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Abstract 

While the etiology is unknown, serotonin and glutamate G protein-coupled receptors (GPCR) 

neurotransmission dysfunctionality is characteristic of schizophrenia. Previous findings 

demonstrated that the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor and the metabotropic 

glutamate 2 (mGlu2) receptor assemble into a heteromeric complex; however, little is known of 

the complete structural interface of the heteromer. Through a mutational-based approach, 

previous research identified Transmembrane domain 4 (TM4) as being responsible for mediating 

heteromerization in mGlu2 before determining the particular amino acids responsible for the 

interface. A similar technique was used in this investigation to determine which component of 5-

HT2A is responsible for the heterodimeric interface. Here, I identified four residues at the N-

terminal of transmembrane domain four essential for the 5-HT2A receptor to form a GPCR 

heteromer with the mGlu2 receptor in HEK-293 cells. Substitution of these residues 

(phenylalanine 4.43, leucine 4.44, isoleucine 4.47, and alanine 4.48) leads to a significant 

reduction of 5-HT2A·mGlu2 receptor complex formation. This finding offers potential targets for 

future photo-crosslinking investigations to identify the particular residues within the 5-HT2A 

responsible for mediating the heteromeric interface of the 5-HT2A·mGlu2 complex. 
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Chapter 1: Introduction 

Schizophrenia 

Schizophrenia affects 0.3-1.1% of the population and is a persistent, severe, and debilitating 

mental illness with long-term consequences for patients and their families (Howes and Kapur, 

2009). Life expectancy may be reduced by as much as 15 years in schizophrenia patients, with 

morbidity being considerably more significant than with illnesses such as pulmonary and 

cardiovascular sickness (Saha et al., 2007; Olfson, 2015). A significant contributor to this loss of 

life is suicide, with studies estimating individuals with schizophrenia have a lifetime suicide risk 

of 5-10%. (Hor, 2010; Freedman, 2003). However, mortality should not be the sole measure of 

severity of a disease, as it is not representative of the hardships faced by an individual with a 

given condition. Disability-adjusted life years (DALY) can be used instead to provide a metric 

that quantifies the overall burden of illnesses. In conjunction with the World Health Organization 

and the World Bank, DALY was pioneered by Christopher, Murray, and Lopez, resulting in the 

first Global Burden of Disease (GBD) study in 1990. According to the most recent GBD study in 

2016, schizophrenia accounts for 1.7% of the total DALYs globally and carries the highest 

disability weight of all disorders in the GBD (Charlson et al., 2018; Salomon et al., 2015). 

Economically, schizophrenia was estimated to cost the United States $155 billion in 2013 

through both direct and indirect healthcare costs, totaling $44,773 per individual patient based on 

a prevalence of 1.0%. When compared to major depressive disorder (MDD), which affects 8.1% 

of the United States population and indirect costs $210.5 billion ($4,071.8 per MDD patient), the 

severe economic burden schizophrenia imposes becomes more evident (Greenberg et al., 2015; 

Wander, 2020)  
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Schizophrenia, which usually develops during adolescence or early adulthood, can present itself 

with a wide variety of symptoms, the hallmarks being changes in perception, thought, and 

behavior. (Owen et al., 2016). 

The DSM-5 diagnostic criteria for schizophrenia include hallucinations (i.e., sensory perceptions 

in the absence of concurrent sensory stimuli), delusions (i.e., beliefs firmly maintained despite 

significant evidence of them being not true), disorganized speech and behavior (e.g., grossly 

disorganized, frequent derailment or incoherence), and negative symptoms (characterized by loss 

or deficits of features that are present in healthy individuals) (American Psychiatric Association, 

2013). Disability often results from both a combination of negative symptoms and cognitive 

symptoms (e.g., learning and attention disorders). In addition, relapse may occur because of 

positive symptoms (characterized by an excess or distortion of normal function), such as 

suspiciousness, delusions, and hallucinations (Crismon et al,. 2014; Patel et al,. 2014 ).  

While the etiology of schizophrenia is unknown, it has been demonstrated to involve a variety of 

structural and neurochemical dysfunctions in multiple brain regions (Ripke et al., 2013), of 

which abnormalities in neurotransmitter systems have been proposed to contribute significantly 

(Brish et al., 2014).  

Overactive dysregulation in the dopaminergic neurotransmitter (DA) system has been the 

predominant pathophysiological hypothesis of schizophrenia. This stemmed from two 

observations: 1) first-generation “typical” antidopaminergic antipsychotics primarily as D2 

antagonists 2) indirect D2 agonists (amphetamine, phencyclidine, etc.,) induce psychotomimetic 

effects or exacerbate schizophrenic symptoms by increasing dopamine activity in the subcortical 

and limbic regions. This overactivity has also been supported by human postmortem findings of 
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the frontal cortex, which observed increases in D2 receptor expression and D2 mRNA levels, 

with increased activity in the mesolimbic pathway (Davis et al., 1991; Abi-Dargham et al., 2000; 

Tallerico et al., 2001).  

The roles of other neurotransmitters such as glutamate (Glu) and serotonin (5-HT) in the 

neuropathology of schizophrenia have started to gain particular attention as being the primary 

target of second-generation antipsychotics (Miyamoto et al., 2005; Conn et al., 2009). 

Furthermore, the psychotomimetic effects of drugs that antagonize the glutamate and serotonin 

signal recapitulate schizophrenia ethology to a much more accurate extent than drugs that simply 

stimulate dopamine signaling (Kapur et al., 2002; Halberstadt et al., 2011). 

Many neurotransmitters involved in schizophrenia act through metabotropic G protein-coupled 

receptors (GPCRs). Serotonin, dopamine, and glutamate are traditionally recognized as 

molecular targets in this investigation (Patil S et al., 2007; Kwan C et al., 2021). 

General GPCR characteristics 

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in the 

human genome that function to mediate slow synaptic transmission by modulating intracellular 

signal transduction, through which they regulate an incredible range of physiological processes 

ranging from cell growth to neurotransmission (Ji et al., 1998; Levoye A et al., 2006; 

Grundmann et al., 2018). 

GPCRs share a common structure comprised of a single polypeptide chain with seven 

transmembrane (TM) α-helix domains, an extracellular amino-terminal, an intracellular 

carboxyl-terminal tail, and three cytosolic and extracellular loops. The G proteins associated with 
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GPCRs are heterotrimeric comprised of an: α-subunit, β-subunit, and γ-subunit. By interacting 

with other membrane proteins involved in signal transduction, these subunits relay messages 

within the cell (Rosenbaum et al., 2009). While sharing distinct structural characteristics, GPCRs 

have been classified into five major families according to phylogenetic criteria: Family A 

(rhodopsin-like), Family B (secretin receptor family), Family C (metabotropic glutamate 

receptors), Adhesion, and Frizzled/Taste2. Sequence homology within these families is at least 

40%, with the greatest homology at the transmembrane domain. (Vassilatis et al., 2003; 

Bjarnadóttir et al., 2006) 

GPCRs can further be categorized by downstream signaling pathways depending on the α 

subunit: Gi/o, Gs/olf, Gq/11, and G12/13. As the name suggests, in response to ligand binding, GPCRs 

activate heterotrimeric guanine nucleotide-binding proteins (G proteins), stimulation of which 

results in a dissociation of the Gα subunit from the Gβγ dimer and allows the subunits to activate 

or inhibit various effectors. Gs/olf (stimulatory) and Gi/o (inhibitory) pathways regulate cAMP-

dependent signaling by either stimulating or inhibiting adenyl cyclase activity. The Gq/11 coupled 

pathway operates via phospholipase C-β enzymes, which hydrolyzes phosphatidylinositol 4,5-

bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 1,4,5- trisphosphate (IP3). Hydrophilic 

IP3 diffuses into the cell and acts as a second messenger to release stored calcium from the 

endoplasmic reticulum lumen into the cytoplasm. Whereas DAG acts as a second messenger that 

activates protein kinase C (PKC). G12/13 stimulates small GTPase downstream signaling 

(Moghaddam et al., 2004; Liu et al., 2021). 

Comprehensive research on GPCRs led to the identification of an orthosteric site for endogenous 

ligand binding as well as several allosteric sites that can modulate response: Positive Allosteric 

Modifiers (PAMS) and Negative Allosteric Modifiers (NAMS) (Foster et al., 2017). Due to their 
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central roles in many cellular functions and numerous binding sites, GPCRs are an important 

therapeutic target, with different reports suggesting that between 30 and 40% of FDA-approved 

drugs target GPCRs (Wise et al., 2002; Brink et al., 2004). 

Initially, GPCRs were thought to exist and function as monomeric structural units that couple to 

G-proteins in a 1:1 stoichiometric ratio. (Liang Y et al., 2017) This model is supported by 

evidence that purified monomeric β2-adrenoreceptor (Family A) reconstitutes in a phospholipid 

bilayer is sufficient for fully functional G protein activation (Whorton et al., 2007; Kuszak et al., 

2009).  

However, over the last decade, the notion that these receptors function exclusively as monomeric 

proteins has been challenged, with indications that GPCRs can exist and function as dimers or 

even higher-order oligomers. Investigation into Family A, D2 receptors indicated the receptor 

requires two structural units to one G-protein to be maximally activated by a single bound ligand 

(Han et al., 2009). Additional evidence suggests class C metabotropic Glutamate (mGlu) and 

GABA receptors act as obligate homodimers, suggesting dimerization is crucial for receptor 

function (Kniazeff et al., 2011). 

GPCRs may also undergo heterodimerization. Initial evidence for this model came from studies 

of the α2-adrenoreceptor and M3 muscarinic receptor in which two mutant chimeras were 

generated with TM-6 and TM-7 exchanged between α2C and M3. This revealed that only when 

co-transfecting the α2/M3 and M3/α2 chimeras resulted in stimulation, suggesting the two 

receptors are intricately connected, and the presence of all transmembrane domains was 

necessary and sufficient for signaling, regardless of which specific receptor they were inserted in 

(Zeng et al., 2000). 
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Perhaps the most eloquent example of heterodimerization is the interaction between GABAB-R1 

and GABAB-R2 subunits in forming a fully functional GABAB (γ-aminobutyric acid type B) 

receptor. Functional membrane receptors were created by co-expression of recombinant 

GABAB-R1 and GABAB-R2 plasmids but not by expressing each recombinant plasmid alone. 

Further studies exploring this model revealed GABAB-R1 appears to determine the 

pharmacological properties of the receptor, while GABAB-R2 is essential for the proper 

expression of GABAB-R1 on the plasma membrane. (Filippov et al., 2000; Jones et al., 2000) 

Heterodimerization involving two fully functional GPCRs from distinct families has also been 

well established. κ and δ opiate receptors have been shown to form a fully functional 

heterocomplex receptor that exhibits distinct functional and ligand-binding characteristics 

distinct from those of either receptor alone (Jordan & Devi, 1999). 5-HT2A and D2 have also 

been shown to form a functional heterocomplex with ligands conveying different effects on 

downstream signaling depending on whether homo- or hetero-dimers are present. (Łukasiewicz 

et al., 2010) Additionally, Family A 5-HT2A and Family C mGlu2 receptors have been shown to 

form a functional heterocomplex in the mammalian brain and tissue culture preparations. 

(González-Maeso et al., 2008; Rives et al., 2009; Moreno et al., 2012).  

There are several ways that a heterocomplex interaction can be assessed. Co-

immunoprecipitation (Co-IP) assays are robust measures to determine whether two proteins 

interact. Co-IP is performed by binding one of the proteins of interest with a magnetic bead, then 

washing away all proteins that are not bound to the antibody-bead-protein complex, followed by 

immunoblot probing for the second protein of interest. If the two proteins are part of the same 

protein complex, then there would be an immunoreactive signal detected for the protein that was 

not directly bound to the magnetic bead (Tang et al., 2018). However, there are also alternative 
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methods to address GPCR complex formation, including Förster (Fluorescence) Resonance 

Energy Transfer (FRET) and Bioluminescence Resonance Energy Transfer (BRET). FRET is a 

technique where after excitation with a laser, an excited donor molecule (e.g., cyan fluorescence 

protein) transfers resonance energy to an acceptor molecule (e.g., yellow fluorescence protein), 

producing a highly distance-dependent fluorescence. Therefore, this can accurately measure the 

molecular proximity of two proteins at angstrom distances (10-100 Å) (Sekar et al., 2003). 

BRET is a very similar technique to FRET; however, the resonance energy transfer is not 

between two fluorescent proteins but rather between a bioluminescent donor and a fluorescent 

acceptor and therefore does not require an excitation source (Dimri et al., 2016). 

The 5-HT2A·mGlu2 Heteromeric Receptor Complex 

Abnormalities in the serotonin and glutaminergic system have been observed in schizophrenia 

patients compared to neuropsychiatric healthy control subjects. Postmortem and neuroimaging 

studies suggest an increase in Gq/11-coupled 5-HT2A receptor density with concurrent decreases in 

Gi/o-coupled mGlu2/3 receptor density and treatment with second-generation antipsychotic drugs 

decreases density to control levels (Gonzalez-Maeso et al., 2008). This has similarly been 

verified in a rodent model where chronic treatment with second-generation antipsychotics, 

clozapine and risperidone, downregulated 5-HT2A cortical neurons. (Gonzalez-Maeso et al., 

2008; Kurita et al., 2012). Additionally, rodent studies revealed that the administration of classic 

serotonergic psychedelics in mGlu2 -/- knock-out mice eliminated the hallucinogenic-specific 

signaling component, suggesting this pattern of 5-HT2A, mGlu2 density may predispose 

psychosis (Gonzalez-Maeso, 2008). 
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Previous findings have also demonstrated cross-talk between the Gq/11-coupled 5-HT2A and the 

Gi/o-coupled mGlu2 receptors, showing they form a heteromeric complex via which the 5-

HT2A·mGlu2 complex incorporates both serotonin and glutamate signaling to modulate 

downstream signaling and behavioral changes (Moreno, 2016). Further studies have indicated 

that in response to endogenous ligands (glutamate and serotonin), the 5-HT2A·mGlu2 

heteromeric complex functions to establish a Gi/o-Gq/11 balance, which is believed to underlie the 

therapeutic action of mGlu2 activators and 5-HT2A antagonists. Classic psychedelics such as 

LSD, Mescaline, and Psylocibin, have been shown to shift the signaling balance towards a more 

psychosis-like condition, while on the other hand, second-generation antipsychotics have been 

shown to recover the Gi/o/Gq/11 imbalance (Fribourg et al., 2011). 

This heteromeric complex allows for a plethora of therapeutic targets to allow for more 

deliberate modulation intracellular signal, rather than each individual GPCRs (Wootten et al., 

2018). 

Mapping the Heteromeric Interface of 5HT2A-mGlu2 

Within the 5-HT2A·mGlu2 complex, the structural mechanisms responsible for forming the 

oligomer are poorly understood, as is/are the molecular mechanism(s) responsible for cross-talk. 

In the investigation into the mechanism by which 5-HT2A·mGlu2 heterocomplex modulates 

downstream signaling, the structure of the heteromeric interface must be considered. Several 

studies have used a mutational-based approach to examine whether a direct mechanism 

contributes to cortical cross-talk between the two receptor systems (Moreno et al., 2012) 

Co-immunoprecipitation assays of human brain cortex samples and transfected HEK-293 cells 

with antibody epitope tags verified 5-HT2A and mGlu2, but not mGlu3, form part of the same 



 

15 

 

protein complex (Gonzalez-Maeso et al., 2008). Due to the sequence homology between 

mGlu2/3, mutant chimeras with non-homologous amino acid residues of mGlu3 were inserted 

into mGlu2 in order to disrupt the heteromeric assembly. Through this method, researchers 

identified three residues at the intracellular end of TM4 (Alaine 4.40, Alanine 4.44, and Alanine 

4.48), which are necessary to form the 5-HT2A·mGlu2 receptor heterocomplex. Additionally, 

when the TM4 residues of mGlu2 were inserted into the mGlu3, it was sufficient for signaling 

cross-talk to occur (Moreno et al., 2012). 

As there is similar discrimination found between the 5-HT2A and 5-HT2C (which does not form a 

protein complex with mGlu2), additional investigations utilizing a similar mutational chimeric 

method to the one described above indicated the TM4 domain of 5-HT2A is necessary for the 

heterocomplex to form. (Moreno et al., 2016.)    

Objective 

With abundant research highlighting the biological relevance of the 5-HT2A·mGlu2 

heterocomplex in modulating signaling, the complete structural interface between the two 

GPCRs remains unknown. 

While the residues in mGlu2 responsible for dimerization have been identified, the residues in 5-

HT2A remain unidentified, having only been limited down to the TM4 domain. I hypothesize that 

the residues in the N-terminal half of 5-HT2A are responsible for mediating the formation of a 

heterocomplex with mGlu2.  

This was assessed using a heterologous expression system in human embryonic kidney cells 

(HEK-293). A 5-HT2A chimera mutated to include four aligned residues from 5HT2C along the 
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TM4 of 5-HT2A closest to the N terminus (5-HT2A-TM4ΔNF) was co-expressed with mGlu2 to 

attempt to disrupt the binding interface of the heteromer.  

The four 5-HT2A residues mutated (phenylalanine 4.43, leucine 4.44, isoleucine 4.47, and alanine 

4.48) were chosen to start this investigation because these residues i) are different between 5-

HT2A and 5-HT2C, and ii) are located facing towards the lipid bilayer according to the recent 

crystal structure of the 5-HT2A (Kimura et al., 2019) 

Disruption of the heterocomplex was evaluated using a co-immunoprecipitation followed by 

immunoblotting. Further characterization of the mutant chimera was also performed to confirm 

level of expression, cellular localization and function homology to WT 5-HT2A. 

Chapter 2: Research Methods 

Plasmid Preparation, Amplification, and Sequencing of Constructs  

The constructs pcDNA3.1-c-Myc-5-HT2A-mCherry and pcDNA3.1-HA-mGluR2-mCitrine, 

described previously (Moreno et al., 2016), and 5-HT2A-TM4ΔNF were obtained (Kareem, 

2020). The primer used for sequencing of Mutant construct (5-HT2A-TM4ΔNF) was: 5’-AGC 

TGA TAT GCT GCT GGG TT -3’. Following sequence verification, constructs were 

transformed into XL1-Blue Supercompetent Cells (Agilent Technologies; CN: 200236) before 

purification and amplification by Plasmid Maxi Prep (QIAGEN). 

Cell culture 

Human Embryonic Kidney (HEK)-293 cells were used for transfection and cultured in a 5% CO2 

at 37°C in Medium A, DMEM (Dulbecco’s Modified Eagle’s Medium; 4.5 g/L glucose, L-
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glutamine, sodium pyruvate) supplemented with 10% (v/v) dialyzed fetal bovine serum (dFBS) 

(Thermo Fischer Scientific; CN: 26400044) and 1% (v/v) Penicillin-Streptomycin (Thermo 

Fischer Scientific; CN: 15140122) (except immediately prior to transfection, as noted below). 

Cells underwent passages every 2-3 days, using fresh Medium A in a ratio between 1:8 and 1:12, 

to keep the cells in their exponential growth phase and never passaged higher than 20 times. 

Transient Transfection of HEK 293 cells 

48hr before transfection, HEK-293 cells were split and cultured in DMEM supplemented with 

10% (v/v) dFBS only. All Transient transfections were conducted with Lipofectamine 3000 

(Invitrogen; CN: L3000001) using a Lipofectamine 3000 to plasmid ratio of 1:1.5 and performed 

according to the manufacturer’s recommendations. A total of 6 μg/plate of plasmid DNA was 

used in each single transfection. This includes the individual transfection of the constructs, c-

Myc-5-HT2A-mCherry, and c-Myc-5-HT2A-TM4ΔNF-mCherry. A total of 12 μg of DNA was 

used in each co-transfection with a plasmid ratio of (1:2), 4 μg of which were vector, 5-

HT2A receptor, or mutant 5-HT2A receptor DNA and 8 μg of which was DNA construct HA-

mGluR2-mCitrine. This includes co-transfection of constructs c-Myc-5-HT2A-TM4ΔNF-

mCherry with HA-mGluR2-mCitrine, and c-Myc-5-HT2A-mCherry with HA-mGluR2-mCitrine. 

24hr after transfection, media was removed and replaced with DMEM supplemented with 10% 

(v/v) dFBS and 1% (v/v) Penicillin-Streptomycin, for an additional 24hr before harvesting. 

Cell Membrane Preparation 

48 Hours following transfection, cells were harvested with Dulbecco’s Phosphate-Buffered 

Saline, 1X without calcium and magnesium (DPBS) (Corning; CN: 21031CV). The resulting cell 

pellets were frozen at –80°C before being prepared into membranes. A Teflon homogenizer was 
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used to homogenize the cell pellet (50 ups/downs) in 10ml Tris-HCl 1x (50 mM Tris-HCl, pH 

7.4). Homogenized tissue was spun for 5 min at 1,000 × g (4°C) and the pellet was discarded. 

The supernatant was spun for 15 min at 40,000 × g. Subsequent pellet was washed with 500 μl 

Tris-HCl and spun again for 15 min at 40,000 × g. The pellet was resuspended in 500μl of Tris-

HCl and transferred to a 1.7 ml Eppendorf tube, then spun at 18,000 × g in a microcentrifuge for 

15 min at 4°C. The Tris-HCl 1x was removed, and the pellet was either used or stored at −80°C 

until use. 

Co-immunoprecipitation 

Co-immunoprecipitation was conducted using 600μg of prepared cell membrane. Protein Assay 

(Bio-Rad; CN: #5000006) was performed to normalize the amount of protein. Membranes were 

resuspended with 500μl RIPA buffer (50 mM HEPES, 150 mM NaCl, 5mM EDTA, and Mini 

EDTA-free Protease Inhibitor Cocktail tablet (Roche Applied Sciences; CN: 04693159001), pH 

7.4) and allowed to solubilize with 500μl Solubilization buffer (RIPA buffer supplemented with 

1% SDS and 2% Triton X-100 (Fischer Scientific; CN: BP151-500)) by incubation on a rotating 

mixer at 4 °C for 1hr. Cells were incubated on a rotating mixer with Protein A/G PLUS-Agarose 

immunoprecipitation beads (Santa Cruz Biotechnology; CN: sc-2003) at 4 °C for 30 minutes to 

account for non-specific binding. 100μl of the cell lysates was saved for Total Protein control, 

and the remainder was then incubated with immunoprecipitation beads conjugated to c-HA-Tag-

Mouse Ab (diluted 1:1000; Cell Signaling Technology; CN: 3724) at 4 °C for 18 hours. The 

beads were washed at 4 °C three times in RIPA buffer. Immunoprecipitated proteins were then 

eluted from the beads by resuspension in 20 μl Solubilization buffer, followed by western 

blotting. 
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Western Blot 

Samples were mixed with 5μl 5x Laemmli buffer and heated for 5 min at 97 °C. Proteins were 

resolved by 12% SDS-PAGE and transferred to nitrocellulose membranes by electroblotting. 

Nitrocellulose blots were washed with TBST (150 mM NaCl, 50 mM Tris-Cl, and 0.1% Tween 

20, pH 7.6) before incubating the membrane in Blocking Buffer (TBST, 2.5% nonfat dry milk, 

0.5% BSA) for 1hr at room temperature. Nitrocellulose blots were then incubated (overnight at 

4° C) with c-myc-Tag-Mouse Ab (diluted 1:1000; Cell Signaling Technology; CN: 9B11). 

Following six washes with TBST, blots were incubated with Anti-Mouse IgG Horseradish 

peroxidase (HRP) conjugated secondary Ab (1:5000; ACCURATE Chemical Science Corp.) 

After incubation, blots were washed six more times with TBST for 30 minutes and developed 

using enhanced chemiluminescence detection (SuperSignal™ West Pico PLUS 

Chemiluminescent Substrate; Thermo Fischer Scientific) in accordance with manufacture 

instructions. Immunoreactive bands were analyzed using ChemiDoc Imaging System and Image 

Lab (Bio-Rad Laboratories). Final data of Co-immunoprecipitation are expressed as a ratio of the 

relative density of the 250kDa band to its respective 250 kDa total protein band. Final data for 

characterization of immunoblot signal is expressed as the 250 kDa was normalized to β-actin. 

Observed differences were considered statistically significant if P-values were below 0.05. 

Radioligand binding 

Saturation binding assays were performed with the 32μg prepared cell membranes and 

[3H]ketanserin (22.8 Ci/mmol; PerkinElmer; CN: NET1233), then incubated in Tris-HCl for 1hr 

at 42°C. The following [3H]ketanserin concentrations were used: 10 nM, 5 nM, 2.5 nM, 1.0 nM, 

0.5 nM, 0.25 nM, 0.125 nM, 0.0625 nM, all in duplicate for total and non-specific (three reactions 



 

20 

 

at each concentration were measured). Non-specific binding was determined by incubating the 

reactions with 100μM methysergide (Tocris; CN: 1064); two samples were pooled for each 

assay. Protein Assay (Bio-Rad; CN: #5000006) was performed to normalize the amount of 

protein in each assay. Reactions were harvested by vacuum filtration through Glass fiber 

Filtermat A (PerkinElmer) (3× 50 mM Tris-HCl, pH 7.4) and counted by liquid scintillation 

using a PerkinElmer 2450 MicroBeta2. Data analyses were performed using Microsoft Excel and 

GraphPad Prism v8.0 (GraphPad software, San Diego, CA, USA). KD and Bmax were determined 

by a saturation binding analysis, 𝑌 =
𝐵𝑚𝑎𝑥 × 𝐾𝐷

𝐾𝐷+𝑋
 

[Ca2+]i Mobilization Assay 

Functional signaling was assessed by measuring Ca2+ release in the presence of serotonin 

(100μM, 10μM, 1μM, 100nM, 10nM, 1nM, 0.1nM, 0nM ) in 5-HT2A-TM4ΔNF or WT 5-HT2A 

cells. The day before the assay, 50,000 (5-HT2A) or 50,000 (5-HT2A-TM4ΔNF) cells/50 μL were 

seeded in poly-D-lysine coated (1mg/ml) 96-well black plates (Greiner 781091). The cells were 

incubated with 50μl 3 μM Fluo 4 Direct (Thermo Fisher Scientific; CN: F10471) in imaging 

solution (5 mM KCl, 0.4 mM KH2PO4, 138 mM NaCl, 0.3 mM Na2HPO4, 2 mM CaCl2, 1 mM 

MgCl2, 6 mM glucose, 20 mM HEPES, pH 7.4) supplemented with pluronic acid (10% solution 

in DMSO) for 1 h at 37˚C, as described in the manufacturer’s instructions. Changes in 

fluorescence due to intracellular Ca2+ mobilization were measured using a FlexStation® plate 

reader (Molecular Devices) with λex 494 nm and λem 525 nm. Baselines were recorded every 2 

s for 30 s. Serotonin was added at 30 s; reading started at 90 s after serotonin transfer, reading 

every 1 s for a total of 180 s. The fluorescence was a measure of intracellular calcium and was 

normalized to basal fluorescence using SoftMax Pro (Molecular Devices, Wokingham, UK). 
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Functional data was analyzed by nonlinear regression to generate concentration-response curves 

and EC50 values by Prism V8.0 software, (Y=Bottom + (Top-Bottom) / (1 + 10 ^ ((LogEC50-

X)*HillSlope)(GraphPad Software, San Diego, CA, USA).  

Confocal microscopy imagine 

Confocal microscopy imaging was performed on pcDNA3.1-c-Myc-5-HT2A-mCherry and 

pcDNA3.1-c-Myc-5-HT2A-TM4ΔNF-mCherry transfected HEK 293 cells. Samples were fixed in 

pre-cooled 4% paraformaldehyde in 1x PBS for 30 minutes, then washed twice with 1X PBS 

before incubating the membrane in Blocking Buffer (1x PBS, 5% BSA) for 2hr. Cells were then 

stained with 1:10,000 dilution Hoechst 3342 (20mM) (Thermo Fischer Scientific; CN: 62249) 

for 15 minutes, then washed two times in Phosphate-Buffered Saline (137 mM NaCl, 2.7 mM 

KCl, 8 mM Na2HPO4, and 2 mM KH2PO4) (10 minutes for each wash). Coverslips were 

transferred to a microscope slide and mounted (Invitrogen ProLong™ Diamond Antifade 

Mountant) for microscopic fluorescence visualization. Images were acquired using a Zeiss 

LSM710 laser-scanning confocal microscope (Carl Zeiss AG, Jena, Germany) with Airyscan 

(Plan-Apochromat, objective 63×, Numerical Aperture 1.4). The zoom images are digitally 

cropped using the same objective at 2x zoom. Microscopy was performed at the VCU 

Microscopy Facility, supported, in part, by funding from NIH-NCI Cancer Center Support 

Grant P30 CA016059. 
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Chapter 3: Results 

Sequence alignment 

Sequence analysis was performed to corroborate whether the 5-HT2A-TM4ΔNF chimera was 

mutated to contain 5-HT2C TM4 N-terminal residues. All residues were identified using the 

Ballesteros-Weinstein sequence-based numbering system. This revealed successful replacement 

of WT 5-HT2A residues phenylalanine 4.43, leucine 4.44, isoleucine 4.47, and alanine 4.48 with 

the isoleucine 4.44, methionine 4.55, alanine 4.47, and isoleucine 4.48 found in WT 5-HT2C (Fig 

1). 

 

Characterization by Immunoblot 

To assess whether the c-myc-5-HT2A-TM4ΔNF receptor was expressing itself properly, and 

there was no misfolding, immunoblot assays were performed to test whether the molecular 

weight of c-myc-5-HT2A-TM4ΔNF is equivalent to 5-HT2A. Immunoblot assays were performed 

Figure 1. 5-HT2A-TM4ΔNF sequence homology between 5-HT2A and 5-HT2C in TM4. 
Amino acid sequence alignment of the transmembrane domain 4 (TM4) of Human 5-HT2A, 5-

HT2C, and 5-HT2A-TM4ΔNF receptors. All residues were identified by the sequence-based 

numbering system by Ballesteros-Weinstein. Residues that are different between 5-HT2A and 5-

HT2C in N-terminal TM4 are highlighted in red, with the 5-HT2A-TM4ΔNF mutant sequence 

alignment at the bottom. 
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in membrane lysates of HEK-293 cells transiently transfected with these two constructs. Anti-c-

myc immunoreactivity was detected as a mixture of a 53kDa band and a band of approximately 

250 kDa corresponding to the size anticipated for a 5-HT2A monomer and oligomer, respectively 

(Fig. 2). There was no significant difference seen in c-myc immunoreactivity between the c-myc-

5HT2A-TM4ΔNF and c-myc-5-HT2A 250 kDa oligomer when analyzed by Student’s unpaired t-



 

24 

 

test (t = 0.6098, df = 4, P > 0.05). This suggests an equivalent molecular weight of the 5-HT2A/5-

HT2C construct. 

 

B) 

WB: c-myc 

WB: β-actin 

A) 

Figure 2 Immunoblot assay.  A) Representative Western blot for 5-HT2A and 5-HT2A-TM4ΔNF. B) 

Histogram of immunoreactivity (after normalization) of 250 kDa 5-HT2A and/or 5-HT2A-TM4ΔNF. 

Normalized to β-actin. Error bars indicate S.E.M., significance determined by unpaired Student’s t-

test. (n = 3; independent experiments performed in duplicate) 
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5-HT2A TM4 N-terminal Residues Role in Mediating Association with mGlu2 

Co-immunoprecipitation was performed using anti-HA antibodies in plasma membrane 

preparations of HEK-293 cells transfected to express the HA-mGlu2 together with the c-myc-

5HT2A-TM4ΔNF receptors. Immunoblot analysis of co-immunoprecipitated material revealed 

anti-c-myc immunoreactivity was detected at ~ 250 kDa band, this corresponding to the size of 

the 5-HT2A oligomer. 

Interestingly, substitution of residues F4.43, L4.44, I4.47, and A4.48, in 5-HT2A with the I4.44, 

M4.55, A4.47, and I4.48 in 5-HT2C (5-HT2A-ΔTM4NF) significantly reduced co-

immunoprecipitation with mGlu2 (n=3 unpaired Student’s t test (t = 4.687, df = 4, P = .009) 

(Fig. 3).  

A) 

Figure 3. Co-immunoprecipitation 5-HT2A-TM4ΔNF + mGlu2. A) Western blots showing 

results of immunoprecipitation with HA-tagged Ab, Wb c-Myc Ab. B) Histogram shows 

average relative densitometric, from three replicates, normalized to the total protein control 

before immunoprecipitation. Error bars indicate S.E.M. significance determined by unpaired 

Student’s t-test. The figure shows representative images of three independent experiments. 
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Functional Characterization of 5-HT2A-TM4ΔNF 

In light of the ΔTM4NF mutation’s apparent role in mediating the heteromeric interface, further 

characterization assays were performed to assess functional homology with 5-HT2A. As noted 

above, 5-HT2A is a Gq/11 coupled GPCR which, when stimulated, produces a transient increase in 

the concentration of intracellular Ca2+. An intracellular calcium mobilization assay performed in 

c-myc-5HT2A-TM4ΔNF transfected HEK-293 cells revealed 5-HT produced a concentration-

dependent increase of signal, corresponding to that observed in 5-HT2A (Fig. 4) (EC50:  5-HT2A -

ΔTM4NF: 5.6 nM; 5-HT2A: 6.9 nM. Emax = 5-HT2A -ΔTM4NF: 98.89; 5-HT2A: 100.2) Analyzed 

by nonlinear regression to generate concentration-response curves and analysis by unpaired 

Student’s t-test showed no significance (P = .997).  As there was no Ca2+ mobilization detected 

in untransfected HEK-293 cells, it can be assumed that the transient increase observed in Fig. 4 

is due to the presence of either 5-HT2A -ΔTM4NF or 5-HT2A constructs. 
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Antagonist radioligand saturation 

5-HT2A -ΔTM4NF and 5-HT2A membrane preparations were subjected to saturation analysis with 

the high-affinity antagonist [3H]ketanserin to determine receptor density. Nonlinear analysis of 

binding fitted to a saturation curve showed no significant difference in KD (binding affinity) or 

Bmax (receptor density) (Bmax: 5-HT2A -ΔTM4NF:  223.0 ± 23.32 fmol/mg; 5-HT2A: 211.3 ± 

27.01 fmol/mg. KD: 5-HT2A -ΔTM4NF: 6.129 ± 1.260 nM; 5-HT2A: 6.784 ± 1.648 nM) (n=3 per 

group). These results further suggest 5-HT2A -ΔTM4NF expresses itself to the same extent as its 

Figure 4. Ca2+ mobilization on transiently transfected HEK-293 cells with Fluo-4. 

Concentration dependent Ca2+ mobilization for serotonin in transiently transfected HEK-293 

cells expressing 5-HT2A-ΔTM4NF or 5-HT2A (50,000 cells/well). All concentration responses 

represent the mean of two independent experiments, each performed in triplicate wells (n = 2). 

The SEM values are not presented because n = 2.  
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wild-type counterpart. It should be noted there was no full saturation observed in these assays, 

therefore binding was fitted to an “estimated Bmax” curve. 

 

 

 

 

Subcellular Localization of 5-HT2A-ΔTM4NF-mcherry 

Finally, subcellular localization of the 5-HT2A -ΔTM4NF construct was investigated. For the 5-

HT2A receptor to be functional, the receptor must be trafficked into the plasma membrane to then 

interact with a ligand to propagate a signal into the cell, therefore any potential changes in 

trafficking due to the 5-HT2C mutations had to be investigated. To allow for easier identification, 

both the WT and mutant 5-HT2A constructs contained a fluorescent c-terminal mCherry tag. 

Hoechst stain was applied to identify the nucleus before fixation. Images acquired through 

confocal fluorescent microscopy (Fig. 6C, 6F) show the cellular distribution of 5-HT2A-

Figure 5. [3H] Ketanserin saturation binding. Binding saturation curves in 5-HT2A wild type 

(red) and 5-HT2A -ΔTM4NF (blue). The binding of radioligand is plotted as a function of 

radioligand concentration. Specific binding was obtained by subtracting non-specific binding 

from total binding. All binding concentrations represent the mean – S.E.M. (n = 3; independent 

experiments performed in duplicate) 
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ΔTM4NF-mcherry is similar to the WT 5-HT2A-mcherry in HEK-293 s cells. Subcellular 

localization of both receptors is predominantly distributed around the cell in the plasma 

membrane with m-cherry fluorescence also detected within another unidentified subcellular 

compartment(s).  

 

Chapter 4: Discussion 

Although the structural interface of mGlu2 in mediating the heteromeric complex of 5-

HT2A·mGlu2 has been identified, the 5-HT2A heteromerization residues have only been narrowed 

down to the TM4 domain.  This study provides evidence for the involvement of four residues 

Figure 6 Cytochemistry 5-HT2A-TM4ΔNF in HEK-293 cells. Confocal analysis 

highlighting the presence of 5-HT2A-ΔTM4NF-mcherry receptor in transiently transfected 

HEK-293 cells. The figure shows representative images of six experiments. 
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located at the intracellular end of TM4 within 5-HT2A in its heteromeric assembly with the 

mGlu2 receptor. 

These findings indicate the residues F4.43, L4.44, I4.47, and A4.48 of 5-HT2A, which are 

oriented facing the lipid bilayer, play a critical role in the expression of the heteromeric complex 

with mGlu2 in HEK-293 cells. Replacing these four residues with those in the TM4 of the 

closely similar 5-HT2C significantly disrupts its heteromeric association with the 5-HT2A 

receptor (Fig. 3A). Functional and structural assays performed in this study verify the expression 

of the 5-HT2A-TM4ΔNF is homologous to 5-HT2A; therefore, the reduced signal observed in the 

co-immunoprecipitation immunoblot assay can be attributed to a disruption in the heteromeric 

association rather than a decrease in the level of expression. It should be noted, the sample size 

used in this study was relatively small (n=3). Nevertheless, these findings suggest that N-

terminal residues are critical structural components mediating heteromeric formation. It is 

important to mention the present evidence does not exclude the possibility other residues not in 

the N-terminal half of TM4 still maintain the heteromeric interface. It is also possible 5-

HT2A and mGlu2 receptors interact indirectly as a part of a larger protein complex, by way-of 

scaffolding proteins, rather than interacting directly as a part of a GPCR heteromeric complex. 

To verify the overall quaternary structure of the receptor had not been disrupted with the 

introduction of 5-HT2C residues, Western blot assays were performed. This confirmed structure 

and expression of 5-HT2A-TM4ΔNF was homologous to 5-HT2A. While two anti-myc 

immunoreactive bands were detected, statistical analysis was performed only on the 250 kDa 

(pentamer) signal. This was due to the co-immunoprecipitated immunoblot assay revealing no 

monomeric signal, and analysis was to maintain consistency between experiments (Fig 2B). 



 

31 

 

Cross-talk plays a critical role in forming a Gi/Gq balance between the 5-HT2A and mGlu2 

receptors. Therefore, when characterizing the 5-HT2A-TM4ΔNF mutant chimera, it was 

necessary to confirm the mutation did not cause dysfunctionality in signaling. Ca2+ mobilization 

confirmed that the 5-HT2A-TM4ΔNF mutant forms a functional receptor that is functionally 

homologous to WT 5-HT2A. Further cross-talk studies, as described in Moreno et al. (2016), 

could be used to verify the disruption of the heteromeric complex observed in the co-

immunoprecipitation (Fig. 3). A failure or reduction in the Ca2+ signal induced by activation of 

the mGlu2 receptor would confirm the results observed in this study, suggesting the heteromeric 

interface has been disrupted significantly.  

A potential explanation for the reduced signal detected in this study could be the 5-HT2A-

TM4ΔNF receptor does not properly get trafficked into the membrane, and therefore does not 

form an interaction with mGlu2. This possibility was investigated using confocal fluorescence 

microscopy, verifying the 2A/2C chimera showed proper subcellular localization following 

translation. mCherry fluorescence was detected predominantly in the plasma membrane, with 

other signals detected in unidentified cellular compartment(s). Before being trafficked into the 

plasma membrane, 5-HT2A plasmids are first translated in the endoplasmic reticulum (ER). 

Therefore, the concentrated fluorescence not surrounding the cell is likely localized in the ER. 

To verify this, immunocytochemistry can be performed staining for an ER-resident protein (e.g., 

calreticulin) and the 5-HT2A-TM4ΔNF receptor.  

It would also be interesting to image 5-HT2A-TM4ΔNF co-transfected with mGlu2 to verify the 

disruption of the heteromer via an absence of co-localization as described in Gonzalez-Maeso et 

al. (2008). 



 

32 

 

This study utilized human embryonic kidney cells (HEK-293) as a heterologous expression 

system, as it allows for highly reproducible results and maintains consistency with previous 

studies investigating the 5-HT2A·mGlu2 complex in vitro (Moreno et al., 2012; Gonzalez-Maeso 

et al., 2008; Thibado et al., 2021). It is appropriate to recognize a potential limitation when using 

HEK-293 cells as an expression system. When cells are cultured for an extended period of time, 

their health deteriorates. This has an effect on the cell’s growth rate and translation efficiency, 

which might have a negative effect on the overall study, including the repeatability of results 

(Thomas et al., 2005; Dumont et al., 2016). With this in mind, the maximum passage number 

was kept below 20 throughout this study. 

The main limitation of this study is the relatively small number of assays used to verify a 

disruption in the heterocomplex. In terms of future research, it would be interesting to confirm 

the current findings with biophysical assays such as BRET and FRET (Moreno et al., 2016). It 

should be noted these methods most commonly used to assess GPCR homo- or hetero-

dimerization, including co-immunoprecipitation, cannot demonstrate direct physical proximity 

between two receptors. Protein to protein interactions detected by these techniques could instead 

be facilitated by a third unknown protein that associates all the proteins into a larger complex, 

rather than being in direct physical proximity between the two receptors. 

Much work remains to be done before a complete understanding of the 5-HT2A·mGlu2 

heteromeric interface is established. While this study provides valuable information on TM4 

residues implicated in heteromer formation, alone, it does not provide sufficient evidence to 

confirm the residues mutated in the 5-HT2A-TM4ΔNF form a direct interaction with mGlu2. As 

the co-immunoprecipitation assay revealed a significant reduction in immunoreactivity but not 

an absence of a band altogether, it can be assumed there may be other residues located in the C-
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terminal end of TM4 that also mediate the formation of the 5-HT2A·mGlu2 complex. Therefore, 

other constructs mutating non-homologous residues in the C-terminal half of TM4 could be 

created and co-immunoprecipitated with mGlu2 to determine whether other residues also play a 

role in mediating the heteromeric interface. It could also be possible not all four mutations found 

in 5-HT2A-TM4ΔNF are necessary to disrupt the dimeric interface. This may be addressed by 

introducing single point mutations of F4.43, L4.44, A4.47, and I4.48 to create four separate 

constructs to determine whether one of these residues alone produces a significant disruption in 

the co-immunoprecipitation signal. While the 5-HT2A-TM4ΔNF construct mutated four residues 

in the N terminal half of TM4, it is possible even a partial mutant, where only two residues were 

mutated (e.g., I4.47 and A4.48), could be sufficient in disrupting the binding interface of the 

heteromer. 

As 5-HT2C does not form a heterocomplex with mGlu2, it would also be interesting to introduce 

the 5-HT2A receptor residues (F4.43, L4.44, A4.47, and I4.48) into the 5-HT2C receptor to try to 

revive dimerization. This would provide further evidence for these residues' role in mediating the 

heteromeric interface. 

While commonly used methods to assess GPCR homo/heteromerization are mostly indirect 

approaches, a photocrosslinking technique can identify individual amino acids that interact 

physically at the heteromeric interface without compromising the overall structural integrity of 

either protomer in the complex (Shah et al., 2020). For example, four new constructs correspond 

to the four residues used to create the 5-HT2A-TM4NF construct, could be refined to include a 

single photoreactive unnatural amino acid corresponding to F4.43, L4.44, A4.47, or I4.48 

corresponding to each of the four new constructs. These constructs could then undergo UV-

mediated crosslinking, which would reveal whether one or more of the four residues mutated in 
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this study form a direct interaction with mGlu2 and participate directly in establishing the 

heteromeric interface of the 5-HT2A-mGlu2 complex. 

Although the current results must be verified by future research, the present study has provided 

clear evidence for the involvement of the N-terminal end of TM4 of the 5-HT2A receptor in its 

heteromeric assembly with the mGlu2 receptor and provides a good starting point for further 

studies.  

Conclusion: 

• Sequence analysis of 5-HT2A-ΔTM4NF verifies the construct contains the 5-HT2C 

receptor residues located at the N-terminal of the TM4. 

• Immunoblot experiments conducted in this study verify the similar expression of 5-HT2A-

ΔTM4NF and WT 5-HT2A  

• 5-HT2A-TM4NF/mGlu2 co-immunoprecipitation was significantly reduced, suggesting 

the heteromeric interface had been disrupted. 

• Functional homology was verified through Ca2+ mobilization, displaying a similar pattern 

of Ca2+ release between the 5-HT2A-ΔTM4NF and WT 5-HT2A 

• [3H]ketanserin binding confirmed receptor density and affinity similarity between 5-

HT2A-TM4NF and WT 5-HT2A. 

• Cytochemistry confirmed the 5-HT2A-ΔTM4NF mutant has proper subcellular 

localization. 

• Further analysis to confirm the findings includes BRET, FRET, and fluorescent 

microscopy of 5-HT2A-ΔTM4NF/mGlu2 co-transfected HEK-293 cells. 



 

35 

 

• Future work in using a photocrosslinking technique to identify the individual residues 

responsible for the heteromeric interface 
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