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Figure 47: Schematic depiction the overlap of UV and IR pumps in space with the change in 
permittivity induced show below. The probe is located in the overlap of each pump where the 
spatial index change is significantly stronger than from induvial pumps.Error! Bookmark not 
defined. 

Figure 48 Beam deflection measurements at 1200 nm (a,c) and 1400 nm (b,d) probe wavelengths 
with a 1200 nm pump (blue), 300 nm pump (red), and both (yellow). In both cases, beam 
deflection (c,d) is doubled by an additive effect between pump responses while transmission (a,b) 
nearly cancels. This result enables ultra-large beam deflection and breaks traditional saturation 
of the effect by using opposing nonlinearities. .......................................................................... 118 
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TABLE OF VARIABLES AND CONSTANTS 

Variable Variable Name 

𝑛 Refractive Index 

𝑛2 Nonlinear Refractive Index 

𝐼 Intensity 

𝑥 Electron Displacement 

𝛾 Lorentz Oscillator Damping 

Γ Electron Scattering Rate 

𝜔 Frequency 

𝜔0 

Electron Resonant 

Frequency 

𝐸 Electric Field 

𝐷 Electric Displacement Field 

𝑃 Polarization 

𝑁 Carrier Concentration 

𝜀𝑟 Relative Permittivity 

𝜒(𝑛) nth order Susceptibility 

𝑚∗ Effective Mass 

𝑎𝑒 Electron Acceleration 

𝐹 Force 

𝑘 

Crystal Momentum/ Crystal 

Vector 

𝑡 Time 

𝑣 Electron Velocity 

𝜌 Electron Momentum 

𝐸𝑔 Band Gap 

𝐸 Energy 

𝑣𝜙 phase velocity 

𝑣𝑔 group velocity 

𝑓 Fermi-Dirac Distribution 

𝜌 Density of States 

𝜇 Chemical Potential 

𝜇𝑒 Electron Mobility 

𝐴 Absorptivity 

𝜏 Electron Relaxation Rate 

𝑑 Film Thickness 

𝑅 Reflection 

𝑇 Transmission 

𝑇𝑒 Electron Temperature 
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𝑈 Energy Density 

𝜆 Wavelength 

𝜙 Phase 

𝛼 Absorption Coefficient 

Ψ Ellipsometric Amplitude 

Δ Ellipsometric Phase  

�̃�𝑠,𝑝 
Complex Reflection Coefficients of 

𝑟, 𝑝 Polarizations 

Constant Constant Value Constant 

𝑞 
1.6 × 10−19 𝐽 

1 𝑒𝑉 
Charge of an Electron 

𝑚0 9.1 × 10−31𝑘𝑔 Mass of an Electron 

𝜀0 8.85 × 10−12 𝐹/𝑚 Permittivity of Free Space 

𝑐 3 × 108 𝑚/𝑠 Speed of Light 

ℏ 
1.05 × 10−34 𝐽 

6.58 × 10−16 𝑒𝑉 
Planks Constant 

𝑘𝐵 1.38 × 10−23 𝐽 ∙ 𝐾−1 Boltzmann Constant 
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ABSTRACT 

The study of optics is entirely a study of how light and materials interact. On the nano-scale, 

quantum optics allows for the study of a few photons and small materials. As the number of 

photons increases, the standard operating regime of “linear” optics applies to describe the 

interaction of light waves and materials. This range describes much of photonics knowledge such 

as metals and dielectrics, lenses, waveguides, and other light-matter interactions. As the number 

of photons increases to high fluences, a range of “nonlinear” optics is achieved. Here, the 

material polarization induced is no longer linearly related to the driving field as higher order 

effects come into play. Nonlinear optics has been an important method for achieving ultrafast 

light manipulation, while linear optics has been critical for general control. 

In all realms of optics, the quest for new physics and improved efficiency of effects have required 

materials research that guides a loop of improvement. CMOS compatible optics for on-chip light 

control has been a driving force pushing the discovery of materials that can replace noble metals. 

This has led to the optimization of semi-metals, such as titanium nitride, and transparent 

conducting oxides such as indium tin oxide and aluminum-doped zinc oxide. In a similar vein, 

gallium nitride has been a recent avenue of research to enable high power devices where silicon-

based devices begin to break down. While these materials began for other reasons, they have 

also influenced other research avenues such as nonlinear optics.  

In particular, these materials have gained interest in nonlinear optics due to their ability to exhibit 

epsilon-near-zero (condition when −1 < 𝑅𝑒{𝜀} < 1) and near-zero-index (condition when −1 <

𝑅𝑒{𝑛} < 1) optical parameters. Due to inherent advantages such as slow light, improved 
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confinement, and ideal relaxation times, the nonlinear response of these materials, such as the 

intensity-dependent-refractive-index, are ultra-large (Δ𝑛 ≈ 𝑛0) yet remain ultra-fast (100s of fs 

rise and fall). This experimental discovery of epsilon-near-zero enhancement has thus opened 

new avenues in nonlinear optics research in recent years, and while experiments have continued 

to progress a theoretical understanding of the processes and origins of nonlinear optical 

enhancement at epsilon-near-zero has lagged. 

To fill this gap, the work herein focuses on uncovering the mechanisms that drive the nonlinear 

interactions of Drude-based epsilon-near-zero materials. This framework utilizes knowledge of a 

given material’s electronic band structure in energy-momentum space to understand the kinetic 

motion of free electrons under intense optical irradiation, realizing a fully feed-predictive 

simulator without fitting parameters. From this, two types of nonlinearities are elucidated, intra- 

and inter-band, whose overall effect on the optical properties are rooted in the non-parabolic 

dispersion of energy bands. Intraband nonlinearities are shown to originate from an increase in 

the overall effective mass of the electron sea while interband nonlinearities were shown to be 

dominated by generation of excess free electrons. Moreover, these effects are shown to induce 

opposing changes on the optical permittivity leading to distinctively different outcomes that can 

be used individually or together to sculpt the material’s optical properties in time and space.  

Paired with in-house growth, experimental data collected from literature, collaborators, and in-

house experiments have been used to rigorously validate the theory across different materials, 

growth processes, and experimental conditions. Experimental methods of beam deflection and 

reflection-transmission modulation were used to study Al:ZnO and Ga:ZnO. Results include the 

first studies of Ga:ZnO as a nonlinear material in the near-infrared as well as some of the first 
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works utilizing beam deflection as a characterization method. Both intraband and interband 

nonlinearities are interrogated through these methods with the first known multi-pump 

(combined inter- and intraband nonlinearities) beam deflection studies in epsilon-near-zero 

materials.  

Building from these demonstrations, the theoretical framework is used to guide exploration into 

the roles of optical loss, plasma frequency, and thickness of epsilon-near-zero materials with the 

intent to improve the efficiency of the nonlinearity for future applications. Moreover, the 

theoretical framework enables the exploration of new materials yet to be experimentally studied. 

Figures of merit were developed to enable quick intuition into the relative efficiency of either 

nonlinearity for new materials. This enables us to predict materials, such as highly doped gallium 

nitride which are likely to perform as well as, if not better than the current materials used. 

Through this holistic study, improved prediction power is available for finding the ideal nonlinear 

films, and effects can be explored to optimize them. Full modeling of the nonlinear responses of 

materials allows for further advancement, not only from thin films as studied here, but in 

fabricated structures where field confinement and enhancement can be designed around to 

induce even more efficient nonlinear responses.  
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1. BACKGROUND: OPTICAL PROPERTIES OF OXIDES AND NITRIDES 

Often, advancements in optics come from a combination of new physics and new materials. A 

recent example of this advancement is ultrafast, large nonlinear effects in epsilon-near-zero 

(ENZ) [1–6] materials. Nonlinear effects occur at high electric fields, causing materials to behave 

differently than the low field material [7]. For example, the intensity-dependent refractive index 

(IDRI) is an effect where the refractive index changes proportionally to the incident optical 

intensity (𝑛 = 𝑛0 + 𝑛2𝐼). ENZ materials are not brand new; instead, they have been developed 

for many explorations such as transparent conductors like indium doped tin oxide (ITO) [8–14], 

aluminum or gallium doped zinc oxide (AZO or GZO) [15–19], and cadmium oxide (CdO) [8,20–

23], transparent conducting oxides (TCOs). Exploration into exploiting the effective Kerr index 

(𝑛2 ∝ 1/𝑛) with a near-zero-index (NZI) material lead to revelations into near unity refractive 

index modulation and opening new avenues in all-optical switching and frequency 

conversion [24,25].  

To understand the mechanisms driving these nonlinear processes, a review of modeling the linear 

and nonlinear optical properties of materials is provided in Chapter 1. This lays the foundation of 

the mathematical descriptions and physics used to describe the ENZ materials and nonlinear 

interactions that have attracted significant interest in recent years, including our new efforts 

discussed in Chapters 2-6. 
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1.1. Electronic Band Structures 

Fundamentally the linear and nonlinear optical properties of materials are dictated by the way 

electrons interact with an incoming electromagnetic light wave. When inside a material, this also 

includes the local forces and interactions on electrons due to the nuclei, other nearby electrons, 

material bonds, material structure, etc. Collectively these effects modify the electron’s dispersion 

relation, which relates its energy and momentum. In vacuum, an electron has a parabolic 

dispersion relation, 𝐸 =
ℏ2

2𝑚0
𝑘2, where 𝑚𝑜 is the mass of an electron. However, inside a material, 

the local forces perturb this relationship which is described through the introduction of the 

‘effective mass’ term 𝑚∗ (see a more in depth discussion of effective mass in Section 1.2): 

𝐸 =
ℏ2

2𝑚0𝑚∗
𝑘2. 12 

As a result, the relation illustrates a set of energies, or a band of energies, that an electron can 

take as a function of its momentum within the crystal structure. As the electron moves further 

from the Γ point of a crystal structure (the zero momentum point), the atomic cell pushes and 

pulls the electron, requiring additional energy to gain the momentum required to traverse 

toward symmetry points. A similar statement can be written for electrons that reside in different 

bonds within the material (e.g. p bonding, s anti-bonding, etc.) each with their own unique energy 

and momentum. The combination of these various energy bands, each describing the dispersion 

of an individual bonding state, forms the band structure of a material (see Figure 1a). A key 

consequence of this interaction is the formation of a set of energies where no electron states 

exist in the band structure, a region called the bandgap. The band structure and its inherent 

features, is extremely useful for understanding electrical, optical, and thermal effects that occur 

within crystalline materials. 
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The states of the band structure that are occupied with electrons is quantified by the Fermi 

Energy or chemical potential, defined as the energy where there is a 50% probability of finding 

an occupied state at room temperature. For this work, discussion focused on electrons that near 

the Γ point of the material. In this region a conduction band and valence band are defined for 

free and bound electrons respectively. For films that are intrinsic (i.e. containing only the primary 

atoms, Si, Ga-As, etc.)  the Fermi level exists within the bandgap of the valence and conduction 

bands. However, this can be modified through a process called doping where intentional atomic 

defects are introduced into the material to either donate an extra electron, n-type, or remove an 

electron, p-type, when they replace the host material atom (e.g. B or P in Si). At high doping 

levels, such as those for the ENZ materials considered here, the Fermi level can be degenerate, 

residing as much as 1 eV into the conduction band. As a result, the material is doped sufficiently 

to provide ensure many states within the conduction band are occupied, therefore providing a 

large density of free electrons and an electrically conductive nature to the material. Here, the 

reference energy is given as the conduction band minimum (CBM) rather than the valence band 

maximum (VBM) where the bandgap, 𝐸𝑔, would be added. 
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Figure 1: a) Generic direct band gap band structure showing a direct transition (ℏ𝜔 = 𝐸𝑔 + 𝜇𝐹) 

between valence band the conduction band and an intraband transition from the conduction 
band to an elevated conduction band energy. b) Conduction band near the Γ point for doped 

zinc oxides compared between literature  [30] (lilac dots), parabolic fit (grey dashed line), and a 
hyperbolic fit (red line) showing a good overlap of the hyperbolic fit and a poor fit for parabolic 
away from the CBM. c) Conduction band near the Γ point for doped gallium nitride compared 

between density-functional-theory calculated in-house (green and blue dots), parabolic fit 
(green line)) and a hyperbolic fit (red line) showing a reasonable overlap of the hyperbolic fit in 

positive k, and a poor fit for parabolic away from the CBM. 
 

In real materials, the conduction band is not a perfect parabola beyond a certain range of energy, 

as seen in Figure 1, although the parabolic approximation is an accurate approximation near the 

CBM. In highly doped semiconductors such as ITO and aluminum/gallium doped zinc oxide (AZO, 

GZO), and doped gallium nitride (GaN) the Fermi level can be >1eV into the conduction band, far 
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from the range where the parabolic approximation is valid [20,31,32]. We have amended this 

distinction through various methods described later in Section 2.  

 

1.2. Effective Mass 

As discussed in Section 1.1, the forces of the material lattice lead to an electron which appears 

to have a different mass 𝑚∗𝑚0, quantified by the effective mass, 𝑚∗. From a Newtonian 

derivation, the effective mass is a result of the acceleration of the electrons: 

𝐹 = 𝑚𝑎𝑒 = 𝐹𝑒𝑥𝑡 + 𝐹𝑙𝑎𝑡𝑡 = 𝑚∗𝑚0𝑎𝑒 13 

From this definition, the acceleration of the electron in a material can be lower or higher than 

the acceleration which would be found for an electron in a vacuum from the external force. A full 

derivation given in [33] is summarized here, finding that: 

ℏ
𝑑𝑘

𝑑𝑡
= 𝐹𝑒𝑥𝑡 14 

where 𝑘 is the crystal momentum. The work done on an electron by this force is calculated: 

𝛿𝐸 = 𝐹𝑒𝑥𝑡𝑣𝛿𝑡 15 

and from this, we find the rate of acceleration as: 

𝑑𝑣

𝑑𝑡
=

1

ℏ

𝑑2𝐸

𝑑𝑘𝑑𝑡
=

1

ℏ

𝑑2𝐸

𝑑𝑘2

𝑑𝑘

𝑑𝑡
16 

and thus, we find the effective mass: 

ℏ2

(
𝑑2𝐸
𝑑𝑘2)

𝑑𝑣

𝑑𝑡
= 𝑚∗𝑚0

𝑑𝑣

𝑑𝑡
= 𝐹 17 

𝑚∗𝑚0 = ℏ2  (
𝑑2𝐸

𝑑𝑘2
)

−1

. 18 
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This definition of effective mass will be referred to in this work as the “band curvature effective 

mass”.  

The second definition of effective mass, [16,31] referred to here as the “transport effective mass” 

can be derived if the focus is on momentum, rather than acceleration. Here, the beginning 

equation is 𝜌 = 𝑚𝑣 rather than 𝐹 = 𝑚𝑎. Considering the relationship between momentum and 

crystal vector, 𝜌 = ℏ𝑘, we find: 

𝑚∗𝑚0 =
𝜌

𝑣
=

ℏ𝑘

𝑣
. 19 

Using the findings of velocity from above, this definition finds: 

𝑚∗𝑚0 = ℏ2𝑘 (
𝑑𝐸

𝑑𝑘
)
−1

. 20 

These two definitions will be revisited in Section 3 for how they compare for our model 

derivation. 

1.3. Optical Absorption in Intrinsically Doped Materials 

With an understanding of the electronic band structure of a material, we can use this description 

to quantify the absorption of light by a material. Linear optical absorption can generally occur 

due to two processes, interband and intraband, shown in Figure 1a. For interband absorption, 

electrons are promoted from the valence band to the conduction band through the absorption 

of the photon. Near the band edge, the absorption coefficient in direct gap semiconductors, 

where the maximum/minimum of the valence/conduction bands are located at the same 

momentum such as indium oxide and zinc oxide, can be calculated as 𝛼 = 𝐵
(𝐸−𝐸𝑔)

2

𝐸
 where 𝐵 is a 

constant used to match measurements and is related to the strength of the dipole matrix element 
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that describes wavefunction overlap of the initial and final states [11,107]. Thus, strong 

absorption is expected for photon energies above the bandgap. However, if a material is 

degenerately doped to where the Fermi level lies above the CBM, Pauli blocking shifts this 

absorption edge to higher energies such that 𝐸𝑔 ≈ 𝐸𝑔,𝑜 + 𝐸𝐹.  

Intraband absorption describes the transition of a below-Fermi level electron to above the Fermi 

level in the same conduction band. This transition has a lower energy than interband absorptions 

and contributes to free-carrier absorption in conductive samples. Since this transition is not 

purely vertical (i.e. only requiring energy), momentum must also be provided. This occurs 

through the simultaneous absorption of a photon and a scattering, which provides momentum, 

enabling the diagonal transition. The scattering event can occur due to processes such as impurity 

or phonon scattering. Due to this interaction, the absorptivity of our film is dependent on the 

number of free carriers and the scattering rate of the electrons. Experimental measurements of 

absorption as a function of frequency shows a proportionality, 𝛼𝑓𝑐 ∝ 𝜔−𝛽, where 𝛽 is in the 

range from 2 to 3.  

1.4. Nonlinear Lorentz Oscillator Model and Nonlinear Polarization 

Form a microscopic perspective, electronic band structures and absorption events dictate how 

electrons are modified by optical energy. However, it is in many cases necessary to deal with bulk 

materials that have many electrons, occupied states, etc. In this case, utilizing the microscopic 

picture can be cumbersome, and another approach is desired. When the material is sufficiently 

large to invoke a bulk approximation, the interaction of bound electrons residing within the 
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valence and light can be described with a classical mass-spring model called the Lorentz 

Model [28]: 

�̈� + 𝛾�̇� + 𝜔0
2𝑥 = −

𝑞

𝑚0
𝐸𝑥(𝑡). 1 

where 𝑥 is the electron displacement, 𝜔0 is the resonant frequency of the system, 𝛾 is the 

electron damping rate, 𝑞 is the electron charge, 𝑚0 is the electron mass, and 𝐸𝑥(𝑡) is the electric 

field in the direction of displacement. Here, the resonant frequency models the transition of an 

electron between two states, such as through interband absorption. Taking the electric field as a 

single frequency sinusoid, the solution is found as: 

𝑥 =
𝑞

𝑚0

1

𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸𝑥(𝑡). 2 

This displacement can be linked to the polarization of the atom, measuring the amount an 

electron is displaced from its atom by the electric field, through the relation 𝑃𝑥 = 𝑁𝑞𝑥 where N 

is the number of bound electrons. In turn, this leads to a displacement field of: 

𝐷 = 𝜀0𝐸 + 𝑃 = 𝜀0𝐸 +
𝑁𝑞2

𝑚0

1

𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔

𝐸 3 

𝐷 = 𝐸𝜀0 (1 +
𝑁𝑞2

𝜀0𝑚0

1

𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔

) . 4 

The permittivity and susceptibility, defined as 
𝐷

𝐸𝜀0
= 𝜀𝑟 = 1 + 𝜒𝐸, can then be utilized as simple 

expressions for the overall interaction of light with a material that has an absorption resonance 

at some frequency 𝜔0. If a material has multiple resonant frequencies, 𝜔0𝑗, the contribution from 

each can simply be summed taking into account various oscillator strengths 𝑓𝑗 dictated by each 

absorption process, leading to a total Lorentz permittivity of: 
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𝜀𝑟 = 1 +
𝑁𝑞2

𝜀0𝑚0
∑

𝑓𝑗

𝜔0𝑗
2 − 𝜔2 − 𝑖𝛾𝜔𝑗

. 5 

Away from absorption the permittivity is generally non-dispersive and can be lumped as the sum 

of all oscillators of higher frequencies into a term 𝜀∞ which denotes the background permittivity.  

This same model can be extended to describe nonlinear optical phenomena as well by relaxing 

the restriction of Equation 1 that the model must be linearly dependent upon the applied field. 

If we allow higher order terms, we can introduce nonlinear displacement and susceptibility terms 

which all contribute to the total polarization experienced by the material [7],  

𝑃 = 𝜀0(𝜒
(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + ⋯) 6 

where superscript (n) denotes the order of susceptibility, where 𝜒(1) represents the linear 

susceptibility. The strength of the nonlinear susceptibilities is generally many orders of 

magnitude smaller than 𝜒(1) (𝜒(2)~10−12 𝑚

𝑉
; 𝜒(3)~10−24𝑚2/𝑉2) [27], requiring extremely large 

fields to access any polarization beyond the linear case. The relation therefore states that under 

small driving fields, the polarization can be approximation as linearly dependent upon the electric 

field (as was done above for the Lorentz permittivity). However, under strong electric fields, 

typically on the order of the interatomic electric field, the polarization becomes nonlinear and its 

relation must therefore be modified to account for these higher-order deviations. Although 

weak, nonlinear optical effects can give rise to useful effects such as harmonic generation and 

two beam coupling. An important distinction should be made that 𝜒(2), while larger than 𝜒(3), 

only exists in non-centrosymmetric materials, leading to a strong emphasis on 𝜒(3) as a more 

general nonlinear process. 
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In the following research, the focus is on a 𝜒(3) effect which modifies the magnitude of the 

refractive index, called the intensity-dependent refractive index (IDRI). For bound electronic 

polarization nonlinearities, the material polarization follows both the electric field and the cube 

of the electric field, which becomes dominant at high fields. We can quantify the resulting effect 

on the refractive index of the material by relating the effect on the permittivity and the index of 

the material:  

𝑛2 = (𝑛0 + 𝑛2𝐼)
2 = 1 + 𝜒(1) + 𝜒(3)|𝐸|2 7 

where 𝑛 = √𝜀𝑟. Simplifying, we can define an IDRI coefficient: 

𝑛0
2 + 2𝑛2𝐼 + 𝑛2

2𝐼2 ≈ 𝑛0
2 + 2𝑛2𝐼 = (1 + 𝜒(1)) + 𝜒(3)|𝐸|2 8 

𝑛2 =
3𝜒(3)

4𝜀0𝑛0𝑐
. 9  

While the origins of the nonlinear process in ENZ materials is not due to nonlinear polarization, 

as described above, the result is also a modification to the refractive index. As a result, the same 

theoretical framework can be used to quantify the effects, which is useful for comparing to other 

materials in literature, so long as one understands that the origin of the nonlinearity is not solely 

nonlinear polarization. To indicate this when discussing or comparing 𝜒(3) or 𝑛2, we utilize the 

term ‘effective’, denoted 𝜒𝑒𝑓𝑓
(3)

 or 𝑛2,𝑒𝑓𝑓. 

In the case of a lossy film, altering the index through a 𝜒(3) process also induces a change in loss. 

This effect is mandated through Kramer’s Kronig [7] where a change in index causes a change in 

loss, and vice versa. The change in loss due to a 𝜒(3) change in index is often termed as 𝛼2, as a 

parallel to 𝑛2, giving the equation 𝛼 = 𝛼0 + 𝛼2𝐼. The nonlinear absorption term, 𝛼2, can be 

either positive or negative. In the case where 𝛼2 > 0 (absorption is increased), this term typically 
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describes multi-photon absorption processes such as two-photon absorption where ℏ𝜔3 =

ℏ𝜔1 + ℏ𝜔2. The rate of this two-photon interaction is proportional to intensity as sufficient 

photons are required to combine probabilistically. When 𝛼2 < 0 (absorption is decreased), this 

term describes saturable absorption processes such as state-filling in finite density of state 

systems, bandgap shifts, etc. This term is again proportional to intensity as it requires a large 

number of absorption processes to occur that subsequently affects the ability of additional 

photons to be absorbed. When small numbers of photons are absorbed, the change in the 

absorption is minimal. However, if a large number, comparable to the number of available states, 

are absorbed the loss within the material can be greatly modified. 

1.5. Drude Model 

While the Lorentz oscillator is used for bound electron’s contribution to the polarization and 

permittivity, free electrons contribute to permittivity producing a metallic nature. This Drude 

oscillator term can be derived from the same spring model, Equation 1, without the restoring 

force (resonant frequency) resulting in a similar result of: 

�̈� + 𝑖Γ�̇� =
𝑞

𝑚
𝐸𝑥(𝑡) 10 

𝜀𝑟 = 𝜀∞ −
𝜔𝑝

2

𝜔2 + 𝑖Γ𝜔
,𝜔𝑝

2 =
𝑁𝑞2

𝜀0𝑚∗𝑚0
11 

where 𝑁 is the free carrier concentration, and 𝜔𝑝 is the “unscreened” plasma frequency, Γ is the 

characteristic loss, and 𝑚∗ is the effective mass; the permittivity would be zero if the background 

permittivity was unity, representing vacuum or free space. 
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1.6. Introduction to ENZ 

ENZ materials are a set of materials with a permittivity that approaches zero, achieved in bulk 

materials through either an absorption resonance or the presence of free carriers, see Figure 2. 

This has an important distinction from NZI materials where the refractive index (𝑛 = √𝜀) 

approaches zero. This distinction can be made when the loss is high enough where the refractive 

index does not dip below unity, which leads to different enhancement interactions.  

 

Figure 2: A near zero permittivity can be achieved through multiple means, such as a) a strong 
Lorentz oscillator and b) a Drude dispersion. This effect is shown in both permittivity (top) and 

refractive index (bottom) for both cases. Figure adapted from [5] under Creative Commons 
license. 
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When a film exhibits NZI properties, a handful of distinct effects are observed which enhance 

light matter interaction  [2,3,34]. First, the phase velocity, 𝑣𝜙, in NZI tends toward infinity while 

the group velocity,𝑣𝑔, tends toward zero in an effect called “slow light” [35,36]: 

𝑣𝜙 =
𝑐

𝑛
21 

vg =
𝑐√𝜀(𝜔)

𝜀(𝜔) +
𝜔
2

𝜕𝜀(𝜔)
𝜕𝜔

. 22 

The phase velocity describes how the phase of light propagates through a material and is related 

to the effective wavelength of light in a material, 𝜆𝑒𝑓𝑓 = 𝜆/𝑛. For an NZI film with a phase velocity 

near infinity, this results in a long effective wavelength or “DC light”. In practice, this aids 

nonlinear interaction of frequency mixing as the strength of these effects is related to the phase 

overlap between beams that is designedly high due to this enhanced effective wavelength. 

The group velocity describes the propagation of the photon in time. A low group velocity 

elongates the propagation of a photon through a material and compresses optical pulses in time. 

Slow light works to enhance light-matter interaction by allowing for extended interaction time 

that leads to more absorption and electric field interactions [37,38].  

Another effect that enhances interactions is the D-field continuity: 

 

𝜀1𝐸⊥1 = 𝜀2𝐸⊥2. 23  

When the permittivity (and index) of the second material approaches zero, this leads to an 

exceedingly high electric field within the material. This high electric field enhances all types of 

optical interactions by increasing the electric field. While NZI materials exhibit all three 

enhancement mechanisms, ENZ materials only exhibit the final interaction which leads to a 
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reduction in the potential enhancement of light-matter interactions. One such film studied in our 

work is titanium nitride. While TiN is a fantastic material for its semi-metal tunability and large 

damage thresholds [39], preliminary studies from other groups show that the linear loss is too 

high for NZI effects, which limit its enhancement of light-matter-interaction [40].   
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2. ELLIPSOMETRY ON LOSSY THIN FILMS 

While the majority of this work will be focused on the nonlinear properties of films, it is critical 

to understand the linear properties of the films under study. Ellipsometry is a prominent tool in 

linear characterization of materials; however, thin films with significant loss can lead to error in 

characterization if additional steps are not taken. Proper rigorous characterization of the linear 

material is important to minimize error in the understanding of nonlinear measurements. 

To illustrate the importance careful extraction of linear optical properties, efforts to characterize 

high quality TiN thin films are discussed. Our team’s TiN studies have produced the lowest loss 

of atomic layer deposition (ALD) films available for TiN. To verify the film quality, accurate 

characterization is important. Multiple techniques for measurement were utilized, including 

spectroscopic ellipsometry with reflection (SE+R), see Section 2 [41].  

2.1. Ellipsometric Methods of Film Characterization  

Plasmonics  [42,43] is a wide-reaching field that has a variety of applications including near-field 

imaging  [44,45], biological sensing [46], magnetic memory [47], data transfer [48–50], particle 

trapping  [51], energy harvesting  [52], metasurfaces [53–55] and more  [56]. Traditional 

plasmonics often relies on noble metals for their low loss and large negative permittivity. These 

factors are necessary for enabling long propagation lengths and strongly confined modes. Yet, 

noble metals are limited by aspects such as a low melting temperature and difficulties in forming 

sub-nanometer smooth films that can be important in light confinement and high-power optics 

research. 
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These limitations of traditional plasmonic materials have spurred research into alternative 

plasmonic materials with optical properties that are similar to noble metals like silver and 

gold  [57]. Titanium nitride (TiN) is one of the more promising alternatives due to its 

robustness [58], gold-like properties, and CMOS-compatibility [9,59–62]. Additionally, it is 

tunable with plasma frequency variations from less than 450 nm to over 600 nm with widely 

varying loss [10,63–66]. However, the material properties of such alternative plasmonic materials 

can vary widely based on the growth methods and the conditions employed. To understand the 

origins of such large variation and reliably tune the growth conditions to achieve the desired 

material characteristics, consistent and accurate measurement of optical properties is needed. 

Many techniques exist to measure the optical properties of thin films, including spectroscopic 

ellipsometry (SE) and reflection-transmission (RT). Both measurements utilize known material 

properties and physically-based calculations to find unknown material properties from measured 

values. SE is a widely used method [67–70] due to its relative ease and self-referenced nature. It 

is often used for non-absorbing and semi-absorbing thin films that are easily determined from 

layers of unknown thickness. Absorbing films, such as metals, present a special difficulty to the 

measurement of either RT or SE. 

In this section, I will show examples of characterizing titanium nitride ultrathin films using SE with 

and without supplemental transmission intensity (T) data. Without T data, the resulting 

permittivity, which provides a good match to the SE data through modeling, shows a significant 

variance, of up to 3× for a single film, characterized by the figure of merit (ε’/ε”). Combining SE 

and T data reduces the model ambiguity allowing the optical constants, film thickness, and 

growth rate of films to all be determined. Through a case study of three TiN films on sapphire 
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substrates using plasma-enhanced atomic layer deposition, we show that the addition of T is an 

important step in the characterization of such materials. This section is directly from Secondo et 

al.  [41]. 

 

Figure 3 Schematic of spectroscopic ellipsometry. Here, a light source with wavelength λ is 
configured to produce an arbitrary polarization state (Ei) by a variable polarizer. The incident 

beam is then used to interrogate the sample at an angle θ. The polarization state of the 
reflected beam (Eo) is altered by the interaction with the sample. After passing through an 
analyzer, which allows the polarization state of the reflected beam to be measured at two 

perpendicular states, the complex s and p reflection coefficients of the sample can be 
determined. 

Spectroscopic Ellipsometry is a powerful method for finding the refractive index and thickness of 

thin films. Spectroscopic Ellipsometry measures the reflected change of polarized light at oblique 

angles to characterize the material properties. Bulk materials can be characterized by the 

complex reflection coefficients for s and p polarized light, see Figure 3 [71]. For thin films, 

reflections from the second surface interfere with the top-reflections to produce interference 

patterns in the measured SE spectra that can be used to calculate both film thickness and 

refractive index. SE data is characterized using two values, 𝛹 and 𝛥, which are calculated using 

the formula: 
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𝑟�̃�

𝑟�̃�
= tanΨ𝑒𝑖Δ 24 

where �̃�𝑝 and �̃�𝑠 are the complex reflection coefficient for p and s polarized light, respectively.  

The data represented by 𝛹 and 𝛥 do not directly translate to the thin-film thickness and refractive 

index; rather, the data must be matched to a model-calculation based on best-fit sample 

properties. To reduce unknown parameters that describe material optical constants, a variety of 

dispersion equations are often implemented such as Cauchy, Sellmeier, general oscillators (e.g. 

Drude, Lorentz), and B-Spline [72].  

As plasmonic materials are inherently lossy, general oscillator and B-Spline dispersion are used 

in this work. B-Spline dispersion equations provide an efficient and easy way to extract optical 

parameters, but some limitations exist such as an inability to extract physical meaning from the 

results [73]. General oscillators are a broad category of dispersion equations that use physically-

derived functions, such as Drude, Lorentz, Tauc-Lorentz, and others, to model the 

permittivity [72] (see Methods). As an example of parameter extraction, the Drude equation has 

the unscreened plasma frequency 𝜔𝑝 that can be calculated as 
2

*

0 0 0

1
p

Nq

m


   
= = , and  from 

these, possible extracted values include the free electron density N, effective mass 𝑚∗, mobility,  

relaxation time 𝜏, and resistivity 𝜌0 if the other parameters are known. 

B-Spline dispersion, on the other hand, has no physically-retrievable values and is purely a fitting 

function to accurately match the ellipsometric data. B-Spline uses a set number of nodes for 

basis-functions to describe the optical functions and find the best match for 𝛹 and 𝛥. B-Spline 

can be implemented with Kramers-Kronig consistency to keep the optical functions physically 
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plausible, but it does not allow for the extraction of any physical parameters from the fit. This 

method is very easy to implement and can then be converted to general oscillators and vice versa. 

The optical model is used to generate 𝛹 and 𝛥 for a given sample structure using parameters 

such as thickness and refractive index for each film, along with the substrate optical functions. 

The model-generated data are compared to the measured 𝛹 and 𝛥 spectral data using a single 

output value to quantify the fit quality. Mean squared error (MSE) is a typical representation of 

how well the modeled data matches the SE data (see Methods). This formalization provides a 

single value for how well the model fits the data, but we note that there is no ideal universal MSE 

value, as the value depends upon the assumptions, known quantities about the material, and 

measurement noise. A major limitation of the MSE is a tendency to define a “correct fit” based 

solely upon its minimum value. If a correlation exists between multiple unknown fit-parameters, 

then many combinations of values can manifest in an acceptable MSE. 

Dielectric films have negligible loss so the refractive index is purely real. For dielectric films of 

unknown thickness, the balance of variables is data-heavy to 𝛹 and 𝛥, see Figure 3(a), as the 

parameters fit are refractive index 𝑛(𝜆) and thickness 𝑡 while the measured values are 𝛹(𝜆) and 

𝛥(𝜆). This data saturation allows for very nice data fits to determine both thickness and refractive 

index for many material systems. 
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Figure 4 Comparison of data balance for a) transparent film, b) semi-absorbing film, and c) thin 
absorbing film. For transparent and semi-absorbing films, the ellipsometry measurements are 
sufficient to allow for the unique retrieval of the refractive index and thickness. However, for 
absorbing films, the ellipsometry measurements alone are insufficient to allow for a unique 

retrieval of the optical properties and thickness, and additional information should be added to 
improve the confidence of the result. 

When loss is added to a system the refractive index becomes complex leading to two values, 𝑛 

and 𝑘 where �̃� = 𝑛 + 𝑖𝑘, at each wavelength. For some materials, such as doped-

semiconductors, a region exists where 𝑘 is negligible so the balance of variables continues to 

favor 𝛹 and 𝛥, see Figure 4c as the thickness can be uniquely fit within the transparency window 

and fixed. However, in very thin films with absorption across the spectrum, the balance of data 

no longer favors the measured values, Figure 4(c), which can lead to fit ambiguity. Multiple 

methods exist for overcoming the data discrepancy [74,75]: adding RT measurements, 

interference enhancement [71,74], multi-sample analysis, and in situ ellipsometry [69].  

In this work, SE measurements are conducted on a single titanium nitride film of unknown 

thickness, using various metrics to analyze the results. Later, a case study comparison of three 

films, grown with the same conditions but of different unknown thickness, is presented. We 

demonstrate the combination of SE and T measurements to overcome the data content shortage. 

To facilitate T measurements, the absorbing thin film must be on a polished, transparent 

substrate. This can be counterproductive to the simplicity of ellipsometry, due to backside 

a) Transparent Film b) Semi-Absorbing Film c) Absorbing Film
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reflections from the substrate, but can generally be managed [76]. Transmission must also exist 

at some point in the material which limits the thickness of the absorbing film and the substrate 

type.  

2.2. Characterization of Titanium Nitride Films 

Titanium nitride is metallic with a color similar to gold; therefore, when fitting with general 

oscillators, we use a Drude oscillator and two Lorentz oscillators to model the transitions [63]. 

The film absorbs across the spectrum and typically has a plasma frequency between 450 and 650 

nm, which, along with quality, varies greatly by the method and parameters of growth. Due to 

this variation in materials, the data is presented with very few assumptions of the expected 

thickness or permittivity values. 

 

Figure 5 Mean Squared Error (MSE) vs Thickness for a thin TiN layer using a general oscillator 
and B-Spline dispersion equations to fit only SE data. The general oscillator shows a distinct 

minimum at 48 nm and the B-Spline has a flat, low MSE fit from 20 to 120 nm leading to a large 
ambiguity in fit quality. 

When fitting materials for both refractive index and thickness, a popular tool for checking the 

certainty of value is to plot parameter uniqueness. Figure 5 is an example of thickness uniqueness 

plots for the analysis of SE data when describing the TiN layer using a general oscillator (GenOsc) 

(red) and B-Spline (blue) dispersion equation. A sharp ‘v’ shape in parameter uniqueness shows 
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a high certainty of the fit to a specific thickness. A sharp ‘v’ is seen in the modeling of GenOsc for 

a fit of 48 nm with a reasonable MSE value near 4, but the B-Spline has an MSE below 3 for a 

wide range of thicknesses (from about 40 nm to well beyond 100 nm). At thicknesses of 90 nm 

for this material, the thin film is considered optically opaque, so the thickness no longer has a 

role in the fit-quality as all secondary reflections are quenched. The GenOsc preferentially fits 

with 48 nm layer thickness but a less prominent fit also occurs when the layer is over 100 nm. To 

properly characterize this material using either method, more must be known about the material. 

Table 1: Correlation matrix between thickness, resistivity, and scattering time using GenOsc 
models. The correlation between thickness and resistivity or thickness and scattering time 

being close to ±1 is non-ideal, meaning there is no uniqueness to the fit. 

 

Thickness 

(nm) 

Resistivity 

(Ω·cm) 
Scat. Time (fs) 

Thickness (nm) 1 0.934 -0.931 

Resistivity 

(Ω·cm) 
0.934 1 -0.992 

Scat. Time (fs) -0.931 -0.992 1 

Another way to check the uniqueness of fits is to calculate the correlation matrix, which shows 

the interdependence between fitting parameters. A value of ±1 corresponds to a perfect 

correlation where parameters A and B can be interchanged and still achieve the same result. 

Correlation near zero is ideal for fitting parameters as no variation in a variable can be countered 

by another parameter to achieve the same result. A measured correlation matrix is shown in 

Table 1 where the correlation between resistivity and scattering time is shown to be inversely 

correlated (e.g. approximately -1). By examining the Drude formula used to model the film, this 
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correlation is expected and does not affect the quality of fit; it simply means there is no 

information to separate these two values and only one is required to fit the data with the other 

fixed.  To retrieve information about the film resistivity from SE measurements, we would need 

to separately know the accurate scattering time. A more troublesome correlation is between 

thickness and the dispersion model equations (here, both resistivity and scattering time). This 

correlation suggests that an arbitrary thickness increase can be compensated by a similar factor 

increase in resistivity. Figure 6 shows a two-dimensional uniqueness plot corresponding to 

thickness and resistivity. The trough representing the minimum MSE is elongated, demonstrating 

this correlation between thickness and resistivity. 

 

Figure 6 Logarithmic surface plot of Mean Squared Error for various resistivity and thickness 
combinations. The elongated trough shows a strong correlation between thickness and 

resistivity which induces a large variability in material properties. 

B-Spline produces a similar issue as shown in the thickness uniqueness plot (Figure 6). The basic 

functionality also works to produce a high correlation between each node, which results in a flat, 

low MSE, curve without a sharp ‘v’. To demonstrate the variety of material characteristics this 

can produce, the permittivities and figure of merit values are compared for TiN films fit from 30 

nm to 70 nm in. We see a variation in the figure of merit of almost 3× from minimum to maximum 

and a similar spread is found when fitting with GenOsc (not shown).  



41 
 

 

Figure 7 B-Spline fit for various thicknesses calculated real and imaginary permittivity a) and b) 
and figure of merit c). Despite each fit having a low Mean Squared Error fit, a large change in 

optical properties is seen between each fit with almost 3× variation. 

 

Figure 8. a) Balance of variables with transmission included. The balance favors measured 
values, which is ideal for fitting. b) Transmission measured and generated with B-Spline fits 

shown in Figure 5. The 50 nm fit is closest to the measured transmission of the film. 

In this case, neither the GenOsc nor the B-Spline fit the SE data confidently and more data is 

necessary to accurately determine the material properties. Accurate thickness measurements 

could be taken via methods such as transmission electron microscopy or step etching, thereby 

reducing the unknown variables. When we add T data the balance of variables favors the 

measured values, see Figure 8(a), as we have both SE and T data for each wavelength. Even when 

a) b)
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some spectral regions are completely opaque, only a few transmission data points are necessary 

to allow for film characterization. 

 

Figure 9 a) Mean Squared Error vs thickness for various weightings of transmission. Fits with 
transmission included having a sharp ‘v’ providing a unique fit for thickness at 47 nm. b) Two-
dimensional parameter uniqueness comparing resistivity and thickness. The conical trough is 

ideal, showing a unique fit between the thickness and resistivity parameters. 

 

Table 2: Correlation matrix with transmission included in the calculation. The correlation 
between thickness and resistivity or thickness and scattering time is no longer close to ±1 so the 

correlation is broken 

 Thickness (nm) Resistivity (Ω·cm) Scattering Time (fs) 

Thickness (nm) 1 0.324 -0.237 

Resistivity (Ω·cm) 0.324 1 -0.949 

Scattering Time (fs) -0.237 -0.949 1 

 

Adding T data, we can simply calculate the expected T from the previous B-Spline results at 

various thicknesses and compare to the measured T. Figure 8(b) shows that the results calculated 

from the 50 nm fit results produce the closest match to T. This visual check may be enough 

information to consider the film to be about 50 nm thick and use this to optimize our permittivity. 

However, it is best to consider the SE and T data simultaneously as the thickness and permittivity 
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are regressed to the best-fit.  The standard approach considers the single T data to be “weighted” 

as a single measurement, compared to the multiple-angles from SE measurements.  To increase 

the importance of the T, when three angles of 𝛹(𝜆) and 𝛥(𝜆) where measured, we increase the 

T weighting to 600% such that T and SE curves are more or less equivalent. As seen in Figure 9(a), 

when T is added, the uniqueness plot produces a sharp ‘v’. This ‘v’ is sharper for higher T 

weighting, including tests with T, weighted at 2400%, but the MSE also increases. This gives a 

confident thickness of 47 nm for the film. T data also breaks correlation as can be seen in Table 

2 and Figure 9(b). As a result, the previously elongated trough in the two-dimensional parameter 

uniqueness has been condensed such that a large change in thickness cannot be compensated 

by a change in resistivity.  
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Figure 10 a) Real (left axis) and Imaginary (right axis) permittivities of samples A, B, and C when 
using SE data alone fit with a Drude and two Lorentz oscillators (GenOsc). The fit thicknesses 

have clear deviations from linear growth. b) Real (left axis) and Imaginary (right axis) 
permittivities of samples A, B, and C with transmission measurements fit with a Drude and two 

Lorentz oscillators(GenOsc). The trend is now seen that material quality does not strongly 
depend on the thickness of the film and a linear growth rate is found. c) AFM measurement of a 
step in the TiN films verifying the thicknesses obtained. The curvature seen in C is attributed to 

etching under the mask, more prevalent in C due to additional time of etching. d) AFM 
measurement of sample A showing <1 nm surface roughness. Other samples illustrate similar 

roughness. 

Finally, we consider three films; film A, which has been the subject of the previous sections, along 

with films B and C. The growth method is plasma-enhanced atomic layer deposition, a technique 

with a consistent, but unknown, growth-rate when other deposition parameters are kept 

constant. The three films were grown to different unknown thicknesses to verify whether the 

thickness of ultrathin films impacts the optical properties. Film A should be the thinnest with film 

C being the thickest based on deposition cycle numbers. First, the films were characterized with 

SE only (without T) using a GenOsc with one Drude and two Lorentz oscillators. Film A produced 

best fits at 48 nm and 105 nm, film B at 105 nm, and film C at 99 nm). All three sample optical 
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properties are plotted in Figure 10(a); the optical properties of the three films are shown to vary 

only for the lowest thickness in film A but the assumed thicknesses are incorrect. 

However, the large discrepancy between expected film thickness and fit thickness led to the 

addition of T spectra for the three samples. After fitting both SE and T, we find that the actual 

thicknesses are 47 nm, 58 nm, and 80 nm, which is a linear growth rate of 0.07Å/ cycle between 

samples. The results of this correct modeling are shown in Figure 10(b) and there is no significant 

change in optical properties between films. For parity, the thicknesses of the films were also 

measured using atomic force microscopy across a step profile of the film fabricated through 

photolithography and wet etching. The resulting thickness values are found to agree with the 

ellipsometry measurements, Figure 10(c), within the ±3 nm error of the measurement. Surface 

roughness was measured using AFM to find <1 nm RMS, shown in Figure 10(d). 

 

  



46 
 

3. LARGE INTRABAND INTENSITY DEPENDENT REFRACTIVE INDEX IN ENZ 

The intensity dependent refractive of ENZ materials has been studied in literature through 

experimental means without significant theoretical direction. Our work aims to holistically 

investigate all nonlinearities that induce an intensity dependent refractive index in ENZ films. 

Initial investigation lead to an understanding that the nonlinear process is absorptive in nature.  

 

Figure 11 a) Schematic of the intraband nonlinearity in ENZ materials, where the reflectivity 
(permittivity) of the material is changed through the application of a pump beam. The change in 

permittivity occurs due to a modification of the effective mass of the electron sea as the 
absorbed pump energy elevates electrons to higher energy, higher mass states. b) Schematic of 

the interband nonlinearity where the permittivity is decreased through the absorption of 
photons with energies larger than the band gap, causing free carrier generation. Figure adapted 

from  [4]. 

Two types of absorption can be investigated as the cause of this effect, depending on the spectral 

location of the pump. Excitation in the longer wavelengths of visible through near-infrared, 

intraband absorption is the dominant absorption mechanism. This form of absorption promotes 

electrons from lower in the conduction band to higher energies (Figure 11a) causing a redshift in 

plasma frequency as will be described in depth in Section 3.2. In the UV optical region, the main 

absorption effect is interband absorption; electrons are promoted from the valence band to the 
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conduction band (Figure 11b). This induces additional free carriers and blueshifts the plasma 

frequency as will be described in Section 4.2. 

3.1. Background: Intraband Nonlinearity of Epsilon-Near-Zero Media in Literature 

The search for an ideal nonlinear material has been a fruitful study [7,77–80] which continues to 

provide new opportunities for research from organic materials [79,80], to designer glasses [81], 

plasmonics [82–84], and metasurfaces [85–87]. One promising effect that has been shown to 

boost nonlinearities in metasurfaces [1,88–94], plasmonics [95–97], and thin 

films [1,6,24,26,35,40,98–100] is epsilon-near-zero (ENZ). A number of works have explored 

intraband nonlinearities in ENZ materials from various perspectives of experimental 

data [5,6,24,101,102]. Typical experiments have been conducted with Z-scan [24,89], R-T [5,6], 

and beam deflection [26,103] to measure 𝑛2 of ITO and doped ZnO films. The results have 

consistently provided large nonlinear responses; however, modeling and exact values have 

varied work to work and are not perfectly corroborating.  

An early, influential, work in the field was conducted via Z-scan and RTA measurements by Boyd 

et al [27]. Z-scan is a technique where a film is moved along the incident axis, near the focus of a 

beam which acts as pump and probe. The change of the refractive index in the film acts as a lens 

focusing or defocusing the beam. By comparing the total transmission and the alteration of 

transmission collected into a small slit, the change in the index can be modeled [104]. Changing 

the position to the focus (where the name Z-Scan originates) provides an intensity dependence 

and normalization.  

Further exploration was given through transient RTA, where a pump induces a change in the film, 

which is probed by a weak pulse. These measurements allow for back-calculation of optical 
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parameters through the transfer matrix method (TMM). This allows for time dependent 

measurements by sampling the material’s response a different points in time, achieved by 

varying the relative arrival time at the sample of the pump and probe pulses (see Section 6.1.2).  

Intensity dependent measurements of ITO are taken through both methods and large 

nonlinearities are found. Off normal angle enhancement is found to be quite large as is predicted 

through D-Field continuity. Furthermore, saturation effects are found near 150 𝐺𝑊/𝑐𝑚2 [27]. 

Modeling of this effect is completed through Two Temperature Model [105].  

Other materials and measurements have been taken to establish 𝑛2 in nondegenerate cases. 

Spectral data has been taken by Boltasseva, Faccio, et al.  [6] to explore nonlinearities beyond 

intensity dependence. These measurements were taken through RT measurements at multiple 

intensities in AZO, results provided in Figure 12(a-c). This work was modeled with a Kerr 

nonlinearity with a varying 𝜒(3), Figure 12b.  

Time dependence measurements having a clear relaxation rate, and polarization insensitivity 

verifies that this effect is not a bound electron polarization effect as described by a Kerr effect, 

confirmed via the overlap of parallel and perpendicular responses in beam deflection results [24].  



49 
 

 
Figure 12 Nonlinear changes in permittivity as a function of intensity (a) and probe wavelength 

(c). The 𝜒(3) used to model this effect is given in (b). Figure taken with permission from Caspani 
et al  [6] . 

 

3.2. Kinetic Adaptation of Intraband Nonlinearities in Epsilon-Near-Zero Media 

Here, the theory describing the nonlinear process of intraband intensity-dependent refractive 

index (IDRI) in telecom, Drude, ENZ materials such as ITO, AZO, and GZO, is outlined. For a full 

exploration of this phenomenon, see the publication, Secondo et al.  [4], which will be 

summarized here. Literature has defined effective mass as the band curvature effective mass for 

most cases, however, some works have proposed the use of a transport effective mass. However, 

in the pursuit of holistic understanding, our research worked to derive effective mass for 

ourselves beginning with the change in the Fermi surface due to an applied field. 
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𝛿𝑘 = −
𝑞𝐸

ℏ
25 

If the velocity of an electron is considered for a particular direction it is found as: 

𝑣𝑧 = 𝑣 cos 𝜃 = 𝑣𝐹
𝑘𝑧

√𝑘𝑧
2+𝑘⊥

2
. 26 

Taking the effective mass as the change in velocity compared to the rate of change in momentum, 

𝑑𝑣

𝑑𝑘
. Taking this full derivative:  

𝑑𝑣𝑧

𝑑𝑘𝑧
=

𝑑𝑣(𝑘)

𝑑𝑘𝑧
cos 𝜃 − 𝑣(𝑘) sin 𝜃

𝑑𝜃

𝑑𝑘𝑧
=

𝑑𝑣(𝑘)

𝑑𝑘
cos2 𝜃 +

𝑣(𝑘)

𝑘
sin2 𝜃 . 27 

After taking the time average of the sinusoidal terms, the change in velocity is found as: 

𝛿𝑣𝑧 = −
𝑞

𝑖𝜔ℏ
 [

2

3

𝑣(𝑘)

𝑘
+

1

3

𝑑𝑣(𝑘)

𝑑𝑘
] 𝐸 = −

𝑞

𝑖𝜔𝑚∗(𝑘)
𝐸. 28 

The result is found that the effective mass is a combination of these two previously mentioned 

effective masses: 

𝑚∗(𝐸)𝑚0 = ℏ(
2

3𝑘

𝑑𝐸

𝑑𝑘
+

1

3ℏ

𝑑2𝐸

𝑑𝑘2
)

−1

. 29 

As shown in Figure 13, in the parabolic region, this is the same as either of the previous models. 

When the parabolic assumption is violated, this equation presents an effective mass that is a 

weighted average of the other two definitions.  
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Figure 13: The traditional, transport, and our weighted average effective mass increase (shown 
above as inverse decreasing) as the energy above the conduction band minimum increases. The 

traditional effective mass begins to tend toward infinity at high energies. 

 

If we begin to consider the implications to the Drude formula, we find that if carriers are away 

from the CBM, their effective mass will vary. This means we can no longer consider one effective 

mass, but rather, must average the effective mass amongst the carriers. This results in a revised 

Drude formula: 

𝜀𝑟 = 𝜀∞ −
𝑞2

𝜀0𝑚0

1

𝜔2 + 𝑖𝛤𝜔
∫

𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝑑𝐸

𝑚∗(𝐸)

∞

0

30 

where 𝑓(𝐸, 𝜇, 𝑇𝑒) is the Fermi-Dirac distribution with respect to energy, chemical potential, 𝜇, an 

electron temperature, 𝑇𝑒, (𝑓(𝐸, 𝜇, 𝑇𝑒) =
1

𝑒

𝐸−𝜇
𝑘𝐵𝑇+1

)and 𝜌(𝐸) is the electronic density of states 

(DOS). Since 𝑚∗ tends to be higher at higher energies, an increase in carrier concentration causes 

a higher average effective mass. Furthermore, if the electron temperature rises, the average 

effective mass increases as well. The temperature rises due to absorbed energy density, 𝑑𝑈𝑎𝑏𝑠, 
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from intraband excitation. This temperature rise can be found through two conservation 

equations, the first for carrier concentration and the second for energy: 

∫ 𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝑑𝐸
∞

0

= 𝑁 31 

∫ 𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝑑𝐸
∞

0

− ∫ 𝑓(𝐸, 𝜇0, 𝑇𝑒0)𝜌(𝐸)𝐸𝑑𝐸
∞

0

= 𝑑𝑈𝑎𝑏𝑠 32 

where subscripts denote unexcited chemical potential and electron temperature. The energy 

density absorbed can be found through 
𝐴(𝜔)𝐼𝜏

𝑑
 where 𝜏 is the system relaxation rate, 𝑑 is the 

material thickness, and 𝐴(𝜔) is the absorptivity of the film (1 − 𝑅 − 𝑇). This absorptivity can be 

enhanced through pump wavelength choice, film loss, and slow light enhancement, finding a 

delicate balance between increasing traditional absorption by adding loss and enhancing 

absorption through slow-light by reducing loss.   

From the calculations of 𝜇 and 𝑇𝑒, the excited material’s effective mass can directly be calculated 

as in Equation 29. By calculating the linear permittivity and the excited permittivity (Figure 14), 

and taking the difference, the nonlinear susceptibility is found. Unlike traditional IDRI, the 

effective 𝑛2 found through this process is not constant as the effect is not due to bound 

polarization effects given by 𝜒(3) (Equation 8). Instead, the shift in plasma frequency provides a 

change in the index. 
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Figure 14: When the plasma frequency of a material shifts, the effects can be seen far away 

from ENZ, the effect is shown here for the 0.4 TW/cm2 intensity in Figure 15, the change is still 
visible at twice the energy of ENZ.  

 

For an AZO film in literature, we were able to show that this model adequately describes the 

nonlinear effect through these linear material processes of absorption and relaxation (see Figure 

15). 

 
Figure 15 a) The change in refractive index due to a 2

0.4 ( / )TW cm  (black) and 2
0.9 ( / )TW cm  (red) 

pump at 780 nm. Using a relaxation rate of 170 ( )fs =    [5] on a Gaussian pulse shape with 

maximum pump with 100 fs full-width half-maximum. A close fit between experimental [6] and 
theoretical responses is obtained through a deterministic model. b) The peak n  and average 

effective mass of carriers versus the applied pump intensity for the AZO sample. (Figure is taken 
with permission from Secondo et al  [4] with experimental data from Caspani et al.  [6]). 
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 Furthermore, a figure of merit was proposed that allows the comparison of various materials 

and loss conditions to aid future research efforts and give insight into the important mechanisms 

involved. This figure of merit can be split into three sections of focus (shown through brackets). 

𝐹𝑂𝑀 = 𝐴𝑝𝑢𝑚𝑝 [
1

𝑚𝑎𝑣𝑔
∗

𝑑𝑚∗

𝑑𝐸
] [

1

𝑁

𝑑𝑛𝑝𝑟𝑜𝑏𝑒

𝑑𝑚𝑎𝑣𝑔
∗

] 33 

First, the energy must be absorbed to generate excess energy in a material, given by 𝐴𝑝𝑢𝑚𝑝. This 

absorption can be enhanced and optimized through pump wavelength choice and material 

characteristics. Film absorption is highest in the range near ENZ due to a tradeoff between 

transmission and reflection being dominant (shown in Figure 16). At moderate positive 

permittivities, low reflection is observed, however, the film is not metallic enough to have 

considerable intraband absorption. On the long side of ENZ, negative permittivities are highly 

reflective, reducing the ability to absorb due to limited field entering the bulk of the material. For 

low loss films (n<<1), ENZ provides an enhancement due to slow light discussed in Section 1.5 

allowing for an extended effective length of the material. In high loss films, this enhancement 

goes away as 𝑛 > 1, however, these films benefit from a reduced impedance mismatch.  

Next, for a significant change in effective mass to occur, the initial effective mass is ideally small 

and changes drastically as electrons are excited to higher energies. The initial effective mass 

works as a normalization factor for the dispersion of effective mass. This reduces the efficiency 

of high carrier concentration films due to their large effective mass from having more carriers 

initialized away from the CBM. 
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Figure 16: (left) dn generally follows the trend of absorptivity due to being caused by the 
absorption of the material, however, near NZI effects, slow light is expected to enhance 

absorption and enhance refractive index modulation. In the region Epump > Eg/2 two-photon 

absorption may weakly decrease the efficiency of the process by generating free carriers. (right) 
The figure of Merit calculations for various materials as given in Secondo et al  [4] based on 

hyperbolic band fits, reprinted with permission. 

 

The final considerations are for how difficult a film is to modulate. The higher the carrier 

concentration is, the more energy is required to generate a shift in the average effective mass. 

Next, the refractive index dispersion with respect to a change in effective mass describes how 

much effective mass change is necessary to have the change be visible in the index. A high 

background permittivity causes this term to be high due to the extra curvature from being a 

steeper Drude dispersion; however, the high background permittivity also requires more carriers 

to generate a high plasma frequency providing an interesting trade-off. This term is also loss 

dependent as the curvature is sharpened at a low loss, and shallows at a high loss, balancing with 

the absorption from term 1.  

Limited qualitative discussion of the specifics of comparison will be presented here with a more 

in depth, quantitative discussion following the multi-pump discussion in Section 5.2 to directly 

compare IR and UV results. The FoM calculations for the five films considered here are taken as 
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a function of loss through a change in mobility. The peak in absorption for the considered films 

occurs near a mobility of 20 − 30 [
𝑐𝑚2

𝑉∙𝑠
] where reflection is low due to a low impedance 

mismatch with air (�̃� ≈ 0.7 + 𝑖0.7, |�̃�| ≈ 1). For this calculation, AZO and ITO have very similar 

results due to a similar initial carrier concentration and effective mass, deviating mainly through 

the band curvature. The other three films suffer from large background permittivities, requiring 

larger initial carrier concentrations to achieve the considered ENZ. This also limits the effective 

mass by forcing the Fermi level higher in the band, leading to a high initial effective mass. 

However, the high background permittivity also causes a larger curvature in index at ENZ 

resulting in a larger 𝑑𝑛/𝑑𝑚∗. Despite this, GaN shows itself to be a good nonlinear IR material 

due to its large nonparabolicity factor 
𝑑𝑚∗

𝑑𝐸
. This results in CdO and Ga2O3 showing a poor 

nonlinearity compared to the other three films. 

As the thickness directly affects absorption and changes the energy density of an absorbed pump, 

the thickness of the absorbing film must also be studied. From reflection and transmission 

measurements, it can be noted that a peak in absorption generally occurs at the crossover of 

reflection and transmission, due to energy conservation. For a thick film, the denotations of 

dielectric and metallic regions directly translate to high transmission and high reflection regions 

respectively. For a thick ENZ film, the transition between a strongly reflective and strongly 

transmissive conditions occurs fairly rapidly in wavelength (see in Figure 16b). This translates to 

the highest absorption region being close to ENZ as previously shown. However, for thinner films, 

the transition does not occur as rapidly. This redshifts the peak in absorption to well beyond the 

ENZ wavelengths. For a film with ENZ at 1.3 µm and a loss of 0.4 at ENZ, the trend of peak 

absorption is shown for film thicknesses 50 nm to 500 nm (Figure 17). For this theoretical film, 
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the transitional region of absorption occurs at thicknesses between 100 and 200 nm, with ENZ 

pinning occurring for thicknesses greater than 250 nm which continually become more narrow 

with increasing thickness. This transition is both dependent on the ENZ wavelength and the loss 

of the film. Low loss films will have a sharper transition between transmission and reflection in 

wavelength, resulting in a more direct pinning of the absorption to ENZ while lossy films have a 

slower transition, requiring a thicker film to pin to ENZ. For overall absorption efficiency, it must 

also be noted that absorption follows an exponential decay trend leading to additional thickness 

producing a diminishing effect on overall efficiency. Thus, depending upon the loss of the film 

there will be a maximum thickness after which the addition of more material will not strongly 

affect the ability of the film to absorb. This thickness is the skin depth (𝑑 = 1/𝛼), which is typically 

~1 µm at ENZ.    

 
Figure 17 (left) The normalized absorption efficiency, absorption divided by thickness, for a film 

with ENZ at 1300 nm and low loss. This shows the ideal pumping wavelength to maximize 
nonlinear response of the material. Thick films pin the ideal pump wavelength to the ENZ 
region of the film, while thinner films have this region at longer wavelengths. (right) The 
normalized absorption as a function of film thickness clearly shows the pinning transition 

between 150 nm and 250 nm and the continued narrowing of the ideal wavelength to ENZ. 
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Having studied the material centric effects provided in the figure of merit and the experimental 

practical considerations such as pump wavelength, probe wavelength, and film thickness, theory 

enables us to look further into the ideal performance choices available. Certain experimental 

considerations can be found from investigation that allow us to take our film and find a preferred 

experimental set up; or on the other side, a film may be chose to operate well for a given 

experimental set up. For example, if a film is significantly thin, using a pump with a longer 

wavelength may enhance the experimental results. This result is contrary to the general 

viewpoint discussed in literature, which generally seek to explore degenerate use at ENZ [106].  

If the pump and probe are required to be degenerate (or only one beam such as a Z-Scan 

experiment), utilizing a slightly thicker film to pin the ideal pump wavelength to the preferred 

probe wavelength of ENZ.  

3.3. Gallium Nitride as an Intraband Nonlinear Medium 

Among the materials explored through hyperbolic band modeling, gallium nitride stands as a film 

whose band structure deviates the greatest at energies of interest (as shown in Figure 18). As the 

effective mass is inversely proportional to both the first and second derivatives of the 𝐸 − 𝑘 

relationship, a band flattening at lower energies will have a more drastic effective mass 

dispersion, Figure 19a,b. In GaN this effect is evident and our exploration required direct 

calculation of band curvatures rather than model fits such as the hyperbola. For this, density 

functional theory (DFT) was applied to a gallium nitride film with doping ≈ 5 × 1020[𝑐𝑚−3] 

allowing for direct calculations from numerically derived band structures.  
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Figure 18: Gallium nitride band structure from DFT calculations compared to matched 
hyperbolic (red) and parabolic (green) approximations. 

The result of the DFT calculations, conducted by Dr. Dennis Demchenko, shows a conduction 

band maximum under 2.5eV, shown in Figure 19c. At the top of the band, the density of states 

becomes very large; similarly, the effective mass becomes exceedingly large at moderate energy 

levels compared to the hyperbolic expectations, see Figure 19b. As our effective mass can be 

described as a combination of the curvature effective mass and the transport effective mass, it is 

worth discussing the interaction of each of these individually. The curvature effective mass 

diverges at the inflection point of a curve as 
𝑑2𝐸

𝑑𝑘2 = 0 in a linear region (close to 1 eV above CBM 

in GaN, shown in Figure 19c). On the other hand, 
𝑑𝐸

𝑑𝑘
= 0 at the band minimum/maximum so the 

transport effective mass stays finite throughout the majority of energies of interest, also keeping 

the overall effective mass finite. However, their interaction produces a region between the 

inflection point and maximum of the band (~1.6 eV, see Figure 19a) where the effective mass 

diverges, producing states with very heavy electrons due to the cancelation of the negative 

curvature effective mass and the positive transport effective mass. The excessively heavy 

electrons increase the average effective mass significantly, but as the bulk of the electron sea 
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stays at lower energies, the film remains conductive and has a finite effective mass. Yet, the 

ability to move carriers via optical excitation into this high effective mass region of the band 

manifests as an increase in nonlinear response as seen in Figure 19d. 
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Figure 19  Gallium nitride’s band structure strongly deviates from the hyperbolic fit utilized for 
materials such as zinc oxide. This is obvious when calculating the density of states (c) and 

effective mass (a) necessary for understanding the nonlinear response. The diverging density of 
states, paired with a strong dispersion of effective mass predicts an efficient nonlinear response 
of GaN. b) The inverse effective masses are shown with the band structure from Γ point to the 

𝐴 point (positive momentum Bouillon Zone). The inflection point and conduction band 
maximum are easily shown through the zero crossings of the curvature effective mass and 

transport effective mass. d) The nonlinear response calculated through the DFT band structure 
and the hyperbolic fit for a GaN film with ENZ wavelength of 1700 nm are compared through 

the absorbed energy density, dUabs. The large deviation of the actual band from the hyperbola 
presents a larger dn for a given absorption by the actual film. DFT calculations were conducted 

through collaboration with Dr. Dennis Demchenko of the Virginia Commonwealth University 
Physics Department. 

 



62 
 

Comparing four films, AZO, GaN, CdO, and ITO through DFT calculated band structures shows a 

good indication of why GaN is a promising film. While all concerned films have a similar curvature 

that leads to high effective mass changes at high photon energies, GaN approaches this curvature 

at a significantly lower energy than the other materials. While the background permittivity limits 

the efficiency of GaN to slightly lower values than AZO and ITO at low pump intensities, this trend 

changes at high pump intensities. As the electron sea becomes energetic, electrons approach this 

diverging effective mass faster in GaN than in the other films leading a different curvature than 

in the other films, see Figure 19d. This allows GaN to continue to outperform other materials at 

high fluences where this heavy region is accessed. This finding motivates the study of 

nonlinearities at the edges of the Brillouin Zone and illustrate that GaN is a highly promising 

material for further studies.  
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Figure 20 (a,b) The change in permittivity calculated from intraband absorption at 787 nm for 
AZO, GaN, CdO, and ITO with 𝜆(𝜀′ = 0) = 1.8𝜇𝑚 (solid, a) and 𝜆(𝜀′ = 0) = 2.2𝜇𝑚 (dashed, b). 

While ITO and AZO have nearly the same curvature, GaN shows more promise at high 
intensities where the highly non-parabolic behavior is seen. This nonparabolic behavior is 

shown in (c) with an energy turnover beginning near 2 eV while the other materials continue to 
be hyperbolic. The effective mass as a function of energy between the four films as shown (d); 

the effective mass of GaN is first to diverge to a large value, allowing for the high effective mass 
changes occurring at large pumping powers. 
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4. INTERBAND INTENSITY DEPENDENT REFRACTIVE INDEX OF EPSILON-NEAR-

ZERO MEDIA 

Revisiting our summary figure for the nonlinear processes in ENZ materials, here we will discuss 

interband processes shown in Figure 21b. Interband absorption itself is a well-known process 

where an e-h pair is generated by a photon with energy above the bandgap.  

 

Figure 21 a) Schematic of the intraband nonlinearity in ENZ materials, where the reflectivity 
(permittivity) of the material is changed through the application of a pump beam. The change in 

permittivity occurs due to a modification of the effective mass of the electron sea as the 
absorbed pump energy elevates electrons to higher energy, higher mass states. b) Schematic of 

the interband nonlinearity where the permittivity is decreased through the absorption of 
photons with energies larger than the band gap, causing free carrier generation. Figure adapted 

with permission from  [4]. 

The generation of e-h pairs in large quantities creates perturbations in permittivity outside of the 

ENZ conditions through the modification of the free-carrier density in the material, giving rise to 

an intensity dependent refractive index. Here we outline the prior work in interband 

nonlinearities in ENZ materials and expand our kinetic nonlinear model to encompass these 

excitations. 
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4.1. Background: Interband Nonlinear of Epsilon-Near-Zero Media in Literature 

Interband nonlinearities have been explored in AZO as an ENZ material, focusing on applications 

in ultrafast switching for telecommunication wavelengths  [109]. In this work, an AZO film with 

𝜆𝐸𝑁𝑍 = 1300𝑛𝑚 and assumed 𝑚𝑎𝑣𝑔
∗ = 𝑚Γ

∗ = 0.25, where 𝑚Γ
∗  is the effective mass at the Γ point 

(a constant effective mass). The nonlinear response is calculated through R-T characterization 

and is modeled to find the number of carriers generated through absorption and the resultant 

change in the refractive index. The results provide that for  1, 2.4, and 3.6 𝑚𝐽𝑐𝑚−2 an average 

change in free carriers of 0.2, 0.5, and 0.7 × 1020𝑐𝑚−3 are induced resulting in index changes of 

−0.07 + 𝑖0.07,−0.14 + 𝑖0.16, and − 0.17 + 𝑖0.25, respectively. 

 
Figure 22 Δ𝑅/𝑅 (b) and Δ𝑇/𝑇 (c) responses for three fluences applied at 325 nm on an AZO 
film, probed at its epsilon-near-zero point of 1300 nm. The positive change in reflection and 

negative change in transmission denotes an increased metallicity of the film due to the 
increased carrier concentration. The figure is taken with permission from  [109]. 

 

A key difference between the work presented here and our theory is the dedicated focus on 

effective mass. The prior work considers a constant effective mass for all electrons while our 
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modeling provides an understanding of the change in effective mass due to the additional 

electrons. Our model also considers the additional energy of above-band gap pumping and 

meshes into the theory presented in Section 3, to model more complex systems, shown in Section 

5. 

4.2. Kinetic Adaptation of Interband Nonlinearities in Epsilon-Near-Zero Media 

Interband nonlinearities have been studied to a degree in literature with a physical 

understanding of exciting an electron-hole pair. Our model provides a small expansion to this 

effect worth noting. The effective mass of carriers in previous works was taken to be constant. 

When applied in our model, new carriers have higher effective masses than the average which 

lowers their efficiency in modifying the plasma frequency by a small factor. We also can introduce 

an effect, briefly studied in the literature, where pumping well above the bandgap energy 

provides excess photon energy and results in a similar increase in electron temperature as was 

found in the intraband case. For these effects, we can extend our governing conservation 

formulas, Equations 31 and 32, to include a change in carriers 𝑑𝑁 and excitation energy 𝑑𝑈𝑈𝑉: 

∫𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝑑𝐸 = 𝑁0 + 𝑑𝑁 = 𝑁0 +
𝐴𝑈𝑉(𝜔)

𝑑

𝐼𝑈𝑉𝜏𝑈𝑉

ℏ𝜔
34 

∫𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝐸𝑑𝐸 − ∫𝑓(𝐸, 𝜇0, 𝑇𝑒0)𝜌(𝐸)𝐸𝑑𝐸 = 𝑑𝑈𝑈𝑉 35 

𝑑𝑈𝑈𝑉 = 𝐴𝑈𝑉(𝜔)
𝐼𝑈𝑉𝜏𝑈𝑉

𝑑
(ℏ𝜔 − 𝐸𝑔). 36 

In the case where the pump energy is ℏ𝜔 ≈ 𝐸𝑔 + 𝜇𝑒0, 𝑇𝑒 should stay constant at ≈ 300𝐾. When 

excitation happens significantly above this absorption edge, it will contribute to a temperature 

rise. This occurs because the electron is promoted to a state well above the Fermi level and must 
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relax to a state near the Fermi level through electron-electron scattering which increases the 

electron temperature. Consequently, the effective mass increases a small amount. However, this 

effect is generally very small when pumping near the bandgap energy.  If we consider the change 

of effective mass as negligible, the permittivity change is easily calculated as: 

𝛿𝜀 ≈
−𝑑𝑁

𝜀0𝑚0𝑚∗

1

𝜔2 + 𝑖Γ𝜔
. 37 

The sign of this change is counter to that of intraband nonlinear responses by moving the plasma 

frequency toward the blue of the permittivity crossover. 

Under extreme pumping scenarios, it is possible for a sufficient number of carriers to be 

generated such that the chemical potential will temporarily increase, blue-shifting the absorption 

edge as well, as seen in Figure 23(right). This effect would result in a saturation of the pump 

absorption for energies very near the bandgap, and would also induce an additional modulation 

upon the permittivity due to the shift in bandgap. Currently, this saturation effect is not included 

within the model, and constitutes a promising next step for expansion.  
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Figure 23 (left)As carriers are generated in the film, the refractive index is reduced due to the 
shift in plasma frequency. This effect is still limited by the linear index near ENZ. (right) As the 

number of carriers is increased, either through doping or e-h pair generation, the chemical 
potential increases, leading to a blue shift of the band edge. This edge is clearly seen through 

the linear extrapolation of (αE)2 to the x-axis. (inset)The chemical potential extrapolated from 
(𝛼𝐸)2 compared to the chemical potential calculated from the model. The small error could be 

due to growth conditions or Moss-Bernstein shift. 

 

Through a similar method to Section 3.2, a figure of merit can be derived. This figure of merit for 

interband effects can be split into three sections of focus (shown through brackets). 

𝐹𝑂𝑀 = −[
𝐴𝑝𝑢𝑚𝑝

𝐸𝑔
] [

1

𝑁

𝑑𝑛𝑝𝑟𝑜𝑏𝑒

𝑑𝑁
] [

1

m∗

𝑑𝑁

𝑑𝐸
] 38 

First, the energy must be absorbed to generate excess carriers in a material, given by 𝐴𝑝𝑢𝑚𝑝/𝐸𝑔 . 

This absorption is generally dictated by the energy of the transition, the matrix element, and the 

joint density of states with band filling. Since the number of carriers generated from absorption 

is calculated through Δ𝑁 ∝
𝐴𝐼

ℏ𝜔
, films with large band gaps are expected to have fewer carriers 

generated from the same intensity when pumped directly at the effective band edge. Film 

absorption strongly increases near the band edge and has only incremental increases with 

increased energy, leading to an 𝐴𝑝𝑢𝑚𝑝/𝐸𝑔 that peaks near the band edge. 
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Second, to generate a large index change, the film should ideally have a low initial carrier 

concentration. This allows a modulation of carrier concentration to generate a larger plasma 

frequency shift. Similar to the intraband case, a sharp refractive index dispersion at the probe 

wavelength is also beneficial is it reduces the number of carriers required to achieve a given index 

modulation. From this dispersion term, an important qualitiy can be discerned – unlike intraband 

processes, a low loss ENZ film is always ideal for interband pumping. This is because the optical 

absorption of the probe in the ENZ region (due to free carriers) and interband absorption of the 

pump (due to band-to-band transitions) are due to two separate processes that are not 

inherently linked. This dissociation of pump and probe absorption leads to the ideal film being as 

low loss as possible at ENZ, thus facilitating increased index dispersion in the ENZ region (i.e. at 

the probe wavelength), while seeking maximized absorption for the pump to enable efficient use 

of the excitation energy. 

Finally, the ideal film has a low effective mass enabling large plasma frequency modulation with 

a large density of states at the energy of excitation. The large density of states helps overcome 

the limitation of new carriers having a higher effective mass which would hurt efficiency; a low 

non-parabolicty also helps mitigate this effect by allowing the effective mass of new carriers to 

be exactly that of the old carriers, the highest efficiency expected. A direct comparison of 

materials through this FoM will be conducted in section 5.2. 

Similar to the discussion in Section 3.2, a thickness dependence exists where the absorption of 

the pump is dispersed across a film’s thickness. Unlike the case of intraband absorption, 

interband absorption is highly efficient and therefore has a skin depth as low as 100 nm leading 
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to the exponential decay of absorption. For this reason, a thickness dependent model was 

adapted for gradient absorption. 

∫𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝑑𝐸 = 𝑁0 + 𝑑𝑁(𝑑𝑧) = 𝑁0 +
𝐴𝑈𝑉(𝑑𝑧, 𝜔)

𝑑𝑧

𝐼𝑈𝑉𝜏𝑈𝑉

ℏ𝜔
39 

∫𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝐸𝑑𝐸 − ∫𝑓(𝐸, 𝜇0, 𝑇𝑒0)𝜌(𝐸)𝐸𝑑𝐸 =
𝑑𝑈𝑈𝑉

dz
40 

𝐴𝑈𝑉

𝑑𝑧
=

𝑅(𝜔) (𝑒−
𝑧1
𝛼 − 𝑒−

𝑧0
𝛼 )

𝑧1 − 𝑧0
41 

Following previous calculations of conservation of carriers and energy, the main difference is now 

that the energy and carrier density are only calculated for a slab of thickness 𝑑𝑧 = 𝑧1 − 𝑧0. This 

approach breaks down of a film into many thin layers, each with a deeply sub-skin depth 

thickness, which can then be treated to have uniform absorption individually. Utilizing a 

multilayer transfer matrix method described in Section 6.1.2, the transmission and reflection can 

be calculated for a stack of sub-skin depth films with a thickness dependent index change from 

gradient absorption. 

While the index of the stack will be a gradient based on the absorption at each layer, the overall 

efficiency of the stack can still be calculated as 𝐴𝑈𝑉/𝑑 as the overall absorbed energy density is 

consistent. Since the probe will still be in a film that is significantly sub-skin depth, the reflection 

of a probe is not only due to the interface but to the entire film stack. This leads to a drop in 

efficiency that follows the bulk energy density without incurring significant error. Simple 

transmission calculations, assuming a gradient index compared to a bulk index change find a 

significant error but continue similar trends. For more accurate results, this effect may be 

considered through a gradient TMM calculation. 
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Figure 24 (left) The efficiency of absorption denoted by 𝐴/ℏ𝜔𝑑 calculated as a function of 
pumping wavelength and film thickness with the spectral film qualities of S4. As the pump 

energy approaches the band edge it becomes more absorptive while beyond this band edge it 
begins to fall off. As a function of thickness the film becomes less efficient with a skin depth 

~100 nm above the effective band edge leading to a significant drop in efficiency above 200 nm 
thick films. (right) The refractive index change calculated as a function of thickness for a film 

with a skin depth of 50 nm and a thickness of 150 nm. Film layers are considered as half of the 
skin depth showing a significant degradation of efficiency with increased thickness. 

Transmission calculations were conducted for a bulk absorption density and a gradient 

absorption density to find an error 
Δ𝑇𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡−Δ𝑇𝑏𝑢𝑙𝑘

Δ𝑇𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
= 45%. 
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5. HYBRID NONLINEARITIES IN EPSILON-NEAR-ZERO MEDIA 

In this section we look to combine the effects of interband and intraband nonlinear excitation of 

ENZ materials to study more complex interactions and spatio-temporal modulation of the index. 

Here we will describe how the two separate kinetic models are combined, how they interact, and 

make use of the predictive power of the model to compare materials across both effects. 

5.1. Background: Two Color Excitation of Epsilon-Near-Zero Materials in Literature 

Generally, multi pump experiments for IDRI are uncommon in literature, especially for ENZ. 

However, the control provided through multiple wavelengths, polarizations, angles, etc. provide 

additional versatility when shaping and engineering the nonlinearity. In particular, one work in 

literature explored this capability in ENZ materials to achieve bandwidth shaping by using a UV 

pump and a NIR pump we used to control the index of an AZO film [110]. In this work, two delay 

stages are used to control the timing of the probe and the NIR pump, while the UV pump has a 

set arrival time. The effects are considering in this work as non-interacting; the IR pump creates 

a positive change, the UV pump generates a negative change, the combination of the two is 

considered as a linear combination. By changing the arrival time between the effects, the 

interaction of the two pumps can be seen. 
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Figure 25 Experimental schematic used in  [110] to control both interband and intraband 
nonlinearities. The 787 nm NIR pump is split and sent through a third harmonic crystal to 

generate a UV pump. The temporal control of pulse arrival is controlled through two delay 
stages on the probe and NIR pumps. Figure taken from [5] under Creative Commons License. 

 

 

Figure 26 The real (a-e) and imaginary (f-j) percent of refractive index change achieves over a 
range of Δt and Δτ arrival times for a dual-pump system. The fluences of the ultraviolet and 

near-infrared pulses are 5mJcm−2 and 14mJcm−2 respectively. It is seen that when the pulse 
timings are significantly offset (a,f, and e,j) the nonlinear effects are distinct and separated 

while their overlap (c,h) results in a singular suppressed effect. Figure taken from Dual Color  [5] 
under Creative Commons License. 
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This work established the concept of utilizing both the interband and intraband nonlinearities to 

induce opposite sign nonlinearities; however, an interaction exists where increased carriers from 

interband absorption induces a change in how intraband absorption occurs, and vice versa. This 

work generally kept the combination as a linear combination rather than exploring the 

interaction. Moreover, the paper was unable to accurately predict the amplitude of the 

nonlinearities, instead restricting its numerical analysis to normalized changes in reflection and 

transmission. Our theory extends this by providing direct comparison of the magnitude of the 

nonlinearity while allowing a consideration of the interactions of the two nonlinearities. 

5.2. Kinetic Adaptation of Multiple Pump Effects in Epsilon-Near-Zero Media 

By exploring every aspect of the individual effects of intraband and interband nonlinearities, we 

can begin to holistically predict the effects of combinations of multiple pumps. This is the end 

goal of the work as we can establish more degrees of freedom to optimize the nonlinear 

response, as well as to utilize the opposing changes in index to shape the index profile both in 

time and space. 

The combination of these effects joins the equations from Section 3.2 and Section 4.2.  

∫ 𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝑑𝐸
∞

0

= 𝑁0 +
𝐴(𝜔𝑈𝑉, 𝑡)

ℏ𝜔

𝑃𝑈𝑉

𝑑
42 

𝐴(𝜔𝑈𝑉, 𝑡)
𝑃𝑈𝑉

𝑑
+ 𝐴(𝜔𝑈𝑉, 𝑡)

𝑃𝑈𝑉

𝑑

ℏ𝜔 − 𝐸𝑔

ℏ𝜔
+

𝐴(𝜔𝐼𝑅)𝑃𝐼𝑅

𝑑
=

∫ 𝑓(𝐸, 𝜇, 𝑇𝑒)𝜌(𝐸)𝐸𝑑𝐸
∞

0

− ∫ 𝑓(𝐸, 𝜇0, 𝑇0𝑒)𝜌(𝐸)𝐸𝑑𝐸
∞

0

43
  

𝑃𝑈𝑉 = 𝐼𝑈𝑉𝜏𝑈𝑉 = ∫ 𝐺𝑈𝑉(𝑡 − 𝑡𝑈𝑉)𝑑𝑡
𝑡𝑈𝑉

−∞

{
1 𝑡 < 𝑡𝑈𝑉

𝑒
−

𝑡−𝑡𝑈𝑉
𝜏𝑈𝑉 𝑡 > 𝑡𝑈𝑉

44 
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𝑃𝐼𝑅 = 𝐼𝐼𝑅𝜏𝐼𝑅 = ∫ 𝐺𝐼𝑅(𝑡 − 𝑡𝐼𝑅)𝑑𝑡
𝑡𝐼𝑅

−∞

{
1 𝑡 < 𝑡𝑈𝑉

𝑒
−

𝑡−𝑡𝐼𝑅
𝜏𝐼𝑅 𝑡 > 𝑡𝐼𝑅

45 

From this combination of effects, a few notes can be made. Previous studies have indicated that 

𝜏𝐼𝑅 < 𝜏𝑈𝑉 enabling a degree of control over the timing of effects in Equations 44 and 45. 

Furthermore, in Equation 43, of the potential for the nonlinearities to cross-couple is illustrated. 

For an interband-first process, the generation of excess electrons above the Fermi level can result 

in heating of the electron sea. This would alter the effective mass of the electorn sea and result 

in a modified absorption for intraband nonlinear processes. Under an intraband-first process, the 

smearing of the free carrier population in energy, produces a more shallow increase in the 

bandedge absorption versus energy, increasing the absorption for energies just below the Fermi 

level and decreasing absorption for energies just above. However, this process is not considered 

here as the absorption of the interband term is considered constant. Future efforts to model the 

energy-dependent absorption coefficient could include this coupling by determining the 

interband absorption coefficient directly from the Fermi golden rule [28]. 
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Figure 27 The results of index change (a) due to two pump nonlinear processes calculated for 
an Al: ZnO film (AZO) with ENZ point of λENZ = 1.5μm based on changing energy density and 

carrier concentration. The factors leading to this effect are the change in carrier density (x-axis) 
and the average effective mass (b) which increases due to the increased electron temperature 

(c) in the film. (d) At the same time, the chemical potential, 𝜇, tends to decrease at high 
temperatures due to carrier continuity. As e-h pairs are generated, the chemical potential rises 

accordingly. 

 

In Figure 27a, we can see the consequences of the combination of the two nonlinear effects. In 

particular, a region of “super-linearity” exists where the refractive index does not change from 

its original value; even though a higher number of carriers exist in the film and the energy density 

is increased, the two effects counteract. This is an interesting region as it can be accessed through 

interband followed by intraband pumping, or vice versa, leading to a return to zero. If the return 
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to zero can be controlled and the timings can be set where the relaxation stays near this zero 

region, the initial nonlinear process will only be seen for a shorter period of time, acting as a 

faster signal than its relaxation rate allows. 

The interest in the temporal overlap of nonlinearities is twofold: 1) initial reports claim a linear 

combination of effects [110] whereas we predict variations due to cross-coupling that provide 

additional freedom in tailoring the nonlinearity, 2) Using one pulse to “quench” the other’s effect 

would offer new abilities for temporal beam shaping. Since the two effects are of opposing sign, 

adding one nonlinearity the other that is slightly delayed in time will produce a very fast 

modulation in index (from the peak to the valley), shown in Figure 28b. This is particularly 

interesting with the new exploration of adiabatic frequency shifting in ENZ nonlinear 

media [111]. This effect occurs when the material’s refractive index changes while the light is 

propagating in that material, and the magnitude of the shift is proportional to the rate of change 

of the index. By accelerating the index modulation rates in the medium, the induced adiabatic 

frequency shift can be enhanced. Since we have improved understanding of optimal pumping 

regimes for both inter- and intraband responses, comparable ranges (equal and opposite shifts 

in material such that 
𝑁0

𝑚𝑎𝑣𝑔0
∗ =

𝑁0+𝑑𝑁

𝑚𝑎𝑣𝑔
∗ ) are more able to be controlled, and therefore, the region of 

linearity may be studied. 

Building from these descriptions, single and dual pump experiments can be visualized as 

traversing the two-dimensional grid of UV and NIR pump excitation through time. Single pumps 

as presented in Chapters 3 and 4 are described through simple lines while multi-pump 

experiments traverse through diagonals. If intraband nonlinearities arrive first, the line moves 

vertically. While overlapped inter-and intraband nonlinearities occur, diagonal movement 
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occurs, while interband only causes a horizontal movement, angled only by additional energy 

from pump energies significantly above the absorption edge. As energy is added to the system 

moves in a positive direction, while relaxation returns in a negative direction. This effect is shown 

in Figure 28.  

 

Figure 28: The overlapping of IR (blue) and UV (red)  effects in both time (b) and space (c) 
enable for very high transient properties as seen in orange. This can be depicted as locations in 
a two-dimensional figure of dn against dUabs and dN (a). Specific points of interest are labeled 

1-5 in each plot with the line in (a) denoting temporal traversing of the spectrum.  
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5.3. Nonlinear Figure of Merit Comparison for Multi-pump Nonlinearities 

 

Figure 29 a,b) The change in permittivity calculated from intraband absorption at 787 nm for 
AZO, GaN, CdO, and ITO with 𝜆(𝜀′ = 0) = 1.8𝜇𝑚 (solid, a) and 𝜆(𝜀′ = 0) = 2.2𝜇𝑚 (dashed, b). 
While ITO and AZO become follow similar magnitudes and curvature, CdO is noticeably worse 
and GaN is better at high intensities. c,d) The change in permittivity calculated from interband 

absorption for 0.1eV above the effective band edge of AZO, GaN, CdO, and ITO with 
𝜆(𝜀′ = 0) = 1.8𝜇𝑚 (solid, c) and 𝜆(𝜀′ = 0) = 2.2𝜇𝑚 (dashed, d). Longer wavelength ENZ films 
are consistently more efficient due to a lower initial carrier concentration. GaN becomes highly 

inefficient due to the induced carriers being very heavy compared to other films. 
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With the established model, we can then extend the framework to additional materials and 

rapidly evaluate their performance as nonlinear ENZ materials for both inter- and intraband 

effects in silico, requiring only an E-k diagram, linear optical properties, and experimental 

conditions. In particular, the popular ENZ films ZnO heavily doped with Ga or Al (GZO and AZO 

respectively) and ITO are evaluated alongside heavily doped CdO and GaN for three values of 

𝜀" at the permittivity crossover and several intensities of inter- and intraband pumping, see 

Figure 29. The linear properties of each material used for the calculations are listed in Table 3 

and the HSE hybrid density functional theory parameters of the gap tuned materials are shown 

in Table 4. 

Table 3 Linear properties for AZO/GZO, GaN, CdO, and ITO used to evaluate the nonlinear 
response. 

Material Crossover 

Wavelength [𝜇𝑚] 

Carrier Concentration 

[× 1020𝑐𝑚−3] 

Effective Mass  

AZO/GZO 1.8, 2.0, 2.2 3.94, 3.06. 2.44 0.35, 0.33, 0.32 

GaN 1.8, 2.0, 2.2 6.88, 5.07, 3.90 0.38, 0.34, 0.32 

CdO 1.8, 2.0, 2.2 7.68, 5.89, 4.63 0.41, 0.38, 0.37 

ITO 1.8, 2.0, 2.2 4.44, 3.46, 2.77 0.39, 0.38, 0.37 
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Table 4 HSE calculated lattice constants and bandgaps obtained by tuning the fraction of exact 

exchange  and the range separation parameter . The crystal structure of ZnO and GaN is 
wurtzite, that of CdO is rock-salt structure, and that of In2O3 is the bixbyite structure (space 
group 206, 𝐼𝑎3̅), which is a body-centered cubic structure with 8 formula units per primitive 

unit cell. Courtesy of Dr. Denis Demchenko. 
 

Material   [1/Å] Eg [eV] a [Å] 

ZnO 0.3 0.0517 3.41 3.26 

CdO 0.25 0.383 2.14 4.73 

GaN 0.25 0.114 3.42 3.19 

In2O3 0.25 0.147 2.68 5.11 

 

While full theoretical calculations can be conducted as in Figure 29, these can be laborious and 

lack intuition to push new boundaries with new materials; to explore a set of materials for both 

nonlinearities efficiently, a FoM can be established for both effects. From Section 3.2, an 

intraband FoM is developed: 

𝐹𝑜𝑀𝑖𝑛𝑡𝑟𝑎 = 𝐴𝑝𝑢𝑚𝑝 [
1

𝑚∗

𝑑𝑚∗(𝜇𝐹)

𝑑𝐸
] [

1

𝑁

𝑑𝑛

𝑑𝑚∗
] . 9 

The nonlinearity is dominated by a change in the effective mass quantified by the non-

parabolicity of  𝑑𝑚∗/𝑑𝐸. The index curvature at the probe (typically near ENZ) indicates the 

sensitivity of the index to the modification of the effective mass, quantified as 𝑑𝑛/𝑑𝑚∗. A large 

number of carriers or high initial effective mass reduces the overall efficiency per unit energy. 

Similarly, from Section 4.2 the interband FoM can be introduced considering the change of free 

carriers: 
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𝐹𝑜𝑀𝑖𝑛𝑡𝑒𝑟 = [
𝐴𝑝𝑢𝑚𝑝

𝐸𝑔
] [

1

𝑁

𝑑𝑁(𝜇𝐹)

𝑑𝐸
] [

1

𝑚∗

−𝑑𝑛

𝑑𝑁
] . 10 

Here, the 𝑑𝑛/𝑑𝑁 describes the sensitivity of the index to a change in carrier density (equivalent 

to a group velocity term) while 𝑑𝑁/𝑑𝐸 describes the number of available states near the Fermi 

energy. Many initial carriers or a high effective mass tend to decrease the efficiency per unit 

energy. Finally, the absorption is normalized by the bandgap energy because the modulation of 

carrier density is governed by Δ𝑁 ∝
𝐴

ℏ𝜔
 with ℏ𝜔 > 𝐸𝑔. In essence, wide-bandgap materials 

require more energy to generate the same number of excess carriers. 

From the FoM calculations, several important comparisons are made to predict the preferred 

film for various applications. GaN is found to be efficient for intraband operation due to its large 

non-parabolicity. At moderate energies, where other band structures are approximately 

hyperbolic, GaN forms a peak near the L-valley shown in Figure 30a-c. This pushes the non-

parabolicity to extreme levels as effective mass and DOS become quite large in this region, giving 

rise to a large modulation as seen in Figure 29a,b. However, realizing ENZ GaN in the telecom 

range (1.3–1.5 µm) is expected to be challenging as incremental blue-shifts in plasma frequency 

via increased doping come with significant increases in effective mass. On the other hand, CdO is 

found to be more efficient for interband. This because CdO exhibits weak non-parabolicity and 

for low to moderately doped CdO, each excess electron thus induces a nearly equal change in 

plasma frequency due to a slow variation of effective mass. Additionally, CdO has been shown to 

be ultra-low loss in the plasma frequency range of 2-5 µm which leads to a sharp index dispersion 

in the ENZ region  [32,50–52]. However, the high background permittivity requires a large 

number of carriers to achieve ENZ, which reduces the energy efficiency.  
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For all-around materials, ITO and doped ZnO are well suited for both interband and intraband 

nonlinear processes. A provide a moderate non-parabolicity and small background permittivity 

combine to induce efficient nonlinear effects in both interband and intraband operation. For 

interband operation, the low initial carrier concentration allows new carriers to contribute to a 

large percentage of the overall concentration without significantly increasing the average 

effective mass. For intraband operation, the initial effective mass is moderately low with a non-

parabolicity factor that allows for a large effective mass modulation. Additionally GaN and CdO, 

ITO and doped ZnO (AZO/GZO) have been shown to achieve ENZ ranges as low as 1.2 

µm [12,24,25,42,53]. 
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Figure 30 a-c) Energy-Momentum and Effective Mass-Momentum diagrams for GaN (𝛤 → 𝐴), 

CdO (𝛤 → 𝑋), and ITO (𝛤 → 𝑃) respectively calculated through using HSE. The effective mass 

is in the units of 𝑚∗/𝑚0. d,e) Normalized Figure of Merit calculations for doped ZnO 

(AZO/GZO), GaN, CdO, and ITO. Figure d) fixes film loss (𝜀"(𝜆_𝐸𝑁𝑍) = 0.7) while varying 

ENZ wavelength (1.8, 2.0, 2.2𝜇𝑚 bottom to top), while e) fixes the ENZ point to 2.0𝜇𝑚 and 

varying loss 𝜀" = 0.3,0.5,0.7 (left to right) 

Additionally, the FoMs illustrate the trade-offs in maximizing nonlinearities of ENZ materials, 

specifically the link between the absorptivity of the film for the pump and the need for a steep 

index dispersion at the probe. In the intraband case, this competition produces an optimum for 

most films in the range of 𝜀” ~ 0.3 – 0.6 [16]. The interband nonlinearity, however, allows more 

freedom as the absorption of free carriers is not connected to the index slope near ENZ. As a 

result, one will always benefit from a lower loss at ENZ and higher losses at the pumping 

frequency with the limit arising due to impedance matching when the refractive index at ENZ 

approaches zero. A last note that while interband is more efficient, it is generally slower than the 
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intraband process, leading to a strength-bandwidth trade-off that should be considered for each 

application. Yet, both processes in TCOs have been shown to achieve THZ scale effects (see Figure 

29 a,b).  
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6. INTRABAND AND INTERBAND EPSILON-NEAR-ZERO NONLINEAR 

MEASUREMENTS 

Sections 3 through 5 contain a significant number of effects and trends which have not been 

readily studied in literature to date. To remedy this, in-house and collaborative experimental 

studies have been conducted in both beam deflection and reflection-transmission based 

methods. Thorough investigation into two AZO films and six GZO films were conducted to study 

the proposed trends. By validating the theoretical trends, the ideal pump, probe, and films may 

be determined to provide direction toward the most productive configurations. Experiments to 

directly explore these trends are studied. 

6.1. Background: Experimental Methods for Investigation of Optical Nonlinearities 

6.1.1. Beam Deflection Method for Measurement of Intensity Dependent Refractive Index 

To measure the Intensity Dependent Refractive Index of materials, techniques interrogate 

induced refraction through a strong pump laser or a pump and a probe. Since the pump has a 

spatially varying intensity, a spatially varying refractive index is formed. The pump itself or an 

independent probe interrogates the spatially varying refractive index that can be interpreted 

from measurement. 

A common method for this interrogation is Z-Scan [104,112–114]. Z-Scan is generally a single 

beam measurement utilizing the focusing or defocusing of the pump to determine the optical 

changes. In Z-Scan measurements, the sample is moved across the focus of a beam. As the film 

approaches the focus, the intensity of the laser increases due to the area decreasing, thus probing 
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the intensity dependent film properties. In an open aperture measurement, this modifies the 

transmission due to reflection or absorption changes. Since the laser has a Gaussian spatial 

distribution, the resulting index distribution follows that of a lens formed by the nonlinear IDRI 

coefficient. The concavity of the induced lens depends on the sign of 𝑛2. A second measurement, 

called closed aperture, where the transmission of the beam through a fixed aperture is measured, 

is often used in conjunction to measure the lensing effect. With proper interpretation of one or 

both measurements, the nonlinear refraction and absorption of a material is captured. 

A method that has been more recently developed is that of beam deflection [113–116]. Beam 

deflection requires a separate pump and probe that enable both non-degenerate, and time 

dependent measurements. This is a highly beneficial property for nonlinearities with broad 

frequency bandwidths and non-instantaneous changes, such as those in ENZ films. Beam 

deflection operates under the principle that the pump will create an effective prism inside the 

material that modifies the propagation of by a probe. An example experimental set up is shown 

in Figure 31. 
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Figure 31: Schematic diagram of a beam deflection measurement. A large pump is used to alter 
a sample with a probe detecting that change through deflection caused by an effective prism 
generation. The probe timing can be altered through the use of a delay stage to measure time 
dependent refraction. The deflection and transmission amounts are measured by a quad cell 
detector. 

The derivation of the effect can follow a few methods [113,114,116]. Under the thin prism 

treatment, the pump (e) and probe (p) are defined through spatial and temporal Gaussian 

distributions. 

𝐼𝑒(𝑥, 𝑦, 𝑡) = 𝐼0,𝑒 exp(−
2(𝑥2 + 𝑦2)

𝑤𝑒
2

−
𝑡2

𝜏𝑒
2
) 48 

𝐼𝑝(𝑥, 𝑦, 𝑧, 𝑡, 𝜏𝑑) = 𝐼0,𝑝 exp(−
2(𝑥2 + 𝑦2)

𝑤𝑝
2(𝑧)

−
(𝑡 − 𝜏𝑑)2

𝜏𝑝
2

) 49 

In the case of a thin film or low GVM film, the location of the probe will not vary compared to the 

location of the pump in space or time. The sizes of the beam are defined by the 𝐻𝑊1/𝑒2 spot 

sizes 𝑤𝑒 and 𝑤𝑝 as well as the 𝐻𝑊1/𝑒 temporal sizes 𝜏𝑒 , 𝜏𝑝 with a temporal separation 𝜏𝑑. The 

thin prism approximation operates under the belief that the phase front bends due to a change 
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in phase accumulation over the thickness of the sample from one end of the probe to the other, 

i.e. 
(𝑛+𝑛2𝐼(𝑥1))−(𝑛+𝑛2𝐼(𝑥2))

𝑥1−𝑥2
 𝐿, the deflection angle is calculated: 

𝜃 = ∫∇𝑛𝑝(𝑥, 𝑦, 𝑡)𝑑𝑠

𝐿

0

≈ ∇𝑛𝑝(𝑥, 𝑦, 𝑡)𝐿. 50 

This is synonymous with the derivation of angular deflection through Generalized Snell’s 

Law  [117] under the approximation that the probe is oriented on a major axis of the pump. 

𝑛𝑖 sin 𝜃𝑖 − 𝑛𝑡 sin 𝜃𝑡 =
𝜆0

2𝜋

𝑑𝜙

𝑑𝑥
51 

Under normal incidence, transmitted into air, this becomes: 

sin 𝜃𝑡 = (
𝜆0

2𝜋

𝑑𝜙

𝑑𝑥
) 52 

Since the phase accumulation in a film is calculated as 𝑛
𝐿

𝜆0
 , 𝑑𝜙 can be calculated as 

𝐿

𝜆0
𝑑𝑛. Under 

the small angle approximation, sin 𝜃 = 𝜃, Equation 52 converges to Equation 50. At a distance 𝐷 

away from the sample, this induces a deflection Δ𝑥 = 𝐷𝜃. 

The detector used to measure beam deflection is a quad cell, a single detector partitioned into 

four sections. Three values are output from the quad cell, 𝐸, Δ𝐸𝑥, and Δ𝐸𝑦. 

𝐸 = 𝑄1 + 𝑄2 + 𝑄3 + 𝑄4 53 

Δ𝐸𝑥 = (𝑄2 + 𝑄3) − (𝑄1 + 𝑄4) 54 
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Δ𝐸𝑦 = (𝑄2 + 𝑄1) − (𝑄3 + 𝑄4) 55 

After the beam has been deflected, it arrives at the detector with a Gaussian shape of: 

𝐼𝑑(𝑥, 𝑦, 𝑡, 𝜏) = 𝐼0,𝑑 exp(−
2((𝑥 − Δ𝑥)2 + 𝑦2)

𝑤𝑑
2 −

(𝑡 − 𝜏𝑑)2

𝜏𝑝
2

) . 56 

Δ𝐸𝑥(𝑡)

𝐸(𝑡)
=

(∫ ∫ 𝐼𝑑(𝑥, 𝑦, 𝑡, 𝜏)
∞

−∞
𝑑𝑦 𝑑𝑥

0

−∞
− ∫ ∫ 𝐼𝑑(𝑥, 𝑦, 𝑡, 𝜏)

∞

−∞
𝑑𝑦 𝑑𝑥

∞

0
)

∫ ∫ 𝐼𝑑(𝑥, 𝑦, 𝑡, 𝜏)
∞

−∞
𝑑𝑦 𝑑𝑥

∞

−∞

57 

From the measurement of Δ𝐸𝑥(𝑡)/𝐸(𝑡), the deflection, and thus, ∇𝑛𝑝 can be calculated. To make 

the calculation of ∇𝑛𝑝 simpler, the probe is situated at 𝑤𝑒/2 allowing for a triangular 

approximation of the Gaussian distribution, ∇𝑛𝑝 =
𝑛2𝐼

𝑤𝑒
. This allows the solution of Δ𝐸/𝐸 to be 

found numerically as:  

Δ𝑥 =
2

√𝑒

1

𝑤𝑒

1

𝜆
𝑑 58 

Δ𝐸

𝐸
=

2√2

√𝑒

𝑤𝑝

𝑤𝑒

𝐿

𝜆
Δ𝑛 59  

In the presence of nonlinear absorption, the process has an additional degree of complexity as 

the transmission is modulated as well as the phase. Under thin prism approximations, this can be 

treated as a separate effect which will both change 𝐸 itself, as well as provide a non-uniform 

transmission across the probe which shows as additional Δ𝐸𝑥.  

As a result, the intensity at the detector with absorption considered is now calculated: 

𝐼𝑑(𝑥, 𝑦, 𝑡, 𝜏) = 𝐼0,𝑑𝑇0(𝑥, 𝑦, 𝑡, 𝜏) exp (−
2((𝑥 − Δ𝑥)2 + 𝑦2)

𝑤𝑑
2 −

(𝑡 − 𝜏𝑑)2

𝜏𝑝
2

) 60 

where 𝑇0 = 1 denotes the linear transmission of the film, 𝑇0 > 1 is an increased transmission 

due to the nonlinearity, and 𝑇0 < 1 is a reduction in transmission due to the nonlinearity. In the 

case that 𝑛2 and 𝛼2have opposite signs, the two effects have an additive property; a positive 𝑛2 
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deflects the beam toward the center of the pump, while a negative 𝛼2 will result in the portion 

of the probe closest to the center also having the largest transmission with the outer portion 

having less transmission increase. This can lead to large Δ𝐸/𝐸 measurements, even for small 

index changes. To model both effects simultaneously, the total signal modulation can be 

measured as Δ𝑇0(𝑡) = Δ𝑇(𝑡)/𝑇. This process is necessary since two values are now being 

extracted, 𝑛 and 𝛼, requiring two measurements, Δ𝐸𝑥 and Δ𝐸. 

6.1.2. Time Dependent Nonlinear Reflection-Transmission Method for Epsilon-Near-Zero 

Materials 

Another method available for discerning the nonlinear properties of films is to simultaneously 

measure the changes in reflection and transmission due to an optical pump. As the reflection and 

transmission are directly related to the complex refractive index, the measurement of these 

properties can help lead to understanding the change in a film. While individual measurements 

of reflection and transmission are useful, simultaneous measurement paired with a numerical 

model are required to decipher the change in refractive index. 
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Figure 32 Schematic diagram of a nonlinear reflection-transmission measurement. A large 
pump is used to alter a sample with a probe detecting that change through a change in 

reflection and absorption. The probe timing can be altered through the use of a delay stage to 
measure time dependent changes. The intensities of the reflection and transmission are 

measured through a detector. The sample is mounted on a rotational stage to enable reflection 
measurements. 

 

Under the approximation of no substrate effect and normal incidence, the reflection and 

transmission of unpolarized light can be calculated using the Fresnel equations  [118] and Beer’s 

Law as: 

𝑅(𝜆) = (
�̃�(𝜆) − 1

�̃�(𝜆) + 1
) (

�̃�(𝜆) − 1

�̃�(𝜆) + 1
)
∗

61 

𝐴(𝜆) = (1 − 𝑅(𝜆))(𝑒𝛼(𝜆)𝑡 − 1) 62 

𝑇(𝜆) = 1 − 𝑅(𝜆) − 𝐴(𝜆). 63 

When a substrate or angle is added, more complexity is required to directly solve R and T directly. 

For this additional complexity, the Transfer Matrix Method can be applied to solve for R,T, and A 

in a multilayered medium [119]. This method can be used to solve for the propagation 

coefficients of a plane monochromatic wave for a film on substrate, as well as for more complex 
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structures such as a graded medium. From characteristic equations of electric and magnetic fields 

inside a non-magnetic medium, the 𝑀 matrix can be calculated as: 

𝑀𝑇𝐸(𝑧) = [
cos(𝑘0 𝑛 𝑧 cos 𝜃) −

𝑖

𝑛𝑘0 cos 𝜃 
sin(𝑘0𝑛 𝑧 cos 𝜃)

−𝑖 𝑛𝑘0 cos 𝜃 sin(𝑘0 𝑛 𝑧 cos 𝜃) cos(𝑘0 𝑛 𝑧 cos 𝜃)
] 64 

𝑀𝑇𝑀(𝑧) =

[
 
 
 cos(𝑘0𝑛𝑧 cos 𝜃) −

𝑖𝑛

𝑘0cos 𝜃 
sin(𝑘0𝑛𝑧 cos 𝜃)

−
𝑖 𝑘0cos 𝜃

𝑛
sin(𝑘0𝑛𝑧 cos 𝜃) cos(𝑘0𝑛𝑧 cos 𝜃)

]
 
 
 

65 

For a succession of film layers, the final 𝑀(𝑧𝑁) matrix is calculated as in multiplication of all 

previous 𝑀 matrices: 

𝑀(𝑧𝑁) = ∏ 𝑀(𝑧𝑗 − 𝑧𝑗−1)
𝑗=𝑁

𝑗=2
66  

From this total 𝑀 matrix for the structure, from here called 𝑚′, the field reflection and 

transmission coefficients can be calculated  [120] with a substrate of index 𝑛2 and film index 𝑛1: 

𝑟𝑇𝐸 =
(𝑚21

′ + 𝑚12
′  𝑛2𝑘0

2 cos 𝜃) − 𝑖(𝑘0𝑚11
′ + 𝑚22

′  𝑘0𝑛2 cos 𝜃)

(−𝑚21
′ + 𝑚12

′ 𝑛2 𝑘0
2 cos 𝜃) + 𝑖(𝑘0𝑚11

′ + 𝑚22
′ 𝑘0 𝑛2 cos 𝜃)

67 

𝑡𝑇𝐸 =
2𝑖𝑛1𝑘0𝑒

−𝑘0𝑛2𝑡(𝑚11
′ 𝑚22

′ − 𝑚12
′ 𝑚21

′ )

(−𝑚21
′ + 𝑚12

′  𝑘0
2𝑛2 cos 𝜃) + 𝑖(𝑚11

′ + 𝑚22
′ 𝑘0

2 𝑛2 cos 𝜃)
68 

𝑟𝑇𝑀 =
(𝑚21

′ + 𝑚12
′  𝑘0

2 cos 𝜃 /𝑛2) − 𝑖(𝑘0𝑚11
′ + 𝑚22

′  𝑘0 cos 𝜃 /𝑛2)

(−𝑚21
′ + 𝑚12

′  𝑘0
2 cos 𝜃 /𝑛2) + 𝑖(𝑘0𝑚11

′ + 𝑚22
′ 𝑘0  cos 𝜃 /𝑛2)

69 

𝑡𝑇𝑀 =
2𝑖𝑛1𝑘0𝑒

−𝑘0𝑡/𝑛2(𝑚11
′ 𝑚22

′ − 𝑚12
′ 𝑚21

′ )

(−𝑚21
′ + 𝑚12

′  𝑘0
2 cos 𝜃 /𝑛2) + 𝑖(𝑚11

′ + 𝑚22
′ 𝑘0

2  cos 𝜃 /𝑛2)
70 

𝑅 = |𝑟|2, 𝑇 = 𝑛2|𝑡|
2 71 

To convert between TE and TM operation, the refractive indexes are replaced with the inverse, 

as shown in Equation 64 and Equation 65. Through this methodology, the accuracy of 

transmission and reflection calculations are increased. From this approach the reflection and 
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transmission of a numerical model can be predicted and matched to measured results, hence 

extracting the complex refractive index in time. 

6.2. Intraband Experiments in Epsilon-Near-Zero films 

6.2.1. Experimental Measurement of Beam Deflection from Intraband Intensity Dependent 

Refractive Index in Epsilon-Near-Zero films  

To experimentally demonstrate the nonlinear interaction of AZO in intraband excitation, 

degenerate and non-degenerate beam deflection measurements were conducted. The pump and 

probe pulses are generated by a 7W, 90 fs, 800 nm Solstice Ace system [Spectra Physics] which 

are routed into two Ti:Sapphire optical parametric amplifier (TOPAS) systems. The pump pulse 

was directed into a NIrUVis system to generate pulses from 1200 nm to 1600 nm in wavelength. 

The probe was directed into a TOPAS system also capable of generation from 1200 nm to 1600 

nm. The pump polarization was rotated to vertical while the probe was horizontal to avoid 

minimize two beam coupling effects.  The probe pulse was filtered to ~1mW average power and 

the pump pulse was filtered to variable powers from 10mW to 100mW average power. The probe 

line was fitted with a delay line capable of >1ns of delay. The probe was focused to a FW1/𝑒2 

waist of ~300𝜇𝑚 while the pump was focused to a FW1/𝑒2 waist of ~1100𝜇𝑚 to ~1500𝜇𝑚 

with a beam size ratio 3.2 <
𝑤𝑒

𝑤𝑝
< 5. The probe was situated ~300𝜇𝑚 below the center of the 

pump, in accordance with the theoretical ideal placement of 𝐻𝑊1/𝑒2/2  [114]. The pump 

arrived at the sample with an incidence angle of ~10° to the sample, parallel to the table. The 

PDQ30C Quad-Cell Detector (Thorlabs) was located 12cm behind the sample where the probe 

𝐹𝑊1/𝑒2 waist is ~800𝜇𝑚. Location and size of beams were confirmed through knife-edge 
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measurements. For all measurements, the films were measured substrate first and the substrate 

response was measured and removed. 

Two samples were studied, S120 with AZO thickness of  120 nm and S240 with AZO thickness of 

240 nm, grown on c-sapphire. The AZO films were grown through plasma-enhanced atomic layer 

deposition (PE:ALD). The two sample characteristics are outlined in Table 5. Films were 

characterized through spectroscopic ellipsometry paired with transmission measurements as 

detailed in Section 2 and modelled through Equation 30-32. The resulting permittivity of the 

samples is shown in Figure 33. Experiments were fit using the theoretical framework described 

in Section 3-5 with with the band structure calculated through DFT.  

 

Figure 33 Real (solid) and imaginary (dashed) permittivity of S240 (red) and S120 (green) fit 
through ellipsometry measurements. 
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Table 5 Sample characteristics for samples used in nonlinear beam deflection measurements 

Sample 

Film ENZ 

[𝜇𝑚] 
𝜀" at ENZ 

Carrier Density 

[×  1026𝑐𝑚−3] 

Effective Mass 

[× 𝑚0kg] 

Thickness 

[nm] 

S120 1.43 0.7 
7.958 

 
0.423 120 

S240 1.27 0.4 9.413 0.439 240 

 

Initial nonlinear characterization of the films included non-degenerate intensity dependent 

measurements shown in Figure 34 for sample S120 and Figure 35 for sample S240. For this 

measurement, the probe was at 1600 nm while the pump was at 1200 nm. For all measurements 

to follow, temporal dynamics demonstrate a complete relaxation within 1ps for a relaxation rate 

consistent with other measurements of AZO grown through sputtering, 𝜏~200𝑓𝑠. 
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Figure 34: Experimentally measured Δ𝑇/𝑇 (a) and Δ𝐸/𝐸 (b) for S120 at three powers, 75 (red), 
150 (olive), and 225 (green) 𝐺𝑊/𝑐𝑚2. As intensity increases, Δ𝑇/𝑇 and Δ𝐸/𝐸 increase. 

Theoretically calculated Δ𝑇/𝑇 (a) and Δ𝐸/𝐸 (b) are shown in black. An artificial separation of 
0.05 is applied for clarity. As intensity increases, Δ𝑇/𝑇 and Δ𝐸/𝐸 increase with a strong 

agreement in Δ𝑇/𝑇 and a proper ordering for Δ𝐸/𝐸. 

 

For this combination, the experimental and projected values for transmission modulation follow 

very closely to each other showing a high degree of accuracy to the modelling. The Δ𝐸/𝐸 

measurement has a slightly higher modulation than predicted which tends to be a trend of our 

calculation. Nearly all of the Δ𝐸/𝐸 signal in the film at this combination is projected to be through 

the transmission modulation with little to no actual deflection predicted due to the nearly flat 

dispersion of index in this region. In S120, the film is very thin, leading to high initial transmission, 

even in the metallic region after 1.43𝜇𝑚. This leads to 1600 nm being the optimal transmission 

modulation probe wavelength as will be discussed further in the spectrally dependent 

measurements to follow. 
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Figure 35 a) Experimentally measured Δ𝑇/𝑇 and Δ𝐸/𝐸 for S240 at three powers, 37.5 (red), 75 
(olive), and 150 (green) 𝐺𝑊/𝑐𝑚2. Data is artificially separated by 0.05 for each power. As 

intensity increases, Δ𝑇/𝑇 and Δ𝐸/𝐸 increase. Theoretically calculated Δ𝑇/𝑇 and Δ𝐸/𝐸 for a 
modelled S240 are shown in as black lines for each dataset. As intensity increases, Δ𝑇/𝑇 and 

Δ𝐸/𝐸 increase with a reasonable agreement and ordering. 

 

Compared to S120, S240 shows a very large nonlinear transmission change, but only a marginally 

higher Δ𝐸/𝐸. The projected values for transmission modulation are within a factor of 2 of the 

experimentally measured values. The Δ𝐸/𝐸 measurement has significant noise due to the low 

initial signal but follows the general trends expected through theory. Due to S240 having a 

shorter crossover wavelength (1270), the probe is in a metallic, slightly negative, dispersion 

region of the index. Due to this dispersion, no significant beam deflection from index modulation 

is expect, though the effect of large transmission modulation is evident.  Compared to S120, S240 

is thick, nearly twice the thickness, and even more metallic. This leads to initial transmission at 

1600 nm of only 20%, and enables a significantly larger transmission modulation than is possible 

in S120, which was measured to be as high as 40% (raw 𝑇 of 28%). A further examination of 

results would lead to a conclusion that film S240 also has a more efficient absorption of the pump, 
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leading to larger modulation. This relative comparison deserves more acute focus and will be 

discussed further to follow. 

To understand the spectral response of our films, the probe and pump must be independently 

studied. Our theory predicts the largest nonlinear response in pump regimes with the largest 

absorption and probe regions near ENZ. Figure 17 shows that this region of ideal pump 

wavelength changes with respect to thickness, with pinning to ENZ occurring at thickness 250 nm 

and above, with a trend toward long wavelengths for thinner films. To study this effect, films 

S120 and S240 are utilized as a thin film and a near pinning film. Pump and probe wavelengths of 

1200 nm, 1400 nm and 1600 nm are utilized for spectral dependence in all combinations. Knife 

edge measurements were used to position and size our beams. Pump beams at 1200 and 1600 

nm were approximately FW1/𝑒2 waist of ~1100𝜇𝑚 while the pump at 1400 nm was slightly 

larger at  ~1500𝜇𝑚. This leads to a small non-ideality in beam deflection where Δ𝐸/𝐸 is slightly 

smaller at 1400 nm due to a larger 𝑤𝑒 (see Equation 60). The pump intensity is kept similar for all 

experiments between 120 and 150 𝐺𝑊/𝑐𝑚2 with small variations due to filtering and pump size. 
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Figure 36 Nonlinear beam deflection measurements at probe wavelength of 1200 nm in Δ𝑇/𝑇 
(a,c) and Δ𝐸/𝐸 (b,d) for films S120 (a,b) and S240 (c,d) for three pump wavelengths, 1200 nm 

(red), 1400 nm (green), and 1600 nm (blue) and an intensity ~125𝐺𝑊/𝑐𝑚2. For film S120, the 
absorption spectra prefers long wavelength pump operation due to a thickness of only 120 nm, 

making the 1600 nm pump to induce larger changes than the 1400 and 1200 nm pumps. For 
film S240, the absorption spectra is pinned to ENZ due to the film thickness of 240 nm. This 
makes 1200 and 1400 nm significantly more efficient that 1600 nm as the ENZ point of film 

S240 is approximately in the middle of these two wavelengths. 

 

From experiments probed at 1200 nm and pumped from 1200 to 1600 nm (Figure 36), the trend 

clearly follows the absorption spectra of the respective films. Film S120 performs most optimally 

when pumped at 1600 nm falling off to a weakest interaction with 1200 nm due to being a thin 

film. On the other hand, film S240 equally favors 1200 and 1400 nm pumps as the ENZ wavelength 
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is ~1300 nm and the film is thick enough to cause the pinning of absorption to ENZ. S240 has the 

weakest interaction with 1600 nm pumping. Transmission modulation is expected to be largest 

in all cases for S240 as the initial transmission for S240 is significantly smaller. In the case of 

probing at 1200 nm, S240 is also expected to have a significantly larger deflection as the probe is 

nearly at ENZ; whereas, film S120 is probed further blue respectively, causing only minor 

deflection. 
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Figure 37 Nonlinear beam deflection measurements at probe wavelength of 1400 nm in Δ𝑇/𝑇 
(a,c) and Δ𝐸/𝐸 (b,d) for films S120 (a,b) and S240 (c,d) for three pump wavelengths, 1200 nm 

(blue), 1400 nm (green), and 1600 nm (red) and an intensity ~125𝐺𝑊/𝑐𝑚2. For both films, this 
is near the ideal probing wavelength for index modulation, though large transmission changes 

in S240 obscures this result. 

Measurements at 1400 nm probe follow similar trends to those of 1200 nm (Figure 37). Notable 

differences include an increase in Δ𝑇/𝑇 for S240 which will continue to increase due to the low 

initial transmission. Here, Δ𝐸/𝐸 has significant contributions due to both a transmission 

modulation and an index modulation. S120 follows similar trends, however, transmission 

modulation is still small and there for most of the deflection is caused by the index gradient as 

the probe is in the ideal probing wavelength for this film. 
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Through beam deflection measurements, we were able to confirm the trends our model predicts 

in every combination. Our deflection data supports the calculation of the ideal wavelength index 

modulation occurring near the ENZ wavelength of the film. The amplitude of transmission 

modulation also matches well to theoretical models supporting the theory derived. 

6.2.2. Experimental Measurement of Time Dependent Nonlinear Reflection-Transmission in 

Epsilon-Near-Zero Materials 

For two GZO films grown by molecular beam epitaxy (MBE), S4 and S5, nonlinear RT 

measurements were conducted at three pump wavelengths, 1350 nm, 1620 nm, and 1890 nm. 

The film qualities were characterized through ellipsometry, permittivity shown in Figure 38, and 

are presented in Table 6. Each of the films has a thin ZnO matching layer to improve the quality 

of growth of GZO. 
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Figure 38 Real (solid) and imaginary (dashed) permittivity of S1-S6 as measured through 
ellipsometry. 
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Table 6 Sample characteristics for samples used in nonlinear RT measurements 

Sample 

Film ENZ 

[𝜇𝑚] 
𝜀" at ENZ 

Carrier Density 

[×  1026𝑐𝑚−3] 

Effective Mass 

[× 𝑚0kg] 

Thickness 

[nm] 

S1 1.56 0.31 
5.58 

 
0.369 207 

S2 1.58 0.32 5.41 0.366 210 

S3 1.65 0.33 
4.87 

0.359 260 

S4 1.7 0.41 4.51 0.354 225 

S5 1.71 0.31 
4.44 

 
0.353 280 

S6 1.69 0.48 4.58 0.355 175 

 

Experiments were conducted through collaboration at Argonne National Labs with a white light 

probe and a 60 fs pump laser. The pump pulse is chopped at 2.5kHz with a system repetition rate 

of 5kHz. The white light probe was detected at 5kHz directly measuring the difference between 

the pumped and linear properties to generate Δ𝑇/𝑇 and Δ𝑅/𝑅. A grating and CCD detector are 

used to measure the spectral response of the white light probe. Transmission measurements 

were conducted at 5 degrees off normal incidence while reflection was taken at 30 degrees. The 

pump was horizontally polarized while the probe was vertically polarized. The pump beam was 

measured at 700 µm 𝐹𝑊1/𝑒 while the probe was a slightly reduced size. FTIR measurements 

were used to confirm the linear transmission and reflection of each film. Theoretical comparisons 

made use TMM calculations at normal incidence for transmission and 30 degrees off normal with 

TM polarization with 5% reflection added to adjust for non-idealities. 
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Figure 39 Temporal and Spectral measurements of Δ𝑅/𝑅 (left) and Δ𝑇/𝑇 (right) for S4 pump at 
an average power of ~8mW. The reflection modulation includes a large negative region from 

the film becoming less metallic, as well as a positive region due to an impedance matching 
condition that leads to a region of low reflection. Measurements taken at Argonne Nat. Labs. 

 

Full temporal and spectral measurements are taken for each measurement as shown in Figure 

39. Transmission is expected to only increase due to the film becoming less metallic/more 

dielectric. Reflection is expected to decrease in most of the spectral range; however, a region of 

increased reflection occurs due to a natural minimum in linear reflection from an impedance 

matching condition. Near this impedance matching condition, an increase in refractive index 

results in an increase in reflection as the matching condition redshifts. 

Temporal measurements demonstrate a complete relaxation within 1ps for a relaxation rate 

consistent with other measurements, 𝜏~200𝑓𝑠. This result suggests that the intraband 

relaxation dynamics are unaffected between higher quality (lower loss) MBE grown ZnO doped 

with gallium and lower quality (higher loss) PE:ALD grown ZnO doped with aluminum. 
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Figure 40 a) Comparison of TMM calculated RT spectra and FTIR measured RT spectra for 
sample S4. Due to non-idealities such as a 30 nm ZnO buffer layer, a small error exists in the 
total reflection and transmission for the film. This leads to theoretical error in comparison to 
experimental results shown in b,c. Intensity dependence of nonlinear RT measurements for 

sample S5 at three average powers, 1.3mW, 3mW, and 8mW, pumped at 1620 nm. Reflection 
(b) and transmission (c) follow the expected trend of increased modulation as power is 

increased. Absolute magnitude of modulation of reflection is higher due to the low initial 
reflection.  Significant error at long wavelengths is attributed to the linear TMM deviation from 

linear FTIR data. Measurements taken at Argonne Nat. Labs. 

 

A logical first check for nonlinear dependence is reflection and transmission modulation. For 

transmission measurements, Figure 40 (c), the trend simply follows increased transmission 

modulation with increased intensity. For reflection measurements Figure 40 (b), the dependence 

is slightly different in that the region of increased reflection redshifts and increases in intensity 
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with increased intensity. This occurs because that region is shifted further with increased plasma 

frequency modulation. Some error exists, especially at long wavelengths, due to a discrepancy 

between FTIR measured reflection and transmission and the TMM calculated reflection and 

transmission. 

 

 

Figure 41 Nonlinear reflection (a,c) and transmission (b,d) measurements (open points) and 
theoretical matching (solid lines) for films S4 (a,b) and S5(c,d) pumped at an average power of 
~8mW (experimental), ~80𝐺𝑊/𝑐𝑚2 (theory). Due to an increased thickness from S4 to S5 the 

preferred pumping regime shifts from 1890 in S4 to nearly identical response between 1890 
and 1620 in S5. Measurements taken at Argonne Nat. Labs. 
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A comparison of samples S4 and S5 yields a similar comparison to S120 and S140 from Section 

6.2.1 in that S4 falls into the transitional thickness before absorption is pinned to ENZ, while S5 

falls into the pinned thickness. This distinction is not firm as it depends on film loss and 

permittivity; however, results indicate that S4 is pumped more efficiently by the 1890 nm pump 

while S5 is pumped more efficiently by both the 1620 nm pump and the 1890 nm pump. The 

measured results share the same trend at other powers (not shown). Theoretical calculations 

show a good agreement limited by the inaccuracy of our TMM calculations and error of 

experimental results. The TMM calculations used did not consider the ZnO substrate, nor 

thickness dependence of absorption, leading to error which may be alleviated in future 

calculations.  Experiments in Δ𝑅/𝑅 are particularly prone to error due to the low initial reflection 

of samples. 

6.3. Experimental Nonlinear Reflection and Transmission Measurements of Interband 

Nonlinearities in Epsilon-Near-Zero 

To verify the model, nonlinear reflection measurements were conducted on a GZO film with ENZ 

𝜀(𝜆𝐸𝑁𝑍 = 1700𝑛𝑚) = 0 + 𝑖0.41 and a thickness of 225 nm grown on 24 nm of ZnO on a c-plane 

sapphire substrate [43–45]. Linear optical properties were determined via variable angle 

spectroscopic ellipsometry (J.A. Woollam M-2000)  [46], performing successive measurements of 

the sapphire substrate, ZnO/sapphire, and finally, GZO/ZnO/sapphire to ensure accurate 

extraction. Nonlinear pump-probe experiments were conducted through collaboration with 

measurements taken at Argonne National Labs for both a near-infrared pump at 1890 nm (to 

excite an intraband effect) and an ultraviolet pump at 325 nm (to excite an interband effect), 

each with a 60 fs pulse width, see Figure 42a. A white light probe is generated from the pump by 
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focusing the beam inside a 5 mm thick sapphire crystal and is used to observe the change in the 

sample’s reflection and transmission over the range of 1150 nm – 1600 nm using a pair of CCDs 

(Ultrafast Systems Cam NIR-2). The pump pulse is chopped at 2.5 kHz with a laser repetition rate 

of 5 kHz. The white light probe was detected at 5 kHz therefore directly measuring the difference 

between the pumped and unpumped sample to generate Δ𝑅/𝑅. Reflection data was taken at 

30° from the sample normal. In all cases the pump was horizontally polarized while the probe 

was vertically polarized and in the same plane to minimize two-beam coupling effects [47]. The 

peak irradiance of the IR pump at 1890 nm was 13, 33, and 83 𝐺𝑊/𝑐𝑚2 (Pavg = 1.3, 3.3 and 8.3 

mW, respectively) and 1, 2, 6, and 14 𝐺𝑊/𝑐𝑚2 (Pavg = 0.2, 0.5, 1.3 and 3.1 mW, respectively) for 

the UV pump at 325 nm with results shown in see Figure 43a,b,c,d. 

 

 

Figure 42 a) Experimental Setup for nonlinear reflection measurements of GZO. b) Energy-
momentum diagram of ZnO near the 𝛤 point towards 𝐴. c) Transfer-matrix-method calculations 

for the GZO sample compared to the measured FTIR data for the GZO sample. 
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Figure 43 a) Surface plot of nonlinear reflection for a white light probe with wavelengths of 1120 
to 1600nm and a delay time of -1ps to 3ps a) pumped with 3mW at 1890nm and b) pumped with 
3.1mW at 325nm. Cutlines taken at 1565nm for each show the temporal dynamics of the film. 
Nonlinear reflection comparison of theory (solid) to experimental (dot) c) pumped at 1890nm 
with 1.3 (red), 3.3 (green) and 8.3mW (blue) average power and d) pumped at 325nm with 0.2 
(blue), 0.5 (green), 1.3 (red) and 3.1mW (black) average power. 

 

Taking the E-k diagram of Ga-doped ZnO, shown in Figure 42b, as well as the experimental 

parameters, the theory can predict the peak magnitude of the change in reflection versus 

irradiance and probe wavelength for both inter- and intraband nonlinear effects without fitting 

parameters, see Figure 43c,d. Variations between the predicted linear reflection of the sample 

and the reflection as measured through FTIR account for some error in the spectral location of 

the theoretical curves compared to measured results, particularly in the short wavelength region 
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of Figure 43c.When observing the results, we note the change in sign of the normalized reflection 

both pumping scenarios. The refractive index of our film is less than unity for the majority of 

wavelengths, wherein excitation can be thought of as moving the material closer to an 

impedance matching condition with air (intraband) or becoming further mismatched (interband). 

However, for short wavelengths, the linear impedance of the GZO is already close to that of air, 

and thus, at shorter wavelengths, the behavior is reversed.  

Utilizing the white light probe, the model can be tested for a broad range of wavelengths in a 

single measurement. The spectral dependence of reflection and transmission change specifically 

confirms the plasma frequency modulation. In the case of interband pumping, the zero point 

clearly blueshifts, while in intraband it clearly redshifts.  

6.4. Multi-Pump Nonlinear ENZ Measurements 

Our final experiments aim to bring all relevant theories to the same platform by performing both 

interband and intraband nonlinear studies through a dual pumping system, see Figure 44. The 

interaction of the two pumps individually, compared to simultaneous pumping provides insight 

into how the individual processes interact and couple. Moreover, the combination of these 

effects allows for additional versatility in designing the temporal refractive index of the material 

as well as controlling nonlinear absorption and phase shifts. 

The system follows the same design as the beam deflection experiments; however, the pump 

TOPAS/NIRUVIS is used to generate a 300 nm wavelength through cascaded second harmonics. 

The residual power of the 1200 nm to 600 nm conversion is used as a second pump with the 

probe independently controlled through a second TOPAS. The UV pump line is fitted with a 
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manual delay line and a UV-fused silica 125mm focal lens is used to focus the pump onto the 

sample at ~20 degrees. 

 
Figure 44 A Schematic Diagram for a dual pump-probe experimental set up. Both the delay line 
and the UV pump are fitted with delay stage to allow for individual timing control of all beams. 

All three beams are focused to the sample with both pump beam sizes around 
𝐻𝑊1 𝑒2⁄ ~500𝜇𝑚 and the probe size around 𝐻𝑊1 𝑒2⁄ ~100𝜇𝑚. 

 

Using a probe at 1400 nm, with 𝐻𝑊1/𝑒2~100𝜇𝑚 and the 1200 nm and 300 nm pumps, with 

𝐻𝑊1/𝑒2~600𝜇𝑚, we can characterize the effect of each pump individually and near temporal 

overlap. A manual delay line is used to control the timing of the 300 nm pump. The 1200 nm 

pump intensity is taken to be ~90𝐺𝑊/𝑐𝑚2 with a UV pump ~15𝐺𝑊/𝑐𝑚2. Theoretical 

calculations were conducted with these pump intensities, assuming the probe resides in the 

center of both pumps that are spatially overlapped. Results are shown in Figure 45. 
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Figure 45 Nonlinear transmission measurements for a dual pump system with pumps at 300 nm 
and 1200 nm with a probe at 1400 nm. The delay between IR pump and UV pump are taken to 

be −1700𝑓𝑠,−800𝑓𝑠,−150𝑓𝑠, 600𝑓𝑠, 𝑎𝑛𝑑 1600𝑓𝑠 respectively for a,b,c,d, and e. At large 
delays the effects can be considered independent. At delays near zero, quenching effects can 

be seen with conflicting pump effects. 

The results of this study show the relaxation rate of the interband nonlinearities to be slightly 

elongated (~400 fs) compared to the relaxation of the intraband nonlinearity (~220 fs). Figure 

45(a,e) show independent nonlinearities while Figure 45 (b-d) show the interaction between 

pumps with overlapping effects. Quenching of effects can be seen with peak transmission 

modulation of both effects reducing compared to that of the independent effect. Theoretical 

curves fit well to experimental measurements. Further studies may yield supportive results for 

the physics laid out in Section 5. 

To further investigate the behavior of this film, specifically the relaxation rate and behavior at 

overlap, more measurements were taken with a focus on temporal overlap. Using an IR pump of 
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60𝐺𝑊/𝑐𝑚2 at 1200 nm and a UV pump of 12𝐺𝑊/𝑐𝑚2 perfectly overlapped with the probe at 

1400 nm, measurements were taken with about 1.3 ps of delay between pumps, and a second 

with -0.13ps of delay.  

 

Figure 46 Transmission modulation measured with 1.3 ps of delay between IR and UV pumps 
(a) and -0.13 ps of delay. The measurements were taken with an IR pump of 60𝐺𝑊/𝑐𝑚2 at 
1200 nm and a UV pump of 12𝐺𝑊/𝑐𝑚2 perfectly overlapped with the probe at 1400 nm. 
Relaxation rates are calculated as 220 fs for IR and 600 fs for UV. This enables a straddled 

relaxation where the IR peak relaxes inside the shape of the UV. c) The signal from b) compared 
to a sum of the UV and IR measurements from a) with proper delay between signals included. 

The comparison of full measurement and simple addition show the interaction of the UV and IR 
pumps. d) The calculated change in carrier density and effective mass as a function of time 

(points every 30 fs). The grey line indicates zero change in permittivity due to equal 
contribution of carrier change and effective mass change. Above the line denotes a positive 

change in permittivity while below the line denotes a negative change. 
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The transmission modulation of separated and overlapped pumps in time are shown in Figure 

46a and b respectively. In both cases the model is found to fit well to the experimental results. 

Since this model is a simple summation of the two effects in time, this indicates that there are no 

cross-coupling effects for the irradiance levels tested. This is further illustrated by Figure 46c 

wherein the uncoupled UV and IR index modulation produced from Figure 46a were separated 

and temporally shifted to approximate the results of Figure 46b with -0.13 ps delay. It is observed 

that the simple summation and shift (Sum UV+IR) of the experimental data matches quite well 

to the simultaneous excitation (Meas. UV+IR). 

Given this successful modeling, Figure 46d illustrates another useful approach at plotting the 

temporal evolution of the system versus the change in effective mass and carrier concentration. 

The UV pump induces both a carrier density increase and an effective mass increase while the IR 

pump only changes effective mass. A grey line denotes the cancellation of carrier concentration 

change and effective mass change on the plasma frequency. Above this line, the plasma 

frequency redshifts as IR is dominant, and below the line, the plasma frequency blueshifts as the 

UV pump is dominant. As shown in the experimental combination, the film spends most of the 

interaction in below the grey line, where transmission is reduced, and has a brief period of time 

above the line before returning below the line while relaxing to zero. 
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Figure 47: Schematic depiction the overlap of UV and IR pumps in space with the change in 
permittivity induced show below. The probe is located in the overlap of each pump where the 

spatial index change is significantly stronger than from induvial pumps. 

While the previous measurements were conducted with perfectly overlapped pumps and probe, 

enhanced deflection can be found by overlapping the pump and probe in a beam deflection set 

up. By positioning the probe at the 1/e point of each pump, with pumps on opposite sides (See 

Figure 47), the deflection effects can be engineered to add together. This occurs as the nonlinear 

prism forms with the high index at the peak in intraband but the peak of the interband nonlinear 

has a lowered index. When the pulses are equal and opposite, this leads to a null change in index 

at the center of the probe, with a decreased index on the interband side, and an increased index 

on the intraband side. These effects combine to cause twice the deflection that would be found 

from a single pump due to the increased slope (𝜃 ∝ 𝑑𝑛/𝑑𝑥, see section 6.1.1), while having a 

neutral effect on total transmission. Following previous methods, we can investigate the effect 

in S240 in a dispersive region (1200 nm) and a non-dispersive region (1400 nm).  
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Figure 48 Beam deflection measurements at 1200 nm (a,c) and 1400 nm (b,d) probe 
wavelengths with a 1200 nm pump (blue), 300 nm pump (red), and both (yellow). In both cases, 

beam deflection (c,d) is doubled by an additive effect between pump responses while 
transmission (a,b) nearly cancels. This result enables ultra-large beam deflection and breaks 

traditional saturation of the effect by using opposing nonlinearities. 

 

In both a dispersive region (Figure 48a,c) and a non-dispersive region (Figure 48, b,d), the 

nonlinear effect induces twice the effective beam deflection (Figure 48c,d) while approaching a 

neutral transmission change. Experimentally, the individual pumps were chosen to produce 

similar transmission and deflection amounts (~15% and 4% respectively). When combined, the 

transmission change peaks near 0% and the deflection peaks near 8%. This effect is consistent 

due to transmission modulation following the same spatial trends as index gradient with 
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increased transmission on the intraband pump side and decreased transmission on the interband 

pump side. Similar to previous experiments, the temporal difference between relaxation of 

interband and intraband result in a negative dip in transmission before and after the peak. 

However, the deflection signal is not affected by the time difference due to the additive nature 

of the effect.  

Multi-pump nonlinear studies provide opportunities to see ultrafast nonlinear signals through 

transmission modulation such as in Figure 48a,b, and in deflection such as in Figure 48c,d.  In 

Figure 48a, a signal modulation from zero to zero is shown in ~200 fs through the quenching of 

the interband effect through the intraband effect. This effectively alters the rate of change from 

a “slow” nonlinearity with a relaxation of 600 fs to a correlation limited bandwidth where the 

temporal width of effect is nearly the cross correlation of pump and probe times. This increased 

rate of change could be utilized for temporal beam shaping such as bisecting a 1ps probe in time. 

By utilizing the beam deflection mode a similar bisection can be created with the altered section 

of the probe deflected rather than reflected. Utilizing more pumps, this opens an avenue for 

general control of a surface through spatial and temporal control of pump beams. With a positive 

and negative index variation available, this enables complex signal constructions. 
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7. CONCLUSION 

Research into nonlinear optical processes in Drude-type epsilon-near-zero materials has been a 

recent focus due to their large response and high damage threshold. To gain insight into the physics 

underpinning nonlinear optical modulation of the refractive index in these materials, we derived new 

operational forms for the nonlinear response. This theory is the most holistic understanding of the 

nonlinear process for ENZ nonlinearities to date.  

The model has been rigorously tested through experimental means of beam deflection and 

reflection-transmission modulation for aluminum-doped zinc oxide and gallium doped zinc oxide 

respectively. The experiments presented herein are among the first of their kind using beam 

deflection as the nonlinear technique to study ENZ nonlinearities and is a promising avenue to explore 

transient, spectral, polarization, and angularly resolved nonlinear responses with high accuracy. This 

work also addresses a distinct lack of studies on gallium-doped zinc oxide rather than aluminum-

doped zinc oxide, providing rigorous studies in wavelength, thickness, power, and optical loss through 

our transient reflection-transmission measurements. Lastly, early results of the first known multi-

pump beam deflection measurements of ENZ films were presented, showing an opportunity for 

additive nonlinear responses in deflection while operating at negligible transmission modulation. 

Through this, the developed theory allows for the interrogation and prediction of trends to find ideal 

films and experimental configurations. Among them, investigations note gallium nitride as a 

promising material for intraband ENZ nonlinear optical application due to its large energy band non-

parabolicity, albeit with poor interband operation. Similarly cadmium oxide is suggested as a 

promising interband nonlinear material due to its very parabolic energy band, but is less suited for 

intraband operation.  
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Utilizing the holistic theory and the prediction power entailed, researchers may continue to push the 

frontiers of nonlinear optics with ENZ materials. While the theory is established for thin films with 

bulk properties, the physics is established and applicable for structured devices to further engineer 

or tailor the nonlinear response for given applications. By combining the developed framework with 

a suitable electromagnetics solver, the response of nanostructures coupled to ENZ films can be 

predicted readily, thereby enabling the optimization of energy localization and effective refractive 

index dispersion to enhance nonlinear responses. Additionally, multilayer stacking of individual films 

may also be a useful application enabling opportunities for further enhancements of specific 

operations such modulating perfect absorption [121].  

While epsilon-near-zero optics suffers from loss, the ability to perform large modulation of the 

refractive index on sub-micron length scales is a fantastic opportunity for continued nonlinear optical 

operations. I expect the compact, strong nonlinear interaction of ENZ materials, both current and 

upcoming, to become a mainstay in research that will provide a wide range of opportunities for 

improvement through fabrication and design. 
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