicted output classes. 

 

To thoroughly evaluate the model, it needs to be divided into training, validation and 

testing sets. The training set is used to train the model, the validation set is used to evaluate the 

model and the testing set is used to finally test the model. 

 

The proposed network was trained using 2000 2D image slices, out of which 1400 were 

used for training and 600 were used for validation as shown in Table 3. The input image size was 

128 x 128 x 3. Due to the addition of features mentioned earlier, the network had to be trained 

from scratch. The preprocessed CT images along with their liver masks were used to train the 

network to segment livers. Secondly, the liver images along with the tumor masks were used to 
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train the network to segment tumors. A batch size of 32 and 50 epochs were used to train the 

network.  

 

Additionally, the loss function used in this study was sparse categorical cross entropy 

function. It is a metric used for evaluation of loss and accuracy of the model. Cross entropy 

measures the distance between ground truth and predictions. It checks to see if the maximum true 

value in the ground truth is equal to the index of the maximum value in the predicted mask. 

 

The optimizer used in the proposed network was root mean squared propagation 

(RMSprop) for hidden units. This normalizes the gradients by using the magnitude of the recent 

gradients. The current gradient is divided over the root mean squared gradients, thus maintaining 

a moving average. RMSprop solves the issue of gradient vanishing as the normalization balances 

the momentum by decreasing or increasing the steps for large and small gradients respectively. 

 

 

Parameter  Value 

Input image size 128 x 128 x3 

Epochs  100 

Dropout 0.25 

Learning rate 0.001 

Batch size 32 

Training Sample Size  1400 

Validation Sample Size 600 

Table 3: Summarizes the parameters utilized during the liver and tumor segmentation 
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4.6. Evaluation Metrics 

  

For evaluating the performance of the liver and tumor segmentation, dice similarity 

coefficient (DSC) was used. The DSC is a method used to check similarity between two 

segmentations. It measures the size of the overlap between two data points (prediction and ground 

truth), and divides by the total size of the two points. The DSC value ranges from 0-1, where a 

value of 0 means there is no spatial overlap and a value of 1 means there is perfect overlap.32 

 

Dice score The DSC is given by the following formula.32 

 

DSC = 
2 ∗ 𝐴 ∩ 𝐵

𝐴 + 𝐵
 

where A and B = Target masks and ∩ = intersection 

 

 

5. Results  

 

Two concatenated CNN based U-Nets were trained to segment livers and liver tumors from 

non-contrast enhanced abdominal simulation CT scans. The first network took input data of patient 

CT non-contrast abdominal CT images and liver masks and produced a liver segmentation. The 

second network took the liver segmentation output from the first network along with a tumor mask 

(ITV, CTV, GTV) and produced a tumor segment as the final result. The results from data 

preprocessing, network training/validation, liver segmentation, tumor segmentation, evaluation of 

liver segmentation and tumor segmentation are presented below. 

 

 

5.1. Data Preprocessing 

  

The first part of the thesis was preprocessing the non-contrast abdominal simulation CT 

images as described in the methods. The preprocessed images were saved in the PNG format. 

Figure 6 shows the HU windowing steps used for isolating the liver from the original CT image.  
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Figure 6: HU widowing steps. Any tissue below 40 and above 80 is removed to get an isolated liver. 

 

 

5.2. Network Loss and Accuracy 

  

Sparse categorical entropy was used in this study for monitoring the accuracy of the model 

during training and validation. Figures 7 and 8 shows the sparse categorical loss and accuracy for 

liver and liver tumor segmentation respectively. 

 

As can be seen in Figure 7, the liver model training loss and validation loss gradually 

decreases with every epoch which indicates a good learning rate. The liver model training and 

validation accuracy increases with every epoch. Using more than 100 epochs would be a good 

indication to see how the model behaves. However, it can also be noticed that the validation 

accuracy after about 40 epochs is less than training accuracy, which indicates that the model is 

slightly overfitting. This means that the model is fitting to the training data better, but has a harder 

time fitting to new data, and thus starting to overfit.  

 

Similarly, as can be seen in Figure 8, the liver tumor model training loss and validation 

loss decreases with every epoch till it reaches epoch 40, and remains mostly constant after that. 

The liver tumor model training and validation accuracy increases with every epoch. Using more 

epochs to train the model would be helpful to decide how the model behaves past 100 epochs. The 
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model appears to not be overfitting as the training and validation accuracy graphs are close to each 

other, however, more epochs would be needed to decide.  

 

Figure 7: Left plot shows the liver model loss. Right plot shows the liver model accuracy. Blue line shows the 

training loss/accuracy. Orange line represents the validation loss/accuracy. 

 

 

 

 

     Figure 8: Left plot shows the tumor model loss. Right plot shows the tumor model accuracy. Blue line shows the 

training loss/accuracy. Orange line represents the validation loss/accuracy. 
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5.3. Liver and tumor segmentation 

 

Figure 9 shows the liver segmentation results. The first row represents the preprocessed 

livers from CT scans using HU windowing. The second row shows liver masks used as ground 

truths obtained from the RTSTRUCT file. The third row represents the predicted liver masks after 

training and validating the liver network. The fourth row shows the predicted liver segmentation 

overlaid on the original (first row) preprocessed CT scans.  

 

 

 

Figure 9: Represents the liver segmentation results from validation data 
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Similarly, Figure 10  shows the predictions for tumor segmentation network and Figure 11 

shows when the network did not perform well in predicting tumors. The first row represents the 

liver masks filled in to provide segmented livers from the first U-Net. The second row shows the 

liver tumor masks used as ground truths obtained from the RTSTRUCT file. The third row 

represents the predicted liver tumor masks after training and validating the second liver tumor 

network. The fourth row shows the predicted liver tumor segmentation overlaid on the liver 

segments produced from the first network.  

 

 

 

Figure 10: Represents the tumor segmentation results from validation data 
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Figure 11: Represents the tumor segmentation results where the actual versus predicted mask did not match 

well for validation data (in some cases, there was no prediction).  

 

Visually, the liver and tumor segmentation match the ground truths decently. It looks like 

the model has a difficulty segmenting on the edges. Moreover, the liver segmentations seem to 

be more accurate than the tumor segmentations. Table 2 depicts the quantitative evaluation of the 

liver and liver tumor segmentation network performance. The average dice coefficient for liver 

segmentation is 89.5%. The average dice coefficient for liver tumor segmentation is 44.4%.  
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Network Average Dice Coefficient  

Liver Segmentation  89.5% 

Tumor Segmentation  44.4% 

Table 4: Dice coefficient results obtained from validation data for liver and liver tumor segmentation  

 

 

6. Discussion 

 

In this research, the CT scans used were non-contrast simulation CT scans obtained from 

the VCUHS health system. The CT scans had liver and liver tumor structures contoured by 

physicians that were used as ground truths for liver and tumor networks. The simulation images 

used were taken using 4DCT at 30% phase or breath-hold. Two concatenated CNN based U-Nets 

that were trained to segment livers and liver tumors from non-contrast enhanced abdominal 

simulation CT scans. The first network took input data of patient CT non-contrast abdominal CT 

images and liver masks and produced a liver segmentation. The second network took the liver 

segmentation mask output from the first network along with a tumor mask (ITV, CTV, GTV) and 

produced a tumor segment as the final result. The results of the liver segmentation and liver tumor 

segmentation are discussed below.  

 

The U-Net performance for liver segmentation was evaluated by comparing the predicted 

results to the ground truths. As can be seen in Figure 8, the qualitative results of liver segmentation 

seem to be accurate with slight deviations from ground truth liver contours (second row from 

Figure 8) to predicted results (third row from Figure 8). The dice coefficient value for liver 

segmentation was 89.5%. This value further supports the qualitative performance of the liver 

segmentation. In studies performed by Ahmad et al. and Alirr, the liver segmentation dice 

coefficient using the IRCAD dataset which consists of contrast-enhanced diagnostic CT scans was 

91.8% and 95.2% respectively.33,14  The dice coefficient value obtained from this research 

compares well with the related works.  

 

The U-Net performance for liver tumor segmentation was evaluated by comparing the 

predicted results to the ground truths. As can be seen in figure 9, the qualitative results of liver 
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tumor segmentation generally match the ground truth liver tumor contours (second row from figure 

9) to predicted results (third row from figure 9). The dice coefficient value for liver tumor 

segmentation was 44.4%. In the study performed by Christ et al. and Alirr, the liver tumor 

segmentation dice coefficient results using contrast-enhanced IRCAD diagnostic CT scans were 

56% and 76.1% respectively.34,19 The dice coefficient value obtained from this research is lower 

than what has been found in the related works.  

 

The results of dice coefficient are lower especially for liver tumor segmentation compared 

to other related research is possibly due to the following reasons. Most liver tumor works used 

contrast-enhanced diagnostic CT scans for training and testing, where the contrast between liver 

and tumors is better. As a result, the network was able to perform much better. If the past 

segmentation works would test their models on a non-contrast CT scan, then it would be more 

representative of their network performance. Other common sources of errors in this research 

include deviations in the intensity of the liver tumors in the abdominal CT scan in every patient. 

As mentioned earlier, variability in contouring of the livers and tumors affects the ground truth 

masks used to train the network, and therefore could affect the performance of the network.  

 

Additionally, the contours created by physicians for treatment planning which were used 

as ground truth also had MRI information. This makes the contours used as ground truths more 

consistent and accurate. Conversely, the additional information from MRI is not present in the CT 

images, and this limits the performance of the CT only network. It is not evident in other 

segmentation works if the ground truths contained information from multiple imaging modalities. 

This is useful as the network is able to train on images containing information from both CT and 

MRI and thus learn more about the image. Moreover, this research used simulation CT images 

instead of diagnostic CT images. This is beneficial because the main goal of this study is to use 

this liver tumor segmentation network as an automated tool to help physicians in contouring liver 

tumors. The physicians use simulation images for contouring and treatment planning to deliver a 

safe radiation treatment. 

 

In this research, the methods used for management of respiratory motion were ABC and 

4DCT at 30% phase as this is the phase used for treatment planning, which is the mid-ventilation 
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phase that is most close to the average motion of the tumor during the entire respiratory cycle. 

Furthermore, ITV contour, which accounts for respiratory motion was used as the ground truth. 

The margin used to create an ITV contour will defer from patient to patient based on the movement 

of the tumor in all the directions in the 4DCT scans. The ITV margin is smaller in ABC scans. The 

use of ITV contour as the ground truth, and discrepancies in the ITV contour between the two 

types of scans could have affected the network predictions. Secondly, choosing GTV or CTV 

contours as ground truths could lead to training the network in underestimating the extent of the 

tumor as these would not account for tumor motion.  Lastly, using a different phase than 30% will 

also affect the performance of the network as the ITV contour will defer, thus affecting the ground 

truths.  

  

 

7. Other Limitations/Future Recommendations 

 

The conducted research has proven to have valuable results but it also has some limitations. 

One of the limitations arises from the use of two U-Nets for liver and tumor segmentation 

respectively. The liver envelope produced from liver segmentation was used as input along with 

tumor ground truth for the second network, which is the tumor segmentation network. Therefore, 

the results of the liver segmentation will affect the performance of the liver tumor network.  

 

Secondly, it is important to note that the network was trained with images that contained a 

liver tumor. In a case, where an image with no tumor is presented, the network performance might 

be degraded. This was not tested in this research but would be a good future study. 

 

Moreover, the network was not tested using test images to provide a complete unbiased 

evaluation of the final model. It would be useful to have some test images aside to test the network 

and get a true evaluation of the model after training and validation.  

 

To overcome some of the limitations expressed above, one possible solution would be to 

train the liver network using a whole abdominal scan containing all slices of liver in all planes. 

This would mean that some images will not have a visible tumor. However, this would require a 

lot of storage and time to train the network. Due to time constraints, this was beyond the scope of 
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this research. The overall performance of the network itself can be improved by having more data 

or through more data augmentation. Other areas of improvements could be from tuning the 

hyperparameters such as kernel size, learning rate, activation/loss functions, batch size, epochs as 

well as experimenting with different architectures.  

 

 

8. Conclusion 

 

Several deep learning models have been developed for early detection and segmentation of 

liver and liver tumors. There is a need for automated algorithms for segmentation in order to come 

up with a precise radiation therapy treatment plan. Previous research mainly focused on using 

contrast-enhanced diagnostic CT images as inputs to the neural networks for diagnosing liver 

tumors. However, contrast enhancement is sensitive to the timing of the CT acquisition, thus 

making it a challenge to obtain the scan in the right amount of time, and appropriately detect and 

delineate liver tumors. Secondly, the use of diagnostic images for the purposes of this research has 

some disadvantages, one being that the images used for treatment planning are simulation CT 

images. Diagnostic images also lack the motion management strategies used while preparing the 

radiation treatment plan. As a result, these images might not be appropriate to aid physicians in 

delineating liver and liver tumors and thus creating radiation therapy treatment plans.  

 

As a contribution to the ongoing research on liver tumor segmentation, this research 

utilized simulation based non-contrast CT scans for automated liver and liver tumor segmentation 

for radiotherapy treatment planning. Furthermore, the contours for livers and liver tumors used as 

ground truths also had MRI information. Two fully convolutional concatenated neural networks 

with a U-Net architecture originally built by Olaf Ronneberger were used in this study. The 

proposed method succeeded in liver and liver tumor segmentation. The results for liver 

segmentation were comparable with related research. The results for tumor segmentation were 

slightly lower than related studies, but can be improved with changes in the neural network 

structure (fine tuning parameters, more training iterations, etc.) 

 

Overall, this research takes a significant step in the development of automated liver tumor 

segmentation using simulation CT scans which are used for delineating regions of interest (liver 
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tumor- GTV, CTV, ITV) and thereby creating an efficient treatment plan. This research also 

identifies areas of improvement and steps that need to be taken before implementing this work in 

the clinic. 
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Appendix A. 

 

Shows the summary of the network architecture  

 

 
 

Continuation of the summary of the network architecture  
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Continuation of the summary of the network architecture  
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Continuation of the summary of the network architecture  
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