
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2021 

Deep Learning Assisted Intelligent Visual and Vehicle Tracking Deep Learning Assisted Intelligent Visual and Vehicle Tracking 

Systems Systems 

Liang Xu 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Navigation, Guidance, Control, and Dynamics Commons, Robotics Commons, and the 

Signal Processing Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/6863 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=scholarscompass.vcu.edu%2Fetd%2F6863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=scholarscompass.vcu.edu%2Fetd%2F6863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholarscompass.vcu.edu%2Fetd%2F6863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6863?utm_source=scholarscompass.vcu.edu%2Fetd%2F6863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


©Liang Xu, August 2021

All Rights Reserved.





i

DEEP LEARNING ASSISTED INTELLIGENT VISUAL AND VEHICLE

TRACKING SYSTEMS

A submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

by

LIANG XU

M.S., Georgia Institute of Technology

M.S., Wichita State University

B.S, Tianjin University of Technology

Advisor: Ruixin Niu,

Associate Professor, Department of Electrical and Computer Engineering

Virginia Commonwealth University

Richmond, Virginia

August, 2021



ii



iii

Acknowledgements

I would like to express my sincere gratitude to my Ph.D. advisor Prof. Ruixin

Niu. It was a pure miracle for me to work with Dr. Niu, after considering giving up

my Ph.D. journey. It was Dr. Niu, who recruited me during the challenging time

of my research. I would like to thank him again for his continuous support for my

Ph.D. study and research. He trained me, inspired my potentials, and made me an

eligible Ph.D. Without his guidance and continuous help, this dissertation would not

have been possible.

I would also like to thank my committee members, Dr. Alen Docef, Dr. Yanxiao

Zhao, Dr. Cang Ye, and Dr. Mulugeta Haile for serving on my advisory committee.

Dr. Alen Docef and I both graduated from Georgia Tech. I was Dr. Zhao’s teaching

assistant for EGRE 364. With her help, I received the Best Teaching Assistant Award

of the College of Engineering in that year. I took Dr. Ye’s robotic vision class, and I

would like to say that was one of the best classes I have ever taken at VCU. Dr. Haile

supported our group’s research work and provided research advice for the past several

years, which are very important for me to complete my Ph.D. program. I would like

to thank again all the committee members, for providing constructive comments as

early as I proposed my research plan.

I would also like to extend my thanks to other faculty and staff members of the

Department of Electrical and Computer Engineering. I want to give special thanks
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Sensor fusion and tracking is the ability to bring together measurements from

multiple sensors of the current and past time to estimate the current state of a sys-

tem. The resulting state estimate is more accurate compared with the direct sensor

measurement because it balances between the state prediction based on the assumed

motion model and the noisy sensor measurement. Systems can then use the informa-

tion provided by the sensor fusion and tracking process to support more-intelligent

actions and achieve autonomy in a system like an autonomous vehicle. In the past,

widely used sensor data are structured, which can be directly used in the tracking

system, e.g., distance, temperature, acceleration, and force. The measurements’ un-

certainty can be estimated from experiments.

However, currently a large number of unstructured data sources can be generated

from sensors such as cameras and LiDAR sensors, which bring new challenges to

the fusion and tracking system. The traditional algorithm cannot directly use these
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unstructured data, and it needs another method or process to “understand” them

first. For example, if a system tries to track a particular person in a video sequence,

it needs to understand where the person is in the first place. However, the traditional

tracking method cannot finish such a task. The measurement model for unstructured

data is usually difficult to construct. Deep learning techniques provide promising

solutions to this type of problem. A deep learning method can learn and understand

the unstructured data to accomplish tasks such as object detection in images, object

localization in LiDAR point clouds, and driver behavior prediction from the current

traffic conditions. Deep-learning architectures such as deep neural networks, deep

belief networks, recurrent neural networks, and convolutional neural networks have

been applied to fields including computer vision, speech recognition, natural language

processing, audio recognition, social network filtering, and machine translation, where

they have produced results comparable with human expert performance. How to

incorporate information obtained via deep learning into our tracking system is one of

the topics of this dissertation.

Another challenging task is using learning methods to improve a tracking fil-

ter’s performance. In a tracking system, many manually tuned system parameters

affect the tracking performance, e.g., the process noise covariance and measurement

noise covariance in a Kalman Filter (KF). These parameters used to be estimated

by running the tracking algorithm several times and selecting the one that gives the

optimal performance. How to learn the system parameters automatically from data,

and how to use machine learning techniques directly to provide useful information to

the tracking systems are critical to the proposed tracking system.

The proposed research on the intelligent tracking system has two objectives.

The first objective is to make a visual tracking filter smart enough to understand

unstructured data sources. The second objective is to apply learning algorithms to
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improve a tracking filter’s performance. The goal is to develop an intelligent tracking

system that can understand the unstructured data and use the data to improve itself.

The topics of this dissertation are focused on:

• How to use the unstructured data as inputs to the tracking system.

• How to make the tracking system better by integrating the detection algorithm

and prediction method in the loop. We treat the tracking systems not only

as individual modules in the whole system but also as interacting with other

modules.

• How to improve the tracking system with the data, and let it learn from the

real-world scenario.
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CHAPTER 1

INTRODUCTION

1.1 Background and Problem Statement

Autonomous systems have become popular due to their potentially huge impact

on our society [1, 2]. For example, autonomous vehicles can save a large amount

of human labor, improve efficiency in transportation, and lead to higher safety for

society. A vital part of autonomous vehicles is their ability to perceive the surrounding

environment for safe driving. Its perception system is responsible for detecting many

different subjects, such as nearby vehicles, pedestrians walking on the road, the road

to drive, traffic lights, and road signs. In an autonomous system illustrated in Fig.

1, the inputs to the perception system are the raw sensor data from cameras, radar,

and LiDAR.

Fig. 1.: High level autonomous system architecture [3].

Inside the perception system, the first task is to understand the raw sensor data.
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High-performing computer perception algorithms based on deep learning have been

used to understand surrounding objects in real-time, by processing raw sensor data.

The second task is to track the objects according to the results from the detection

algorithms [2, 4, 5, 6]. The emerging deep learning algorithms can solve problems

that cannot be solved previously. The tracking system faces its challenges to use these

results accurately and efficiently. Also, how to use the emerging machine learning

technology to improve the tracking algorithm itself is still an open problem.

This dissertation has two aspects to improve the tracking performance of an

autonomous system with deep learning methods. The first aspect is to incorporate

the results from deep learning algorithms into a tracking filter to track objects which

cannot be tracked previously. Another aspect is to use learning techniques to improve

the tracking algorithm itself.

For the first aspect, I use visual object tracking as a subject to investigate the

combination of the tracking algorithm and deep learning detection techniques. In this

part, I propose two new visual tracking approaches. One is using semi-supervised

learning to improve visual features during visual tracking, and the second is to model

visual objects, detected by a deep learning algorithm, as extended targets, and track

the objects’ kinematic states and shapes simultaneously.

For the second aspect, I propose a method called EKFNet [7], which can trans-

form the extended Kalman filter (EKF) to a recurrent neural network, and learn

the unknown system parameters from data. Also, there are two follow-up topics,

which are based on the same framework to improve the tracking results. One is using

the surrounding environment information to improve vehicle tracking results, which

is called Traffic-Aware EKF. Another one is using the LiDAR detection features to

estimate the measurement uncertainties for vehicle detections.

In this chapter, some background knowledge about object tracking and deep
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learning is presented. The EKF formulation is discussed in the beginning, then the

following is the introduction to deep learning. In the end, I briefly discuss the proposed

learning-assisted tracking methods.

1.2 Nonlinear Filtering and Tracking

Nonlinear filtering is the process of estimating and tracking the state of a non-

linear stochastic system from noisy observation data [8]. As shown in Fig. 2, the red

dots represent the measurements, and the goal is to estimate the state of the plane

over time by using these measurements.

The filtering process consists of recursively estimating, based on a set of noisy

measurements, at least the first two moments of the state vector, governed by a

dynamic nonlinear non-Gaussian state-space model. A discrete-time filter consists

of a stochastic propagation step (prediction according to the motion model), and

an update step using a stochastic observation that links the observation data to the

current state vector. In the Bayesian formulation, the filter specifies the conditional

posterior probability density function (PDF) of the state at the current time given

all the observations up to the current time.

When the dynamic and observation equations are linear and the associated noises

are additive and Gaussian, the optimal recursive filtering solution is the Kalman filter

(KF) [9]. The most widely used filter for nonlinear systems with Gaussian additive

noise is the well-known EKF which requires the computation of Jacobian matrices

for state propagation and state update with measurements [8].

1.3 General Bayesian Filter

A nonlinear stochastic system can be defined by a stochastic discrete-time state

space transition (motion model) equation:
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Fig. 2.: Tracking an air plane.

xk = fk(xk−1,vk) (1.1)

and the stochastic observation (measurement) process:

zmk = hk(xk,wk) (1.2)

where at time k, xk is the (usually hidden or not observable) system state vector, and

vk is the process noise vector. zmk is the real observation or measurement, and wk is

the measurement noise vector. The functions fk(·) and hk(·) link the prior state to

the current state, and the current state to the observation respectively.

In Bayesian filtering, the problem is to estimate the posterior PDF p(xk|zm1:k).

In the above nonlinear non-Gaussian state-space model, (1.1) specifies the predictive

conditional transition PDF, p(xk|x1:k−1, z
m
1:k−1), of the current state given the previous

state and all the previous observations. Also, the observation equation (1.2) specifies

the likelihood function of the current observation given the current state p(zmk |xk).

The prior PDF p(xk|zm1:k−1) is calculated according to Bayes’ rule as:
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p(xk|zm1:k−1) =

∫
p(xk|x1:k−1, z

m
1:k−1)p(xk−1|zm1:k−1)dxk−1 (1.3)

where the previous posterior PDF is identified as p(xk−1|zm1:k−1).

The update step generates the posterior PDF from:

p(xk|zm1:k) = p(zmk |xk)p(xk|zm1:k−1)/c (1.4)

where c is a normalization constant:

c = p(zmk |zm1:k−1) =

∫
p(zmk |xk)p(xk|zm1:k−1)dxk (1.5)

The filtering problem is to find p(xk|zm1:k), or at least to estimate its first two

moments, in a recursive manner.

But for a general Bayesian filtering problem, multivariate integrals in (1.3) and

(1.5) cannot be evaluated in closed form. So some form of integration approximation

must be made. Various nonlinear Bayesian filters have been proposed, using differ-

ent numerical approximations for solving the integral in (1.3) and (1.5), or find an

approximation of p(xk|zm1:k). The EKF has been used extensively as a nonlinear filter

with high computational efficiency and robust performance.

1.4 Extended Kalman Filter

The EKF is an approximation for the general Bayesian filter in Section 1.3.

I begin with describing the background of the EKF and its different modules and

defining the basic notation and terminology. As shown in Fig. 3, a single EKF

operation can be separated to state prediction, measurement prediction, and state

update modules. The state prediction module is used to predict the state using the

motion model. The measurement prediction module is used for making a prediction
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for the next measurement and calculating its residual and covariance. The update

module is used for updating the predicted state with the latest measurement. The

output from the update module is the updated state also called posterior, and it is

going to be used as a prior to the following time step, as illustrated in Fig. 4.

Fig. 3.: Extended Kalman Filter.

At time k, the state transition and measurement models are provided as follows:

xk = f(xk−1) + vk (1.6a)

zmk = h(xk) + wk (1.6b)

where f(·) and h(·) are nonlinear functions, and cannot be used directly to update

the covariances. Instead, the Jacobian matrices Fk and Hk are used. vk and wk are

the process and measurement noises, which are assumed to be zero mean Gaussian

random vectors with covariance matrices Qk and Rk respectively.
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Fig. 4.: Extended Kalman Filter Loop.

The prediction module in Fig. 3 is used for state prediction:

x̂k|k−1 = f(x̂k−1|k−1) (1.7a)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (1.7b)

The measurement prediction module is used to evaluate the measurement residual ỹk

and its covariance Sk:

ỹk = zk − h(x̂k|k−1) (1.8a)

Sk = HkPk|k−1H
T
k + Rk (1.8b)

The update module in Fig. 3 provides the posterior state estimate. The Kalman gain
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Kk is calculated in (1.9a):

Kk = Pk|k−1H
T
kS−1k (1.9a)

x̂k|k = x̂k|k−1 + Kkỹk (1.9b)

Pk|k = (I−KkHk)Pk|k−1 (1.9c)

In the motion and measurement models of a non-linear filter, noise terms are

used for compensating the errors made by: (1) model simplification, (2) additional

states not modeled, (3) discretization error, (4) model linearization, and (5) Gaussian

noise assumptions.

Unlike its linear counterpart, the EKF in general is not an optimal estimator. In

addition, if the initial estimate of the state is inaccurate, or if the process is modeled

incorrectly, the filter may quickly diverge. Another problem with the EKF is that it

tends to underestimate the true covariance matrices and therefore it has the risk of

becoming inconsistent in a statistical sense.

1.5 Deep Learning

Deep learning is a subset of machine learning, which is essentially a neural net-

work with many layers, usually more than three. The reason for these layers is to

attempt to simulate the behavior of the human brain by activating neurons layer by

layer. With some proper method, it can “learn” from large amounts of data, and

this process is called training. While a neural network with a single layer can still

make approximate predictions, additional hidden layers can help to learn the hidden

features and relations between the inputs. The features extracted by deep learning

have proven to be better than manually selected features [10, 11], and they also can

help the network to make better final decisions. Deep learning drives much artifi-
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cial intelligence (AI) applications and services that improve automation, performing

analytical and physical tasks without human in the loop [10].

Compared with the traditional machine learning methods, deep learning has

its advantages, by the types of data which it works with and the methods which

it uses to learn. The extra hidden layers usually perform like a feature extractor,

which allows the network to learn from the unstructured data, e.g., images [6, 5],

language [12], and point clouds [2, 13]. Through the processes of gradient descent

and backpropagation, the deep learning algorithm adjusts its network parameters for

better prediction accuracy.

Deep learning models are capable of different types of learning as well. Supervised

learning utilizes labeled datasets to categorize or make predictions. This requires some

kind of human intervention to label input data. In contrast, unsupervised learning

does not require labeled datasets for training. Instead, it detects patterns in the data,

clustering them by any distinguishing characteristics automatically. Semi-supervised

learning is used for the case with a large amount of unlabeled data and limited labeled

data.

1.5.1 Deep Convolutional Neural Networks

Convolutional neural networks (CNNs) have been applied to visual tasks since

the late 1980s. However, despite a few applications, they were dormant until the mid-

2000s when developments in parallel computing power (GPUs) and large amounts of

labeled data brought them to rapid progress. In the past, CNNs are typically applied

for image classification tasks.

CNNs are feed-forward networks flow takes place in one direction only, from their

inputs to their outputs. Artificial neural networks (ANN) are biologically inspired,

so are CNNs. The visual cortex in the brain consists of alternating layers of simple
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and complex cells. Motivated by that, CNN architectures come in several variations.

However, in general, they consist of convolutional and pooling layers, which are work

together and grouped into modules. Either one or more fully connected layers, as

in a standard feed-forward neural network, follow these modules. Modules are often

stacked on top of each other to form a deep model, usually more than 3 layers. that is

the reason this kind of network is usually called deep CNNs. The convolutional layers

are usually used as a feature extractor, and the fully connected layers are used as a

classifier. The outputs from the convolutional layers are usually called features, which

the fully connected layers use to make the final prediction. Because the convolutional

layers are stimulated by 2D shapes, CNN usually works well with visual applications.

The features selected by those convolutional layers are usually batter than human

selected features [10, 11].

In Fig. 5, a typical CNN architecture is illustrated for an image classification

task. An image is an input directly to the network, and this is followed by several

stages of convolution and pooling. Thereafter, representations from these operations

feed one or more fully connected layers. Finally, the last fully connected layer outputs

the class label. Despite this being the most popular fundamental architecture found

in the literature, several architecture changes have been proposed in recent years,

which improve the accuracy and reduce the computation cost.

1.5.2 Convolutional Layers

In a CNN, the convolutional layers serve as feature extractors, which learn the

feature representations of the input images. The neurons in convolutional layers are

arranged into feature maps. Each neuron in a feature map has a fixed size receptive

field, which is connected to a neighborhood of neurons in the previous layer via a

set of trainable weights, sometimes referred to as a filter bank. Inputs are convolved
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Fig. 5.: Deep Convolutional Neural Networks for Image Classification [14].

with the filter bank with learned weights in order to compute a new feature map,

and the convolved results are sent through a nonlinear activation function to form a

feature map. All neurons within a feature map have weights that are constrained to

be equal. However, different feature maps within the same convolutional layer have

different weights so that several features can be extracted at each location.

Because the image usually has a lot of 2D shape features, it is advantageous to

use the 2D convolutional operation to encode the features. Several convolutional and

pooling layers are usually stacked on top of each other to extract more abstract feature

representations. Convolutional layers are usually used in the first several layers to

extract the shallow features like circles or lines, and the deep features are extracted

by using the filters toward the end of the network.

1.5.3 Fully Connected Layers

Neurons in a fully connected layer have full connections to all activations in

the previous layer, as seen in regular deep learning networks. Their activations can

hence be computed with a matrix multiplication and a bias offset. However, due
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to the number of parameters it only serves as a classifier at the end of the most

of classification networks. The fully connected layers that follow the convolution

layers interpret these feature representations and perform the function of high-level

reasoning. For classification problems, it is standard to use the softmax or RElU [10,

11] operator to make the prediction.

1.5.4 Back Propagation and Chain Rule

In machine learning, backpropagation is a widely used algorithm for training

feedforward neural networks. Generalizations of backpropagation exist for other ar-

tificial neural networks. These classes of algorithms are all referred to generically as

”backpropagation”. In fitting a neural network, backpropagation efficiently computes

the gradient of the loss function with respect to the weights of the network for a single

input-output example, unlike a naive direct computation of the gradient with respect

to each weight individually. This efficiency makes it feasible to use gradient methods

for training multilayer networks with large number of weights, updating weights to

minimize loss. Gradient descent, or its variants such as stochastic gradient descent,

are commonly used. The backpropagation algorithm works by computing the gradi-

ent of the loss function with respect to each weight by the chain rule, computing the

gradient one layer at a time, iterating backward from the last layer to avoid redundant

calculations of intermediate terms in the chain rule[15, 11].

1.5.5 Training

Neural networks in general use optimization algorithms to adjust their trainable

parameters in order to obtain the desired output. Backpropagation computes the

gradient of an objective function to determine how to change a network’s weights in

order to minimize errors and improve its performance. Gradient descent is the most

12



popular optimization algorithm that has been used when training a neural network.

It minimizes the network’s loss function by iteratively moving the training parameter

in the direction of steepest descent as defined by the negative of the gradient. A

commonly experienced problem with training a neural network is overfitting, which

leads to poor performance on a test set after the network is trained on a training set.

This affects the model’s ability to generalize on unseen data and is a major challenge

for neural network training [15].

1.5.6 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural networks where

connections between nodes form a linear directed graph along a temporal sequence.

This allows it to explore temporal dynamic behavior between inputs. Derived from

feed-forward neural networks, RNNs can use their internal states (memory) to process

variable-length sequences of inputs. This makes them applicable to tasks such as

handwriting recognition or speech recognition. The basic RNN is shown in Fig. 6,

where each step has a input x and output y. The internal states are updated by each

step and keep the memory for the next step.

1.6 Proposed Approaches and Structure of the Dissertation

In this section, I briefly discuss the proposed approaches and the structure of

this dissertation. In our definition, intelligence tracking has two aspects. The first

one is to track the object from unstructured data sources. In this part, visual object

tracking is used as an example. The second aspect is how to use data to improve the

performance of the tracking algorithm. In this part, I use the EKF as the desired

algorithm to be optimized.
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Fig. 6.: Recurrent Neural Network.

1.6.1 Visual Object Tracking

Visual Object Tracking (VOT) is the task of measuring and predicting the tra-

jectory of a specific object at each time step in a video sequence, with the object

being given in the first frame. As shown in Fig. 7, the goal is to track the black

vehicle, and the vehicle’s location and appearance are given in the first frame. The

result is marked as a red bounding box that contains the vehicle.

For this topic, I propose two methods to solve this problem. One is based on

semi-supervised learning to improve the feature representation, and another one is

based on the target modeling technique and extended target tracking methods.
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Fig. 7.: visual Object Tracking.

1.6.1.1 Semi-Supervised Visual Tracking Based on Variational Siamese

Network

In Chapter 2, I propose a semi-supervised learning framework for visual tracking.

The variational auto-encoder has been used as a robust feature encoder to extract

visual features for visual object tracking. In this chapter, a new semi-supervised learn-

ing framework, variational Siamese neural network, is developed for visual tracking

by combining a Siamese network with a variational autoencoder, which supports both

supervised and unsupervised training. The learned features are represented as Gaus-

sian distributions in feature space, and the object is represented as a distribution in

image space. The similarity between objects’ features is measured by an information-

theoretic distance.

1.6.1.2 Tracking Visual Object as an Extended Target

This topic is discussed in Chapter 3. Most VOT algorithms treat the 2D visual

object as a single point in their output score map, and the bounding box is estimated

by a multi-scale search. Furthermore, modern VOT algorithms are based on the con-

cept of tracking-by-detection, which is only focused on the detection step and ignores

the object’s motion dynamics and the tracking step. A novel modeling technique is
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proposed to improve object tracking by modeling the visual object as an extended

target. The tracking results can help the learning algorithm distinguish the object

from the background.

1.6.2 Learning Assisted Tracking Filters

The goal for learning assisted trackers is to use the machine learning technology

to improve the tracking system’s performance. In this part, I use the deep learning

training method to the common EKF and learn the unknown parameters from data.

1.6.2.1 EKFNet: Learning Noise Covariance from Data

The EKFNet is proposed in Chapter 4. In this chapter, I propose a method

to reduce the time and manpower to fine-tune an EKF. I propose a new learning

framework, EKFNet, for automatically estimating the best process and measurement

noise covariance pair for an EKF from the real measurement data. The EKFNet is

trained end-to-end by using backpropagation through time (BPTT) with the EKF.

The forward operation of EKFNet is the same as the normal EKF operation which

will be used during the tracking process. During the offline training, the EKFNet

uses the BPTT for passing the gradient flow to each time step and for optimizing the

unknown noise statistics parameters.

1.6.2.2 TrafficEKF: A Traffic Aware Kalman Filter

The TrafficEKF is proposed in Chapter 5. Most vehicle tracking algorithms

only consider the vehicle’s kinematic state but ignore the information about the sur-

rounding environment, which also plays an important role in affecting how the driver

controls the vehicle. In addition, how to represent the traffic information and its

effect on the vesicle’s state is a challenging problem. In this chapter, I propose a
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tracking method called traffic-aware extended Kalman filter (TrafficEKF), which in-

corporates not only the vehicle’s kinematic dynamics, but also the information from

the surrounding environment. The traffic information has been represented by a

birds-eye-view rasterized image, with the road shape, traffic light conditions, and

other objects inside the field of view. The effect of traffic information on vehicle

driving is learned by TrafficEKF from the ground truth data.

1.6.2.3 Uncertainty Aware EKF: Understanding the LiDAR Measure-

ment Uncertainty

This topic is discussed in Chapter 6. The goal of this chapter is to propose

an EKF framework called Uncertainty Aware EKF (UA-EKF), which is used for

vehicle tracking by understanding the uncommon measurement uncertainties from

the LiDAR-based vehicle detections. The UA-EKF has two major parts. One is

the ability to estimate the state-dependent measurement noise from LiDAR object

detections. Another is to create multiple hypotheses measurements based on the

detected vehicle heading. The estimated measurement uncertainties are learned based

on the EKFNet, which is proposed in Chapter 4. Both parts are used to compensate

for the physical limitations of the LiDAR sensor and object detection algorithm. I

also analyze what kind of uncertainty is created by the LiDAR, and how to deal with

it.
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CHAPTER 2

SEMI-SUPERVISED VISUAL TRACKING BASED ON

VARIATIONAL SIAMESE NETWORK

Visual object tracking is the task of estimating the trajectory of a specific object over

the time in a video sequence, given the object in the fist frame.The object is given in

the first frame by a bounding box, and this is the only information for both detec-

tion and tracking. For object tracking in a visual dynamic data-driven application

systems (DDDAS) framework, visual appearance features can be extracted by the

convolutional neural network, which has been shown to provide a robust feature rep-

resentation. In this chapter, a new semi-supervised learning framework, variational

Siamese neural network, is developed for visual tracking by combining a Siamese

network with a variational autoencoder, which supports both supervised and unsu-

pervised training. The learned features are represented as Gaussian distributions in

feature space, and the object is represented as a distribution in image space. The

similarity between objects’ features is measured by an information theoretic distance.

The tracking algorithm is based on the detection network’s detections to update the

object state estimate. Experiment results show that the proposed visual tracking

framework outperforms existing state of the art visual tracking approaches.

2.1 Introduction

Visual tracking involves state estimation of objects based on dynamic video data,

which serves as a critical component of a visual dynamic data-driven application sys-

tems (DDDAS) framework, and is imperative in various visual DDDAS applications,
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such as camera surveillance and environment monitoring. Further, without assuming

a certain model for the video data, deep learning based visual tracking is naturally

a data-driven approach. In visual tracking, learning the visual appearance features

of an object and searching it in the given image feature space have been investigated

recently for detection and tracking of visual objects [16, 17, 18, 19]. The features

can be manually selected or extracted by learning algorithms from labeled training

dataset. Furthermore, features extracted by the convolutional neural network (CNN)

have been shown to represent the object in semantic feature space with robust rep-

resentation [16].

In this chapter, I develop a new semi-supervised learning framework, the varia-

tional Siamese network, by combining the traditional Siamese neural network with a

variational autoencoder (VAE). A detector is developed based on this semi-supervised

learning framework using both labeled and unlabeled training data. Its first step is

to learn the robust feature representation by using an unsupervised deep generative

model (VAE). The second step is to use a labeled video sequence to train a visual

object detector. The learned features are represented by Gaussian distributions in

feature space instead of discrete points as in the traditional methods. The semantic

similarity between the object feature and search image feature is measured by us-

ing an information theoretic distance metric. Further, I propose to model objects as

distributions instead of bounding boxes, which allows measuring the distance con-

tinuously. I integrate Kalman filter with our detector, which is used to estimate the

object state. To the best of our knowledge, this is the first work where the VAE is

used for semi-supervised learning for visual tracking.

To summarize, the main contributions of this are listed below:

• I present a new fully convolutional Siamese network which is based on informa-

19



tion theory to optimize the continuous feature space.

• I propose to model the object location and shape as distributions instead of

bounding boxes, which allows measuring the distance smoothly.

• I propose a new approach to train the object detector by semi-supervised learn-

ing. To the best of our knowledge, this is the first work where variational

encoder is used for both supervised and unsupervised learning for visual object

tracking.

• I integrate Kalman filter with our detector, which is used to estimate the true

object state.

2.2 Related Work

This involves three aspects of visual tracking: Siamese network based visual

tracking, variational autoencoder, and visual object representation.

Siamese Network Based Visual Tracking. The advantages of Siamese net-

work based tracking include end-to-end training, no need for online training, and high

efficiency, attracting a lot attention recently [20, 16]. SiamFC [20] adopts the Siamese

network as a feature extractor and introduces the correlation layer to combine feature

maps. However, these previous methods are based on measuring the distance between

two vector feature points and supervised learning only.

Variational Autoencoder. VAE [21] has been used as a generative model in

machine learning field recently. For example, VAE has been used to generate more

training samples for visual tracking [22] and extract robust features for object seg-

mentation [23], respectively. Different from [22, 23], in our work, I use the encoder

part of the VAE to extract features for object representation in a visual tracking

Siamese network. Rather than representing features with fixed points in a fixed di-
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mensional space, an alternative is to represent them with Gaussian distributions. The

distribution’s variance can represent the ambiguity, which is a desirable property for

modeling the feature representation of an image. Also, the variance can help the

learning algorithm to smoothly “fill” the semantic space with continuous representa-

tion to generalize better. The distribution features can be learned with deep learning

based VAE [21].

Visual Object Representation. One of the basic components in object track-

ing is to represent the object in space and time. In the case of 2D image, the axis-

aligned bounding box representation is widely used to identify an object with its

approximate location and size [20]. Because the limitation of subtraction of the

object from the background, mask representation becomes popular, such as Siamese-

Mask [18]. The mask is a dense representation of the object, which needs much more

parameters than other representations. Recently, representation of the object as a

Gaussian distribution has been proposed [24], in which the mean represents the object

location and the covariance matrix represents the object’s shape and orientation in a

continuous 2D image space.

2.3 Methodology

Tracking visual objects based on the initial frame can be accomplished by sim-

ilarity learning between the objects and the current image frame. Here I propose

a framework to learn the similarity between an exemplar image z and a candidate

image x′ with the same size, and return a similarity score. Here x′ is a sub-image

from a larger search image x. I can detect the object in x by testing all the possible

locations, and find the highest similarity score. I denote fθ(z, x) as the similarity

score between two input images z and x, which can be constructed by the fully con-

volutional variational Siamese network.
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2.3.1 Fully Convolutional Variational Siamese Network

I adopt the fully convolutional Siamese network as the base learning structure,

which has been successfully applied in tracking scenarios [20, 18, 25, 26]. Instead of

cutting a sub-image from the search space and translating it to the feature space, the

fully convolutional network can translate the original search space to a more dense

grid in a single evaluation. Also, the fully CNN commutes with translation, and based

on its output, one can identify the object location in the original image space. The

Siamese network has a powerful framework to compare the difference between two

unstructured sources. In this , I develop a new semi-supervised learning framework by

combining VAE and Siamese network, with feature outputs as Gaussian distributions.

As shown in Fig. 8, function qθ(·|x) is a fully convolutional network given image

x, and the similarity between the two images is typically calculated by the Siamese

architecture in feature space. qθ transforms the two images to the feature space,

represented as Gaussian distributions, with parameters µ and Σ.

Fig. 8.: Fully convolutional variational Siamese network architecture. z: exemplar

image; x: search space. Images are from [27].
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2.3.2 Object as Distribution

The object is typically represented by a bounding box in most tracking applica-

tions. However, there are several disadvantages with this representation: it is difficult

to measure the difference between the proposal bounding box and true label bounding

box with different shapes, sizes, and locations; the bounding box provides a binary

decision for each pixel with sharp boundaries. In this , I propose to use a normal

distribution to parameterize a visual 2D object:

Zi = N (µi,Σi) (2.1)

where µi = [xi yi]
T , Σi = diag(σ2

xi
, σ2

yi
), and xi, yi, σxi , σyi are means and standard

derivations. Since most of the labels are axis-aligned, I do not model the correlation

between xi and yi.

2.3.3 Wasserstein Distance Between Two Gaussian Distributions

I adopt an information theoretic distance measure in this , which is different from

the previous work [20]. The object in the feature space is represented by a Gaussian

distribution, which allows us to smoothly measure the semantic similarity based on

Wasserstein distance [4]. The computation of Wasserstein 2 (W 2
2 ) is efficient for two

Gaussian distributions in Rh.

W 2
2 (p1, p2) =

h∑
i=1

(µi1 − µi2)2 + (σi1 − σi2)2 (2.2)

2.3.4 Variational Autoencoder for Semi-Supervised Training

Our learning framework consists of two steps, generative and discriminative mod-

els. The first step is using the unlabeled data for unsupervised learning. The second

step is to use the labeled data for learning the similarity between exemplar image and
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search image, and detect the object.

As shown in Fig. 9, the generative learning can be carried out by a VAE based

on variational inference. In this case, I can use the output from the variational fully

convolutional network as input to reconstruct the input or the next few frames of the

input images. The intermediate variable s ∼ N (µz,Σz) is the latent variable, which

is also the feature extracted by using the network. The unsupervised learning can

help the network to find a good feature extractor, and warm up the next task. The

deep neural network is usually difficult to train and it is often stuck in a saddle point.

By using both unsupervised and supervised learning, I can achieve better training

result, as shown later in the .

Fig. 9.: Unsupervised learning via VAE. Function qθ: encoder; function pϕ: decoder.

Both of them are fully convolutional neural networks. s’ is a sample drawn from the

distribution.

The parameters of our encoder-decoder architecture are learned by minimizing

the following regularized loss based on variational inference and stochastic gradient

descent, which is a sigmoid annealing scheme.

− Lθ,φ(z|z′) = −Eqθ(s|z)(log pφ(z′|s′)) + λKL(qθ(s|z)||N (0, I)) (2.3)

The first term encourages the sampled latent space to encode the necessary informa-

tion to reconstruct the input image, which is called the evidence lower bound (ELBO).

The second term, a regularization term, enforces the latent variable to match the

standard normal N (0, I), and to fill the semantic space with a positive definite Σz.
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The second step of the learning framework is supervised learning based on the

labeled tracking datasets. The score map is the final output of the network, and the

value should between 0 and 1, the higher the more similar. The distance metric in

Section 2.3.3 is from 0 to ∞, the lower the similar. The distance can be transformed

by 1− tanh(x) with output from 0 to 1. I call this map O. Ground truth score can

be calculated similarly. The value also needs to be rescaled by 1− tanh(x), and this

map is T . Our loss can be calculated as follows:

Loss =
width∑
w

hight∑
h

(
Oh,w − T h,w

)2
(2.4)

2.4 Experiments

2.4.1 Implementation Details

Network Architecture: I use AlexNet [28] with slight modifications to output

mean and variance. The detailed parameters are listed in Table 1. There are 5

convolutional layers and the last layer has 2 groups of convolutional filters, which

outputs the means and variances. A max pooling layer is employed after each of the

first two convolutional layers. A ReLU layer follows each convolutional layer except

for conv 5 mean.

Training: For unsupervised training I use the dataset Got-10k [27], which has

a large number of visual objects. During unsupervised training, only the objects are

fed into the architecture presented in Fig. 9. The input image and the output image

could be the same or could be T time steps away. So this step can be trained for

static images, or for the object in the video.

Tracking: I use a Kalman filter as the tracking algorithm. The object state is

defined as x = [x, y, ẋ, ẏ, σx, σy]
T , consisting of the position and velocity along
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Table 1.: Architecture of variational convolutional embedding function.

Convolutional Kernel Features map size

Layer Kernel Chan.

map

Stride Chans. Exemplar Search

Img

Input × 3 127 × 127 255 × 255

conv 1 11 × 11 96 × 3 2 × 96 59 × 59 123 × 123

pool 1 3 × 3 2 × 96 29 × 29 61 × 61

conv 2 5 × 5 256 × 48 1 × 256 25 × 25 57 × 57

pool 2 3 × 3 2 × 256 12 × 12 28 × 28

conv 3 3 × 3 384 × 256 1 × 192 10 × 10 26 × 26

conv 4 3 × 3 384 × 192 1 × 192 8 × 8 24 × 24

conv 5 mean 3 × 3 256 × 192 1 × 128 6 × 6 22 × 22

conv 5 var 3 × 3 256 × 192 1 × 128 6 × 6 22 × 22

each direction, and standard deviations of the object distributions in image space.

2.4.2 Evaluation for Visual Object Tracking

Here two tracking challenge datasets are used for evaluations: VOT-2016 [26] and

VOT-2018 [25]. I compare the proposed tracking approach against some state-of-the-

art approaches, using the official VOT toolkit, and the expected average overlap

(EAO), a measure that considers both accuracy and robustness of a tracker. The

EAO measures the expected non-reset overlap of a tracker run on a short term se-

quence. The accuracy is the average overlap during successful tracking periods and

the robustness measures how many times the tracker drifts from the target and has to

be reset [25]. From Table 2, it is clear that our tracker outperforms the state-of-the-
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art trackers. Also, its speed is fast and allows real time applications. One tracking

example is shown in Fig. 10. As I can see, our proposed approach can track the

moving ball and its size and shape accurately.

Table 2.: Comparison with the state-of-the-art tracking approaches. The arrow indi-

cates that the larger/smaller the better.

Ours SiamRPN[16]SCRDCF[29] STRCF[30] LSART[31] ECO[17]

EAO↑ 0.339 0.244 0.263 0.345 0.323 0.280

Accuracy↑ 0.526 0.490 0.466 0.523 0.495 0.484

Robustness↓0.213 0.460 0.318 0.215 0.218 0.276

Speed↑ 50 200 48.9 2.9 1.7 3.7

Fig. 10.: Football tracking [25]. Red box: true label; green ellipse: our tracker output

with 95% confidence region.

2.4.3 With or Without Unsupervised Learning

The VAE can help us with the training of the detector. In Fig. 11, the super-

vised learning progress is shown for two different frameworks, with and without the

unsupervised learning step respectively. It is clear that on the average, the one with
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unsupervised learning has a lower loss function, demonstrating the advantage of the

proposed semi-supervised learning framework.

Fig. 11.: The training progress with or without unsupervised learning.

In Table 3, the accuracy and robustness of the tracking results with and without

unsupervised learning are compared using dataset VOT2016. It is clear that the

approach with unsupervised learning outperforms the one without.

Table 3.: Training results with/without unsupervised learning.

With Unsuper-

vised

Without Unsuper-

vised

Accuracy↑ 0.520 0.498

Robustness↓ 0.220 0.221

2.5 Conclusion

For object tracking in a visual DDDAS framework, I departed from the tra-

ditional fully convolutional Siamese network, and developed a variational Siamese

network which trains feature embedding through both supervised and unsupervised

learning. The embedded features are represented by multivariate Gaussian distribu-

tions in a feature space, and the distance between two objects’ features is measured by
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an information theoretic metric (Wasserstein distance). To the best of our knowledge,

this is the first work where variational encoder is used for semi-supervised learning

for visual tracking. Numerical experiments showed that the proposed visual tracking

approach outperforms existing state of the art tracking approaches.

29



CHAPTER 3

TRACKING VISUAL OBJECT AS AN EXTENDED TARGET

Visual Object Tracking (VOT) is to estimate the trajectory of a specific object in

a video sequence, with the tracked object given in the first frame. Most VOT algo-

rithms treat the 2D visual object as a single point in their output score map, and

the bounding box is estimated by a multi-scale search. Furthermore, modern VOT

algorithms are based on the concept of tracking-by-detection, which is only focused

on the detection step and ignores the object’s motion dynamics and the tracking step.

In this chapter, I address these problems by proposing a novel object modeling con-

cept, and integrating it with a modern target tracking algorithm. Instead of modeling

the visual object as a single point, I model it as an extended target with height and

width, and the tracking algorithm needs to track both the kinematic parameters and

the object’s shape. Experiment results are provided on several open available visual

tracking benchmarks and the results are compared with state-of-the-art methods.

3.1 Introduction

Learning the visual appearance features for an arbitrary object and searching

them in the given image feature space have been investigated recently for tracking

and detection of visual objects[32, 16, 19, 33]. Most commonly, the visual object is

represented by an axis aligned bounding box which contains the target. However,

much improvement have been made recently, it is still a very challenging compare

with other vision tasks. On one hand, the target object is only provided in the first

frame, which requires the detector to learn a reliable model to distinguish the given
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object from background by only one valid training sample [17, 20]. On the other

hand, the tracking task is under several difficulties such as target appearance and

shape change, occlusion, clutter, and illumination variations [27].

Fig. 12.: Score map and image. Score map is based on the proposed detector. Image

is from UVA dataset [34].

Commonly, the visual tracker based on the tracking-by-detection paradigm, which

focus on developing a powerful classifier and modeling the searching algorithm as a

regression problem [20, 19, 16, 35, 18]. The feature model used in classifier is usually

based on a deep convolutional neural network (CNN), which can embed the visual

object in a lower dimension space remain the key features to distinguish them from

the background. The output from the regression is a score map sθ(z, x) ∈ R2, which

indicates the similarity between the target template z and given search image x using

parameter θ. The location y∗ which has the highest similarity score is then selected as

the estimated target center location for current frame, y∗ = arg maxy sθ(z, x). How-

ever, the bounding box parameter vector is in R4, and the height and width of the
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bounding box are usually estimated by a multi-scale search [20, 19] or maximize the

Intersection over Union (IoU) [36, 37, 32]. Both methods are based on y∗ and the

bounding box size in the previous frame.

First of all, the center of the bounding box is not equal to the highest similarity

point in the score map, as shown in Fig. 12. The red bounding box is the ground

truth with a red point as center. However, the score map indicate the center as the

yellow point. Second, visual object is an extended target, only estimate the center is

insufficient to track the target’s location and shape. From the Fig. 12, only selecting

the highest score point from a cluster of detection wast the information contained in

other higher score detection.

In this chapter, I model the visual object as an extended target, and the proposed

tracking algorithm simultaneous estimation of the kinematic state and the shape

parameters based on a varying number of noisy detections.

The contribution of this chapter are:

• I provide a deep analysis of CNN based tracker and prove that single point

detection is not sufficient compare with multi-point detection.

• I model the visual object as an extended target and propose a detection method

not only based on the highest score.

• I integrated an extended target tracking algorithm with CNN visual object

detection.

• I derive an analytical elliptical gating equation for extended object to discard

the clutter detections.
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3.2 Modeling Visual Object

There are two groups of approaches for VOT one is based on the Siamese Network

[20, 16, 35, 18], another one is based on the Discriminative Correlation Filter (DCF)

[38, 36, 37, 32]. For Siamese Network based trackers, the same CNN has been applied

to extract features both from the template z and search image y under same weights,

and the weights are keep fixed during tracking. However, for DCF based trackers,

some of the convolutional kernels are learned online from a series of training samples

constructed during tracking. Similarly, large portion of the parameters are trained

offline, and keep fixed during tracking. Both of those methods are CNN based and

they model the visual object as a single point and perform multi-scale search for the

estimation of height and width of the bounding box. In this chapter, I proposed a

method which can model the visual object as an extended target. Also, the detector

is constructed from a DCF based detector with multiple detection points.

3.2.1 General Formulation

The proposed detection network is based on the popular ATOM tracker [32]

showed in Fig. 13. Here, I use the pre-trained ResNet [39] as a backbone network

represented as φ(.), and the convolutional classifier is trained during the tracking. For

detailed fast online learning and training samples generation please check the ATOM

chapter [32].

The fully convolutional target classifier constructed by 2 fully convolutional lay-

ers. The score map for each input image is calculated by convolutional operation ∗

with the equitation below:

sθ(x) = (wθ ∗ φ(x)) (3.1)

where, wθ is the weight for convolution kernel, and φ(x) represents the feature ex-
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Fig. 13.: An overview of the detection network.

tracted from the search image using the pre-trained backbone network. The wθ is

learned online by a series of tracked history target appearance and pseudo labels.

The loss function is the square difference between the output scores s and pseudo

labels (α) at each evaluated locations y ∈ R2, L(s, α) = (s− α)2. The pseudo labels

constructed by using Gaussian function centered at y∗:

α(y, y∗) = exp−
|y−y∗|2

2σ2 (3.2)

σ is a hyper parameter, which controls the spread of the pseudo labels in the search

images. Fig. 14 shows the created pseudo label under different σ, the smaller the

σ, the more concentrated the target area will be used for training. The highest

pseudo label score is created at y∗, where the score map has the highest score value.

Therefore, based on how the pseudo labels are created, the detector is trained to

predict the most similar patch in the feature space φ(x) of the future frames.

3.2.2 Analysis on CNN based Detector

Since both the classifier and the backbone network in (13) are created by fully

convolutional neural network, the score map and the input image maintain strict

translation invariance, namely sθ(x[∆j]) = sθ(x)[∆j], where ∆j is the translation

shift operator, which ensures the pseudo label works for training and center detection
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Fig. 14.: Tracked target and its pseudo labels at different σ.

[35]. Also, the target center detection is an ill defined problem, due to the appearance

change, osculation and camera orientation [36].

The detector constructed by this concept naturally implies three intrinsic restric-

tions. 1. The appearance of the target center is changing and its does not represent

the center of the bounding box in the future box, as in Fig. (12). 2. A small σ

encourages the detector to focus only on the features at the center area of the object,

and to ignore the off center contents, as shown in Fig. (14). 3. The padding in deep

CNN will destroy the translation invariance that only exists in no padding networks

[35], and it will lead to bias on center point detection. However, padding is inevitable

in modern network, which is to ensure the network to go deeper and extract rich

feature representations.

3.2.3 Detector with Multiple Detection Points

To avoid these limitations in Section 3.2.2, I propose a detector with multiple

detections, instead of the traditional methods with single detection. The multiple

detections are also based on the score map, which have been selected as exceedances

above a certain threshold ζ. In this chapter, the pseudo labels are created based on a
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larger σ (σ = 0.5), to cover the whole target area for the training sample. As shown in

Fig. 15, from the raw score map, I first apply thresholding to get multiple detections,

which are projected back to the original search image. The dimension of score map is

usually smaller than the search image, so a certain translation is performed to project

the score image back to the search image. Also, translation invariance ensures the

proper detection location on the search image. The red dots represent the detections

in the search image, and the green ellipse is the extended target.

Fig. 15.: Detection with multi-detection points.

I can use the receptive field knowledge to explain the detections. The receptive

field in a fully CNN is the region of the input space that corresponds to a particular

cell in the final score map. Like in (16), there are three figures with grid, input image,

intermediate feature value and the output score map. The blue color region is the

target I want to distinguish in the score map. If the score map marked as 1, which

means the receptive field in the input image have high probability contain parts of

the object.
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Fig. 16.: The detection point and receptive field with CNN.

3.2.4 Modeling Visual Object as An Extended Target

In this section I model the visual object as an extended target, by using multi-

detection points.

3.2.4.1 States Representation for Extended Target

As illustrated in Fig. 17, the visual object has been modeled as an elliptical

extended target. The kinematic state rk and elliptical shape parameters pk of the

object at time k:

rk = [mT
k , ṁ

T
k ]T ∈ R4 (3.3)

pk = [γk, lk,1, lk,2]
T ∈ R3 (3.4)

The kinematic state rk consists of the center mk ∈ R2 and velocity ṁk ∈ R2. And the

shape parameter pk contains the counterclockwise angle γk from the x-axis, and two

semi-axes lengths lk,1 and lk,2. This ellipse modeling of extended target is a common
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parameterize for modern extended object tracking [40, 41, 42, 43].

Fig. 17.: Extended target modeling.

3.2.4.2 Measurement Model

Different from the point object, the extended object gives a varying number of

independent detection points on the searched image illustrated as red dot in Fig. 15,

which can be treated as two-dimensional Cartesian detection. At time k:

Yk = {yik}
nk
i=1 (3.5)

yik = zik + vik (3.6)

where yik is the ith detection point on the image which is projected from the filtered

score map in Fig. 15, nk is the total number of detections at time k. Each detection

38



Fig. 18.: Elliptical gating.

yik is generated from a detected area Aki in color yellow, whose center is zik. The

real detection point is stimulated by using the receptive field Fki and generate the

detection yik as descried in section 3.2.3. The size of the receptive filed depends on

the CNN structure, but the size of the object and reflected area are changing during

tracking. Also, the distance between zik and yik is smaller towards the center and

getting bigger towards the edge of the object, which is depends on the overlapping

area between the object and receptive field. Therefor, I model this measurement

corruption by additive Gaussian measurement noise vik with covariance of Cv.

The center of overlapping area zik is originated on the object, and follows a

Gaussian spatial distribution according to t how the detection network works and
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pseudo label created in Fig. 14. The larger the overlapped area the more easy for

detection network to distinguish this area as an object, and vice versa. So I model

this as a multiplicative error term hi, and assume hik ∼ N (0,Ch). By assuming the

extended target as an elliptical with shape parameters pk and kinematic states rk,

any point zi on the object follows the below equation:

zik = Hrk +

cos γk − sin γk

sin γk cos γk


lk,1 0

0 lk,2


︸ ︷︷ ︸

:=Sk

hik,1
hik,2


︸ ︷︷ ︸
:=hik

(3.7)

yik = Hrk + Skh
i
k + vik (3.8)

H = [I2,0] select the location states, Sk represents the orientation and size of the

object. The axis aligned bounding box estimation can be generated according to this

elliptical like in Fig. 17. The dynamic model is an linear model, where the location

updated according to speed and shape remains the same as previous.

rk+1 = Ar
krk + wr

k (3.9)

pk+1 = Ap
kpk + prk (3.10)

where, A is the process matrices, w is the process noises.

3.3 Tracking An Extended Target

This section introduce the closed-form tracking framework based on the MEM-

EKF* [41]. In order to deal with the high nonlinearities and multiplicative noise

in measurement (3.7) the kinematic states and shape parameters are decoupled and

updated separately, for detailed information please check the reference [41].
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3.3.1 Tracking Framework

For a given frame, the first task is to predict the object’s location and extract

a small patch as search space from the big image like illustrated in Fig. 19. The

detection network use this small patch to get multiple detections. I use an elliptical

gating to filter out clutter and other detection points and treat the point inside the

gate as detections ,then update both the kinematic and shape states according to

MEM-EKF*.

Fig. 19.: Detection and tracking framework.

3.3.2 Elliptical Gating

Gating is a technique to disregard detection as clutters, and in Kalman Filter the

ellipsoidal gate is a natural choice also simple to implement. According to (3.8), the

measurement is linear to the kinematic state but nonlinear with the shape parameters.

In order to approximate the covariance the shape uncertainty has to be approximated

by Taylor expansion with respect to p at predicted shape parameters p̄k.

Skh
i
k ≈ S̄kh

i
k︸ ︷︷ ︸

I

+

(hik)
T

Ĵ1(p̄k)

(hik)
T

Ĵ2(p̄k)

 (p− p̄k)

︸ ︷︷ ︸
II

(3.11)
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where Ĵ1 and Ĵ1 are the Jacobian matrices of the first and second row of S with

respect to p, and evaluated at the p̄k, and S̄k is constructed by p̄k. The covariance

of Skh
i
k can be approximated by sum of covariance of I and II, which defined as CI

and CI, where:

CI = S̄k−1C
hS̄Tk−1 (3.12)

CII[m,n] = tr

{
C
p

k

(
Ĵn(p̄k)

)T
ChĴm(p̄k)

}
(3.13)

where m,n ∈ 1, 2, evaluated at every position in a CII matrix, C
p

k is the prediction

covariance for shape parameter at k. The derivation of (3.13) can be found in reference

[41] with some modifications. The measurement covariance can be summarized as:

Cy
k = HC

r

kH
T︸ ︷︷ ︸

A

+ CI + CII︸ ︷︷ ︸
B

+ Cv︸︷︷︸
C

(3.14)

where C
r

k is the predicted covariance for kinematic states. (3.14) has three terms, A

is the uncertainty due to the kinematic model, and B is the uncertainty caused by

shape estimation and C is the uncertainty between the real measurement yik and zik.

Then the distance between the measurement yik and predicted elliptical kinematic

states r̄k is:

(dik)
2 =

(
yik −Hr̄k

)T
(Cy

k)
−1 (yik −Hr̄k

)
(3.15)

Disregard yik as a clutter detection if (dik)
2 > G, and G is a threshold. The probability

that the object measurement is outside the gate is PG = Pr[(dik)
2 > G], and (dik)

2 ∼

χ2(2) because the measurement is 2 dimension. G can be defined by a desired value

for PG, like PG = 90% ⇒ G = 4.7, which means 90% confidence the detection point

should inside the gate. Like illustrated in Fig. 18, the yellow elliptical is the gate,

and the greed dots are the detection pass the gate red ones are discarded as clutter.
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3.3.3 Prediction and Updating

The prediction is a standard Kalman filter prediction due to the motion models in

(3.9), (3.10) are linear. However, the measurement update are complicated because of

the high nonlinearities and multiplicative noise in the measurement model. I use the

MEM-EKF* [41] to incorporate with the multiple detection points and update both

the kinematic states and shape parameter in the framework. The detections {yik}
nk
i=1

are incorporated sequentially by first updating the kinematic states then updating the

shape parameters by single time scan. For detailed MEM-EKF* updating techniques

please check the reference [41].

3.4 Experiment

Table 4.: Comparison with the state-of-the-art tracking approaches. The arrow indi-

cates that the larger/smaller the better.

Ours(with

IOU[32])

Ours SiamRPN[16]ATOM[32] SemiSiam[19]ECO[17]

EAO↑ 0.413 0.409 0.244 0.401 0.339 0.280

Accuracy↑ 0.608 0.601 0.490 0.590 0.526 0.484

Robustness↓ 0.202 0.202 0.460 0.204 0.213. 0.276

The detection algorithm integrated with pytracking framework [44] and based on

ATOM tracker [32] on a PC with an Intel Xeon, 32G RAM, Nvidia RTX 2080Ti.

3.4.1 Implementation Details

I used the pre-trained setup and online training sample and learning method as

same with ATOM[32], .In order to learn the features for the entire template, I choose
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a large σ = 0.5, like in Fig. 14. And the detection threshold ζ has been manually set

to 0.55 according to the σ. For the size of elliptical gating I choose the probability

that the object measurement is outside the gate is PG = 90% then the G = 4.7.

Ch = 1
4
I2 as proposed in [41], and Cv = 2.5I2 to indicate the distribution of v. The

initial kinematic states r0 and shape parameters p0 are based on the first frame with

small covariance matrices, because it is the ground truth.

3.4.2 Compare with State-of-Art

Here is tracking challenge dateset used for evaluations: VOT-2018 [25]. I com-

pared the proposed tracking approach against some state-of-the-art approaches, using

the official VOT toolkit [25], and the expected average overlap (EAO), a measure that

considers both accuracy and robustness of a tracker. The EAO measures the expected

non-reset overlap of a tracker run on a short term sequence. The accuracy is the aver-

age overlap during successful tracking periods and the robustness measures how many

times the tracker drifts from the target and has to be reset [25]. I also integrated

the result with using the IOU-Net refinement [32] which provide a better result also,

which shown on the fist column in 4. The proposed method out preformed the base

line tracker ATOM by all the metric. From Table 4, it is clear that our tracker out-

performs the state-of-the-art trackers. Also, our tracker run around 30 frames per

second (FPS) which also be treated as online algorithm. Also, the proposed method

can be implemented to almost all the CNN based trackers. which detect the object

based on the score map.

3.5 Conclusion

In this work I modeled the visual object as an extended target. Both of the kine-

matic states and shape parameters are updated based on multiple detection points. I
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also provide a deep analysis why the single point target assumption is not efficient. To

the best of our knowledge, this is the first work where model the visual object as an

extended target and provide a closed-loop tracking detection framework. Numerical

experiments showed that the proposed visual tracking approach outperforms existing

state of the art tracking approaches.
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CHAPTER 4

EKFNET: LEARNING SYSTEM NOISE STATISTICS FROM

MEASUREMENT DATA

In this chapter, to reduce the time and manpower to fine-tune an extended Kalman

filter (EKF), I propose a new learning framework, EKFNet, for automatically esti-

mating the best process and measurement noise covariance pair for an EKF from

real measurement data. The EKFNet is trained end-to-end by using backpropaga-

tion through time (BPTT) with the EKF. The forward operation of EKFNet is the

same as the normal EKF operation which will be used during the tracking process.

During the offline training, the EKFNet uses the BPTT for passing the gradient flow

to each time step and optimizing the unknown noise statistics parameters. The pro-

posed method can choose among several optimization criteria, such as maximizing

the likelihood, minimizing the measurement residual error, or minimizing the poste-

rior state estimation error either with or without the ground truth data. I illustrate

the proposed method’s performance using real GPS data, which outperforms existing

methods and a manually tuned EKF.

4.1 Introduction

Popular nonlinear filters for state estimation include the extended Kalman filter

(EKF) [9, 45, 7], the unscented Kalman filter (UKF) [46], and the particle filter (PF)

[9]. In practice, the EKF is widely used due to its much lower computational load than

the PF and UKF. Different from the linear assumption required by the Kalman Filter,

in an EKF, the motion and observation models do not have to be linear functions of
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the state but need to be differentiable with respect to the state. The motion model is

used for predicting the object’s dynamic behavior according to the current state. The

measurement model maps the state space into the measurement space. In the EKF,

these nonlinear models need to be linearized, so that the Kalman filter’s recursive

framework can be readily utilized.

In the motion and measurement models of a non-linear filter, noise terms are

used for compensating the errors made by: (1) model simplification, (2) additional

states not modeled, (3) discretization error, (4) model linearization, and (5) Gaussian

noise assumptions. In practice, implementing the EKF is often difficult due to the

difficulty of getting a good estimate of the motion and measurement noise covariances.

Much research has been performed to estimate these covariances from data. However,

it takes a significant amount of time and manpower to manually fine-tune the EKF

and acquire proper system noise statistics used by the filter. It is thus desirable to

develop an approach that automatically finds the best noise statistics for an EKF.

4.1.1 Previous Related Work

The EKF requires knowledge of the noise statistics for uncertainty propagation

and the calculation of the filter gain. However, the ground truth noise covariance ma-

trices are generally unknown, and need to be estimated/tuned. In [47], an auto-tuning

framework for a Kalman smoother by using the proximal optimization method was

introduced. However, the noise covariance pair, which is good for Kalman smoother,

performs poorly for Kalman filtering [48]. Different objective functions have been pro-

posed in [48] for tuning the EKF, but the optimization method proposed is neither

efficient nor guaranteed to converge. In [49], a nonlinear programming method was

proposed for tuning, but it only applies to the Kalman filter (KF). Using Bayesian

optimization, a new way to find the globally optimal covariance was presented in [50].
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However, it becomes computationally prohibitive for a large training data set. In [51]

a six-step solution to filter tuning was provided, but it is only applicable to linear

Kalman Filters. How to find the best process and measurement noise covariance

matrices for the EKF is still under development.

Some state estimation methods by training the recurrent neural network (RNN)

have been developed in several papers [52, 53, 54, 55, 56, 57, 58, 59]. But, the focus

of these publications was on learning either the relationship between the states over

different time steps [55, 54, 60, 61] or integrating unstructured measurement data to

the state space [54]. In [62], a data-driven KF has been proposed, in which the un-

certainty propagation steps are replaced by a neural network to calculate the Kalman

filter gain. Recently, an emerging trend in data-driven particle filter is developed to

learn the motion model and measurement model also through RNNs [63, 64, 65, 60,

66, 67]. Differentiable particle filters (DPFs) were developed in [63, 64], which use

backpropagation to learn the motion and measurement models and noise covariance

matrices [60]. However, since the particle filter is not differentiable between time

steps, the DPFs have to either use finite difference with much higher computational

complexity [64] or only train the filter based on a single time step from t to t + 1,

not end to end [63]. In the DPFs publications, both the motion and measurement

models are assumed to be unknown, which need to be learned from the data. This is

not necessary and will be a waste of resources in the applications where these models

are known.

In many system tracking problems, e.g. target tracking in a radar system, both

the measurement and motion models are well known, which can be easily constructed

by physical modeling and do not have to be learned from data. In such problems,

using the learning power to learn the motion and measurement models is wasteful and

not guaranteed to converge. Further, the learned motion and measurement models
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can be easily over-fitted against the training data when one has to learn in a high-

dimensional hypothesis space with limited datasets. Therefore, in this chapter , our

research is focused on learning the best noise statistics for an EKF with given motion

and measurement models.

4.1.2 Contributions

As discussed earlier, in many tracking problems, both the state and measurement

models are already given. Even though sometimes in these system models, approxi-

mations have been used to convert physical models to mathematical equations, they

can still precisely characterize the system. Furthermore, the system noise in the

model can be used to account for/absorb the approximation errors. In the EKFNet,

instead of learning the system models, the statistic parameters used by the state and

measurement models are learned based on the backpropagation through time (BPTT)

approach [68]. BPTT is implemented to drive the gradients backward, to optimize

the EKF’s performance. In summary, the new contributions in this chapter are:

• I construct a new framework for the EKF to learn the noise covariance with or

without ground truth data.

• I efficiently drive the gradient backward, and all gradients are calculated by

computation graphs.

• I provide four different loss functions for learning the noise covariance, which

can be combined or used individually.

• I evaluate the proposed method using real GPS data for vehicle tracking.

The rest of this chapter is organized as follows. In Section 4.2, EKF and the

proposed method are described. In Section 4.3, the detailed backpropagation for each
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model and different loss functions have been discussed. In Section 4.4, the dataset,

training parameters, and results are presented. The conclusion and future work are

provided in Section 4.5.

4.2 Methodology

In this chapter, I propose a framework for the EKF to learn the system noise

covariance matrices, which is trained by the BPTT and gradient descent methods

[69, 70, 15]. In this section, the basic EKFNet forward operation is discussed in

the beginning. Then the loss functions used for training the EKFNet are presented.

The loss functions can be constructed by different optimization criteria, depending

on particular applications.

4.2.1 EKFNet

I begin with describing the background of EKF filtering and different modules

for the EKFNet, and defining the basic notations and terminology. The forward

operation of the EKFNet is the same as the EKF, and separated into three different

modules: the state prediction, measurement prediction, and state update modules,

as illustrated in Fig. 20. The state prediction module is used for predicting the state

using the motion model. The measurement prediction module is applied to make a

prediction for the next measurement and calculate its residual and covariance matrix.

The update module updates the system state by combining the predicted state with

the measurement residual. The output from the update module is the updated state,

also called the posterior, which along with its corresponding covariance matrix, will

be used as the prior to the next time step.
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4.2.1.1 State Transition and Measurement Models

In the EKF the state transition and observation models do not have to be linear

functions. At time k, let us denote the system state as xk, and the measurement as

zk. The motion and measurement models are provided as follows:

xk = f(xk−1) + vk(xk−1) (4.1a)

zk = h(xk) + wk (4.1b)

where f(·) and h(·) are nonlinear functions, and cannot be used directly to update

the covariances. Instead, their corresponding Jacobian matrices Fk and Hk are used.

vk(xk−1) and wk are the process and measurement noises, which are assumed to

be independent zero-mean multivariate Gaussian random variables with covariance

matrices Qk(xk−1) and Rk, respectively. The goal is to learn Qk(xk−1) and Rk with

real data. In general it is assumed that the process noise is state and time dependent,

and measurement noise is time dependent.

4.2.1.2 Prediction Module

The prediction module in Fig. 20 is used for state prediction. Notation x̂t|m

represents the estimate of x at time t given the measurements up to time m. The

state prediction equations are:

x̂k|k−1 = f(x̂k−1|k−1) (4.2a)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk(x̂k−1|k−1) (4.2b)

Qk(·) is time and state dependent process noise covariance matrix. For the prediction

module, the input is the posterior from the previous state, and the output is the

predicted state and its covariance according to the state transition model in (4.1a).
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Fig. 20.: EKFNet diagram. s = {x̂,P}.

4.2.1.3 Measurement Prediction Module

For the measurement prediction module in Fig. 20, the task is to evaluate the

measurement residual ỹk and its covariance Sk:

ỹk = zk − h(x̂k|k−1) (4.3a)

Sk = HkPk|k−1H
T
k + Rk (4.3b)

where ỹk is the residual and Sk is the residual covariance, which can be used in

Section 4.2.2 to calculate the measurement loss function. Rk is the measurement

noise covariance matrix.

4.2.1.4 Update Module

Based on the previous two steps, the update module in Fig. 20 updates the

posterior state estimate. First, the Kalman gain Kk is calculated as follows.

Kk = Pk|k−1H
T
kS−1k (4.4)
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Once the Kalman gain is obtained, the state estimate is updated with the measure-

ment residual and its corresponding covariance matrix as follows.

x̂k|k = x̂k|k−1 + Kkỹk (4.5a)

Pk|k = (I−KkHk)Pk|k−1 (4.5b)

Finally, the updated state estimate and its covariance will be passed to the next step

as the prior. The same operations will be repeated recursively over time until the last

measurement is incorporated by the EKF to update the state estimate.

4.2.2 Loss Functions

In order to achieve a better EKF performance, I present four optimization cri-

teria, which can be used to optimize the noise covariances either with or without

ground truth system states.

4.2.2.1 Measurement Residual

A loss function can be constructed using the l2 norm of the measurement residual.

The measurement residual ỹk is the output of the measurement prediction module,

defined in Section 4.2.1.3, and the loss function based on measurement residuals can

be calculated from time 1 to T as follows.

LMRes =
T∑
k=1

‖ỹk‖22 (4.6)
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4.2.2.2 Mean Squared Error (MSE) of State Estimate

The MSE of the updated state is calculated between the ground truth xGk and a

projection from x̂k|k, and the corresponding loss function is:

LGMSE =
T∑
k=1

‖xGk − gk(x̂k|k)‖22 (4.7)

where gk(·) is a projection function that transforms the full state to the sub-space

of the ground truth. Note that high-end sensor data or human-annotated references

are often used as ground truth. Hence, the ground truth is expensive to obtain in

some applications.

4.2.2.3 Measurement Residual Log-Likelihood

The measurement residual is only concerned with itself but ignores its covari-

ance. At each time, the measurement residual covariance Sk is also calculated by

the EKF. So hereby maximizing the likelihood, I consider not only the residual but

also its uncertainty. By taking the logarithm of the likelihood, I can deal with addic-

tions instead of multiplications. The negative log-likelihood of the measurements is

provided in (4.8).

LML = − log

(
T∏
k=1

p(zk|z0:k−1)

)
(4.8)

= −
T∑
k=1

log p(zk|z0:k−1)

= −
T∑
k=1

(
log (|Sk|) + ỹkS

−1
k ỹk + const

)
where the last step is due to the Gaussian approximation used for the measurement

residual in the EKF. Compared with (4.6), in (4.8) the measurement residual covari-

ance Sk is incorporated in the loss function.
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4.2.2.4 Posterior Log-Likelihood

The MSE between the ground truth and state also only concerns with the error

itself, but ignores its covariance. By considering the posterior’s uncertainty which

is the posterior covariance Pk|k, the negative log-likelihood of the ground truth is

provided in (4.9).

LGL = − log

(
T∏
k=1

p(xGk |z0:k)

)
(4.9)

= −
T∑
k=1

log p(xGk |z0:k)

= −
T∑
k=1

(
log
(∣∣Pk|k

∣∣)+ x̃kP
−1
k|kx̃k + const

)
where

x̃k = xGk − gk(x̂k|k) (4.10)

Again, the last step of (4.9) is derived because of the Gaussian assumption used for

x̃k in the EKF.

The constant terms in (4.8) and (4.9) can be ignored during the backpropagation

because these terms have zero gradients with respect to the optimization variables

(the noise covariance matrices). The physical meaning of (4.8) and (4.9) is that the

EKF should be tuned to maximize the likelihood corresponding to the measurements

or to the updated state estimates. Because in (4.6) and (4.8), only the measurement

data are needed, the optimization criterion based on the measurement residual or the

measurement likelihood, can be applied without the ground truth data.

4.2.2.5 Loss Functions with Regularization

In many applications, it is often desirable not only to minimize the loss functions

defined earlier in this section but also to encourage an optimization solution with
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other properties, such as its closeness to a manually optimized solution. Hence, I

propose two regularized loss functions, based on either the measurement residuals/

MSE errors or the negative log-likelihoods:

LMSE = aLGMSE + bLMRes + λ1r1(Q) + λ2r2(R) (4.11)

LLike = aLGL + bLML + λ1r1(Q) + λ2r2(R) (4.12)

Each loss function consists of two parts: the first two terms are loss functions and the

last two terms are regularization functions (r(·) functions). The loss functions encour-

age the filter output to minimize the residual/MSE error or maximize the likelihood.

The regularization functions are problem-dependent but have to be differentiable. For

example, it can encourage the covariance matrices to be close to the manually opti-

mized results [47]. a, b, λ1, and λ2 are the weights for loss functions or regularization

functions and they are hyper parameters. In applications without ground truth, the

first term can be ignored, i.e. a = 0.

4.3 Back Propagation Through Time

BPTT is a gradient-based method for training a directed computation graph

based on time sequence, which is widely used to train the RNN [68, 15, 70]. The

EKF can be deemed as a directed graph, which is built by internal states and mea-

surement data of variable lengths. The training data for the EKF are a sequence of

T input-output pairs {zk, (x̂k|k,Pk|k, ỹk,Sk)}Tk=1. For the purpose of optimizing the

EKF performance, BPTT begins with unfolding the EKF over time, and each node

uses the same variables to construct Q and R, as discussed later in Section 4.4.2.

Then the backpropagation algorithm is used to find the gradients of the loss function

with respect to (w.r.t.) the parameters in Q and R. Finally, the gradient descent

optimization algorithm can be used to update the parameters based on the gradients
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[69, 70, 15].

The backpropagation flow is shown in Fig. 20. The pink equations and left

arrows indicate the backward gradient flow. At each step k, the gradients are derived

from: (1) the loss function lMk for each time k, which is based on the measurement

residual and its covariance, and can be constructed by either measurement residual

LMRes or residual log-likelihood LML at time step k. (2) loss function lGk for time step

k, which is based on the posterior error w.r.t. the ground truth and its covariance,

it could be either the MSE of the estimated state LGMSE or the negative posterior

log-likelihood LML at time k, and (3) gradients from time step k + 1.

In this section, a detailed backpropagation procedure for each module and each

loss function will be discussed. The gradients, which can be used to optimize the

process and measurement noise covariance matrices, are constructed at the end of

backpropagation. Because backpropagation is based on the chain rule for the gradient

[15], here I only list the gradient results w.r.t. the intermediate parameters.

4.3.1 Back Propagation in Update Module

The forward operation for the update module has been discussed in Section

4.2.1.4. The gradients input to the update module are those of the loss function

w.r.t. to the posterior states x̂k|k and its covariance Pk|k. As shown in Fig. 21, the

gradient can be constructed by the following equations:

∂L

∂x̂k|k
=

∂L

∂x̂k+1|k+1

∂x̂k+1|k+1

∂x̂k|k
+
∂L

∂lGk

∂lGk
∂x̂k|k

(4.13a)

∂L

∂Pk|k
=

∂L

∂Pk+1|k+1

∂Pk+1|k+1

∂Pk|k
+
∂L

∂lGk

∂lGk
∂Pk|k

(4.13b)

In (4.13a) and (4.13b), the first term on the right hand side is the gradient flow

arriving from time step k + 1, and the second term is the gradient w.r.t. the state
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Fig. 21.: Backpropogation for the Update Module.

estimation error for the current step k denoted as lGk . The state estimation error is

the difference between the state estimate and the true state. The value for the second

term depends on the loss function. If the loss function is constructed without using

the ground truth state value, this gradient is 0. For simplicity, UB stands for the

backward operation for the update module. As shown in Fig. 21, the gradient flow

for the update module can be summarized below:

(
∂L

∂lGk

∂lGk
∂x̂k|k−1

,
∂L

∂lGk

∂lGk
∂Pk|k−1

,
∂L

∂lGk

∂lGk
∂ỹk

,
∂L

∂lGk

∂lGk
∂Sk

,
∂L

∂lGk

∂lGk
∂Hk

)
= UB

(
∂L

∂x̂k|k
,
∂L

∂Pk|k

)
(4.14)

There are five terms output from the update module. The first two terms are

the gradients w.r.t. the predicted state x̂k|k−1 and its covariance Pk|k−1, which will

flow back to the prediction module. The rest three terms are the gradients of the loss

function w.r.t the residual ỹk, its covariance Sk, and the measurement matrix Hk,
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which will flow back to the measurement prediction module.

Based on the chain rule, the gradient can be calculated analytically. The outputs

to the prediction module are listed below:

∂L

∂lGk

∂lGk
∂x̂k|k−1

=
∂L

∂x̂k|k
(4.15)

∂L

∂lGk

∂lGk
∂Pk|k−1

= (I−KkHk)
T ∂L

∂Pk|k
+

∂L

∂Kk

(
S−1

)T
Hk (4.16)

where:

∂L

∂Kk

=
∂L

∂x̂k|k
ỹTk −

∂L

∂Pk|k
Pk|k−1H

T
k (4.17)

(4.18)

∂L
∂lGk

is the gradient for loss function L w.r.t the state error lGk at time step k. The

gradient for the predicted covariance Pk|k−1 is calculated based on the two equations

(4.4) and (4.5b).

The gradients flowing back to the measurement prediction module are:

∂L

∂lGk

∂lGk
∂ỹk

= KT
k

∂L

∂x̂k|k
(4.19)

∂L

∂lGk

∂lGk
∂Sk

= −vec−1
[(

S−Tk ⊗ S−Tk
)
vec

(
∂L

∂lGk

∂lGk
∂S−1k

)]
(4.20)

∂L

∂lGk

∂lGk
∂Hk

= KT
k

∂L

∂Pk|k
PT
k|k−1 +

(
Pk|k−1

∂L

∂Kk

(
S−1k
)T)T

(4.21)

where

∂L

∂lGk

∂lGk
∂S−1k

= Pk|kH
T
k

∂L

∂Kk

(4.22)

In (4.20), ⊗ represents the Kroneker product [71], and vec(·) denotes the column-

wise vecterization of a matrix. If Sk is an m×m matrix, then in (4.20), S−Tk ⊗ S−Tk

is an m2 × m2 matrix, and after vecterization, vec
(
∂L
∂lGk

∂lGk
∂S−1

k

)
is an m2 × 1 vector.
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The product of the above mentioned terms,
(
S−Tk ⊗ S−Tk

)
vec
(
∂L
∂lGk

∂lGk
∂S−1

k

)
is an m2× 1

vector, which needs to be reshaped back into an m×m matrix by using vec−1(·), the

inverse operation of vec(·). In deriving (4.20), the differential of matrix inverse [71]

has been used:

d(S−1k ) = −(S−Tk ⊗ S−TK )d(Sk) (4.23)

The gradient for Sk is from the backpropagation for (4.4).

4.3.2 Back Propagation in Measurement Prediction Module

Fig. 22.: Back propagation in Measurement Prediction Module.

The forward operation for the measurement prediction module has been discussed

in Section 4.2.1.3. The gradients input to the measurement prediction module are

the gradients of loss function w.r.t. to the residual ỹk and its covariance Sk, and

the gradient outputs from the update module which have been discussed in Section
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4.3.1. As shown in Fig. 22, the gradient can be constructed by three terms for both

the residual ỹ, Sk and Hk which is given in (4.21). The inputs can be constructed

according to the equation below.

∂L

∂ỹ
=
∂L

∂lGk

∂lGk
∂ỹk

+
∂L

∂lMk

∂lMk
∂ỹk

(4.24a)

∂L

∂Sk
=
∂L

∂lGk

∂lGk
∂Sk

+
∂L

∂lMk

∂lMk
∂Sk

(4.24b)

where the first terms on right hand side of (4.24a) and (4.24b) are the outputs from the

update module. The second terms on the right hand side of (4.24a) and (4.24b) are

the derivative w.r.t. the residual error at time step k. lMk represents the loss function

due to the measurement prediction for the current step. Those values depend on what

loss functions have been chosen also.

For the measurement prediction module, I can simply summarize the inputs and

outputs as: (
∂L

∂lMk

∂lMk
∂Pk|k−1

,
∂L

∂lMk

∂lMk
∂x̂k|k−1

)
= MB

(
∂L

∂ỹ
,
∂L

∂Sk
,
∂L

∂lGk

∂lGk
∂Hk

)
(4.25)

where MB is the backward operation for the measurement prediction module.

The gradients propagate back to the measurement prediction module:

∂L

∂lMk

∂lMk
∂x̂k|k−1

= −
(

HT
k

∂L

∂ỹ

)T
+

∂Bk

∂x̂k|k−1
(4.26)

∂L

∂lMk

∂lMk
∂Pk|k−1

= HT
k

∂L

∂Sk
Hk (4.27)

where

Bk =

(
(Pk|k−1)

THT
k

∂L

∂Sk

)T
+

∂L

∂Sk
HkP

T
k|k−1 +

∂L

∂lGk

∂lGk
∂Hk

(4.28)

Bk is the gradient ∂L
∂Hk

. However, Hk is also a function of the predicted state x̂k|k−1.

61



So the gradient of Bk w.r.t. each predicted state x̂k|k−1 also needs to be calculated,

which is the second term on the right hand side of (4.26).

Because the measurement noise covariance is involved in the measurement pre-

diction module, the gradients w.r.t. the measurement noise covariance Rk can be

calculated during backpropagation:

∂L

∂Rk

=
∂L

∂Sk
(4.29)

4.3.3 Back Propagation in the Prediction Module

The forward operation in the prediction module has been discussed in Section

4.2.1.2. As shown in Fig. 23, the gradients propagating back to the prediction module

are the gradients of the loss function w.r.t. to the predicted state x̂k|k−1 and its

covariance Pk|k−1, which are constructed by combining outputs from the measurement

prediction module and update module, according to the equation below.

∂L

∂x̂k|k−1
=
∂L

∂lGk

∂lGk
∂x̂k|k−1

+
∂L

∂lMk

∂lMk
∂x̂k|k−1

(4.30a)

∂L

∂Pk|k−1
=
∂L

∂lGk

∂lGk
∂Pk|k−1

+
∂L

∂lMk

∂lMk
∂Pk|k−1

(4.30b)

By combining the outputs from (4.14) and (4.25), the backward propagation for

the prediction module can be summarized as:(
∂L

∂x̂k|k

∂x̂k|k
∂x̂k−1|k−1

,
∂L

∂Pk|k

∂Pk|k

∂Pk−1|k−1

)
= PB

(
∂L

∂x̂k|k−1
,

∂L

∂Pk|k−1

)
(4.31)

where PB is the backward operation for the prediction module. The output gradient

will be passed to the update module at the time step k − 1.
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Fig. 23.: Back Propagation in the Prediction Module.

∂L

∂x̂k|k

∂x̂k|k
∂x̂k−1|k−1

= FT
k

∂L

∂x̂k|k−1
+

∂Ck

∂x̂k−1|k−1
(4.32)

∂L

∂Pk|k

∂Pk|k

∂Pk−1|k−1
= FT

k

∂L

∂Pk|k−1
Fk (4.33)

where

Ck =
∂L

∂Pk|k−1
HkQ

T
k +

(
QTHT ∂L

∂Pk|k−1

)T
(4.34)

Ck is the gradient of the loss function w.r.t Fk. Because Fk is constructed by x̂k|k,

the gradient also needs to be calculated during backpropagation, which is the second

term on the right-hand side of (4.32). The first term in (4.32) is derived based on the

forward operation (4.2a), where the gradient of the dynamic model is the Jacobian

matrix Fk.

Because the process noise covariance Qk is involved in the prediction module.
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The derivative w.r.t. the process noise covariance matrix for the current step is:

∂L

∂Qk

=
∂L

∂Pk|k−1
(4.35)

4.3.4 Back Propagation of Loss Function

The gradients for the loss function are different when different optimization cri-

teria are chosen. Among the four different loss functions, some of them only have

gradients w.r.t the state, and some of them have gradients w.r.t both the state and

its covariance.

4.3.4.1 Back Propagation of Residual Error

The measurement residual is calculated without using the ground truth data. The

forward operation of this part is shown in (4.6). If the loss function only considers the

measurement residual, the gradient flowing back to each time steps is listed below:

∂L

∂lMk

∂lGk
∂ỹk

= 2ỹk (4.36)

(4.37)

The gradient of the loss function w.r.t Sk is zero in this case.

4.3.4.2 Back Propagation of Negative Log Residual Likelihood

In this section, the back propagation operation for the negative log residual like-

lihood function is derived, by considering not only the measurement residual ỹk, but

also its covariance Sk. The loss function used here is defined in (4.8). The gradi-

ents calculated from backward propagation flow back to the measurement prediction

module. The gradients of the loss function w.r.t. Sk and ỹk are shown below:
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∂L

∂lMk

∂lGk
∂ỹk

= −S−1k ỹk (4.38)

∂L

∂lMk

∂lGk
∂Sk

=
1

2

[
S−1k − S−1k ỹkỹ

T
k S−1k

]
(4.39)

4.3.4.3 Back propagation of MSE of State Estimate

To find the state estimation error, the ground truth data are required for the

system state. The gradient from this section flow back to the update module and the

loss function w.r.t. Pk|k is 0 in this case. The gradient flowing back to each time step

can be calculated as follows:

∂L

∂lGk

∂lGk
∂x̂k|k

= 2x̃k (4.40)

where x̃k is defined in (4.10), which is the error between the state and ground truth.

4.3.4.4 Back propagation of Posterior State Log-Likelihood

To evaluate the posterior state likelihood, one needs the state ground truth data.

The back propagation chain rule for the posterior state log-likelihood has been derived

and given below:

∂L

∂lGk

∂lGk
∂x̂k|k

= −S−1k x̃k (4.41)

∂L

∂lGk

∂lGk
∂Pk|k

=
1

2

[
P−1k|k −P−1k|kx̃kx̃

T
kP−1k|k

]
(4.42)

where x̃k has been defined in (4.10).

4.3.5 Derivative of Loss w.r.t. the Noise Covariance Matrices

For most of the cases, the training dataset has multiple tracks, with possibly

different track duration T is. The derivatives w.r.t. Q and R are calculated at each
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step as in (4.43a) and (4.43b) respectively for each track i and they are accumulated

over time steps and different tracks by using (4.35) and (4.29):

4.29:

∂L

∂Q
=

N∑
i=1

T i∑
k=1

∂Li

∂Qi
k

(4.43a)

∂L

∂R
=

N∑
i=1

T i∑
k=1

∂Li

∂Ri
k

(4.43b)

where i represents the track identity, and N is the total number of the tracks. T i is

the total number of steps for the current track i.

Many optimization methods have been constructed based on gradients. The variables

can be iteratively updated towards the optimal direction by gradient descent [15, 70].

4.4 Experiments

Here I provide an example where a vehicle is tracked in a 2D space, using data

from KITTI dataset [72]. The GPS measurements include longitude, latitude, and ori-

entation. The ground truth states are generated by using extended Kalman smoother

[9] at the original sampling rate of 100 Hz, and the measurements are generated by

down-sample the original data to 2 Hz and adding small Gaussian noise for testing

the algorithm.

This section begins with the experiment setup for both the motion and mea-

surement models. Then some comparison between different optimization criteria has

been discussed. In addition, I will test the proposed algorithm with imperfect motion

and measurement models.
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Fig. 24.: Vehicle Motion Model, lcar is 2.71m.

4.4.1 Motion and Measurement Models

4.4.1.1 Motion Model

Motion models have been used to improve the accuracy and stability of motion

estimates in vehicle applications such as vehicle tracking or navigation. The vehicle is

assumed to comply with a certain motion model which describes its dynamic behavior.

The choice of the motion model is crucial and greatly affects the motion estimation

performance. In this work, the use of a motion model that more closely represents

the vehicle motion by the application of nonholonomic constraints is proposed [73,

74, 75, 76]. As shown in Fig. 24 (1), the states are:

xk = [xk, yk, θk, vk, φk]
T (4.44)
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Fk =



1 0 − sin(θk) cos(φk)vk∆t cos(θk) cos(φk)∆t − cos(θk) sin(φk)vk∆t

0 1 cos(θk) cos(φk)vk∆t sin(θk) cos(φk)∆t − sin(θk) sin(φk)vk∆t

0 0 1 sin(φk)∆t/lcar cos(φk)vk∆t/lcar

0 0 0 1 0

0 0 0 0 1


(4.46)

where xk and yk are the rear center coordinates, θk is the global vehicle heading,

vk is the linear velocity, φk is the steering angle. I assume the vehicle is a front-wheel

drive, the motion model f(·) governs how the state transition according to current

states and time [76, 73]:

xk+1 = cos(θk)× cos(φk)× vk ×∆t+ xk (4.45a)

yk+1 = sin(θk)× cos(φk)× vk ×∆t+ yk (4.45b)

θk+1 = sin(φk)× vk ×∆t/lcar + θk (4.45c)

vk+1 = vk (4.45d)

φk+1 = φk (4.45e)

The Jacobian matrix for motion model could be find in (4.46). It is constructed

at each time step.

In the motion model, I assume the steering angle φk and velocity vk remain

constant between each updating. This model is usually called Constant Turn Rate

and Velocity (CTRV) model [77]. The main feature of the kinematic model of a car

like vehicle is the presence of two nonholonomic constraints in (4.45) refraining the

front/rear wheels from moving slide ways.
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4.4.1.2 Measurement Model

Fig. 25.: Vehicle Measurement Model, lw is 0.32m and lh is 0.05m .

By using the GPS data, the measurements are the center position xGPSk , yGPSk ,

heading angle θGPSk of the vehicle:

zk = [xGPSk , yGPSk , θGPSk ]T (4.47)

The measurement model h(·) is provided in (4.48), in which loff = 0.323 is the

distance between the GPS receiver and the vehicle rear center, and α = 0.154 is the

angle between x-axis and the line of sight between the GPS receiver and the rear

center, as illustrated in Fig. 25.
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xk = xGPSk − loff cos(θ̂k|k−1 + α + 0.5π) (4.48a)

yk = yGPSk − loff sin(θ̂k|k−1 + α + 0.5π) (4.48b)

θ = θGPSk (4.48c)

Hk =


1 0 0 0 loff sin(θ̂k|k−1 + α + 0.5π)

0 1 0 0 −loff cos(θ̂k|k−1 + α + 0.5π)

0 0 1 0 0

 (4.49)

4.4.2 Process and Measurement Noise Covariance Matrices

For simplicity, the model assumes the constant velocity and constant steering

rate, which is not realistic in real tracking applications. The state-dependent process

noise covariance matrix is given in (4.50), where σA is the maximum acceleration and

σSR is the maximum steering rate due to physical limitations. The definition of G(·)

is provided in (4.51), which is the dynamic model for acceleration and steering rate

[76]. The measurement noise covariance is provided in (4.52).

Qk(xk|k) = G(xk|k)diag(σ2
A, σ

2
SR)G(xk|k)

T + diag(σ2
x, σ

2
y, σ

2
θ , σ

2
v , σ

2
φ) (4.50)

G(xk|k) =

1
2
(∆t)2 cos(φk|k)

1
2
(∆t)2 sin(φk|k) 0 ∆t 0

0 0 1
2
(∆t)2 0 ∆t


T

(4.51)

Rk = diag(σ2
GPSx , σ

2
GPSy , σ

2
GPSθ

) (4.52)
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All the σs in (4.50) and (4.52) are variables, which are used to construct the covariance

matrices.

4.4.3 Experiment Results

The whole dataset is separated to training, validation, and testing sets. The

validation sets is used during the training to prevent over fitting.

4.4.3.1 Vehicle Trajectory Estimates

In Fig. 26, an example trajectory from the testing set is shown. The yellow

trajectory is estimated by the EKF optimized manually, with large errors occurring

when the vehicle turns. The blue trajectory is the estimate obtained by the EKFNet,

which does not overshoot during the turning period, and is much closer to the ground

truth. The loss function used in this case is (4.11). In Fig. 27, the positional root

mean square error (RMSE) is presented by combining MSEs associated with the

estimates of the vehicle coordinates x and y. From this figure, it is clear that the

trained EKF has a lower estimation error than the original EKF, especially during

vehicle turns.

4.4.3.2 Loss Function Comparison: MSE of State Estimate vs. Posterior

Log-likelihood

As mentioned before, the loss function can be chosen to either include the second

order statistic of the measurement residual/state estimation error or not. In this sub-

section, I discuss the difference between using a loss function based on the MSE of the

state estimate error by using (4.11) and setting b = 0, and that based on the posterior

log-likelihood by using (4.12) and setting b = 0. In Fig. 28, the histograms for the

positional RMS error and negative posterior log-likelihood are shown. The lower the
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Fig. 26.: Estimated vehicle trajectories before and after training.

better for both of the metrics. The manually tuned results are displayed in blue in

both of the figures. From Fig. 28(a) the long tail of the histograms for manually

tuned EKF can be observed, implying large estimation errors occur with significant

probabilities. In Fig. 28(b), for manually tuned EKF, most of negative posterior log-

likelihoods are distributed between 4 and 8. The manually tuned covariance matrices

are used to initialize the proposed training algorithm.

In the first case, the loss function is based on state estimation MSE LGMSE, and

the corresponding RMS error histogram is shown in Fig. 28 in green. From those

graphs, both the errors move toward better performance. If the loss function is created
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Fig. 27.: RMS error for location before and after training.

by considering the posterior state estimate covariance, namely LGL , the results are also

shown in Fig. 28 in red. Compared with the manually tuned results in blue, the EKFs

trained based on the posterior likelihood and the state estimation MSE improve the

tracking performance significantly. After training, the long tails of the histograms

(PDFs) of the state estimation MSE and the negative log-likelihood have diminished,

and these two histograms/distributions have moved to the left with smaller losses on

the average.

Further, from this figure, it is clear that a loss function based on likelihoods

will lead to a better likelihood results, and a loss function based on MSEs will result

in a better MSE performance. These results are consistent with their loss functions.

Further, trained EKFs based on both criteria provide significantly better performance

than the manually tuned EKF.
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(a) Histogram of State Estimation RMS Errors

(b) Histogram of Posterior Negative Log Likelihood

Fig. 28.: Loss Histograms for EKFs trained using with LGMSE, LGL , and manually

tuned EKF.
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4.4.3.3 Numerical Results

In Table 5, the testing results are shown. Each row represents a different loss

function, and each column stands for a different objective score. The loss functions

are constructed as in (4.11) or (4.12). It is clear that the best score for each category

is achieved by using that category as the loss function alone. If a total loss function

is constructed by combining loss functions from two different categories, the scores

in both categories are competitive but not the best. Further, the proposed EKFNet

method always outperforms the EKF fine-tuned by hand and the Joint (sample co-

variance) method in [48].

Table 5.: Testing results. -LogL: negative log-likelihood.

Loss RMSE

(State)

RMSE

(meas)

-LogL (State) -LogL (meas)

LG
Res + LM

Res 1.235 2.434 3.843 5.673

LG
Res 1.134 2.563 3.745 5.996

LM
Res 1.922 2.367 4.745 5.856

LG
L + LM

L 2.367 3.412 3.562 5.432

LG
L 1.932 3.758 2.341 5.783

LM
L 2.745 3.227 3.735 4.735

Hand Tuned 4.246 6.342 8.649 9.354

Joint [48] 4.945 5.354 4.984 5.465

4.4.4 Imperfect Motion and Measurement Models

In this section, I will provide the training results using imperfect motion and

measurement models. Imperfect models are common for model-based tracking due to
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the physical limitations. For example, in our case, the vehicle length lcar in Fig. 24

and the GPS sensor position in Fig. 25 are not precisely measured, which will cause

estimation errors during vehicle tracking. As mentioned before, the process and

measurement noise can compensate for these imperfections during tracking. Because

the proposed method can be trained both with and without the ground truth data,

I create two different experiment cases. The first one is with the ground truth and

using the state estimation MSE as the loss function LGMSE. Another one is without

the ground truth and using the residual error LMRes as the loss function. In order to

run this experiment I change the lcar to 5.0m, loff = 0.5 and α = 1.6, to make both

the motion and measurement model parameters deviate from their true values.

In Fig. 29, the histograms for the state estimation MSE and the posterior neg-

ative log-likelihood are provided for two EFKs trained with different loss functions

and a manually tuned EKF. The results for the manually tuned EKF are in blue.

Compared with the results for the same configuration in Fig. 28, the distributions

become fatter and have larger variance. The right tails have higher probabilities, due

to the poorer tracking performance with the imperfect system models.

In the first EKF, the state estimation MSE LGMSE is used as a loss function.

Its histograms are displayed in Fig. 28 in green. For both of the histograms, the

distributions move to the left, which means the proposed training approach finds

better system noise covariance matrices compared with the EKF before training.

In many cases, the state ground truth data are not available. So in the second

EKF, the loss function is constructed by using the measurement residual LMRes. The

histograms for the second EKF are showed in Fig. 28 in red. Compared with the

original manually tuned EKF results, better tracking performance has been shown in

terms of both the state estimation error and likelihood.

However, compared with the results for the first EKF trained with the ground
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truth data, it loses the competition in terms of both of the evaluation metrics. Espe-

cially in 29(b), its histogram moves not as far as the first EKF trained with ground

truth data. This is due to the fact that during training, the loss function is constructed

based on likelihood parameters that are far from their true values.

In Table 6, the tracking performance in terms of the RMSE and likelihood are

provided for EKFs trained with different loss functions. From the results, the EKF

trained using the ground truth outperforms the one without by all the different cri-

teria. One of the reasons is that without using the ground truth data, the training

relies on the correct model assumption. However, using imperfect models, it affects

the training performance.

Table 6.: Testing results. -LogL: negative log-likelihood.

Loss RMSE

(State)

RMSE

(meas)

-LogL (State) -LogL (meas)

Manually

Tuned

7.738 12.616 5.135 5.732

LG
MSE 2.552 6.461 3.376 4.391

LM
Res 2.605 6.473 3.412 4.632

4.5 Conclusion

In this chapter, a method called EKFNet was proposed, which can fine-tune

the EKF automatically with or without the ground truth data. For learning the

best process and measurement noise covariances offline, I presented four different

objective functions. The whole framework is trained using gradient descent, and the

gradients are calculated based on BPTT. In a tracking example using real GPS data,
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(a) Histogram of State Estimation RMS Errors

(b) Histogram of Posterior Negative Log Likelihoods

Fig. 29.: Histogram Results for Imperfect Motion and Measurement Models.

78



the proposed method outperforms existing methods and a manually tuned EKF.
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CHAPTER 5

TRAFFICEKF: A TRAFFIC AWARE KALMAN FILTER

Most vehicle tracking algorithms only consider the vehicle’s kinematic state but ignore

the information about the surrounding environment, which also plays an important

role affecting how the driver controls the vehicle. In addition, how to represent the

traffic information and its effect on the vesicle’s state is a challenging problem. In

this chapter , I propose a tracking method called traffic aware extended Kalman

filter (TrafficEKF), which not only incorporates the vehicle’s kinematic dynamics,

but also the information from the surrounding environment. The traffic information

has been represented by a bird-eye-view rasterized image, with the road shape, traffic

light conditions, and other objects inside the field of view. The effect of the traffic

information on vehicle driving is learned by TrafficEKF from the ground truth data.

Through training, the algorithm learns to predict the control input to the vehicle

and to optimize the process and measurement noise covariance matrices used by the

EKF. Based on experiments with real data, I show that the TrafficEKF significantly

outperforms both a manually tuned EKF, and a data trained EKF, which ignore the

environment information.

5.1 Introduction

Nonlinear filtering is a critical part in an autonomous vehicle (AV)’s perception

and tracking system, and it provides the ability to fuse prediction information with

current measurements to enhance the tracking accuracy and mitigate the measure-

ment error [9]. Popular nonlinear filters for state estimation include the extended
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Kalman filter (EKF) [9, 45], unscented Kalman filter (UKF) [46], and the particle

filter (PF) [9]. Compared with other methods the EKF is widely used due to its much

lower computational load and robust performance. By using linearized dynamic and

measurement models, the EKF can be used for estimating the current object’s states

[75].

A tracking algorithm typically uses results from a detection algorithm to estimate

the object’s state. Object detection and tracking could be based on LiDAR, radar,

and cameras [78, 79, 80, 19]. Most of the tracking algorithms model the target as a

single point object [81, 73, 82, 83], and some of them model the target as an extended

object [84, 42, 85] based on LiDAR measurements. For single point assumption,

the KF or EKF has been extensively used to process the output from the detection

algorithm. For the extended object assumption, usually the target is modeled as a

particular shape such as a rectangle or an ellipse, and the tracking algorithm can

process multiple detection points originated from the tracked target [85, 42]. Also,

many vehicle motion models only consider the kinematic state, and ignore the control

input, which is usually unknown [75] to the AV. However, when a vehicle is being

driven on the road, it is not only following the physical model, but also affected by

driving rules and environment conditions [86, 87] such as the road shape, traffic lights,

and other objects on the road. This information is usually missing in the EKF motion

model when the algorithm makes the state estimate. How to combine the vehicle

dynamics and the environment information to estimate vehicle state accurately, is

still a challenging task for the EKF.

In recent years, several AV companies have made some progress on the vehicle

motion prediction. They have not only published their approaches [86, 88, 89, 90,

91], but also provided openly available datasets [87, 92, 93]. To represent the driv-

ing environment by a known data structure, two popular methods have been used
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recently. One method uses the birds-eye-view (BEV) rasterized image [86, 88, 89] to

learn the features through the Convolutional Neural Network (CNN). The rasterized

image contains the road shape, traffic light, and other objects’ locations on the road.

It uses different colors to represent the objects’ classes and their conditions. How-

ever, the objects’ dynamic states like speeds and steering angles are usually missing

in the rasterized image. Another method applies graphs to represent the relation-

ships among different components and learn the features through the Graph Neural

Network (GNN) [90, 91]. In this case, every object is represented as a node in the

graph, which is easy to represent the dynamic states and relationship between the

objects. But in GNN, it is difficult to represent the geometry of the road and other

traffic information. Most of the vehicle trajectory prediction algorithms only predict

the trajectory based on tracking results [87]. How to use the extracted features to

improve vehicle tracking accuracy is still an open problem.

In this chapter , I propose an EKF based tracking algorithm called TrafficEKF,

which takes advantage of the information about a vehicle’s surrounding environment.

Different from existing trajectory prediction methods, the proposed TrafficEKF ex-

plicitly incorporates the vehicle’s physical dynamic model and a state estimator

(EKF), and predicts the control input of the dynamic model. The training of the

TrafficEKF is based on the back propagation through time (BPTT) concept [68] pro-

posed for the EKFNet in [7], by either minimizing the measurement residual error or

maximizing the measurement likelihood. Note that the problem of road map aided

vehicle tracking has been studied by researchers in the target tracking community [94,

95, 96]. In approaches proposed in [94, 95, 96] and references therein, the road map

provides constraints on the vehicle’s state, which enhances the tracking performance.

The proposed TrafficEKF is different from these approaches, since it is a learning

based approach that learns an environment feature extractor and the optimal noise
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covariance matrices for the EKF.

In summary, the new contributions in this chapter are:

• I construct a new framework for the EKF to incorporate both the vehicle dy-

namics and environment information, by combing deep learning techniques and

physical dynamic models.

• I develop a method to train the proposed framework by using BPTT and con-

struct loss functions for the TrafficEKF.

• The TrafficEKF can efficiently predict the control input for the vehicle from

environment information, and automatically fine tune the process and mea-

surement noise covariance matrices from measurement data.

The rest of the chapter is organized as follows. In Section 5.2, some background

knowledge is introduced about the EKF and the vehicle motion and measurement

models. In Section 5.3, the framework of TrafficEKF is proposed. Experiments

results are provided in Section 5.4. Concluding remarks are given in Section 5.5. The

majority material of this chapter is based on Traffic Aware EKF paper [97].

5.2 Preliminaries

5.2.1 Extended Kalman Filter

At time k, let us denote the vehicle’s state as xk, and the measurement as zk.

The state transition and measurement models are provided as follows:

xk = f(xk−1,uk) + vk (5.1a)

zk = h(xk) + wk (5.1b)
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Fig. 30.: TrafficEKF diagram. s = {x̂,P}.

where f(·) and h(·) are nonlinear functions, and cannot be used directly to update

the covariances. Instead, the Jacobian matrices Fk and Hk are used. vk and wk are

the process and measurement noises, which are assumed to be zero mean Gaussian

random vectors with covariance matrices Qk and Rk respectively. uk is the control

input, which is usually unknown for the tracked vehicle. For the proposed method,

uk could be estimated from the traffic information according to the current state and

the traffic information.

In Fig. 30 the proposed framework is shown at time k. The rightward information

flows in green and orange are for the common EKF algorithm. The pink arrows

pointing to the left are the gradient flows which are used for training the unknown

system parameters. The proposed framework can be used as a common EKF by

combining the traffic information for online updating, and it can be used to learn

the unknown system parameters by BPTT [7]. The details on parameter training are

provided in Section 5.3.
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The prediction module in Fig. 30 is used for state prediction by using the previous

updated state estimate and the control:

x̂k|k−1 = f(x̂k−1|k−1,uk) (5.2a)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (5.2b)

The measurement prediction module is used to evaluate the measurement resid-

ual ỹk and its covariance Sk:

ỹk = zk − h(x̂k|k−1) (5.3a)

Sk = HkPk|k−1H
T
k + Rk (5.3b)

The update module in Fig. 30 provides the posterior (updated) state estimate:

Kk = Pk|k−1H
T
kS−1k (5.4a)

x̂k|k = x̂k|k−1 + Kkỹk (5.4b)

Pk|k = (I−KkHk)Pk|k−1 (5.4c)

The updated state mean x̂k|k and covariance Pk|k will be used as prior information

in the next time step k + 1.

5.2.2 Vehicle Motion and Measurement Models

I use the modified nonholonomic vehicle motion model with control inputs [73,

74, 75, 76]. The main feature of the kinematic model of a car-like vehicle is the

presence of two nonholonomic constraints in (5.7) refrains the front/rear wheels from

moving side way. Further, I assume that the vehicle is front wheel driving, and the

rear wheel center represents the vehicle location state. As shown in Fig. 31, the state
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and control are:

xk = [xk, yk, θk, vk, φk]
T (5.5)

uk = [ak, φ̇k]
T (5.6)

where xk and yk are the rear center coordinates, θk is the vehicle heading, vk is the

linear velocity, and φk is the steering angle, the angle between the vehicle heading

direction and the steered wheel direction. The length and width of the vehicle are

assumed to be constant during the tracking period, and known to the EKF. For

control inputs, ak is the acceleration, and φ̇k is the steering turn rate. The motion

model f(·) governs how control inputs affect the state [76, 73], which is shown in Fig.

31 :

xk+1 = xk + vk cos θk cosφk∆t+ 0.5∆t2 cosφkak (5.7a)

yk+1 = yk + vk sin θk cosφk∆t+ 0.5∆t2 sinφkak (5.7b)

θk+1 = θk + vk sinφk∆t/lcar + 0.5∆t2φ̇k (5.7c)

vk+1 = vk + ak∆t (5.7d)

φk+1 = φk + φ̇k∆t (5.7e)

The measurements from Lyft prediction datasets [87] are the center position

xmk , y
m
k and heading angle θmk of the vehicle. I assume that the measurement vector

is corrupted by the noise wk:

zk = [xmk , y
m
k , θ

m
k ]T + wk (5.8)
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Fig. 31.: Motion model for Traffic Aware EKF.

The measurement model h(·) is illustrated in Fig. 32 and provided as follows

xmk = xk + 0.5lcar cos θk

ymk = yk + 0.5lcar sin θk

θmk = θk (5.9)

in which the measurement heading θk is the angle with respective to the x-axis, with

a range of (−π, π]. Further, it is assumed that the rear center is 80% from the front,

and lcar = 0.6ll. Clearly, the model in (5.9) is nonlinear, as I use the rear center

as the reference point. The measurement model can be used to predict the current

measurement based on the predicted state x̂k|k−1.
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Fig. 32.: Measurement model for Traffic Aware EKF.

5.2.3 Process and Measurement Noise Covariances

For simplicity, I assume that the process noise is state dependent and the mea-

surement noise is independent from the process noise. The state dependent process

noise covariance matrix is given in (5.10), where σA is the maximum acceleration and

σSR is the maximum steering rate due to physical limitations of the vehicle. The

definition of G(·) is provided in (5.11), which is the dynamic model for acceleration

and steering rate [76].

Qk(xk|k) = G(xk|k)diag(σ2
A, σ

2
SR)G(xk|k)

T (5.10)

88



G(xk|k) =1
2
(∆t)2 cos(φk|k)

1
2
(∆t)2 sin(φk|k) 0 ∆t 0

0 0 1
2
(∆t)2 0 ∆t


T

(5.11)

The measurement noises are assumed to be independent over time, whose covariance

matrices are provided below:

Rk = diag(σ2
zx , σ

2
zy , σ

2
zθ

) (5.12)

All the σs in (5.10) and (5.12) are unknown variables, which are used to construct

the covariance matrices. Totally there are 5 σs, which need to be learned during the

training of the TrafficEKF.

5.2.4 Environment Conditions and Controls

The motion model in (5.7) involves both the vehicle’s state and its control, and

the control of the tracked vehicle is usually not known to the tracker used by the

AV. A motion model without the control input will cause extra estimation errors

and degrade the tracker’s performance, as illustrated in Fig. 33 and 34. In Fig. 33,

usually a vehicle changes its direction following a road. However, without predicting

the control based on the road information, a tracker is not able to accurately predict

the vehicle’s future location which is affected by the road shape. Similarly, in Fig. 34

the effect of disregarding the traffic light information is illustrated. Also, other objects

such as other vehicles and pedestrians all affect how the tracked vehicle is driven. In

summary, without using the environment information, a tracker’s performance will

be degraded. However, how to estimate the control inputs in EKF is still an open

problem.
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Fig. 33.: Road condition affecting steering state.

5.3 Methodology

In this section, I introduce the proposed method TrafficEKF to improve vehicle

tracking performance using traffic information. I will present the method to represent

the traffic information in an rasterized image, and provide discussions on how to

process the rasterized image, and incorporate its information to the EKF.

5.3.1 Rasterized Images

In this chapter , I use the BEV rasterized image to represent the surrounding

environment, which includes information about the roads, traffic elements, traffic

lights conditions, and other detected traffic agents [87, 92, 93]. The rasterized image

is used for AV motion forecasting, which is created around the target vehicle based
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Fig. 34.: affic light condition affecting acceleration.

on the filtered results for detected traffic agents from previous updates and human

annotated high definition (HD) semantic maps, as illustrated in Fig. 35. The semantic

map usually contains all the labeled static elements along the route, such as positions

of traffic lights, and lane boundaries and connectivity. The traffic agents include all

the other detected vehicles, bikes, and pedestrians.

In the rasterized image, RGB colors are used to distinguish different items. At

time k, the rasterized image is created for tracked vehicle i by using the HD map and

tracking results from time k − 1, and denoted as F i
k. The tracked vehicle is created

as green rectangular box centered at a specified location in the rasterized image with

0 heading by translating and rotating the whole scene. The traffic light and its

condition are indicated by colored lane boundaries, e.g., red lane means that red light

is on. The other traffic agents are represented by blue boxes, and the black region

represents the road. Each pixel represents 0.5 meters. Details on the generation of

rasterized images can be found in [87].
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Fig. 35.: Rasterized image for target vehicle.

5.3.2 Network Structure

The network used for predicting the control uk is illustrated in Fig. 36. The

inputs are the past rasterized images and the past states. A ResNet [98] is used to

extract a 1 × 1000 feature vector from a rasterized image. The image feature and

the updated state estimate Cx̂k−1|k−1 are concatenated together as the input to two

fully connected (FC) layers [15], where C is a matrix to extract φ̂k−1|k−1 and v̂k−1|k−1

from x̂k−1|k−1. ReLU [15] is used as a nonlinear activation function between the two

FC layers. The two FC layers fuse the image feature and the vehicle state estimate,
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and output the control prediction, which is activated by a scaled Tanh function. The

scaled Tanh is adopted here because the acceleration can be either negative when the

vehicle is braking, or positive when the vehicle is accelerating. The same reasoning

also applies to the steering rate φ̇k. Because the output range from Tanh is [−1, 1], a

scaled version of Tanh is needed to predict the control. In this chapter , I assume that

the scale factors are 3.0 for the acceleration, and 0.5 for the steering rate, respectively.

Fig. 36.: Predicting control inputs from rasterized images.

Similar network structures have been used for predicting the vehicle position re-

cently without considering state estimation explicitly [86, 87, 99]. Different from these

existing methods, the proposed network explicitly incorporates the vehicle’s physical

dynamic model and a state estimator (EKF), and predicts the control input of the

dynamic model. The whole network is trained based on the EKF framework, which

is an end-to-end learning method. In Table 7, the details of the control prediction

network are provided.
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Table 7.: Detailed Network Structure.

Name Input Dimension Output Dimension

ResNet50 3× 244× 244 1× 1000

FC1 1× 1002 1× 512

ReLU 1× 512 1× 512

FC2 1× 512 1× 2

Tanh 1× 2 1× 2

5.3.3 Loss Functions for Training

In this subsection, I introduce the loss functions used for training the TrafficEKF.

5.3.3.1 Residual Error and Log-Likelihood

The measurement residual ỹk is the output from the measurement prediction

module. The loss function based on residual errors from time 1 to T can be defined

as:

LMRes =
T∑
k=1

‖ỹk‖22 (5.13)

Note that the calculation of the residual error does not involve its covariance Sk,

which is also evaluated by the EKF at each time step.

Instead of minimizing the residual error, I can maximize the measurement like-

lihood, by considering not only the residual, but also its uncertainty. The negative

log-likelihood for the measurement is provided as follows:

LML = −
T∑
k=1

log p(zk|z0:k−1) (5.14)
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5.3.3.2 Loss Functions and Regularization

I propose two different loss functions, based on either the residual error or the

negative log-likelihood as follows:

LRMS = LMRes + λ1r1(Q) + λ2r2(R) (5.15)

LLike = LML + λ1r1(Q) + λ2r2(R) (5.16)

Each loss function consists of two parts: the first term is either the residual error or

the negative log-likelihood, and the last two terms are regularization functions (r(·)

functions). The regularization functions are problem dependent. For example, they

can encourage the covariance matrix to be close to the manually optimized result [47].

λ1, and λ2 are the weights for regularization terms. The loss function encourages the

filter output to minimize the residual error or maximize the measurement likelihood.

5.3.4 TrafficEKF

The TrafficEKF forward and backward operations are illustrated in Fig. 30. The

forward operation is an EKF used for tracking, and the backward operation is to learn

the unknown parameters, which include the process noise covariance Q, measurement

noise covariance R, and the parameters in the ResNet, collectively denoted as ψ.

Different from existing methods, the network predicts the control inputs according

to the surrounding environment, and explicitly incorporates the physical dynamical

model of the vehicle.

To train the TrafficEKF, I use the BPTT method to calculate gradient with

respect to each training parameter. BPTT is a gradient-based method for training

a directed computation graph based on time series [7, 68, 15, 70]. The training

data are a sequence of input-output pairs {(zk, Fk), (x̂k|k,Pk|k, ỹk,Sk)}Tk=1, where the
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rasterized image Fk is constructed based on the perception results by combining the

tracked agents’ state estimates and the HD map. Note that the locations of all the

other tracked agents and the the HD map are given in the datasets [87], meaning that

the image can be easily constructed. When creating the rasterized image the location

and heading of the target vehicle are based on the filtered results in the dataset for

simplicity. Finally, the gradient descent optimization method is used to update the

parameters [70, 15].

The back propagation flow is shown in Fig. 30. The pink equations and left

arrows indicate the backward gradient flows. At each step k, the gradients are derived

from: (1) measurement error LMk , which is the error made by measurement prediction

LRMS, or LLike, (2) gradients from time step k + 1. Detailed derivations for back

propagation are skipped in this chapter for brevity. Details of back propagation for

the EKF part can be found in our previous work [7]. The gradients for updating the

noise covariances are:

∂L

∂Q
=

T∑
k=1

∂L

∂Pk|k−1

∂Pk|k−1

∂Q
(5.17a)

∂L

∂R
=

T∑
k=1

∂L

∂Sk

∂Sk
∂R

(5.17b)

The gradient updating the entire ResNet can be calculated as:

∂L

∂ψ
=

T∑
k=1

∂L

∂x̂k|k−1

∂x̂k|k−1
∂uk

∂uk
∂ψ

(5.18)

5.4 Experiments

In order to test our algorithm, I use the Lyft prediction dataset [87] for the

experiments. First, the framework is trained based on the filtered result which is

provided by the Lyft dataset. After the framework has been trained, I test its tracking

performance based on noisy detections, which are generated by adding noise to the
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original detections.

5.4.1 Implementation Details

The proposed algorithm is implemented in Pytorch [100] and Numpy [101] on a

PC with an Intel Xeon, 32G RAM, and Nvidia RTX 2080Ti. The manually tuned

EKF parameters are σ2
A = 3.5, σ2

SR = 0.5, σ2
zx = 0.1, σ2

zy = 0.1, and σ2
zθ

= 0.01.

5.4.2 Dataset Generation

The Lyft prediction dataset [87] is used for predicting the vehicle trajectories,

not for tracking the vehicle. Therefore, I modify the datasets to test our algorithm.

Each scene is 25 seconds long with measurement data at 10Hz. During each scene,

there is a different number of objects such as vehicles and pedestrians, which are

marked in different colors in the rasterized image. For each vehicle at each different

time step, I generate a corresponding rasterized image. Also, I select tracks that last

at least 15 seconds, for training and testing the proposed algorithm. Longer tracks

are preferred since they provide more information for training.

For training, I use the detections which are given in the Lyft dataset to learn

the system noise covariance matrices and the parameters in the ResNet. After the

training, the TrafficEKF can understand the effect by the surrounding environment

on the vehicle’s control. For this experiment, I simulate the measurements by adding

some random noise to the original filtered results. Then I test the whole framework

with the noisy measurements. The original results can be treated as ground truth for

testing the algorithm. The dataset is divided into training and validation sets.
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5.4.3 Training Results

In Table 8, the results for validation sets are provided. Each row represents a

certain loss function with a certain set of parameters being trained in the learning

process.The columns include the root mean square error (RMSE) and negative log-

likelihood for the measurement residuals. Results in the first two rows are obtained

by training the network parameters ψ, and the covariance matrices R and Q. Results

in the third and fourth rows are based on the EKF with trained R and Q without

using the predicted control inputs, which is equivalent to the EKFNet proposed in [7].

In the fifth and sixth rows, results are given by only training the network parameters

ψ to predict the control inputs. In the last row are results for a manually tuned

EKF. It is clear that by training all the parameters (ψ, R, and Q), the algorithm can

deliver the optimal result, in terms of either the minimum RMSE or the maximum

likelihood. As expected, in general the loss function based on RMS leads to a smaller

RMSE, and that based on the likelihood leads to a larger likelihood. I also test the

result by only train the noise covariance or the ResNet. The results are all better

than the manually tuned EKF, but not as good as those achieved via training all the

system parameters. These results show that the TrafficEKF works the best when all

the parameters are trained by the data.

In Fig. 38 the histogram of RMS values by using the loss function LRMS(ψ,Q,R)

is shown. I can see the distribution has a long and heavy tail before the training in

Fig. 37. After the training, the RMS errors become more concentrated to small

values, and the long tail disappears.

The runtime for this algorithm is around 80 Hz without considering the raster-

ized image generation. The generation of rasterized images is much slower than the

algorithm itself, it is around 5 Hz. The ResNet is fully optimized and running on
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Table 8.: Validation results. -LogL: negative log-likelihood.

Objective Func-

tion

RMSE

(meas)

-LogL

(meas)

LRMS(ψ,Q,R) 0.0009 -5.968

LLike(ψ,Q,R) 0.0014 -6.650

LRMS(Q,R) 0.0049 -4.156

LLike(Q,R) 0.0063 -5.324

LRMS(ψ) 0.0039 -3.805

LLike(ψ) 0.0078 -4.382

Manually tuned

EKF

0.0110 -2.522

the GPU, but the rasterized image is created on a single core CPU. The program is

not fully optimized for creating the rasterized image, which can be optimized in our

future work.

5.4.4 Testing Results

The testing results are obtained by using the noisy measurements from the vali-

dation datasets. In Fig. 39, the state estimates over time (trajectories), obtained by

the manually tuned EKF and the trained TrafficEKF respectively, are shown. The

TrafficEKf, represented by the blue trajectory, takes advantage of the map informa-

tion, especially during turns. The beginning is in the top right, and there is a straight

lane followed by a turn. In the beginning, both the TrafficEKF and EKF behave the

same. But during the turn, the EKF, represents by the green trajectory, overshoots

and has a bias error during the turn.
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Fig. 37.: Residual histograms before Traffic Aware training.

In Fig. 40, an example is provided where the vehicle stops in front of a red

traffic light, with detailed rasterized images illustrated in Figs. 41 and 42. The

vehicle is decelerating in front of the red traffic light. In the TrafficEKF, the traffic

light information is incorporated. It is clear from Fig. 40, the trajectory estimated by

the TrafficEKF is closer to the ground truth, while the EKF result converges slowly

without the traffic light information.

In Table 9, the testing results are compared with the ground truth. The perfor-

mance measures used here are the RMSE and negative log likelihood. The RMSE is

evaluated by taking the difference between the updated state estimate and the ground

truth. The likelihood here means the vehicle state’s posterior probability density func-

tion (PDF), evaluated at its true state. Usually these values, especially the RMSE,

are used for evaluating the performance of a filter. For both performance measures,
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Fig. 38.: Residual histogram after Traffic Aware training training.

lower values indicate better performance. Compared with the EKFNet proposed in

our previous work [7], which only trains Q, and R in the EKF, the TrafficEKKF leads

to a better performance by using the extra traffic information. Further, it is clear

that the TrafficEFK outperforms both the EKTNet and the manually tuned EKF no

matter which loss function has been used for training.

5.5 Conclusion

In this chapter , I proposed an traffic aware EKF called TrafficEKF, which not

only considers the vehicle’s dynamic state but also its surrounding environment. By

using deep learning and the EKFNet techniques, the TrafficEKF framework can be

trained to learn from the rasterized image and the past object state estimates, for

predicting the vehicle control inputs, and for optimizing the process and measurement
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Fig. 39.: Road shape effect.

noise covariance matrices used by the EKF. Numerical results show that the proposed

algorithm significantly improves the vehicle tracking performance, in comparison to

both a manually tuned EKF and an EKFNet without environment information. For

future work, I can explore the graph neural network to model the relationship among

different vehicles, and different motion models for the tracked vehicles.
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Fig. 40.: Red traffic light ahead.

Fig. 41.: Vehicle slows down.
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Fig. 42.: Vehicle stops, braking in front of red traffic light.

Table 9.: Testing results. -LogL: negative log-likelihood.

Objective Func-

tion

RMSE

(GT)

-LogL

(GT)

TrafficEKF

LRMS

0.2320 -0.3901

TrafficEKF

LLike

0.2843 -1.5313

EKFNet 0.3843 -0.3323

Manually tuned

EKF

0.8231 1.6732
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CHAPTER 6

UNCERTAINTY AWARE EKF: A TRACKING FILTER

UNDERSTAND THE LIDAR MEASUREMENT UNCERTAINTY

The goal of this chapter is to develop an extended Kalman filter (EKF) framework

called uncertainty aware EKF (UA-EKF) to improve the vehicle tracking accuracy for

autonomous vehicles. The proposed framework can learn and estimate the uncertainty

associated with the measurements provided by a LiDAR-based vehicle detection al-

gorithm. The UA-EKF has two major parts: one has the ability to estimate the

state-dependent measurement noise’s statistics for LiDAR object detections, another

is to create multiple-hypothesis measurements based on the detected vehicle’s head-

ing. The measurement uncertainties are learned based on the EKFNet, which is an

algorithm that can learn the system noise covariance from measurement data. Both of

the two major parts are used to compensate for the physical limitations of the LiDAR

measurements. I also give a detailed analysis of the measurement uncertainty, and

the methods to improve tracking performance during filtering. The obtained results

on the nuScenes datasets show that estimating the measurement uncertainty is an

efficient solution for tracking the vehicle based on LiDAR detections.

6.1 Introduction

Estimating the dynamic state and shape of a vehicle is a crucial aspect of au-

tonomous vehicles (AV). The goal is to estimate the location, orientation, and shape

of the vehicle in the surrounding environment. The results can be used for forecasting

the other vehicle’s motion and helping the AV to make future control decisions.
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Bayesian based nonlinear filters are usually used as a vehicle state estimation

algorithm. Popular nonlinear filters for state estimation include the extended Kalman

filter (EKF) [9, 45], the unscented Kalman filter (UKF) [46], and the particle filter

(PF) [102]. Extended Kalman Filter (EKF) is a popular nonlinear filter, which is

often used as a tracking algorithm that can fuse an appropriate motion model and

measurements [9]. For this chapter, I track the vehicle based on the measurements

from the LiDAR vehicle detections algorithm [103].

6.1.1 LiDAR Detection

LiDAR points cloud is necessary but also very challenging for object detection

[104, 2, 105, 106, 107, 108]. Compare with the visual objection detection and tracking

algorithms [5, 109, 19, 32] it has its advantages, it can detect the object in 3D space by

knowing not only the location but also the shape of the objects. For example, Voxel-

Net [107] uses a PointNet [107] for each voxel to generate feature representations with

3D sparse convolutions [110] then using 2D convolutions generates object detections.

PointPillars [2] change the voxel with a pillar to improve backbone efficiency, which

assumes only one object on each map location. SECOND [106] simplifies the Voxel-

Net and speeds up 3D convolutions. The detector I used in this chapter, CenterPoint

[103] has two steps, the first step is to roughly locate the center of the object then

the second step uses the regression head to get the refinement shape, location, and

heading. Even though some of the detection claim they also can track the objects,

still most of the methods only apply a 2D assignment and associate the closest de-

tections from the last detection results. In this work, I am using the detection result

for the CenterPoint [103] for vehicle tracking.

106



6.1.2 LiDAR Tracking

The LiDAR-based vehicle tracking has two categories. One is based on the Li-

DAR object detection algorithms and assumes the object is a single point target [111,

81, 82, 73], another is using the raw point cloud with extended object assumptions

[83, 85, 42]. The difference between the single point target and the extended target

is in the measurement model. One assumes only one detection point generated from

the target, another uses multiple detection points as detections.

For the first category, the detection algorithm can use the point cloud to estimate

the states either based on L-shape fitting algorithms [111, 84] or deep learning-based

object detections algorithms [81, 82, 103].

In the second category, the object is assumed to be an extended target, which can

generate multiple detections [83, 85, 42, 84, 33]. Usually, the object has been assumed

to have a special shape, such as a rectangle [84], or an ellipse [42, 85]. Based on these

assumptions, the object’s state can be estimated by using multiple measurements

points.

However, in most of the models, it is assumed that the LiDAR points follow the

known Gaussian/Gaussian mixture model, which is not realistic in practice.

Some of the LiDAR-based tracking algorithms assume the measurement noise

covariance is constant all the time [111, 81, 82]. From our analysis, the LiDAR mea-

surement uncertainties can be estimated from the distance and bearing to the ego

vehicle and the number of detections points. Also, in the literature, it was observed

that the vehicle heading estimated by the detection algorithm is sometimes 180°off

from the real heading. This problem was solved by simply rotating the heading

towards the track. However, the rotated heading could be the first several measure-

ments. In this case, the filter can easily lose the track of the object [81, 82]. In this
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chapter, I will provide an in-depth analysis on why this happens and how to handle

it with multiple measurements hypotheses.

6.1.3 Contributions

In this chapter, I use outputs from a deep learning-based object detection algo-

rithm, as the measurements for the tracker. The state-dependent measurement noise

statistics will be learned by using the EKFNet [7], which is an algorithm that can

learn the system noise covariance from data. For simplicity, I only use 2D tracking

instead of 3D tracking by ignoring the distance from the ground to detection and

the height of the vehicle. I more care about the 2D position, shape, and dynamic,

because in most cases, there will only be 1 vehicle in a particular location.

In summary, the new contributions in this chapter are:

• I construct a new framework called Uncertainty aware EKF (UA-EKF) to track

the vehicle’s state based on LiDAR detection by incorporating its uncommon

measurement uncertainties.

• I provide a detailed analysis of the physical limitation of LiDAR-based mea-

surements.

• I develop a method that can learn the state-dependent measurement uncertain-

ties with the ground truth.

• I provide different loss functions for different tracking objectives.

The rest of the chapter is organized as follows. Section 6.2, discussed some

preliminaries knowledge. Section 6.3 included in detail what is the LiDAR physi-

cal limitation and its measurement uncertainties. Section 6.4 include the proposed

method the UA-EKF framework. Section 6.5 is the experiment for the proposed
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framework with real LiDAR measurements.

6.2 Preliminaries

In this section, I discussed some preliminaries, which includes some background

knowledge of EKF, state transition, and measurement model for vehicle tracking and

output for LiDAR detection algorithm.

6.2.1 Extended Kalman Filter

Fig. 43.: EKFNet diagram [7]. s = {x̂,P}. Right arrows: forward flow; pink left

arrows: back propagation.

At time k, let us denote the vehicle’s state as xk, and the measurement as zmk .
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The state transition and measurement models are provided as follows:

xk = f(xk−1) + vk (6.1a)

zmk = h(xk) + wk (6.1b)

where f(·) and h(·) are nonlinear functions, and cannot be used directly to update

the covariances. Instead, the Jacobian matrices Fk and Hk are used. vk and wk are

the process and measurement noises, which are assumed to be zero mean Gaussian

random vectors with covariance matrices Qk and Rk respectively.

In Fig. 43 the EKFNet for learning the measurement noise is shown, and the

data flow to the right is the common EKF algorithm. The prediction module in Fig.

43 is used for state prediction:

x̂k|k−1 = f(x̂k−1|k−1) (6.2a)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (6.2b)

The measurement prediction module is used to evaluate the measurement residual ỹk

and its covariance Sk:

ỹk = zk − h(x̂k|k−1) (6.3a)

Sk = HkPk|k−1H
T
k + Rk (6.3b)

The update module in Fig. 43 provides the posterior state estimate. The Kalman
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gain Kk is calculated in (6.4a):

Kk = Pk|k−1H
T
kS−1k (6.4a)

x̂k|k = x̂k|k−1 + Kkỹk (6.4b)

Pk|k = (I−KkHk)Pk|k−1 (6.4c)

6.2.2 LiDAR Detection

The outputs of the LiDAR object detection algorithm, obtained from order-less

point clouds, are bounding boxes Bk = {bk0, bk2, ..., bkNk}, where the nth box bkn =

{xn, yn, zn, wn, ln, hn, αn}, for n ∈ [0, Nk]. {xn, yn, zn} usually is the center location

of the object, {wn, ln, hn} stands for the width, length, and the height, and αn is the

vehicle heading. For simplicity, In this chapter I assume that the vehicle is driving on

a 2D plane. So I ignore {zn, hn} by assuming only one vehicle in each map location.

Also, I focus on single object tracking, and only care about the detection which is

close to the tracked vehicle like [81].

6.2.3 Motion and Measurement models

This section discussed the motion and measurement model used in the tracking

filer.

6.2.3.1 Motion Model

Motion models have been used to improve the accuracy and stability of state

estimation for vehicle applications such as vehicle tracking applications or naviga-

tion. The vehicle is assumed to comply with a certain motion model which describes

its dynamic behavior; the choice of model complexity greatly influences the state

estimation performance.
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In this work, I use a motion model that closely represents the vehicle motion by

the application of nonholonomic constraints as proposed in [73, 74, 75, 76]. As shown

in Fig. 44 (1), the vehicle state is:

xk = [xk, yk, θk, vk, φk, wk, lk]
T (6.5)

where xk and yk are the rear center coordinates, θk is the global vehicle heading,

vk is the linear velocity, φk is the steering angle, and wl and lk are the widths and

the length of the vehicle respectively. r is the ratio between the distance from the

rear axle to the front of the vehicle and the vehicle length lk. For simplicity, I assume

r = 0.7 for all the vehicles. I assume that the vehicle is a front-wheel drive, and the

motion model f(·) governing how the state transitions [76, 73] is provided below:

xk+1 = xk + vk × cos θk × cosφk ×∆t (6.6a)

yk+1 = yk + vk × sin θk × cosφk ×∆t (6.6b)

θk+1 = θk + vk × sinφk ×∆t/(lk × r) (6.6c)

vk+1 = vk (6.6d)

φk+1 = φk (6.6e)

wk+1 = wk (6.6f)

lk+1 = lk (6.6g)

In the motion model, I assume the steering angle φk and velocity vk remain

constant between each updating. This model is usually called Constant Turn Rate

and Velocity (CSRV) model [77]. The main feature of the kinematic model of a

car like a vehicle is the presence of two nonholonomic constraints 6.6 refraining the
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front/rear wheels from moving slide ways .

6.2.3.2 Measurement Model

By using the detection box bkn, the measurements are the center position xmk , y
m
k

, heading angle θmk and the shape wmk , l
m
k of the vehicle:

zmk = [xmk , y
m
k , θ

m
k , w

m
k , l

m
k ]T + wk (6.7)

The measurement model h(·) shown in Fig. 45 is:

xmk = xk + (r − 0.5)× lk × cos θk (6.8a)

ymk = yk + (r − 0.5)× lk × sin θk (6.8b)

θmk = θk (6.8c)

wmk = wk (6.8d)

lmk = lk (6.8e)

Fig. 44.: Vehicle Motion Model.
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Fig. 45.: Vehicle Measurement Model.

G(xk|k) =

1
2
(∆t)2 cos(φk|k)

1
2
(∆t)2 sin(φk|k) 0 ∆t 0 0 0

0 0 1
2
(∆t)2 0 ∆t 0 0


T

(6.11)

6.2.3.3 Process and Measurement Noise

The state dependent process noise covariance matrix is given in (6.9), where σA

is the maximum acceleration and σSR is the maximum steering rate. The definition of

G(·) is provided in (6.11), which is the dynamic model for acceleration and steering

rate [7]. The measurement noise covariance is provided in (6.10).

Qk(xk|k) = G(xk|k)diag(σ2
A, σ

2
SR)G(xk|k)

T + diag(σ2
x, σ

2
y, σ

2
θ , σ

2
v , σ

2
φ, σ

2
w, σ

2
l ) (6.9)

Rk = diag(σ2
zx , σ

2
zy , σ

2
zθ
, σ2

zl
, σ2

zl
) (6.10)
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In most of the existing work, the measurement noise covariance Rk was assumed

to be a constant matrix. However, from our analysis, Rk is state-dependent because

of the physical limitation of the LiDAR measurements. In Section 6.3 I discussed in

detail the dependency, and the method to estimate the measurement noise.

6.3 Uncertainty with Lidar Measurement

LiDAR is a measurement technique that uses light emitted from a sensor to

measure the 3D location of a target. AVs may use LiDAR for obstacle detection

and avoidance to navigate safely through environments. For most of the sensors, the

measurement uncertainties can be assumed to be a constant value in EKF. However,

due to the physical limitation of the LiDAR sensor, the measurement uncertainties

are uncommon. This section is going to give a deep analysis of the physical limitation

of the LiDAR measurement, both the 3D location and the heading. And how to

estimate those uncertainties from measurements.

6.3.1 State Depended Uncertainty

The point cloud created by the LiDAR sensor measures the time-of-flight for

each laser beam from a fixed number of stacked laser-detector by rotating the moving

part 360°at a finite angular resolution [112]. A fixed number of measurement points

have been created due to those limitations. The more stacked laser-detector and

smaller the angular resolution the more measurement points could be created, which

also leads to a high computation burden. In this chapter, I assume that the object

is a vehicle in the surrounding environment, which can usually be represented as a

bounding box for the detection algorithm. Because of the distance from the tracked

vehicle to the ego vehicle and the tracked vehicle’s heading, there are two unique

uncertainties have been created.
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6.3.1.1 Distance Dependent Uncertainties

I denote the finite LiDAR angle resolution as αL, which makes the LiDAR mea-

surement accuracy distance-dependent. For example in Fig. 46, which is a bird-eye-

view (BEV) of the target, the point clouds are represented by red dots. Due to the

finite angular resolution, when the target vehicle is far away, the distance between two

adjacent measurement points becomes larger than that in a close-by target. In Fig.

47 , 48 and 49, the histograms of the measurement error for x, are provided for three

scenarios with different ranges of distance between the tracked vehicle and the ego

vehicle. It is can be seen that the measurement error is approximately Gaussian, and

its variance increases as the distance become larger. The same effect can be observed

for other measurements given by the detection algorithm. By checking the histogram

of the Root Mean Square Error (EMSE) for detection x with the ground truth. I can

easily find out the error distributed as a Gaussian and the variance increase with the

distance. The same effect applied to other measurement states also.

Fig. 46.: Finite angular resolution with different distance to ego vehicle.
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Fig. 47.: Distance < 10m, σ2
x = 0.0115.

Fig. 48.: Distance ∈ [10m, 30m], σ2
x = 0.0466.
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Fig. 49.: Distance > 30m, σ2
x = 0.1343.

6.3.1.2 Vehicle Heading Dependent Uncertainties

Because of the finite measurement angle resolution, the uncertainties are also

dependent on the target’s head with respect to the line of sight (LOS) direction

between the target and ego vehicles. For example in Fig. 50, there are two different

target vehicles at two different positions. Because all the measurement points are

generated from the visible surface, not only the distance but also the relative heading

creates the difference when measuring the length and width of the target vehicle. In

this figure, I can define the angle of view for the width as β1
W and length as β1

L for

the lth vehicle. Because of the finite measurement angle resolution, the measurement

uncertainties are larger when this angle is small, because fewer points will be reflected

from this side of the vehicle. In the extreme case, if a vehicle is just in front of the

ego vehicle, it is impossible to measure the length which is not visible, but it is easy

to measure the width.
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Fig. 50.: Finite angular resolution with different distance and angle to ego vehicle.

6.3.1.3 Measurement Noise Covariance

The measurement noise covariance for a target vehicle is a function of: 1. its

distance to the ego vehicle dQk . 2. its heading relative to the LOS direction φQk . 3. the

number of LiDAR points on the vehicle NpQk . In Fig. 52, all the inputs for estimating

the state-dependent uncertainties (measurement noise covariance) are illustrated. By

the independent noise assumption/approximation, I only consider the diagonal terms

in Rk, which are shown in (6.12). So, our goal is to construct a state-dependent

function:

Rk = Rm + g(dQk , φ
Q
k , Np

Q
k ) (6.12)
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where Rm is the common measurement noise which is measured from the detec-

tions and ground truths [81], and is a fixed matrix. The output from g(·) is the

state-dependent component that can change Rm. g(·) can be constructed by a fully

connected neural network, and the network structure is shown in Fig. 51. The net-

work has three layers and the first two layers are activated by ReLU, and the final

layer is activated by a weighted Tanh function [15].

Fig. 51.: Uncertainty Net work. Inputs are the states between the ego vehicle and

number of LiDAR points. Outputs are the correction for the measurements uncer-

tainties.

Fig. 52.: Inputs to estimate the state dependent measurement uncertainties.
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6.3.2 Heading Measurement Uncertainties

The heading of the target is also estimated from a group of points. However,

in many detection algorithms, the estimated heading may be in the wrong direction,

e.g., 180°off from the ground truth. In Fig. 53, the histogram of the heading error is

shown, where the y-axis represents the log-based distribution, and the x-axis is the

heading error in radians. There are totally four peaks in range [−π, π) , which are

at [0◦, 90◦,−90◦, 180◦] respectively with different probabilities. Because the object is

detected from a group of points, and the object is usually assumed to be a rectangle

box, the algorithm could make mistakes by deciding the wrong heading direction as

illustrated in Fig. 55, 56, 57,58. This is why the histogram of the heading error

has four different modes. I can manually select the heading which is the closest

to the ground truth from those four possible solutions, and the results are shown

in Fig. 54. In this case, the error has a Gaussian-like unimodal distribution. By

compensating for this unique uncertainty, our UA-EKF created 4 different hypothesis

tracks initially. Then during the tracking, the measurement also generates 4 different

pseudo measurements for each hypothesis. Each hypothesis will select the pseudo

detections based on the measurement likelihood. Please check Section 6.4.1.4 for

details.

6.4 Methodology

The goal of the proposed method is to find a method to compensate for the

unique uncertainties mentioned in Section 6.3. This section begins with the UA-

EKF framework, and the following is the loss function that is used for learning the

uncertainty Net.
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Fig. 53.: Heading Error Without Correction.

Fig. 54.: Heading Error With Correction.
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Fig. 55.: Heading 1.

Fig. 56.: Heading 2.

Fig. 57.: Heading 3.
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Fig. 58.: Heading 4.

6.4.1 Uncertainty Aware Extended Kalman Filter

The proposed method UA-EKF has two main parts: one has the ability to esti-

mate the state-dependent measurement noise covariance based on LiDAR object de-

tections; another is to create multiple hypotheses and pseudo measurements based on

the detected vehicle heading. The estimated measurement uncertainties are learned

based on the EKFNet.

6.4.1.1 Learning Measurement Uncertainties

The measurement noise covariance Rk is estimated by using (6.12) , and g(·) is

learned by using the modified EKFNet. The EKFNet forward and backward opera-

tions are illustrated in Fig. 43. The forward operation for EKFNet is the same as the

EKF, which is used for tracking. The backward operation is to learn the unknown

parameters in the network which is shown in Fig. 51 and denoted as ψ. Different

from existing methods, the network g(·) predicts the measurement uncertainties by

using zQk .

To train the network f(·), I use the backpropagation through time (BPTT)

method to calculate the gradient for the loss function with respect to the training

parameter. BPTT is a gradient-based method for training a directed computation
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graph based on time series [7, 68, 15, 70]. The backpropagation flow is shown in Fig.

43. The pink equations and left arrows indicate the backward gradient flows. At

each step k, the gradients are derived from: (1) error made by loss function L, (2)

gradients from time step k+ 1. Detailed derivations for backpropagation are skipped

in this chapter for brevity. Details of backpropagation for the EKF part can be found

in our previous work [7]. Finally, the gradient descent optimization method is used

to update the parameters [70, 15].

6.4.1.2 Multiple-Hypothesis Tracking

Due to the heading estimation uncertainty discussed in Section 6.3.2, a modified

Track Oriented Multiple-Hypothesis Tracking (TO-MHT) algorithm [9, 45], has been

used for single vehicle tracking. The hypothesis space can be summarized as:

{
lhk , P hk

k|k(xk)
}Hk
hk=1

(6.13)

where lhk is the log weight for Track Hypothesis hk, P
hk
k|k(xk) is the posterior prob-

ability density function (PDF) of xk under Track Hypothesis hk given all the mea-

surements up to time k (z1:k), and Hk is the total number of hypotheses at time k.

In the beginning, four hypotheses have been created and their weights are initialized

based the probabilities of the four heading estimates. The log weight for the hkth

Track Hypothesis is updated as:

l̃hk = lhk−1 +max
{

logP
(
zmik |P

hk
k|k−1 (xk)

)}4

i=1
(6.14)

where l̃hk is the un-normalized log weight, {zmik }4i=1 are the pseudo measurements by

rotating θmk four times with a 90°increment, P hk
k|k−1 (xk) is the predicted state PDF for

Track hk. The physical meaning of the second term is to select the most likely pseudo
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measurement to update the vehicle state. After calculating all the un-normalized log

weights for all the hypotheses, the weights need to be normalized.

During the tracking process, some low-weight hypotheses will be eliminated from

the hypothesis space according to a predefined threshold. The track hypothesis with

the highest weight is used as the tracker output.

6.4.1.3 Multiple hypothesis tracking

6.4.1.4 Multiple-Hypothesis Tracking

Due to the heading estimation uncertainty discussed in Section 6.3.2, a modified

Track Oriented Multiple-Hypothesis Tracking (TO-MHT) algorithm [9, 45], has been

used for single vehicle tracking. The hypothesis space can be summarized as:

{
lhk , P hk

k|k(xk)
}Hk
hk=1

(6.15)

where lhk is the log weight for Track Hypothesis hk, P
hk
k|k(xk) is the posterior prob-

ability density function (PDF) of xk under Track Hypothesis hk given all the mea-

surements up to time k (z1:k), and Hk is the total number of hypotheses at time k.

In the beginning, four hypotheses have been created and their weights are initialized

based on the probabilities of the four heading estimates. The log weight for the hkth

Track Hypothesis is updated as:

l̃hk = lhk−1 +max
{

logP
(
zmik |P

hk
k|k−1 (xk)

)}4

i=1
(6.16)

where l̃hk is the un-normalized log weight, {zmik }4i=1 are the pseudo measurements by

rotating θmk four times with a 90°increment, P hk
k|k−1 (xk) is the predicted state PDF for

Track hk. The physical meaning of the second term is to select the most likely pseudo

measurement to update the vehicle state. After calculating all the un-normalized log
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weights for all the hypotheses, the weights need to be normalized.

During the tracking process, some low-weight hypotheses will be eliminated from

the hypothesis space according to a predefined threshold. The track hypothesis with

the highest weight is used as the tracker output.

6.4.2 Loss Function

In this subsection, I introduce the loss function used for training the EKFNet.

First, let us consider the l2 norm of the estimation error, which is the difference

between the ground truth xGk and x̂k|k. The corresponding loss function over T time

steps is:

LG =
T∑
k=1

‖xGk − x̂k|k‖22 (6.17)

The measurement log likelihood can be used to improve the measurement associ-

ation. At each time, the measurement residual ỹk and its covariance Sk is calculated.

The negative log-likelihood for measurement residuals is provided as:

LML = − log

(
T∏
k=1

p(zmk |zm0:k−1)

)
(6.18)

= −
T∑
k=1

log p(zmk |zm0:k−1)

The total loss function is a combination of the two loss functions introduced above:

L = λ1L
M
L + λ2L

G (6.19)

where λ1 and λ2 are hyper parameters, which are set to 1 in this chapter.

127



6.5 Experiment

6.5.1 Datasets Creation and Implement Details

As no benchmark for this task is available so far, I construct a new dataset from

the nuScenes dataset [93] and use the CenterPoint [103] as the detection algorithm.

The CenterPoint gives multiple detections for multiple objects at each time frame. I

select the closest detection to a particular target as its detection as proposed in [81].

Even though the vehicle is not detected on every frame, ™I only selects the tracks

with gaps less than two seconds. This dataset is created for tracking.

The learning dataset is created based on the tracking dataset with corrected

heading measurements, by selecting the closest heading from the pseudo measure-

ments with ground truth. The ground truth state xGk is created by running the EKF

smoother on the human-annotated ground truth data. The proposed method imple-

mented with PyTorch [100] on a PC with an Intel Xeon, 32G RAM, Nvidia RTX

2080Ti.

6.5.2 Results

6.5.2.1 Training Results

The training is accomplished by the EKFNet, with the proposed loss function in

Section 6.4.2. The training data sets have a total of 600 tracks, and the testing data

sets have 200 tracks for testing the EKF’s tracking performance by using the learned

measurement covariance matrix. The testing metrics include the RMSE between the

estimated state and the ground truth, the error between the predicted measurements

and real measurements, and negative log-likelihoods for the state and measurements.

Figure 59 60 display the histogram for EKF without using the network, and Fig-
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Fig. 59.: RMSE for states, without using the Uncertainty Net.

ure 59 60 are the results for using the learned state-dependent covariance matrix are

shown respectively. From these figures, it is clear that by learning the measurement

uncertainty, the proposed method significantly improves the tracking performance in

terms of both the RMSE and measurement likelihood. In Table 6, the performances

of the traditional EKF and EKF using the uncertainty Net are compared, in terms

of all the different testing metrics. It is clear that in both the training and testing

stages, the tracking performance has been significantly improved after learning the

measurement uncertainty parameters.

6.5.2.2 Tracking Results

The tracking results are obtained by using the tracking dataset.Different from

the training dataset, heading measurements are not corrected in the tracking dataset.

One example is shown in Fig. 63 64, where the red x represents the first detection, and
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Fig. 60.: -LogL for measurements, without using the Uncertainty Net.

Fig. 61.: RMSE for states, using the Uncertainty Net.

130



Fig. 62.: -LogL for measurements, using the Uncertainty Net.

green arrow represents the heading state. In this example, the detection algorithm

makes a mistake for the first measurement. It takes the traditional EKF several time

steps to converge to the right heading estimate. It also has large estimation errors in

the mid of the track, when heading measurements provided by the detection algorithm

are wrong. In comparison, the proposed method can keep the track of the vehicle after

the second time steps by filtering out the unlikely hypotheses and correcting the wrong

heading measurements, which leads to a much more accurate trajectory estimate. In

Table 11, the performances of four tracking approaches, EKF, EKFNet, and UA-

EKF without uncertainty Net, and UA-EKF. Compared with the manually tuned

EKF, both the EKFNet and UA-EKF without UN improve the tracking performance

incrementally. The UA-EKF, with the uncertainty Net’s help, outperforms all the

other tracking methods in terms of all the evaluation metrics.
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Table 10.: Training results. -LogL: negative log-likelihood.

Metrics RMSE

(State)

RMSE

(meas)

-LogL (State) -LogL (meas)

Training

(EKF)

0.2498 0.2681 -0.9254 3.4593

Testing

(EKF)

0.2245 0.2277 -1.0154 3.3841

Training

(EKF-Net)

0.1134 0.1626 -7.3652 0.6627

Testing

(EKF-Net)

0.1009 0.1309 -7.5732 0.5587

6.6 Conclusion

In this research work, I proposed a framework called Uncertainty Aware EKF,

which is used for vehicle tracking by understanding the uncommon measurement

uncertainties from the LiDAR-based vehicle detections. The proposed method has

two major components, one is estimating the LiDAR measurement noise, another is

creating multiple hypotheses for the measurement heading. The obtained results on

the nuScenes datasets show that understanding the measurement uncertainty is an

efficient solution for tracking the vehicle based on the LiDAR detection.
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Fig. 63.: UA-EKF tracking result.

Table 11.: UA-EKF tracking result

Metrics RMSE

(State)

RMSE

(meas)

-LogL (State) -LogL (meas)

EKF 0.5932 0.6987 1.4424 4.9746

EKFNet 0.4424 0.4676 -0.4876 3.3876

UA-EKF(No

Uncertainty

Net)

0.2645 0.2887 -1.7864 1.6576

UA-EKF 0.1498 0.1743 -5.8476 0.7987
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Fig. 64.: EKF tracking result.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, I made two contributions to improve the performance of

learning assisted tracking systems. One is to use deep learning techniques to track an

object with unstructured measurement data. Another one is to use machine learning

techniques to improve the performance of a tracking filter.

For the first aspect, visual object tracking was used as an example to demonstrate

that the tracking system can track an object with unstructured measurements. For

the semi-supervised visual object tracking method, I departed from the traditional

fully convolutional Siamese network and developed a variational Siamese network

that trains feature embedding through both supervised and unsupervised learning.

The embedded features are represented by multivariate Gaussian distributions in a

feature space, and the distance between two objects’ features is measured by an

information metric (Wasserstein distance). For the extended visual object tracking

work, I modeled the visual object as an extended target. The estimates of both

the kinematic states and shape parameters are updated based on multiple detection

points. I also provided an analysis to explain why the single point target assumption

is not sufficient. To the best of our knowledge, this is the first work where the

visual object is modeled as an extended target and a closed-loop detection-tracking

framework is proposed with the convolutional neural network as a detector.

The second aspect is how to use the data to improve the tracking algorithm. In

this part, I used the EKF as the desired algorithm to be optimized. For EKFNet,
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I proposed a method that can fine-tune the EKF automatically with or without the

ground truth data. For learning the best process and measurement noise covariances

offline, I presented four different objective functions. The whole framework is trained

using gradient descent, and the gradients are calculated based on BPTT. For the

TrafficEKF, the proposed method not only considers the vehicle’s dynamic state but

also its surrounding environment. By using deep learning and the EKFNet tech-

niques, the TrafficEKF framework can be trained to learn from the rasterized image

and the past object state estimates, for predicting the vehicle control inputs, and for

optimizing the process and measurement noise covariance matrices used by the EKF.

For the uncertainty-aware EKF, I proposed a method that can estimate the measure-

ment uncertainty, which is used for vehicle tracking by understanding the uncommon

measurement uncertainties from the LiDAR-based vehicle detections. The proposed

method has two major components: one is estimating the LiDAR measurement noise

statistics, and another is creating multiple hypotheses for the heading measurements.

All the methods proposed in this dissertation are aimed to improve the tracking

performance with the assistance of deep learning. Instead of complicated mathe-

matical modeling of the system, I used a data-driven approach to “learn” the best

parameters which provide better performance.

7.2 Future Work

Sensor fusion and tracking play an important role in autonomous systems, espe-

cially in the perception sub-systems. With deep learning techniques becoming mature

and more and more sensors being used to sense the surrounding environment, the per-

ception system faces new challenges. In this dissertation, several topics were discussed

to help the traditional tracking system cope with these challenges. There is a lot of

future work which can be done after this dissertation.
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The first area the current work can be extended is multi-object tracking (MOT),

which has not been touched in this dissertation. However, there is potential work

that needs to be explored. Since the single tracker is the building block of an MOT

tracker, what has been proposed in this dissertation can be used to develop an MOT

tracker to improve its data association and tracking performances.

The second area is tracking aided detection. Currently, object detection algo-

rithms only treat each measurement individually, and the previous detection results

do not contribute to the current detection process. However, for most of the applica-

tions, for example, autonomous vehicles, the measurement data correlates from one

frame to the next. Also, due to sensing limitations, a sensor may not “see” the object

which is hidden or missed by a detector. The tracking system, which provides pre-

dictions for the future state and sensor measurements, can help improve a detector’s

performance.

The intelligent tracking system will shine its light on autonomous systems with

the information provided by data. There could be great potentials for researchers to

continue working on it.
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