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Abstract 

Activation of upper limb muscles is important for independent living after cervical spinal cord 

injury (SCI) that results in tetraplegia. An emerging, non-invasive approach to address post-SCI 

muscle weakness is modulation of the nervous system. A long-term goal is to develop 

neuromodulation techniques to reinnervate (i.e. resupply nerve to) muscle fiber and thereby 

increase muscle function in individuals with tetraplegia. Towards this goal, developing 

monitoring techniques to quantify neuromuscular function is needed to better direct 

neurorehabilitation. Assessment of voluntary activation (VA) is a promising approach because 

the location of the stimulus can be applied cortically using transcranial magnetic stimulation 

(TMS) or peripherally (VAPNS) to reveal what levels of the nervous system are disrupting the 

innervation of muscle fibers. Voluntary activation measured with TMS (VATMS) can indicate 

deficits in voluntary cortical drive to innervate muscle. However, measurement of VATMS is limited 

by technical challenges, including the difficulty in preferential stimulation of cortical neurons 

projecting to the target muscle and minimal stimulation of antagonists. Thus, the motor evoked 

potential (MEP) response to TMS in the target muscle compared to its antagonist (i.e. MEP ratio) 

may be an important parameter in the assessment of VATMS. Using current methodology, VATMS 

cannot be reliably assessed in patient populations including individuals with tetraplegia. The 

overall purpose of this work was to investigate novel TMS-based methods to evaluate 

neuromuscular function after spinal cord injury. First, we developed and evaluated new 

methodology to assess VATMS in individuals with tetraplegia. The objective of the first study was 

to optimize the biceps/triceps MEP ratio using modulation of isometric elbow flexion angle in 

nonimpaired participants and participants with tetraplegia following cervical SCI (C5-C6). We 

hypothesized that the more flexed elbow angle would increase the MEP ratio. The MEP ratio was 

only modulated in the nonimpaired group but not across the entire range of voluntary efforts 

used to estimate VATMS. However, we established that VATMS and VAPNS in individuals with 

tetraplegia were repeatable across days. In a second study, we aimed to optimize MEPs during 

the assessment of VATMS using paired pulse TMS to elicit intracortical facilitation and short-

interval intracortical inhibition. We hypothesized that intracortical facilitation would lead to an 
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increased MEP ratio compared to single pulse and that short-interval intracortical inhibition 

would lead to a lower MEP ratio. The MEP ratio was modulated in both groups but not across the 

entire range of voluntary efforts, and did not affect VATMS estimation compared to single pulse 

TMS. Paired pulse TMS outcomes revealed abnormal patterns of intracortical inhibition in 

individuals with tetraplegia. Further, VATMS was sensitive to the linearity of the voluntary moment 

and superimposed twitch relationship. Linearity was lower in SCI relative to nonimpaired 

participants. We discuss the limitations of VATMS in assessing neuromuscular impairments in 

tetraplegia. In a third study, we aimed to collect MEP input-output curves of the biceps in SCI and 

nonimpaired and evaluate curve-fitting methodology as well as their repeatability across 

sessions. We hypothesized that slopes would be greater in the SCI group compared to 

nonimpaired. Slopes obtained with linear regression were greater in tetraplegia compared to 

nonimpaired participants, suggesting compensatory reorganization of corticomotor pathways 

after SCI. Linear regression accurately represented the slope of the modeled data compared to 

sigmoidal function curve-fitting method. Slopes were also found to be repeatable across days in 

both groups. In a fourth study, we aimed to implement a low-cost navigated TMS system (< 

$3000) that uses motion tracking, 3D printed parts and open-source software to monitor coil 

placement during stimulation. We hypothesized that using this system would improve coil 

position and orientation consistency and decrease MEP variability compared to the conventional 

method when targeting the biceps at rest and during voluntary contractions across two sessions 

in nonimpaired participants. Coil orientation error was reduced but the improvement did not 

translate to lower MEP variability. This low-cost approach is an alternative to expensive systems 

in tracking the motor hotspot between sessions and quantifying the error in coil placement when 

delivering TMS. Finally, we conclude and recommend future research directions to address the 

challenges that we identified during this work to improve our ability to monitor neuromuscular 

impairments and contribute to the development of more effective neurorehabilitation strategies.  
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1 Chapter 1: Introduction 

1.1 Neuromuscular Function and Spinal Cord Injury 

1.1.1 Background 

Chronic spinal cord injury (SCI) is a condition of the central nervous system (CNS) that may 

involve motor impairment through partial or complete paralysis [1]. Currently, an estimated 

288,000 individuals are suffering from a chronic spinal cord injury in the United States, with an 

additional 17,700 new cases occurring each year (“Facts and Figures at a Glance,” 2018). The 

most common form is incomplete tetraplegia, which can be caused by damage to the low cervical 

section of the spinal cord (C5-C8), causing deficits in the upper limb neuromuscular function. 

Upper limb function is crucial for daily activities and is often rated as the single most desired 

ability to be recovered by individuals with tetraplegia to improve their quality of life [2]. 

Functional reorganization of the neuromuscular system following SCI takes place across 

multiple sites of the nervous system [3]. Lesions to the spinal cord will cause adaptive responses 

leading to the reorganization of the cortical representations of muscles, where changes occur 

immediately after injury [4], [5] and on a long-term scale [6]. Most patients will experience some 

degree of spontaneous functional recovery within the first year post-injury, but motor function 

will typically stagnate thereafter [7]. This suggests that while the CNS has innate repair 

mechanisms, they are alone insufficient to reach higher levels of motor function recovery after 

large lesions. Thus, understanding neuroplasticity following SCI has implications for the 

development of rehabilitation programs that will take motor function recovery further [8]. 

Neurorehabilitation has the potential to address muscle weakness, spasticity, and 

fatigability after SCI [9]–[12]. Repeated activation of the spared motor pathways leads to the 

strengthening of existing neuromuscular circuits and the sprouting of new fibers and connections 

between the cortex, the brainstem, and the spinal cord [13]–[15]. Following this principle, motor 

training-based approaches (e.g., physical therapy) after SCI have shown promising results, 

especially in combination with neuromodulation [9], [10]. For instance, repetitive transcranial 
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magnetic stimulation interleaved with the practice of a hand function task led to clinical 

improvements in grasp strength and the performance of a fine motor task in the target hand of 

individuals with SCI (effect sizes reported for grasp strength; treatment: 0.67 versus sham: 0.39, 

Jebsen-Taylor Hand Function Scores: treatment: 0.85 versus sham: 0.42)[11]. Effects were also 

found in the contralateral hand, implying transfer of the training effects to the non-trained hand. 

Additionally, maximal intensity resistance training in the lower limb of incomplete SCI 

participants was shown to increase volitional function and strength [12]. Spasticity is caused by 

abnormal supraspinal influence over spinal reflex circuits [16]. Operant conditioning of spinal 

reflexes such as the H-reflex ( a form of neurorehabilitation) has the potential to decrease 

spasticity in the lower and upper limb of SCI individuals [17], [18]. Repetitive TMS protocols have 

also been used to reduce spasticity in chronic SCI [19], [20]. Finally, previous work demonstrates 

a decrease in fatigue resistance of muscle affected by SCI [21], [22]. This is especially relevant to 

our work since the technique we evaluated in chapters 2 and 3 have direct implications for the 

assessment of neuromuscular fatigue. 

1.1.2 Biceps Brachii function after Spinal Cord Injury 

In the upper limb, distal muscles (e.g., muscles in the hand) have been the primary focus 

of neuromodulation research to date [23]. One reason is that hand muscles such as the first 

dorsal interosseous (FDI) have greater cortical representations (i.e. higher neuron count and 

connections associated with controlling the muscle fibers) compared to proximal muscles which 

make them easier targets for neuromodulation [3], [24], [25]. However, proximal muscles, such 

as those spanning the elbow, are critical for upper limb function. The ability to extend and flex 

the elbow increases the workspace of the hand and enhances a person's ability to grasp and 

manipulate objects [26], [27]. One of these muscles, the biceps brachii, remains relatively 

functional after an SCI at the cervical level [28], [29]. In fact, a recent report showed similar MEPs 

(SCI: 45.4 ± 25.7% of M-max, controls: 47.0 ± 24.3% of M-max) and EMG activity during maximal 

voluntary contractions (MVCs) between individuals with incomplete cervical SCI and healthy 

controls [30]. The authors also suggest that enhanced reticulospinal inputs to the biceps brachii 

may be responsible for the biceps’ greater potential for spontaneous recovery compared to its 
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antagonist (the triceps). Relatively spared muscle groups after cervical SCI, such as the biceps 

brachii, may be particularly responsive to neuromodulation. Plasticity of the neuromuscular 

system preferentially occurs when existing circuits are solicited via motor training or external 

stimulation [13]–[15]. Consequently, a focus on muscle groups relatively preserved can yield 

long-term benefits for SCI patients by maximizing the function of remaining neuromuscular 

circuits. 

Although the biceps brachii is relatively preserved after cervical SCI compared to more 

distal muscles, the biceps brachii is typically affected by the consequences of SCI. Namely, the 

biceps brachii function after SCI at the C5-C6 level is commonly characterized by decreased 

strength (i.e., muscle weakness)[28], increased spasticity [31], and decreased fatigue resistance 

compared to nonimpaired muscle [32]. In particular, reciprocal inhibition between the biceps 

brachii and its antagonist the triceps brachii is altered following an SCI, leading to increased 

triceps activation during elbow flexion [33]. Moreover, previous work investigated the properties 

of single motor units during voluntary contraction of the biceps brachii of SCI patients [34]. They 

found a decreased firing rate compared to healthy controls, which may contribute to increased 

fatigability. Finally, spasticity affecting the biceps brachii may be improved by intervention [31]. 

Operant conditioning training experiments in SCI patients have shown that biceps brachii spinal 

stretch reflex can be down-regulated after 8 weeks of training [18].  

Tendon transfer surgery is another reason why the biceps brachii function after a SCI is 

important [35], [36]. The biceps can be surgically transferred to insert at the tip of the olecranon 

such that the biceps performs the function of the more paralyzed triceps [37]. After surgery, the 

individual undergoes rehabilitation aimed at motor re-education, which is to say learning how to 

use the biceps in its new function, to extend the elbow. However, substandard results after 

tendon transfer have been reported, which may be due to poor motor re-education, tendon 

rupture, stretching, and altered biomechanics [38]. Thus, improved ways to evaluate the biceps 

brachii function prior to and after this surgery may help predict clinical outcomes of tendon 

transfer. 
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The biceps brachii is part of the elbow flexor group. Flexion-extension of the elbow is 

critical for activities of daily living and preserving or restoring its proper function in individuals 

with tetraplegia is ranked as a top priority [39]. Currently, clinical assessment of muscle function 

in individuals with SCI is subjective; a clinician follows a manual muscle testing protocol, grading 

each muscle on a scale from 0 (total paralysis) to 5 (normal active movement)[40]. However, 

manual muscle testing is a poor predictor of voluntary strength and cannot precisely elucidate 

the amount of innervated muscle fiber [41]. A more comprehensive and quantitative evaluation 

of the biceps brachii function post-SCI will pave the way towards more effective neuromodulation 

protocols aimed at recovering and optimizing arm function for individuals with tetraplegia.   

1.2 Transcranial Magnetic Stimulation 

1.2.1 Background 

Transcranial magnetic stimulation (TMS), a type of non-invasive brain stimulation, can be 

used to evaluate and modify cortical physiology and the condition of motor pathways [42], [43]. 

When TMS is delivered to the motor cortex (M1) region of the brain, the resulting action 

potentials travel down the pyramidal tract and through the spinal cord, where it can be recorded 

with implanted epidural electrodes as D-waves and I-waves (Figure 1-1). I-waves reflect the 

indirect activation of pyramidal neurons via interneuron recruitment, which are preferentially 

recruited as stimulus intensity increases [43]. D-waves reflect the activation of axons directly 

from stimulation (i.e. shortest pathway for action potentials). The motoneurons in the spinal cord 

then activate muscle fibers through the neuromuscular junction to elicit a muscle response 

(Figure 1-2). The response known as a motor evoked potential (MEP) can be recorded using 
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electromyography (EMG) sensors and used to evaluate changes to the excitability of the 

corticospinal motor pathway [44], [45].  

 

 

Figure 1-1. Schematic representing epidural recording of D-waves and I-waves following TMS delivered at 
various stimulator intensities. More/stronger I-waves are induced with higher intensities (100% 
corresponds to 750 volts of stimulator output) (modified from CNS Clinic - Jordan - Munir Elias). 
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Figure 1-2. Schematic illustrating how TMS activates the descending motor pathways. Recruited neurons 
by TMS evoke a descending volley of signals down the corticospinal tract, ultimately causing the 
contralateral muscle to contract. The motor evoked potential (MEP) can be used to evaluate corticomotor 
excitability (modified from Klomjai, Katz, & Lackmy-Vallée, 2015). 
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The amplitude of MEPs can be used to assess the integrity of motor output to the spinal 

cord, changes within M1, and changes in cognitive processes that influence M1 [46]. The 

assumption is that MEPs are correlated to motor performance itself such as accuracy of 

movement [47] and force generation [48]. However, MEPs are highly variable and sensitive to 

multiple parameters such as the level of activation of the target muscle [49], reliable positioning 

of the TMS coil [50], [51], and fluctuations in the existing activity of neurons and interneurons at 

the time of stimulation [52]. 

TMS metrics can predict functional outcomes in patient populations [53]–[55]. For 

example, in post-stroke patients, the presence of MEPs in the biceps brachii and FDI muscles 

were associated with higher joint coordination (Fugl-Meyer Scores), higher likelihood of muscle 

contractions, and greater strength [56]. When combined with electroencephalography, TMS has 

the potential to be a marker of post-stroke upper-limb motor function [44], [57]. TMS outcomes 

can also be used for the diagnosis of neurodegenerative dementia by using TMS parameters for 

classification instead of other validated markers (e.g. cerebrospinal fluid analysis, amyloid 

positron emission tomography) [58]. Together, this suggests that TMS can be a promising 

diagnosis and monitoring tool in patient populations. Our goal is to harness advanced TMS-based 

techniques to improve the ability to evaluate neuromuscular impairments in individuals with 

tetraplegia. 

1.2.2 Advanced Transcranial Magnetic Stimulation Techniques 

TMS parameters can be modified and/or combined with other tools to exploit the full 

potential of its capabilities as a tool for probing motor pathways. TMS research features several 

experimental techniques that have been employed to characterize different aspects of motor 

pathway function following SCI; the following are the techniques relevant to this work. 

Paired-pulse TMS: 

Paired-pulse TMS can investigate the balance between excitatory and inhibitory pathways 

within the brain [59]. When two stimulators are connected to the same coil, it is possible to fire 



26 

 

two TMS pulses with various inter-stimulus intervals. When the first pulse is subthreshold (i.e. 

lower intensity than necessary to elicit a MEP), it can be used as a conditioning stimulus that will 

cause either facilitation or inhibition of the subsequent MEP response (Figure 1-3) [44], [60]. An 

inter-stimulus interval (ISI) between 10 and 30 ms will produce intracortical facilitation (ICF) that 

will cause increased MEP amplitudes. On the other hand, a very short inter-stimulus interval of 

1-2 ms will result in short interval intracortical inhibition (SICI) and decreased MEP amplitudes. 

The mechanisms behind ICF are mostly related to the N-methyl-d-aspartate (NMDA) receptors 

mediated facilitation [61] while SICI is thought to be related to GABA-A receptor-mediated 

inhibition [62]. In the SCI population, studies involving sub-threshold TMS have been used to 

study the balance between excitatory and inhibitory processes in the brain. A reduced activity of 

intracortical inhibitory circuits (via SICI) was observed that may act as a compensatory 

mechanism enabling more cortical reorganization [63]–[65].  

 

Figure 1-3: Paired-pulse TMS affects MEP amplitudes. From left to right: single pulse TMS, paired-pulse 
TMS with ISI 1-2 ms, paired-pulse TMS with ISI 10-30 ms (modified from Auriat et al, 2015). 
 

MEP input-output curves: 

MEP input-output curves, otherwise referred to as stimulus-response or recruitment 

curves, are another way to characterize corticomotor excitability by probing the motor cortex 

with increasing stimulus intensities (Figure 1-4) [66]. MEP input-output curves are collected by 

delivering TMS across a range of stimulator intensities, ranging from subthreshold to 

suprathreshold. Plotting the MEPs against TMS intensity, curves typically resemble a sigmoidal 

waveform that plateaus at higher stimulus intensities [66]. The slope of the curve indicates the 
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excitability of the targeted neuromuscular circuit across multiple neuronal populations, such as 

direct corticospinal projections and inter-cortical neurons [39]. Increased slope values represent 

greater overall level of excitability throughout the corticospinal tract of the target muscle [68]. 

Furthermore, compared to a single MEP response, which is highly variable and state-dependent, 

the slope is extracted from multiple MEPs elicited over the course of several minutes and at 

various stimulation intensities, reflecting a more comprehensive and non-instantaneous measure 

of corticomotor excitability.  

 

 

Figure 1-4. Representation of typical EMG recordings of MEPs as a function of TMS intensity that are used 
to construct the MEP input-output curve (From Devanne et al. 1997). 
 

MEP input-output curves can be used to evaluate the integrity and function of 

neuromuscular circuits in patient populations and guide rehabilitation. For example, after 

immobilization  (90 days of bed rest) in healthy volunteers, the slopes of the MEP input-output 

curves collected in the leg and hand were decreased [69]. In stroke patients, the slope of the 
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curve in the FDI was negatively correlated to the magnitude of task-related brain activation (as 

assessed via functional MRI techniques) in several motor-related regions, such as the primary 

motor cortex and the supplementary motor area [70]. Another study found an association 

between graded increases in the slope and graded functional gains in recovery following a direct 

current transcranial stimulation (tDCS) protocol in the hand of post-stroke patients [71]. 

Together, this suggests that MEP input-output curves have the potential to be used as a tool to 

inform rehabilitation. 

Navigated TMS: 

One factor that contributes to the variability of TMS metrics is the coil positioning when 

targeting a specific cortical region and the preservation of this position during and across sessions 

[72], [73]. Navigated TMS systems were initially developed for neurosurgical planning and 

functional motor cortex mapping where they helped investigators maintain spatial accuracy of 

about 2 mm (intra-session stability) [74]. Here, we define spatial accuracy as the distance (in 

millimeter), from the visualized “hotspot” location to the location of stimulation. We define the 

hotspot as the location where the MEP response is highest and most specific (i.e. minimal 

activation of surrounding muscles). Some advanced navigation systems use patient-specific 

magnetic resonance images (MRI) to visualize individual anatomical structures of the brain 

(Figure 1-5). Intracranial E-field can then be calculated and used for subsequent navigation [75]. 

While MRI and E-field based navigation are advantageous since the stimulation of the actual 

cortical structures can be predicted and quantified, these navigated TMS systems are very 

expensive (> $50,000), add many preparatory steps, including individual MRI scans, to a TMS 

protocol which represent limiting factors for its use in the clinic and research [76]. It is possible 

to develop more affordable and user-friendly alternatives that may improve spatial accuracy (coil 

position and orientation) and the reliability of TMS outcomes [77]. In its simplest form, navigated 

TMS consists of reliably tracking the position of the coil relative to the head. Real-time 3D 

feedback is then provided to the technician to assist in the re-positioning of the coil over the 
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previously determined hotspot. To date, this novel, low-cost approach has only been evaluated 

in the FDI muscle in three participants. 

 

Figure 1-5. Example of commercial navigated TMS system (Nexstim NBS system 5) that uses MRI-guided 
navigation to ensure accurate and repeatable stimulation (From Nextstim.com). 
 

Whether Navigated TMS is effective to decrease MEP variability is unclear and may depend 

on additional parameters such as the activation state of the motor pathways and the muscle 

tested [49], [78], [79]. In fact, previous work was not able to find an effect of navigated TMS on 

MEP amplitudes and their coefficient of variance in the FDI muscle at rest [80]. However, since 
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MEP variability largely depends on the target muscle and its level of voluntary activation [49], 

navigated TMS may be beneficial in a different context. 

1.3 Voluntary Activation  

Voluntary activation is a measure of the neuromuscular system’s ability to activate muscle 

fibers [81]. It has namely been used in fatigue protocols to elucidate the specifics of 

neuromuscular fatigue, whether it takes place within the CNS (central fatigue) or is caused by 

changes at the muscle level [82], [83]. Voluntary activation is assessed using the interpolated 

twitch technique, which relies on recording measurable and repeatable muscle twitch forces in 

response to stimulation [81], [84]. The ratio between the twitch torque superimposed to a 

maximal voluntary contraction (MVC) and the twitch torque at rest can quantify the 

completeness of motor units’ recruitment by the neural drive. When electrical stimulation is used 

peripherally, the collected measure is known as voluntary activation, which we will refer to as 

VAPNS.  

VAPNS can be used in patient populations to investigate fatigue properties and 

neuromuscular impairments. For instance, VAPNS deficits in voluntary activation of muscle were 

identified in upper limb muscles after stroke [85]. In incomplete SCI individuals, VAPNS of the 

flexor carpi radialis muscle was lower compared to healthy controls [69]. This study also revealed 

that the deficit in central drive was responsible for a higher sensitivity to fatigue. Another study 

used VAPNS to evaluate a paired corticospinal-motoneuronal stimulation paradigm in the biceps 

brachii of individuals with tetraplegia but they did not find any effect [87]. When nonimpaired 

subjects maximally contract muscle, nearly all innervated muscle fibers can be activated by 

voluntary effort (Figure 1-6). In contrast, in muscle affected by SCI composed of both innervated 

and denervated muscle fibers, only innervated muscle fibers can be activated by voluntary effort 

(Figure 1-6). When electrical stimulation is superimposed on maximum voluntary contraction by 

individuals with tetraplegia, the stimulation activates additional motoneurons resulting in a large 

twitch force [88]. VAPNS is a reliable measure in the nonimpaired biceps brachii within an 
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individual across days [84]. In nonimpaired individuals, all muscle fibers are innervated and VAPNS 

less than 100% is due to the limited rate at which motoneurons can be recruited. 

 

 

Figure 1-6: Cross-section illustration of muscle to demonstrate the recruitment of motor units during 
electrical stimulation, maximum voluntary effort, and electrical stimulation superimposed on maximum 
voluntary effort. Electrical stimulation with the muscle at rest recruits part of the motor pool (light blue 
fill represents muscle fibers innervated by motor units recruited by electrical stimulation). In nonimpaired 
muscle, nearly the entire motor pool can be voluntarily recruited at maximum effort (brown fill represents 
muscle fibers innervated by motor units recruited voluntarily); superposition of electrical stimulation 
results in additional recruitment of only a few motor units. In muscle with an activation deficit, only a 
percentage of the motor pool can be recruited during maximum voluntary effort; superposition of 
electrical stimulation recruits many additional motor units (Modified from Peterson et al, 2017). 
 

The principle of the interpolated twitch technique can be used to assess voluntary 

activation at different neuromuscular sites [89]. TMS over the motor cortex can be used to assess 

voluntary activation, which we refer to as VATMS. A key difference in using the interpolated twitch 

technique to assess VATMS as opposed to VAPNS is the site of stimulation. VAPNS cannot indicate 

the site of deficit in voluntary drive within the pathway from the motor cortex to muscle. Using 

TMS to activate cortical neurons evokes a MEP, which produces a consequent twitch force that 
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can be recorded by a sensitive load cell. Thus, VATMS can provide additional insight on how 

optimally cortical neurons are voluntarily activated to generate descending action potentials to 

the muscles.   

Over the past ten years, VATMS has been broadly used in various protocols to study the 

mechanisms of neuromuscular function and fatigue following physical training [90]–[94], in aging 

populations [95], [96], and in patient populations [97]–[101]. While most studies have focused 

on the upper limb [102], VATMS can also be assessed in the lower limb [91], [103] or even back 

muscles [100], [104]. Several studies also focused on the methodological aspects of assessing 

VATMS [102], [105]–[107]. VATMS can monitor physical therapy protocols. For example, VATMS was 

increased after eight weeks of local vibration training in the lower limb [108]. In another study, 

VATMS was reduced in athletes that had suffered a concussion, highlighting impairments that 

persist beyond the acute phase of the concussion [98]. VATMS is especially relevant in the context 

of neuromuscular impairments that affect individuals with tetraplegia since it offers a 

quantitative measure of the ability to generate neural drive to muscle. VATMS also constitute a 

more direct way of testing the level of neuromuscular impairment, as opposed to manual muscle 

testing. Identifying impairments in voluntary activation in individuals with tetraplegia is 

important because it allows quantifying to what extent the loss of function is directly due to 

neural factors. Additionally, using TMS over the motor cortex has the potential to provide insights 

on more specific neurophysiological mechanisms that affect motor function after an SCI. So far, 

VATMS has not yet been used to inform rehabilitation in patient population due to several 

technical limitations. 

In patient populations, evaluating VATMS poses technical challenges [97], including 

individuals with cervical SCI [88]. Todd et al. established a protocol to reliably quantify VATMS in 

the elbow flexors of nonimpaired individuals [89], [109]. Using the same protocol in individuals 

with biceps paresis post-stroke, Bowden et al. were unable to quantify VATMS of the elbow flexors 

due to large variability in MEPs and twitch forces within subjects [97]. Also, in a study that 

attempted to quantify VATMS of the elbow extensors in individuals with tetraplegia, MEPs and 
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twitch forces were variable or absent in 83% of subjects such that VATMS could not be quantified 

[88]. The authors suggest that these findings were due to the high levels of muscle weakness and 

the lack of focality of cortical stimulation. In this current work, we evaluated the biceps brachii, 

a muscle that is typically less impaired than its antagonist following SCI, as a first step in applying 

the VATMS approach to muscle affected by SCI.  

1.4 Motivation and Knowledge Gaps in the Field 

1.4.1 Challenges of assessing VATMS in patient populations 

According to Todd et al. (2016), reliably assessing VATMS of the elbow flexors requires 

several conditions to be met: First, we need to be able to elicit large MEPs in the elbow flexors 

relative to MEPs in the elbow extensors (Figure 2-1, A). In other words, a high MEP ratio recorded 

during stimulation is required. This can be achieved in nonimpaired individuals by selecting the 

optimal stimulus intensity that maximally activates cortical neurons projecting to the elbow 

flexors and minimally activates cortical neurons to elbow extensors. However, this is more 

difficult to achieve in patient populations [88], [97]. One possible explanation is that a higher TMS 

stimulus intensity is often required to elicit reliable MEPs. The necessity of a high stimulus 

intensity increases stimulus spread to other cortical areas including those that project to the 

triceps, thus influencing the biceps to triceps MEP ratio. We address this challenge through an 

innovative approach to exploit protocol modifications that can facilitate large MEPs in the 

contracting elbow flexors relative to the elbow extensors.  

The first protocol modification consists of isometric modulation of the elbow flexion 

angle. Static changes in elbow flexion angle can modulate MEP amplitudes in the relaxed biceps 

[110]–[112]. Specifically, biceps MEPs were maximized and triceps MEPs were minimized at a 

more flexed elbow angle relative to more extended elbow angles [92]–[94]. Whether elbow angle 

can be prescribed to optimize the target/antagonist MEP ratio across the range of voluntary 

effort levels needed to estimate VATMS remains unknown. Thus, our approach will determine 
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whether careful prescription of the isometric elbow flexion angle can optimize the biceps/triceps 

MEP ratio and improve the measurement of VATMS. 

The second protocol modification involves modulation of the stimulation paradigm from 

single pulse to paired-pulse TMS. Paired TMS pulse paradigm consisting of a low intensity 

conditioning pulse delivered prior to a second higher intensity pulse, causing intracortical 

facilitation (ICF), can increase MEP amplitudes in the targeted muscle. Previous work has shown 

that ICF can be elicited in patient populations [114], [115]. Thus, our approach is to deliver paired-

pulse TMS instead of single pulse TMS to optimize the biceps/triceps MEP ratio in the assessment 

of VATMS. In these experiments, we also provide an understanding of activation-dependent 

modulation of cortical inhibition and facilitation. 

Another condition of reliably assessing VATMS is the high linearity of the relationship 

between superimposed twitch torque and voluntary torque [102]. In nonimpaired individuals, 

previous work has shown that the superimposed twitch torque and voluntary torque relation is 

approximately linear during high voluntary contraction (Figure 1-7)[89]. Neuromuscular fatigue 

has been associated with decreased linearity of this relationship [116]. This is a concern since 

individuals with chronic SCI typically present decreased stamina and higher fatigability of motor 

units even in relatively spared muscle groups [32], [88]. Nevertheless, since no data on the 

linearity of the superimposed twitch torque and voluntary torque relation exists for individuals 

with tetraplegia, further investigation is warranted.  
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Figure 1-7. Amplitude of the superimposed twitch evoked by TMS over the motor cortex during 50, 75, 
and 100% MVC in the nonimpaired elbow flexors (From Todd et al., 2003). 
 

1.4.2 TMS input-output curves in the biceps brachii of individuals with SCI 

While MEP input-output curves have been studied in individuals with tetraplegia, previous 

work focused on upper limb distal muscles such as those of the hand [81]. However, TMS 

outcomes are largely dependent on the stimulation target [118]. While more proximal upper limb 

muscles such as the biceps often retain more function than distal muscles in patients with cervical 

SCI [88], [119], their neuromuscular circuits may be affected in different ways. A recent TMS 

motor mapping study found no differences in biceps cortical representation between chronic 

cervical SCI and nonimpaired participants [120]. However, the biceps is a difficult TMS target due 

to its relatively smaller motor cortex representations compared to hand muscles [24], [117], and 
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is less likely to provide reproducible MEP measures across sessions [121]. Therefore, investigating 

more proximal muscle groups is needed to get a more comprehensive picture of neuromuscular 

function after SCI.  

Further, using a sigmoid curve fit method can yield reproducible outcomes when targeting 

the FDI muscle of nonimpaired individuals [89]. Yet, in patient populations such as stroke, 

analyzing MEP recruitment curves with linear regression was found to be as predictive as using a 

sigmoid function model [90]. Whether these findings hold when targeting the biceps brachii of 

individuals with cervical SCI is unknown. 

1.4.3 Does low-cost TMS navigation decrease MEP variability? 

Finally, low-cost navigated TMS approaches are viable tools for reliable coil placement 

during TMS procedures. So far, they have only been tested in the FDI muscles [77] and not on 

more challenging TMS targets such as the biceps brachii [121]. Additionally, protocols involving 

voluntary contractions add difficulty in maintaining the consistency of the cortical hotspot 

because of the participant’s collateral motion. Whether a low-cost navigated TMS approach can 

be effective in reducing MEP variability in such context remains unknown.  

1.5 Objectives 

As a contribution to improving the monitoring of neuromuscular function in chronic SCI 

individuals via the advancement of TMS techniques, this work has three primary objectives 

(Figure 1-8). First, investigating innovative approaches to address the challenges of quantifying 

neural drive via voluntary activation measured with TMS in individuals with tetraplegia (elbow 

angle and stimulation paradigm modulation). Additionally, establishing the reproducibility across 

days of voluntary activation measured with TMS in individuals with tetraplegia. Second, 

improving the understanding of corticomotor plasticity following an SCI by comparing MEP input-

output curves in the biceps brachii of individuals with tetraplegia and healthy controls. Further, 

establishing the reliability of MEP input-output curves in the biceps brachii of individuals with 

tetraplegia. Third, implementing a low-cost navigated system and testing its efficacy on MEP 
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variability in the biceps brachii of nonimpaired individuals during voluntary contractions to 

reduce variability in TMS outcomes.  

 

 

Figure 1-8: Illustration of objectives of this work. Our long-term goal is to improve upper limb 
neurorehabilitation therapies in individuals with tetraplegia. To that end, we use and improve upon TMS 
techniques to better evaluate neuromuscular function after a SCI. Voluntary Activation can quantify 
neural drive to muscle (orange, red, and dark red dashed traces indicate 50, 75, and 100% effort levels, 
respectively). MEP input-output curves can quantify excitability of the motor pathways. Finally, our 
implementation of a low-cost navigated TMS system may contribute to improving the reliability of TMS 
outcomes.  
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2 Chapter 2: Effect of Elbow Flexion Angle Modulation in the Assessment of 
Voluntary Activation 

2.1 Background/Objectives 

Voluntary activation is a measure that quantifies the level of voluntary neural drive that 

contracting muscles receive from the central nervous system [122]. Assessment of voluntary 

activation is useful in the study of mechanisms of neuromuscular fatigue [89], [116], [123] and 

neuromuscular impairments in clinical populations [99], [124], [125]. Measurement of voluntary 

activation involves superimposing supramaximal electrical stimulation of motoneurons upon an 

individual’s voluntary effort to activate muscle. A deficit in voluntary activation is indicated when 

muscle force during maximum voluntary effort is further increased by electrical stimulation [126]. 

The increase in muscle force indicates that the stimulus recruited additional motor units beyond 

those already recruited via voluntary effort and/or that some motor units were discharging at 

subtetanic rates. When the stimulus is applied to peripheral motor nerve, we can assess what we 

will refer to as voluntary activation with peripheral nerve stimulation (VAPNS). VAPNS indicates the 

net voluntary drive, consisting of cortical drive and the transmission of the neural signal through 

corticospinal and lower motoneurons to innervate muscle [81]. VAPNS reveals little about the site 

of deficit in voluntary drive within the pathway from the motor cortex to muscle. Thus, a 

technique to assess voluntary activation via transcranial magnetic stimulation (TMS) applied to 

the motor cortex was developed to indicate deficits in voluntary cortical drive [89]. We will refer 

to this measure as voluntary activation with TMS (VATMS). Measurement of VATMS may be 

particularly useful to characterize neuromuscular function after spinal cord injury (SCI). Muscle 

weakness, spasticity, and fatigability result from injury-induced changes at multiple sites of the 

nervous system [3] and have the potential to be addressed by neurorehabilitation [9]–[12]. 

Measurement of VATMS can better localize the deficit in voluntary drive, which may be useful in 

directing rehabilitation strategies. 

Measurement of VATMS can be limited by technical challenges, [102], [105], [127] 

particularly in patient populations (e.g., spinal cord injury [88], post-stroke [97], which warrants 
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further investigation. Key challenges during stimulation are that TMS over the motor cortex may: 

1) activate cortical neurons projecting to muscles other than the target muscle, including 

antagonists, and 2) not activate every motor unit in the target muscle. An ideal measure of VATMS 

would be obtained when TMS activates neurons that recruit all motor units not already recruited 

in the target muscle during maximum voluntary effort and does not recruit antagonist motor 

units. The ratio of the target muscle motor evoked potential (MEP) in response to TMS relative 

to the antagonist MEP (i.e., target MEP amplitude divided by antagonist MEP amplitude) can 

indicate how well the ideal measurement scenario is achieved. In the assessment of VATMS in 

nonimpaired individuals, adjustment of the TMS pulse intensity and selection of an appropriate 

target muscle can optimize the target/antagonist MEP ratio. For example, when the biceps 

brachii is the target muscle for assessment of VATMS in nonimpaired individuals, stimulus intensity 

can be adjusted to elicit a biceps MEP amplitude that is greater than 50% of the maximal M-wave 

(Mmax), and a triceps MEP less than 20% Mmax (i.e., corresponding to biceps/triceps MEP ratio 

greater than 2.5) [102]. However, this condition is likely more difficult to achieve in populations 

with neuromuscular impairments such as tetraplegia resulting from cervical SCI[88], [128]. In the 

assessment of VATMS in individuals with tetraplegia, for example, adjusting stimulus intensity 

alone could not elicit a large enough response in the triceps to estimate VATMS [88]. Thus, there 

is a need to investigate novel methodology that has the potential to optimize the 

target/antagonist MEP ratio. We focused on improving the methodology to assess VATMS of the 

biceps brachii in individuals with tetraplegia because: a) the biceps is innervated at the C5 and 

C6 levels such that considerable biceps function typically remains in many individuals with low 

cervical injuries (C5-C8) [28], [29], b) the biceps is important for upper limb function [26], and c) 

comparative data with single pulse TMS to assess VATMS exist in nonimpaired individuals [129], 

[130]. 

One methodological change is the careful prescription of isometric joint posture during 

measurement of VATMS. Static changes in elbow flexion angle modulate MEP amplitudes in the 

relaxed biceps in nonimpaired individuals [110]–[112]. Therefore, modulation of the isometric 

elbow angle may optimize the target/antagonist MEP ratio and enable the measurement of VATMS 
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in tetraplegia. In previous work assessing relaxed muscle, biceps MEPs were maximized and 

triceps MEPs were minimized at more flexed elbow angles relative to more extended elbow 

angles [113]. However, TMS is superimposed on voluntary contractions between 50-100% of the 

maximum voluntary contraction (MVC) to estimate VATMS. This is because extrapolation of the 

relationship between the voluntary effort and the superimposed twitch (SIT) moment is 

necessary to estimate VATMS. Whether elbow angle can be prescribed to optimize the 

biceps/triceps MEP ratio across the range of voluntary effort levels needed to estimate VATMS 

remains unknown.  

In the current study, we focus on modulation of the isometric elbow flexion-extension 

angle in the assessment of VATMS of the biceps in nonimpaired individuals and individuals with 

tetraplegia. The primary objectives of this study were to determine the effect of the isometric 

elbow angle on: 1) the biceps/triceps MEP ratio across a range of voluntary efforts, and 2) VATMS. 

We hypothesized that the biceps/triceps MEP ratio would be greatest in a more flexed elbow 

angle at each level of voluntary effort. Further, we hypothesized that VATMS would depend on the 

biceps/triceps MEP ratio, based on our expectation that a greater biceps/triceps MEP ratio would 

indicate better targeting of the biceps relative to the triceps with TMS. A secondary objective of 

this study was to determine the repeatability of VATMS and VAPNS of the biceps in individuals with 

tetraplegia when measured at 90⁰ of elbow flexion.  

2.2 Methods 

2.2.1 Human Participants: 

Ten nonimpaired individuals (four females, six males, average age 22.7 ± 2.5 years) and 

ten individuals with tetraplegia (three females, seven males, average age 39.9 ± 10 years, see 

Table 2-1) were recruited to participate in three sessions. Inclusion criteria were C5 to C6 level of 

cervical spinal cord injury, at least a year post-injury. Exclusion criteria included any 

contraindication to receiving TMS and the inability to generate a visible contraction of the biceps. 

Data from one participant with SCI (#10) was excluded from the data analyses because TMS was 
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unable to elicit moment twitches from the elbow flexors. Participants were screened to ensure 

that they were eligible to receive TMS and provided informed written consent. The study was 

approved by the Institutional Review Board of Virginia Commonwealth University and complied 

with the 2013 update of the Declaration of Helsinki. 

 

Table 2-1: Ten individuals with tetraplegia resulting from cervical SCI were recruited to participate. 
Maximum voluntary elbow moments presented here were measured at 90° of elbow flexion. 

      
Participant 

# 
Sex Age Injury 

Level 
ISNCSCI Time since 

SCI (years) 
Cause of SCI MVC (Nm) Medications 

1 F 52 C6 A 15 MVA 47.6 ± 1.89 BAC 
2 F 53 C6 D 7 Spinal Stenosis 57.2 ± 2.40 BAC 
3 M 42 C5 A 12 MVA 35.0 ± 1.93 BAC 
4 M 45 C6 D 5 Transverse Myelitis 52.4 ± 2.69 None 
5 F 54 C6 A 13 MVA 20.6 ± 2.27 BAC 

**6 M 34 C5 A 16 MVA 21.0 ± 1.59 BAC, OX 
**7 M 26 C6 A 6 Fall 80.7 ± 2.79 None 
**8 M 33 C5 D 3 MVA 93.6 ± 2.84 None 

9 M 32 C5 B 9 Fall 40.5 ± 1.68 None 
**10 M 28 C5 B 4 MVA 2 ± 0.07 BAC 

 

* ISNCSCI: International Standards for Neurological Classification of Spinal Cord Injury, MVA: Motor 
Vehicle Accident, BAC: Baclofen, OX: Oxybutynin 

** Completed 2 out of 3 sessions 

*** Excluded data 

 

2.2.2 Experiment Overview: 

In each session, participants completed trials to assess VATMS and VAPNS; three sessions 

were conducted in order to assess between-session repeatability in a common elbow angle (90°, 

elbow flexion-extension angle defined in accordance with the International Society of 

Biomechanics [131]. Sessions were separated by at least one day, with no more than 7 days 

between sessions. Each session consisted of up to three experimental blocks; one block of nine 
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MVC trials to assess VAPNS with the elbow positioned at 90° of flexion, one block to assess VATMS 

in 90⁰ elbow flexion, and one block to assess VATMS in either 45° or 120° elbow flexion. VATMS was 

not assessed at 45° and 120° in each session to minimize fatigue (i.e., the number of trials). After 

three sessions, each participant had completed one assessment of VATMS at 45°, one assessment 

of VATMS at 120°, and three assessments of VATMS and VAPNS at 90° (Figure 2-1, B). The order of 

VATMS blocks was randomized.  
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Figure 2-1: A. Participants received visual feedback of their voluntary elbow flexion moment as a 
thermometer-like gauge. VATMS trials were used to estimate the resting twitch via linear regression of 
superimposed twitch moments relative to the voluntary moments. Biceps and triceps EMG data were 
analyzed to calculate the MEP ratio for each trial. B. Experimental protocol schematic representing the 
randomized voluntary activation blocks (9 VAPNS trials and 24 VATMS trials) completed by the participants 
in one session; each participant completed three sessions in total. 
 

Before each block, participants followed a quick warm-up and familiarization phase, 

which consisted of repeated, brief, submaximal contractions for approximately two minutes. 
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Participants then performed three maximum voluntary contractions (MVCs) at each isometric 

elbow angle. For all trials, the participant’s forearm was positioned in a custom brace attached 

to a six degree-of-freedom load cell (Model 30E15A4-I40-EF-100L, JR3, Woodland, CA) (Figure 2-

1, A). Force and moment data were sampled at 2000 Hz. EMG data (Delsys Trigno Wireless 

Sensors) were also sampled at 2000 Hz and bandwidth limited to 20-450 Hz. Cambridge Electronic 

Design software and acquisition system were used to collect the data (CED Spike 2 and 1401). 

The brachial plexus (i.e., Erb's point) was stimulated to measure both biceps and triceps 

maximal m-wave (Mmax) using a cathode on the skin in the supraclavicular fossa and an anode 

on the acromion process. Current pulses were delivered as a singlet (0.2 ms duration, SCI group 

ranged 80-200 mA, nonimpaired group ranged 80-180 mA, DS7AH, Digitimer, UK). Stimulus 

intensity was determined by increasing the stimulation current in 10 mA increments until the m-

wave peak to peak amplitude reached a plateau [132]. Ten stimuli were delivered at 120% of the 

Mmax threshold stimulus intensity, separated by 5 s. This procedure was performed at each 

elbow angle. 

2.2.3 Maximal Voluntary Contractions: 

Participants performed three MVCs of the elbow flexors for three seconds while receiving 

real-time visual moment feedback and verbal encouragement (Figure 2-1, A). Each maximum 

effort was separated by at least 90 seconds of rest. The participant’s MVC was calculated for each 

effort as the mean elbow moment maintained over ± 250 ms from the maximal moment 

achieved. The mean elbow flexion moment of three MVC trials was used for subsequent trials 

during which participants were asked to generate a voluntary moment to match a percentage of 

their MVC moment. 

2.2.4 Assessment of VAPNS: 

Participants completed trials during which motor point electrical stimulation was 

superimposed on isometric MVCs in elbow flexion to estimate VAPNS. For motor point stimulation, 

stimulating electrodes were placed over the biceps belly (anode) and distal tendon (cathode). 
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Stimulus intensity was determined by increasing the stimulation current in 10 mA increments 

until the moment response in the resting biceps reached a plateau. The threshold current (i.e., 

current corresponding to the start of the moment plateau) was recorded and motor point 

stimulation intensity was set at 130% of the threshold current [81]. Stimulation intensity ranged 

from 80 to 180 mA across both groups. Using visual moment feedback, participants were 

instructed to perform nine MVCs in elbow flexion during which stimulation was superimposed 

during and after the voluntary effort. Motor point stimulation with a single pulse (0.2 ms width, 

DS7AH, Digitimer, UK) was delivered after the participant maintained a voluntary moment ≥ 95% 

of their MVC moment for 0.5 seconds. A second stimulus event (same intensity and pulse width) 

was delivered 3 seconds after the first stimulus event while the arm was at rest. Each trial was 

followed by at least 90 seconds of rest to mitigate fatigue.  

2.2.5 Assessment of VATMS: 

Single pulse TMS was delivered using a 126 mm diameter double cone coil (Magstim DCC) 

and Magstim BiStim2 stimulator. This coil was selected to ensure that motor thresholds could be 

found in all participants with SCI since compared to the figure-of-eight coil, the double cone 

results in lower motor thresholds [133]. Lower motor thresholds are beneficial in that they 

minimize the use of high stimulator intensities during VATMS blocks. The coil was held to induce a 

monophasic, posterior to anterior current across the central sulcus. Each session, motor cortex 

mapping was performed to obtain the location that evoked the largest peak-to-peak MEP in the 

biceps relative to the triceps at the lowest stimulation intensity [134]. This location was then 

marked on a cap secured to the participant’s head; subsequent stimuli were delivered at that 

location. Resting motor threshold (RMT) was then determined as the lowest stimulus intensity 

able to induce biceps MEPs ≥ 50 µV in at least 5 out of 10 stimuli [135]. RMTs were used to 

normalize stimulation intensity to account for individual responsiveness to TMS in a given 

session. That way, each participant received the same relative amount of stimulation. In each 

session, participants completed a VATMS block with their elbow flexed at 90°. Participants also 

completed a block in which isometric arm posture was modified to be either 45° or 120° of elbow 

flexion. Modified elbow flexion conditions were presented in a randomized order. Each block 
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consisted of a set of 24 isometric contractions of the elbow flexors in randomized moment-

matching trials of 0, 50, 75, or 100% MVC (6 of each effort level). Trials were separated by at least 

90 seconds of rest to mitigate fatigue (Figure 2-1, B). A TMS pulse corresponding to 120% RMT 

was delivered when the participant achieved and maintained ± 2.5 percent of the target effort 

level for a sustained 0.5s. TMS intensity ranged from 31-76% of the maximal stimulator intensity 

(MSO) in the SCI group and 24-89% MSO in the nonimpaired group. Stimulation intensity was set 

using individual’s RMT rather than based on the optimization of the MEP ratio as the purpose of 

this study was to observe an effect of the elbow flexion angle on the MEP ratio. Thus, using the 

MEP ratio as a parameter to set the TMS intensity would have been inappropriate. 

2.2.6 Data Analysis: 

VAPNS and VATMS superimposed twitch moments were computed for each trial as the 

difference between the maximum moment occurring within 150 ms after the stimulus event and 

the pre-stimulus moment. The pre-stimulus moment was computed as the maximal 10 ms 

moving average moment maintained within 50 ms prior to the stimulus event. The potentiated 

resting twitch moment was also computed for each motor point stimulation trial. VAPNS was 

calculated using Equation 1 from Allen et al. [81]: 

 

VAPNS = ቂ1 −  
ୗ୳୮ୣ୰୧୫୮୭ୱୣୢ ୘୵୧୲ୡ୦ ୑୭୫ୣ୬୲

୔୭୲ୣ୬୲୧ୟ୲ୣୢ ୖୣୱ୲୧୬୥ ୘୵୧୲ୡ୦ ୑୭୫ୣ୬୲
ቃ × 100     (1) 

 

To compute VATMS, the resting twitch was estimated via linear regression using the 

methodology described by Todd et al. (2003). The linear regression function was derived from 

the amplitude of the superimposed twitch moments and the corresponding voluntary elbow 

moments at 50, 75, and 100% MVC (Figure 2-2, B). VATMS was calculated using Equation 2 from 

Todd et al. [89]: 
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VATMS = ቂ1 −  
ୗ୳୮ୣ୰୧୫୮୭ୱୣୢ ୘୵୧୲ୡ୦ ୑୭୫ୣ୬୲

୉ୱ୲୧୫ୟ୲ୣୢ ୖୣୱ୲୧୬୥ ୘୵୧୲ୡ୦ ୑୭୫ୣ୬୲
ቃ × 100     (2)  

 

In the nonimpaired group, VATMS blocks with poor linearity between voluntary moment 

and superimposed twitch were excluded (r < 0.8) similar to previous work assessing VATMS in 

nonimpaired individuals; 7 out of 50 blocks were excluded for this reason [102]. In the SCI group, 

VATMS blocks with poor linearity were not excluded as linearity was consistently poor (r < 0.8). 

MEP magnitude was calculated as the peak to peak amplitude of the EMG wave within a 50 ms 

window following stimulation. All MEPs recorded during a given session were normalized to the 

Mmax (biceps or triceps as appropriate, 90°, 120° or 45° elbow flexion as appropriate) value for 

the corresponding session in order to account for individual responsiveness to peripheral 

electrical stimulation and EMG sensor placement [136], [137]. The biceps/triceps MEP ratio for 

each trial was calculated as a percentage of the normalized biceps MEP divided by the normalized 

triceps MEP. To determine the effect of the MEP ratio on VATMS, MEP ratios were averaged across 

effort levels to represent its overall magnitude throughout any given block for each participant. 

Example EMG data, elbow flexion moment traces, and linear regression of superimposed twitch 

and voluntary moment from one VATMS block (90° elbow flexion) of representative nonimpaired 

and SCI participants are presented in Figure 2-2 and Figure 2-3, respectively. 
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Figure 2-2: Example data from a nonimpaired participant. A. Moment traces collected during a VATMS block 
at 90° elbow flexion. B. Linear regression between SIT and Voluntary contraction moment obtained from 
the same VATMS VATMS block. C. EMG signals showing the biceps and triceps MEPs collected during the 
VATMS blocks at each effort level (6 MEPs are plotted per graph). Orange, red, and dark red traces indicate 
50, 75, and 100% effort levels, respectively. 
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Figure 2-3: Example data from a SCI participant. A. Moment traces collected during a VATMS block at 90° 
elbow flexion. B. Linear regression between SIT and Voluntary contraction moment obtained from the 
same VATMS block. C. EMG signals showing the biceps and triceps MEPs collected during the VATMS blocks 
at each effort level (6 MEPs are plotted per graph). Orange, red, and dark red traces indicate 50, 75, and 
100% effort levels, respectively. 
 
 

2.2.7 Statistical Analysis: 

A linear mixed effect model was analyzed to determine the effect of independent 

variables on VATMS (the dependent variable). The independent variables were: isometric elbow 

flexion angle, block mean biceps/triceps MEP ratio, linearity of the voluntary moment and 

superimposed twitch relation (r-value), and RMT. In addition to excluding blocks with low 
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linearity (r < 0.8) in the nonimpaired group, we included linearity as an independent variable to 

test whether smaller (0.8 < r < 0.99) variations in linearity affected the estimation of VATMS. RMTs 

were added to the model as a continuous covariate in order to test whether individual 

responsiveness to TMS (as represented by RMTs) had an effect on VATMS. A random effect was 

added to account for individual differences that resulted in each participant being assigned a 

different intercept. P-values were obtained via the Kenward-Roger approximation for degrees-

of-freedom implemented for linear mixed effect models. Comparisons were reported with 

respect to 90° elbow flexion, which is the common elbow angle used in previous studies 

investigating VATMS of the elbow flexors [109], [116]. The null hypotheses were that the 

independent variables (elbow angle, MEP ratio, linearity, and RMT) do not have an effect on 

VATMS. The alternative hypotheses were that increased elbow angle increases VATMS and 

decreased elbow angle decreases VATMS; increased MEP ratio increases VATMS and decreased MEP 

ratio decreases VATMS, decreased linearity leads to lower VATMS, and lower RMT increases VATMS. 

A two-way ANOVA with repeated measures and a Fisher’s least significant difference 

post-hoc test were used to compare the biceps/triceps MEP ratio across elbow angles for each 

target effort level. The same statistical test was performed to determine the effect of elbow angle 

on normalized MEP amplitudes of the biceps and triceps separately. The null hypothesis was that 

elbow angle does not have an effect on the MEP ratio or the individual biceps and triceps MEPs. 

The alternative hypothesis was that the MEP ratio increases with greater elbow flexion angle, 

across all effort levels. Another two-way ANOVA with no multiple comparisons was used to 

compare the linearity of the voluntary moment and superimposed twitch relation between the 

nonimpaired and SCI groups; this comparison was tested prior to excluding low linearity blocks 

in the nonimpaired data. The null hypothesis was that there are no differences in linearity 

between groups. The alternative hypothesis was that linearity is lower in the SCI group compared 

to the nonimpaired group. Intraclass correlation coefficients [138] were determined to assess the 

inter-session repeatability of VAPNS and VATMS. A two-way mixed model, ICC(3,k) was used where 

sessions are considered fixed effects and participants were treated as random effects. 

Coefficients of variation (SD/mean) were computed per participant and per session then 
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averaged to represent within-session variability of VATMS measures. All data and statistical 

analyses were performed in Matlab (MathWorks, Inc, Natick, MA), R (R Core Team, Vienna, 

Austria) and Prism (GraphPad Software, La Jolla California USA) with custom-written code. Tests 

were evaluated at a significance level corresponding to p < α = 0.05. 

2.3 Results 

Across all SCI participants, mean VATMS at 90⁰ elbow flexion was 93.7 ± 6.3%, 92.6 ± 10.2%, 

and 97.5 ± 2.4% for sessions 1, 2, and 3, respectively. Mean VATMS was 95.2 ± 6.3% at 120⁰ elbow 

flexion, and 94.2 ± 5.6% at 45⁰ elbow flexion (Figure 2-4). Mean VAPNS was 95.9 ± 4.3%, 94.1 ± 

10.8%, and 97.9 ± 2.6% for sessions 1, 2, and 3, respectively. Across all nonimpaired participants, 

mean VATMS at 90⁰ elbow flexion was 92.1 ± 6.8%, 94.6 ± 7.3%, and 93.8 ± 7.1% for sessions 1, 2, 

and 3, respectively. Mean VATMS was 90.3 ± 7.5% at 120⁰ elbow flexion, and 89.6 ± 9.9% at 45⁰ 

elbow flexion (Figure 2-4). Mean VAPNS was 98.0 ± 3.2%, 95.9 ± 4.4%, and 97.8 ± 3.3% for sessions 

1, 2, and 3, respectively. A summary of all key measures is presented in Appendix A. 

Supplementary and raw data can be accessed online: https://osf.io/r2sa6/. 
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Figure 2-4: VATMS measures collected at each stimulation conditions in nonimpaired and SCI participants. 
Grey points represent individual mean VATMS (per block) and VATMS ranged from 67 to 99%. Error bars 
represent the standard error of the mean. 
 

2.3.1 Effect of Elbow Angle on the Biceps/Triceps MEP Ratio: 

In the SCI group, across all elbow angles, the biceps/triceps MEP ratio increased from 0 

to 50% MVC, then remained unchanged from 50% to 100% MVC [p < 0.001]. No differences in 

MEP ratio were found across elbow angles at any effort level (Figure 2-5, B). 

In the nonimpaired group, across all elbow angles, the biceps/triceps MEP ratio increased 

from 0 to 50% MVC, then decreased from 50% to 100% MVC [p < 0.001]. At rest (i.e., 0% MVC), 

there were no differences in the biceps/triceps MEP ratio due to the elbow angle. At 50% MVC, 

the biceps/triceps MEP ratio was greater in 120⁰ flexion relative to 90⁰ flexion [Figure 2-6, B, p = 

0.033]. At 75% MVC, biceps/triceps MEP ratio in 120⁰ was greater relative to 90⁰ flexion [p = 

0.009]. At 100% MVC, biceps/triceps MEP ratios did not differ across the elbow angles (Figure 2-

6, B). 
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Figure 2-5: A. Average biceps and triceps normalized MEPs (normalized to corresponding Mmax) in the 
SCI group. At high but submaximal effort levels, biceps MEPs were decreased at 45 and 120⁰ of elbow 
flexion compared to 90⁰. B. MEP ratio mean difference relative to 90⁰ in the SCI group. No differences 
were found. Errors bars show 95% confidence intervals. Asterisks indicate a significantly greater mean 
MEP ratio ([*] = p < 0.05, ([**] = p < 0.01) relative to the mean MEP ratio at 90⁰ elbow flexion. 
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Figure 2-6: A. Average biceps and triceps MEPs (normalized to corresponding Mmax) across elbow angles 
and effort levels in the nonimpaired group. Biceps MEPs increased significantly from rest to 50% MVC 
then reached a plateau while triceps MEPs increased linearly with effort. Error bars represent 95% 
confidence intervals. B. MEP ratio mean difference relative to 90⁰ of elbow flexion across effort levels in 
the nonimpaired group. Asterisks indicate a significantly greater mean MEP ratio ([*] = p < 0.05, ([***] = 
p < 0.001) relative to the mean MEP ratio at 90⁰ elbow flexion. 
 

2.3.2 Effect of Independent Variables on VATMS: 

In the SCI group, the main effect of elbow angle on VATMS was not significant in the linear 

mixed-effects model [45⁰: t = -0.233, p = 0.82, 120⁰: t = -0.038, p = 0.97]. The main effect of the 

linearity of the voluntary moment and SIT relation on VATMS was significant in the linear mixed-

effects model. For each 0.1 increase in linearity (for 0 < r < 0.99), VATMS was predicted to increase 
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by 9.31% [t = 7.909, p < 0.0001]. Interaction analyses showed that this effect was dependent of 

the elbow flexion angle. Further analyses revealed that the mean MEP ratio and RMT had no 

significant main effects on VATMS as well as no interaction effects with elbow flexion angle. 

In the nonimpaired group, the main effect of elbow angle on VATMS and the interaction 

effect of elbow angle and biceps/triceps MEP ratio on VATMS were significant in the linear mixed-

effects model. VATMS assessed at an isometric elbow angle of 45⁰ flexion (i.e., the more extended 

elbow angle) was predicted 14.6 ± 4.2% lower relative to VATMS assessed in 90⁰ elbow flexion [t 

= -3.46, p = 0.0019]. This effect was dependent on the MEP ratio. For each unit increase in the 

biceps/triceps MEP ratio, VATMS at 45⁰ elbow flexion was predicted to increase by 2.84% [t = 3.08, 

p = 0.0035]. The main effect of RMT on VATMS was significant. The model predicted that VATMS 

would decrease 1.82% for each 10% maximum stimulator output (MSO) increase in RMT [t = 2.39, 

p = 0.033]. Interaction analyses showed that this effect was independent of the elbow angle, 

linearity, and MEP ratio. The main effect of the linearity of the voluntary moment and SIT relation 

on VATMS was significant. For each 0.1 increase in linearity (for 0.8 < r < 0.99), VATMS was predicted 

to increase by 4.4% [t = 2.34, p = 0.023]. This effect was independent of the elbow angle, MEP 

ratio, and RMT. 

2.3.3 Repeatability and Variability of VA Estimates: 

In the SCI group, an ICC of 0.78 [p = 0.004] resulted from the inter session analysis of VAPNS 

assessed in 90⁰ elbow flexion. An ICC of 0.75 [p = 0.008] resulted from the inter session analysis 

of VATMS assessed in 90⁰ elbow flexion. (Figure 2-7, B). Mean within-session coefficients of 

variation for VATMS were 6.9 ± 7.4% at 90⁰ elbow flexion, 11 ± 17% at 120⁰ elbow flexion, and 6.3 

± 6.2 % at 45⁰ elbow flexion 

In the nonimpaired group, an ICC of 0.64 [p = 0.03] resulted from the inter session analysis 

of VAPNS assessed in 90⁰ elbow flexion. An ICC of 0.66 [p = 0.03] resulted from the inter session 

analysis of VATMS assessed in 90⁰ elbow flexion. (Figure 2-7, A). Mean within-session coefficients 
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of variation for VATMS were 6.2 ± 5% at 90⁰ elbow flexion, 14.7 ± 10.5% at 120⁰ elbow flexion, and 

5.8 ± 4.9 % at 45⁰ elbow flexion. 

 

Figure 2-7: A. Interclass correlation coefficients (ICCs) suggest that VAPNS (left) and VATMS (right) are 
repeatable at 90⁰ of elbow flexion across sessions in the nonimpaired group. B. ICCs suggest that VAPNS 
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and VATMS are repeatable at 90⁰ of elbow flexion across sessions in the SCI group. Each data point 
represents the mean VA estimate for a participant and session.  
 

2.3.4 Effect of Elbow Angle on Biceps MEPs: 

In the SCI group, no differences in biceps MEPs due to elbow angle were found at rest. At 

50% MVC, 120⁰ of elbow flexion [-174.9% Mmax, p = 0.014] and 45⁰ of elbow flexion [-178.8% 

Mmax, p = 0.008] decreased biceps MEPs compared to 90⁰ elbow flexion. At 75% MVC, 120⁰ of 

elbow flexion [-156.8% Mmax, p = 0.027] and 45⁰ of elbow flexion [-167.1% Mmax, p = 0.014] 

decreased biceps MEPs compared to 90⁰ elbow flexion (Figure 2-5, A). 

In the nonimpaired group, at 0% MVC (rest), there were no differences in biceps MEPs 

due to elbow angle. At 75% MVC, 120⁰ of elbow flexion increased normalized biceps MEPs 

[+11.3% Mmax, p = 0.04] compared to 90⁰ elbow flexion (Figure 2-6, A). 

2.3.5 Effect of Elbow Angle on Triceps MEPs: 

In the SCI group, at rest, 45⁰ of elbow flexion led to lower triceps MEPs compared to 90⁰ 

of elbow flexion [-31.4% Mmax, p = 0.017]. At 50% MVC, 45⁰ of elbow flexion decreased triceps 

MEPs as well [-26.6% Mmax, p = 0.04]. At 75% MVC, 45⁰ of elbow flexion decreased triceps MEPs 

as well [-31.5% Mmax, p = 0.016]. At 100% MVC, 120⁰ of elbow flexion [-27.1% Mmax, p = 0.04] 

and 45⁰ of elbow flexion [-36.7% Mmax, p = 0.005] decreased triceps MEPs compared to 90⁰ 

elbow flexion (Figure 2-5, A).  

In the nonimpaired group, at rest, there were no differences in triceps MEPs due to elbow 

angle. At 50% MVC, 120⁰ of elbow flexion increased normalized triceps MEPs [+9.8% Mmax, p = 

0.01] compared to 90⁰. Similarly, at 75% MVC, 120⁰ of elbow flexion increased normalized triceps 

MEPs [+18.4% Mmax, p < 0.0001] compared to 90⁰. At 100% MVC, 120⁰ of elbow flexion 

increased normalized triceps MEP amplitudes [+18.1% Mmax, p < 0.0001] compared to 90⁰ of 

elbow flexion (Figure 2-6, A). 

2.3.6 Post-hoc Evaluation of Biceps/Triceps MEP Ratio and Linearity:  
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Post-hoc evaluation was performed to further analyze the biceps/triceps MEP ratio. In 

both the nonimpaired and SCI groups, the more extended elbow angle (45⁰) yielded to the 

highest percent of trials meeting the guideline criteria from Todd et al. (biceps MEP ≥ 50% Mmax 

and triceps MEP ≤ 20% Mmax) and our adjusted condition of a MEP ratio greater than 2.5 (Table 

2-2). Across both groups and all elbow angles, the MEP ratio > 2.5 condition was met more often 

than the Todd et al. criteria. Finally, the linearity of the voluntary moment and SIT moment 

relation was on average lower in the SCI group compared to the nonimpaired group across elbow 

angles (F (1, 86) = 6.208, p = 0.015)(Table 2-2). 

 

Table 2-2: Percent trials (between 50%-100% MVC) meeting the Todd et al. criteria (biceps MEP ≥ 50% 
Mmax and triceps MEP ≤ 20% Mmax), MEP ratio > 2.5 (where Biceps MEP is 2.5 larger than triceps MEP) 
and the average linearity of the voluntary moment and SIT moment. * indicates statistical differences (p 
< 0.05). 
 

NONIMPAIRED 

ELBOW FLEXION 
ANGLE 

Todd et al. criteria 
(% met) 

MEP ratio > 2.5 (% 
met) 

Mean 
linearity 

Total # of 
trials 

90⁰ 34.1 60.2 0.87 540 

120⁰ 39.4 55.6 0.76 198 

45⁰ 46.7 77.8 0.86 180 

MEAN 40.1 64.5 0.83* 918 

SCI 

90⁰ 14.4 52.8 0.81 432 

120⁰ 16.7 54.9 0.81 162 

45⁰ 35.7 56.9 0.59 144 

MEAN 22.3 54.9 0.73* 738 

 



59 

 

 

 

2.4 Discussion 

Our innovative approach was to evaluate the modulation of isometric elbow angle as a 

strategy to improve the measurement of VATMS through increasing the biceps/triceps MEP ratio. 

The objectives of this study were to determine the effect of elbow angle on: 1) the biceps/triceps 

MEP ratio across a range of voluntary efforts, and 2) the measurement of VATMS in the elbow 

flexors of nonimpaired and individuals with tetraplegia. We hypothesized that the biceps/triceps 

MEP ratio would be greatest in a more flexed elbow angle (120⁰ flexion) at each level of voluntary 

effort. In the SCI group, this hypothesis was not supported. In the nonimpaired group, this 

hypothesis was only supported at the 50% and 75% MVC effort levels (i.e., not at 100% MVC). 

Further, we hypothesized VATMS would depend on the biceps/triceps MEP ratio. This hypothesis 

was only supported in the more extended elbow angle (45⁰ flexion) of nonimpaired participants. 

Our results indicate that the bicep/triceps MEP ratio is not modulated by elbow angle across the 

full range of voluntary efforts in nonimpaired and SCI participants and does not improve the 

estimation of VATMS. Finally, both VATMS and VAPNS measured in nonimpaired participants and 

individuals with tetraplegia at 90⁰ elbow flexion were repeatable across three days. 

In the nonimpaired group, the more extended elbow angle led to lower VATMS measures 

compared to 90⁰ elbow flexion; this effect was dependent on the mean biceps/triceps MEP ratio 

(for each given block). In the more extended arm posture, a large biceps/triceps MEP ratio was 

associated with a greater VATMS estimate. This suggests a potential small effect of better targeting 

the biceps relative to the triceps with TMS, but considering this effect was only seen in one 

condition, other factors affecting VATMS estimation may be more important. The decreased VATMS 

in the more extended elbow angle is not due to changes in the moment-generating capacity of 

the biceps and triceps with elbow angle because VA is expressed as a ratio of a superimposed 
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moment response to TMS over the estimated resting moment response to TMS. Thus, VA is 

normalized by the moment-generating capacity at a given elbow angle.  

Although the biceps/triceps MEP ratio may reflect the focality of cortical stimulation 

when targeting the biceps, its influence on the estimation of VATMS is limited. In order for the 

biceps/triceps MEP ratio to improve VATMS estimation, the ratio must be increased across the 

range of effort levels needed to assess VATMS (i.e., 50, 75 and 100% MVC). In the more flexed 

elbow angle (120⁰) of nonimpaired participants, we observed increased MEP ratios at only 50% 

and 75% MVC. Furthermore, the increased MEP ratio in the more flexed elbow was not 

associated with a change in the magnitude of VATMS. The increased biceps/triceps MEP ratio in 

the more flexed posture occurred primarily via biceps MEP facilitation (Figure 2-6, A). On the 

other hand, in the SCI group, the modified elbow angle conditions led to lower biceps and triceps 

MEPs (Figure 2-5). However, this effect did not translate to MEP ratio modulation. Changes in 

MEP amplitudes due to isometric joint angle are mostly attributed to spinal mechanisms [112], 

[139], namely the influence of afferent feedback provided to the spinal cord [110]. However, 

central influence also plays a role [111]. In this study, we modulated the elbow angle while 

keeping other posture-related parameters (i.e. forearm orientation, shoulder and head position) 

unchanged. Therefore, in the nonimpaired group, the increased biceps MEP ratio was likely due 

to a combination of central and spinal facilitatory mechanisms affecting the shortened biceps. 

Additionally, triceps MEP facilitation was higher at 100% MVC compared to 50-75% MVC whereas 

biceps responsiveness to TMS reaches its peak early, at high but submaximal voluntary 

contractions, then deteriorates at near-tetanic state of the muscle [140]. This may explain why 

we could detect an increase in MEP ratio only at high but submaximal biceps recruitment. Finally, 

post hoc analyses of the MEP ratio were used to quantify how often a satisfactory MEP ratio 

condition was met. The criteria recommended by Todd et al. (biceps MEP ≥ 50% Mmax and 

triceps MEP ≤ 20% Mmax) was met more often in the nonimpaired group (40% of trials) 

compared to the SCI group (22% of trials) which supports previous findings that the optimal 

stimulation conditions are more difficult to achieve in patient populations [88], [97], [102]. A 

modified interpretation of the Todd criteria, where the biceps MEP is 2.5 larger than the triceps 
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MEPs, was met more often in both groups (Table 2-2). This condition could be used as a less 

restrictive way of monitoring stimulation quality during VATMS trials in patient populations where 

Mmax measures are low [141] and triceps co-activation more common [33], [142]. However, 

elbow angle modulation only marginally improved the frequency in which these conditions were 

met and ultimately did not improve the measurement of VATMS. 

Good repeatability of VA baseline measures (i.e., pre-therapy) is critical for its utility in 

informing rehabilitation. Here, we established the repeatability of VATMS and VAPNS measured at 

90⁰ of elbow flexion in participants with SCI. In nonimpaired populations, the repeatability of 

VATMS and VAPNS measured at 90⁰ across several sessions was consistent with previous reports in 

nonimpaired populations suggesting moderate/good reliability of these measures [143], [144]. 

Inter-session repeatability of VATMS had previously been established across two days in the elbow 

flexors [109], wrist extensors [145] and knees extensors [146]. VAPNS assessed in the elbow flexors 

is reliable across five days [147]. While VATMS is often used in the context of fatiguing protocols 

[105], [116], this study focused on evaluating its potential to be used as a monitoring tool in 

patient populations. Thus, our experimental protocol was modified, compared to previous work 

[109], to include 90 seconds resting periods between every voluntary contraction trial in order 

to facilitate task completion and prevent fatigue. Here, we confirmed that our modified protocol 

yielded repeatable VATMS measures in both groups. Furthermore, while within-session variability 

was small for VATMS at 45⁰ (nonimpaired: Coefficient of Variation (CV) = 5.8 ± 4.9 %, SCI: CV = 6.3 

± 6.2 %) and 90⁰ (nonimpaired: CV = 6.2 ± 5%, SCI: CV = 6.9 ± 7.4 %) of elbow flexion and VAPNS, 

the more flexed elbow flexion presented higher variability (nonimpaired: CV = 14.7 ± 10.5%, SCI: 

CV = 11 ± 17%). 

VATMS measures collected at 90° of elbow flexion were underestimated compared to 

VAPNS in both nonimpaired and SCI participants. Underestimation of VATMS compared to VAPNS 

has been reported in both unfatigued and fatigued biceps [89], [116] and remains a 

methodological challenge when estimating VATMS [102]. Poor linearity of the voluntary moment 

and SIT relation may explain artificially low estimation of VATMS. In this study, modulating the 
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elbow angle had no impact on linearity. In the nonimpaired group, we identified a positive 

association between linearity and the magnitude of VATMS, even amongst blocks with satisfactory 

linearity (r > 0.8). In the SCI group, higher linearity was also associated with higher VATMS 

estimates. Moreover, participants with tetraplegia had on average lower linearity (0.73 vs 0.83) 

compared to nonimpaired participants. Increased muscle spasticity [31] and fatigability [32] 

following SCI may contribute to this outcome. Neuromuscular fatigue is associated with a 

decrease in linearity of the voluntary moment and SIT relation [116]. This suggests that fatigue 

may have a non-linear effect on the neuromuscular system across the range of voluntary effort. 

As the method used to estimate VATMS relies on the assumption of linearity between voluntary 

moment and the SIT, the validity of the measurement may be hindered in a context that affects 

linearity, such as fatigue. Together, this implies that VATMS is sensitive to the linearity of the 

voluntary moment and SIT relation in nonimpaired participants, even when linearity is high (0.8< 

r < 0.99), and in tetraplegia, where high linearity is more difficult to achieve.  

A potential limitation of our approach is that we excluded blocks from the data analysis 

demonstrating poor linearity in the nonimpaired group (r < 0.8). Although excluding data because 

of poor linearity is a common approach [102], [148], [149], our exclusion rate was higher (14% 

versus 7-9%), which may be related to our modified experimental protocol featuring longer 

blocks, including 90 seconds resting periods between each trial (one per effort level). The 

modified protocol with frequent breaks was intended to minimize fatigue in the SCI group 

(Appendix I, Figure 2-9). We did not exclude blocks in the SCI group in order to preserve data 

since linearity was lower overall compared to the nonimpaired group. However, this likely did 

not affect our results since we did not compare VATMS and MEP data between groups. Another 

potential limitation of VATMS is the high variability of MEPs [79] that depends on the levels of 

muscle activation [49]. MEPs indicate how the corticomotor pathway responds to cortical stimuli. 

Thus, MEP variability may translate to SIT moment variability, which subsequently affects VATMS. 

A third limitation is that we normalized all MEPs to the Mmax collected at the start of a session 

to allow comparison of MEPs between participants and across days. However, Mmax can 

decrease over the course of a session despite constant isometric posture [150], [151] and is 
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sensitive to the level of voluntary contraction [152]. In order to limit the number of stimulus 

events, we collected Mmax at rest while MEPs were collected at various levels of muscle 

activation.  

Our results indicate that modulating the elbow flexion-extension angle does not improve 

the measurement of VATMS in the biceps of nonimpaired individuals and individuals with 

tetraplegia. The biceps/triceps MEP ratio was not modulated by elbow angle across the full range 

of voluntary efforts in nonimpaired and SCI participants, and did not uniformly impact VATMS. 

Thus, a focus on increasing the biceps/triceps MEP ratio through modulation of the elbow angle 

does not further improve estimation of VATMS. In nonimpaired participants, VATMS was sensitive 

to elbow flexion angle which suggests that elbow angle should be carefully monitored and 

reproduced across trials, participants, and sessions when assessing VATMS. Finally, VATMS was 

sensitive to small changes in the linearity of the voluntary moment and SIT relation. In SCI 

participants, linearity was lower compared to nonimpaired which poses an additional challenge 

in the estimation of VATMS in individuals with tetraplegia. As modulating elbow flexion did not 

affect linearity of the voluntary moment and SIT relation, further research is needed to determine 

whether VATMS is a viable assessment of neuromuscular function in individuals with SCI. 
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2.5 Appendix I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-3: Data summary presenting all key measures collected on nonimpaired participants. When 
applicable, measures are presented as mean ± standard deviation. 
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%

 VA
PN

S  
Potentiated Tw

itch (N
m

) 
RM

T (%
M

SO
) 

N
onim

paired 
Session 1 

Session 2 
Session 3 

Session 1 
Session 2 

Session 3 
Session 1 

Session 2 
Session 3 

1 (M
) 

99.5 ± 1.5 
99.4 ± 1.24 

96.8 ± 5.04 
11.5 ± 4.2 

14 ± 0.75 
6.2 ± 0.56 

60 
51 

50 
2 (F) 

99.9 ± 0 
95.3 ± 6.04 

95.1 ± 3.7 
4.2 ± 0.45 

4.1 ± 2.92 
4.3 ± 0.24 

21 
35 

37 
3 (F) 

99.9 ± 0.25 
99.7 ± 0.8 

99.4 ± 0.93 
4.8 ± 0.35 

5.2 ± 0.77 
3.7 ± 0.51 

53 
21 

20 
4 (M

) 
Excluded 

Excluded 
Excluded 

N
/A

 
N

/A
 

N
/A

 
71 

53 
46 

5 (M
) 

98.7 ± 2.6 
98.7 ± 1.9 

97.9 ± 2.76 
15.2 ± 

12.2 ± 
14.4 ± 

48 
74 

74 
6 (M

) 
94.4 ± 4.9 

94.8 ± 5.6 
95.6 ± 4.3 

14.5 ± 
10.3 ± 

12.6 ± 
40 

56 
50 

7 (F) 
94.2 ± 3.4 

98.8 ± 2.52 
97.0 ± 3.2 

5.2 ± 0.5 
6.3 ± 0.61 

3.4 ± 0.14 
37 

47 
47 

8 (M
) 

97.9 ± 4.1 
98.8 ± 1.9 

99.9 ± 0.05 
11 ± 2.35 

8.7 ± 0.84 
10 ± 1.01 

37 
47 

39 
9 (F) 

99.6 ± 0.9 
99.8 ± 0.4 

99.5 ± 0.82 
5.5 ± 0.63 

4.8 ± 0.63 
4.7 ± 0.26 

34 
33 

34 
10 (M

) 
98.8 ± 2.8 

98.2 ± 3.0 
99.1 ± 1.25 

8.4 ± 0.64 
8.5 ± 0.62 

12.3 ± 
51 

32 
32 

M
ean 

98.0 ± 3.2 
95.9 ± 4.4 

97.8 ± 3.3 
9 ± 4.04 

8.5 ± 3.4 
8.1 ± 4.14 

45.2 
44.9 

42.9 

 

90˚ elbow
 flexion 

M
VC (N

m
) 

%
VA

TM
S  

Est. Resting Tw
itch (N

m
) 

N
onim

paired 
Session 1 

Session 2 
Session 3 

Session 1 
Session 2 

Session 3 
Session 1 

Session 2 
Session 3 

1 (M
) 

58.7 ± 1.68 
59.1 ± 2.03 

49 ± 1.26 
97.6 ± 4.81 

98.8 ± 3.04 
86.8 ± 3.55 

12.8 
11.6 

12.5 
2 (F) 

19.5 ± 1.26 
24 ± 3.09 

29 ± 3.78 
Excluded 

Excluded 
99.9 ± 0 

N
/A 

N
/A 

2.9 
3 (F) 

27.6 ± 0.82 
39.6 ± 2.03 

41 ± 0.96 
83.4 ± 9.82 

90.1 ± 7.36 
94.9 ± 7.42 

6.52 
8.43 

10.9 
4 (M

) 
Excluded 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
25.8 

N
/A 

N
/A 

5 (M
) 

90.1 ± 3.93 
94.5 ± 6.12 

84 ± 2.49 
93 ± 4.19 

Excluded 
82.2 ± 4.07 

27.8 
N

/A 
11.9 

6 (M
) 

58.2 ± 0.9 
59.4 ± 1.4 

59.4 ± 1.25 
87.6 ± 3.97 

87.6 ± 8.18 
92.9 ± 4.52 

14.3 
16.3 

24.1 
7 (F) 

31.4 ± 1.93 
32.1 ± 2.24 

27.6 ± 1.7 
Excluded 

90.9 ± 10.28 
92.9 ± 7.84 

N
/A 

7.62 
4.62 

8 (M
) 

56 ± 2.24 
59.9 ± 1.01 

49.9 ± 4.01 
93.9 ± 5.27 

96.3 ± 4.39 
96.8 ± 3.71 

19.7 
17.9 

16.8 
9 (F) 

33.8 ± 2.31 
29 ± 0.81 

31.7 ± 0.73 
90.8 ± 5.2 

99.6 ± 1.06 
99 ± 1.5 

10.7 
9.07 

8.66 
10 (M

) 
47.1 ± 1.24 

58.9 ± 2.39 
56.1 ± 0.86 

98.5 ± 2.08 
99.2 ± 2.01 

98.6 ± 2.44 
14.5 

13.32 
12.19 

M
ean 

50.36 ± 23.13 
54.29 ± 22.56 

49.22 ± 18.01 
92.1 ±  6.82 

94.6 ± 7.32 
93.8 ± 7.1 

16.3 ± 7.3 
12.0 ± 3.9 

11.3 ± 6.3 
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120˚ elbow flexion MVC (Nm) % VATMS Est. Resting Twitch (Nm) RMT (%MSO) 

NONIMPAIRED 
    

1 (M) 48.5 ± 2.1 87.4 ± 12.17 8.99 50 

2 (F) 24.3 ± 2.13 Excluded N/A 35 

3 (F) 38.8 ± 1.46 97.3 ± 6.62 4.39 21 

4 (M) 58.4 ± 2.36 88.7 ± 8.25 N/A 46 

5 (M) 55.7 ± 2.36 76.1 ± 16.31 7.79 74 

6 (M) 41.3 ± 3.36 88.8 ± 11.43 9.02 64 

7 (F) 15.2 ± 1.15 Excluded N/A 47 

8 (M) 46.9 ± 1.48 87.8 ± 7.36 7.41 37 

9 (F) 21.4 ± 1.89 99.5 ± 1.16 7.26 34 

10 (M) 74.5 ± 1.8 96.8 ± 7.9 5.08 32 

Mean 42.5 ± 17.68 90.3 ± 7.53 7.82 44 
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Table 2-4: Data summary presenting all key measures collected on SCI participants. When applicable, 
measures are presented as mean ± standard deviation. 

 

45˚ elbow flexion MVC (Nm) % VATMS Est. Resting Twitch (Nm) RMT (%MSO) 

NONIMPAIRED 
    

1 (M) 56.2 ± 1.39 78.4 ± 5.95 11.13 50 

2 (F) 17 ± 3.03 Excluded N/A 60 

3 (F) 25 ± 1.74 99.4 ± 1.55 4.94 21 

4 (M) 63.9 ± 3.22 90.2 ± 5.62 N/A 53 

5 (M) 75.8 ± 1.89 78 ± 12.15 15.01 74 

6 (M) 57.6 ± 1.25 79.1 ± 4.98 15.74 56 

7 (F) 26.3 ± 2.56 83.1 ± 9.63 4.79 40 

8 (M) 56.8 ± 2.01 98.4 ± 2.47 17.09 39 

9 (F) 23 ± 1.26 99.9 ± 0 6.3 34 

10 (M) 56.7 ± 7.17 99.5 ± 1.14 23 32 

Mean 45.8 ± 20.05 89.6 ± 9.96 13.7 45.9 
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90˚ elbow
 flexion 

M
VC (N

m
) 

%
VA

TM
S  

Est. Resting Tw
itch (N

m
) 

SCI 
Session 1 

Session 2 
Session 3 

Session 1 
Session 2 

Session 3 
Session 1 

Session 2 
Session 3 

1 (F) 
90.84 ± 3.36 

78.28 ± 2.09 
62.95 ± 2.62 

88.97 ± 12.82 
88.56 ± 18.14 

98.39 ± 3.93 
5.39 

2.93 
8.68 

2 (F) 
57.2 ± 2.4 

105.23 ± 5.54 
102.37 ± 2.63 

92.36 ± 7.44 
92.14 ± 7.33 

94.92 ± 5.81 
9.12 

15.8 
6.28 

3 (M
) 

74.47 ± 3 
53.79 ± 2.37 

24.41 ± 0.33 
81.17 ± 18.86 

67.95 ± 16.48 
94.91 ± 4.05 

6.23 
7.14 

2.83 
4 (M

) 
22.9 ± 1.27 

22.05 ± 2.55 
26.16 ± 1.01 

N
/A 

90.49 ± 10.65 
99.99 ± 0 

1.84 
2.34 

1.92 
5 (F) 

20.61 ± 2.27 
15.68 ± 0.92 

15.46 ± 1.19 
95.77 ± 8.23 

99.08 ± 1.46 
99.99 ± 0 

3.61 
2.41 

4.88 
6 (M

) 
20.97 ± 1.59 

26.67 ± 0.91 
N

/A 
93.55 ± 7.72 

97.17 ± 3.61 
N

/A 
2.91 

8.27 
N

/A 
7 (M

) 
80.7 ± 2.79 

77.2 ± 2.77 
N

/A 
97.68 ± 3.6 

99.99 ± 0 
N

/A 
8.36 

7.31 
N

/A 
8 (M

) 
93.57 ± 2.84 

73.97 ± 4.02 
N

/A 
99.99 ± 0 

99.99 ± 0 
N

/A 
7.57 

7.66 
N

/A 
9 (M

) 
40.5 ± 1.68 

46.23 ± 2.46 
39.91 ± 1.5 

99.99 ± 0 
98.36 ± 4.02 

96.62 ± 4.17 
7.85 

6.72 
7.62 

10 (M
) 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
M

ean 
55.8 ± 30.4 

55.5 ± 30.47 
45.2 ± 32.53 

93.7 ± 6.33 
92.6 ± 10.21 

97.5 ± 2.34 
5.88 

6.73 
5.37 

 

 
%

VAPN
S 

Potentiated Tw
itch (N

m
) 

RM
T (%

M
SO

) 
SCI 

Session 1 
Session 2 

Session 3 
Session 1 

Session 2 
Session 3 

Session 1 
Session 2 

Session 3 
1 (F) 

92.93 ± 1.33 
96.7 ± 3.23 

99.99 ± 0 
15.29 ± 1.7 

12.33 ± 1.65 
5.37 ± 0.75 

63 
52 

52 
2 (F) 

92.09 ± 6.9 
95.7 ± 6.49 

99.06 ± 1.17 
6.21 ± 0.29 

5.77 ± 0.34 
4.59 ± 1.51 

34 
32 

28 
3 (M

) 
87.66 ± 22.41 

65.88 ± 37.29 
95.51 ± 6.75 

2.88 ± 0.3 
1.04 ± 0.21 

1.57 ± 0.3 
37 

39 
38 

4 (M
) 

94.88 ± 5.77 
92.71 ± 6.38 

93.93 ± 5.68 
10.18 ± 0.91 

6.6 ± 3.41 
8.07 ± 1.33 

43 
42 

36 
5 (F) 

99.66 ± 1.01 
99.27 ± 2.29 

99.99 ± 0 
9.36 ± 0.67 

2.27 ± 0.28 
3.97 ± 0.48 

49 
54 

52 
6 (M

) 
99.43 ± 1 

99.91 ± 0.23 
N

/A 
7.92 ± 0.88 

8.8 ± 0.65 
N

/A 
28 

30 
N

/A 
7 (M

) 
98.64 ± 1.54 

99.4 ± 1.18 
N

/A 
13.47 ± 1.42 

8.57 ± 0.82 
N

/A 
32 

27 
N

/A 
8 (M

) 
99.56 ± 1.12 

97.28 ± 2.59 
N

/A 
11.66 ± 1.46 

10.97 ± 0.91 
N

/A 
26 

32 
N

/A 
9 (M

) 
98.73 ± 2.64 

99.98 ± 0.06 
99.01 ± 1.62 

19.86 ± 1.81 
19.8 ± 4.53 

16.74 ± 3.21 
26 

26 
26 

10 (M
) 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
Excluded 

Excluded 
M

ean 
95.95 ± 4.3 

94.09 ± 10.84 
97.92 ± 2.56 

10.76 ± 5.06 
8.46 ± 5.64 

6.72 ± 5.34 
37.56 

37.11 
38.67 

 



69 

 

 

 

120˚ elbow flexion MVC (Nm) %VATMS Est. Resting Twitch (Nm) RMT (%MSO) 

SCI 
    

1 (F) 40.7 ± 2.39 99.99 ± 0 1.75 52 

2 (F) 55.44 ± 3.17 100 ± 0 2.84 32 

3 (M) 50.26 ± 2.17 90.05 ± 6.27 5.69 39 

4 (M) 10.09 ± 2.98 92.11 ± 19.22 0.22 36 

5 (F) 7.62 ± 0.43 99.99 ± 0 1.01 52 

6 (M) N/A N/A N/A N/A 

7 (M) 59.24 ± 0.99 99.99 ± 0 0.95 27 

8 (M) 34.95 ± 1.71 96.39 ± 8.83 3.32 32 

9 (M) 25.1 ± 1.83 82.76 ± 42.21 0.92 26 

10 (M) Excluded Excluded Excluded Excluded 

Mean 35.4 ± 19.78 95.2 ± 6.37 2.09 37 
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45˚ elbow flexion MVC (Nm) %VATMS Est. Resting Twitch (Nm) RMT (%MSO) 

SCI 
    

1 (F) 86.6 ± 10.31 86.91 ± 17.85 3.82 63 

2 (F) 96.86 ± 3.6 96.03 ± 6.6 6.94 28 

3 (M) 24.8 ± 0.55 91.1 ± 4.36 3.28 38 

4 (M) 23.19 ± 6.64 97.08 ± 4.82 3.21 42 

5 (F) 14.58 ± 0.74 99.99 ± 0 2.78 52 

6 (M) 26.12 ± 0.6 92.71 ± 5.9 7.54 30 

7 (M) 78 ± 1.45 98.68 ± 3.23 6.73 27 

8 (M) 71.48 ± 4.04 84.97 ± 8.41 8.52 32 

9 (M) 49.21 ± 0.9 99.99 ± 0 8.43 26 

10 (M) Excluded Excluded Excluded Excluded 

Mean 52.3 ± 31.45 94.2 ± 5.58 5.69 37.56 
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Supplementary Figure 2-8:  Experimental procedure limited fatigue in nonimpaired participants. A. All 
100% MVC trials for nonimpaired participants demonstrates there was no impact of within block trial 
order on the mean MVC (normalized to corresponding reference MVC for each session/participant) across 
all nonimpaired participants. Error bars represent the standard deviation. B. MVC moment data from one 
representative participant collected during VAPNS and VATMS blocks across all three sessions. 
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Supplementary Figure 2-9:  Experimental procedure limited fatigue in participants with SCI. A. All 100% 
MVC trials for SCI participants demonstrates no impact of within block trial order on the mean MVC 
(normalized to corresponding reference MVC for each session/participant) across all participants with SCI. 
Error bars represent the standard deviation. B. MVC moment data from one representative participant 
collected during VAPNS and VATMS blocks across all three sessions. 
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3 Chapter 3: Effect of Paired-Pulse Stimulation in the Assessment of Voluntary 
Activation 

3.1 Background/Objectives 

Voluntary activation (VA) quantifies the level of voluntary neural drive to the target 

muscle during voluntary effort [153]. Assessment of VA relies on the assumption that during a 

maximal voluntary contraction (MVC) the motoneuron pool is maximally recruited and unable to 

produce any additional force with artificial electrical stimulation [153]. VA of a specific muscle or 

muscle group can be measured via electrical stimulation of the peripheral nerve (VAPNS 

superimposed on MVC’s) [154], [155]. However, VAPNS cannot reveal the extent to which deficits 

in VA are due to central (i.e. originating from the motor cortex) versus peripheral factors (i.e. 

function of spinal motoneurons and neuromuscular junction) [153], [156]. One way to assess the 

central factors that may affect VA is with transcranial magnetic stimulation (TMS) of the motor 

cortex superimposed on voluntary contraction [129], [157], [158]. VA assessed with TMS (VATMS) 

can elucidate the site of impairment in voluntary drive [159], which may be particularly useful to 

characterize neuromuscular function after cervical spinal cord injury (SCI). After SCI, injury-

induced functional changes occur at multiple sites of the nervous system [3] and lead to motor 

impairments such as weakness, spasticity [31], and fatigability [28] that affect relatively spared 

muscles (e.g. the biceps brachii). Existing rehabilitation protocols have limited potential to 

address these impairments [9]–[12], and thus would benefit from the better quantification and 

localization of neuromuscular deficits that VATMS can provide. 

While VATMS can assess neuromuscular deficits, technical challenges in measuring VATMS 

exist [129], [130], [156], [160]–[164]. An important limitation of VATMS is the recruitment of 

muscles other than the target muscle because TMS over the motor cortex can stimulate 

neighboring cortical neural pathways projecting to agonistic and antagonistic muscles [165]. This 

lack of precision is due, in part, to the high stimulation intensities needed to evoke measurable 

force/moment responses, especially in patient populations [130], [160], [166]. Greater stimulus 

intensities are associated with greater stimulus spread in the brain [167]. The motor evoked 
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potential (MEP) in response to TMS of the target muscle compared to its antagonist’s MEP can 

indicate, to some degree, the focality of stimulation and excitability of pathways projecting to 

the target muscle relative to its antagonists [160], [168]–[170]. Isolated recruitment of the target 

muscle with TMS, while ideal, is difficult with currently available TMS devices [160], [171], [172]. 

As such, Todd et al. (2016) suggest a realistic compromise of isolated recruitment of the target 

muscle when its MEP amplitude reaches ≥ 50% of the muscle’s maximal compound motor action 

potential (Mmax) and the antagonist MEP amplitude is ≤ 20% of Mmax [160]. This compromise 

can be achieved in nonimpaired, non-fatigued individuals by adjusting TMS intensity when 

targeting certain muscle groups, such as the elbow flexors [160], [164], [165]. However, this is 

more difficult in patient populations – specifically individuals with spinal cord injury (SCI) [166], 

[173]–[175]. For example, in individuals with tetraplegia after cervical SCI, the TMS intensity 

could not be adjusted to elicit appropriate responses in the triceps to estimate VATMS of the elbow 

extensors [166], [176]. Additional considerations and modifications to existing VATMS protocols 

may be needed to assess VATMS in individuals with tetraplegia. As a first step, we focused on 

improving the methodology to assess VATMS of the biceps brachii in individuals with tetraplegia 

because: a) the biceps is innervated at the C5 and C6 levels such that considerable biceps function 

typically remains in many individuals with low cervical injuries (C5-C8) [28], [29], b) the biceps is 

important for upper limb function [26], and c) comparative data with single pulse TMS to assess 

VATMS exist in nonimpaired individuals [129], [130].  

One approach to modify VATMS protocols to assess biceps neuromuscular function in 

patient populations is to increase the motor response to TMS in the biceps relative to the triceps; 

the degree to which that is achieved can be measured by the ratio of the biceps MEP relative to 

the triceps MEP (i.e., biceps MEP divided by triceps MEP). Paired pulse TMS techniques can 

modulate MEP amplitudes and can potentially optimize the biceps/triceps MEP ratio in the 

assessment of VATMS [177]–[179]. Paired pulse TMS techniques consist of a conditioning stimulus 

followed by a test stimulus with a specific inter-stimulus interval (ISI) between the two stimuli 

[180]. At ISIs ranging from 10-30 ms, MEPs are typically increased in the biceps relative to single 

pulse TMS through the physiologic mechanism referred to as intracortical facilitation (ICF)[181]. 
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At shorter ISIs (ranging from 2 to 5 ms), biceps MEPs are decreased in the biceps relative to single 

pulse TMS through the physiologic mechanism referred to as short intracortical inhibition 

(SICI)[60], [181].  

Low levels of muscle contraction (≤ 20% MVC) modify responses to paired pulse TMS 

[182], [183], but how higher levels of muscle contraction (> 20% MVC) modify MEPs in response 

to paired pulse TMS remains unknown. Thus, whether and how paired pulse TMS techniques can 

modulate the biceps/triceps MEP ratio across different higher levels of voluntary contractions 

(i.e., 50 to 100% of MVC) needs to be investigated. The effect of paired pulse TMS on biceps and 

triceps MEPs at higher levels of voluntary contraction needs to be established because VATMS is 

assessed by superimposing TMS on voluntary effort levels ranging from 50 to 100% MVC to 

extrapolate the linear relationship between voluntary moment and superimposed twitch 

moment required to estimate VATMS [129], [154], [159]–[161]. Further, it is unknown whether an 

increased biceps/triceps MEP ratio across effort levels can improve the estimation of VATMS in 

individuals with tetraplegia.   

The purpose of this study was to determine the relationship between VATMS and the 

biceps/triceps MEP ratio in individuals with low cervical SCI and nonimpaired individuals. 

Modulation of the TMS paired pulse ISI was tested as a method to modulate the biceps/triceps 

MEP ratio across effort levels of 0, 50, 75, and 100% MVC. We hypothesized that the ICF 

(facilitatory modulation) paired pulse TMS condition would increase the biceps/triceps MEP ratio 

across effort levels relative to single pulse TMS in both participant groups. Conversely, we 

hypothesized that SICI would decrease the biceps/triceps MEP ratio across effort levels relative 

to single pulse TMS in both participant groups. Finally, we hypothesized that the biceps/triceps 

MEP ratio would affect VATMS. The rationale behind this hypothesis is that the biceps/triceps MEP 

ratio may indicate the amount of cortical stimulation to the biceps relative to the triceps, with 

greater biceps cortical stimulation perhaps contributing to greater excitation of the biceps and 

larger superimposed elbow moment twitches during voluntary contraction.   
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3.2 Methods 

3.2.1 Experiment Overview: 

Elbow joint force and moment data, and elbow flexor (biceps brachii) and extensor 

(triceps brachii) electromyographic (EMG) data were collected from ten individuals with cervical 

SCI (Table 2-1) and ten nonimpaired individuals. Inclusion criteria required SCI participants to be 

between the ages of 18 and 65 years old with a low cervical spinal injury at levels C5-C8 as 

indicated by the International Standards for Neurological Classification of Spinal Cord Injury 

(ISNCSCI), at least one year post-injury. Exclusion criteria included metal implants in the head and 

the inability to generate a visible contraction of the biceps. Data from one participant with SCI 

(#10) was excluded from the data analyses because TMS was unable to elicit measurable moment 

twitches from the elbow flexors. Participants completed up to three sessions. During each 

session, participants were seated in a chair with their dominant arm supported in an isometric 

posture, against gravity, and the forearm supinated, elbow flexed at 90° (Figure 3-1). Participant’s 

biceps and triceps maximal M-wave responses, elbow flexion MVC, and VATMS were measured 

during each of the three sessions; only one of the three paired pulse VATMS protocols were 

assessed each session to limit fatigue and the number of stimulus events. This study was 

approved by the Virginia Commonwealth University Institutional Review Board. 

3.2.2 Electromyographic and Kinetic Recordings: 

All data were recorded via a custom Spike2 script and a data acquisition system (CED 

1401, Cambridge, UK). EMG data were recorded using wireless EMG sensors (Delsys Trigno, 

Natick, Massachusetts) placed on the participant’s biceps and triceps in a muscle belly tendon 

arrangement. EMG data were sampled at 2000 Hz and bandwidth limited to 20-450Hz. The 

participant’s forearm was positioned in a custom brace attached to a multi-axis load cell with a 

measurement range of ± 400 N and digital resolution of 0.1 N (JR3 30E15A4, Woodland, 

California). A different load cell was used for participants with weaker elbow flexors (JR3 

30E12A4, measurement range of ± 100 N and digital resolution of 0.025 N). Three-dimensional 
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force and moment data were recorded at 2000 Hz and transformed to the elbow joint using 

standard coordinate transformations to determine the elbow flexor moment [184].  

3.2.3 Compound Motor Unit Action Potential Recording: 

Electrical stimuli were delivered using a constant current stimulator (Digitimer DS7AH, 

Fort Lauderdale, Florida) at 200 V with a 200 µs pulse width.  The current delivered ranged from 

5 mA (threshold of detection) to 150 mA (procedural maximum). Rectangular 3.3 x 5.3 cm 

neurostimulation electrodes (Axelgaard 891200, Fallbrook, California) were placed at Erb’s point 

(cathode) and the acromion (anode). M-wave recruitment curves were obtained individually for 

the biceps and then the triceps starting from zero at intervals of 10 mA until a plateau in the M-

wave amplitude was reached. Five supramaximal stimuli of 120% of the threshold current were 

delivered to obtain the Mmax for the biceps and triceps at rest.  

3.2.4 Transcranial Magnetic Stimulation: 

Motor cortex stimulation was delivered using a 126 mm double cone coil and Magstim 

BiStim2 (Magstim, Whitland, United Kingdom). Motor mapping of the cortical hotspot was 

performed during each session to obtain the location that evoked the largest peak-to-peak MEP 

in the biceps relative to the triceps using the lowest stimulation intensity [134]. The hotspot 

location was then marked on a silicone or plastic cap secured to the participant’s head. Resting 

motor threshold (RMT) was then determined as the lowest stimulus intensity able to induce MEPs 

of ≥ 50µV in at least 50% of ten stimuli and expressed as a percentage of the maximum stimulator 

output (%MSO) [185]. To reduce the number of stimuli, RMT was identified using maximum 

likelihood adaptive parameter estimation [186]. Paired pulse stimuli were delivered as a 

conditioning pulse set to 90% RMT followed by a test pulse at 120% RMT separated by an ISI of 

1.5, 10, or 30 ms. Stimuli with 1-4 ms ISIs have been shown to elicit SICI while ISIs of 10-30 ms 

have been shown to elicit ICF [60], [180], [187]. 

3.2.5 Protocol: 
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Participants started with a quick familiarization phase and warm-up, which consisted of 

brief submaximal contractions for two minutes. Participants were then instructed to perform 

three sustained, isometric contractions of the elbow flexors at maximum effort to determine 

their MVC moment. Contractions were sustained for 3 seconds while participants received both 

real-time visual moment feedback, and auditory encouragement (Figure 3-1, B). Real-time visual 

elbow moment feedback was displayed on a nearby monitor as a thermometer-like bar. The MVC 

was calculated as the mean elbow flexion moment occurring within a 0.5 s window from the 

maximal moment value. The average of all three MVC efforts was used in the following VATMS 

trials where participants generated a voluntary moment to match a percentage of their MVC 

moment. Each MVC was separated by 90 seconds of rest.  

 

Figure 3-1: A. Experimental protocol block diagram representing the data collected during a single session. 
Participants completed three sessions in total. B. Experimental setup: Participants received visual 
feedback of their voluntary elbow flexion moment as a thermometer-like gauge.  
 

After locating the cortical hotspot and establishing RMT, VATMS was assessed. Baseline 

(single pulse) and modified (paired pulse) VATMS protocols were assessed in a randomized order, 

with at least one baseline and one modified protocol per session (Figure 3-1, A). VATMS protocols 
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consisted of a set of 24 isometric contractions of the elbow flexors during randomized moment-

matching trials of 0, 50, 75, or 100% MVC. Trials were separated by at least 90 s of rest to mitigate 

fatigue. To obtain the superimposed twitch moment in the single pulse protocol, a supramaximal 

(i.e. 120% RMT) TMS pulse was automatically delivered after the participant achieved and 

maintained ± 2.5% of the target effort for 0.5 s. In the paired pulse protocols, a conditioning pulse 

set to 90% RMT followed by a test pulse at 120% RMT separated by an ISI of 1.5, 10, or 30 ms 

was used. 

3.2.6 Data and Statistical Analysis: 

Force, moment and EMG data were post-processed using a custom MATLAB script. MEPs 

were determined as the peak-to-peak EMG signal within 100 ms of cortical stimulation and 

subsequently normalized to the Mmax of each session; all MEPs were visually inspected. The MEP 

ratio for each trial was calculated as the normalized biceps MEP divided by the normalized triceps 

MEP. EMG traces of representative participants from the nonimpaired group and the SCI group 

are presented in Figure 3-2. VATMS was calculated as a percentage using the interpolated twitch 

technique: VATMS (%) = (1 − superimposed twitch at 100% MVC)/(esƟmated resting twitch) × 100 

[129]. The resting twitch was estimated using linear regression of the 50-100% MVC efforts (see 

Todd et al., 2004, method 1 for detailed explanation) [159]. Finally, the pre-TMS stimulation EMG 

activity of the biceps and triceps was calculated as the root mean square of the signal during the 

50 ms directly before stimulation. 

A linear mixed effect model was analyzed to determine the effect of independent 

variables on VATMS (the dependent variable). The independent variables were defined as follows: 

stimulation pulse (single pulse vs paired pulse conditions), block mean biceps/triceps MEP ratio, 

linearity of the voluntary moment, and superimposed twitch relation (R-value), and RMT. Blocks 

with low linearity (r < 0.8) in the nonimpaired group were excluded [160], but no exclusion was 

done in the SCI group to preserve data. Linearity was included as an independent variable to test 

whether variations in linearity affected the estimation of VATMS. RMTs were added to the model 

as a continuous covariate to test whether individual responsiveness to TMS (as represented by 
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RMTs) affected VATMS. A random effect was added to account for individual differences that 

resulted in each participant being assigned a different intercept. P-values were obtained via the 

Kenward-Roger approximation for degrees-of-freedom implemented for linear mixed effect 

models [188]. Comparisons were reported with respect to single pulse VATMS measures. Two-way 

ANOVAs with repeated measures were used to compare MEP ratios of single pulse to paired 

pulse VATMS conditions ( 1.5 ms, 10 ms or 30 ms ISI) across effort levels (0, 50, 75, and 100% MVC). 

Two-way ANOVAs were also used to compare biceps and triceps MEPs between single pulse and 

paired pulse VATMS conditions. The null hypotheses were that paired-pulse stimulation conditions 

do not have an effect on VATMS nor the MEP ratio, when compared to single pulse stimulation. 

The alternative hypotheses were that the SICI condition will decrease the MEP ratio and decrease 

VATMS, while both ICF conditions will increase the MEP ratio and increase VATMS. Another two-

way ANOVA was used to compare the linearity of the voluntary moment and superimposed 

twitch relation between the nonimpaired and SCI groups; this comparison was tested before 

excluding low linearity blocks in the nonimpaired data. Finally, we reported the percent of trials 

that met the Todd et al. (2016) criteria (biceps MEP ≥ 50% Mmax and triceps MEP ≤ 20% Mmax) 

and an adjusted condition (MEP ratio ≥ 2.5) to account for the triceps being in a higher 

susceptibility state during VATMS trials. All data are presented as mean ± standard error of the 

mean unless stated otherwise. Statistical significance was set at the p < 0.05 level.  
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Figure 3-2: EMG traces showing representative MEPs over a 300 ms window across effort levels and 
stimulation pulses (single pulse 1.5 ms, 10 ms, and 30 ms ISI). A. EMG recordings from the biceps brachii 
and triceps brachii of a representative nonimpaired participant. B. EMG recordings from the biceps brachii 
and triceps brachii of a representative SCI participant. EMG signals shown were averaged across six trials 
and normalized to the Mmax of the corresponding session/participant. EMG traces presented within the 
same subdivision were offset from one another for presentation. The dotted vertical line in each 
subdivision represents the onset of stimulation. 
 

3.3 Results 

Across all nonimpaired participants, mean VATMS collected with single pulse TMS was 

91.1%. For paired pulse stimulation, mean VATMS was 84.5% with the 1.5 ms ISI condition, 90.2% 

with the 10 ms ISI condition, and 85.1% with the 30 ms ISI condition (Figure 3-3). For the SCI 

participants, mean VATMS collected with single pulse TMS was 94.3%. Mean VATMS was 92.7% with 
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the  1.5 ms condition, 88.9% with the 10 ms ISI condition, and 89.7% with the 30 ms ISI condition 

(Figure 3-3). 

 

Figure 3-3: VATMS measures collected during the single pulse and paired pulse conditions in nonimpaired 
and SCI participants. Grey points represent individual mean VATMS (per block).VATMS ranged from 56 to 
99%. Error bars represent the standard error of the mean. 
 

3.3.1 Effect of Stimulation Pulse on the Biceps/Triceps MEP Ratio: 

In the SCI group, the biceps/triceps MEP ratio was increased in the 10 ms ISI condition 

relative to the baseline single pulse condition at 50% MVC (t = 2.205, p = 0.02) and 75% MVC (t = 

3.571, p = 0.0004) (Figure 3-4). The MEP ratio was also decreased in the 30 ms ISI condition 

relative to the baseline single pulse condition at 50% MVC (t = 3.851, p = 0.0001) and 75% MVC 

(t = 3.506, p = 0.0005) (Figure 3-4, B). 
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In the nonimpaired group, the biceps/triceps MEP ratio was increased in the 1.5 ms (t = 

3.849, p = 0.0001) condition relative to the baseline single pulse condition only at 75% MVC 

(Figure 3-5, B).  

 
 
Figure 3-4: A. Average biceps and triceps normalized MEPs (normalized to corresponding Mmax) in the 
SCI group. In the biceps, a significant decrease was observed for MEP amplitudes in 30 ms ISI and 1.5 ms 
ISI conditions compared to single pulse. In the triceps, 30 ms ISI and 10 ms ISI conditions led to lower MEPs 
but only at rest while 1.5 ms ISI led to lower MEPs across all effort levels. Error bars represent the standard 
error of the mean. Asterisks indicate statistical significance compared to the single pulse condition.  B. 
Biceps/ Triceps MEP ratio mean difference relative to single pulse TMS in the SCI group. Errors bars show 
95% confidence intervals. Asterisks indicate a significantly different mean MEP ratio ([*] = p < 0.05, ([**] 
= p < 0.01, ([***] = p < 0.001) relative to the mean MEP ratio with single pulse TMS. 
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Figure 3-5: A. Average biceps and triceps MEPs (normalized to corresponding Mmax) across stimulation 
conditions and effort levels in the nonimpaired group. Biceps and triceps MEPs were increased during the 
30 ms ISI condition while 10 ms ISI and 1.5 ms ISI led to lower MEPs but not across all effort levels. Error 
bars represent the standard error of the mean. Asterisks indicate statistical significance compared to the 
single pulse condition. B. MEP ratio mean difference relative to single pulse TMS across effort levels in the 
nonimpaired group, only 1.5 ms ISI led to an increased MEP ratio at 75% MVC. Errors bars show 95% 
confidence intervals. Asterisks indicate a significantly different mean MEP ratio ([*] = p < 0.05, ([***] = p 
< 0.001) relative to the mean MEP ratio with single pulse TMS. 
 

3.3.2 Effect of Independent Variables on VATMS: 

In the SCI group, the main effect of the stimulation pulse (1.5 ms, 10 ms, and 30 ms ISI 

compared to single pulse) on VATMS was not significant in the linear mixed-effects model. The 

main effect of the linearity of the voluntary moment and superimposed twitch moment relation 
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on VATMS was significant in the linear mixed-effects model. For each 0.1 increase in linearity (for 

0 < r < 0.99), VATMS was predicted to increase by 7.5% [t = 7.005, p < 0.0001]. Further analyses 

revealed that the mean MEP ratio, RMT had no significant main effects on VATMS as well as no 

interaction effects with the stimulation pulse. 

In the nonimpaired group, the main effect of stimulation pulse (1.5 ms, 10 ms, and 30 ms 

ISI compared to single pulse) on VATMS was not significant in the linear mixed-effects model. 

Further analyses revealed that the mean MEP ratio, RMT, and linearity had no significant main 

effects on VATMS as well as no interaction effects with the stimulation pulse. 

3.3.3 Effect of Stimulation Pulse on Biceps MEPs: 

In the SCI group, 30 ms ISI [-158% Mmax, p = 0.018] and 1.5 ms ISI [-148% Mmax, p = 

0.016] decreased biceps MEPs collected at rest. At 50% MVC, 30 ms ISI [-207% Mmax, p = 0.0019] 

and 1.5 ms ISI [-142% Mmax, p = 0.02] decreased biceps MEPs compared to single pulse. At 75% 

MVC, 30 ms ISI [-197% Mmax, p = 0.003] and 1.5 ms ISI [-140% Mmax, p = 0.022] decreased biceps 

MEPs compared to single pulse. At 100% MVC, only 30 ms ISI decreased biceps MEPs [-158% 

Mmax, p = 0.017] compared to single pulse (Figure 3-4, A). 

In the nonimpaired group, stimulation pulse had no effect on biceps MEPs collected at 

rest (0% MVC). At 50% MVC, 30 ms ISI increased biceps MEPs [+20.04% Mmax, p < 0.0001] while 

1.5 ms ISI [-20.2% Mmax, p < 0.0001] and 10 ms ISI [-17.7% Mmax, p = 0.0003] decreased biceps 

MEPs compared to single pulse. At 75% MVC, 30 ms ISI increased biceps MEPs [+34.3% Mmax, p 

< 0.0001] compared to single pulse. At 100% MVC, 30 ms ISI increased biceps MEPs [+32.6% 

Mmax, p < 0.0001] while 1.5 ms ISI decreased biceps MEPs 5 [-11.1% Mmax, p = 0.023] compared 

to single pulse (Figure 3-5, A). 

3.3.4 Effect of Stimulation Pulse on Triceps MEPs: 

In the SCI group, 30 ms ISI [-36.2% Mmax, p = 0.004], 10 ms ISI [-31.5% Mmax, p = 0.019], 

and 1.5 ms ISI [-38.9% Mmax, p = 0.0009] decreased triceps MEPs collected at rest. At 50% MVC, 



86 

 

only 1.5 ms ISI decreased triceps MEPs compared to single pulse [-35.7% Mmax, p = 0.002]. At 

75% MVC only 1.5 ms ISI decreased triceps MEPs compared to single pulse [-39.1% Mmax, p = 

0.0009]. At 100% MVC, only 1.5 ms ISI decreased triceps MEPs [-35.2% Mmax, p = 0.0026] 

compared to single pulse (Figure 3-4, A). 

In the nonimpaired group, only 30 ms ISI increased triceps MEPs collected at rest [+12.7% 

Mmax, p < 0.0001]. At 50% MVC, 30 ms ISI increased triceps MEPs [+21.2% Mmax, p < 0.0001]. 

At 75% MVC, 30 ms ISI increased triceps MEPs [+19.1% Mmax, p < 0.0001] while 1.5 ms ISI 

decreased triceps MEPs 5 [-6.09% Mmax, p = 0.029] compared to single pulse. At 100% MVC, only 

30 ms ISI increased triceps MEPs [+24.6% Mmax, p < 0.0001] compared to single pulse (Figure 3-

5, A). 

3.3.5 Post-hoc Evaluation of Biceps/Triceps MEP Ratio and Linearity: 

In both the nonimpaired and SCI groups, the 10 ms ISI and 1.5 ms ISI pulses had a higher 

number of trials that met the guideline criteria presented by Todd et al. (biceps MEP ≥ 50% Mmax 

and triceps MEP ≤ 20% Mmax) and our adjusted condition of corresponding to a MEP ratio 

greater than 2.5 (Table 3-2). Across both groups and all stimulation pulses, the “MEP ratio > 2.5” 

condition was met more often than the Todd et al. criteria. Finally, the linearity of the voluntary 

moment and superimposed twitch moment relation was on average lower in the SCI group 

compared to the nonimpaired group across stimulation pulses [F(1, 103) = 7.043, p = 0.0092](Table 

3-2). Supplementary and raw data can be accessed online: https://osf.io /sdxj9/. 
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Table 3-1: Percent trials (between 50%-100% MVC) meeting the Todd et al. criteria (biceps MEP ≥ 50% 
Mmax and triceps MEP ≤ 20% Mmax), MEP ratio > 2.5 (where biceps MEP is 2.5 larger than triceps MEP), 
and the average linearity of the voluntary moment and SIT moment. * indicate statistically different values 
(p < 0.05). 
 

NONIMPAIRED 

STIMULATION PULSE Todd et al. criteria 
(% met) 

MEP ratio ≥ 2.5 (% 
met) 

Mean 
linearity 

Total # of 
trials 

SINGLE PULSE 34.1 60.2 0.87 540 

 PAIRED 1.5 MS ISI 42.8 68.9 0.78 180 

 PAIRED 10 MS ISI 41.9 69.7 0.81 198 

 PAIRED 30 MS ISI 39.4 61.7 0.81 180 

MEAN 39.5 65.1 0.83* - 

SCI 

SINGLE PULSE 14.4 52.8 0.81 432 

PAIRED 1.5 MS ISI 20.0 68.9 0.65 180 

 PAIRED 10 MS ISI 27.8 60.4 0.74 144 

 PAIRED 30 MS ISI 15.3 34.0 0.71 144 

MEAN 19.4 54.0 0.73* - 

 

3.4 Discussion 

We used facilitatory (ICF) and inhibitory (SICI) paired pulse TMS techniques to modify 

biceps MEPs, triceps MEPs, and the biceps/triceps MEP ratio across voluntary effort levels in 

individuals with SCI and nonimpaired individuals. We also evaluated the relationship between 

the biceps/triceps MEP ratio and VATMS. We hypothesized that ICF would increase the 

biceps/triceps MEP ratio across all effort levels relative to single pulse while SICI would decrease 

the MEP ratio. Our first hypothesis was not supported in either participant group (nonimpaired 
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and SCI). Further, we hypothesized that the biceps/triceps MEP ratio would affect VATMS. This 

hypothesis was also not supported. The biceps/triceps MEP ratio thus may not indicate the 

amount of cortical stimulation to the biceps relative to the triceps, and contribute to greater 

excitation of the biceps and larger superimposed elbow moment twitches during voluntary 

contraction. In the SCI group, VATMS was found to be sensitive to the linearity of the superimposed 

twitch moment and voluntary moment relation. Linearity was also lower in the SCI group 

compared to the nonimpaired group, which may pose a methodological limitation in the 

estimation of VATMS in tetraplegic patients. Further research is needed to determine whether 

VATMS is a viable assessment of neuromuscular function in individuals with tetraplegia. 

While the target/antagonist MEP ratio may be an indication of cortical stimulation focality 

when muscles are at rest or low levels of activation, this relationship may not hold at higher levels 

of effort during stimulation. Increasing the level of muscle contraction leads to a greater 

proportion of large spinal motoneurons activated by TMS, which increases their sensitivity to 

changes in corticospinal excitability [189], [190]. However, when the biceps are highly activated 

(75-100% MVC), the triceps are not at rest, but experiencing low levels of activation (i.e. 

increased EMG activity compared to baseline as seen in Figure 3-2). The biceps during these high 

efforts, being at a near tetanic state, are not at optimal capacity to elicit a MEP response. 

Conversely, the triceps, being in a lower activation state, not only have an increased capacity to 

respond (i.e. are further from a tetanic state) but are in a state of higher susceptibility compared 

to rest (e.g. active motor thresholds are lower than RMT) [165], [170], [186]. Consequently, the 

Todd et al. (2016) criteria (i.e., biceps MEP ≥ 50% Mmax and triceps MEP ≤ 20% Mmax) were 

seldom met (Table 3-2, nonimpaired: 39.9% of trials, SCI: 19.4% trials). We proposed an adjusted 

condition (MEP ratio ≥ 2.5), more reflective of the relative responsiveness between both muscles 

to account for the triceps being in a higher susceptibility state during VATMS trials. This condition 

was met more often in both groups (nonimpaired: 65.1% of trials, SCI: 54% trials), especially in 

1.5 ms ISI trials where both groups met the condition more than two-thirds of the time (see Table 

3-2). However, neither paired pulse stimulation nor the MEP ratio affected the estimation of 

VATMS. Therefore, while the MEP ratio may be physiologically relevant at rest and efforts up to 
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about 20% MVC, its utility and importance are reduced at higher effort levels in which the target 

and antagonist muscles are disproportionately activated. 

MEP ratio modulation did not occur across all effort levels in the nonimpaired group due 

to inconsistent SICI and ICF effects across effort levels, and MEP facilitation that occurred 

simultaneously in the biceps and the triceps. In the nonimpaired group, 30 ms ISI (ICF) increased 

both biceps and triceps MEPs across all effort levels compared to single pulse. Since MEP 

facilitation occurred simultaneously in the biceps and triceps, the biceps/triceps MEP ratio 

remained unchanged relative to single pulse.  The only condition in which the MEP ratio was 

modulated in the nonimpaired group was at 75% MVC with an ISI of 1.5 ms in which SICI caused 

triceps inhibition. Unexpectedly, 10 ms ISI resulted in biceps MEP inhibition although such an ISI 

can elicit MEP facilitation [60], [191]. However, overall our results are largely consistent with 

previous reports where MEP responses were inhibited at 1-5ms ISIs and facilitated at higher ISIs 

[180], [187]. MEP inhibition via SICI is related to the activity of GABAergic receptors known to 

regulate the production of I-waves, especially later I-waves that occur when higher stimulator 

intensities are used [181], [192]. MEP facilitation via ICF is thought to be regulated by the activity 

of intracortical glutamatergic excitatory circuits [60], [193]. Previous research suggests that low 

amounts of voluntary activation (20% MVC) of the target muscle decrease SICI (i.e. less inhibition 

compared to rest) and ICF [182]. Our protocol involved high effort levels (50-100% MVC) where 

we observed both SICI and ICF. 

MEP ratio modulation also did not occur across all effort levels in the SCI group due to 

inconsistent SICI and ICF effects across effort levels. Injury-induced reorganization of the 

corticospinal pathways after SCI affects inhibitory and facilitatory circuits and can lead to 

unpredictable paired pulse TMS outcomes [23], [174], [175], [194]. Unexpectedly, in our SCI 

group, the biceps/triceps MEP ratio was decreased in the 30 ms ISI condition compared to the 

single pulse protocol at 50% and 75% MVC; this occurred mostly via biceps MEP inhibition (-180% 

Mmax across all effort levels). Further, the MEP ratio was increased in the 10 ms ISI condition, 

which is the only condition that did not elicit significant biceps MEP inhibition compared to single 
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pulse. Following SCI, death of motoneurons and changes in the properties of remaining 

motoneurons will affect their behavior during voluntary efforts [195], [196]. Specifically, the 

excitability of motoneurons increases during voluntary contractions to a lesser extent than in 

nonimpaired [194]. SICI can be elicited in individuals with SCI during voluntary efforts but MEP 

inhibition is reduced compared to nonimpaired controls [197]. In our study, SICI occurred at 1.5 

ms ISI in the biceps but also in the triceps, at high effort levels leading to an unchanged MEP ratio. 

As previously described, during MVC, the biceps is closer to its maximal firing rate and thus less 

sensitive to stimulation whereas the triceps is in a more receptive state. In such context, SICI 

appears to decrease triceps MEPs preferentially. This asymmetric response may also be 

influenced by increased reticulospinal inputs to the biceps and decreased corticospinal inputs to 

the triceps following SCI [30], [198].  

In the SCI group, we observed abnormal MEP inhibition in paired pulse trials at 30 ms ISI 

that elicited facilitation in nonimpaired participants. While there is evidence to suggest that the 

excitability of inhibitory circuits mediated by the activity of GABA-A receptors is reduced after SCI 

as a compensatory mechanism [199]–[201] [174], [197], [200], [201], the effects of ICF 

neurophysiology following SCI have not been well documented. One possible interpretation is 

that 30 ms ISI caused long interval intracortical inhibition (LICI) in our SCI cohort instead of ICF. 

LICI is mediated by the activity of GABA-B receptors [202] and is typically elicited at ≥ 50 ms ISIs 

and with suprathreshold conditioning pulse [181]. However, animal studies have shown that the 

expression of GABA-B receptor is altered following SCI [203]. Further, five of our SCI participants 

were chronic users of baclofen (GABA-B agonist) which may also have contributed to the atypical 

occurrence of LICI (Table 2-1). Mechanisms below the cortical level may be involved as well. After 

SCI, the presence of axonal dysfunction of the descending corticospinal tract and peripheral 

motor axon dysfunction indicates that both central and peripheral pathways can contribute to 

aberrant modulation of MEPs [204], [205]. Finally, individuals with chronic SCI are more sensitive 

to neuromuscular fatigue [32]. As intracortical facilitatory and inhibitory circuits become less 

excitable with neuromuscular fatigue [187], [206], the effects of LICI, SICI, and ICF are reduced 

and/or become less predictable. 
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Linearity of the superimposed twitch moment and voluntary moment relation was lower 

in the SCI group compared to the nonimpaired group (0.73 vs 0.83, see Table 3-2), which reveals 

a methodological issue that may limit the interpretation of VATMS in populations with 

neuromuscular impairments. However, we were able to quantify VATMS in nonimpaired 

individuals and individuals with SCI using single pulse and paired pulse stimulation. Similar to data 

reported by Todd et al. (2003) (VATMS = 93.6 ± 5.6%), single pulse VATMS was in the 90-95% range 

on average, in both groups (nonimpaired: 91.1%, SCI: 94.3%). Paired pulse stimulation did not 

affect the estimation of VATMS compared to single pulse (Figure 3-3). Lower linearity, on the other 

hand, decreased estimation on VATMS in the SCI group. This is consistent with previous report 

where higher fatigue in the nonimpaired biceps was associated with underestimation of VATMS 

[130]. Todd et al. (2016) recommend a linear relationship (r ≥ 0.9) for effort levels of 50-100% 

MVC to extrapolate the resting twitch moment and properly calculate VATMS. Thus, interpretation 

of VATMS may be especially difficult in a context that affects linearity, such as fatigue. 

There are limitations in the current study. The sample size is small and there was a wide 

range of biceps function among the SCI participants. Some participants presented more overall 

remaining biceps motor function as indicated by greater maximum elbow flexor moments. Yet, 

VATMS measures across SCI participants and groups were in the same range (see Figure 3-3) which 

suggests that VATMS alone did not detect differences in motor impairments. While the number of 

motor units and their maximal firing rates may decrease in the biceps after SCI resulting in lower 

force-generating capacity [32], the relative amount of innervated muscle fibers able to receive 

descending voluntary neural drive may be unchanged. However, in a context where corticomotor 

transmission and excitability are affected such as in tetraplegia, TMS capacity to elicit moment 

twitches may be reduced, potentially resulting in overestimation of VATMS. Thus, interpretation 

of this outcome is difficult. Another limitation is that we did not exclude data based on linearity 

in the SCI group since linearity was already lower than in nonimpaired. However, we did not 

perform comparisons between groups other than linearity, which was done before data 

exclusion. Although we designed our experiment to have more rest, more often (90 s rest 

between each trial), between voluntary effort trials compared to previous work [130], [160], 
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fatigue and attention may have affected our results, especially in SCI participants as previously 

discussed. Participants were not age-matched, however, no direct comparisons were made 

between groups when analyzing MEPs and VATMS and there is evidence to suggest that age does 

not influence outcomes of SICI and ICF [207]. 

As a novel contribution, we collected VATMS measures using paired pulse TMS in 

nonimpaired and individuals with tetraplegia although methodological issues remain that may 

limit its clinical application in monitoring neuromuscular function. Paired pulse TMS did not 

modulate the biceps/triceps MEP ratio across the full range of voluntary efforts in nonimpaired 

and SCI participants and did not affect the estimation of VATMS. Thus, a focus on increasing the 

biceps/triceps MEP ratio via paired pulse stimulation does not improve the estimation of VATMS. 

In participants with tetraplegia, paired pulse stimulation outcomes revealed different patterns of 

intracortical inhibition relative to nonimpaired participants that may be due to injury-induced 

corticospinal reorganization and alterations in the activity of GABA-B receptors following SCI. 

More comprehensive paired pulse TMS experiments (particularly facilitatory protocols) are 

needed to further our understanding of neuroplastic changes and functional reorganization after 

SCI. Finally, VATMS was sensitive to changes in the linearity of the voluntary moment and 

superimposed twitch moment relation in SCI participants. Linearity was also lower compared to 

nonimpaired, which constitute an additional challenge in the estimation of VATMS. Further 

research is needed to determine whether VATMS is a viable assessment of neuromuscular function 

in individuals with tetraplegia. 

 

3.5 Appendix II 



93 

 

 

Supplementary Figure 3-6: VATMS collected with paired pulse TMS at 30 ms ISI example data. A. Moment 
traces collected during a VATMS block in representative nonimpaired participant. B. Linear regression 
between SIT and voluntary contraction moment obtained from the same VATMS block. C. Moment traces 
collected during a VATMS block in representative participant with tetraplegia. D. Linear regression between 
SIT and voluntary contraction moment obtained from the same VATMS block. Orange, red, and dark red 
dotted lines represent 50, 75, and 100% MVC trials, respectively. 
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Supplementary Figure 3-7: VATMS collected with paired pulse TMS at 10 ms ISI example data. A. Moment 
traces collected during a VATMS block in representative nonimpaired participant. B. Linear regression 
between SIT and voluntary contraction moment obtained from the same VATMS block. C. Moment traces 
collected during a VATMS block in representative participant with tetraplegia. D. Linear regression between 
SIT and voluntary contraction moment obtained from the same VATMS block. Orange, red, and dark red 
dotted lines represent 50, 75, and 100% MVC trials, respectively. 
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Supplementary Figure 3-8: VATMS collected with paired pulse TMS at 1.5 ms ISI example data. A. Moment 
traces collected during a VATMS block in representative nonimpaired participant. B. Linear regression 
between SIT and voluntary contraction moment obtained from the same VATMS block. C. Moment traces 
collected during a VATMS block in representative participant with tetraplegia. D. Linear regression between 
SIT and voluntary contraction moment obtained from the same VATMS block. Orange, red, and dark red 
dotted lines represent 50, 75, and 100% MVC trials, respectively. 
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Supplementary Figure 3-9: Example of a single pulse VATMS block with low linearity collected in participant 
with tetraplegia. A. Moment traces where orange, red, and dark red dotted lines represent 50, 75, and 
100% MVC trials, respectively. B. Linear regression between SIT and voluntary contraction moment 
obtained from the same VATMS TMS block. 
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4 Chapter 4: Investigate Neuroplasticity via Motor Evoked Potentials Input-
Output Curves 

4.1 Background/Objectives 

Motor evoked potential (MEP) input-output curves, otherwise referred to as stimulus-

response or recruitment curves, can evaluate corticomotor excitability in humans [66], [208]. 

Input-output curves are collected using transcranial magnetic stimulation (TMS): a noninvasive 

brain stimulation technique that uses magnetic induction to stimulate cortical neurons. By 

targeting the motor cortex, TMS can induce muscle responses and the associated MEP that can 

be measured with electromyographic (EMG) sensors. The input-output curve can be evaluated 

by plotting the MEP responses across a range of increasing stimulator intensities [66]. The slope 

of the curve indicates the excitability of the targeted neuromuscular circuit across multiple 

neuronal populations, such as direct corticospinal projections and inter-cortical neurons [67], 

[68]. MEP input-output curves can reflect motor function and performance [209], [210]. For 

example, in a motor skill training study, increased MEP input-output curve slopes in the ipsilateral 

hand of subjects corresponded to improved performance of the non-trained hand, and was 

attributed to increased corticomotor excitability of the ipsilateral circuit [210]. Pathological 

conditions have also been shown to influence MEP input-output curve parameters [117], [211]. 

For example, input-output curves collected in the first dorsal interosseous (FDI) muscle was 

increased in individuals with chronic spinal cord injury (SCI) compared to nonimpaired controls, 

suggesting injury-induced increased corticomotor excitability of the FDI neuromuscular circuit 

[117]. Since MEP input-output curves can predict motor function improvement [210], they have 

the potential to be used as a monitoring tool during rehabilitation programs aimed at recovering 

motor function, which may be particularly useful in SCI populations. 

Other TMS-based techniques have been employed to study neuromuscular function in 

patient populations but they have limitations in their ability to comprehensively capture 

neuroplasticity. For example, studies involving sub-threshold TMS have shown a reduced activity 

of intracortical inhibitory circuits in tetraplegia, likely as a compensatory mechanism enabling 
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cortical reorganization [63]–[65]. Similarly, motor mapping studies using TMS have reported an 

increased representational surface area in the motor cortex for muscles rostral to the spinal 

lesion site [3], [24]. Unlike input-output curves, motor mapping studies and sub-threshold TMS 

do not use a range of stimulator intensities during TMS trials, thus neglecting the activity of later 

I-waves that preferentially occur at high stimulator intensities [62]. Late I-waves are important in 

their role as part of the descending volley and neuromodulation-related excitation [212]. 

Furthermore, compared to a single MEP response, which is highly variable and state-dependent, 

the slope is extracted from multiple MEPs elicited over several minutes and at various stimulation 

intensities, reflecting a more comprehensive and non-instantaneous measure of corticomotor 

excitability. 

The optimal method to collect and analyze MEP input-output curves in populations with 

neuromuscular impairments, particularly tetraplegia, remains non-standardized. In nonimpaired 

participants, MEP input-output curves with a sigmoid curve fit method can yield reproducible 

outcomes when targeting the FDI muscle [208]. Yet, in chronic post-stroke individuals, analyzing 

MEP input-output curves with linear regression was found to be as predictive (goodness of fit) as 

using a sigmoid function model [213]. It is important to note that most of these studies have 

focused on upper limb distal muscles such as those of the hand. However, TMS outcomes are 

largely dependent on the stimulation target [118]. While more proximal upper limb muscles such 

as the biceps brachii often retain more function than distal muscles in patients with cervical SCI 

[88], [119], their neuromuscular circuits may be affected in different ways. In contrast to the FDI 

[3], [24], a recent TMS motor mapping study found no differences in biceps brachii cortical 

representation between chronic cervical SCI and nonimpaired participants [120]. However, the 

biceps brachii is a difficult TMS target due to its relatively smaller motor cortex representations 

compared to hand muscles [24], [117], and is less likely to provide repeatable MEP measures 

across sessions [121]. Therefore, further investigation of proximal muscle groups such as the 

biceps brachii is needed to get a more comprehensive picture of neuromuscular function after 

SCI and help inform neurorehabilitation protocols.  
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Our primary aim was to collect and compare MEP input-output curves of the biceps brachii 

from nonimpaired participants and participants with tetraplegia (injuries from C5-C6 region) to 

investigate differences in corticomotor excitability between groups and evaluate injury-induced 

alterations of the biceps brachii neuromuscular circuits. We hypothesized that the MEP input-

output curves would be greater in participants with tetraplegia compared to nonimpaired. A 

secondary aim was to compare curve-fitting methods such as linear regression and sigmoid 

function and to investigate the repeatability across sessions of input-output curves collected with 

TMS. We hypothesized that sigmoidal curve-fitting would result in higher accuracy of prediction 

compared to linear regression and slopes would be repeatable across days. The repeatability of 

MEP input-output curves of the biceps brachii in individuals with incomplete tetraplegia is 

currently not well characterized.  

4.2 Methods: 

4.2.1 Participants: 

Ten nonimpaired individuals (four females, six males, aged 22.7 ± 2.5) and ten individuals 

with chronic SCI (three females, seven males, aged 39.9 ± 10.6) were screened and recruited to 

participate in the study. Inclusion criteria were C5 to C6 level of cervical spinal injury, at least a 

year post-injury. Exclusion criteria included any contraindication to receiving TMS and the 

inability to generate a visible contraction of the biceps. Participants with SCI characteristics are 

shown in Table 4-1. 
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Table 4-1: Ten individuals with tetraplegia following cervical SCI were recruited to participate in the study. 
 

     
Participant 

# 
Sex Age Injury 

Level 
ISNCSCI Years 

since SCI 
Cause of SCI Medications 

1 F 52 C6 A 15 MVA BAC 
2 F 53 C6 D 7 Spinal Stenosis BAC 
3 M 42 C5 A 12 MVA BAC 
4 M 45 C6 D 5 Transverse Myelitis None 
5 F 54 C6 A 13 MVA BAC 
6 M 34 C5 A 16 MVA BAC, OX 
7 M 26 C6 A 6 Fall None 
8 M 33 C5 D 3 MVA None 
9 M 32 C5 B 9 Fall None 

10 M 28 C5 B 4 MVA BAC 
 

*SCI: Spinal Cord Injury, ISNCSCI: International Standards for Neurological Classification of Spinal Cord 
Injury, MVA: Motor vehicle accident, BAC: Baclofen, OX: Oxybutynin. 
 

4.2.2 Experiment Overview: 

Each session consisted of preliminary TMS assessments to determine resting motor 

thresholds (RMT) and biceps motor hotspot prior to collecting a MEP input-output curve of the 

dominant biceps using computerized TMS control. Participants were seated in an upright position 

and had their dominant forearms immobilized in a custom brace, supinated, and positioned at 

90 degrees of elbow flexion. Before the experiment, participants provided informed consent and 

completed a screening for TMS usage. The Institutional Review Board of Virginia Commonwealth 

University approved the study. 

4.2.3 Materials: 

EMG data were recorded using Wireless EMG sensors (Delsys Trigno, Natick, 

Massachusetts) positioned on the muscle belly of the biceps brachii. EMG data were band-pass 

filtered to 20-450 Hz and sampled at 2000 Hz. All data were recorded in Spike 2 software and a 
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data acquisition system (CED 1401, Cambridge CED). Custom scripts were written to control the 

TMS device and automatize the MEP input-output curve protocol. 

4.2.4 Compound Motor Unit Action Potential Recording: 

Electrical stimuli were delivered using a constant current stimulator (Digitimer DS7AH, 

Fort Lauderdale, Florida) at 200 V with a 200 µs pulse width.  The current delivered ranged from 

5 mA (threshold of detection) to 150 mA (procedural maximum). Rectangular 3.3 x 5.3 cm 

neurostimulation electrodes (Axelgaard 891200, Fallbrook, California) were placed at Erb’s point 

(cathode) and the acromion (anode). M-wave recruitment curves were obtained individually for 

the biceps starting from zero at intervals of 10 mA until a plateau in the M-wave amplitude was 

reached. Five supramaximal stimuli of 120% of the threshold current were delivered to obtain 

the Mmax for the biceps at rest. M-max was collected to normalize MEPs to account for changes 

within the muscle, such as muscle fibers length, and sensor positioning [214]. 

4.2.5 TMS procedures: 

TMS was delivered using a 126 mm diameter double cone coil connected to a monophasic 

stimulator (Magstim BiStim2, Whitland, United Kingdom). Motor mapping was performed in each 

session to obtain the location that evoked the largest peak-to-peak MEP in the biceps at the 

lowest stimulation intensity, the motor hotspot [215]. This location was then marked on a silicone 

or plastic cap secured to the participant’s head; subsequent stimuli were delivered at that 

location. Resting motor threshold (RMT) was determined as the lowest stimulus intensity able to 

induce biceps MEPs ≥ 50 µV in at least 5 out of 10 stimuli and expressed at a percentage of the 

TMS stimulator maximal output (%MSO) [135]. Within each MEP input-output curve session, TMS 

was administered 48 times, using computerized control, at a range of stimulus intensities from 

80%-160% of participants’ respective RMT in random order, featuring 5 s inter-stimulus intervals.  

4.2.6 Data and Statistical Analysis: 
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MEP data for each participant per session were analyzed in Matlab using custom-written 

scripts. To limit the effect of MEP variability, outliers (values beyond three standard deviations 

from the mean) of each stimulus intensity were excluded from subsequent analyses [216]. Using 

this process, 15 out of 1456 MEPs were excluded in the nonimpaired group and 10 out of 1144 

MEPs were excluded in the SCI group. MEP amplitudes were plotted as a function of stimulus 

intensity to produce the input-output curve for each session and participant (see Figure 4-1). The 

input-output curves were analyzed using simple linear regression and Boltzmann sigmoidal in 

order to extract parameters such as the slope and coefficient of determination (R2). The 

Boltzmann function is defined as follows (1): 

𝑌 = 𝑀𝐸𝑃௠௜௡ +
(𝑀𝐸𝑃௠௔௫ − 𝑀𝐸𝑃௠௜௡)

1 + 𝑒
(௏ହ଴ି௑)

ௌ௟௢௣௘

    (1) 

The variables MEPmin and MEPmax represent the minimal and maximal MEP size, 

respectively. V50 represents the stimulus intensity (%MSO) value when the MEP size is half of its 

maximal size. Statistical analyses were completed in R (R Core Team (2013)) and Prism (GraphPad 

Software, LLC). Slopes and coefficients of determination (R2) obtained from the input-output 

curves of SCI and nonimpaired participants were compared using unpaired t-tests with Welch’s 

correction to account for unequal standard deviations between the SCI and nonimpaired groups. 

The null hypothesis was that the average slope is not different between the SCI and NI groups. 

The alternative hypothesis was that the SCI group has higher slopes on average. Inter-session 

repeatability was determined by calculating intraclass correlation coefficients (ICCs) of the slope 

parameter [138]. ICCs were calculated using a two-way random model with consistency 

agreement. ICC values > 0.75 were defined to represent good to excellent agreement between 

sessions [143]. 

4.3 Results 
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Figure 4-1: A. Example of representative individual MEP input-output curve collected in a nonimpaired 
participant. B. Example of representative individual MEP input-output curve collected in a SCI participant. 
Both curve fitting methods are superimposed onto the discrete MEP data. R2 is the coefficient of 
determination that represents accuracy of prediction and Sy.x represents the standard error of estimate. 
 

Input-output slopes computed using linear regression in the SCI group (6.44 ± 6.1) were 

higher than the slopes computed in the nonimpaired group (1.34 ± 1.32) (p < 0.001, t22.5 = 3.8) 

(Figure 2, A). No significant differences in RMTs were found between the SCI and nonimpaired 

group (p = 0.06, t48.9 = 1.86) (Figure 2, B). 

 

 



105 

 

Figure 4-2: A. Slopes obtained from linear regression were significantly greater in the SCI group compared 
to nonimpaired. B. Mean RMTs were not different between groups. Asterisks represent statistical 
difference (p < 0.001) and error bars represent the standard error of the mean (SEM). 
 

 Linear regression to fit the MEP input-output curves had higher accuracy of prediction in 

the SCI group (R2 = 0.85) relative to the nonimpaired group (R2 = 0.59) (t95 = 4.69, p < 0.0001) 

(Figure 4-3). The Boltzmann sigmoidal function also had higher accuracy of prediction in the SCI 

group (R2 = 0.94) relative to the nonimpaired group (R2 = 0.73) (t95 = 3.83, p < 0.001) (Figure 4-3). 

In the SCI group, no differences between curve-fitting methods were found. In the nonimpaired 

group, accuracy of prediction was greater using the Boltzmann sigmoidal function compared to 

simple linear regression (t95 = 2.77, p < 0.05). All input-output curves are represented in Figure 4-

4 with both curve-fitting methods. Repeatability of the slope extracted from simple linear 

regression was good in both groups (nonimpaired: ICC(3,k) = 0.83, p < 0.05, SCI: ICC(3,k) = 0.78, 

p < 0.05). Average input-output curves per session are represented in Figure 4-5. Comparison of 

curve-fitting methods and repeatability outcomes are summarized in Table 4-2. 
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Figure 4-3: Goodness of fit (R2) representing the accuracy of prediction of each curve-fitting method across 
groups. Asterisks represent statistical difference (*: p < 0.05, ***: p < 0.001) and error bars represent the 
standard error of the mean (SEM). 
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Figure 4-4: A. Simple linear regression was used to fit the MEP data in both groups. B. The Boltzmann 
sigmoidal function was used to fit the MEP data in both groups. Each solid line represents an individual 
input-output curve for a participant in a given session. Each point represents the mean value of the 5 
MEPs collected at a specific TMS intensity for a given individual input-output curve. 
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Figure 4-5: Mean MEP input-output curves represented across three sessions in both groups. MEPs were 
normalized to Mmax and averaged across participants at each stimulation intensity. Error bars represent 
the standard error of the mean (SEM). 
 

Table 4-2:  Inter-session repeatability and accuracy of prediction of curve fitting methods (mean ± SEM). 
 

Parameters Nonimpaired Tetraplegia 

Slope ICC (3, k) 0.83 0.78 

Sigmoid fit mean R2 0.73 ± 0.04 0.95 ± 0.05 

Linear fit mean R2 0.71 ± 0.04 0.82 ± 0.05 

   

 

4.4 Discussion 

The primary aim of this study was to collect and compare MEP input-output curves of the 

biceps brachii from nonimpaired participants and chronic cervical SCI participants. A secondary 

aim was to investigate curve-fitting methods (linear regression versus Boltzmann sigmoidal 

function) and their repeatability across days. We first hypothesized that the slopes of input-

output curves would be greater in the SCI group compared to nonimpaired. Our first hypothesis 

was supported: MEP input-output curves of the biceps analyzed with linear regression revealed 

significantly higher slopes in the chronic SCI group compared to the nonimpaired group. Second, 

we hypothesized that sigmoidal curve-fitting would result in higher accuracy of prediction 

compared to linear regression and slopes would be repeatable across days. This was not 

supported in the SCI group: we found that while using the sigmoid function models the shape of 

the curve more precisely compared to the linear regression approach, no differences in accuracy 

of prediction (R2) were found in the SCI group. Thus, the linear regression approach was found to 

accurately represent the slope of the modeled data. No significant differences in RMTs were 

found between groups. Finally, the slopes extracted from the MEP input-output curves were 

found to be repeatable across three days. 
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Increased MEP input-output curve slopes of the biceps brachii in the tetraplegia group 

compared to the nonimpaired group suggests injury-induced corticomotor reorganization 

following SCI that affects relatively less impaired proximal muscles. This finding is consistent with 

the outcomes of previous studies focusing on corticospinal tracts innervating more distal muscles 

[24], [117], [193]. However,  it contradicts a previous report in the biceps brachii where no 

differences were found in the input-output curves of participants with tetraplegia and 

nonimpaired participants [30]. In the study by Sangari and Perez, TMS was delivered 

superimposed to voluntary contractions of the biceps (~10% MVC) unlike our protocol (and 

previously cited reports in distal muscles [24], [117]) where TMS was delivered with the muscle 

at rest. This is an important difference since responsiveness to TMS greatly increases with 

voluntary activation of the corticomotor tract, which enhances the membrane conductance of 

the neurons, placing neurons in a primed state to depolarize [215], [217]. Following SCI, the 

corticomotor excitability changes as measured by greater slopes compared to nonimpaired 

controls may only be detectable at rest, especially since the increase in motoneuron excitability 

during voluntary contractions in SCI individuals is less than that of nonimpaired individuals [194]. 

Decreased spinal inhibition following SCI may also contribute to the increased slopes when motor 

pathways are purposefully tested at rest [218]. Greater MEP input-output curve slopes in the SCI 

group may also indicate expanded cortical motor maps innervating the biceps muscles following 

SCI. In fact, MEP input-output curves may provide similar results to motor mapping in that an 

increase in slope correlates to an increased cortical representation of a muscle as measured with 

motor mapping protocols [66]. The deafferentation of cortical circuits due to SCI leads to long-

term reorganization of muscles’ cortical representations [3], [5]. Notably but not unexpectedly, 

this mechanism is not limited to distal muscles and can also be found by probing proximal muscles 

such as the biceps brachii. Increased slopes may indicate down-regulated activity of excitatory 

interneurons as reflected by the presence of later I-waves at higher TMS intensities [219]. On the 

other hand, normal RMTs suggest that the alteration in excitability may be prominently occurring 

outside of the motor cortex since RMTs are thought to be related to the membrane excitability 

of a central core of cortical neurons [219]. Thus, the increased input-output curves of the biceps 
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brachii in tetraplegia are likely due to a combination of changes in spinal inhibition and decreased 

inhibitory feedback from the brain.  

While using approaches such as the sigmoid function may better fit the shape of the MEP 

input-output curves, simple linear regression yields satisfactory results that are repeatable across 

days. Similar to a previous study addressing the differences between the Boltzmann sigmoid 

function method and linear regression in stroke patients, we found no difference in the accuracy 

of prediction (R2) between the two methods in the SCI group [213]. Further, despite the 

challenges of targeting the biceps brachii [121], we were also able to show that MEP input-output 

curves of the biceps are repeatable across days in SCI patients (ICC(3,k) = 0.78). Previously, test-

retest reliability of MEP input-output curves targeting the FDI had been established in 

nonimpaired participants when using sigmoidal curve fitting [208] and in chronic stroke using 

linear regression [220]. Repeatability across days is an important requirement to use MEP input-

output curves to measure outcomes of neurorehabilitation protocols.  

This preliminary study has limitations. First, only ten patients with cervical SCI 

participated in the study. While they all had C5-C6 level injuries, discrepancies in remaining motor 

function as reflected by ISNCSCI scores were present among participants. Furthermore, our 

nonimpaired group tested was on average younger (age 22.7 ± 2.5 versus 39.9 ± 10.6). However, 

previous research suggests that age may not affect RMTs nor the slope of MEP input-output 

curves [221].  Finally, five out of ten of our SCI participants were using the drug baclofen (see 

Table 4-1), known to affect the nervous system at the cortical and spinal level (anti-spasmodic 

GABA agonist) [222]. While baclofen appears not to affect the amplitude of MEPs (tested in FDI 

of SCI patients) at rest [183], or even reduce MEP size in nonimpaired lower limb muscles [223], 

additional research is needed to understand its potential effects on the neuromuscular system 

when used chronically. Another limitation is the use of manual motor mapping instead of a 

navigated TMS approach. However, the benefit-cost balance of using navigated TMS systems may 

be low with respect to its ability to reduce MEP variability [224]. 
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In our cohort, preliminary findings suggest that individuals with tetraplegia following 

chronic cervical (C5-C6) SCI have increased MEP input-output curves of the biceps as analyzed 

with linear regression compared to nonimpaired controls. Along with normal RMTs, this indicates 

injury-induced corticomotor reorganization following SCI. Analyzing MEP input-output curves 

with linear regression was found to accurately represent the slope of the modeled data in the SCI 

group, with no differences in accuracy of prediction (R2) compared to the sigmoid function 

method. Finally, slopes extracted from the MEP input-output curves were found to be repeatable 

across three days. Future research could include MEP input-output curves to investigate how 

motor skill training of impaired muscles may have positive effects on corticomotor excitability. 

MEP input-output curve protocols are uncomplicated to carry out and may be used as a 

monitoring tool when combined with motor relearning protocols or corticomotor plasticity 

inducing techniques, such as repetitive TMS or neuro-feedback training [11], [225]. As 

corticomotor reorganization may be maladaptive, developing reliable ways to measure it has 

clinical implications. 
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5 Chapter 5: Evaluate a Low-cost Navigated Transcranial Magnetic Stimulation 
System 

5.1 Background/Objectives 

Transcranial magnetic stimulation (TMS) is a non-invasive form of brain stimulation in 

which a magnetic field pulse directed via a coil induces an electric current in the brain, which can 

depolarize neurons. When a TMS pulse is applied to the motor cortex, surface electrodes located 

on the muscle record the motor evoked potential (MEP). The MEP provides a quantification of 

cortico-spinal excitability at the time of stimulation. MEP amplitudes often have high variability 

within and across sessions in the same participant when identical consecutive stimuli are applied 

[78], [79]. Physiological variability due to state-changes in the nervous system (i.e., fluctuations 

in excitability of interneurons and motoneurons) are important to capture.  MEP variability 

related to inconsistencies in how the TMS coil is positioned and oriented over the head across 

trials and sessions is undesired [51], [73]. Changes in coil position and orientation alter the 

current flow in the brain, thereby affecting the population of neurons being stimulated, which 

contributes to undesired MEP amplitude variability [72], [73], [79]. Inconsistent positioning of 

the TMS coil is a potential source of error in TMS studies/outcomes [226]–[228]. Reducing error 

in replication of coil position and orientation over the TMS hotspot across trials and sessions is 

important for the use of TMS in clinical neuroscience and rehabilitation.  

Neuronavigated TMS systems were developed for various applications [229] and can 

reduce the error in placing the coil over the hotspot and precisely track the position of the TMS 

coil during experiments [227] or clinical intervention [230]. Advanced neuronavigation systems 

can use subject-specific structural and functional magnetic resonance images (MRI) to visualize 

individual anatomical structures of the brain. TMS coregistered with MRI relates actual scalp 

locations to virtual cortical surface loci below. The intracranial electric field (E-field) effect on 

subject-specific cortical anatomical structures is calculated and visualized during TMS delivery 

[75]. However, advanced neuronavigated TMS systems have important limitations that limit their 
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use outside of specialist research environments: they are expensive (> $50,000) and add several 

preparatory steps to a TMS protocol, often including individual MRI scans [76].  

Affordable alternatives to neuronavigation that add minimal preparatory steps may 

improve the repeatability of TMS coil location over the motor hotspot (i.e., spatial consistency of 

the TMS coil) relative to the conventional, manual method (using cranial landmarks) [77]. A low-

cost TMS navigation approach was developed to track the position of the coil relative to the head 

[77], [231]. Real-time three-dimensional (3D) feedback is provided to the technician to assist in 

the re-positioning of the coil over the previously determined cortical hotspot [77], [231]. 

Preliminary evaluation of the low-cost navigated system was completed in four non-disabled 

participants targeting the first dorsal interosseus (FDI) at rest [77]. Comparing low-cost 

navigation to the conventional method with limited statistical power, navigation improved 

accuracy in locating the coil over the FDI hotspot both within and between sessions, as well as 

improved MEP quality (i.e., greater amplitudes) and consistency. Further research regarding the 

utility of low-cost navigation is warranted considering the FDI hotspot is easier to target with TMS 

relative to other muscles or muscle groups [232], [233], and MEP variability depends on the 

target muscle and its level of voluntary activation [49], [68], [234].  

The objective of this study was to determine the effect of a low-cost navigation approach 

(developed by Rodseth et al., 2017) on spatial consistency of the TMS coil over the biceps brachii 

motor hotspot, and biceps MEP amplitudes and their variability across a range of voluntary biceps 

activation and two sessions. A range of voluntary activation levels from 0 to 100% of maximum 

was assessed because it may be more difficult to maintain coil location during contractions, and 

MEPs during effort are relevant to neuromuscular function [190]. Participants completed two 

sessions to elucidate inter-session variability. We hypothesized that relative to the conventional 

method, low-cost navigated TMS would demonstrate: 1) greater spatial consistency of the TMS 

coil (i.e., smaller position and orientation errors of the TMS coil with respect to the registered 

hotspot) over the biceps motor hotspot across voluntary effort levels, 2) smaller intra- and inter-
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session biceps MEP variability, and 3) larger MEP amplitudes due to better targeting of the motor 

hotspot.  

5.2 Methods 

5.2.1 Experiment Overview: 

Ten non-disabled participants (24.5 ± 3.5 years old, five female, five male) were recruited 

to participate in two sessions during which single pulse TMS was delivered to the biceps hotspot 

on the motor cortex. To test the effect of low-cost navigation on biceps MEPs, we recorded MEPs 

each at the following voluntary effort levels: 0, 25, 50, 75, and 100% of the maximum voluntary 

isometric contraction (MVC) while position and orientation of the coil were tracked in two 

conditions: (1) navigated and (2) conventional. The “navigated” condition hereafter refers to the 

condition in which the technician was provided visual feedback (on a monitor) of the position 

and orientation of the coil relative to the hotspot, and “conventional” refers to the conventional, 

manual method in which the technician uses cranial landmarks and markings on a cap to position 

the coil over the hotspot. The order of conditions (navigated or conventional) and voluntary 

efforts were randomized for each session. To assess repeatability, participants each completed 

two sessions; sessions were separated by at least one day, no more than a week. A protocol 

overview is presented in Figure 5-1. 
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Figure 5-1: Both experimental sessions included navigated and conventional mapping of the motor 
hotspot. In the conventional condition, navigation feedback was hidden from the technician and markings 
were made on a cap to record the hotspot location. In the navigated condition, the technician is provided 
feedback regarding position and orientation of the coil relative to the recorded hotspot. Six MEPs were 
collected at each effort level (30 MEPs total per block). 
 

5.2.2 Electromyography and Kinetic Data 

Surface EMG electrodes (Delsys Trigno Wireless Sensors) were placed over the muscle 

belly of the biceps brachii. For all trials, the participant’s forearm was supported against gravity 

in an isometric posture via a custom brace attached to a six degree-of-freedom load cell (Model 

30E15A4-I40-EF-100L, JR3, Woodland, CA). Kinetic and EMG data were sampled at 2000 Hz using 
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Spike 2 software (Micro 1401 MkII, Cambridge Electronic Design, Cambridge, UK). EMG signals 

were amplified and bandpass-filtered at 20-450 Hz prior to A/D conversion.   

5.2.3 Maximal Voluntary Isometric Contractions: 

At the start of each session (before motor mapping), participants performed three MVCs 

in elbow flexion for three seconds while receiving real-time visual moment feedback and verbal 

encouragement (Fig. 2, A). Each maximum effort was separated by at least 90 seconds of rest. 

The participant’s MVC was calculated for each effort as the mean elbow moment maintained 

over ± 250 ms from the maximal moment achieved. The mean maximum moment of three MVC 

trials was used for subsequent trials during which participants were asked to generate a voluntary 

moment to match a percentage of their MVC moment. EMG signals during the MVC trials were 

also used to normalize MEPs [235]. The greatest root mean squared (RMS) value was computed 

from the three MVC trials over a ± 250 ms window at the maximum amplitude [236]. 

 

 

Figure 5-2: A. Participants wore glasses with a reflective marker cluster facing the tracking camera. Elbow 
moment feedback was provided on a monitor. B. Real time visual feedback was presented to the 



118 

 

technician during the navigated condition to match the current (blue) and desired (green) coil position 
and orientation to target the hotspot. 
 

5.2.4 Low-Cost TMS Navigation: 

We implemented a low-cost TMS navigation approach developed by Rodseth et al. within 

our laboratory; the materials to implement the approach cost ≈ $3200. A motion tracking camera 

(OptiTrack V120 Trio system, < $3000) was implemented to track the position of reflective 

markers attached to custom-built accessories including a stylus, coil attachment, calibration 

tools, and head attachment in Motive 1.8. Real time motion tracking is performed in the motion 

tracking software where each accessory is registered as a marker cluster. Position and orientation 

data of each cluster were livestreamed to a computer program. The computer program was 

based on source code provided by the University of Michigan NeuRRo Lab using Unity’s 3D engine 

[77]. The program was used to capture navigation data during the experiment and provide 3D 

visual feedback to the technician. Calibration tools and marker clusters were 3D printed from 

polylactic acid material. Glasses with a triad of reflective markers were used to define the head 

reference frame. A marker triad attached to the TMS coil defined the coil reference frame. 

Motion tracking calibration was performed following the MVCs. After positioning the 

calibration tools and accessories in front of the camera, Motive 1.8 settings were adjusted to 

optimize the infrared signal captured by the cameras. Calibration began by placing the calibration 

stylus in the center of the calibration space to create a virtual object. The calibration stylus was 

then used to define coil landmarks including the center, front and inner side of the coil. The 

participants’ head geometry was calibrated using the stylus to create landmarks aligned with the 

nasion, right tragus, left tragus, vertex, and inion.  

5.2.5 Transcranial Magnetic Stimulation: 

A 70 mm figure-of-eight coil and monophasic stimulator (Magstim, Bistim2) were used to 

deliver single pulse TMS to the motor cortex. Motor cortex mapping was performed each session 

to obtain the hotspot, which is the location that evoked the largest peak-to-peak MEP in the 
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biceps brachii at the lowest stimulation intensity [237]. The hotspot was recorded and replicated 

for subsequent stimulation trials using two procedures (in random order): navigated and 

conventional (Figure 5-1). With the navigated method, after the hotspot was determined, visual 

feedback from the computer program was subsequently used to match the hotspot. With the 

conventional method, the hotspot location was marked on a cap secured to the participant’s 

head [238]. Markings were subsequently used to match the hotspot. In both conditions, the 

position and orientation of the coil relative to the head were saved in the computer program. 

Resting motor threshold (RMT) was determined at the hotspot as the lowest stimulus intensity 

able to induce biceps MEPs ≥ 50 µV in at least 5 out of 10 stimuli [237]. 

5.2.6 Single Pulse TMS Trials: 

In each session, participants completed two experimental blocks (one navigated, one 

conventional) with their arm supported against gravity in an isometric posture with the elbow 

flexed to 90° (Figure 5-2, A). Each block consisted of a set of 30 isometric elbow flexion moment-

matching trials at 0, 25, 50, 75, or 100% MVC presented in randomized order (6 per effort level). 

A TMS pulse of 120% RMT was delivered when the participant achieved and maintained ± 2.5 

percent of the target effort level (i.e., elbow moment) for a sustained 0.5s [239]. The position 

and orientation of the coil during each stimulus event were recorded for both the navigated and 

conventional conditions. During trials in the navigation block, the research technician used the 

position and orientation feedback from the navigation software to position and orient the coil, 

matching the hotspot previously determined/recorded (Figure 5-2, B). During the trials in the 

conventional block, the research technician used markings on a cap to position and orient the 

TMS coil.  

5.2.7 Data and Statistical Analysis: 

Spatial coil placement consistency was evaluated by the error in matching location and 

orientation of the coil from the registered motor hotspot during each TMS stimulus event. 

Position error was recorded in x, y, and z coordinates then represented as the mean Euclidean 
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distance. Error in orientation was recorded in pitch, yaw, and roll, defined as rotation about the 

y, z, and x axes of the coil, respectively (Figure 5-3)[240]. Peak to peak amplitudes of MEPs were 

calculated from the EMG signal using custom-written scripts in MATLAB. Two-way ANOVAs with 

repeated measures with condition (navigated and conventional) and effort level (0, 25, 50, 75, 

100% MVC) as repeated measures were used to compare the mean absolute error in reproducing 

the coil position and orientation. The null hypothesis was that there are no differences in coil 

position and orientation error between conventional and navigated conditions. The alternative 

hypothesis was that navigation decreased coil position and orientation error compared to the 

conventional condition. A two-way ANOVA with repeated measures with condition (navigated 

and conventional) and effort level (0, 25, 50, 75, 100% MVC) as repeated measures was also used 

to compare biceps MEP amplitudes. Bonferroni’s multiple comparison tests were used for post-

hoc analyses, when applicable. The null hypothesis was that there are no differences in MEP 

amplitudes between conventional and navigated conditions. The alternative hypothesis was that 

navigation increased MEPs compared to the conventional condition. 

Coefficients of variation (SD/mean × 100) were computed for each participant at each 

effort level. Coefficients of variation (CV) were then averaged to represent intra-participant and 

intra-session variability of biceps MEPs. Differences in CV between the navigated and 

conventional conditions were evaluated using the asymptotic test for the equality of coefficients 

of variation [241]. To assess repeatability across sessions, intraclass correlation coefficients (ICCs) 

were calculated for biceps MEPs (two-way random effect model with absolute agreement of 

measurements, ICC(2,k) formula in R)[242]. ICCs were compared between navigated and 

conventional conditions using mixed-effect F-statistics [242]. ICC values were interpreted as high 

(ICC ≥ 0.75), moderate (0.50 ≤ ICC; 0.75), low (0.25 ≤ ICC; 0.50), and very low to none (ICC; 

0.25)[143]. All data and statistical analyses were performed in MATLAB (MathWorks, Inc, Natick, 

MA), R (R Core Team, Vienna, Austria), and Prism (GraphPad Software, La Jolla California USA) 

with custom-written code. Tests were evaluated at a significance level corresponding to p < 0.05. 

5.3 Results 
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Coil orientation errors were lower with navigated TMS relative to conventional (Main 

effect of navigation: pitch: F(1, 1180) = 113.0, p < 0.0001, yaw: F(1, 1180) = 56.06, p < 0.0001, roll: F(1, 

1180) = 45.66, p < 0.0001) at most effort levels (Figure 5-3, B, C, D). Position error differed between 

the navigated and conventional conditions (Main effect of navigation: F(1, 1180) = 12.0, p < 0.001 ) 

but only for trials at 75% MVC (t(1080) = 2.651, p < 0.05); there was no difference at the other effort 

levels (Figure 5-3, A). For the navigated trials, the error in coil position was 0.69 ± 0.1 mm and 

the orientation errors in pitch, yaw and roll were 1.18° ± 1.2°, 1.99° ± 1.9°, and 1.18° ± 2.2°, 

respectively (Figure 5-3). For the conventional trials, the error in coil position was 1.2 ± 1 mm, 

and the orientation errors in pitch, yaw, and roll were 3.7° ± 5.7°, 3.11° ± 3.1°, and 3.8° ± 9.1°, 

respectively (Figure 5-3).  
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Figure 5-3: Errors (averaged across sessions) in coil position (A) and orientation (B: pitch, C: yaw and D: 
roll) across all voluntary efforts levels. E. Normalized biceps MEP amplitudes and MEP variability did not 
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differ per condition in either session regardless of effort level. Error bars represent ± one standard 
deviation (SD) and asterisks indicate statistical significance (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 
 

Intra-session variability of normalized biceps MEPs was not different between the 

navigated and conventional conditions (session 1: p = 0.15, session 2: p = 0.81) (Table 5-1). Inter-

session variability of MEPs was also not different between conditions (F(1, 1188) = 2.31, p = 0.128) 

(Table 5-1). Magnitudes of normalized MEPs were also not different across the navigated and 

conventional conditions (F(1, 1180) = 1.07, p = 0.3) (Figure 5-3, C). Repeatability of normalized MEP 

amplitudes was moderate in the navigated and conventional conditions (Table 5-1). Further 

analyses of coil position and orientation errors revealed no interaction effect of voluntary 

contraction at any effort level (position: F(4, 1180) = 0.596, p = 0.665, pitch: F(4, 1180) = 0.039, p = 

0.997, yaw: F(4, 1180) = 0.956, p = 0.430, roll:  F(4, 1180) = 0.928, p = 0.446). Resting motor thresholds 

for each session, and all data and supplementary data are available in our shared data repository 

located here: https://osf.io/bpxhj/. 
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Table 5-1: Intra-session and inter-session variability of MEPs 
   

Protocol Effort Level 

(%MVC) 

Coefficient of Variation (CV) ICC(2,k) 

 Session 1 Session 2  

Conventional 0 26.4% 34.6% - 

25 21.0% 21.5% - 

50 9.41% 13.9% - 

75 12.7% 13.1% - 

100 16.4% 19.8% - 

 Mean 17.2% 20.6% 0.63 

Navigated 0 41.5% 37.6% - 

25 17.4% 15.2% - 

50 14.3% 17.2% - 

75 9.7% 18.1% - 

100 15.8% 17.7% - 

Mean 19.7% 21.2% 0.61 

     

 
 

 
 

 

 

5.4 Discussion 

We implemented a low-cost navigated TMS approach and evaluated the effect of 

navigation on intra- and inter-session biceps MEPs (amplitudes and variability) and errors in 

consistent position and orientation of the TMS coil over the motor hotspot. We hypothesized 

that relative to the conventional, manual method of coil positioning, low-cost navigated TMS 

would result in: 1) smaller positional and orientation errors of the TMS coil over the biceps motor 

hotspot across voluntary effort levels, 2) smaller intra- and inter-session biceps MEP variability, 

and 3) larger MEP amplitudes. Our first hypothesis was partially supported. The error in 

positioning was smaller using the navigated TMS system relative to conventional only when MEPs 
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were superimposed to contractions at 75% MVC. The error in coil orientation was smaller in the 

navigated condition across all effort levels. Consistent orientation of the coil is particularly 

difficult to achieve/maintain when using the conventional method, especially with a flat, figure- 

of-eight coil. In agreement with the perceived difficulty of maintaining coil orientation, the 

navigated system had a greater impact on the coil orientation compared to position over the 

motor hotspot. Our second hypothesis was not supported; intra-session and inter-session 

variability as represented by CV and ICC, respectively, were not different between the 

conventional and navigated conditions. Our third hypothesis was not supported; the amplitude 

of biceps MEPs was not affected by the use of the navigated TMS system. Overall, our results 

suggest that while coil orientation was improved by the use of low-cost navigation, this did not 

translate to improved biceps MEP quality. Variability in biceps MEPs is likely driven by 

physiological variability, such as spontaneous fluctuations in corticospinal and segmental 

motoneuron excitability [79], [243]. The conventional and navigated methods were similarly 

effective in recording biceps MEPs, although low-cost navigation is advantageous in clinical and 

research applications in which tracking coil position and orientation is needed or beneficial [72], 

[244].  

Previously, the low-cost system we implemented was tested on the FDI muscle where 

MEP amplitudes were larger with navigated TMS compared to the conventional method. 

However, this was only tested in four participants in the resting FDI [77]. In our study, we 

evaluated the biceps brachii at different levels of voluntary contractions, in ten participants, and 

did not find an effect of the navigated condition on MEP amplitudes or variability. One possible 

explanation for our finding is that biceps brachii MEPs may be less sensitive to coil position errors 

relative to the FDI, especially in a state of activation [234], [245]. Compared to the FDI, the biceps 

have a smaller cortical representation area and weaker monosynaptic connections which leads 

to more variable MEPs [121], [233].  TMS delivered during voluntary activation of muscle typically 

reduces MEP variability because contraction provides the corticospinal tract with a greater 

degree of organization; contraction increases the membrane conductance of the neurons, 

placing neuron membrane potentials in a more primed state to depolarize [49], [246], [247]. In 
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agreement, we found that intra-session variability of biceps brachii MEPs were lower during 

voluntary contractions (mean CV = 15.8%) compared to at rest (mean CV = 35.1%). The effect of 

navigated TMS on MEP variability may become negligible when intra-session variability of MEPs 

is already reduced by muscle activation. Jung et al. assessed a similar navigation system (although 

not open source) and found that navigated TMS did not reduce MEP variability in the abductor 

pollicis brevis muscle at rest compared to the conventional method [80]. Our results point to the 

same conclusion that physiological factors such as ongoing cortical excitability and spinal 

desynchronization are greater contributors to MEP variability relative to coil location [79], [243]. 

Low-cost navigation can improve spatial consistency of the TMS coil over the biceps 

hotspot relative to the conventional method of TMS coil locating. The errors in position 

consistency we found with the low-cost navigation were similar to previous reports ranging from 

1 to 3 mm of optically tracked frameless stereotaxic navigation [248] and MRI guided 

neuronavigation [227]. Errors in consistency of coil orientation are seldom reported, but the 

effects of TMS depend strongly on the orientation of the TMS coil [52], [249]. Using the same 

low-cost navigation system tested here, the system developers reported coil orientation errors 

of 0.5° ± 0.2° (pitch : 0.4° ± 0.1°; yaw:  0.5° ± 0.2°; roll :  0.6° ± 0.2°) when targeting the FDI at rest, 

which are lower relative to our orientation errors targeting the biceps at various levels of 

activation (pitch: 1.18° ± 1.2°, yaw: 1.99° ± 1.9°, roll: 1.18° ± 2.2°)[77]. However, generally, 

orientation errors were low in both studies. 

A limitation of this study is that we did not record MEPs in the FDI or abductor pollicis 

brevis muscle to enable direct comparison of our results in the biceps brachii. Previous work 

regarding the effect of low-cost navigation on MEP variability focused on these hand muscles 

[77], [80]. A potential limitation is that we only assessed one stimulation intensity per participant 

per session (we did not record MEP recruitment curves). MEP amplitudes and variability depend 

on stimulation intensity [49]. Thus, stimulation intensity may affect the utility of low-cost 

navigation targeting the biceps; of note is that preliminary analysis demonstrated stable TMS 

recruitment curves targeting the FDI at rest [77]. Another potential limitation is that the number 
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of stimulus events was limited to six per effort level per condition to minimize neuroplastic 

effects associated with repeated stimuli and fatigue. Further, our sample size was small (n = 10), 

and we did not investigate the use of a TMS coil stand, which can be used in clinical and research 

applications to maintain the position of the coil across trials. Finally, the center of gravity of the 

motor hotspot may shift during voluntary contraction [250]. However, the cortical representation 

of muscle may increase during activation so our approach to maintain the hotspot as that 

determined at rest is likely robust [251]. 

The important new knowledge presented here is that: 1) low-cost navigation can improve 

coil orientation and track spatial consistency of the TMS coil over the biceps hotspot, 2) voluntary 

activation of the biceps does not affect spatial consistency of the coil, and 3) biceps MEP 

variability reflects physiological variability across a range of voluntary efforts, that can be 

captured equally well with navigated or conventional approaches of coil locating. This low-cost 

navigated TMS system is a suitable alternative to expensive commercial systems in providing 

spatial consistency of the TMS coil. Future work should focus on the feasibility of implementing 

this low-cost navigated TMS approach in clinical settings. 
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6 Conclusions, Contributions and Future Directions 

The focus of this dissertation was the advancement of TMS-based techniques to improve 

the monitoring of neuromuscular function in individuals with tetraplegia following cervical SCI 

with considerations for inter-session repeatability and clinical feasibility. Additional new insights 

on physiological mechanisms may also contribute to the development of better 

neurorehabilitation approaches in the upper limb. In chapter 1, we began by presenting the 

scientific background and gaps in knowledge related to this work. In chapters 2 and 3, we focused 

on investigating a novel approach for directing neurorehabilitation for individuals with SCI 

through the measurement of VATMS. Previous approaches to improve the clinical assessment of 

individuals with SCI have used surface [29], [119] and intramuscular (invasive) EMG [252], 

dynamometry [253], spinal reflexes [17], [18], rigidly administered protocols of motor tasks [254], 

or combinations of these. This approach is advantageous because it is quantitative, and the 

location of neural deficits that are detected can be determined via noninvasive measures while 

providing simultaneous measurement of muscle force-generating capacity. However, 

measurement of VATMS has been limited by technical challenges that limit its interpretation, 

especially in patient populations, including the difficulty in preferential stimulation of cortical 

neurons projecting to the target muscle and minimal stimulation of antagonists. Thus, we 

developed novel methodology to address this challenge.  

In chapter 2, we modulated elbow joint posture during the assessment of VATMS to 

optimize the biceps/triceps MEP ratio in nonimpaired participants and participants with 

tetraplegia following cervical SCI (C5-C6). Elbow flexion angle modulation was able to increase 

the MEP ratio but only in the nonimpaired group and not across the entire range of voluntary 

efforts used to estimate VATMS. Thus, we conclude that modulating elbow flexion angle does not 

improve the MEP ratio and ultimately the assessment of VATMS in tetraplegia. However, we 

established that VATMS and VAPNS in individuals with tetraplegia were repeatable across days, 

which is an important requirement for future clinical use. In chapter 3, we modulated the 

stimulation paradigm by using paired pulse TMS to elicit intracortical facilitation and short-
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interval intracortical inhibition to optimize the MEP ratio during the assessment of VATMS. The 

MEP ratio was modulated in both groups but not across the entire range of voluntary efforts, and 

did not affect VATMS estimation compared to single pulse TMS. Thus, modifying TMS stimulation 

paradigm does not improve the assessment of VATMS in tetraplegia. However, paired pulse TMS 

outcomes revealed abnormal patterns of intracortical inhibition in individuals with tetraplegia 

that may be related to alterations in the activity of GABA-A and GABA-B receptors. Further, our 

experiments revealed additional challenges in the measurement of VATMS in tetraplegia. Linearity 

of the voluntary moment and superimposed twitch relationship, an important requirement for 

the validity of VATMS measures, was difficult to achieve in participant with tetraplegia. In fact, 

linearity was on average lower relative to nonimpaired participants. Increased fatigability and 

antagonist co-activation in tetraplegia likely contributed to this outcome. So far, measurement 

and interpretation of VATMS in tetraplegia remains limited until these challenges can be 

addressed. 

Recent advances in noninvasive brain stimulation technology may be able to address 

these challenges and improve the measurement of VA in patient populations. An ideal 

stimulation technique would be one capable of exclusively and fully activating the corticomotor 

tract innervating the target muscle. One future direction towards this goal is the innovation in 

TMS coil design. For example, miniaturized TMS coils with focality that can reach up to three 

times lower compared to standard TMS coils have been recently developed [255], [256]. To date 

in humans, these new designs have only been tested on peripheral nerves and may not be able 

to sufficiently activate cortical neurons in the assessment of VATMS, especially in tetraplegia. 

Another future direction could investigate alternatives to TMS. For example, transcranial focused 

ultrasound could be a promising alternative to TMS in the measurement of VA [257], [258]. 

Relative to TMS, this technique has higher spatial resolution, which may allow more focal 

stimulation of the motor cortex representation of the target muscle, resulting in less synergist 

and antagonist muscles recruitment during the assessment of VA. Future investigations are 

needed to establish the feasibility and efficacy of this technique in the assessment of VA, in 

nonimpaired and patient populations.     
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In chapter 4, we collected MEP input-output curves of the biceps in individuals with 

tetraplegia and nonimpaired. Using this method, we were able to identify, in the proximal upper 

limb, compensatory reorganization of corticomotor pathways after SCI, similar to what had been 

observed in more distal upper limb muscles [117]. We also established the repeatability across 

days of this technique in individuals with tetraplegia. Since MEP input-output curves can predict 

functional gains in patient populations [71],  these outcomes have implications for the monitoring 

of neuromuscular function after SCI and could contribute to improving the classification 

standards currently based on manual muscle testing [41], [259]. Future research could focus on 

using this approach in combination with neuromodulation and motor training protocols in 

tetraplegia to quantify their effect on corticomotor excitability and better predict rehabilitation 

outcomes.  

 In the final chapter, we implemented a low-cost navigated TMS system (< $3000) that 

uses motion tracking, 3D printed parts and open-source software to monitor coil placement 

during stimulation. Currently, commercially available navigated TMS systems are expensive (> 

$20000) and often complicated to use. This affordable alternative was able to improve coil 

orientation and track spatial consistency of the TMS coil over the biceps hotspot with similar 

effectiveness compared to commercial systems [244], [223]. Further, since voluntary contraction 

of the biceps did not affect spatial consistency of the coil, MEP variability reflects physiological 

variability across a range of voluntary efforts and can be captured equally well with navigated or 

conventional approaches of coil locating. Future work could focus on the implementation of this 

system in clinical settings where coil placement tracking and virtual guidance during stimulation 

may be especially helpful to non-specialized medical practitioners. 
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