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DISSERTATION ON TOPICS IN DESIGN AND ANALYSIS OF EXPERIMENTS:

CALIBRATION, SEQUENTIAL EXPERIMENTATION, AND MODEL

SELECTION

By Christine Miller
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Doctor of Philosophy at Virginia Commonwealth University.
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Director: David J. Edwards,
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0.1 Dissertation Topics

0.1.1 A Comparison of Experimental Designs for Calibration

The impact of experimental design choice on the performance of statistical cal-

ibration is largely unknown. We investigate the performance of several experimen-

tal designs with regards to inverse prediction via a comprehensive simulation study.

ix



Specifically, we compare several design types including traditional response surface

designs, algorithmically generated variance optimal designs, and space-filling designs.

0.1.2 Optimal Sequential Design Techniques

Uncertainty remains in optimal design techniques regarding the best way to

allocate a given set of runs. The focus on maximizing information in optimal design

has emphasized the running of a comprehensive large design all at one time, with

or without replication. In practice, it may be better to first run a small screening

design to identify important factors followed by an additional design building off

knowledge gained in the first phase. We use simulations to compare the performance

of D-optimal screening designs with follow up runs selected by Bayesian D-optimal

augmentation against the performance of a nonsequential D-optimal design. We

consider two and three-level screening designs. Simulation scenarios vary the number

of total runs, analysis method, number of active main effects, two-factor interactions

and quadratic terms.

0.1.3 Model Selection with Pure Error

Identifying important factors from a screening design is often challenging due to

the aliasing of factorial effects from small run sizes and limited degrees of freedom

to estimate all parameters. Studies on model selection for screening designs find

higher power rates when statistical inference during model selection is based on a pure

error estimate versus the residual mean square; however false discovery and Type I

error rates can be problematically inflated. Currently there is not a suitable method

available to incorporate pure error into model selection procedures when analyzing

screening designs that achieves high power without the trade-off of high false discovery

rates. To counteract the lack of noncentrality in the partial F -test denominator

x



contributing to larger partial F -tests with pure error, we consider early stopping

methods including Bonferroni adjusted p-values and our proposed forward selection

method incorporating lack of fit tests after each model selection step. Additionally,

we develop a method of incorporating pure error with LASSO penalized regression by

computing lack of fit tests along the LASSO solution path. We examine various model

selection techniques using a simulation study and propose a strategy for incorporating

pure error in model selection procedures that keeps FDR in check.

xi



CHAPTER 1

INTRODUCTION

Experiments are widely used across multiple disciplines to uncover information about

a system or processes. For instance, a goal may be to discover which variables (or

factors) influence a response and to measure their impact. To achieve the goal, the

experiment must be set up so the appropriate data points are captured. Experimental

design is a statistical technique devoted to the methodology of selecting the appro-

priate samples to aid in the subsequent analysis. An effectively designed experiment

helps uncover information needed to optimize a process spurring innovation. Incor-

porating design of experiments allows one to innovate either with new discoveries or

in an incremental approach.

The statistical field of Response Surface Methodology focuses on the develop-

ment and optimizing of processes using statistical techniques (Myers et al., 2016).

Optimization seeks to find the minimum or maximum value, visually represented by

dips or peaks if we were to map out response levels by independent variables. My-

ers et al. (2016) define response surface as the graphical perspective of the problem

environment. For instance, consider the following response surface application: a

chemical process has a goal to increase yield by altering reagent concentration and

temperature. In this scenario, the independent variables (reagent concentration and

temperature) are known as factors and yield is known as the response. Factors are

variables that the experiment varies to measure their impact on a response, and they

are commonly represented as xj for j = 1, ..., h factors with response yi for i = 1, .., n

runs. Say either the reagent concentration, x1, can either be low or high and the

1



temperature, x2 can be either low or high. In a design, these levels may be coded as

1 for high and -1 for the low value placing the variables on the same scale. Running

both factors at their low value results in a run with each factor labeled -1 and the

corresponding yield, yi is recorded. A common experimental design is a fractional

factorial, 2h, that includes all combinations of each factor at 2 levels, their high and

low value. This allows the researcher to determine the impact a change in each factor

has on the response. For example, the 2h factorial design for 2 factors each with two

levels -1 and 1 has the 4 points (-1,-1), (-1,1), (1,-1), and (1,1).

Statistical models fitted on the collected experiment data provide information

about the underlying system. Continuing with the chemical process example, x1 and

x2 are main effect terms measuring how each factor independently impacts the re-

sponse. A simple linear relationship between factors and response can be represented

as the main effect model,

yi = β0 + β1x1i + β2x2i + εi (1.1)

where β1, β2 are unknown parameters for each coefficient, β0 is the intercept, and εi

is an error term distributed normally with mean E(ε) = 0 and variance V ar(ε) = σ2.

The model can also be represented in matrix notation,

y = Xβ + ε (1.2)

where y, ε are n×1 vectors, β is a (h+1)×1 column vector and X is the n× (h+1)

model matrix for n experiment runs.

The subsequent analysis of the data tests if terms have an impact on the response

and estimates the β coefficients. If the practitioner expects that the reagent concen-

tration interacts with temperature, adding two-factor interaction terms to the model

will allow them to test for this behavior. Quadratic terms can be added if curvature

2



is expected in the response surface. The full quadratic model takes the form

yi = β0 + β1x1i + β2x2i + β12x1ix2i + β11x
2
1i + β22x

2
2i + εi. (1.3)

Three levels of each factor are needed to fit a quadratic model and detect curvature.

Using our chemical process example, a center value of 0 can be added for each factor.

The fractional factorial is now a 3h design and requires additional runs and hence

resources.

Effect sparsity and heredity are two key assumptions of experimental design.

Effect sparsity assumes only a fraction of main effects and low order interactions are

truly active. For instance, consider our quadratic model in equation 1.3, effect sparsity

assumes only a few of the 5 terms are actually active, say just x1 and x1x2. Notice in

this example the interaction term x1x2 is active but only one of its parent main effects

x1 and x2 is also active. This brings up our next key assumption of heredity. Heredity

requires parent main effects to also be active if interactions and quadratic terms are

present in the data (Edwards et al., 2014). Strong heredity requires all parent main

effects x1 and x2 to be active if their interaction x1x2 is also active. Weak heredity

requires at least one of the parent main effects to be active as shown in the sparsity

example with active effects x1 and x1x2.

We use simulation in each chapter of this dissertation to compare designs and

techniques. This enables us to control which factors are active or inactive in the

underling data. We can then appropriately determine which designs and techniques

most adequately describe the true model. We assume either a full quadratic model or

a model with main effects and two-factor interactions, and we randomly select which

terms are active as well as their true coefficients. Various metrics are employed to

evaluate performance. An Analysis of Variance test (ANOVA) determines differences

among means. The mean Euclidean distance between actual and predicted input

3



value is compared to evaluate calibration performance in Chapter 2. To measure how

accurately methods classify significant variables, Chapters 3 and 4 use power, the

proportion of active terms that are correctly identified, false discovery rate (FDR), the

proportion of terms incorrectly identified as active, and Type I error, the proportion

of inactive terms declared active.

1.1 Research Objectives

The primary goal of this dissertation is to provide practitioners practical recom-

mendations regarding experimental designs. Topics include design selection in cali-

bration, optimal sequential design techniques, and model selection with pure error.

Simulation results in Chapters 2, 3 and 4 allow us to compare various techniques in

correctly identifying inputs in the underlying functional form. In Chapter 2, we eval-

uate the impact of experimental designs on calibration by measuring how accurately

designs can infer input values. Our goal is to provide specific design recommendations

for calibration as well as detail the influence the number of responses, the number of

inputs and other design choices have on the final results. In Chapter 3, we explore

how a sequential design followed up with additional runs compares to a nonsequential

design. We focus on determining the best way to apportion a given set of runs. In

Chapter 4, we research the impact of statistical inference based a pure error esti-

mate versus the residual mean square during model selection procedures. We aim to

propose a strategy to incorporate pure error into model selection procedures when

analyzing screening designs that achieves high power without the trade-off of high

FDR.

4



1.2 Dissertation Outline

The three main topics of this dissertation are presented in Chapters 2, 3 and 4.

Each chapter contains background information and a literature review for each topic.

The literature review is followed by a research methodology section and simulation

results.
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CHAPTER 2

A COMPARISON OF EXPERIMENTAL DESIGNS FOR

CALIBRATION

2.1 Background and Literature Review

Calibration, also referred to as inverse prediction, is a statistical technique that

uses experimental data to model the relationship between input and response vari-

ables in order to ultimately infer inputs based on newly observed response values

(Brown, 1993; Sundberg, 1999; Thomas et al., 2017). For example, Anderson-Cook

et al. (2015) describes a calibration study originating in nuclear forensics. When a

prohibited nuclear material such as plutonium is found, substantial effort is placed

into investigating its origin. Deducing the processing parameters (i.e. inputs) such

as reaction temperature and reagent concentration from the observed material pro-

vides indicators of the facility used to create the nuclear material. Reagents used

during production can leave behind specific impurities that may then be linked to the

reagent.

There are two primary techniques of conducting statistical calibration: forward

modeling and direct inverse modeling; see Lewis et al. (2018) for a comparison of

these two methods. Let x = (x1, x2, . . . , xh) represent h input variables and y =

(y1, y2, . . . , yk) represent k responses. For the forward modeling approach, models such

as y = f(x) + ε, where f(.) is some specified functional form and ε is a random error

term, are established based on training/experimental data. These forward models are

then “inverted”, often using nonlinear optimization techniques, to determine a set of

inputs for a given set of new response values.
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Direct methods, on the other hand, build a model for x as a function of y and

often employ dimension reduction techniques such as principal component regression

and partial least squares (Haaland and Thomas, 1988). Xiang et al. (2009) notes the

potential for chance correlation (correlations occurring in a sample due to variabil-

ity that do not actually exist in the population (Rönkkö, 2014)) when using partial

least squares during calibration and demonstrates this via a pharmaceutical applica-

tion. Lewis et al. (2018) reports forward modeling consistently outperforms direct

inverse modeling with respect to prediction accuracy whereas direct inverse modeling

proves most beneficial when there are many more responses than input variables and

dimension reduction is needed.

Returning to the nuclear forensics example, Anderson-Cook et al. (2015) exem-

plify the forward approach of calibration using particle morphology measurements of

plutonium to infer processing reaction temperature and reagent concentration. The

forward model parameter estimates are obtained from a previous plutonium oxide

(PuO2) experiment with three factors (nitric acid (HNO3) in moles, Pu in g/L, and

temperature in ◦C) and five response variables describing the resulting particle (ag-

glomeration index in weight percent, mode, length, width, and thickness in µm). For

each response (i = 1, 2, ..., 5), the maximal forward model is specified by

yi = βi0 + βi1x1 + βi2x2 + βi3x3 + βi12x1x2 + βi13x1x3+

βi23x2x3 + βi123x1x2x3 + βi11x
2
1 + βi22x

2
2 + βi33x

2
3 + εi

(2.1)

with εi ∼ Normal(0, σ2
i ). When a new response y∗ = (y∗1, y

∗
2, y
∗
3, y
∗
4, y
∗
5) is observed

following an experiment, we seek the input x̂ = (x̂1, x̂2, x̂3) that minimizes some

distance metric (e.g. Euclidean distance) between y∗ and the predicted response

7



ŷ = (ŷ1, ŷ2, ŷ3, ŷ4, ŷ5) where

ŷi = β̂i0 + β̂i1x1 + β̂i2x2 + β̂i3x3 + β̂i12x1x2 + β̂i13x1x3+

β̂i23x2x3 + β̂i123x1x2x3 + β̂i11x
2
1 + β̂i22x

2
2 + β̂i33x

2
3.

(2.2)

Training data for the forward model is often based on an experimental design;

however, there is limited literature on appropriate experimental designs for inverse

prediction. It is natural, then, to question how and/or why the choice of experimental

design may impact the accuracy of inverse predictions. When inverse prediction is

to be based on forward models, it is a sensible strategy to seek designs that provide

precise estimation of the forward model parameters. In fact, Brown (1993) and Sund-

berg (1996, 1999) show that confidence regions for x̂ depend on the standard errors

of the forward model’s parameter estimates. This provides some evidence that the

judicious choice of experimental design should have an impact on inverse prediction

performance. Furthermore, it is intuitive that designs focused on precise prediction

of new observations over the experimental region would result in a rich training data

set that is useful for inverse prediction.

François et al. (2004) compare design performance for univariate calibration mod-

els. These authors propose two new optimization criteria for nonlinear models based

on G-optimality (i.e. minimize the maximum prediction variance) and I-optimality

(i.e. minimize the average prediction variance over the design region). Compar-

ing these two criteria, their simulation results support the use of I-optimality as

the G-criterion placed higher weights on areas where inverse prediction variance was

high. Bondi et al. (2012) compare Central composite designs (CCDs), D-optimal,

and I-optimal designs in a calibration study using the direct method of partial least

squares. Results favor the use of both I-optimal designs and CCDs. Anderson-Cook

et al. (2015) also suggest the use of I-optimal designs but caution that research re-
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garding the development of a “direct metric for assessing the quality of a design for

the inverse problem” is needed.

To the best of our knowledge, no study currently exists that comprehensively

compares experimental designs for multivariate calibration over various scenarios.

In this chapter, we investigate the performance of select experimental designs by

evaluating inverse prediction accuracy. Specifically, we consider traditional response

surface designs as well as algorithmically generated variance optimal designs and

space-filling designs. Our simulation study varies seven different attributes (totaling

19,200 different scenarios) including design type, number of inputs (factors), number

of response variables, size of error variance, correlation among response variables,

percent of model terms that are active, and whether or not the forward model is

reduced in some way before performing inverse prediction. Note that some degree

of correlation among response variables is expected as the responses may consist of

various measurements from the same final product. For instance, with the chemomet-

rics application of particle morphology, multiple measurements of the same output

are taken to describe irregular forms. Lewis et al. (2018) caution that substantial

relationships between the responses may hinder inference on inputs.

2.2 Experimental Designs

The following subsections provide brief descriptions of the experimental designs

that we consider for comparison in this study.

2.2.1 Central Composite Designs

Central composite designs (CCDs) are easily the most commonly used design

for response surface exploration and optimization (Myers et al., 2016) and are quite

popular in chemometrics (for example, see Panagiotou et al. (2009), Loveday et al.
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Fig. 1.: Design point locations for 2 factors and 10 runs

(2011), Asadollahzadeh et al. (2014), and Rai et al. (2016) among many others). This

popularity arises from their ability to i) be run sequentially and ii) fit a second-order

model without the run size requirements of a 3h factorial design. In general, for h

factors, CCDs consists of a 2h full factorial or Resolution V (or higher) 2h−` fractional

factorial design, 2h axial points, and some number (n0) of center point runs. Figure

1(a) illustrates a 10-run CCD for 2 factors. For straightforward comparison with

other designs, we specify an “on face” (i.e. α = 1) axial distance. CCD design points

fall along the boundary of the experimental region with the exception of the center

point runs.

2.2.2 D-optimal Designs

D-optimal designs seek to minimize the variance of the model parameter esti-

mates (Myers et al., 2016). This criterion has proven to be particularly useful in

screening scenarios where the objective is to identify the few important factors out
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of the many factors of interest. As the determinant can be used as a measure of

overall variance, a D-optimal design locates a set of design points that minimizes the

determinant of the inverse information matrix (i.e. (X ′X)−1 where X is the model

matrix). It is computationally more tractable, however, to maximize the determinant

of the information matrix. Thus, a D-optimal design is such that

|X ′X| (2.3)

is maximized. Assuming specification of a full second-order model, Figure 1(b) shows

the design locations for a D-optimal design in 2 factors and 10 runs. This design

consists of one center point run with all other points located on the boundary of the

design region. In this example, the D-optimal design is similar to the CCD except

that it contains only one center run and two replicate runs at the point [-1,1]. Like

the CCD, D-optimal designs appear prominently in the chemometrics literature (e.g.

François et al. (2007), Mannarswamy et al. (2009), Ebrahimi-Najafabadi et al. (2012),

Bella et al. (2018)).

2.2.3 I-optimal Designs

The prediction variance at some design location x is given by

υ(x) = nf(x)′(X ′X)−1f(x) (2.4)

where f(x) takes a factor setting x and expands it to its corresponding model terms

(Anderson-Cook et al., 2009). For example, for a second-order model,

f(x)′ = [1, x1, x2, ..., xh, x1x2, ..., xh−1xh, x
2
1, ..., x

2
h]. (2.5)
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An I-optimal design minimizes the average prediction variance over the design region

(denoted as χ) given by

1

K

∫
χ

υ(x)dx (2.6)

where K =
∫
χ
dx is the volume of the design region. Thus, the I-criterion can be

written as

min

{
1

K

∫
χ

x(m)′(X ′X)−1x(m)dx

}
. (2.7)

Assuming specification of a second-order model, the 10-run I-optimal design in Fig-

ure 1(c) is identical to the CCD. For examples of usage of I-optimal designs in the

chemometrics literature, see Jeirani et al. (2012) and Akkermans et al. (2017).

2.2.4 Space-Filling Designs

We expand our calibration study to include space-filling designs as they allocate

points throughout the design space (see Nunes et al. (2013), Hathurusingha and

Davey (2016), and Xu et al. (2018) for examples from chemometrics). Variance-

based optimal designs, such as I- and D-optimal designs require a priori specification

of the underlying model form (i.e. before data collection). This is often cited as

a downside to the use of such criteria. Space-filling designs are an alternative to

traditional designs and can allow for a more effective exploration of the interior of the

experimental region as well as more flexibility in model fitting. Space-filling designs,

popularly used for deterministic or near-deterministic models (such as with computer

experiments), select n points from a discrete grid of candidate points over the design

region, χ, based on some specified distance function d.

One approach for constructing a space-filling design is to select design points,

xi, throughout the design region such that the maximum distance from any location

in the design region to its nearest point in the design is minimized. These designs
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are known as minimax designs since the maximum distance from a candidate design

point (xi) to its nearest neighbor in the experimental design is minimized. For any

point u ∈ χ, the distance to the closest design point is given by mini d(u,xi) where

d(u,xi) represents some distance measure between u and xi. The maximum distance

is therefore maxu mini d(u,xi) and the minimax objective can be written as

min
ζ

max
u∈χ

min
i
d(u,xi) (2.8)

for some design ζ (Joseph, 2016).

Considering that two neighboring points may provide similar information, an-

other space-filling approach is to spread the sampling points as far away from each

other as possible. Sphere packing designs, also known as maximin designs, maximize

the minimum distance between design points, mini,j d(xi,xj). The maximin-distance

criterion maximizes

max
ζ

min
i,j

d(xi,xj), (2.9)

the minimum distance between two design points (Johnson et al., 1990). See Joseph

(2016) for a more thorough review of space-filling designs. The present study con-

siders two specific space-filling designs, spatial coverage and Latin hypercube, that

incorporate the minimax and maximin space-filling criteria, respectively.

2.2.5 Spatial Coverage Designs

Spatial coverage designs are constructed as the subset of points that minimizes

C =

∑
u∈χ

[∑
x∈ζ

d(u,x)a

] b
a


1
b

(2.10)

with parameters a < 0 and b > 0. As a → −∞ and b → ∞, C converges to

a minimax space-filling criterion. Royle and Nychka (1998) discuss these designs
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further and provide an iterative point swapping algorithm for design construction.

We generate these designs in R (R Core Team, 2018) using the package fields and

the cover.design function (Nychka et al., 2019).

A visual of a spatial coverage design for 2 factors and 10 runs is included in Figure

1d. This design clearly contains points distributed throughout the design region

(unlike the CCD, D-optimal, and I-optimal designs). Although we consider other

space-filling designs as shown in Figure 1(e) through Figure 1(h), spatial coverage

designs are unique in that they have no points along the design boundary.

2.2.6 Latin Hypercube Designs

Similar to the sphere packing design, Latin hypercube designs maximize the

minimum distance between points but include an additional constraint to enhance

one-dimensional projection properties. This constraint reduces redundant points in

the presence of unimportant factors (Butler, 2001). To illustrate, Figure 2(a) shows

a sphere packing design with two factors and 10 runs. If x2 is actually superfluous,

then the design points will be condensed along the x1 axis as shown in Figure 2(c).

These overlapping points illustrate poor one-dimensional projections. To enhance

projection properties, the Latin hypercube design seeks to space factor levels evenly

between their lower and upper bounds, creating uniform one-dimensional projections,

see Figure 2(d). Increasing the number of levels per factor increases degrees of free-

dom and allows for fitting more complex models (but this comes with the trade-off

of not being as variance efficient as D- or I-optimal designs). This also leads to

Latin hypercube designs having fewer points along the boundary of the experimental

region than the sphere packing design. Figure 1(e) shows how the Latin hypercube

distributes points throughout the design area.
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Fig. 2.: Comparison of Space-Filling Sphere Packing and Latin Hypercube designs
and their one-dimensional projections.

2.2.7 Bridge Designs

Bridge designs “bridge the gap” between variance optimal and space-filling de-

signs. Although bridge designs are a more recent development (Jones et al., 2015),

they have been suggested for further research in calibration studies (Davis et al.,

2017). As detailed in Jones et al. (2015), a bridge design seeks to maximize the

D-criterion but with a constraint on the minimum distance between points. That is,

max |X ′X| subject to |xij − xil| ≥ δ for i = 1, . . . , h

and j, l = 1,...,n, j 6= l

where δ is the specified minimum univariate interpoint distance. For two-level factors

coded as ±1, the tuning parameter ranges from 0, which generates a standard D-

optimal design, to 2/(n−1), a D-optimal Latin hypercube design. Jones et al. (2015)
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suggests the midpoint of this range with a δ of 0.5 × 2/(n − 1). The hollow blue

circles in Figure 3 illustrate the placement of points using a δ of 0.25 and 0.5 for a

design with 21 runs. To compare, points for a D-optimal design are overlaid as orange

squares. For δ = 0.25, the tuning parameter is 0.25(2/20) = 0.025. Figures 3(a) and

3(c) show the points located more closely to D-optimal design locations. As delta

increases to 0.5, the tuning parameter increases to 0.5(2/20) = 0.05 and Figures 3(b)

and 3(d) more closely resemble a Latin hypercube design. Figure 1(f) through Figure

1(h) shows the bridge designs for δ of 0.25, 0.5 and 0.75 for 2 factors and 10 runs.
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Fig. 3.: Bridge design placement for 2 factors and 21 runs (blue circles); D-optimal
design is overlaid for reference (orange squares). a) Main effects only with tuning
parameter 0.25δ, b) Main effects with tuning parameter 0.5δ, c) Second-order model
with tuning parameter 0.25δ, d) Second-order model with tuning parameter 0.5δ

2.3 Simulation Study

This section describes the simulation study to analyze the impact of experimental

design on calibration. We first detail the analysis approach utilized followed by an

outline of the simulation protocol.
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2.3.1 Analysis Approach

In the simulation, we make use of the forward model inverse calibration approach.

During data collection, responses are observed for each run using inputs prescribed

by the experimental design. After data is collected, a regression model is fit for each

response. For the simulation, we assume a full second-order regression model. That

is, for each response, the model takes the general form

yi = βi0 +
h∑
j=1

βijxij +
∑ h∑

j<l=2

βijlxijxil +
h∑
j=1

βijjx
2
ij + εi (2.11)

with εi ∼ Normal(0, σ2). The number of active terms are varied to mimic the model

selection process and we compare design performance for both full and reduced mod-

els.

After the forward model is developed, test data is generated to determine how

well each design type infers input values from an observed response. That is, we

randomly select a number of points from the experimental region to represent the

true inputs for the test dataset, x∗ = (x∗1, x
∗
2, . . . , x

∗
h). For each of these new input

points, we simulate true responses y∗ = (y∗1, y
∗
2, . . . , y

∗
k) to represent new observations

after the experiment has taken place. These responses are a function of x∗ and

true β = (βi0, . . . , βijj) from the forward model. For each y∗, we estimate input

values via constrained minimization to determine the set of values x̂ = (x̂1, x̂2, . . . , x̂h)

that minimizes the Euclidean distance between y∗ and the predicted response ŷ =

(ŷ1, ŷ2, . . . , ŷk) where

ŷi = β̂i0 +
h∑
j=1

β̂ijxij +
∑ h∑

j<l=2

β̂ijlxijxil +
h∑
j=1

β̂ijjx
2
ij (2.12)
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with β̂ from the fitted forward model. More specifically, we select x̂ by minimizing√√√√ k∑
i=1

(y∗i − ŷi)2. (2.13)

The minimization is performed via nlminb, an R function that implements a quasi-

Newton optimization method that allows us to constrain the estimated input values,

x̂, to be within the design region (see Gay (1990) for optimizer details). As the

optimization method is sensitive to starting values, we utilize the multiStart-optim

function from R’s mcGlobaloptim package (Moudiki, 2013). This function allows one

to specify a number of optimization trials with randomly selected starting values; we

use five random starts in our simulation study.

Finally, design performance is evaluated by comparing the mean/median Eu-

clidean distance (across all test points) between actual input x∗ and estimated input

x̂, √√√√ h∑
i=1

(x∗i − x̂i)2. (2.14)

2.3.2 Simulation Protocol

The simulation study varies i) design type, ii) number of input factors, iii) num-

ber of responses, iv) size of error variance, v) correlation among response variables,

vi) percent model terms truly active, and vii) a full verses reduced model, to in-

vestigate how the various experimental designs perform across different conditions.

For a specified number of factors, all designs are generated with the same number

of runs as required by a CCD. Input factors are constrained between -1 and 1. All

designs, with the exception of the spatial coverage designs, are generated using JMP

statistical software (JMP R© Pro 14, SAS Institute Inc., Cary, NC). The JMP script-

ing language code provided by Jones et al. (2015) is utilized to generate a bridge
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design for a full quadratic model and δ = 0.25, 0.5 and 0.75. These three designs are

labeled as Bridge25, Bridge50, and Bridge75, respectively. Spatial coverage designs

are generated using the cover.design function in R’s fields package, as previously

mentioned. Table 1 summarizes the simulation variables and their levels.

Table 1.: Calibration Summary of Simulation Variables

Simulation Variable (Label) Levels

Design Type (Design) CCD, D-optimal, I-optimal, Latin Hypercube,
Spatial Coverage, Bridge

Number of Factors (Factor) 2, 3, 4, 5
Number of Responses (Response) 2, 3, 4, 5, 6, 7

Error Standard Deviation (Standard Deviation) 1, 2, 3
Response Correlation (Rho) 0, ±0.1, ±0.25, ±0.5, ±0.75

Percent Terms Active (Active Percent) 10%, 25%, 50%, 100%
Full or Reduced Model (Reduced) Full Model, Reduced Model

For each unique combination of attributes, 1,000 iterations of the simulation are

run, and the overall mean/median Euclidean distance between actual and predicted

inputs is compared to evaluate design performance.

Each iteration begins by generating response values from input values specified

by the design matrix. Model terms are randomly selected to be active depending

on the specified percent active. Strong effect heredity is assumed when selecting

interaction and quadratic terms. Effect heredity assumes interactions and quadratic

terms are present only if parent main effects are active (Ockuly et al., 2017). Under

strong heredity, interaction terms are allowed in the model only if both main effects

are active, and a quadratic term is included only if the associated main effect is active.

The true model coefficients for the active terms are randomly assigned from the set

{±0.5,±1,±2,±3,±4,±5,±6, ±7,±8,±9,±10}. The intercept, β0, is fixed at 10.

We use the mvrnorm function in R’s MASS package (Venables and Ripley, 2002) to

generate training data responses from y ∼ Normal(µ,Σ) where µ = (µ1, µ2, . . . , µk)
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and

µi = 10 +
h∑
j=1

βijxij +
∑ h∑

j<l=2

βijlxijxil +
h∑
j=1

βijjx
2
i (2.15)

for i = 1, . . . , k responses. Σ is generated by first constructing a symmetric correla-

tion matrix with off-diagonal values selected from ρ ∈ {0,±0.1,±0.25,±0.5,±0.75}.

This matrix is then transformed into a positive semidefinite covariance matrix using

the eigenvalue decomposition method (Rousseeuw and Molenberghs, 1993) and the

cor2cov function in R’s MBESS package (Kelley, 2020).

Recall that a positive semidefinite matrix must have eigenvalues greater than

or equal to zero. As we are randomly selecting ±ρ values during each iteration of

the simulation, there is a chance that the generated variance-covariance matrix will

not be positive semidefinite. To prevent this from occurring, the generated variance-

covariance matrix is decomposed into its eigenvalues and eigenvectors and all eigen-

values are set to greater than or equal to zero. The matrix is then reassembled using

the original eigenvectors and adjusted eigenvalues and scaled so diagonal elements are

1. This updated correlation matrix along with the prescribed error standard deviation

is transformed into a covariance matrix, Σ.

To illustrate, consider the following correlation matrix for 3 responses and cor-

relation levels of ±0.75,

S =


1.00 0.75 0.75

0.75 1.00 −0.75

0.75 −0.75 1.00

 . (2.16)

S has eigenvalues of {
1.75 1.75 −0.5

}
,

one of which is less than zero. To make S positive semidefinite, the negative values

21

cor2cov
MBESS


are set to zero {
1.75 1.75 0

}
and the correlation matrix is adjusted using the original eigenvectors and the adjusted

eigenvalues. The resulting matrix
1.0 −0.5 0.5

−0.5 1.0 0.5

0.5 0.5 1.0


has eigenvalues greater than or equal to zero. Using cor2cov and assuming an error

standard deviation of 2, Σ becomes
4 2 2

2 4 −2

2 −2 4


with variance 22 along the diagonal. We acknowledge that this adjustment will, at

times, change the correlation structure from that assigned by the simulation. How-

ever, this procedure will allow us to consider a wide variety of possibilities for variance-

covariance structure. After generating the true response values, the forward model

is fit to the data. The model parameter estimates are determined and, in the case

of the reduced model scenario, set to 0 if their p-value is greater than a standard

significance level of 0.05.

Fifty new locations in the design region are selected at random to use as actual

input values in the test data set. We assume the underlying relationship connecting

inputs to responses is the same in both our training and test data. The responses in

the test data are generated the same way in our training set. The test data responses

and test data model estimates are then used to find the optimal set of input values
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that minimize the mean Euclidean distance between y∗ and ŷ for each point.

The designs are evaluated based on their average mean and median Euclidean

distance between actual and predicted input values after 1,000 iterations. Results for

each of the designs are compared with those having a lower mean Euclidean distance,

our measure of prediction error, favored.

The entire simulation process is outlined in Algorithm 1.
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Algorithm 1 Simulation Steps

1: Assuming strong effect heredity, randomly assign model terms to be active.

2: Create the underlying relationship between inputs and responses by assigning

model coefficients from the set {±0.5,±1,±2,±3,±4,±5,±6, ±7,±8,±9,±10}

to the active terms. Inactive terms are assigned a value of zero. Then, the

expected value of a response is given by

µi = 10 +
h∑
j=1

βijxij +
∑ h∑

j<l=2

βijlxijxil +
h∑
j=1

βijjx
2
i (2.17)

for i = 1, . . . , k responses and µ = (µ1, µ2, . . . , µk).

3: Generate a variance-covariance matrix Σ.

4: Generate training data responses y ∼ Normal(µ,Σ) using mvrnorm in R for each

experimental run.

5: For each response, fit the assumed forward model using the inputs from the

experiment design and training data responses and obtain the model parameter

estimates (β̂i = (β̂i0, . . . , β̂ijj)).

6: Create test data by randomly selecting 50 new points, x∗ = (x∗1, . . . , x
∗
h), in the

design region bound by -1 and 1.

7: Generate test data responses y∗ ∼ Normal(µ∗,Σ) using mvrnorm and

µ∗i = 10 +
h∑
j=1

βijx
∗
ij +

∑ h∑
j<l=2

βijlx
∗
ijx
∗
il +

h∑
j=1

βijjx
∗2
ij (2.18)

for µ∗ = (µ∗1, µ
∗
2, . . . , µ

∗
k) and each point x∗.

8: Using the β̂i’s from the forward model, use nonlinear optimization to find x̂ values

that minimize√√√√ k∑
i=1

(y∗i − (β̂i0 +
h∑
j=1

β̂ijx̂ij +
∑ h∑

j<l=2

β̂ijlx̂ijx̂il +
h∑
j=1

β̂ijjx̂2
ij))

2 (2.19)

for each point x∗.

9: Record the mean Euclidean distance between x∗ and x̂ for the 50 new points in

the test data. Repeat steps 1,000 times and take the average mean and median

of the Euclidean distances between x∗ and x̂ per scenario.
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2.4 Simulation Results

Figure 4(a) and 4(b) shows the overall mean and median Euclidean distance,

respectively, per design. Across all scenarios, I-optimal designs exhibit the best per-

formance followed closely by the CCD. Box plots of the mean and median Euclidean

distance are shown in Figure 4(c) and 4(d) and also indicate the I-optimal and CCD

designs as being the best performers. Spatial coverage designs, on the other hand,

have the largest mean/median Euclidean distance as well as the largest range of

mean/median values.

Fig. 4.: Euclidean Distance Metrics by Design

Figure 5 indicates each design’s rank according to its average mean Euclidean

distance for each specified scenario. With one exception, an I-optimal design was

consistently the best performer. Comparing across the attributes varied in the sim-
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ulation, we note that Bridge25 was among the top 3 performers. In fact, Bridge25

outperformed both D-optimal and Latin hypercube designs (of which Bridge25 is a

hybrid of). However as the bridge design tuning parameter, δ, increased to 0.5, it

lagged behind D-optimal designs for most of the scenarios. A decrease in performance

is clearly seen as the tuning parameter increases and the bridge designs became more

akin to a Latin hypercube. Jones et al. (2015) recommend using a small tuning value

when there is more certainty that the correct regression model is being used.

Fig. 5.: Designs Ranked by Mean Euclidean Distance (Lowest to Highest)

To formalize the simulation results, we fit a regression model with the mean

Euclidean distance as the dependent variable and simulation scenario attributes as

predictors. A model that includes main effects and two-factor interactions with design

type (Design) exhibits an adjusted R-square of 0.938; an ANOVA for this model is

shown in Table 2. Most notably, the ANOVA results indicate clear differences by

experimental design (p-value < 2e-16). All two-factor interactions with Design are

important with the exception of Design×Rho. See Figure 6 for interaction plots

involving Design.

From Figure 6(a) and 6(c), we see that the mean Euclidean distance increases

as the number of input factors and the error standard deviation increase. Thus, it is

recommended that an experimenter select a conservative number of input factors when

inverse prediction will be performed. Inverse prediction performance also appears
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to be more favorable when using the full model versus a reduced model (Figure

6(f)). Conversely, prediction error decreases as the number of responses increased

(Figure 6(b)). Correlation among the responses, however, does not appear to have a

large impact on inverse prediction performance in this study (Figure 6(d)). Finally,

prediction error decreases as the percent of active terms increases (Figure 6(e)). All

of the interaction plots in Figure 6 clearly show the spatial coverage design lagging

behind the other design choices.

Term Df F value P-value

Design 7 744.679 <2e-16
Factor 1 97545.65 <2e-16
Response 1 84660.14 <2e-16
Active Percent 1 6445.327 <2e-16
Standard Deviation 1 90214.61 <2e-16
Rho 1 212.894 <2e-16
Reduced 1 2423.289 <2e-16
Design:Factor 7 165.843 <2e-16
Design:Response 7 14.643 <2e-16
Design:Active 7 5.997 5.34e-07
Design:Standard Deviation 7 103.595 <2e-16
Design:Rho 7 0.325 0.943
Design:Reduced 7 185.057 <2e-16
Residuals 19144

Table 2.: Calibration ANOVA Results for Main Effect and Design Interactions, de-
grees of freedom (Df), F value and p-value

A post-hoc Tukey test indicates that I-optimal designs are not significantly bet-

ter than CCD and Bridge25 designs, but are significantly better than the remaining

design choices. Considering the worst performer, spatial coverage designs are signifi-

cantly worse than all other designs. Full results of the Tukey test are included in the

Appendix.
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Fig. 6.: Predicted Mean Euclidean Distance by Design (Mean Euclidean distance on
y-axis and attribute on x-axis, y-axis starts at 0.15)
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2.5 Summary and Conclusion

This chapter compares experimental designs with regards to inverse prediction

performance. Our simulation study varied design type, number of input factors,

number of response variables, error standard deviation, correlations among responses,

number of active terms, and whether or not predictor subset selection is helpful.

The designs were evaluated based on the mean/median Euclidean distance between

actual and predicted input values. It is our hope that knowledge regarding design

performance across various scenarios/conditions may help influence design choice and

setup of future calibration studies.

The designs investigated for the study have appeared in the chemometrics lit-

erature and include both traditional and non-traditional choices. Results from the

simulation indicate a relationship between design choice and inverse prediction per-

formance. Overall, an analysis of the simulation suggests the use of I-optimal, CCD,

and bridge designs with a small tuning parameter (Bridge25). These three design

types had the lowest Euclidean distance between actual and predicted input overall

as well as across all of the simulation scenarios. Additional recommendations from

the study include limiting the number of input factors and making use of the full

hypothesized model (i.e. no model reduction). Correlation among response variables

did not appear to have an overall negative impact on inverse prediction (but further

research is recommended).

As noted by Anderson-Cook et al. (2015), research focused on formally evalu-

ating the extent to which design optimality criteria translate into favorable inverse

prediction performance is needed. Despite this lack of research, we conjecture that

precise prediction via forward models is indeed a good criterion for inverse predic-

tion and, thus, led to the favorable performance of I-optimal designs in the simulation
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study. Recall that prediction, ŷ, at an input, x, is a key component of the constrained

optimization (Equation (2.13)).

CCDs are well known for both their good estimation and prediction properties

when fitting a second-order model; this likely explains their inclusion in the top three

performers in the simulation study. Finally, the hybrid Bridge25 design is most similar

to a D-optimal design vs. the other bridge designs considered. Thus, the performance

of the Bridge25 design is likely attributed to its ability to efficiently estimate the

second-order model while also allowing for some coverage of points across the design

region.

Initially, we were surprised by the poorer performance of the space-filling designs

in the simulation study. However, Johnson et al. (2010) compare space-filling designs

with optimal designs based on their prediction variance properties and conclude that

space-filling designs do not perform as well as optimal designs with regards to this

metric when fitting polynomial regression models.

The goal of this chapter has been to contribute to the understanding of the role

of design of experiments in inverse problems via an extensive (although admittedly

idealistic) simulation study. To name a couple limitations, we did not consider errors

in the input factors (also known as random calibration) and we also assumed that a

second-order regression model was the true model. As a consequence, model selection

was not performed with the exception of model reduction via predictor subset selec-

tion. Both considerations are certainly worthy of future research. Another avenue for

further research includes comparing design types for inverse prediction when the true

model is a higher-order polynomials or more complex nonlinear models but the user

locally approximates the response surface by lower-order polynomial models. Inves-

tigation of other calibration methods (e.g. direct methods or Bayesian approaches)

would also be interesting for future work.
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CHAPTER 3

OPTIMAL SEQUENTIAL DESIGN TECHNIQUES

3.1 Background and Literature Review

The process of learning and adapting over time is the foundation of sequential

design techniques. Sequential designs, also known as follow-up designs, is a method

that involves running a series of experiments with each one building off the previous

iteration (see Edwards et al. (2014), and Nelson et al. (2000)). Sequential designs often

begin with a screening design aiming to discard negligible factors. Once the results

are analyzed, a follow-up design is conducted to hone in on the active factors. With

finite resources, experimenters must decide whether to allocate runs for a sequence of

experiments or to use all runs in a design without first screening. Yet the performance

of sequential designs compared to a single nonsequential design without screening is

unknown. To narrow the scope, we focus on algorithmically generated D-optimal

designs and a design space fixed to a constrained design region. We aim to provide

practitioners guidance on the most efficient way to apportion a given set of runs.

Jensen (2018) cautions the focus optimal designs place on extracting the max-

imum information at a point in time has shadowed the importance of sequential

experimentation and that the best way to apportion a set number of runs is an open

problem of optimal design. This chapter investigates the best way to allocate a fixed

number of runs within a fixed design space. For example, given that the experimenter

has a total of 20 possible runs, is it best to run a single 20 run design in all the factors

of interest all at once or use a sequential approach? The sequential approach allows

the experimenter to use findings from the initial screening runs to focus on important
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factors in the next iteration. However the smaller run size of screening designs comes

with a drawback of aliasing of factorial effects and potential ambiguity in analysis.

While there is robust literature on screening and sequential designs, there are only

a limited number of studies on optimal sequential design techniques (see Silvestrini

(2015), Edwards et al. (2014), Nelson et al. (2000)). Edwards et al. (2014) com-

pare four design follow-up strategies: foldover (see Montgomery, Douglas C., Runger

(1996)), semifoldover (see John (2000), Mee and Peralta (2000)), D-optimal (see Goos

and Jones (2011)), and Bayesian MD-optimal (see Meyer, R. Daniel et al. (1996))

for several initial design choices using a metal-cutting case study. A single follow-up

strategy did not outperform all others across various scenarios. Foldover and semi-

foldover augmentation require a fixed number of additional runs while D-optimal and

MD-optimal augmentation are more flexible given that a design size that can be

customized based on available resources. D-optimal augmentation locates the follow

up runs that maximize the D-criterion. Recall that D-optimal designs maximize the

determinant of the information matrix. The model matrix for the initial screening

design, X1, has columns corresponding to each parameter in the user specified model

and a row for each run. With X2 as the model matrix for the follow up runs, the

initial design is augmented by choosing additional runs with treatment combinations

that maximize

|X ′1X1 +X ′2X2| (3.1)

across possible X2 matrices.

Nelson et al. (2000) compare three design augmentation strategies in the context

of industrial experiments. The strategies include a foldover of a 12 run Plackett-

Burman design (Plackett and Burman, 1946), and a two-level fractional factorial

design (28−4 16 run screening design) augmented by either a three quarter foldover of
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the 28−4 design or using D-optimal augmentation with the optimality criterion shown

in equation 3.1. The authors caution that in the chemical or processing industries

two-factor interactions (2FI) are often as important as the main effects, and a partial

aliasing of factors can make it difficult to determine the correct model when interac-

tions are present. Results from a Monte Carlo study suggest that the three-quarters-

based augmentation strategy has an advantage over the Plackett-Burman approach

with both methods outperforming D-optimal augmentation. The three quarters aug-

mentation approach uses semi-folding to de-alias specific alias chains based on terms

identified as significant during the screening design.

Silvestrini (2015) investigates the impact of initial design size, number of runs in

each design augmentation stage, total run size, additional center points, and initial

model specification on sequential D-optimal designs using a simulation study. Designs

are evaluated in terms of D-efficiency, a measure comparing the design’s determinate

of the information matrix to that of an orthogonal design. That is

(
|X ′X|
np

)1/p

(3.2)

with X is the design’s model matrix, and p is the number of model parameters.

Simulation results show increasing total sample size improves D-efficiency in ad-

dition to starting with a simpler model form in the initial design when the underlying

model is unknown as opposed to a more complex model. These findings rely on

the assumption that the experimenter gets closer to identifying the correct model at

each subsequent stage. We expand on Silvestrini (2015) in our simulation study by

measuring the impact of initial design size and total sample size in terms of power,

the proportion of active terms that are correctly identified, and false discovery rates

(FDR), the proportion of terms incorrectly identified as active. The rest of this chap-
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ter proceeds as follows. Section 2 provides details on the experimental designs and

augmentation methods used in our study. Section 3 describes LASSO and forward

selection model selection methods. Section 4 covers our simulation study protocol

and reviews a simulation example. In Section 5 we examine our simulation results

and we conclude with a discussion in Section 6.

3.2 Experimental Designs

3.2.1 D-optimal Designs

D-optimal designs seek to minimize the variance of the model parameter esti-

mates (Myers et al., 2016). This criterion has proven to be particularly useful in

screening scenarios where the objective is to identify few important factors out of the

many factors of interest. As the determinant can be used as a measure of overall

variance, a D-optimal design locates a set of design points that minimizes the deter-

minant of the inverse information matrix (i.e. (X ′X)−1 where X is the n× p model

matrix for n runs). It is computationally more tractable, however, to maximize the

determinant of the information matrix. Thus, a D-optimal design is such that

|X ′X| (3.3)

is maximized.

3.2.2 Bayesian D-optimal augmentation

To add additional runs to our screening designs, we leverage the Bayesian D-

optimal augmentation method provided in Gutman et al. (2014) and Zhang et al.

(2019) for main effects, and we broaden it to include 2FI and quadratic terms. The

process is as follows. Let X1 be the n1 × p model matrix of an initial design with n1
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screening runs, and y1 as the corresponding vector of responses. We wish to select

the n2× p model matrix for n2 follow up runs, X2, such that the optimality criterion

of the final n = (n1 + n2)× p model matrix X =

X1

X2

 is maximized. Recall that

D-optimal designs maximize |X ′X|; for an augmented design this is

|X ′X| = |

X1

X2


′X1

X2

 | = |(X ′1X ′2)

X1

X2

 | = |X ′1X1 +X ′2X2|. (3.4)

Bayesian D-optimal augmentation incorporates findings from an initial screening

design through the prior information matrix R to select follow up runs. Consider the

linear model Xβ + ε with X as the n × p model matrix, β as the p × 1 vector of

coefficients, and ε ∼ N(0n, σ
2In) as the n × 1 error vector. The prior distribution

of β is β|σ2 ∼ N(β0, σ
2R−1) where β0 is the prior mean for β, and the conditional

distribution of y given β is y|(β, σ2) ∼ N(Xβ, σ2In). Then the posterior distribution

for β given y =

y1
y2

, where y2 is the vector of responses for the follow up runs is

β|y ∼ N [b, σ2(X ′1X1 +X ′2X2 +R)−1] (3.5)

with b = (X ′1X1 +X ′2X2 +R)−1(X ′1y1 +X ′2y2 +Rβ0).

After analyzing the initial experiment, terms are classified into two groups. Terms

appearing active are labeled primary, and terms not appearing active are potential.

Term coefficients are given a prior variance based on this grouping. Coefficients of

primary terms are given a diffuse prior variance tending to infinity. Potential terms

are given a prior mean of zero and a finite variance σ2τ 2 where τ is a user specified

constant. Multiplying σ2 by larger values represents stronger confidence that the

factor is active. This study follows Gutman et al. (2014) and sets τ = 5 following a

sensitivity analysis analyzing various levels of τ . Let p1 be the number of primary
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terms, and p2 the number of potential terms. The intercept term is always labeled

primary and we have p1 +p2 = p terms. The matrix X is reordered with the intercept

and other primary terms first, followed by potential terms. The prior information

matrix R is

R =

0p1×p1 0p1×p2

0p2×p1 Ip2/τ
2

 (3.6)

where 0s×t is a matrix of zeros with s rows and t columns. Bayesian D-optimality

incorporates the prior information matrix R and maximizes

|X ′X +R|. (3.7)

We use the Coordinate-Exchange Algorithm (Meyer and Nachtsheim, 1995) to

find follow up runs, X2, that maximize the Bayesian D-optimal augmentation criteria

|X ′1X1 +X ′2X2 +R|. The algorithm begins each iteration by populating an initial

X2 matrix with values randomly selected from [−1, 0, 1]. Next, the algorithm iterates

through each row i and column j and exchanges the existing X2ij value with the

{0,−1, 1} coordinate that maximizes |X ′1X1 +X ′2X2 +R|. If the objective criteria

improves after a coordinate exchange then X2 is updated. The algorithm proceeds

to the next element in the row or column such that every coordinate in each row and

column is exchanged for {0,−1, 1}. This process is repeated using 10 random starts

and the resulting X2 is the matrix that maximizes the objective function.

3.3 Model Selection Methods

We utilize model selection in the analysis of screening design results as well as

in the final analysis incorporating data from all experiment runs. We compare two

methods, forward selection and a penalized regression method LASSO (least absolute

shrinkage and selection operator) to see if our findings differ based on model selec-
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tion method. Details on forward selection and LASSO are provided in the following

subsections.

3.3.1 Forward Selection

Forward selection is a model selection procedure that sequentially adds terms

to a regression model on the basis of partial F -tests until none of the remaining

candidate terms are significant or all variables have been added to the model (Myers,

1990). The process starts with an initial model containing just the intercept term and

the procedure chooses the next variable j to include that has the largest significant

partial F -test out of all the candidate terms. A statistically significant partial F -test

has a p-value less than or equal to some prespecified α threshold. At each stage, let

the model matrix with the candidate term j be X1 and X1,−j is the model selected

by the previous step. The Type III sums of squares of βj for the fitted model (SSβj)

is

SSβj = y′(H1 −H1,−j)y (3.8)

with H1 = X1(X ′1X1)−1X ′1 and H1,−j = X1,−j(X
′
1,−jX1,−j)

−1X ′1,−j. The sums of

square error is

SSE = y′ (I −H1)y (3.9)

where I is an identity matrix of size n. The partial F -statistic is

SSβj
SSE/n− p

(3.10)

where p is the number of model parameters in X1.

Other criteria other than partial F -tests may be used with forward selection

such as the Akaike information criterion (AIC) or AICc, a modified version of AIC

for small sample sizes (see Smucker et al. (2020) for details). Our simulation study
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uses forward selection with AICc. This stepwise procedure adds a candidate term to

the model if the addition of the term results in the model with minimum AICc out

of all candidate terms in each step. With

AIC = −2log(L̂) + 2p (3.11)

where p < n− 1, and L̂ is the maximum likelihood (Akaike, 1974). We have AICc =

AIC + 2p(p+1)
n−p−1

. If the candidate term with the minimum AICc has an AICc greater

than the existing model, the process terminates.

3.3.2 LASSO

The least absolute shrinkage and selection operator (LASSO) is a model selection

method introduced by Tibshirani (1996). It is a regularization technique often used

to analyze small screening designs (Smucker et al., 2020). LASSO shrinks coefficient

estimates setting some to zero by minimizing

(y −Xβ)
′
(y −Xβ) +

h∑
j=0

(λ|βj|) (3.12)

where λ is a tuning parameter (Zhang et al., 2019). The tuning parameter λ is

often selected using cross-validation, though Smucker et al. (2020) recommend using

AICc for small structured designs. We select the value for λ that minimizes AICc =

AIC + 2p(p+1)
n−p−1

where

AIC = n log
(Y −Xβ̂λL)

′
(Y −XβλL)

n
+ 2p (3.13)

where p < n− 1, and βλL are the LASSO estimates for value λ.
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3.4 Simulation Study

This section describes the simulation study used to analyze the best use of a

given set of total runs. We first detail the analysis approach utilized followed by an

outline of the simulation protocol.

3.4.1 Analysis Approach

All designs included in our simulation study are Bayesian D-optimal designs.

We create all our initial designs in JMP R©. For our sequential designs, we consider

a 12 run initial design for 20 total runs, 20 run initial design for 32 total runs, a

32 run initial design for 48 runs, and a 40 run initial design for 64 total runs. All

designs have input factors constrained between -1 and 1. We specify main effects and

quadratic terms as primary, and 2FI as potential for nonsequential and three-level

screening designs. Two-level screening designs have main effects specified as primary,

2FI as potential, and include 3 center runs to test for the presence of curvature. To

illustrate, the designs for 6 factors and 32 total runs are provided in Table 3, Table

3(a) shows the two-level screening design with 20 runs including 3 center runs, Table

3(b) contains the three-level screening design with 20 runs, and Table 3(c) contains

the nonsequential three-level design with the total 32 runs. Grayscale correlation

maps illustrating the aliasing of terms in the 6 factor 20 run screening designs and

the 32 run nonsequential designs are shown in Figure 7. All quadratic terms are

aliased with each other in the two-level screening design with 3 center runs (Figure

7(a)), the three-level screening design has nine pairs of 2FIs having a correlation above

0.76 (Figure 7(b)), and the larger nonsequential design has overall lower correlations

among terms (Figure 7(c)).

For the sequential approach, once we have the results from the initial screening
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Table 3.: Comparison of Bayesian D-Optimal designs for 6 factors and 32 total runs

(a) Two-level screening
with 3 center runs

x1 x2 x3 x4 x5 x6
1 1 1 -1 -1 -1

-1 -1 -1 1 1 -1
1 1 -1 1 1 -1

-1 -1 1 -1 -1 -1
-1 -1 -1 -1 -1 1
-1 1 -1 1 1 1
1 1 -1 -1 -1 1
1 -1 1 1 1 1
1 1 1 1 -1 1

-1 1 1 -1 1 1
-1 -1 1 1 -1 1
1 -1 -1 1 -1 -1

-1 1 1 1 1 -1
1 -1 1 -1 1 -1
1 -1 -1 -1 1 1

-1 1 -1 -1 1 -1
-1 1 -1 1 -1 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(b) Three-level screening
design

x1 x2 x3 x4 x5 x6
1 1 -1 1 0 1
0 -1 1 1 0 0
1 0 0 1 1 0
1 1 1 1 -1 -1
0 1 0 -1 -1 1

-1 1 1 -1 1 -1
-1 -1 0 1 -1 1
1 -1 1 -1 1 1
0 -1 -1 0 1 1

-1 -1 -1 1 1 -1
-1 0 -1 -1 0 1
1 0 1 0 -1 1
1 1 -1 -1 1 -1
0 0 -1 1 -1 -1

-1 1 1 1 1 1
1 -1 -1 -1 -1 0

-1 -1 1 -1 -1 -1
1 -1 0 0 0 -1

-1 1 -1 0 -1 0
1 -1 1 1 1 -1

(c) Nonsequential
Three-level design

x1 x2 x3 x4 x5 x6
-1 -1 -1 1 -1 -1
1 -1 0 0 -1 -1

-1 -1 0 -1 -1 1
1 1 -1 1 -1 -1

-1 0 0 -1 1 -1
-1 1 1 -1 -1 0
1 1 1 -1 -1 -1

-1 1 1 1 1 -1
-1 -1 1 1 1 1
1 0 -1 -1 -1 0

-1 -1 1 -1 -1 -1
-1 1 -1 -1 1 1
-1 1 1 0 0 -1
0 1 0 1 1 0
0 1 1 -1 1 1
1 -1 -1 1 1 -1
1 -1 1 -1 -1 1
1 1 0 -1 0 1
0 0 1 1 -1 -1

-1 0 -1 1 0 1
1 -1 -1 -1 1 1
1 -1 1 -1 1 -1
1 1 -1 -1 1 -1
0 1 -1 0 -1 1
1 1 1 1 1 1

-1 1 -1 -1 -1 -1
0 -1 -1 -1 0 -1

-1 1 1 1 -1 1
-1 -1 -1 0 1 0
1 -1 1 1 0 0
1 0 1 0 1 1
1 -1 -1 1 -1 1

runs, we use Bayesian D-optimal augmentation to generate follow up runs for both

the two and three-level screening designs. We use model selection, either forward

selection or LASSO, to determine which terms are classified as primary or poten-

tial for the follow up runs. Both methods select a subset of parameters using the

minimum AICc criteria. Main effect and interaction terms in the model chosen are

classified as primary while the remaining terms not in the selected model are labeled

potential. We include the following additional model selection steps for the two-level

screening design to help capture quadratic effects. Forward selection and LASSO
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(a) (b) (c)

Fig. 7.: Correlation map of simulation design types for 6 factors

model selection methods include quadratic terms as candidate terms and if at least

one quadratic term is selected by model selection, we classify all quadratic terms as

primary, and we proceed with the Bayesian D-optimal augmentation. If no quadratic

terms are selected by model selection, there is no evidence of curvature and quadratics

terms are no longer included in the X model matrix during subsequent D-optimal

augmentation and analysis stages.

We then use the process outlined in subsection 3.2.2 to select follow up runs

for the remaining trials using Bayesian D-optimal augmentation for both two and

three-level screening designs. If no quadratic effects are detected in the two-level

screening design, the coordinate exchange algorithm exchanges coordinates for two

levels {−1, 1} instead of the three-level selection {−1, 0, 1}. Model selection is con-

ducted on the total number of runs and the terms included in the model with the

minimum AICc are identified as active effects.

For the nonsequential approach, we carry out model selection on all the design

runs, and the subset of parameters selected by the model selection method using AICc

are considered the terms identified as active.
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3.4.2 Simulation Protocol

We consider the following:

1. Number of factors: 6, 7, 8

2. Total runs: 20 runs (with a 12 run initial experiment), 32 runs (with a 20 run initial
experiment), 48 runs (with a 32 run initial experiment), 64 runs (with a 40 run initial
experiment)

3. Active Main Effects: 2, 3, 4, 5

4. Active 2FI: 0, 1, 3, 5, 7

5. Active Quadratics: 0, 1, 3, 5

6. Initial Bayesian D-optimal Design:

(a) Two-level screening design (main effects are specified as primary, 2FI as poten-
tial, with 3 center point runs)

(b) Three-level screening (main effects and quadratics are specified as primary, 2FI
as potential)

(c) Three-level nonsequential (main effects and quadratics are specified as primary,
2FI as potential)

7. Number of stages:

(a) 1 stage (nonsequential design approach)

(b) 2 stages (sequential approach including a smaller screening design + number of
follow-up runs to get to total run size)

8. Analysis method: Forward selection, LASSO

Table 4 summarizes the simulation variables and their levels. There are a total

of 3,240 distinct simulation scenarios. Each iteration begins by generating response

values from input values specified by the design matrix. Model terms are randomly

selected to be active depending on the specified number of active terms. Strong

effect heredity is assumed when selecting 2FI and quadratic terms. Effect heredity

assumes interactions are present only if parent main effects are active (Ockuly et al.,

2017). Under strong heredity, quadratic terms are allowed in the model only if their
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parent main effect is active, and interaction terms are allowed in the model only if

both their parent main effects are active. This limits the number of possible active

2FI and quadratic terms in our scenarios. For example, with 2 active main effect

terms, a maximum of one 2FI and a maximum of two quadratic terms are possible.

The true model coefficients for the active terms are randomly assigned from the set

{±0.5,±1,±2,±3}. The intercept, β0, is fixed at 10. We use the following to generate

responses,

y = 10 +
h∑
j=1

βjxj +
∑ h∑

i<j=2

βijxixj +
h∑
j=1

βjjx
2
j + ε (3.14)

with ε ∼ Normal(0, σ2), σ2 = 1, and h is the number of factors.

Table 4.: Optimal sequential design summary of simulation variables

Simulation Variable Levels

Design Type Two Level Screening, Three Level Screening, Nonsequential Design
Number of Factors 6, 7, 8
Active Main Effects 2, 3, 4, 5

Active Two-Factor Interactions* 0, 1, 3, 5, 7

Active Quadratic Terms* 0, 1, 3, 5
Total Run Size 20, 32, 48, 64

Analysis Method Forward Selection, LASSO

* Strong effect heredity enforced

For each unique combination of attributes, 1,000 iterations of the simulation

are run, and the overall mean power and FDR are compared to evaluate design

performance. The entire simulation process is outlined in Algorithm 2.
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Algorithm 2 Simulation Steps

1: Assuming strong effect heredity for 2FI and quadratic terms, randomly assign model
terms to be active based on the number of active main effect terms and possible 2FI
and quadratics.

2: Create the underlying relationship between inputs and responses by assigning model
coefficients from the set {±0.5,±1,±2,±3} to the active terms. Inactive terms are
assigned a value of zero. Note some scenarios do not have any active 2FI or quadratic
terms as part of our simulation test cases.

3: Generate a response for each run in the initial experimental design using 3.14 and
σ2 = 1.

4: Two-level screening design: Use forward selection or LASSO on the initial generated
responses. Label terms chosen by model selection as primary, else potential. If any
quadratic term is in the subset of terms identified by model selection then label all
quadratics primary. If no quadratics are selected by model selection then exclude all
quadratics from the model matrix during subsequent design augmentation and analysis
steps.

5: Three-level screening design: Use forward selection or LASSO on the generated re-
sponses. Label terms chosen by model selection as primary, else potential.

6: All screening designs: add remaining runs (total run size - screening design run size)
using Bayesian D-optimal augmentation and the coordinate exchange algorithm. Gen-
erate a response for each new run using 3.14.

7: All designs: Use forward selection or LASSO on total experiment runs. All terms in
the selected model are identified as active.

8: Calculate power and FDR.
9: Repeat all previous steps 1,000 times and take the average mean power and FDR per

scenario.

3.4.3 Simulation Example

This section details the various designs and augmentation strategies considered

using an example with 8 specified active terms and coefficients for 32 total runs

and 6 factors. Suppose the true model is assigned 3 active main effects {x1, x3, x4},

3 active 2FI {x1x3, x1x4, x3x4} and 2 active quadratic terms {x2
1, x

2
3}. Note that

strong heredity is enforced and 2FI and quadratic terms only include the active main

effects x1, x3, and x4. There are a total of 8 active terms but the experimenter

does not know which of the 6 main effects, 15 2FI and 6 quadratic terms are active,

if any. The active terms {x1, x3, x4, x1x3, x1x4, x3x4, x
2
1, x

2
3} are assigned coefficients
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{3,−1, 0.5, 1,−3, 2, 2,−2} respectively. The true model is

y = 10 + 3x1 − x3 + 0.5x4 + x1x3 − 3x1x4 + 2x3x4 + 2x2
1 − 2x2

3. (3.15)

Figure 8 shows which terms are selected by model selection in each round for each

design and analysis method. Sequential designs have two rounds, the first round

contains the results from model selection on the initial screening runs, and the sec-

ond round displays results from model selection on the full total runs after design

augmentation. Nonsequential designs only have one round. Figure 8 highlights the

columns corresponding to the active terms in yellow. For the screening design rounds,

terms chosen by model selection on the initial screening runs are specified as primary

and labeled “p” in the table and the rest are specified potential. If no quadratics are

significant in the analysis of the two-level screening design then all quadratic terms

are removed from the model and indicated in the table by “-”. Rows corresponding

to final results are shown in the light gray shaded rows, with a solid circle if the term

was included in the final LASSO or forward selection model and identified as active.

Power, the number of active terms correctly identified divided by total active terms,

and FDR, the number of inactive terms incorrectly identified as active divided by

total number of terms labeled active, are calculated for the final round.

The sequential approach starts with either a two-level BayesianD-optimal screen-

ing design (see Table 3(a) for design) or a three-level Bayesian D-optimal screening

design (see Table 3(b). The nonsequential approach employs a 32 run Bayesian D-

optimal design with main effects and quadratics labeled primary, and 2FI as potential

(Table 3(b)).

To start, consider the sequential approach with a two-level screening design and

the LASSO analysis method shown in the first two rows of Figure 8. For the first

round, we simulate responses to the 20 run screening design locations and include
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Fig. 8.: Simulation example for 6 factors, 32 total runs and 8 active effects

quadratic terms into the model selection process to test for curvature. LASSO model

selection on the screening design’s initial 20 runs identifies 5 terms {x1, x1x3, x1x4, x3x4, x4x5}

in the model with the minimum AICc. No quadratic terms are selected, and as there

is no evidence of curvature, all quadratics are excluded from the subsequent design

augmentation and final analysis steps. The identified 5 terms are labeled primary and

the remaining main effects and 2FI are potential. We find 12 (32 total runs minus 20

screening design runs) follow up runs using Bayesian D-optimal augmentation and the

coordinate exchange algorithm. LASSO analysis on the 32 total runs selects the model

with 7 terms x1, x3, x4, x1x3, x1x4, x2x4, x3x4. Active terms x1, x3, x4, x1x3, x1x4, x3x4

are correctly identified, x2x4 is incorrectly identified as active, and quadratic terms

x2
1, x

2
3 are incorrectly not identified as active. The final result for the two-level design

with LASSO and two stages has a power of 6/8 = 0.75 and FDR of 1/7 = 0.14.

This next example walks through the process for a three-level screening design

with forward selection with the results for the first round in row 7, and final re-

sults in row 8 of Figure 8. For the first round, we simulate responses to the 20

run screening design locations. Forward selection on the screening design’s initial
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20 runs identifies 11 terms {x1, x3, x1x3, x1x4, x1x6, x2x4, x3x5, x5x6, x
2
1, x

2
2, x

2
6} in the

model with the minimum AICc. The 11 terms are labeled primary and the remain-

ing main effects, 2FI and quadratic terms are labeled potential. We find 12 follow

up runs using Bayesian D-optimal augmentation and the coordinate exchange al-

gorithm. Forward selection on the 32 total runs selects the model with 13 terms

x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x5, x2x6, x3x4, x3x6, x
2
1, x

2
3. All active terms are cor-

rectly identified and five extra terms {x2, x1x2, x2x5, x2x6, x3x6} are incorrectly iden-

tified as active. The final result for the three-level design with forward selection has

a power of 1 and FDR of 5/13 = 0.38.

Lastly, consider the nonsequential design with forward selection with one stage

in row 10 of Figure 8. Forward selection on the design’s 32 runs selects a model with

14 terms x1, x2, x3, x4, x1x3, x1x4, x1x5, x2x3, x2x4, x3x4, x2
1, x2

3, x2
4, x2

6. All active

terms are correctly identified and six additional terms, x2, x1x5, x2x3, x2x4, x2
4, and

x2
6 are incorrectly identified as active. The final results for the nonsequential design

with forward selection has a power of 1 and FDR of 6/14 = 0.43.

3.5 Simulation Results

Table 5 shows the mean power and FDR by analysis method overall, and for main

effects, 2FI and quadratic terms. Overall, the nonsequential design with forward selec-

tion achieves the highest mean power (0.885); however this combination also has the

highest overall mean FDR (0.411). The sequential three-level design with forward

selection has the second highest mean power (0.852) as well as the second highest

mean FDR (0.402). The sequential two-level design with forward selection achieves

a slightly lower FDR than the three-level design (0.401) and a lower mean power

of 0.811. Turning to the LASSO method, out of the three designs, the nonsequen-

tial design has the highest overall power (0.845) as well as the lowest overall mean
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FDR (0.335). The sequential two-level design has the lowest mean power (0.787) but

highest FDR rate with LASSO (0.382). The two-level sequential design also has the

lowest mean power for quadratic terms, 0.505 with forward selection and 0.358 with

LASSO. The sequential two-level design does better at identifying 2FI having the

highest mean 2FI power with LASSO (0.858) and the second highest mean 2FI power

with forward selection (0.840).

Table 5.: Overall, main effect, 2FI and quadratic mean power and FDR by analysis
method (forward selection and LASSO). Cells are color coded green if they contain
the highest mean power or lowest mean FDR per column while red indicates lowest
mean power or highest mean FDR per column.

Figure 9 plots mean power and mean FDR by the total number of active terms.

The designs perform similarly when the total number of active terms is small. For two

active terms, the sequential two-level design has the highest mean power with LASSO

but achieves a lower mean power for total active terms greater than two, and maintains

the highest mean FDR regardless of the number of active terms. Nonsequential

designs sustain the highest mean power with forward selection and mean FDR falls

below the other designs when there are more than 9 active terms. Both model selection

methods show a slight spike in mean power for the sequential two-level design at 12

active terms due to half the simulation scenarios having 0 active quadratics at that

value.

To see how the designs fare when there are no active quadratic terms, Table 6

provides the summary metrics for simulation scenarios that exclude active quadratic

terms in the underlying model. The nonsequential design with forward selection
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Fig. 9.: Mean Power and FDR by design and total number of active terms (Mean
Power and FDR on y-axis, total active terms on x-axis)

maintains the highest mean power overall (0.932) and the sequential two-level design

now has the highest mean power overall with LASSO (0.901). Notably, the sequential

two-level design exhibits the lowest mean quadratic FDR rate, 0.186 with forward

selection and 0.05 with LASSO, while the other two designs have a mean quadratic

FDR over 0.5 and as high as 0.775 as seen with the nonsequential design and forward

selection. This illustrates the benefit of not using a three-level design when quadratic

terms are not expected. Using a three-level design leads to identifying quadratic

terms that are not actually important.
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Table 6.: No active quadratics: overall, main effect, 2FI and quadratic mean power
and FDR by analysis method (forward selection and LASSO). Power for quadratic
terms is 0 as there are no active quadratics. Cells are color coded green if they contain
the highest mean power or lowest mean FDR per column while red indicates lowest
mean power or highest mean FDR per column.

To formalize the simulation results, we fit two ANOVA models each with either

power or FDR as the dependent variables and simulation scenario attributes as pre-

dictors. The ANOVA results are included in Table 16 in the Appendix. To highlight

the ANOVA model results, we also provide plots visualizing the largest F -values for

each model in Figure 21(a) for the power model, and Figure 21(b) for the FDR model

in the Appendix. We use these charts to guide the selection of variables to include in

the plots visualizing our simulation results.

Total runs has the largest F -value in the ANOVA power model and the charts

in Figure 10 show power noticeably increases with the number of total runs for the

smaller run sizes and levels out from 48 to 64 runs. The nonsequential design tends

to have a higher mean overall power and main effect power than the sequential de-

signs with a larger difference between designs seen at smaller run sizes using forward

selection (see Figure 10(a) Avg. Power, Avg. Power ME). The sequential three-level

design performs similar to the nonsequential design in terms of overall, main effect,

2FI and quadratic power with LASSO. The sequential two-level design edges above

the nonsequential design with LASSO for mean 2FI power but mean quadratic power

for the sequential two-level design is distinctively lower than the other two designs

considering both analysis methods (see Figure 10(a) Avg. Power Quad). Looking
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at power by total runs and number of factors in Figure 10(b), a decrease in mean

power is seen as the number of factors increase for all design types at 20 and 32

total runs. At 20 runs, the sequential three-level design exhibits a steeper drop in

main effect power and quadratic mean power, while the nonsequential design shows

a sharper decrease with mean 2FI power. Figure 10(c), total runs and the number of

active 2FI, reveals mean power decreases as the number of active 2FI increase for the

smaller run sizes of 20 and 32 runs. Reviewing power by total runs and the number

of active quadratics, 10(d), mean power for all categories decreases for all designs as

the number of active quadratics increase for the smaller run sizes of 20 and 32 runs.

Mean power deteriorates in particular as the number of active quadratic terms

increase for the sequential two-level design (see Figure 10(d) Avg. Power and Avg.

Power Quad). Given the presence of active quadratics, the initial two-level screening

design with three center runs fails to identify the presence of quadratic effects overall

42% of the time. Table 7 breaks down the percent of times the two-level screening

design fails to identify any quadratic effects by method and screening design size. The

smallest two-level screening design of 12 runs fails to capture the presence of quadratic

terms 42% of the time using forward selection and 90% with LASSO. For the largest

screening design run size of 48 runs, the two-level screening design identifies quadratic

terms using forward selection 21% and LASSO 29% of the time.

Table 7.: Sequential two-level design with 3 center runs: percent of times active
quadratic terms not identified in initial screening design by analysis method and
initial run size

Screening Design Run Size

Method 12 20 32 48

Forward 42% 27% 21% 21%

LASSO 90% 67% 40% 29%

Plots of mean FDR overall, for main effects, 2FI and quadratics by design and
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Fig. 10.: Mean power by design, total runs, and attribute (mean power on y-axis,
total runs and attribute on x-axis)

analysis method are shown in Figure 11. Figure 11(a) shows with LASSO, the nonse-

quential design has lower mean overall, main effect, and 2FI FDR than the sequential

designs, and mean FDR increases with total run size for all designs. With forward

selection, FDR remains level as the number of runs increase, and the nonsequential

design has higher mean FDR than the sequential designs for all run sizes except at

20 runs. Looking at the number of factors, mean FDR increases with the number

of factors using forward selection for all designs, while with LASSO, a smaller slope

is observed 11(b). A decrease in mean FDR is seen for all designs as the number of

active 2FI and the number of active quadratics increase (11(c,d,e)). The sequential

two-level design maintains significantly lower mean quadratic FDR compared to the

52



Fig. 11.: Mean FDR by design, method, and attribute (Mean FDR on y-axis, method
and attribute on x-axis)

other two designs for less than 3 active quadratic terms however all designs perform

similarly with 3 or 5 active quadratic terms (see 11(d) Avg. FDR Quad).

To investigate why nonsequential designs outperform sequential designs in terms

of mean power, we compared the mean absolute value of term correlation for active,

inactive and all terms in Table 8. For sequential designs, this metric is taken after

the design is augmented. The nonsequential design has a lower mean absolute value

of term correlation than both sequential designs, helping the identification of active

effects. The sequential three-level design has lower mean absolute value of term

correlation than the sequential two-level design. The correlation maps of the initial
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designs, Figure 7, also reveal lower correlation for the nonsequential design compared

to both initial screening designs.

(a) (b) (c)

Table 8.: Design terms’ total run mean absolute value of correlation

We performed sensitivity analysis on the choice of parameter τ = {1, 5, 20, 50, 100},

the prior variance given to potential terms during Bayesian D-optimal augmentation.

An ANOVA on the results of 10 iterations varying the levels of τ reveals no significant

difference in power and FDR between these choices of τ .

As part of our research, we examined various other approaches in comparing

sequential to nonsequential designs leading up to our final simulation. We investi-

gated the performance of two-level sequential and nonsequential designs without the

presence of any active quadratic terms. Our Bayesian D-optimal screening design

and nonsequential designs had main effects specified as primary and 2FI as poten-

tial. Our results showed the nonsequential design had higher power overall while a

benefit to the sequential design was seen looking at 2FI power. This provides some

evidence that sequential design performance may help when little is known about the

underlying true model by allowing the experimenter to pivot and add runs to help

the identification of terms initially not considered primary.

For the sequential designs, we additionally considered dropping terms from fur-

ther design augmentation and analysis stages that were not identified by model selec-

tion on the screening design results. In this case, terms selected by screening design

model selection were considered primary, any non primary terms with a heredity
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relationship to the primary terms were labeled potential, and all remaining terms

were dropped. The results, however, revealed a decrease in mean power for sequen-

tial designs. We added a third option of analyzing and augmenting the sequential

design twice to see if a more incremental approach was beneficial, but there was no

significant difference between mean power and FDR if we augmented the screening

design once or twice keeping the number of total runs constant. Furthermore, we

originally included A- and I-optimal designs but D-optimal designs performed more

favorably in terms of power and error rates for both nonsequential and sequential

designs. Lastly, we considered augmenting sequential designs using Bayes screening

and model discrimination follow-up designs via the R BsMD package (Barrios and

Meyer, 2020), but this augmentation method resulted in lower mean power compared

to Bayesian D-optimal augmentation.

3.5.1 Desirability Analysis

Our results from the summary table (Table 5) reveal attributes that have a

positive impact to power may also unfavorably increase FDR. For instance, a nonse-

quential design with forward selection generated the highest mean power but also the

highest mean FDR for overall, main effect, and quadratic terms. To find a balance

between high power and low FDR levels, we utilize multiple response optimization

with desirability functions to provide an overall design recommendation considering a

sequential two-level, sequential three-level or nonsequential design. Upper and lower

thresholds representing the acceptable range are specified for each response. Each

objective is translated into an individual desirability function on a scale ranging from

0 to 1, with 1 indicating the objective is at the optimal target level (Myers et al.,

2016). Let fr(X) for r = {1, ..., R}, represent a function to optimize. The desirability
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function to maximize fr(X) is

dmaxr =


0, fr(X) < Lr(
fr(X)−Lr
Tr−Lr

)w
, Lr ≤ fr(X) ≤ Tr

1, fr(X) > Tr

where Lr and Tr are the lower and top user specified thresholds, and weight w = 1 is

linear desirability function. The desirability function to minimize fr(X) is

dminr =


1, fr(X) < Lr(
Tr−fr(X)
Tr−Lr

)w
, Lr ≤ fr(X) ≤ Tr

0, fr(X) > Tr

where Lr is the optimal target level and Tr is a larger but still acceptable level. The

functions are combined using the geometric mean

D =

(
R∏
r=1

dr

)1/R

(3.16)

to produce an overall desirability score and the preferred design has the highest mean

desirability score.

Our goal is to find the design that maximizes predicted power and minimizes

predicted FDR. The main effect with 2FI regression model is used for each function

fr(X), r = 1, 2. Targets are established with the desire to have at least above average

power and below average FDR. For power, the desirability function maximizes f1(X)

where target L1 is the mean predicted power (0.835) and T1 = 1. For FDR, the

desirability function minimizes f2(X) where L2 = 0 and T2 is the mean predicted

FDR (0.384). We generate the overall desirability score in R (R Core Team, 2018)

using the package desirability and the dMax,dMin,dOverall functions (Kuhn,

2016).
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Our desirability analysis reveals the design with the highest mean desirability

score (0.080) is the nonsequential design followed by the sequential three-level design

(0.067). Table 9 shows the mean desirability score for each design as well as the

mean predicted power, mean predicted FDR, mean desirability score for power, and

mean desirability score for FDR. The nonsequential design has the highest mean

predicted power out of the designs (0.865) as well as lowest mean predicted FDR

(0.373). We repeat the desirability analysis focusing on main effect power and FDR

(see Table 17 in the Appendix), 2FI power and FDR (Table 18 in the Appendix),

quadratic term power and FDR (Table 19 in the Appendix) as well as when there

are no active quadratic terms in the underlying model (Table 20 in the Appendix).

The nonsequential design maintains the highest desirability score for the main effect,

2FI, and quadratic term power and FDR analysis. The sequential two-level design

outperforms the sequential three-level design when focusing on 2FI power and FDR.

When there are no active quadratic terms, sequential two-level designs outperform

both nonsequential and sequential three-level designs in terms of desirability.

Table 9.: Desirability analysis results (mean values)

Design
Predicted

Power
Predicted

FDR
Desirability

Power
Desirability

FDR
Overall

Desirability

Nonsequential 0.865 0.373 0.413 0.160 0.080
Sequential 3 Level 0.842 0.386 0.366 0.122 0.067
Sequential 2 Level 0.799 0.413 0.273 0.105 0.056

3.6 Summary and Conclusions

The performance of sequential variance optimal designs compared to a single

variance optimal design without screening is an open problem of optimal design.

This chapter evaluates sequential design techniques and nonsequential designs with
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regards to power and FDR rates. Our simulation study varies the number of total

experimental runs, number of input factors, number of active terms, and considers

model selection methods of LASSO and forward selection. The designs are assessed

based on mean power and FDR rates. We limit our scope to focus on Bayesian D-

optimal designs and Bayesian D-optimal design augmentation. Our study aims to

help experimenters decide whether to run a small screening design first or use all

runs in a nonsequential approach to identify active terms when faced with a limited

number of experimental trials.

Our simulation results indicate a difference in power and FDR between sequential

and nonsequential designs as well as between forward selection and LASSO analysis

methods. Our simulation results support the use of nonsequential designs whether

maximizing power is the main objective or balancing high power with low FDR rates.

Prior to this study, we conjectured sequential designs would achieve higher mean

power compared to nonsequential designs given the ability to specify follow up runs

based on initial screening design findings. A limitation of our study is the design

space is constrained to a fixed design region. Our study did not consider the ability

to move outside the original design region that may be a key benefit to sequential

experiments and we recommend this for future research. We also focus primarily

on Bayesian D-optimal designs as well as Bayesian D-optimal augmentation. Other

design types as well as other design augmentation methods may yield different results.

It may be worth highlighting the different approaches taken in our study from

the motivating example in Silvestrini (2015). Silvestrini (2015) assumes the sequential

design after augmentation is able to estimate the true model. Our simulation study

found an initial two-level screening design with three center runs failed to identify

the presence of active quadratic terms 42% of the time. Without any evidence of

curvature, the final augmented sequential design remained a two-level design and was
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not able to estimate the true quadratic model. Additionally, we compare the use of

a two as well as a three-level initial screening design in sequential experimentation to

a three-level nonsequential design while the previous study compares initial designs

with the same assumed model; for instance, the use of a two-level screening design to

a two-level nonsequential design.
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CHAPTER 4

MODEL SELECTION WITH PURE ERROR

4.1 Background and Literature Review

The goal of screening designs is to correctly identify a subset of factors that are

important so subsequent analysis can focus on key effects and their relationships. If

the screening design fails to identify an important factor, that factor is not included

in the follow-up analysis and the results will not fully capture the underlying system.

Conversely, if an inactive effect is incorrectly identified as important the results may

mislead the experimenter as well as cost additional resources to research the factor

further. Thus screening designs are evaluated in terms of how well the designs ac-

curately identify truly active effects. Ideal designs have high power, the proportion

of active terms that are correctly identified, a low false discovery rate (FDR), the

proportion of terms incorrectly identified as active, and Type I error, the proportion

of inactive terms declared active.

It is often the case in a screening experiment that there are more effects to

be estimated than the number of screening runs. The aliasing of factorial effects

from small run sizes and limited degrees of freedom to estimate all parameters poses

challenges in identifying active effects during the model selection process. As a way

to improve power, studies (see Westfall et al. (1998), Gilmour and Trinca (2012),

Leonard and Edwards (2017), Mee et al. (2017)) have based statistical inference

on a pure error estimate versus the residual mean square during model selection

procedures. Replicate points provide a model independent estimate of the variance

known as pure error. Studies on model selection for screening designs (see Westfall
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et al. (1998), Leonard and Edwards (2017), Mee et al. (2017)) find higher power

rates when statistical inference is based on a pure error variance estimate versus the

residual mean square; however FDR and Type I error rates can be problematically

inflated (Westfall et al. (1998), Leonard and Edwards (2017), Mee et al. (2017)).

Westfall et al. (1998) propose multiple test procedures to control for the inflation

of Type I error in forward selection seen in the analysis of supersaturated designs

(SSDs). The authors stress the difficulty of identifying important factors in SSDs

as many Type I and Type II errors are expected using stepwise forward selection.

Forward selection is an iterative model selection approach adding a single term to

the model during each step having the largest significant partial F -statistic out of

the candidate terms; partial F -statistic p-values less than or equal to some specified

significance level (α) are considered significant. The process terminates when none of

the remaining candidate terms have a significant partial F -statistic or all terms have

been added to the model. Each step calculates a individual partial F -test for each

candidate term. However with multiple tests, the experiment-wise error rate (EER)

is not ensured to be at most α. The Bonferroni approach decreases the critical level

α at the individual test level to be α divided by the number of tests so that the

EER≤ α (Rencher and Schaalje, 2008). Alternatively, partial F -test p-values are

multiplied by the number of eligible terms in each step for the Bonferroni correction.

To help control for the compounding of errors occurring with sequential tests in

forward selection, Westfall et al. (1998) propose using adjusted p-values either with

the Bonferroni method or via resampling using control variates.

Gilmour and Trinca (2012) introduce new design criteria that supports statis-

tical inference with pure error. Textbooks, such as Myers (1990) on page 19, often

recommend using the residual mean square error from the fitted model for observa-

tional data. However Gilmour and Trinca (2012) caution that most textbooks on
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the design and analysis of experiments, for instance Antony (2003) on page 101, rec-

ommend using the pure error mean square for inference, stating pure error provides

the most reliable estimate of variance available. The residual mean square error is

model dependent and contains an unknown level of bias making inferences difficult

to interpret (see Gilmour and Trinca (2012) and a motivating example is provided

in Section 4.2). Gilmour and Trinca (2012) recommend using a pure error estimate

from replicate design points and designing an experiment with sufficient degrees of

freedom for pure error.

Leonard and Edwards (2017) extend the work of Gilmour and Trinca (2012)

to screening designs. The authors develop partially replicated designs with a modi-

fied Bayesian D-optimality criterion. The modified Bayesian D-optimality criterion

is a balance between traditional Bayesian D-optimal designs that do not often con-

tain replicated points and DP -optimal designs that often over-replicate. While their

findings display higher FDR for partially replicated designs, the results also reveal

higher power rates using inference with mean square pure error. The authors note

that higher power is often preferred over reductions in the false positive rate during

screening to ensure an active effect is not excluded in further analysis.

Mee et al. (2017) compare the model selection performance of forward selec-

tion and the Dantzig selector (Candes and Tao, 2007) in two-level fractional factorial

screening designs. Results show two-level fractional factorial screening designs achieve

superior power when using a model independent estimate with forward selection but

also attain higher FDR. The authors cite the need for a method to reliably integrate

pure error in model selection procedures without high FDR. They also recommend

investigating the performance of penalized regression with pure error for future re-

search.

Currently there is not a suitable method available to incorporate pure error into
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model selection procedures when analyzing screening designs that achieves high power

without the trade-off of high FDR. In this chapter, we detail the behavior of the par-

tial F -test statistic’s noncentrality parameter(s) to better understand the impact of

including pure error in model selection. We provide a small simulation as a motivat-

ing example in Section 4.2 to compare the performance of statistical inference with

pure error verses residual mean square during model misspecification. We then detail

various model selection strategies with and without pure error, including the use of

penalized regression, followed by a large simulation study comparing the performance

of 11 different model selection methods across various scenarios. Our goal is to pro-

pose a strategy for incorporating pure error in model selection that attains high power

and also inhibits FDR.

4.1.1 The F -statistic

We first introduce noncentral chi-square distributions followed by a discussion of

noncentral F -distributions. For a random vector b ∼ N(0, I), the sum of its squares∑n
i=1 b

2
i = b′b is distributed as χ2(n), a central chi square random variable with n

degrees of freedom. Consider a random vector d with mean µ instead of mean 0,

d ∼ N(µ, I); the sum of its squares
∑n

i=1 d
2
i = d′d is distributed as χ2(n, λ), a

noncentral chi square random variable with n degrees of freedom and a noncentrality

parameter λ = 1
2
µ′µ. A comparison of central and noncentral chi-square densities

is shown in Figure 12, notice how the noncentral distribution is right-skewed having

more observations in the right tail.

An F -test statistic is a ratio of two independent mean squares and has an F -

distribution. A central F -distribution is the ratio of two chi-squared variates s =

u/p
v/q
∼ F (p, q) where u ∼ χ2(p) with p degrees of freedom and v ∼ χ2(q) with q degrees

of freedom. Alternatively, if u is distributed as a noncentral chi-square u ∼ χ2(p, λ)
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Fig. 12.: Central and noncentral chi-square densities (Rencher and Schaalje, 2008).

and v remains v ∼ χ2(q), then

w =
u/p

v/q
∼ F (p, q, λ) (4.1)

is now a noncentral F -distribution with noncentrality parameter λ. During a statisti-

cal test of a null hypothesis, an F -distribution typically will be centrally distributed

if the null hypothesis is true and noncentrally distributed if the hypothesis is false.

Rencher and Schaalje (2008) defines the power of a test as the probability of rejecting

the null hypothesis for a given value of λ. As shown by the shaded region in Figure

13, the power of the F -test is defined as P (p, q, α, λ) =Prob(w ≥ Fα), where Fα is

the upper α percentage point of the central F -distribution and w is the noncentral

random variable defined in Equation 4.1.

To illustrate, consider the model M with h regressors in the form y = Xβ + ε,

where X is the n×p model matrix with n number of runs and p parameters, y is the

n× 1 vector of responses, β as the p× 1 vector of coefficients, and ε ∼ N(0, σ2). As

shown in Rencher and Schaalje (2008), the total sum of squares SST =
∑n

i=1(yi− ȳ)2

can be partitioned into the model sum of squares (SSM) plus the sum of squares error
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Fig. 13.: Central F (p, q), and noncentral F (p, q, λ). The shaded area is the power of
the F -test (Rencher and Schaalje, 2008).

(SSE),

SST = SSM + SSE. (4.2)

This is

y′
(
I − 1

n
J

)
y = SSM + SSE

= y′(H − 1

n
J)y + y′ (I −H)y

(4.3)

where the hat matrix H = X(X ′X)−1X ′, I is an identity matrix of size n, and J is

a n× n matrix of ones.

Frommlet et al. (2010) detail the behavior of the partial F -test statistic in

regards to testing model fit during model selection when the correct model is un-

known. Suppose model M , y = Xβ+ ε, is the true model and can be partitioned as

y = X1β1 +X2β2 + ε. We instead fit model M1, y = X1β1 + ε, leaving out X2β2.

We want to test H0 : βj = 0, βj ∈ β1. The hat matrix for the true model M is

H = X(X ′X)−1X ′, and the hat matrix for the model M1 is H1 = X1(X ′1X1)−1X ′1.
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To test the significance of βj we use H1,−j = X1,−j(X
′
1,−jX1,−j)

−1X ′1,−j where X1,−j

is X1 without column j. The Type III sums of squares of βj for the fitted model M1

(SSβj) is

SSβj = y′(H1 −H1,−j)y (4.4)

and

SSβj
σ2
∼ χ2(1,

1

2σ2
β′X ′(H1 −H1,−j)Xβ). (4.5)

Note the noncentrality parameter includes all the terms in the true model Xβ. The

sums of square error of model M1 is

SSE1 = y′ (I −H1)y (4.6)

and

SSE1

σ2
∼ χ2(n− p1,

1

2σ2
β′X ′(I −H1)Xβ) (4.7)

where p1 is the number of terms in X1. This simplifies to

SSE1

σ2
∼ χ2(n− p1,

1

2σ2
β′2X

′
2(I −H1)X2β2). (4.8)

We have

E(MSE) = σ2 +
β′2X

′
2(I −H1)X2β2

n− p1

(4.9)

and if the fitted model is adequate, β2 = 0, then E(MSE) = σ2. The partial F -

statistic, the contribution of βj given the terms already added to model M1, is

SSβj
SSE1/n− p1

∼ F (dfSSβj , dfSSE,
1

2σ2
β′X ′(H1−H1,−j)Xβ,

1

2σ2
β′X ′(I−H1)Xβ)),

(4.10)

a doubly noncentral F -distribution with SSβj degrees of freedom dfSSβj = 1 and

SSE1 degrees of freedom dfSSE = n− p1.
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4.1.2 Pure Error

To compute mean square pure error, MSPE, we first create a replicate matrix

Z, a n× c matrix where c is the number of unique rows, to map each run to a unique

point. For each column, a run is assigned 1 if it belongs to that unique point, else 0.

For example, suppose we have 7 total runs for two factors A and B containing two

replicated points (1,-1) and (-1,-1) as shown in Table 10. Point (1,-1) appears in run

Table 10.: Experimental design for 2 factors and 7 runs with points (1,-1) and (-1,-1)
replicated

Run
ID A B
1 1 -1
2 1 1
3 -1 -1
4 -1 1
5 1 -1
6 1 -1
7 -1 -1

ID 1, 5 and 6, and point (-1,-1) appears in run ID 3 and 7. The model matrix with

runs reordered to show replicate points together and including the intercept, main

effects and two-factor interactions (2FI) is

X =

l m



1 1 −1 −1 1 1

1 1 −1 −1 1 2

1 1 −1 −1 1 3

1 1 1 1 2 1

1 −1 −1 1 3 1

1 −1 −1 1 3 2

1 −1 1 −1 4 1
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where column l is the unique row ID and m is the row count for each unique point.

Replicate point (1,-1) has l = 1 and is in rows 1, 2 and 3, and replicate point (-1,-1)

has l = 3 and is in rows 5 and 6.

Each unique row corresponds to column l in matrix Z,

Z =

1 2 3 4



1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

where each of the 7 runs are mapped to a unique point indicated by having a 1 in the

column corresponding to the unique row ID.

We now use sums of square pure error (SSPE) instead of SSE in the denominator

of the partial F -statistic,

SSPE = y′(I −HZ)y (4.11)

where HZ = Z(Z ′Z)−1Z ′. With pure error degrees of freedom dfpe = n− c , we have

MSPE =
SSPE

n− c
(4.12)

and

SSPE

σ2
∼ χ2(n− c, 1

2σ2
β′X ′(I −HZ)Xβ). (4.13)

The noncentrality parameter 1
2σ2β

′X ′(I−HZ)Xβ reduces to 0 and the denominator
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of the partial F -statistic is

SSPE

σ2
∼ χ2(n− c). (4.14)

Thus, the partial F -test statistic becomes a noncentral F -distribution with numerator

noncentrality rather than a doubly noncentral F -distribution. Without the denomi-

nator noncentrality, the partial F -statistic denominator tends to be smaller resulting

in a larger partial F -statistic. This leads one more often than not to reject the null

hypothesis and as a result, power increases and FDR may be inflated. We investigate

incorporating early stopping criteria such as a lack of fit (LOF) test and Bonferroni

adjusted p-values in our simulation study to prevent high FDR with pure error.

4.2 Motivating Example

We illustrate how statistical inference with residual mean square is dependent

on model fit, and we compare power and FDR performance to inference with pure

error using a small simulation. Here we ignore model selection and fit a main effects

model as well as a main effects and 2FI model. We use a D-optimal design with

partial replication for 7 factors and 40 total runs; a run size large enough to allow us

to estimate all main effects and 2FI. Designs contain {0, 2, 4, 6, 8, 10} replicate runs

as part of the 40 total runs.

We create the underlying relationship between the inputs and response by ran-

domly selecting terms to be active based on the number of specified active terms. We

assume weak heredity when selecting active 2FI, that is 2FI are present only if at least

one parent main effects is active (Ockuly et al., 2017). We randomly assign model

coefficients from the set {±1,±2,±3} to the active terms. We use the following to
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generate responses,

y = 10 +
h∑
j=1

βjxj +
∑ h∑

i<j=2

βijxixj + ε (4.15)

for h factors and ε ∼ Normal(0, σ2) with σ2 = 1.

Given the t-statistic calculation,

β̂i/(v̂ar(β̂i))
1/2, (4.16)

when a MSPE estimate is available we compute the variance as

v̂ar(β̂i) = MSPE ×
[
(X ′X)−1

]
ii

(4.17)

whereX is the model matrix and the ii subscript indicates the ith diagonal element of

the matrix (Leonard and Edwards, 2017). The p-values are based on a t-distribution

with dfpe degrees of freedom. The t-statistics are calculated using residual mean

square for our design with 0 replicate runs. That is,

v̂ar(β̂i) = MSE ×
[
(X ′X)−1

]
ii

(4.18)

with dfSSE degrees of freedom. Terms with a p-value≤ 0.05 are identified as active.

Our simulation steps are outlined in Algorithm 3.
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Algorithm 3 Motivating Example Simulation Steps

1: Assuming weak effect heredity for 2FI, randomly assign model terms to be active based
on the number of active main effect terms and 2FI.

2: Create the underlying relationship between inputs and responses by assigning model
coefficients from the set {±1,±2,±3} to the active terms. Inactive terms are assigned
a value of zero.

3: Generate a response for each run in the experimental design using 4.15.
4: Fit a model with all main effect terms, as well as a model with all main effect terms

and 2FI. MSPE is used for statistical inference for our designs with replicate runs, else
MSE is used. Terms with a p-value ≤ 0.05 are identified as active.

5: Calculate power and FDR.
6: Repeat all previous steps 1,000 times and take the mean power and mean FDR per

scenario.

Higher mean power and higher mean FDR is observed for the main effects model

using statistical inference based on pure error compared to SSE as seen in Table 11.

Across all replicate run sizes inference with pure error achieves a mean power of 0.973

and mean FDR of 0.190 in contrast to a mean power of 0.668 and mean FDR of 0.001

with SSE. Here MSPE is close to 1, however MSE is notably larger (23.697) when

statistical inference is based on SSE as active 2FI are not included in the fitted model.

Error
Type

Replicate
Runs

Mean MSPE
or MSE

Mean
Power

Mean
FDR

PE 2 1.011 0.940 0.084
4 1.002 0.982 0.176
6 0.991 0.989 0.165
8 1.005 0.981 0.239
10 0.990 0.975 0.285

SSE 0 23.697 0.668 0.001

Table 11.: Motivating example simulation results for fitted main effects model

To compare the performance when the fitted model matches that of the underly-

ing model, Table 12 shows results for the main effects and 2FI model. MSPE is once

again near 1 and now MSE is also closer to 1, as expected. SSE has a mean power
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of 1 and FDR of 0.097. In this case, using inference with pure error has a slightly

lower mean power (0.987) and lower FDR (0.087) across replicate run sizes. As the

degrees of freedom pure error increases to 10, mean power and mean FDR with pure

error increase to values close to that of SSE; our SSE example has dfSSE = 11.

Error

Type

Replicate

Runs

Mean MSPE

or MSE

Mean

Power

Mean

FDR

Mean Power

ME

Mean FDR

ME

Mean Power

2FI

Mean FDR

2FI

PE 2 0.996 0.942 0.069 0.944 0.036 0.939 0.100

4 1.005 0.995 0.086 0.997 0.040 0.994 0.133

6 0.993 0.999 0.091 0.999 0.041 0.998 0.147

8 1.004 0.999 0.096 0.999 0.042 0.998 0.157

10 1.001 0.999 0.096 0.999 0.041 0.999 0.161

SSE 0 1.006 1.000 0.097 1.000 0.041 1.000 0.162

Table 12.: Motivating example simulation results for fitted main effects and 2FI model

Our motivating example simulation results show with model misspecification,

that is the underlying model has active main effects and 2FIs and we fit a main effects

only model, statistical inference with SSE resulted in lower mean power and a much

higher MSE compared to inference with pure error. Statistical inference with pure

error resulted in higher mean power as well as higher mean FDR rates. When there

is no model misspecification, statistical inference with pure error produced similar

mean power rates compared to SSE and lower mean FDR.

4.3 D-optimal Designs

We use D-optimal designs in this chapter. D-optimal designs seek to minimize

the variance of the model parameter estimates (Myers et al., 2016). This criterion

has proven to be particularly useful in screening scenarios where the objective is

to identify the few important factors out of the many factors of interest. As the
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determinant can be used as a measure of overall variance, a D-optimal design locates

a set of design points that minimizes the determinant of the inverse information

matrix (i.e. (X ′X)−1 where X is the model matrix). It is computationally more

tractable, however, to maximize the determinant of the information matrix. Thus, a

D-optimal design is such that

|X ′X| (4.19)

is maximized.

4.4 Model Selection Methods

We compare various model selection methods with and without pure error to an-

alyze methods of incorporating pure error that achieve higher power without inflated

FDR. We test incorporating early stopping criteria of LOF as well as Bonferroni ad-

justed p-values to account for the unbalanced noncentrality in the numerator of the

partial F -statistic when using pure error.

4.4.1 Forward Selection with SSE

Forward selection is a model selection procedure that sequentially adds terms

to a regression model on the basis of partial F -tests until none of the remaining

candidate terms are significant or all variables have been added to the model (Myers,

1990). The process starts with an initial model containing just the intercept term and

the procedure chooses the next variable j to include that has the largest significant

partial F -test out of all the candidate terms. A statistically significant partial F -test

has a p-value less than or equal to some prespecified α threshold. At each stage, let

the model matrix with the candidate term j be X1 and X1,−j is the model selected

by the previous step. The partial F -test using SSE is given by Equation 4.10 and we

refer to the p-value as psse to distinguish from the p-value pure error, ppe, described
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in the following subsection.

We enforce weak heredity during the forward selection process. For the first

stage, candidate terms only include main effects. Candidate terms for the subsequent

stages include remaining main effect terms and all possible 2FI under weak heredity

given the main effect terms already included in the model. For example, suppose

there are 7 factors, the first round of model selection contains candidate terms x1,

x2, x3, x4, x5, x6, x7, all 7 main effect terms. Let x1 be the candidate term with

the minimum psse, having a psse ≤ α, and is added to the model. The next step

has candidate terms x2, x3, x4, x5, x6, x7, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, all

remaining main effect terms and all 2FI including x1. Suppose x3 has the minimum

psse, with a psse ≤ α, of the candidate terms. Term x3 is added to the model and the

following step has all remaining main effect terms and all 2FI containing either x1 or

x3 as candidate terms. The process continues until no candidate term has a psse ≤ α

or all terms have been added to the model.

4.4.2 Forward Selection with Pure Error

This forward selection method enforces weak heredity and uses partial F -tests

based on a pure error estimate. We first create a replicate matrix and calculate

MSPE (see Equation 4.12). The partial F -test pure error is Fpe = SSβj/MSPE

with a ppe equal to Prob(FdfSSβj , dfpe
≥ Fpe). We enforce weak heredity during the

forward selection process. The process starts with an initial model containing just

the intercept term and the procedure chooses the next candidate term j to include

that has the minimum ppe, given ppe ≤ α. The process continues until no candidate

term has a ppe ≤ α or all terms have been added to the model.
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4.4.3 Forward Selection with AICc

This stepwise procedure adds a candidate term to the model if the addition of

the term results in the model with minimum AICc, Akaike information criterion with

a correction for small sample sizes (see Smucker et al. (2020)), out of all candidate

terms in each step. With

AIC = −2log(L̂) + 2p (4.20)

where p is the number of parameters, p < n − 1, and L̂ is the maximum likelihood

(Akaike, 1974). We have AICc = AIC + 2p(p+1)
n−p−1

. If the candidate model with the

minimum AICc has an AICc greater than the existing model, the process terminates.

We enforce weak heredity in the forward selection process. For example, suppose in

the first step x2 along with the intercept is the model with the lowest AICc compared

to the intercept with any of the other main effect terms. Term x2 is added to the

model. The second step compares the AICc of the model with x2 with any of the

remaining main effects and 2FIs containing x2. Suppose the model with x2 and x4

has the lowest AICc out of the candidate terms but has a higher AICc compared to

the model with just x2. There is no improvement to AICc by adding a term in the

second step and the process terminates with the model containing just x2 as the final

model.

4.4.4 Bonferroni Adjustment with Forward Selection

We investigate the performance of forward selection with Bonferroni adjusted

p-values. As discussed in Westfall et al. (1998), Benjamini and Hochberg (1995) and

Mee (2013) the experiment wise error rate (EER), probability of making at least

one Type I error, can be quite high with multiple statistical tests including forward

selection and these studies recommend the use of Bonferroni adjusted p-values to
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control FDR.

Using forward selection enforcing weak heredity, we apply a Bonferroni adjust-

ment to the p-value of the partial F -test, that is we multiply the p-value by the

number of candidate terms in the forward selection step. For instance, suppose there

are 7 factors, the first round of model selection includes candidate terms x1, x2, x3,

x4, x5, x6, x7, all 7 main effect terms. The Bonferroni adjusted p-value is the candi-

date’s partial F -test p-value multiplied by 7. The candidate term with the minimum

Bonferroni adjusted p-value, given the Bonferroni adjusted p-value ≤ α, is added to

the model otherwise the model selection process terminates. Say x1 is added to the

model during the first step. The next step has 12 candidate terms x2, x3, x4, x5, x6,

x7, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, and the p-value of the partial F -test for each

candidate term is multiplied by 12 for the Bonferroni adjustment. If the candidate

term with the minimum Bonferroni adjusted p-value, given the Bonferroni adjusted

p-value ≤ α, then the term is added to the model. The process continues until no

candidate term has a Bonferroni adjusted p-value ≤ α or all terms have been added

to the model. Forward selection methods without the Bonferroni adjustment are

referred to in our study as “Unadjusted”.

4.4.5 Additional Lack of Fit Test

We propose adding a LOF test after each step in a model selection process as an

early stopping criterion to help inhibit FDR. When a pure error estimate is available,

the additional LOF method incorporates a LOF test after each term is entered into

the model during model selection. As described in Khuri and Cornell (1996), a model

lacking in fit indicates the fitted model lacks a sufficient number of terms, either

missing factors or higher order terms. The residual variation in sums of square error

excluding the estimate of pure error is the variation due to LOF. Therefore, sum of
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squares LOF SSLOF is

SSLOF = SSE − SSPE (4.21)

with SSE from Equation 4.6 and SSPE from Equation 4.11. Similarly, the degrees of

freedom for LOF is found by subtracting the degrees of freedom pure error from the

degrees of freedom SSE, dfLOF = (n− p1)− (n− c) = c− p1 where n is the number of

runs, p1 is the number of terms in fitted model and c is the number of unique runs.

The following F -ratio tests the null hypothesis that the fitted model is adequate

FLOF =
SSLOF/dfLOF
SSPE/dfpe

. (4.22)

with a p-value LOF, pLOF , equal to Prob(FdfLOF , dfpe ≥ FLOF ). Depending on the

level of significance α, if the pLOF ≤ α, then we reject the null hypothesis; there is

evidence of LOF in the fitted model and we continue the model selection process.

When a LOF test determines that the model is adequate having a pLOF > α, there

is no more evidence of LOF and we do not add any additional terms.

We add a LOF test if a pure error estimate is available. The following exam-

ple details the process for forward selection with weak heredity. The p-value type

depends on the specified model selection method, our Unadjusted PE LOF method

uses ppe, our Unadjusted SSE LOF method uses psse, and the Bonferroni PE LOF uses

Bonferroni adjusted ppe. Given 7 factors, the first round of model selection includes

candidate terms x1, x2, x3, x4, x5, x6, x7, all 7 main effect terms. The candidate

term with the minimum p-value, given the p-value ≤ α, is added to the model, say

this is x1. A LOF test is done on the model including the intercept term and x1.

If pLOF > α the procedure stops. Suppose in the first step pLOF ≤ α, we continue

to the next step with candidate terms x2, x3, x4, x5, x6, x7, x1x2, x1x3, x1x4, x1x5,

x1x6, x1x7, all remaining main effect terms and all 2FI including x1. Let x3 have the
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minimum p-value out of the candidate terms with a value ≤ α; x3 is added to the

model. A LOF test is done on the model including the intercept term, x1 and x3.

Suppose pLOF > α, then there is no more evidence of LOF and we stop adding terms

to the model. The final model contains x1 and x3.

Our AICc LOF method incorporates the use of pure error through an additional

LOF test after each step in stepwise forward selection with the AICc criteria. During

each forward selection step, a candidate term is selected to be included in the model if

the addition of the term results in the model with minimum AICc. If the addition of

any candidate term to the model does not lower AICc the process terminates. After

each forward selection step, a LOF test is added to determine if the selected model

is adequate. If the LOF p-value is greater than the α significance level, then there is

no longer evidence of LOF and the model selection process terminates if it has not

already terminated by the model selection procedure.

4.4.6 LASSO

The least absolute shrinkage and selection operator (LASSO) is a model selection

method introduced by Tibshirani (1996). It is a regularization technique often used

to analyze small screening designs such as Definitive Screening Designs and supersat-

urated designs (Smucker et al., 2020). LASSO shrinks coefficient estimates setting

some to zero by minimizing

(y −Xβ)
′
(y −Xβ) +

h∑
j=0

(λ|βj|) (4.23)

where λ is a tuning parameter (Zhang et al., 2019). The tuning parameter λ is often

selected using cross-validation, though Smucker et al. (2020) recommend using AICc

for small structured designs. For our LASSO AICc model selection method, we select
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the value for λ that minimizes AICc = AIC + 2p(p+1)
n−p−1

where

AIC = n log
(Y −Xβ̂λL)

′
(Y −XβλL)

n
+ 2p (4.24)

and p is the number of parameters, p < n− 1, and βλL are the LASSO estimates for

value λ.

We propose a new model selection method, LASSO LOF, that incorporates in-

ference with pure error with the LASSO technique. This method computes lack of fit

tests moving along the LASSO solution path. We first compute the LASSO regular-

ization path for the regularization parameter λ covering the entire range of possible

solutions. Starting with the largest λ value corresponding to the null model, a LOF

test in Equation 4.22 is done to assess if the selected model is adequate. IF pLOF ≤ α

there is evidence of lack of fit. The process continues for the next largest λ and con-

tinues assessing candidate models until the pLOF is greater than the α significance

level. There is no longer evidence of LOF and the model selection process terminates

selecting the model corresponding to that λ value.

4.5 Simulation Study

This section describes the simulation study analyzing model selection with pure

error. We first detail the analysis approach utilized followed by an outline of the

simulation protocol.

4.5.1 Analysis Approach

We consider the following:

1. Number of factors: 7, 11

2. Total runs: 16, 24, 32, 40

3. Run type: Added or Total Runs
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4. Number of Replicate Points: 0, 2, 4, 6

5. Active Main Effects: 2, 3, 4, 5

6. Active Two Factor Interactions: 0, 1, 3, 5, 7

7. Alpha Significance Level: 0.01, 0.05, 0.10, 0.25, 0.50

8. Model Selection Methods with Pure Error:

(a) Unadjusted PE: Forward selection with ppe

(b) Unadjusted PE LOF: Forward selection with ppe and an additional LOF test

(c) Bonferroni PE: Forward selection using Bonferroni adjusted ppe

(d) Bonferroni PE LOF: Forward selection using Bonferroni adjusted ppe and an
additional LOF test

(e) AICc LOF: Forward selection using AICc with an additional LOF test

(f) Unadjusted SSE LOF: Forward selection using unadjusted psse and an additional
LOF test

(g) LASSO LOF: LASSO model selection using LOF as model selection criteria.

9. Model Selection Methods with SSE:

(a) Unadjusted SSE: Forward selection using unadjusted psse

(b) AICc: Forward selection with AICc

(c) Bonferroni SSE: Forward selection using Bonferroni adjusted psse

(d) LASSO AICc: LASSO model selection using AICc criteria

All designs included in our simulation study are Bayesian D-optimal designs. We

create all our initial designs in JMP (JMP R© Pro 14, SAS Institute Inc., Cary, NC)

employing the Bayesian framework for either 7 or 11 factors. The framework leverages

prior information to allow for precise estimation of terms classified as primary, and the

estimation of some of the terms labeled potential when allowable (SAS Institute Inc.,

2019). We specify main effect terms as primary, and 2FI as potential. For the “added

runs” run type, replicate points are selected randomly and are added in addition to

the total run size. For instance given a total run size of 16 and two replicate points, a

design with “added runs” is a 16 run D-optimal design with two additional replicate
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runs resulting in 18 runs. For the “Total Runs” run type, D-optimal designs with

partial replication are created in JMP for the total run size. Given the 16 total

run example, this design type will have 16 runs regardless of the number of replicate

points added. Model selection methods without pure error use designs with 0 replicate

points. Model selection methods with pure error use designs with 2, 4, or 6 replicate

points. The same significance level α specified by the simulation scenario is used in

model selection criteria as well as in any additional LOF tests.

4.5.2 Simulation Protocol

Our simulation study varies the following to compare power and FDR perfor-

mance across various model selection methods with pure error and SSE: i) number

of factors, ii) number active main effects and 2FI, iii) total run size, iv) design run

type, v) number of replicate points, vi) α significance level, and vii) 11 different model

selection methods. All designs have input factors constrained between -1 and 1. We

investigate model selection with pure error and SSE across forward selection and pe-

nalized regression methods (LASSO). For forward selection, we evaluate the usage

of ppe, psse, and AICc in the selection criteria. Additionally, we consider unadjusted

p-values as well as Bonferroni adjusted p-values. For LASSO, we compare the AICc

criterion to our new approach incorporating pure error by using LOF tests to select

the model. Lastly, we try integrating an additional LOF test to selection methods in

an effort to curb FDR. Table 13 summarizes the simulation variables and their levels.

There are a total of 42,000 distinct simulation scenarios.

Each iteration begins by generating response values from input values specified

by the design matrix. Model terms are randomly selected to be active depending on

the specified number of active terms. Weak effect heredity is assumed when selecting

2FI, that is 2FI are present only if at least one parent main effects are active (Ockuly
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Table 13.: Model selection summary of simulation variables

Simulation Variable Levels

Number of Factors 7, 11
Active Main Effects 2, 3, 4, 5

Active Two-Factor Interactions* 0, 1, 3, 5, 7

Total Run Size** 16, 24, 32, 40
Design Run Type Added runs or Total runs

Number of Replicate Points 0, 2, 4, 6
α significance levels 0.01, 0.05, 0.10, 0.25, 0.50

Model Selection Method incorporating Pure Error AICc LOF, Bonferroni PE, Bonferroni PE LOF, LASSO LOF,
Unadjusted PE, Unadjusted PE LOF, Unadjusted SSE LOF

Model Selection Method without Pure Error AICc, Bonferroni SSE, LASSO AICc, Unadjusted SSE
* Weak effect heredity enforced
** Design run type of added runs has replicate points added to a D-optimal design of Total Run Size

et al., 2017). The true model coefficients for the active terms are randomly assigned

from the set {±1,±2,±3}. The intercept, β0, is fixed at 10. We use the following to

generate responses,

y = 10 +
h∑
j=1

βjxj +
∑ h∑

i<j=2

βijxixj + ε (4.25)

with ε ∼ Normal(0, σ2), σ2 = 1, and h is number of factors. We apply a model

selection method and all terms in the selected model are identified as active.

For each unique combination of attributes, 1,000 iterations of the simulation

are run, and the overall mean power and FDR are compared to evaluate design

performance. The entire simulation process is outlined in Algorithm 4.
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Algorithm 4 Model selection with pure error simulation steps

1: Assuming weak effect heredity for 2FI, randomly assign model terms to be active based
on the number of active main effect terms and 2FI.

2: Create the underlying relationship between inputs and responses by assigning model
coefficients from the set {±1,±2,±3} to the active terms. Inactive terms are assigned a
value of zero. Note some scenarios do not have any active 2FI as part of our simulation
test cases.

3: Generate a response for each run in the experimental design using Equation 4.25 and
σ2 = 1.

4: Apply model selection method using specified α level, experimental design data as
regressors, and the generated response as the predictor. All terms in the selected model
are identified as active.

5: Calculate power and FDR.
6: Repeat all previous steps 1,000 times and take the mean power and mean FDR per

scenario.

4.6 Simulation Results

Figure 14 plots each model selection method’s mean power and FDR by number

of factors, error type and α significance level. As α levels increase, we see a rise in

power as well as FDR for all methods except for AICc and LASSO AICc. Note that

AICc and LASSO AICc do not use an α significance level during model selection

and thus show a flat line. AICc and LASSO AICc are the two methods using AICc

without an additional LOF test and have high mean power rates but also some of

the highest FDR rates. Unadjusted PE achieves a similar mean power to the LASSO

AICc method when α ≥ 0.05 and lower mean FDR rates when α < 0.25. Unadjusted

PE and Unadjusted SSE have the highest mean FDR rates at α = 0.5. On the other

hand, Bonferroni SSE has the lowest mean FDR but also the lowest mean power

across all α levels. The gap between Unadjusted PE and Unadjusted PE LOF mean

power narrows while the difference in mean FDR widens as α levels increase, providing

support for the use of a LOF test when p-values are unadjusted.

We fit two ANOVA models including simulation scenario attributes as indepen-

dent variables and each with either power or FDR as the dependent variable. The
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Fig. 14.: Method mean power and FDR by number of factors, error type and α level.
Note AICc and LASSO AICc do not use an α level during model selection.
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ANOVA models indicate clear differences by design, and the results (Tables 21 and

22) are included in the Appendix. To highlight the ANOVA model results, we also

provide plots of the largest F -values in Figure 22 for the power model and Figure 23

for the FDR model in the Appendix. We use these charts to guide the selection of

variables to include in the plots visualizing our simulation results.

Fig. 15.: Methods with pure error mean power by total or added runs, α level and
number of replicate points.

Figure 15 plots mean power by attributes identified in Figure 23(a) in the Ap-

pendix, specifically run type, α level and number of replicate points. The “Added

Runs” run type considers replicate runs added in addition to a D-optimal design.
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Here power increases with the number of replicate runs for all methods except LASSO

LOF, which shows a slight decrease in mean power from 4 to 6 replicate runs. How-

ever, for the “Total Runs” run type, when the experimenter has a fixed set of total

runs to allocate towards an experiment, all methods increase in mean power with the

number of replicates just at α = 0.01. Unadjusted PE has the highest mean power

of model selection methods with pure error, and with the “Total Runs” run type,

starts to decrease in mean power from 4 to 6 runs at α = 0.05. As α levels increase,

model selection methods start to decrease in power from 4 to 6 replicates and by

α = 0.5 most methods show a decrease in power and the number of replicate runs

increase from 2. Bonferroni PE and Bonferroni PE LOF show a leveling off instead of

a clear decrease from 4 to 6 runs. This illustrates the trade-off between using replicate

points to estimate variance or allocating the degrees of freedom to estimate effects

when faced with a fixed run size.

Figure 16 plots mean FDR by attributes identified in the top 15 F -values in the

ANOVA FDR model, Figure 22(b) in the Appendix, specifically number of factors,

method and α level. Moving from 7 to 11 factors increases mean FDR for all model

selection methods. Unadjusted SSE has one of the lowest mean FDR at α = 0.01

but at α = 0.5 has the highest mean FDR out of the methods. Adding a LOF fit to

Unadjusted SSE (Unadjusted SSE LOF) dampens mean FDR, keeping it below 0.37

across α levels. Even more effective at minimizing mean FDR is adding a Bonferroni

adjustment, Bonferroni SSE, manages to keep mean FDR below 0.17 throughout all

α levels. A similar pattern is seen comparing the performance of Unadjusted PE,

Unadjusted PE LOF and Bonferroni PE. Unadjusted PE LOF manages to taper

mean FDR compared to Unadjusted PE, and Bonferroni PE has an even lower mean

FDR across α levels. Diminishing returns are seen when adding an additional LOF

test to Bonferroni PE that already has low FDR values, resulting in only a slight
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Fig. 16.: Method mean FDR by method (pure error vs SSE), the number of factors
and α level. Alpha level is on x-axis and mean FDR on y-axis. Note AICc and LASSO
AICc do not use an α level during model selection.
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decrease to mean FDR. For instance at α = 0.5, 11 factors has a mean FDR with

Bonferroni PE of 0.237 compared to 0.232 with Bonferroni PE LOF, and 7 factors

has a mean FDR with Bonferroni PE of 0.130 compared to 0.128 with Bonferroni PE

LOF.

To summarize overall performance, a ranking of methods across all simulation

scenarios is provided in Figure 17(a) for mean power and in Figure 17(b) for mean

FDR. An increase to power when incorporating pure error is seen comparing Un-

adjusted SSE and Bonferroni SSE to the same method with pure error, Unadjusted

PE and Bonferroni PE. Bonferroni SSE maintains lower mean FDR compared to

Bonferroni PE, while Unadjusted SSE has lower mean FDR than Unadjusted PE at

α < 0.25. Adding a LOF test to Unadjusted PE, AICc and Bonferroni PE decreases

mean FDR, however, mean power also declines.

Fig. 17.: Ranking of model selection methods by mean power and mean FDR across
all simulation scenarios

Unadjusted PE at α = 0.05 has the highest mean power compared to other
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methods; however, this combination also has the second highest mean FDR rate

compared to the other designs. We seek a method that balances high power with low

FDR rates and we administer Pareto front analysis as well as Desirability analysis

to help distinguish the optimal model selection method. A Pareto front visualizes

trade-offs from competing objectives and is used to identify optimal solutions. We

apply the Utopia point method described in Lu et al. (2011) to select a recommended

model selection method that balances high power with low FDR. The Pareto fronts

in Figure 18 plot mean power and 1-mean FDR by α significance level. Overall

power and FDR performance is shown in Figure 18(a), main effect power and FDR

in Figure 18(b) and 2FI power and FDR in Figure 18(c). Methods that dominate

other designs by either high mean power or low mean FDR are shown on the Pareto

frontier, marked by a black line. Methods utilizing pure error and SSE are seen along

the Pareto frontier.

Overall performance in Figure 18(a) reveals three methods, AICc, AICc LOF,

and LASSO LOF, are not located on the Pareto front for any α level. Bonferroni PE,

Bonferroni PE LOF, and Unadjusted PE LOF are dominated by other points when

α = 0.01, but appear on the Pareto front for all other α levels. There is a slight

reduction in mean FDR as well as in mean power with an additional LOF test with

Bonferroni PE. The additional LOF fit test is seen to improve Pareto performance

with Unadjusted SSE LOF appearing on the Pareto front for all levels of α; while

Unadjusted SSE is dominated by other points for all α levels except 0.01. While

Unadjusted PE, and Unadjusted PE LOF when α > 0.01, are both located on the

Pareto front, a benefit to adding LOF tests to Unadjusted PE is seen when α ≥ 0.25.

At the larger α levels, adding LOF to Unadjusted PE reduces mean FDR by about

half while mean power decreases by less than 10%.

For main effect power and FDR, all methods appear on the Pareto front for
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Fig. 18.: Pareto front of methods with 1 - mean FDR on x-axis and mean power on
y-axis.
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α = 0.01 except for AICc (Figure 18(b)). As α increases to 0.5, only LASSO AICc,

Bonferroni PE, Bonferroni PE LOF, and Bonferroni SSE remain on the Pareto front.

For 2FI power and FDR, methods Unadjusted PE, Unadjusted PE LOF, Bonferroni

PE, Bonferroni PE LOF, and Bonferroni SSE remain on the front across all levels of

α (Figure 18(c)).

The Pareto frontier reveals a subset of methods that dominate others in terms

of mean power or mean FDR but will also include methods at the extremes, such

as Bonferroni SSE having the lowest mean FDR but also the lowest mean power.

Someone prioritizing low FDR over high power may be interested in selecting this

method; the Pareto frontier allows the viewer to choose a method depending on their

preference between high power and low FDR. In terms of selecting the top method,

for this study we calculate the Euclidean distance from the Utopia point (1,1) to rank

how well the methods attain high mean power and low mean FDR rates across the

various levels of α. The Utopia point represents the ideal goal of having 100% power

and 0% FDR. The Euclidean distance from the Utopia point of (1,1) is provided

in Figure 19 with Figure 19(a) for overall, Figure 19(b) for main effects and Figure

19(c) for 2FI. The color scale in Figure 19 highlights preferred smaller Euclidean

distances from the Utopia point in green and distances further away from the Utopia

point in red. More green shading is seen for the methods incorporating pure error.

Overall, Bonferroni PE with α = 0.5 has the lowest Euclidean distance from the

Utopia point (0.292) with Bonferroni LOF following close behind (0.293). For other

α levels, Unadjusted PE has the lowest distance at α <= 0.1. Unadjusted PE LOF

has the lowest distance at α = 0.25 (0.316) showing the benefit of adding a LOF test

to unadjusted p-values at higher α levels. Of the methods listed under error type

SSE, LASSO AICc has the smallest distance of 0.388.

Regarding main effect power and FDR, Figure 19(b) shows LASSO AICc and
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(a) Overall (b) Main Effects (c) 2FI

Fig. 19.: Pareto Front Euclidean distance from Utopia point (1,1). Color coded to
show preferred lower values in green and larger values in red.

Unadjusted PE at α = 0.05 with the lowest Euclidean distance of 0.144. In terms of

2FI power and FDR, Figure 19(c) reveals Bonferroni PE at α = 0.5 has the lowest

Euclidean distance from the Utopia point (0.454). Bonferroni PE LOF also has

favorable Euclidean distances at α = 0.5 (0.458), and Unadjusted PE also performs

well at α = 0.05 (0.47). LASSO AICc did well for the main effects comparison but

does not perform as strong for 2FI with an Euclidean distance of 0.63.

4.6.1 Desirability Analysis

As an alternative to the Pareto front analysis, we utilize multiple response op-

timization with desirability functions to provide an overall model selection method

recommendation that balances high power and low FDR. Upper and lower thresholds

representing the acceptable range are specified for each response. Each objective is

translated into an individual desirability function on a scale ranging from 0 to 1, with

1 indicating the objective is at the optimal target level (Myers et al., 2016). Let

fr(X) for r = {1, ..., R}, represent a function to optimize. The desirability function
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to maximize fr(X) is

dmaxr =


0, fr(X) < Lr(
fr(X)−Lr
Tr−Lr

)w
, Lr ≤ fr(X) ≤ Tr

1, fr(X) > Tr

where Lr and Tr are the lower and top user specified thresholds, and weight w = 1 is

linear desirability function. The desirability function to minimize fr(X) is

dminr =


1, fr(X) < Lr(
Tr−fr(X)
Tr−Lr

)w
, Lr ≤ fr(X) ≤ Tr

0, fr(X) > Tr

where Lr is the optimal target level and Tr is a larger but still acceptable level. The

functions are combined using the geometric mean

D =

(
R∏
r=1

dr

)1/R

(4.26)

to produce an overall desirability score and the preferred design has the highest mean

desirability score. Our goal is to find the model selection method that maximizes

predicted power and minimizes predicted FDR. The main effect with 2FI regression

model is used for each function fr(X), r = 1, 2. Targets are established with the

desire to have at least above average power and below average FDR. For power,

the desirability function maximizes f1(X) where target L1 is the mean predicted

power (0.657) and T1 = 1. For FDR, the desirability function minimizes f2(X)

where L2 = 0 and T2 is the mean predicted FDR (0.210). We generate the overall

desirability score in R (R Core Team, 2018) using the package desirability and the

dMax,dMin,dOverall functions (Kuhn, 2016).

Table 14 shows the mean desirability score for each method as well as the mean
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Table 14.: Method desirability analysis results (mean values)

Design
Predicted

Power
Predicted

FDR
Desirability

Power
Desirability

FDR
Overall

Desirability

Bonferroni PE 0.612 0.133 0.232 0.485 0.217
Bonferroni PE LOF 0.593 0.131 0.200 0.491 0.196
Unadjusted PE LOF 0.687 0.197 0.292 0.312 0.174
AICc LOF 0.626 0.178 0.203 0.358 0.143
Unadjusted SSE LOF 0.622 0.165 0.254 0.387 0.125
Bonferroni SSE 0.429 0.048 0.129 0.726 0.117
LASSO LOF 0.603 0.221 0.172 0.281 0.114
Unadjusted PE 0.808 0.334 0.500 0.112 0.098
AICc 0.804 0.411 0.513 0.056 0.029
LASSO AICc 0.846 0.356 0.581 0.013 0.017
Unadjusted SSE 0.701 0.361 0.372 0.175 0.015

predicted power, mean predicted FDR, mean desirability score for power, and mean

desirability score for FDR. The method with the highest mean desirability score is

Bonferroni PE followed by Bonferroni PE LOF. The high score for Bonferroni PE

and Bonferroni PE LOF is driven by a high FDR desirability score and a moderate

desirability score for power. These two methods are also identified in our Pareto front

analysis as having the minimum distance from the Utopia point. Unadjusted PE LOF

has the third highest desirability score supporting the addition of a LOF test when

using unadjusted ppe. Mean desirability scores for main effect power and FDR, and

2FI power and FDR are provided in Appendix Tables 23 and 24. Bonferroni PE has

the highest desirability score for main effect power and FDR, as well as the highest

score for 2FI power and FDR.

Figure 20 visualizes how the methods performed in terms of mean desirability

across α levels. The higher mean desirability scores are found with pure error. The

color scale in Figure 20 highlights preferred larger desirability values in green and

smaller desirability scores in red. There is noticeably less green shading for the
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(a) Overall (b) Main Effects (c) 2FI

Fig. 20.: Method mean desirability score by α level. Color coded to show preferred
higher values in green and smaller values in red.

methods listed under error type SSE compared to Figure 19 in the Pareto front

analysis. Setting the lower Desirability threshold for power to mean predicted power

and the higher Desirability threshold for FDR to mean predicted FDR penalizes

methods at the extremes, methods either having high power and higher FDR as well

as methods with low mean power and low mean FDR. Setting the lower Desirability

threshold for power to 0 and the higher Desirability threshold for FDR to 1 results

in a ranking of Desirability scores similar to the Pareto front. Bonferroni PE LOF

maintains the highest overall mean Desirability score, followed by Bonferroni PE at

α = 0.5 regardless of using thresholds to only consider values above the mean or

setting them to include all values.

4.7 Summary and Conclusions

Previous studies have shown higher power rates when incorporating pure error

into model selection procedures with the trade-off of high Type I error and FDR. As

noted in Westfall et al. (1998), pure error fixes the denominator of the partial F -

statistic to MSPE and the numerator’s noncentrality is no longer counter balanced.
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To counteract the lack of noncentrality in the partial F -test denominator contribut-

ing to larger partial F -tests with pure error, we consider early stopping methods

including Bonferroni adjusted p-values and our proposed forward selection method

that incorporates a LOF test after each model selection step. We examine various

model selection techniques to propose a strategy for incorporating pure error in model

selection procedures that keeps FDR in check. Furthermore, we develop a method

of incorporating pure error with LASSO penalized regression by using LOF tests to

select the model along the LASSO solution path.

Our simulation study varies the number of input factors, the number of active

terms, the α significance level, the number of total runs, the number of replicate

points, whether replicate points were added in addition to the total runs or included

in the total, and model selection method. Model selection methods are evaluated

based on mean power and FDR. Our simulation results support the use of forward

selection with Bonferroni adjusted ppe with an α significance level of 0.5. We also

recommend forward selection with Bonferroni adjusted ppe and an additional LOF

test after each model selection step if a further reduction in FDR is desired. These

two methods outperformed other methods included in the study in both the Pareto

front’s distance from the Utopia point and Desirability analysis. If one does not want

to use adjusted p-values, we recommend using Unadjusted ppe with an additional LOF

test after each model selection step and an α significance level of greater than or equal

to 0.25. Additional recommendations include having more than two replicate points

whether replicates can be added in addition to a D-optimal design or included in

the total run size when incorporating pure error with Bonferroni PE and Bonferroni

PE LOF. We limit our study to focus on active main effects and 2FI but further

research including the detection of quadratic terms and response surface models is

recommended. We also recommend sequential hypothesis tests including conditional
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tests for further research.
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CHAPTER 5

CONCLUSION AND FINAL REMARKS

In this dissertation, I have researched various open problems of experimental design.

First, Chapter 2 delves into the selection of experimental designs for calibration.

Next, Chapter 3 compares optimal sequential design techniques and nonsequential

designs to answer the question if it is best to start with a small screening design and

augment the design with remaining runs or run a single nonsequential design. Lastly,

Chapter 4 examines why high power and high FDR rates are seen when statistical

inference is based on pure error during model selection and evaluates various model

selection techniques to find a recommended model selection strategy incorporating

pure error that balances power and FDR. After reviewing the literature and a theo-

retical discussion, each chapter includes a simulation study to further investigate each

open problem.

Chapter 2 compares experimental designs with regards to inverse prediction per-

formance with the goal to help influence design choice and setup of future calibration

studies. Our simulation study varies design type, the number of input factors, the

number of response variables, the error standard deviation, correlations among re-

sponses, the number of active terms, and whether or not predictor subset selection

is helpful. The designs are evaluated based on the mean/median Euclidean distance

between actual and predicted input values. Results from the simulation indicate a re-

lationship between design choice and inverse prediction performance and support the

use of I-optimal, CCD, and bridge designs with a small tuning parameter (Bridge25).

These three design types had the lowest Euclidean distance between actual and pre-
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dicted input values overall as well as across all of the simulation scenarios. Additional

recommendations include limiting the number of input factors and making use of the

full hypothesized model. Correlation among response variables did not appear to have

an overall negative impact on inverse prediction and further research is recommended.

Other opportunities for future work include considering errors in the input factors,

cases when the true model is a higher-order polynomials or more complex nonlin-

ear models but the user locally approximates the response surface by lower-order

polynomial models, and investigating other calibration methods.

Chapter 3 evaluates optimal sequential design techniques and optimal nonse-

quential designs with regards to power and FDR rates to help experimenters decide

whether to run a small screening design first or use all runs in a nonsequential ap-

proach to identify active terms given a limited number of experimental trials. Our

simulation study varies the number of total experimental runs, the number of in-

put factors, the number of active terms, and considers model selection methods of

LASSO and forward selection. The designs are evaluated based on mean power and

FDR rates. Our simulation results indicate a difference in power and FDR between

sequential and nonsequential designs and support the use of nonsequential designs

whether maximizing power is the main objective or balancing high power with low

FDR rates. We did not consider the ability to move outside the original design re-

gion that may be a key benefit to sequential experiments and we recommend this for

future research. We also focused primarily on Bayesian D-optimal designs as well as

Bayesian D-optimal augmentation, investigating other design types as well as other

design augmentation methods would also be interesting for future work.

Chapter 4 explores why high power and high FDR are seen when statistical

inference is based on a pure error estimate during model selection and proposes a

strategy for incorporating pure error in model selection procedures that keeps FDR
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in check. We compare various model selection techniques using a simulation study.

We consider early stopping methods including Bonferroni adjusted p-values and our

proposed forward selection method that incorporates a LOF test after each model

selection step. We also develop a method of incorporating pure error with LASSO

penalized regression that computes LOF tests along the LASSO solution path. Our

simulation study varies the number of input factors, the number of active terms,

the α significance level, the number of total runs, the number of replicate points,

whether replicate points are added in addition to the total runs or included in the

total, and the model selection method. Model selection methods are evaluated based

on mean power and FDR. Our simulation results support the use of forward selection

with Bonferroni adjusted ppe with an α significance level of 0.5. We also recommend

forward selection with Bonferroni adjusted ppe with an additional LOF test after

each model selection step if a further reduction in FDR is desired. We additionally

recommend using Unadjusted ppe with LOF with an α significance level of 0.25 if an

alternative to adjusted p-values is needed. We limit our study to focus on active main

effects and 2FI, but further research including the detection of quadratic terms and

response surface models is recommended. We also recommend sequential hypothesis

tests including conditional tests as another avenue for future research.

100



Appendix A

COMPARISON OF EXPERIMENTAL DESIGNS FOR CALIBRATION

RESULTS

Design1 Design2 Difference Lower Range Upper Range P-value

Bridge50 Bridge25 0.013 0.002 0.024 0.006
Bridge75 Bridge25 0.019 0.008 0.030 0.000
CCD Bridge25 -0.008 -0.019 0.003 0.354
D-Optimal Bridge25 0.007 -0.004 0.018 0.528
I-Optimal Bridge25 -0.009 -0.020 0.002 0.206
Latin Hypercube Bridge25 0.017 0.006 0.028 0.000
Spatial Coverage Bridge25 0.045 0.034 0.056 0.000
Bridge75 Bridge50 0.006 -0.005 0.017 0.777
CCD Bridge50 -0.021 -0.032 -0.010 0.000
D-Optimal Bridge50 -0.006 -0.017 0.005 0.651
I-Optimal Bridge50 -0.022 -0.033 -0.011 0.000
Latin Hypercube Bridge50 0.003 -0.008 0.014 0.981
Spatial Coverage Bridge50 0.032 0.021 0.043 0.000
CCD Bridge75 -0.027 -0.038 -0.016 0.000
D-Optimal Bridge75 -0.012 -0.023 -0.001 0.021
I-Optimal Bridge75 -0.028 -0.039 -0.017 0.000
Latin Hypercube Bridge75 -0.002 -0.013 0.009 0.999
Spatial Coverage Bridge75 0.026 0.015 0.037 0.000
D-Optimal CCD 0.015 0.004 0.026 0.001
I-Optimal CCD -0.001 -0.012 0.010 1.000
Latin Hypercube CCD 0.025 0.014 0.036 0.000
Spatial Coverage CCD 0.053 0.042 0.064 0.000
I-Optimal D-Optimal -0.016 -0.027 -0.005 0.000
Latin Hypercube D-Optimal 0.010 -0.001 0.021 0.122
Spatial Coverage D-Optimal 0.038 0.027 0.049 0.000
Latin Hypercube I-Optimal 0.026 0.015 0.037 0.000
Spatial Coverage I-Optimal 0.054 0.043 0.065 0.000
Spatial Coverage Latin Hypercube 0.028 0.017 0.039 0.000

Table 15.: Calibration TukeyHSD results showing pairwise design comparison of mean
Euclidean distance and significance level
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Appendix B

OPTIMAL SEQUENTIAL DESIGN TECHNIQUES RESULTS

Table 16.: Optimal sequential design ANOVA for power and FDR

(a) Power

Term Df F value Pr(>F)
Design 2 216 <2.2e-16
Method 1 112 <2.2e-16
Total runs 1 8666 <2.2e-16
Factor 1 184 <2.2e-16
Active ME 1 3 0.070
Active 2FI 1 270 <2.2e-16
Active Quad 1 1397 <2.2e-16
Design: Method 2 6 0.003
Design: Total runs 2 29 <2.08e-13
Design: Factor 2 2 0.102
Design: Active ME 2 0 0.646
Design: Active 2FI 2 21 <1.01e-09
Design: Active Quad 2 79 <2.2e-16
Method: Total runs 1 93 <2.2e-16
Method: Factor 1 5 0.031
Method: Active ME 1 1 0.462
Method: Active 2FI 1 1 0.383
Method: Active Quad 1 9 0.003
Total runs: Factor 1 103 <2.2e-16
Total runs: Active ME 1 29 <8.82e-08
Total runs: Active 2FI 1 837 <2.2e-16
Total runs: Active Quad 1 257 <2.2e-16
Factor: Active ME 1 1 0.225
Factor: Active 2FI 1 19 <1.28e-05
Factor: Active Quad 1 2 0.118
Active ME: Active 2FI 1 16 <6.65e-05
Active ME: Active Quad 1 19 <1.51e-05
Active 2FI: Active Quad 1 27 <2.36e-07
Residuals 3204

(b) FDR

F value Pr(>F)
94 <2.2e-16
1453 <2.2e-16
1714 <2.2e-16
5216 <2.2e-16
2055 <2.2e-16
6984 <2.2e-16
3926 <2.2e-16
252 <2.2e-16
196 <2.2e-16
3 0.058
11 <2.21e-05
9 <8.41e-05
143 <2.2e-16
2981 <2.2e-16
989 <2.2e-16
660 <2.2e-16
511 <2.2e-16
84 <2.2e-16
10 0.002
29 <6.99e-08
615 <2.2e-16
33 <8.04e-09
4 0.038
68 <3.00e-16
4 0.056
374 <2.2e-16
107 <2.2e-16
198 <2.2e-16

All main effects are statistically significant (p-value < 0.05) in the ANOVA models in
Table 16 except for the number of active main effects in the power model (Table 16(a)).
For the power ANOVA, all 2FI are statistically significant with the exception of the number
of factors with design, the number of active main effects with design, the number of active
main effects with method, the number of active 2FI with method, the number of factors
with active main effects and the number of factors with the number of active quadratic
terms. For the FDR ANOVA model, all 2FI are statistically significant except for design
with the number of factors, and the number of factors with the number of active quadratics
(Table 16(b)).

Figure 21(a) plots the top 15 F -values from the power ANOVA model. Total runs
stands out with the largest F -value followed by the number of active quadratics and 2FI
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along with the interaction of the number of active quadratics with total runs and 2FI with
total runs. “Design” has the next largest F -value followed by the number of factors and
analysis method. Total runs with method, the number of factors, active 2FI, and active
quadratic terms are all identified in the top 15 F -values in Figure 21(a) and we provide plot
comparing the mean power performance of sequential and nonsequential designs by these
variables in Figure 10.

(a) (b)

Fig. 21.: Optimal Sequential Design Techniques top 15 F -values in power and FDR
ANOVA models.

The top 15 F -values for FDR shown in Figure 21(b) are closer in size with the number
of active 2FI as the largest F -value followed closely by the number of factors and the number
of active quadratic terms. The interactions of analysis method with total runs and analysis
method with the number of factors also appear in the top 15 F -values. As interactions
with method appeared prominently in the top 15 F -values, plots comparing the mean FDR
performance of sequential and nonsequential designs looking at method with total runs, the
number of factors, active 2FI and quadratic terms are provided in Figure 11.

Table 17.: Optimal Sequential Design Techniques desirability analysis results for main
effect (ME) power and FDR (Mean Values)

Design
Predicted
ME Power

Predicted
ME FDR

Desirability
ME Power

Desirability
ME FDR

Overall
Desirability

Nonsequential 0.918 0.107 0.436 0.282 0.141
Sequential 3 Level 0.899 0.109 0.373 0.243 0.118
Sequential 2 Level 0.89 0.116 0.35 0.203 0.097
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Table 18.: Optimal Sequential Design Techniques desirability analysis results for 2FI
power and FDR (mean values)

Design
Predicted
2FI Power

Predicted
2FI FDR

Desirability
2FI Power

Desirability
2FI FDR

Overall
Desirability

Nonsequential 0.848 0.502 0.384 0.154 0.090
Sequential 3 Level 0.818 0.523 0.336 0.125 0.074
Sequential 2 Level 0.849 0.539 0.379 0.11 0.084

Table 19.: Optimal Sequential Design Techniques desirability analysis results for
quadratic term power and FDR (mean values)

Design
Predicted

Quad Power
Predicted

Quad FDR
Desirability
Quad Power

Desirability
Quad FDR

Overall
Desirability

Nonsequential 0.713 0.274 0.343 0.203 0.102
Sequential 3 Level 0.692 0.286 0.336 0.174 0.096
Sequential 2 Level 0.432 0.182 0.046 0.339 0.036

Table 20.: Optimal Sequential Design Techniques desirability analysis results for
power and FDR no active quadratic terms (mean values)

Design
Predicted

Power
Predicted

FDR
Desirability

Power
Desirability

FDR
Overall

Desirability

Nonsequential 0.915 0.442 0.411 0.124 0.065
Sequential 3 Level 0.894 0.445 0.352 0.104 0.051
Sequential 2 Level 0.901 0.429 0.359 0.114 0.077
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Appendix C

MODEL SELECTION WITH PURE ERROR RESULTS

Table 21.: Model Selection ANOVA for power and FDR

(a) Power

Term Df F value Pr(>F)
Method 10 2422 <2.2e-16
Run Type 1 681 <2.2e-16
alpha 4 5863 <2.2e-16
Total runs 3 11362 <2.2e-16
Number of Factors 1 4149 <2.2e-16
Active ME 3 163 <2.2e-16
Active 2FI 4 8090 <2.2e-16
Method: Run Type 10 31 <2.2e-16
Method: alpha 40 149 <2.2e-16
Method: Total runs 30 51 <2.2e-16
Method: Num Factors 10 55 <2.2e-16
Method: Active ME 30 22 <2.2e-16
Method: Active 2FI 40 140 <2.2e-16
Run Type: alpha 4 4 0.005
Run Type: Total runs 3 204 <2.2e-16
Run Type: Num Factors 1 159 <2.2e-16
Run Type: Active ME 3 5 0.003
Run Type: Active 2FI 4 37 <2.2e-16
alpha: Total runs 12 63 <2.2e-16
alpha: Num Factors 4 76 <2.2e-16
alpha: Active ME 12 2 0.031
alpha: Active 2FI 16 7 7.24e-16
Total runs: Num Factors 3 95 <2.2e-16
Total runs: Active ME 9 21 <2.2e-16
Total runs: Active 2FI 12 613 <2.2e-16
Num Factors: Active ME 3 22 4.78e-14
Num Factors: Active 2FI 4 421 <2.2e-16
Active ME: Active 2FI 12 41 <2.2e-16
Residuals 39711

(b) FDR

F value Pr(>F)
7033 <2.2e-16
1007 <2.2e-16
7564 <2.2e-16
4224 <2.2e-16
20588 <2.2e-16
359 <2.2e-16
442 <2.2e-16
50 <2.2e-16
522 <2.2e-16
398 <2.2e-16
182 <2.2e-16
64 <2.2e-16
425 <2.2e-16
8 3.27e-06
487 <2.2e-16
151 <2.2e-16
1 0.263
78 <2.2e-16
68 <2.2e-16
113 <2.2e-16
38 <2.2e-16
71 <2.2e-16
980 <2.2e-16
3 4.48e-04
1156 <2.2e-16
9 4.46e-06
2381 <2.2e-16
21 <2.2e-16

All terms in the power ANOVA model (Table 21(a)) and all except the interaction
of run type with the number of active main effects in the FDR ANOVA model (Table
21(b)) have a p-value ≤ 0.05. The top 15 F -values in magnitude are shown in Figure
22(a) for power, and Figure 22(b) for FDR. Total runs, number of active 2FI, alpha level,
the number of factors, and method have the highest F -values in the power ANOVA. The
number of factors, alpha level, method, and total runs also have the highest F -values in the
FDR ANOVA.

We ran a separate ANOVA on the subset of methods with pure error to analyze the
impact of replicate runs (Table 22 in the Appendix). The top 15 F -values in magnitude
are shown in Figure 23(a) for power, and Figure 23(b) for FDR. All terms in the power
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(a) (b)

Fig. 22.: Model Selection top 15 F -values in power and FDR ANOVA models.

ANOVA model have a p-value ≤ 0.05 except for the interaction of number of active main
effects with the number of replicate points. All terms in the FDR ANOVA model except
for the interaction of run type with the number of active main effects have a p-value ≤ 0.05.
The number of replicate runs main effect term and the interaction with run type appear on
both the top 15 F -values for power and FDR.

(a) (b)

Fig. 23.: Model Selection top 15 F -values from methods with pure error power and
FDR ANOVA models.
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Table 22.: Model Selection pure error model selection methods ANOVA for power
and FDR

(a) Power

Term Df F value Pr(>F)
Method 6 5467 <2.2e-16
Run Type 1 5185 <2.2e-16
alpha 4 25763 <2.2e-16
Total runs 3 28689 <2.2e-16
Number of Factors 1 16482 <2.2e-16
Active ME 3 588 <2.2e-16
Active 2FI 4 13786 <2.2e-16
Number of Replicates 2 15399 <2.2e-16
Method: Run Type 6 8 1.26e-08
Method: alpha 24 295 <2.2e-16
Method: Total runs 18 128 <2.2e-16
Method: Num Factors 6 183 <2.2e-16
Method: Active ME 18 58 <2.2e-16
Method: Active 2FI 24 129 <2.2e-16
Method: Num Replicates 12 1075 <2.2e-16
Run Type: alpha 4 13 3.65e-10
Run Type: Total runs 3 683 <2.2e-16
Run Type: Num Factors 1 533 <2.2e-16
Run Type: Active ME 3 16 4.30e-10
Run Type: Active 2FI 4 123 <2.2e-16
Run Type: Num Replicates 2 959 <2.2e-16
alpha: Total runs 12 190 <2.2e-16
alpha: Num Factors 4 187 <2.2e-16
alpha: Active ME 12 4 3.21e-05
alpha: Active 2FI 16 30 <2.2e-16
alpha: Num Replicates 8 1783 <2.2e-16
Total runs: Num Factors 3 214 <2.2e-16
Total runs: Active ME 9 44 <2.2e-16
Total runs: Active 2FI 12 1482 <2.2e-16
Total runs: Num Replicates 6 511 <2.2e-16
Num Factors: Active ME 3 69 <2.2e-16
Num Factors: Active 2FI 4 1207 <2.2e-16
Num Factors: Num Replicates 2 79 <2.2e-16
Active ME: Active 2FI 12 107 <2.2e-16
Active ME: Num Replicates 6 1 0.332
Active 2FI: Num Replicates 8 81 <2.2e-16
Residuals 33333

(b) FDR

F value Pr(>F)
8379 <2.2e-16
4531 <2.2e-16
15512 <2.2e-16
22854 <2.2e-16
37198 <2.2e-16
25 6.61e-16
8528 <2.2e-16
4179 <2.2e-16
17 <2.2e-16
709 <2.2e-16
193 <2.2e-16
184 <2.2e-16
36 <2.2e-16
162 <2.2e-16
125 <2.2e-16
15 1.71e-12
964 <2.2e-16
300 <2.2e-16
2 0.059
156 <2.2e-16
903 <2.2e-16
113 <2.2e-16
151 <2.2e-16
60 <2.2e-16
137 <2.2e-16
195 <2.2e-16
1795 <2.2e-16
10 4.11e-16
1798 <2.2e-16
800 <2.2e-16
44 <2.2e-16
3763 <2.2e-16
551 <2.2e-16
20 <2.2e-16
3 0.018
202 <2.2e-16
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Table 23.: Model Selection Method desirability analysis results for main effect power
and FDR (mean values)

Design
Predicted

Power
Predicted

FDR
Overall

Desirability

Bonferroni PE 0.696 0.048 0.241
Bonferroni PE LOF 0.681 0.046 0.222
Unadjusted PE LOF 0.786 0.082 0.217
AICc LOF 0.738 0.072 0.199
Unadjusted PE 0.886 0.167 0.154
Unadjusted SSE LOF 0.708 0.069 0.150
LASSO AICc 0.935 0.129 0.150
LASSO LOF 0.651 0.054 0.110
Bonferroni SSE 0.470 0.017 0.106
AICc 0.915 0.224 0.089
Unadjusted SSE 0.759 0.203 0.023

Table 24.: Model Selection Method desirability analysis results for 2FI power and

FDR (mean values)

Design
Predicted

Power
Predicted

FDR
Overall

Desirability

Bonferroni PE 0.485 0.243 0.176
Bonferroni PE LOF 0.462 0.241 0.158
Unadjusted PE LOF 0.542 0.325 0.151
LASSO LOF 0.517 0.341 0.134
AICc LOF 0.469 0.302 0.119
Unadjusted PE 0.692 0.461 0.104
Unadjusted SSE LOF 0.465 0.271 0.097
Bonferroni SSE 0.269 0.074 0.057
AICc 0.623 0.508 0.055
Unadjusted SSE 0.573 0.447 0.034
LASSO AICc 0.700 0.507 0.033
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