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Abstract

Modern software development is extremely collaborative and agile, with unprece-
dented speed and scale of activity. Popular trends like continuous delivery and con-
tinuous deployment aim at building, fixing, and releasing software with greater speed
and frequency. Bug localization, which aims to automatically localize bug reports to
relevant software artifacts, has the potential to improve software developer efficiency
by reducing the time spent on debugging and examining code. To date, this problem
has been primarily addressed by applying information retrieval techniques based on
static code elements, which are intrinsically unable to reflect how software evolves
over time. Furthermore, as prior approaches frequently rely on exact term matching
to measure relatedness between a bug report and a software artifact, they are prone to
be affected by the lexical gap that exists between natural and programming language.

This thesis explores using software changes (i.e., changesets), instead of static
code elements, as the primary data unit to construct an information retrieval model
toward bug localization. Changesets, which represent the differences between two
consecutive versions of the source code, provide a natural representation of a software
change, and allow to capture both the semantics of the source code, and the semantics
of the code modification. To bridge the lexical gap between source code and natural
language, this thesis investigates using topic modeling and deep learning architectures
that enable creating semantically rich data representation with the goal of identifying
latent connection between bug reports and source code. To show the feasibility of the
proposed approaches, this thesis also investigates practical aspects related to using a

bug localization tool, such retrieval delay and training data availability.
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The results indicate that the proposed techniques effectively leverage historical
data about bugs and their related source code components to improve retrieval accu-
racy, especially for bug reports that are expressed in natural language, with little to
no explicit code references. Further improvement in accuracy is observed when the
size of the training dataset is increased through data augmentation and data balanc-
ing strategies proposed in this thesis, although depending on the model architecture
the magnitude of the improvement varies. In terms of retrieval delay, the results
indicate that the proposed deep learning architecture significantly outperforms prior

work, and scales up with respect to search space size.



CHAPTER 1

INTRODUCTION

Over the years, software development processes have been modernized to support
efficient building and deployment of software systems. Practices such as continuous
integration and continuous deployment focus on capturing source code evolution over
time and allow to coordinate efforts of multiple developers to instantly deliver software
to end users |1}, 2, 13]. As a result, modern software development is highly dynamic with
extremely high code churn and the number of contributing developers [4, 5]. At the
same time, performing common development tasks, such as debugging, maintaining,
or updating the code, has become more challenging due to the large volumes of code
that have to be analyzed and comprehended by software developers to successfully
complete the task at hand.

Locating and fixing software bugs has persisted as one of the most common and
important tasks software developers face on a daily basis. In fact, the year 2017
has been marked as ” The year that software bugs ate the world” [6], which serves
as a reminder that in an environment in which software size and complexity grows
constantly, and production deadlines are pressing, software bugs are bound to happen,
and, in due time, have to be resolved. To fix a bug, a developer first analyzes the
bug report looking for hints about bug location and then explores the source code
to identify a few potential bug-related code entities for which undesired behavior is
later confirmed through debugging [7]. The process of identifying relevant software
artifacts, such as classes or methods, given a bug report is typically referred to as bug

localization |8} 9.



Supporting developers during bug localization is one of the long-standing goals
in the software engineering research community, due to its potential to improve prac-
tice by reducing the time developers spend examining code when addressing a newly
reported bug. Automatically linking a bug report to its most relevant software ar-
tifacts is predominantly performed using Information Retrieval (IR) methods, where
the bug report text is used to formulate a query that is matched to a corpus of code
elements, i.e. classes or methods. The retrieved software artifacts are subsequently
ranked according to their relatedness to the bug report.

Unfortunately, despite numerous efforts, the accuracy of bug localization ap-
proaches is not yet high enough for widespread use, especially as it applies to dif-
ferent software projects that vary in bug report and code style [10, [L1]. Recently,
researchers observed that bug localization techniques are strongly influenced by the
types of bug reports in the project [12, [13]. Bug reports differ based on how they
describe the software failure, e.g., when bug reports are written by expert developers
they tend to include detailed information about the source of the bug, such as stack
traces or even direct references to relevant source code artifacts [10], while bug reports
created by end-users that are unfamiliar with the source code, typically provide only
high-level description of the observed faulty behavior [14]. For this second category
of bug reports more sophisticated bug localization techniques that, e.g., mine revision
histories or build higher-level representations of the source code, are required.

Many tools and techniques proposed to date, view the source code as a static
set of documents, which do not change over time [15, 16, |17, |18, |19, 20, 21} |22,
23]. However, unlike some natural language corpora, source code is a subject of
constant evolution. As a result, techniques based on static data are susceptible to
become quickly outdated. In addition, as the software evolution process itself encodes

important information about the project, disregarding the notion of change may also



lead to ignoring the key data to locate relevant software artifacts.

To introduce dynamics of software evolution into tools and techniques targeting
bug localization, researchers have recently investigated using changesets (or commits)
as the main unit to construct retrieval models [24] |25, 26]. Changesets, which rep-
resent the differences between two consecutive versions of the source code, are the
primary dimension of data created as software evolves. Changesets have a unique
property of capturing both the semantics of the source code, expressed in each local
change, and the semantics of the change, encoded by the grouping of multiple local
changes within a changeset boundary. Moreover, as changesets are committed into a
source code repository, they also capture additional important information about a
software development process, such as the time and the author of the modification.

The primary goal of this thesis is to study the usage of changesets towards con-
structing models effective at retrieving source code artifacts (i.e., classes or change-
sets) related to a newly reported bug. We specifically focus on models that are able
to create context-aware data representations to bridge the gap between a program-
ming language, which defines software functionalities in a rigid and highly-structured

manner, and a natural language that is used to describe software failures.
1.1 Contributions of the thesis

Investigating contextual models for bug localization. As software evolves
rapidly and is actively maintained by multiple developers, different portions of the
code base become affected by distinctive identifier naming patterns and conventions,
which exacerbate the already existing semantic gap between bug reports and related
code elements, posing a significant challenge to bug localization techniques based
solely on token similarity [27]. Surveys of practitioners have also indicated that bug

reports that explicitly mention the names of classes or methods relevant to the bug



fix do not require automated bug localization while assisting in localizing bug reports
with large semantic gaps with the code base is likely more valuable to developers [28].

To bridge this gap, this work explores using probabilistic and deep learning
models to build semantically rich representations of bug reports and source code
artifacts. More specifically, first, we focus on using a topic model that leverages
the history of previously fixed bug reports to improve the accuracy of the model.
Next, encouraged by recently observed improvement in NLP domain fueled by deep
learning approaches, we move toward a deep learning architecture to explore different

strategies to encode changesets semantics.

Addressing different types of bug reports. Bug reports may contain a variety
of content relevant to a specific bug, including description of observed abnormal
behavior, relevant class names or components (when known to the reporter), and
observed stack traces if the bug resulted in a failure. Depending on the content
present in a bug report, different strategies can be employed to best utilize provided
information, leading to increased retrieval accuracy.

In this work, we predominantly focus on improving retrieval for bug reports which
lack code references or other localization hints, hence are typically the most challeng-
ing to locate from the perspective of software developers. To this end, we leverage
contextual models trained on historical data to capture correlation between natural
language and the code base, and propose an adaptive approach that dynamically

adjusts the prediction based on the character of a bug report.

Efficient approaches to bug localization. There are two main disadvantages of
using IR-based models for bug localization. First, IR models typically do not support
adding new information to the already trained model, hence, they require periodical

re-training, which can be expensive and time-consuming even on the latest hardware.



Secondly, as IR-based models require performing pairwise comparison between a bug
report and all software artifacts, the cost of applying such techniques for large software
projects may be prohibitively high due to retrieval delay.

To address the first problem, we propose an approach leveraging an online variant
of the probabilistic topic model, Online Latent Dirichlet Allocation, which provides
an update procedure that allows introducing new data as they arrive. For the second
issue, we explore a recently proposed late interaction deep learning architecture that
delays interaction between a bug report and a software artifact (i.e. similarity com-
putation), which, in turn, enables efficient retrieval through an approximated search

strategy.

Data augmentation for bug localization. While deep learning models have shown
great potential towards bug localization, they are often hamstrung by insufficient
training data, particularly in the context of project-specific data. Training a deep
learning model for bug localization requires a substantial training set of fixed bug re-
ports, which are at a limited quantity even in popular and actively developed software
projects.

To address that, this work explores using synthetic training data on transformer-
based deep learning models for bug localization. To generate high-quality synthetic
data, we propose novel data augmentation operators that act on different constituent
components of bug reports. We also describe a data balancing strategy that aims to
create a corpus of augmented bug reports that better reflects the entire source code

base.
1.2 Structure of the thesis

The organization of this thesis is as follows. Chapter [2| describes how to apply in-

formation retrieval toward bug localization, and discusses advantages and challenges



associated with leveraging changesets and addressing different types of bug reports.
In Chapter [3, we review the related work and contrast it with the proposed ap-
proaches. Chapter [4] introduces JINGO, an Online LDA model build on changesets
that leverages historical data and adapts to different types of bug reports. Chapter
describes a deep learning model that uses highly efficient retrieval architecture for
bug localization. Chapter [6] proposes a novel bug report augmentation strategy that
increases the number of training examples to further improve the performance of deep

learning models for bug localization. Finally, chapter [§ outlines the future work.



CHAPTER 2

BACKGROUND

This section starts with an introduction to applying IR-based models in the context
of bug localization, followed by a description of common metrics used to evaluate the
performance of such models. Next, we define and outline the structure of a changeset,
and discuss the benefits and challenges associated with using changesets as a primary
data unit. Finally, we characterize different types of bug reports that can occur in a
software project and examine how they unique properties may affect a bug localization

technique.
2.1 Information retrieval-based bug localization

Bug localization is often framed as an Information Retrieval (IR) task: given a
text of a bug report (i.e. query) find the most appropriate program elements (i.e.
documents). Figure (1| depicts an overview of an IR system towards bug localization,
which comprises of two essential steps: building a retrieval model and retrieving

software artifacts for a new bug report.

1. Building retrieval model 2. Software artifacts retrieval

<)

Bug report

>

Corpus
~— . .
<[> > [Document Processor > E — : Rlzﬁtkrilr?gag:gr}ﬁe
2 : Documents

Software artfacts . . w».| Retrieval

. model
Token 3| Token Terms
extractor processor

Ranking

Fig. 1.: Information retrieval system for bug localization.



The first step of building an IR model is collecting a set of input software artifacts.
Although the majority of bug localization techniques use classes or methods as the
input documents [29, |30} 31|32} 33|, the focus of this work is exclusively on changesets.
Hence, the input to the model is a collection of changesets, extracted from a project’s
repository. Next, the input documents are passed to a document processor which is
responsible for creating a corpus from raw data provided on its input (i.e. text of
changesets). The process starts with a tokenizer splitting each document into a list
of tokens based on whitespace characters. The tokens are then passed to a token
processor that applies a set of transformations to each of them, producing a final set
of terms that forms a document in a corpus. The following set of transformations is
commonly used for processing code-related data |25} |34} 35].

1. Split: divide tokens based on non-alphabetical characters or conventions (e.g.,
“ClassName” becomes “Class” and “Name”);

2. Normalize: convert all upper case letter to lower case letters;

3. Filter: remove common words and stop words, such as “and”, “or”, “a”; remove

programming language keywords, such as “class”, “void”, “int” (Java);

4. Stem: extract the root word of a token by removing prefixes and suffixes (e.g.,

“writing” becomes “writ”, “classes” becomes “class”);

5. Prune: remove tokens that are too frequent (e.g., more than 80% of docu-

ments), or too rare (e.g., less than 5% of documents);

6. Encode: replace tokens with unique numeric identifiers, such that the same

tokens are encoded with the same identifier.

The resulting corpus of documents is fed into a retrieval model with the objective

of building an efficient data representation that groups similar documents together.

8



After the training is completed, the corpus of documents is encoded by the model
and forms an index. Depending on the underlying model, the notion of similarity and
how it is computed can vary. Here, we describe three main types of models used for
IR-related tasks.

Vector Space Model (VSM). Proposed by Salton et al. [36], VSM is an algebraic
model for representing a text document. Based on the corpus of documents, VSM
constructs a term-document matrix C' of size N x D, where N is the number of unique
terms and D stands for the number of documents in the corpus, such that each doc-
ument from a corpus is represented by a vector of term weights. Computing term
weights, given a document in a corpus, is most often based on the classical weight-
ing scheme term frequency and inverse document frequency (tf-idf), which increases
a term weight accordingly to the term frequency in a document, while decreases it
proportionally to the term frequency in other documents. Intuitively, the more fre-
quently term ¢ occurs within a document d, and the less frequently it occurs in other
documents, the higher the weight of term ¢ in the document d.

Similarity between two documents in VSM model is estimated based on a vector
similarity metric, such as cosine similarity. Given the data representation used by
VSM, two documents are considered similar if they exhibit a similar frequency of
terms, while the context in which the terms occur is ignored, hence all bug localization
techniques based on VSM have a limited accuracy ceiling [11].

Topic model. A topic model is a probabilistic model that identifies an abstract set
of topics (or common themes) in a corpus, such that documents describing similar
concepts should be characterized by similar topics. For instance, documents referring
to “soccer” and “swimming” should be grouped under a common theme of “sport”,
while “doge” and “bitcoin” should belong together in “unstable cyrptocurrencies”

category. Given a corpus of documents, a topic model discovers K latent topics,



which can be subsequently used to encode documents. In particular, each document
is represented by a topic vector of size K, such that ¢-th position in the topic vector
corresponds to the strength of topic k; in the document.

Similarly as for VSM, a vector similarity metric can be used to compare topic
vectors of a pair of documents. However, unlike VSM, a similarity in the context of
topic models relies not only term frequency, but, through the topics, captures implicit
context expressed within a document.

There are multiple approaches to constructing a topic model. In this work, we

focus on Latent Dirichlet Allocation (LDA) model, proposed by Blei et al. [37]. More
detailed description of LDA is provided in Chapter [4.2]
Word embedding-based models. A word embedding refers to a real-valued vec-
tor representation of a word, such that words with a similar meaning have a similar
representation. Word embeddings are typically learned using a neural network with
the goal of creating a d dimensional embedding space that groups words with anal-
ogous meaning next to each other in the embedding space. For instance, “soccer”
and “swimming” should be close to each other, and away from “doge” and “bitcoin”.
Given that each word is represented by a vector, each document becomes a matrix,
which is more computationally expensive to use for the purpose of similarity compu-
tation. Hence, most often an aggregation operation (e.g., average) is used to create
1d vector to represent a document.

As before, pairwise comparison between two documents is based on applying
selected vector similarity metric to documents vectors. Compared to VSM-based
models, which disregard the notion of context, embedding-based approaches have the
advantage of capturing the meaning of words. Compared to topic models, that infer
a document-level context, embeddings build the context at a word-level.

Powered by the success of word embeddings models 38, 139], in the recent years

10



we observed an emergence of advanced neural network architectures targeting vari-
ous natural language processing tasks. In particular, introduced by Devlin et al. [40]
Bidirectional Encoder Representations from Transformers (BERT) based on a deep
learning architecture, Transformer, proposed by Vaswani et al. [41], brought the signif-
icant improvement in how machines can interpret and reason about natural language.
In this work, we leverage BERT-based model to explore its potential in the context

of bug localization. Detailed description of BERT is provided in Chapter [5.2]

The second step in the IR-based bug localization is retrieving relevant software
artifacts for a newly reported bug. To this end, a bug report is passed to the model
that (1) encodes a bug report in a same manner as the corpus of documents, and (2)
performs a pairwise comparison between encoded bug report and documents in the

index, and subsequently ranks the documents based on the similarity.
2.2 Evaluation of IR models

Given a software project with a collection of B bug reports, and a corpus of S
software artifacts ranked by an IR-based bug localization model, the retrieval perfor-

mance is measured with the following set of metrics [29, 25| 32].

Mean Reciprocal Rank: MRR quantifies the ability of a model to locate first
relevant software artifact to a bug report. For each bug report b, the first relevant

software artifact with a rank N, is used to compute a Reciprocal Rank (RR).

1
RRb:N

The MRR score is then calculated as an average of RR across all B bug reports.
|B|

1 1
MRR=—> —
B ; RR,

11



Values of MRR ranges between 0 and 1, where 1 corresponds to the perfect score
achieved when one of the relevant artifacts is ranked first for all bug reports. In-
tuitively, by focusing only on the first relevant artifact, MRR ignores the overall
ranking. However, typically only a few artifacts are related to each bug, and cor-
rectly identifying at least one of them can help a developer to discover other culprits

more effectively [42, 29].

Precision@K: PQK evaluates how many of the top-K software artifacts in the rank-
ing are relevant to a bug report. The value of precision for a bug report b, PQK,, is
equal to the number of relevant artifacts Rel(i) located in the top-K positions in the
ranking.

POK, — szi o Rel (i) 1 if artifact at position 7 is relevant

e ,  Rel(i)

0 otherwise

The value of PQK across a collection of B bug reports is computed as an average of

PQK,,.

P@QK value can implicitly indicate how much effort is required from developer to
examine the ranking and find the relevant artifacts. For instance, in an ideal scenario
(P@QK=1), all the relevant information are on the top of the ranking, while when
P@QK j 1, the developer is required to identify false positives manually. To account

for the developers efforts, PQK is computed at K = [1, 3, 5].

Mean Average Precision: MAP measures how well a model can locate all software
artifacts relevant to a bug report. For each bug report b, the positions of all relevant

software artifacts in the ranking are used to compute an Average Precision (AvgP)
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value.

SIS P@iy x Rel(i)
AvgP, = ==
vITe # relevant artifacts

MAP is then calculated as an average of AvgP across all B bug reports.
|B|
1 1
MAP = — _—
| Bl ; AvgP
Similarly, as for MRR, values of MAP range between 0 and 1, with 1 representing per-
fect retrieval result, such that all relevant artifacts occupy consecutive top positions

in the ranking.
2.3 Leveraging changesets for bug localization
2.3.1 Structure of changesets

Changesets encode a set of related code modifications that are committed to
a software repository (e.g., git) by a specific developer [43]. Figure [2| shows an ex-
emplary changeset that modify two Java classes in order to introduce a timeout
mechanism. Based on their structure, changesets can be decomposed into two major
parts: header information and code modifications. The header information includes
all of the commit metadata, such as unique commit identifier, author name, date of
the commit, and commit message. While the commit message in Figure [2]is long and
extensive, and includes information about relevant project components, reason for
the performed modification, suggested code reviewer, and a reference to an external
resource relevant to the change, in practice, commit message quality and length vary
strongly across different projects and development teams |44}, |45].

The actual code modifications form the core part of the changeset. The modifica-
tions are grouped by each affected file and are computed using a specific differencing

algorithm. For instance, Figure [2| shows the standard output of the git diff command,
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commit Oc4accbce977fbc6191689bcb5792e2a3563eb78
Author: Sijie Guo <guosijie@gmail.com>
Date: Sat Sep 29 20:53:34 2018 -0700
[TABLE SERVICE] [CLIENT] Provide a timeout mechanism on closing the client
### Motivation
Closing the storage client sometime takes long time. And closing the client typically happens at the last step
So we don't necessarily to be blocking at waiting it to complete
### Changes
Provide a timeout version of sync close. And timeout the closing operation if it doesn't complete within 1 second.

Reviewers: Jia Zhai <None>, Enrico Olivelli <eolivelli@gmail.com>
s #1717 from sijie/close_storage_client

diff --git a/stream/clients/java/all/src/main/java/org/apache/bookkeeper/clients/StorageClientimpl.java
b/stream/clients/java/all/src/main/java/org/apache/bookkeeper/clients/StorageClientimpl.java

index fcale5a77..9d4955697 100644

--- alstream/clients/java/all/src/main/java/org/apache/bookkeeper/clients/StorageClientimpl.java

+++ b/stream/clients/java/all/src/main/java/org/apache/bookkeeper/clients/StorageClientimpl.java

@@ -128,7 +128,11 @@ class StorageClientimpl extends AbstractAutoAsyncCloseable implements StorageCli

@Override
public void close() {
super.close();

+ 0ty
+ super.close(1, TimeUnit. SECONDS);
+ } catch (Exception e) {
+ log.warn("Encountered exceptions on closing the storage client", e);
+ )
scheduler.forceShutdown(100, TimeUnit. MILLISECONDS);

}

}

diff --git a/stream/common/src/main/java/org/apache/bookkeeper/common/util/AutoAsyncCloseable. java

b/stream/common/src/main/java/org/apache/bookkeeper/common/util/AutoAsyncCloseable.java

[omitted]

@@ -39,4 +40,8 @@ public interface AutoAsyncCloseable extends AsyncCloseable, AutoCloseable {
1/'ignore the exception

}

default void close(long waitTimeout, TimeUnit waitTimeUnit) throws Exception {
FutureUtils.result(closeAsync(), waitTimeout, waitTimeUnit);

}

—F o+ o+ o+

/ Header \\

Metadata

Includes unique commit id,
author name and date.

f N

Message

Defined by developer. Usually
shortly describes performed
modification and includes any
information deemed relevant.

NS 2/
/ Code modifications \
~N

/ Changes in file
StorageClientimpl.java

Invokes
method close introduced
in common interface.

- /

Classes connected via
common
AutoAsyncCloseable.java

Changes in file
AutoAsyncCloseable. java

Introduces new
method, close, to perform
asynchronous close with

respect to provided time limit.

S /

Fig. 2.: Exemplary changeset extracted from the Apache BookKeeper project. The

upper half shows the header, while the body, including the code modifications, is

displayed in the lower half. The added lines are marked with green color and ”+”

2

sign, and removed lines are denoted with red color and ”-

sign.

which uses the Myers differencing algorithm Depending on the performed mod-

ification, the Myers algorithm encodes 2 types of line-related operations: addition

and deletion, whereas line modifications are represented by both an addition and a

deletion. The set of altered lines is surrounded by several unmodified lines, called

context lines.
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2.3.2 Advantages and challenges of using changesets

A key design choice in IR-based techniques that are applied to source code is
what constitutes a document: classes, methods, files, or changesets. The document
choice has a strong influence on, e.g., how topics in a topic model are formed or how
an embedding space is constructed, therefore utilizing changesets as documents brings
several advantages as well as challenges inherent to this data type.

Co-changed code. Changesets have the benefit of capturing co-change code, which
is known to be an important predictor of software maintenance activity [47]. When
leveraging changesets as a primary document dimension, co-changed code entities will
often appear within the same document boundary. In the result, techniques utiliz-
ing co-occurring terms should recognize code entities that are often modified together
leading to better IR performance. To confirm this hypothesis, we empirically examine
whether frequently co-changed classes are likely to be expressed by similar document
vectors. For this purpose, we use an LDA model and compare distributions of top-
ics between frequently and rarely co-changed classes in 4 different popular software
projects, BookKeeper, OpenJPA, Pig and ZooKeeper. The co-changed classes in each
project are divided into three categories: 1) class pairs that are co-changed more than
or equal to 20% of the time; 2) class pairs that are co-changed less than 20% of the
time but more than or equal to 5% of the time; and 3) class pairs that are co-changed
less than 5%. For instance, a class pair is considered co-changed more than or equal
to 20% of the time, when the classes share at least 20% of commits in their respective
modification histories. For each of these three categories of class pairs, we compute
the cosine similarity of the topic distribution vectors of the class pairs using LDA
model built from all of the changesets in each project. To limit the computational

time and avoid corner cases, we only consider the 100 most changed classes for each
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Table 1.: How the co-change relationship between classes is reflected in a LDA model
built from changesets. The figure reports the average cosine similarity of different
categories of co-changed classes, where the similarity is computed using the inferred

LDA distribution of the text of each class.

Average cosine similarity of classes

co-changed >=20%  co-changed < 20%  co-changed < 5%

of time and >= 5% of time of time
BookKeeper 0.571 0.172 0.056
OpenJPA 0.418 0.152 0.059
Pig 0.591 0.198 0.062
ZooKeeper 0.251 0.132 0.107

project. Higher cosine similarity among frequently co-changed classes indicates that
the co-change relationship is also reflected by the LDA model trained on changesets.
The results, shown in Table[T, demonstrate that the more often classes are co-changed,
the more similar are their topic distributions, which indicates the LDA model is able
to inherently reflects the co-change relationship when provided with changesets as an
input.

Frequently changed code. Another similar advantage is in frequently changed
code, which is likely to appear in many documents. Researchers and practitioners
have observed that, over time, bug disproportionally appear in code that has been
recently and frequently changed [48, |49]. Therefore, observing recent code changes,
rather that only considering static source code snapshots, can have significant value
to bug localization techniques.

Data quality. Challenges to using changesets for bug localization can arise from
noise that can be introduced by tangled changesets, which reflect multiple unrelated

changes to the source code, split changesets, where a bug fix is split across multiple
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changesets, or refactoring changesets, which result in many small unrelated changes to
the entire source code repository |50, 51]. However, as long as such noisy changesets
are in the minority relative to ones that reflect semantically related modifications to
the source code, it is likely for a topic- or embedding-based model to still produce a
reasonable representation that can model how source code is changed in a particular

project [52].
2.4 Diversity of bug reports

The content of bug reports can vary as some reports provide explicit localization
hints through stack traces or code element names, while others contain only high-level
textual description [13]. In examining the trends from interviews conducted with a
large cohort of software developers from industry and open-source software, Zou et
al. report that developers do not trust bug localization tools due to their inability
to adapt to different types of bug reports, specifically noting that existing techniques
only work on the most simple cases, with straightforward textual similarity between
the bug report and code base [53].

To illustrate the different types of bug reports and their properties, in Figure
we show three exemplary bug reports we encountered when examining reports from
the BookKeeper project. Each example contains a summary and description of the
bug report and a list of fixed classes, sorted by to the number of changed lines.

Figure displays bug report #600, which describes a situation causing the
GarbageCollectorThread to throw an exception and provides the resulting stack trace.
To fix this bug, a developer modified waitEntrylogFlushed() method in the GarbageCol-
lectorThread by adding a check for the offset size. This bug report provides a com-
prehensive source of information for the developer as it directly points to the class

to be fixed, with additional information on finding the method to fix available in the
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Summary: GarbageCollectorThread exiting with ArraylndexOutOfBoundsException

Description: After completing compaction, GarbageCollectorThread will do flush
any outstanding offsets. When there is no offset present, its throwing following exception
and exiting.

[stack trace]

at org.apache.bookkeeper.bookie.GarbageCollectorThread
SCompactionScannerFactory.flush
(GarbageCollectorThread.java:175)

[stack trace continues]

Fixed: GarbageCollectorThread

(a) BookKeeper-700; code references (CR) bug report.

Summary: AutoRecovery should consider read only bookies.

Description: Autorecovery Auditor should consider the readonly bookies as
available bookies while publishing the under-replicated ledgers.
Also AutoRecoveryDaemon should shutdown if the local bookie is readonly.

Fixed: Auditor, BookKeeperAdmin, BookieWatcher, BookieslListener,
AuditorRecoveryMain, ReplicationWorker

(b) BookKeeper-632; shared terms (ST) bug report.

Summary: Fix for empty ledgers losing quorum.

Description: |If a ledger is open and empty, when a bookie in the ensemble crashes, no
recovery will take place (because there's nothing to recover). This open, empty,
unrepaired ledger can persist for a long time. If it loses another bookie, it can lose
quorum. At this point it's impossible for the bookie to know that its an empty ledger, and
the admin gets notified of missing data.

Fixed: Auditor, ReplicationWorker, AutoRecoveryMain,
BookKeeperAdmin, AuditorElector

(¢) BookKeeper-742; natural language (NL) bug report.

Fig. 3.: Bug reports with different characteristics.

stack trace. We refer to this type of bug reports as code references (CR) bug reports.

Bug report #632, shown in Figure 3B, refers to the correct way of handling
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"readonly bookies when publishing ledgers”. To fix the bug, the developer mod-
ified multiple classes, some of which were already mentioned in the report’s text.
We observed numerous common tokens shared between the bug report and modified
classes: readonly, available, bookie, publish. Bug report #632 highlights that bug
reports, even if not providing explicit localization hints, still often contain common
tokens that, when grouped into common themes, reflect higher-level similarity be-
tween concepts presented in the bug report and in the source code, thus we refer to
this type of bug reports as shared terms (ST) bug reports.

Figure 3¢/ shows bug report #742, describing a chain of faulty behaviors starting
when "recovery is not performed for an open and empty ledger after bookie crashes”.
When fixing the bug, the developer modified multiple classes, none of which is men-
tioned in the report. This bug report poses the most challenging task for automated
bug localization based on IR, since it provides only textual description with no code
references and no unique terms that clearly map to source code locations. However,
we observe that the set of modified classes for bug #632 and #742 is similar, indicat-
ing that there exists an upper layer abstraction that correlates the set of fixed classes
to bug #742. In fact, after further examination of the bug fixing history, we noticed
that this set of classes was frequently modified together in bug reports that were
addressing similar topics. As these bug reports do not provide any code references
and are expressed in natural language, we refer to them as natural language (NL) bug
TePOTtSs.

Analyzing the examples of different types of bug reports presented above led
us to the following two observations. Firstly, bug reports display different levels of
details, requiring adopting different strategies to maximize performance of automated
bug localization [13]|. For instance, in the case of CR bug reports, it is sufficient to

rely on matching code terms from a bug report to code tokens in a source code

19



base. Conversely, ST bug reports can leverage general context similarity. However,
neither of these approaches is able to address NL bug reports. This leads to our second
observation, namely that even when common themes are not present, correlated high-
level concepts are still expressed by the bug report and source code [14] and can be
identified by mining bug fixing history. In a results, a bug report can be matched
to the most relevant code entities by examining bug fixing history to identify similar

bug reports and their related code entities.
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CHAPTER 3

RELATED WORK

Automatically retrieving a list of code elements based on a newly written bug report
has generated significant interest among software engineering researcher community
over the years. This chapter describes prior work related to bug localization, change-
sets, and diverse characteristics of bug reports, discussing the key ideas behind the
most recent and transformative approaches to IR-based bug localization explored by

researchers to date.
3.1 Code element-based bug localization

Bug localization techniques predominantly focus on identifying code elements,
such as classes or methods (on the contrary to changesets), and, to this end, they
typically use the VSM model. For instance, BugLocator [54] combines two rankings,
one produced by similarity between the bug report and code elements and another
based on similarity of the bug report to previously fixed bug reports. BLUIR [29)
improves over BugLocator by using program structure to boost specific terms (e.g.,
class names). Similarly, Dilshener et al. |55] recognized occurrences of class names
in bug reports as an essential part of bug localization and introduced a heuristic for
boosting different parts of bug reports, such as stack traces or text terms. Wang et
al. [56] proposed to join various techniques, creating an ensemble consisting of Bu-
glocator, BLUIR and a defect predictor leveraging development history of a project.
Lukins et al. [57] investigated using topic modeling towards bug localization. In their

work, an LDA model is applied to bug reports and the relevant code elements are
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identified based on the similarity between topic distribution of the bug report and
source code files. Nguyen et al. proposed BugScout [31], a modified LDA model that
correlates bug reports and source code elements via shared topics.

More recently, researchers have been exploring deep learning-based techniques
for bug localization. Lam et al.’s technique, DNNLOC, combines a deep neural net-
work with the VSM in order to be effective across different types of similarity [58].
Huo et al. proposed a novel convolutional neural network to learn unified feature rep-
resentation from natural and programming language that captures both lexical and
program structure information [59]. Their work was extended later on by modeling
the sequential nature of source code using LSTM [60].

While previous body of work focuses on exploring static source code entities and
not changesets, it also brought numerous discoveries in how to best apply information
retrieval to bug localization. This work builds upon prior studies by incorporating
strategies observed to improve bug localization performance, such as leveraging his-

tory of fixed bugs, weighting code terms and capturing contextual information.
3.2 Changeset-based bug localization

The earliest work on changeset-based bug localization is Locus [24], which is
based on VSM matching of bug reports to hunks and commit logs. To adjust for
localization hints, Locus adapts its similarity scores based on the proportion of code
element mentions in a bug report. Bhagwan et al. [5] introduced Orca, a tool that
uses a provenance graph to identify commits leading to faulty builds, which are sub-
sequently fed into a VSM to measure the relevance of the commit to a search query.
ChangeLocator [61] utilizes historical data on software crashes to build a model iden-
tifying relevant changesets based on collection on crash reports. Although this ap-

proach allows to retrieve changesets, it requires sufficient amount of historical data to
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train the model, and a stack trace as an input, which is not always present in a bug
report. Corley et al. [25] proposed using an Online LDA model trained on changesets
to retrieve source code files. The key advantage of this technique is in building the
model incrementally from a stream of changeset, hence avoiding periodic retraining.

Recently, researchers have shifted their attention to deep learning models for
changeset-based localization. For instance, Murali et al. [11] proposed Bug2Commit,
an unsupervised model leveraging multiple dimension of data associated with bug
reports and commits, such as metrics, stack traces or commit meta data. They
observed that using embeddings can lead to improvement in model accuracy when
compared to BM25. Lin et al. [26] studied the trade-offs between different BERT
architectures for the purpose of changeset retrieval, and observed that the speed of the
model is significantly affected by the model architecture, while the retrieval accuracy
remains fairly the same. However, considering that deep learning models requires
significant computational resources, the speed and interactivity of these approaches
makes them particularly challenging to apply in an industrial environment without
further optimizations.

In this work, we explore two approaches towards changeset-based bug localiza-
tion. First, we propose a topic modeling technique that improves upon Corley’s
approach by modeling bug reports and leveraging the history of fixed bug reports.
Secondly, we investigate how to use BERT-based model to increase the retrieval ac-

curacy without compromising the speed of the model.
3.3 Changeset representation

Building a semantically rich representations of changesets is relevant to other
software engineering applications beyond bug localization, i.e., just-in-time defect

prediction, recommendation of a code reviewer for a patch, tangled change predic-
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tion. Approaches that define novel changeset embeddings (vector representations of
changeset), including CC2Vec [62] and Commit2Vec [63], leverage the difference be-
tween added and removed lines of code, among other changeset characteristics. Corley
et al. [25] studied how including different types of lines from a changeset affects the
performance of LDA-based feature location, observing that including context, addi-
tions, and log messages, but excluding removed lines, achieves the best performance.

Unlike previous studies, this work investigate modeling changeset representation
with BERT. To this end, we explore using different level of granularity inherent to
changesets (i.e. changeset-file, file or hunk), and propose two strategies to encode

code modifications.
3.4 Diverse characteristics of bug reports

Researchers recognize that differences in the content of bug reports can strongly
influence the effectiveness of a bug localization technique. Kochhar et al. were among
the first to report that evaluation of bug localization was biased by explicit localization
hints in a significant subset of the included bug reports [64]. VSM-based techniques
are likely to perform well on such bug reports, though localizing them may not be as
useful to developers [28]. Mills et al. refute the idea that VSM-based bug localization
are significantly aided by hints, and note that VSM can perform well for bug local-
ization if more attention is paid to how the query is constructed from the bug report
text [10]. However, their findings do not preclude additional accuracy improvements
by using more complex, semantic models. At the same time, it has been reported that
bug reports usually contain all the necessary information for effective IRBL [65]. In
order to reduce the noise present in bug report and focus IRBL on the most relevant
terms, Chaparro et al. present a query reformulation strategy based on identifying

sentences within a bug report that describe the observable behavior of a system [66],
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while Misoo et al. explore bug report attachments [67]. Rahman et al. observed that
excessive program entities mentioned in the bug report may deteriorate the quality
of IR-based bug localization and proposed a query reformulation technique, BLIZ-
ZARD [13]. Le et al. suggests that bug localization tools can be ineffective for some
bug reports and builds a model that can automatically predict the effectiveness of
a IR-based bug localization tool [68]. Kim et al. approach the problem similarly,
by building a two-phase classifier that first determines whether the bug report has
sufficient information, and, only if it does, recommends a set of code elements [69].
To address different types of bug reports, this work propose to use a mechanism

allowing to adapt prediction to the content of a bug report.
3.5 Scarcity of training data in software engineering

Small datasets, with only a few thousands or even hundreds of labelled samples,
are common for many software engineering tasks [70]. While those datasets are ap-
propriate to use with most traditional machine learning algorithms, such as SVMs or
Random Forests, an increasing number of approaches towards code search |71} |26, [72,
27, defect prediction |73}, [74} |75, 76, [77], and bug localization [30, [58} 59, 78| lever-
ages deep learning models. However, given that the success of deep learning stems
largely from the combination of large datasets and supervised learning, the availabil-
ity of training data is one of the key factors limiting deep learning performance in the
software engineering domain [70, 27].

To mitigate this problem, the prior body of work concentrated on custom deep
learning architectures that enable incorporating data from multiple software projects
when training the model. For instance, Huo et al. [59] proposed using neural networks
to learn a unified feature space for bug reports and source code that better reflects

the correlation between the two types of documents. In their later work [79], this
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approach was revised to extract and train on features that are transferable between
different projects (i.e., cross-project). Zhu et al. [80] proposed another cross-project
bug localization technique that utilizes adversarial transfer learning.

More recently, the emergence of transformers made a significant step towards
training with small datasets. Transformer is a large deep learning model pre-trained
on a massive amount of unlabelled data in a semi-supervised manner, and later on, it is
fine tuned on a much smaller labelled dataset. To date, researchers have pre-trained a
few transformer-based models on large-scale software engineering data, collected from
GitHub or Stack Overflow |81}, 82]. While fine tuning such models enable their appli-
cation for problems where data is scarce, Gururangan et al. [83] noted that including
more in-domain and task-specific data during pre-training results in a significantly
higher effectiveness of the model. To this end, Lin et al. [26] introduced an extra
step called intermediate pre-training, which uses a large corpus of data that is closely
related to the downstream task (i.e., code search) to continue pre-training the model.
Most recently, Prenner and Robbes [70] observed that domain-specific pre-training
and data augmentation can improve the performance on app review and sentiment
classification tasks.

To address the problem of training data scarcity in the context of bug localization,
this work explores data augmentation strategies to generate synthetic bug reports
with the goal of increasing the size of the training set, and subsequently improving

the retrieval performance of the underlying bug localization model.
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CHAPTER 4

ONLINE ADAPTABLE BUG LOCALIZATION
FOR RAPIDLY EVOLVING SOFTWARE

The vast majority of prior work on IR-based bug localization has relied on files or
methods taken from snapshots of the source code, typically the most recent release of
the software. However, most of these approaches lack ability to update an index when
new code elements are added or the existing ones are modified. The later scenario
is particularly challenging as it requires not only to re-introduce the modified code
element into the index, but also remove the old information. One of the advantages
of leveraging changesets as a primary data unit is that they allow for continuous
updates to the bug localization model, such that the model is built incrementally as
changesets arrive, and captures all information about the source code at any given
point in time [25]. Just-in-Time Information Retrieval-Based Bug Localization (JIT-
IRBL) is a new perspective on bug localization that uses changesets to avoid costly
retraining as the software changes, which has significant computational cost, even on
the latest hardware [84].

This work proposes a novel model for JIT-IRBL, JINGO, based on an online
variant of the Latent Dirichlet Allocation (LDA) topic modeling technique [37]. The
architecture of JINGO consists of two main components: two unsupervised Online
LDA models and a supervised translation module. To capture the evolution of soft-
ware artifacts and bug reports over time, we use two parallel Online LDA models, one
that tracks changes in the source code repo and another that tracks bugs reported in

the issue tracker. The models 1) naturally represent development activity, including
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frequently changed and co-changed program elements; 2) effectively handle streaming
data, including the ability to deemphasize older information; and 3) raise the level
of abstraction into topics, which provide a higher-level structure for detecting related
artifacts. Translating between the probabilistic topic spaces maintained by the two
models is performed using a translation matrix, primarily constructed from fixed bug

reports and their corresponding changesets.
4.1 Online Bug Localization

In simple terms, Online Bug Localization allows for building an up-to-date model
for retrieving program elements based on the most current version of the source code,
i.e., HEAD in each developer’s local copy of the software repo, rather than on prior
versions. We deem that most of the time, the current version represents the source
code that the developer cares about, rather than past snapshots reflecting a recent
release of the software. To confirm the previous statement, we conducted a small sur-
vey on Reddit, asking the question “When working on finding the location of a user-
reported bug, what version of the software do you use most of the time?”. The question
was posted in the r/AskProgrammers, r/SoftwareEngineering and r/AskProgramming
subreddits. More than two thirds of the respondents, 21/31, indicated that they use
“The most recent version of the software from version control”, while 10/31 indicated
they use “The version of the software in use by the reporting user”. One of the respon-
dents further stated that “I start with trying to reproduce the bug with the most recent
version. If I can’t, then I rollback to the version it was reported on to try to recreate
it. I do quick and dirty until quick and dirty doesn’t cut it.” Another one noted that
“I work with desktop applications, which are obfuscated and optimized, so debugging
the released version can be difficult and time consuming”. Yet another responded in-

dicated a continuous deployment style of software engineering, i.e., “I do web projects
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Fig. 4.: Percentage of classes that are part of a bug fix, which were modified in the
time between the affected software release and the bug fix. Such classes would be

inaccurately represented by a model trained on the last software release.

so I use the version in the repo, in my node_modules folder. It doesn’t matter whats
latest, because my app is using the version is was compiled with.”. Overall, we note
that developers prefer to start bug localization process by using the current version
of the source code.

Further, in many cases there is evidence that the current and release versions
differ in important ways. Figure |4 examines how using a release version of a software
can impact bugs reported in four different popular open source software projects:
BookKeeper, OpenJPA | Pig, and ZooKeeper. More specifically, the Figure shows the
percentage of classes that had to be modified to fix a reported bug and that were
also changed since the affected software release. In other words, the figure shows
the percentage of classes that would be incorrectly represented by a bug localization
model built from the prior release of the software and not a JIT-IRBL system. In

three out of the four projects, BookKeeper, Pig, and ZooKeeper, the majority of
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classes pertinent to the bug reports are modified between the prior software release

and the time of the bug fix.
4.2 Topic modeling with Latent Dirichlet Allocation

Latent Dirichlet Allocation. LDA is a Bayesian probabilistic model designed
to discover latent topics in large document corpora [37]. Based on a collection of
documents, LDA infers a latent document-topic distribution and a corresponding
topic-word (or topic-term) distribution, such that each document is represented as
a mixture of topics, and each topic is described by a mixture of words (or terms).
More specifically, LDA assumes that documents are generated according to the latent

topics distributions with the following generative process:
1. Choose 0 ~ Dir(«)
2. Choose ¢ ~ Dir(p)
3. For each word w in document d:

(a) draw a topic assignment z ~ Multinomial(6,)

(b) choose a word w ~ Multinomial(¢, )

where « is the Dirichlet prior to the document-topic distribution, 3 is the Dirich-
let prior to the topic-word distribution, 8 is N x K document-topic distribution matrix,
with 8, representing a topic distribution in a document d, and ¢ is K x M topic-word
distribution matrix, with ¢, corresponding to topic-word distribution for topic z.

Inferring the document-topic and topic-word distributions is equivalent to train-
ing LDA and produces an interpretable model that can be applied to previously

unobserved documents to extract their lower-dimensional representation.
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LDA is configurable via two main hyperparameters, a and [, affecting the
smoothness of document-topic and topic-word distributions. Hyperparameter « in-
fluences the document-topic distribution, such that increasing the « value causes a
document to express more topics, whereas lowering a makes a document to be rep-
resented by fewer topics. Conversely, hyperparameter [ influences the topic-word
distribution. Raising [ causes words to relate to multiple topics, while lowering [
produces more specific topics with words rarely repeating between topics.

Online LDA. Updating LDA with a new document requires retraining the en-
tire model from the beginning. As this process introduces significant time delay
and computational cost, ordinary LDA is inappropriate for use in streaming environ-
ments where new documents, such as bug reports or changesets, arrive continuously.
Therefore, to model the dynamics of modern software development, we use a recently
devised variant of LDA, Online LDA [85], which allows to incorporate new documents
through a update procedure, without the need for complete model retraining. Online
LDA introduces the hyperparameter , which influences how quickly older informa-
tion in the document stream is forgotten. Increasing x causes the pace of forgetting
to rise, thus older documents have smaller impact on the current topic distributions.

LDA on Changesets. IR models like LDA can be trained and applied on
separate, but closely related datasets, which reflect a similar vocabulary of terms.
In this study, we follow the methodology proposed by Corley et al. [25], that is to
train an LDA model on changesets, and infer topic distributions of program elements
(e.g., classes) from a snapshot of the same repository to compare them to the topic
distributions of bug reports in order to perform bug localization. Such a model
would retrieve program elements to the developer. Alternatively, the LDA model can
both train on changesets and retrieve changesets to developers. Wen et al. argued

that presenting the developer with a changeset may provide contextual clues that
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are not available when retrieving program elements, however, most bug localization
techniques focus on retrieving program elements [24]. The model requires no change
to alternate between these two configurations, as these operations are performed on

the already trained LDA model.
4.3 JINGO Model

Performing online bug localization requires the ability to operate in an environ-
ment where incoming changes are immediately integrated into a model, which is able
to detect both simple (i.e., near exact terms) and high-level similarities between the
code and bug reports. JINGO, a novel adaptable Just-IN-time buG 10calization
technique based on changesets, separately models the streams of bug reports and
changesets with individual Online LDA models [85], obtaining two independent topic
spaces, one for bug reports and one for changesets. To translate between the two topic
spaces, JINGO constructs a translation matrix based on the history of previously fixed
bug reports, which captures a mapping between high-level concepts expressed in bug
reports and their corresponding fixed program elements.

The architecture of JINGO, depicted in Figure 5], allows for dynamically adapting
to the three different types of bug reports described in Chapter 2.4, To this end, for a
newly arriving bug report, JINGO uses its changesets model and bug reports model
to infer two topic distributions respectively. The first distribution is directed towards
CR and ST bug reports that share code references or common concepts with the code
base. The second distribution targets NL bug reports through the multiplication via
the translation matrix. The key idea behind the translation matrix is to utilize the
bug fixing history in the project to capture the correlation between topics occurring
in bug reports and in their relevant code entities. In other words, multiplying topic

distribution of a bug report by the translation matrix results in a topic distribution
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Fig. 5.: The structure of the JIT-IRBL model.

of relevant code entities in the changeset topic space. Given that a bug report often
include varying content, and hence, it is unlikely to be of only one type , we use a
soft mechanism, based on the ratio of code tokens to all tokens in a bug report, to
combine the two distributions. Finally, this combined distribution reflects the topics

in the relevant code entities, and is used to select those elements in the code base.
4.3.1 Structure of the JINGO Model

JINGO is characterized by two parallel Online LDA topic models, one for change-
sets and the other for bug reports, and a matrix that translates from the bug reports

to the changesets topic space, as shown in Figure
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Changeset Model. To build the changeset topic model, we use all changesets
as they are committed into the source code repository. For every changeset, we
use the output of git diff command, which includes basic changeset information
(e.g. commit SHA, author, date) and a list of changed code hunks, across all of the
project’s source code files, represented through added, modified or removed lines,
each accompanied by 3 lines of context. We filter out the metadata and git diff
boilerplate formatting, such as e.g., +++4, obtaining a set of file names and code
modifications for each changeset[86]. Following a recommendation of Eddy et al. [34],
we decided to give more weight to file names by repeating them 10 times to emphasize
their importance to the Online LDA. Finally, we follow the standard procedure to
prepare source code for an IR model, including steps such as tokenization (using camel
case and underscore), stemming using a Porter stemmer, and removal of standard
programming language keywords, (e.g. if, for). In addition, we preserve the unsplit
tokens into the corpus.

Bug Report Model. We train the bug reports topic model with new bugs as they
are reported in an issue tracking system, e.g., JIRA. For each report, we first retrieve
its summary and description. The summary is commonly a single sentence, while
the description provides more details about the bug. Finally, before updating the
model, for each bug report we perform a preprocessing procedure common for natu-
ral language text, including tokenization, stemming and English stop word removal.
Similarly as when building changeset corpora, we also preserve unsplit camel case
tokens to ease locating relevant files when explicit code references are included in the
bug report.

Translation Matrix. A translation matrix - T - allows us to map from the bug
report space to the changeset space, by simply multiplying a topic distribution inferred

with the bug report model by the translation matrix, resulting in a projection into
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the changeset model’s space of topics. The use of a translation matrix was inspired by
TM-LDA, a model based on LDA that intends to predict the expected future topics
for a stream of documents [87].

To create the T matrix we leverage previously fixed bug reports and their cor-
responding changesets. The corpus of previously fixed bug reports provides an addi-
tional source of information that is leveraged by many approaches to bug localization,
e.g. [b4, 13,188,189, 90]. However, the number of fixed bug reports depends on the
size of the project and it is often very limited, thus using solely bug fixing history
may not provide enough data to train the T matrix. To solve this cold-start problem,
when building the T matrix we also include pairs of commit logs and changesets, since
commit logs have been observed to contain substantial level of information describing
in natural language the purpose or the functionality of the modified code [24].

We train the translation matrix using the following set of steps. First, for a
set of fixed bug report - changeset pairs, and if necessary, commit log - changesets
pairs, we infer a topic distribution for each fixed bug report using the bug report
model and store it in matrix B, where the rows of the matrix correspond to the
distribution inferred for each of the fixed bug reports and the number of columns
in B corresponds to the number of topics in the bug report LDA model. Second,
an analogous procedure is performed for the matching changesets. For these, the
topic distribution is inferred by the changeset model and added to another matrix -
A, with rows containing topic distribution of changesets and column corresponding
to the number of topic in the changeset model. In this way, each fixed bug report
- changeset pair creates one corresponding row in matrices B and A respectively.

Finally, training the translation matrix T reduces to solving the following equation.

T = mTin IBT — A|?
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To solve the equation for the unknown T we perform least square minimization.
Note that T is of size, number of topics in bug report model by number of topics
in changeset model. Therefore, it requires at least as many rows in A and B, i.e.,
fixed bug reports, to compute. On the other hand, providing more than the required
minimum amount of data to train the T matrix is desirable, as it is likely to increase
the quality of mapping between topic spaces. We introduce a parameter specifying
the minimum amount of data required to train the T matrix, w, expressed as a
multiplying factor of the (maximum) number of topics required in the topic models.
For instance, w = 1.5 and 50 LDA topics, would indicate that 75 fixed bug reports
(or commit logs) are required to build the T matrix.

Once we determine the translation matrix, mapping between the bug reports to
the changeset topic space is simple: we multiply the bug-related topic distribution for
a new bug report by T matrix to get the equivalent distribution in changeset space.
The computational cost of updating T over time is not large, and it is proportional
to the number of fixed bug reports used. The cost can also be controlled by using a

window based approach.
4.3.2 Using JINGO for Prediction

Using a trained JINGO model, we follow the workflow in Figure [6] to perform
bug localization for a newly arriving bug report. To start, we preprocess the new bug
report to construct a query, using the same procedure as when building the bug reports
corpus. We use the query to infer two topic distributions, one using the changeset
model — changeset-related topic distribution, and another using the bug report model
— bug-related topic distribution. To map the bug-related topic distribution from the
bug report model to the changeset model, we multiply it by the T matrix, obtaining

a co-occurrence topic distribution. Note that, if the T matrix is not trained due
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to lack of data, this step is skipped and the final prediction is based solely on the
changeset-related topic distribution.

Bug reports typically include various content and are likely to be related to the
code base in more than one way via, e.g., code element names, shared tokens or bug
fixing history. Hence, we decide to combine the changeset-related topic distribution
and the co-occurrence topic distribution to better reflect bug report’s characteristic.
To this end, we adopt a weighting strategy based on the number of code tokens that
appear in the bug report. A token is considered to be a code token if it is in a camel
case format or it corresponds to one of class names in the source code base. We
prioritize the importance of either of the distributions based on the intuition that
the more code tokens are present in the bug report, the stronger is the similarity

between the bug report and the source code base. If this is the case, we weigh the
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changeset-related topic distribution more strongly. On the other hand, if code tokens
are rare and the bug report predominantly consists of natural language text, then
the co-occurrence topic distribution becomes more significant, as it leverages topics
co-occurrences patterns that are not directly connected to bug’s textual content. We
use A to refer to the ratio of code tokens to the total number of tokens in a bug
report. To account for the fact that natural language is more verbose in general
and therefore the typical number of code tokens is much lower than the number of
natural language tokens, we introduce an amplifying factor v, which increases the
importance of program element terms. We compute the combined topic distribution

using the following equation:

diStcombined - nO'rm(diStchangesets * )\ * Y + diStco—occuTence * (1 — )\))

Next, we use the changeset model to infer topic distributions for all documents
in the most recent snapshot of the source code. As noted by researchers, bugs often
pertain to small part of the code [88, 91|, thus inferring at the granularity of large
source code files, e.g., classes, may negatively impact the performance of IR-based
techniques. To solve this issue, we infer topic distributions of methods for each class
and make a pairwise comparison against the combined topic distribution (distompined)
of the query. Finally, each class is represented by a method that minimizes the cosine
distance to the query and the classes are ranked according to increasing cosine distance

to create a recommendation list.
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4.4 Evaluation setup
4.4.1 Datasets

To evaluate the performance of JINGO we use Bench4BL [84], a collection of
bug reports and corresponding lists of fixed source code files extracted from 51 open-
source projects. Each bug report includes information such as summary, description,
creation date and list of fixed files. Bug reports are stored according to the version
in which they were reported. The structure of the Bench4BL dataset allows for
immediate use for evaluating release-based bug localization techniques, however it
is not immediately suitable for a JIT approach. The key missing component in the
dataset are the explicit connections between bugs and fixing changesets, which are
necessary to perform JIT evaluation. To this end, we adapted Bench4BL’s code
to retrieve the required data in a way that maintains complete consistency with the
original dataset. More specifically, following Bench4BL’s prior approach, to link a bug
to a changeset we searched for an explicit mention of the bug identifier in the commit
message. If more than one changeset was related to a bug, we selected the latest
changeset, which is Bench4BL’s existing assumption. Due to difficulties when finding
clearly discernible links between bugs and changesets, we excluded 5 projects from
Bench4BL: JBMeta, ENTESB, ZXing, WLFY and SOCIALLI. Our final evaluation
Bench4BL dataset is shown in Table |3| and consists of 46 projects and 2,125 bug
reports.

One of the key advantages of JINGO is the ability to perform quick model updates
as the new data arrives, making it suitable for repositories exhibiting high code churn.
However, most of the Bench4BL’s projects display limited commit traffic, hence we
curate an additional dataset by selecting open-source projects hosted on GitHub. To

locate repositories of interest on GitHub, we perform a repository search query for all
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active Java repositories with at least one commit in 2019, and size of at least 10MB.
Next, we sort the repositories in descending order of their code churn, calculated as
the average number of commits per day, and select the top 10 repositories that use
an explicit label to mark a reported issue as a bug (e.g., bug, kind:bug). To build
a goldset that connects a bug report to its fixing changesets and to retrieve a list
of modified files, for each project we manually investigate 20 randomly selected bug
reports to identify the project’s convention for linking an issue to a changeset. In
general, we note that developers tend to use keywords, such as “fixes“, “closes“ or
“resolves®, or a project name followed by an issue number. Hence, to link an issue
to its implementing commit, we test commit messages and pull requests against two
types of regex, keyword #XXX and project_name-#XXX, where XXX denotes an issue
number. In the case of identifying multiple changesets for a bug report, we follow
Bench4BL’s approach. Our final dataset of high code churn repositories, HCC-Repo,

contains 10 projects and the total of 874 bug reports.
Table 3.: Evaluation datasets for JINGO

Group | Project Commits Evaluat.:ed Previously F.lxed bl}gs
version fixed bug in version
Hyperparameter tuning projects

BookKeeper 574 4.3.0 223 102
= OpenJPA 4,616 2.3.0 1039 100
o Pig 2,584 0.14.0 1063 155
ZooKeeper 1,245 3.5.0 368 235
| Total | 9,019 - 2,693 592

Evaluation projects - BENCH,BL
Codec 1,387 1.5 13 11
Collections 2,837 4.0 4 49
0 Compress 1,033 1.4 41 12
Z Configuration 2,743 1.7 66 31
% Crypto 548 1.0.0 1 8
s CSV 1,085 1.3 10 5
o 10 1,850 2.0 23 25
© Lang 5,231 3.5 217 40
Math 5,795 3.0 74 39
Weaver 420 1.3 0 2
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E Camel 3,7986 2.15.0 1,298 147
2 Hbase 16,015 2.0.0 446 418
% Hive 10,096 2.1.0 547 221
AMQP 1,254 1.5.0 78 12
Android 504 1.0.0 0 6

Batch 4,991 2.1.0 460 25

Batch Admin 444 1.2.0 4 5

Data Commons 1,356 1.13.0 140 20

Data GemFire 1,123 1.4.0 47 25

Data JPA 875 1.11.0 131 18

Data MongoDB 1,879 1.5.0 139 28

Data Neo4j 461 4.0.0 6 36

Data Redis 1,421 1.8.0 38 16

Data Rest 883 2.6.0 116 22

< Framework 14,635 3.0.0 0 13
= Hadoop 1,473 2.1.0 18 18
% LDAP 979 1.3.0 11 12
Mobile 324 1.1.0 2 8

Roo 6,305 1.1.0 201 134
Security 5,959 3.1.0 305 67
Security OAuth 1,149 2.0.0 112 9

Shell 275 1.1.0 3 2

Social 1,721 1.1.0 11 6

Social FB 1,265 1.1.0 1 7

Social Twitter 1,090 1.1.0 2 4
Webflow 2,438 2.0.0 24 24

Web Service 2,042 1.5.0 50 23

S Arquillian 606 1.1.0 0 1
é Core 11,379 3.0.0 125 120
A Elytron 2,415 1.1.0 2 20
= Maven Plugin 481 1.1.0 0 5
= Swarm 3,152 2016.10 55 9
% org.aspect;j 7,721 286 - 286
& platform.swt 24,585 98 - 89
= jdt.core 22,459 94 - 88
g pde.ui 12,722 60 - 57

Evaluation projects - HCC-Repo

DataHelix 6,153 — 107 54

eXist 18,612 — 286 86

Flink 8,579 - 424 100

q%; Hazelcast 8,728 - 425 100
" Magarena 24,883 - 203 72
®) MegaMek 18,899 — 163 100
g Micronaut 9,469 - 302 100
OpenDJ SDK 7,868 — 358 100
ShardinSphere 27,014 - 383 100
WooCommerce4A. 10,658 - 102 62

| Total | 358,526 - 6,799 2,999

4.4.2 Hyperparameter Optimization

JINGO relies on probabilistic models with several impactful parameters, hence

prior to the evaluation study we perform hyperparameter optimization using a sepa-
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rate dataset released as part of Corley et al.’s study [|25]. To optimize the performance
of JINGO we perform hyperparameter tuning using grid search. We use a set of
four open source projects, BookKeeper, OpenJPA, Pig and ZooKeeper, published by
Corley et al. [25], which are not part of our evaluation set. The key parameters to op-
timize are shown in Table |4 and include the Online LDA priors for the two streaming
topic models, and the set of parameters introduced by the bug localization technique.
Since some parameters rely solely on the streams of bug reports and changesets, while
others influence the combination of these models for bug localization, we divided our
hyperparameter optimization in two steps. First, we optimized the two Online LDA
models independently using two metrics, perplexity and coherence [92) 93], and, sec-
ond, we optimized the bug localization parameters based on the MRR metric.
Several researchers have highlighted the importance of hyperparameter tuning
of topic models for software engineering applications |94, 95]. Therefore, our first
grid search focused on choosing appropriate LDA hyperparameters for the two topic
models. To decide on parameters values to investigate for the changeset model, we
followed results reported in previous research [25]. In the case of the bug report
model we used characteristics of the bug reports corpora, such as e.g., the number
of documents and unique words, in relation to similar changeset corpora, to choose
the set of parameters to explore. For the decay factor we used three values that
correspond to the minimum, mean and maximum possible value for that parameter.
Note that, we did not optimize priors a and [ explicitly, relying instead on the
automated estimation approach implemented in the gensim topic modeling library.
We computed coherence and perplexity after training a model with 25%, 50% and
75% of the respective corpus stream, in order to avoid bias towards longer streams (or
larger corpora), averaging the values of the metrics to assess the model’s performance.

At the conclusion of the first grid search we selected the top parameter combinations
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Table 4.: Hyperparameters and their corresponding values used during grid search;

selected, optimal values are in bold.

Component Parameter Value

# topics — k {75,100, 150, 200}
Changeset model decay factor — k {0.5,0.75,1.0}

# topics — k {10, 25,50, 100}
Bug report model decay factor — K {0.5,0.75,1.0}

Bug localization fixed bug reports factor — w E, 1.5,2.0}

model combining factor — ~y ,3,5,7}

for each model to use in the second grid search.

In the second phase, we searched over the parameters related to JINGO namely w
and . The first parameter influences the number of fixed bug reports the model needs
to observe before building the translation matrix. The value of w is a multiplying
factor of the minimum number of observed fixed bug reports, where the minimum
number is equal to the larger value of number of topics between models. In the case
of A\, we selected a set of values based on similar experiments by Wen et al. [24].
Values marked with bold in Table [ represent the set of final optimal values for all

the parameters that we used during evaluation.
4.4.3 Experiment setup

To evaluate the performance of the proposed bug localization we simulate the
development history of a specific software project, continuously updating the model
with a time series of bug reports and changesets. At each timestep, we also update
the translation matrix with each fixed bug report and its corresponding changeset.
Therefore, when evaluating for a specific newly arriving bug report, the changeset
model contains all changesets that occurred before the time of the bug fixing commit,

while the bug report model includes all bug reports reported before the commit
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timestamp.

To evaluate the statistical significance of the difference in performance between
JINGO and the baseline, we compute the Wilcoxon signed-rank test with Holm cor-
rection and effect size using the Cliff’s delta . The values of § ranges from +1 to -1,
where -1 implies that all values in the first group are larger than values in the second
group, and +1 represents the opposite situation. The effect size was intepreted using
the following criteria: (1) small effect = |§] > 0.147; (2) medium effect = || > 0.33;
and (3) large effect = |0] > 0.474 [96]. Note that in the case of small projects with
number of bug reports equal or less than 10, we report the evaluation metric but did

not conduct statistical testing.
4.4.4 Research Questions

RQ1: How accurate is JINGO in locating source code files relevant to
a bug report? To answer RQ1, we use the proposed approach to identify buggy
files in Bench4BL and high code churn datasets, and measure the effectiveness of
JINGO with respect to the previously defined metrics. We compare the performance
of JINGO against the JIT feature location technique proposed by Corley et al. [25].
Corley et al.’s technique has several similarities to JINGO, as it uses a single Online
LDA model trained on changesets to locate program elements relevant to a given bug
report. The main difference is in that JINGO models bug reports via a separate topic
model and, through the usage translation matrix, incorporates information about
previously fixed bug reports. Since Corley’s approach is based solely on Online LDA
trained with changesets, we set its hyperparameters to values identified to perform
best for the changeset Online LDA part of our model (as described in Section 5.2).

RQ2: What is JINGO’s time overhead required to update the model?

The key advantage of using an online model is the ability to update the model with
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new data once it arrives. However, a key question remains: how rapid is an update
procedure when compared to a full model rebuild? To answer this question, we collect
the execution logs for all studied projects and, based on the recorded timestamps,
we compute the time required to build and to update the model. Specifically, build
time is the time required to build the model from scratch to the target version of the
project we run the evaluation on, and update time reflects the time needed to update
the model with one changeset (i.e., a single commit).

RQ3: How does JINGO compare to static (i.e., non JIT) bug localization
techniques in terms of time overhead and accuracy? Most bug localization
approaches proposed thus far use a static, snapshot-based model of the software.
Although online models in general, and JINGO in particular, focus on updating a
model as the software changes, we still need to contrast its bug localization accuracy
to state of the art static models. In this research question, we compare the accuracy
of JINGO in retrieving relevant results to state of the art static approaches based on
the Vector Space Model (VSM). We also quantify the time overhead to rebuild the
model for such techniques and contrast it to JINGO.

RQ4: Can JINGO adapt to different types of content in bug reports? Bug
reports have diverse characteristics and can embody different level of details, that,
when leveraged, can increase the effectiveness of a bug localization technique. The aim
of RQ3 is to investigate how well the proposed model captures different types of bug
reports. To this end, first, we examine bug reports in our corpus of almost 3,000 with
respect to the number of code tokens relative to the number of overall tokens. Next,
we group the bug reports based on the ratio of the tokens to bins of size 0.02, which
we experimentally established to be the smallest interval ensuring good visualization
level, and depict MAP values comparing JINGO against Corley’s et al.’s approach

results. The idea is that bug reports with high proportion of code tokens are more
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likely to belong to the CR category, while those with a low proportion or no code
tokens are likely to belong to the NL category.

In addition, we randomly sampled a set of 322 bug reports from our corpus (95%
confidence level with a 5% margin error to the target bug report population). The
sample spanned 40 different projects. Subsequently, one of the authors manually
categorized each of the bug reports into one of the three groups (i.e., CR, ST, and NL).
We report MAP and MRR scores contrasted to Corley’s et al.’s approach, however,

the results for the remaining metrics are analogous.

4.5 Results

Table 5.: Evaluation results for JINGO compared to Corley et al. [25]. The per-
project higher value of a metric is highlighted by light gray background ( n.nnn ).
Per-group of projects we used dark gray background (m.nnn ) to highlight the higher
value. Statistically significant increase in MRR and MAP values (p-value < 0.05)
is marked with bold type with a superscript indicating the effect size: s — small,
m — medium, [ — large. Projects marked with T had less than 10 bug reports, thus

statistical testing was not conducted.

MRR MAP P@1 P@3 P@s
G. | Project JIN. [25] | JIN. 25] | JIN. [25] | JIN. 25] | JIN. [25]
Codec 0.572 0.679 | 0.536 0.621 | 0.364 0.545 | 0.818 0.818 | 0.818  0.818
Collections 0.629 0.591 | 0.490 0.478 | 0.490 0.429 | 0.694 0.714 | 0.796 0.776
Compress 0.418 0.214 | 0.255 0.133 | 0.250 0.083 | 0.500 0.167 | 0.583  0.333
2 | Configuration 0.685% 0.512 | 0.482% 0.379 | 0.548 0.387 | 0.774 0.548 | 0.903 0.677
O | Cryptof 0.654 0.453 | 0.514 0.406 | 0.571 0.286 | 0.714 0.429 | 0.714 0.571
S | csvt 0.647 0.717 | 0.638 0.598 | 0.600 0.600 | 0.600 0.800 | 0.600  1.000
% 10 0.694 0.627 | 0.674 0.565 | 0.560 0.520 | 0.800 0.680 | 0.840  0.720
O | Lang 0.798! 0.449 | 0.719' 0.372 | 0.700 0.300 | 0.875 0.500 | 0.925  0.650
Math 0.584 0.613 | 0.474 0.453 | 0.462 0.487 | 0.641 0.615 | 0.744 0.744
Weaver’ 0.563  0.536 | 0.549 0.490 | 0.500 0.500 | 0.500 0.500 | 0.500  0.500
| Group avg. | 0.6245 0.539 | 0.538% 0.449 | 0.504 0.414 | 0.692  0.577 | 0.742 0.679
M | Camel 0.258 0.272 | 0.181 0.192 | 0.163 0.170 | 0.279 0.293 | 0.374 0.374
5 HBase 0.393 0.355 | 0.275 0.244 | 0.278 0.246 | 0.428 0.395 | 0.524  0.462
55 Hive 0.248% 0.208 | 0.176% 0.128 | 0.137 0.133 | 0.280 0.223 | 0.365 0.303
< | Group average 0.299  0.278 | 0.211% 0.188 | 0.193 | 0.183 | 0.329  0.303 | 0.421 0.380
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AMQP 0.561™ 0.221 | 0.381™ 0.172 | 0.417 0.083 | 0.667 0.250 | 0.750 0.333
Androidf 0.239 0379 | 0.243 0.195 | 0.167 0.167 | 0.167 0.667 | 0.167  0.667
Batch 0.463  0.621 | 0.288 0377 | 0.320 0.480 | 0.480 0.760 | 0.600  0.800
Batch Admin® 0.729  0.126 | 0.542 0.118 | 0.600 0.000 | 0.800  0.200 | 0.800  0.200
Data Commons 0.569™ 0.343 | 0.483™ 0.285 | 0.400 0.200 | 0.750  0.350 | 0.800  0.600
Data GemFire 0.645 0.532 | 0.357 0.315 | 0.520 0.360 | 0.680 0.640 | 0.840  0.720
Data JPA 0.403  0.410 | 0.312 0328 | 0.278 0.333 | 0.500 0.444 | 0.556  0.500
Data MongoDB 0.531 0.418 | 0.367 0.303 | 0.357 0.286 | 0.643 0.500 | 0.786  0.571
Data Neodj 0.242 0262 | 0.179 0.148 | 0.056 0.167 | 0.389 0.222 | 0.444 0.333
Data Redis 0.586  0.505 | 0.393 0.271 | 0.500 0.375 | 0.625 0.625 | 0.625  0.688
Data REST 0.449 ~ 0.504 | 0.362 0.314 | 0.273 0.318 | 0.500 0.636 | 0.773  0.773
$ | Framework 0.080  0.048 | 0.060 0.038 | 0.000 0.000 | 0.077 0.000 | 0.154  0.000
Z | Hadoop 0.394  0.434 | 0.300 0.308 | 0.222 0.333 | 0.444 0.444 | 0.667 0.444
& | LDAP 0.427 0258 | 0.351 0.163 | 0.250 0.167 | 0.500 0.333 | 0.667 0.333
Mobile 0.668 0.543 | 0.634 0.510 | 0.500 0.375 | 0.750 0.625 | 0.875  0.750
Roo 0.221% 0.184 | 0.191° 0.141 | 0.119 0.104 | 0.246 0.187 | 0.306 0.246
Security 0.469  0.410 | 0.356° 0.311 | 0.328 0.313 | 0.552 0.448 | 0.627  0.507
Security OAuth? | 0.353  0.261 | 0.291 0.256 | 0.222 0.111 | 0.444 0222 | 0.444 0.444
Shellf 0.556  0.667 | 0.436  0.440 | 0.500 0.500 | 0.500 ~ 1.000 | 0.500  1.000
Socialf 0.554  0.571 | 0.483 0.474 | 0.500 0.500 | 0.500 0.500 | 0.667  0.667
Social FBT 0.545  0.694 | 0.467 0592 | 0429 0.571 | 0571 0.714 | 0.571  0.857
Social Twitter! 0.204 0.773 | 0.235 0511 | 0.000 0.750 | 0.250 0.750 | 0.250  0.750
Webflow 0.282  0.453 | 0.185 0.338%| 0.125 0.333 | 0.375 0.500 | 0.500  0.542
Web Service 0.515 0.330 | 0.379 0.237 | 0.348 0.217 | 0.609 0.348 | 0.696 0.478
| Group average | 04455 0.414 | 0.845%5 0.298 | 0.810  0.294 | 0.501 0.474 | 0.586  0.550
Arquillianf 1.000 0.200 | 0.538 0.132 | 1.000 0.000 | 1.000 0.000 | 1.000  1.000
7 | Core 0.183  0.208 | 0.139 0.142 | 0.075 0.133 | 0.250 0.208 | 0.308  0.267
& | Elytron 0.381 0281 | 0355 0.262 | 0.250 0.150 | 0.400 0.350 | 0.600  0.350
2 | Maven Pluginf 0.510  0.451 | 0.459 0.357 | 0400 0.200 | 0.600  0.600 | 0.600  0.800
= | Swarm! 0.341 0203 | 0.318 0.164 | 0.222 0.111 | 0.444 0.222 | 0.556 0.333
| Group average | 0.483 | 0.269 | 0.862 0.211 | 0.389 0.119 | 0.589 0.276 | 0.613 0.550
o | Jdt.core 0.258' 0.066 | 0.124' 0.019 | 0.148 0.034 | 0295 0.068 | 0.375  0.091
£ | pdeui 0.192% 0.149 | 0.130° 0.101 | 0.105 0.105 | 0.193 0.105 | 0.316 0.193
= | platform.swt 0.254™ 0.090 | 0.210™ 0.065 | 0.135 0.034 | 0.315 0.079 | 0.393 0.112
Q | org-aspect] 0.041 0.113%| 0.022 0.041%| 0.021 0.073 | 0.031 0.119 | 0.042 0.143
| Group average | 0.186% 0.105 | 0.122%5 0.056 | 0.102  0.062 | 0.209 0.093 | 0.282  0.135
DataHelix 0.150  0.196 | 0.109 0.121 | 0.094 0.151 | 0.208 0.264 | 0.283  0.321
eXist 0.123% 0.100 | 0.049 0.057 0.250 0.250 | 0.321  0.286 | 0.357 0.310
Flink 0.269 0.308 | 0.178 0.195 | 0.172 0.222 | 0.273 0.323 | 0.364  0.364
2 | Hazelcast 0.386 0.324 | 0.235 0219 | 0.280 0.204 | 0.440 0.398 | 0.550  0.459
& | Magarena 0.111  0.104 | 0.085 0.073 | 0.028 0.042 | 0.141 0.127 | 0.183 0.127
O | MegaMek 0.236™ 0.106 | 0.152™ 0.076 | 0.182 0.111 | 0.313 0.141 | 0.404  0.182
$ | Micronaut 0.208°% 0.158 | 0.148°% 0.120 | 0.131 0.091 | 0.222 0.162 | 0.253  0.232
OpenDJ SDK 0.225  0.200 | 0.152 0.133 | 0.155 0.113 | 0.216 0.216 | 0.299  0.289
ShardingSphere 0.172% 0.131 | 0.128°% 0.101 | 0.234 0.202 | 0.287 0.287 | 0.351  0.330
WooCommercedA. | 0.375™ 0.140 | 0.194™ 0.093 | 0.295 0.082 | 0.443  0.197 | 0.541  0.279
| Group average [ 0.225% 0.177 | 0.148% 0.119 | 0.182 0.147 | 0.286 | 0.240 | 0.358 | 0.289
| Total | 0.415% 0.352 | 0.321% 0.262 | 0.308 0.251 | 0.470 0.396 | 0.545  0.488
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4.5.1 RAQ1: Retrieval accuracy

Table [5| shows the performance of JINGO alongside Corley et al.[25] baseline
with respect to 5 metrics: MRR, MAP, Top@1, Top@3, and Top@5. Statistically sig-
nificant improvements in JINGO are marked with bold type with effect size (small,
medium, large) noted in the superscript. Overall, JINGO demonstrates higher per-
formance in locating buggy files across all of the above metrics with statistically sig-
nificant increase of 6.3% and 5.9% for MRR and MAP respectively (p-value < 0.05).
At a finer scale, we observe an improvement in the average results across all groups
of software projects, with statistically significant difference in MRR and MAP values
for the COMMONS, SPRING, ECLIPSE and HCC-Repo groups and MAP value for
the APACHE group.

Specifically, JINGO achieves better performance in terms of MRR values for
37 out of 56 projects with a statistically significant improvement in 14 out of 43
projects that has more than 10 bug reports. In the ECLIPSE group, MRR results
for all but one project were improved with statistical significance, increasing MRR
score obtained by the baseline by 19.2%, 4.3% and 16.4% for jdt.core, pde.ui and
platform.swt. In the case of org.aspectj, the baseline outperformed JINGO by 7.2%.
We note the highest variance of increase and decrease of MRR values for the SPRING
group, with JINGO outperforming the baseline in 13 out of 24 projects. Finally, in the
HCC-Repo group, JINGO improved MRR scores for 8 out of 10 projects, including
a statistically significant improvement observed for 5 projects.

Improvement in MAP values is achieved by JINGO for 42 out of 56 projects with
statistically significant difference noted for 14 projects. Similarly as for the MRR
metric, the highest MAP increase of 8.4% is observed for the COMMONS group

with JINGO outperforming the baseline for all but one project. We also observe
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Fig. 7.: Average time in seconds required to build and to update JINGO. Note that

bulid and update time are illustrated with two independent y axes.

the ECLIPSE projects achieved significantly higher results when using JINGO with
a small effect size. For the SPRING group, the proposed approach improves MAP
results in 17 out of 24 projects. The improvement is statistically significant for 2
projects with medium (AMQP, Data Commons) and 2 with small (Roo, Security)
effect sizes. In the HCC-Repo group, we note that JINGO outperforms baseline for
7 out of 10 projects with a significant improvement in 4 projects.

On average, JINGO outperforms the baseline for Top@1, Top@3 and Top@5 rec-
ommendation by 5.7%, 7.4% and 5.7% respectively. For 4 project groups, APACHE,
SPRING, ECLIPSE and HCC-Repo, we observe that as we consider longer recom-
mendation list the difference between the techniques is growing. However, for the
COMMONS and WILDFLY groups, the difference between JINGO and Corley et

al.’s approach reduces at Top@5 and Top@3 respectively.
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4.5.2 RQ2: Time overhead to update the model

Given the fact that JINGO is an online model, it is updated with each newly
arriving data instance, keeping the model up-to-date with minimal time overhead.
To investigate the performance benefit of using an online model over a model that
requires re-building, in Figure [7| we show the time required to build and to update the
model, averaged per each group of projects. Across all groups, we observe that the
update time is significantly lower than build time, with the average speedup of 100 for
the groups with smaller projects (SPRING and COMMONS), and up to about 1000
in the case of large projects (APACHE, ECLIPSE and HCC-Repo). This indicates
that with the growing size of a repository, the cost of re-training the model becomes
even more prohibitive. As an example, consider the results obtained for APACHE
projects, with the average build time close to 20,000s = 5.5h and update time of
about 22.5s. With new changesets being committed to a repository multiple times
during a day, a model that relies only on re-building is outdated every couple of hours
and consumes computational resources for a significant amount of time. On the other
hand, utilizing an online model with an update procedure significantly reduces the

time overhead, hence allowing to incorporate new information as it arrives.
4.5.3 RQ3: JINGO compared to static bug localization

In order to compare JINGO’s bug localization accuracy to that of the state of
the art static models, we select two recent techniques based on the Vector Space
Model (VSM), BLiA [97] and BRTracer [91]. We used source code for both of these
techniques that was shared as part of Bench4BL [84]. When considering all types of
bug reports, simpler models like VSM have been reported to outperform LDA on bug
localization [98]. Table [6] shows the average MAP and MRR for JINGO, BLiA and
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Table 6.: Comparison between JINGO and two VSM techniques based on average

(per bug report) accuracy and time overhead measures.

Accuracy Time overhead
Technique MRR | MAP Build Time [s] | Update Time [s]
JINGO 0.323 0.241 2964.955 4.786
BLiA 0.371 0.314 101.315 101.315%
BRTracer 0.471 0.367 91.245 91.245*

BRTracer on the Bench4BL set of repositories; we compute the average per bug report
in order to account for some projects having more instances than others. Alongside
the accuracy measures, Table [6] shows the average time overhead to construct the
model and to update it with a single changeset, also averaged across all the projects
in our dataset. BLiA and BRTracer do not have an update mechanism so the update
time can be assumed to be equivalent to (re-)building the model.

BLiA and BRTracer outperforms JINGO in retrieval accuracy with the improve-
ment in MRR of 4.8% and 14.8% respectively. On the other hand, JINGO offers
significantly more time-efficient update procedure that is about 20 times faster than
performing a full model rebuild for the VSM-based baselines. Although JINGO needs
more time to initially construct the model when compared to BLiA and BRTracer,
note that the build time depends on the number of documents. While BLiA and
BRTracer use source code files (e.g., java class files), JINGO leverages changesets
which are significantly more numerous compared to the number of classes, hence it is

expected that JINGO requires more time to complete the initial build.
4.5.4 RQ4: Different types of content in bug reports

One of the key goals of JINGO is to address the different types of bug reports.

Figure [§ contrasts the MAP values of JINGO and Corley’s et al.’s approach when
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Fig. 8.: Performance of JINGO and Corley et al.’s |] technique for bug reports
containing different ratio of code tokens to the total number of tokens (z-axis). Per-

formance is measured with MAP (y-axis) with horizontal lines depicting trend lines.

locating relevant files for bug reports with varying ratios of code tokens to the total
number of tokens in the bug report. To ease readability, bug reports were grouped in

bins of size 0.02 according to the ratio of code tokens. Each bug report bin corresponds



to one dot, with MAP value equal to the average of the MAP values of the bug reports
in the bin. The best fit lines in Figure [§] further illustrate how the MAP results vary
with different ratios of code tokens.

Across all bug reports, as shown in the top left of Figure [§, JINGO’s best fit
line is above the baseline, indicating that the technique is in general more effective.
Moreover, JINGO provides more stable performance for different types of bug reports
as its trend line is more flat when compared to the baseline’s trend line. In other
words, JINGO is less affected by the presence of code tokens in a bug report.

However, depending on the project group, we note different characteristics and
scale of improvement. For instance, the COMMONS group exhibits the highest im-
provement in MAP values with increasing difference between JINGO and the base-
line’s performance as the ratio of code tokens rises. We observe similar characteristics
for the APACHE, SPRING, and WILDFLY groups, however the gap between JINGO
and the baseline effectiveness is smaller when compared to results for the COMMONS
group. The ECLIPSE group presents significantly different characteristics for JINGO.
Unlike for the other groups, the MAP trend line is decreasing with increases in the
ratio of code tokens. We noticed that the bug reports in the ECLIPSE projects often
included code snippets from the users’ projects, which had little to no connection to
the code base, that could misguide the JINGO model. Yet another interesting charac-
teristic can be noted for the HCC-Repo group, where JINGO trend line is consistently
above the baseline’s trend line. Given the fact that the projects in HCC-Repo group
have long and rich development history which includes numerous previously fixed
bug reports (see Table , this result indicates that JINGO can effectively leverage
historical data to boost the performance for all types of bug reports.

In Table [7] we show the results for the manually annotated set of bug reports,

again observing improvements in JINGO over Corley et al.’s JIT-IRBL technique.
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Table 7.: Performance on different bug report types from a manually annotated set

(N = 322).
Bug Report MRR MAP
Type | Num. | JINGO [25] | JINGO [25]
Code References (CR) 165 0.455 0.365 0.376 0.266
Shared Terms (ST) 100 0.257 0.272 0.180 0.177
Natural Language (NL) 57 0.226 0.178 0.143 0.091

We also observe that the techniques overall do best with CR bug reports, followed
with ST, and struggle the most with NL. JINGO provides observable improvements
in the CR and NL categories, but performs on par with the other technique on ST

bug reports.
4.5.5 Discussion

In this section, we detail a few salient observations resulting from evaluating
the four research questions. The evaluation of RQ1 indicates that JINGO presents
an improvement over a prior technique that proposed an updatable model of the
software based on changesets (i.e., JIT-IRBL). More specifically, according to RQ4,
the primary reason for this improvement is two fold, (1) JINGO performs better on
bug reports with high number of code terms, including exact references to the methods
and classes of interest, (i.e., code references); and (2) JINGO shows improvements on
bug reports with high level of abstraction that do not mention any of the related code
references. We believe the first reason is due to heuristics JINGO uses, such as higher
weighting program element names, while the second reason is due to the two-level
hierarchical architecture of JINGO. However, in the evaluation of RQ3, we observe
that the accuracy of JINGO is not at the level of static (i.e., non JIT) approaches, in

particular, those based on the vector space model.
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JINGO achieves the goal of performing fast updates for newly arriving data,
according to RQ2. The static VSM-based approaches we contrasted with in RQ3 are
significantly faster to build than JINGO, but are 20x slower in model updating, as
these models are not designed to be updatable, hence they have to be rebuilt.

According to our evaluation of RQ4, the most abstract (Natural Language cat-
egory) bug reports still perform poorly in absolute terms, i.e., MRR=0.226 and
MAP=0.143, producing weaker results than the two other categories of bug reports
we identified, despite the heavy emphasis of JINGO on capturing abstract semantics
via its two-layer architecture. Clearly, more work is needed to improve how bug lo-
calization techniques perform for this category of bug reports. Future research efforts
should identify such bug reports explicitly as they are significantly fewer than the
other categories (roughly 1/3 or 1/2 of the other categories in our randomly collected

sample), while localizing them arguably provides the greatest value to end users.
4.5.6 Threats to Validity

The results of the study suffer from several threats to their validity. A key
threat to the internal validity of our study are the specific parameter choices we used
to build our model. Probabilistic models like ours are particularly sensitive to such
parameters [94]. While, to mitigate this threat we employed extensive hyperparameter
optimization using a separate dataset, it is clear that this threat can still be impacting
our study.

Leveraging changesets for bug localization pose another threat due to possible
noise that can be introduced by tangled, split, or refactoring changesets [50, |51].
However, as long as such noisy changesets are in the minority relative to ones that
reflect semantically related modifications, probabilistic techniques like LDA are likely

to still produce a reasonable representation that can model how source code evolves
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over time [52].

Another threat is in potential biases affecting our evaluation datasets, such as
incorrect ground truth, and misclassified or already localized bug reports [64]. The
first two biases have a potential to negatively affect the performance of JINGO as
they introduce noise in the translation matrix, while the last bias can spuriously
increase the results by having localization hints present. To mitigate the first threat,
we followed experimental procedures used by other researchers, aiming in most cases
to err on the side of caution by adopting choices that produce low false positives when
identifying source code files related to a bug [84]. To mitigate the risk of using issues
misclassified as bug reports, before building HCC-Repo dataset one of the authors
manually inspected each project to ensure the quality of issue labeling, and identified
labels referring to actual bugs. Although our efforts cannot completely remove those
two biases, as observed by Kochhar et al. [64] they are typically not significant, hence,
considering the size of our dataset, they should not have a significant effect. As for
the already localized bug reports, we did not exclude them since one of our goals
was to observe how bug localization performance changes for different types of bug
reports. However, to present a complete picture, we included results for a manually
annotated subset of bug reports with and without localization hints (Table [7).

A key threat to external validity is that we applied the bug localization technique
only on a limited number of bugs, which primarily reflect popular open source Java
projects. A mitigating factor is the evaluation with the large number of projects
curated by the Bench4BL benchmark [84]. Additionally, this benchmark has also
been applied to prior bug localization studies. Another threat to external validity is in
the chosen evaluation metrics, which may not directly correspond to user satisfaction
with our bug localization technique [12], impacting the generalizability and validity of

the reported results. We mitigate this threat by evaluating our approach with high-
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quality datasets and well-known metrics, which continue to be used by academia and

industry to measure the performance of IR techniques.
4.6 Conclusions

In this chapter, we propose a novel technique toward the just-in-time bug local-
ization problem, which becomes increasingly relevant as software size grows rapidly.
JINGO is based on two Online LDAs that separately model changesets and bug re-
ports, and uses the translation matrix, trained on previously observed pairs of bug
reports and fixing changesets, to translate between the probabilistic spaces of the two
LDA models. By adopting online variant of LDA model, JINGO can be updated with
newly arriving data (i.e. bug reports or changesets), while using separate models for
bug reports and changesets allows it to adapt the prediction to the content of a bug
report.

The experimental evaluation was conducted on 56 software project, with a total
of 2,999 bug reports. The results indicate that the proposed approach outperforms a
previously reported topic-based baseline, especially when considering different types
of bug reports. Given that JINGO incorporates historical data about bug fixes, it
is more robust for bug reports that lack localization hints. On the other hand, the
retrieval accuracy of JINGO is still superseded by VSM-based approaches, however,
they are also significantly slower as they do not support an update procedure and
have to be rebuilt periodically.

Overall, these results indicate the importance of leveraging historical data for
improved retrieval accuracy in the case of bug reports containing only a high-level
description that is challenging to map to source code files without prior knowledge.
As a future work, JINGO could possibly be improved by leveraging noise filtering

techniques to improve the quality of data used to construct the translation matrix. On
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the other hand, the main strength of JINGO, building an abstract data representation
based on topic distributions, is also its main drawback for bug reports that include
localization hints, since single terms are not explicitly captured by the model. To
address that, future work could investigate how to preserve fine-grain data, such as

single terms, when building a high-level data representation.
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CHAPTER 5

FAST CHANGESET-BASED BUG
LOCALIZATION WITH BERT

As industry is increasingly attempting to use bug localization to aid developers in their
daily work, specific requirements of the problem for modern use are coming to the
forefront [11]. One key characteristic found beneficial in modern software projects is
bug-inducing changeset retrieval. A bug-inducing changeset is one where the bug was
initially introduced into the repository. Retrieving such changesets leads to faster
bug repair, as they contain related parts of the code that were changed together,
which makes fixing the bug easier. However, retrieving bug-inducing changesets with
high accuracy is more challenging than retrieving source code elements, as changesets
are typically much more numerous than software classes or files. In recent years,
numerous popular natural language processing tasks (e.g., question answering, ma-
chine translation) have all observed improved performance when using neural network
architectures based on transformers. These transformer-based models are typically
applied via transfer learning, by first pre-training them on a very large corpus and
then fine tuning them to the specific task using a much smaller dataset. Transformer-
based models pre-trained on large software engineering corpora (e.g., StackOverflow,
GitHub) are now becoming available [28], with the potential to improve software engi-
neering tasks like bug localization. However, given the fact that these models consist
of many neural layers and require heavy computation, measuring relatedness between
the bug report and the software artifact quickly becomes expensive, especially when

the search space consist of changesets.
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In this chapter, we apply a BERT-based approach the problem of changeset-
based bug localization with the goal of improved retrieval quality, especially on bug
reports where straightforward textual similarity would not suffice. We describe an
architecture for IR that leverages BERT without compromising retrieval speed and
response time. In addition, we examine a number of design decisions that can be
beneficial in leveraging BERT-like models for bug localization, including how best to

encode changesets and their unique structure.
5.1 Industrial requirements for bug localization

Applying a bug localization tool in an industrial environment is a challenging
task given that such a tool needs to address needs and requirements that are often
unknown or not considered by researchers while building a tool. In this section, we
list and discuss the specific constraints of the bug localization problem that we aim
to address, which are based on a recent survey of industry practitioners and the
problem requirements observed at a large software enterprise [11, 53]. Our focus is
a bug localization technique that: 1) focuses on retrieving changesets; 2) aims to
capture semantics and can be applied to bug reports that do not share terms with
the relevant parts of the code base; and 3) quickly retrieves results for a newly created

bug report.

Requirement#1: Localizing changesets [11]. Over the years, a large body of
research has been dedicated to locating source code files (or classes) relevant to a bug
report [54, |29, 91, 56, |31} 25]. However, recent studies have pointed out that bug
localization at the level of source code files still requires significant effort by software
developers in order to locate relevant code within large files |24, |11, 53]. Adjusting for
this finding, researchers shifted their efforts towards more fine grained code elements,

such as file segments [91] and methods [88, (99, 100, which introduce new sets of
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challenges such as difficulty in selecting optimal segment size and large methods that
still require effort to examine. More recently, there has been a growing interest
in changeset retrieval [25] |24} 26, |61] for bug localization as changesets have several
unique properties that make them convenient to developers aiming to fix a bug. First,
they inherently capture lines of code that are related to each other within the context
of a modification, while the changeset log summarize the goal of the modification.
Second, when locating changesets, we can retrieve not only the modified portion of
the code, but identify a software developer that committed the modification in the
first place, therefore easing the bug triaging process. Finally, changesets allow for
straightforward context-aware division into a set of hunks, i.e., a set of changes in
one area of the file. Hunks are usually convenient to read for developers and allow for
easy detection of changes with no semantic value (e.g., changes only in whitespace).
Requirement#2: Leveraging semantics of input documents |11} 28]. Under-
standing the meaning behind the source code can be essential to discern whether the
code is relevant to a bug report. However, while bug reports are expressed in natural
language, source code is highly structured and typically use a fixed, repetitive vocab-
ulary, that can easily obscure the actual functionality it implements. Moreover, given
that multiple developers are involved in maintaining the code base, it becomes af-
fected with unique coding and naming patterns, which pose a significant challenge to
traditional IR systems based solely on token similarity [27]. To address that, there has
been a growing interest in building semantically rich document representations [27,
26, |15, 79, |101}, 11}, [102]. Transformer-based models in general, and BERT in partic-
ular, are currently one of the most exciting deep learning techniques achieving broad
improvements across a variety of text-based tasks. The main strength of BERT-like
models is in building a token representation based on bidirectional capture of contex-

tual information encoded in the preceding and succeeding tokens, which leads to richer
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semantics that is more likely to detect related pairs of bug report and changesets that
do not share terms. Prior generations of word embeddings, e.g., word2vec [38] and
GloVe [39], which have been frequently applied on software engineering tasks |103],
do not use word context at inference time, i.e., each token maps to a unique vector
regardless of the surrounding text.

Requirement#3: Fast retrieval in a large search space [104]. Retrieving bug-
inducing changesets requires computing similarity between a bug report of interest
and all changesets committed to a repository up to the present point in time. Given
that modern software evolves rapidly, resulting in large source code repositories with
numerous commits [105} [L06], it is impractical to compute pair-wise similarity due to
the large search space. This is especially the case if computing the similarity measure
itself is expensive. Though deep learning models provide state-of-the-art accuracy,
they typically require more computational resources than token-based techniques,
which emphasizes the need for a bug localization technique to limit the search space

in order to improve performance without compromising accuracy.

In order to address the above problem constraints, this work investigates the
use of a BERT model towards bug localization with changesets as a primary data
granularity, which is also preferred by practitioners’ (Req#1)[107]. We specifically
selected BERT as it is the state of the art in semantics modeling and extracting
contextual information, therefore addressing (Req#2). Finally, to ensure that our
approach is applicable to large, industry scale repositories (§2.3), we introduce Fast
Bug Localization BERT (FBL-BERT), which reduces the search space, such that only
promising candidate changesets are considered for neural re-ranking with BERT. In
addition, FBL-BERT encodes a bug report and a changeset separately, allowing to

compute changeset representations offline and reduce the computational effort per
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bug report at retrieval time.
5.2 Approach

In this section, we first introduce BERT and how it can be used to enhance bug
localization, followed by FBL-BERT, which is aimed to significantly improve BERT’s
retrieval speed. Last, we outline different choices for how to encode changesets with
BERT in order to better preserve their semantics and provide quality matches with

bug reports.
5.2.1 BERT for bug localization

The architecture of BERT consists of multiple layers of transformer-encoders,
which are an abstraction aimed at modeling sequential data that utilizes self-attention;
the notion of attention is to weight specific terms in the sequence differently, i.e., en-
coding a stronger relationship from each term in the sequence to the remaining most
semantically relevant terms. As pointed out by Mills et al. [10], retrieval techniques
for bug localization can be significantly improved with intelligent query construction,
i.e., by carefully choosing which parts of the bug report to use for comparison. There-
fore, leveraging a model that uses attention to emphasize certain word relationships
has the potential to significantly improve upon prior state-of-the-art bug localization
techniques.

Using a BERT model for bug localization (or other similar purposes) involves
three essential steps: (1) pre-training the model with a large corpus of general software
engineering-related data, (2) fine tuning the BERT model for bug localization, and
finally, after BERT has been completely trained, (3) retrieving relevant bug-inducing
changesets for a newly reported bug.

During pre-training, BERT uses massive corpora of relevant text to build a lan-
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guage model for a specific domain, e.g., software development. Given that this step
requires a significant amount of data and computational resources, a common choice
is to re-use a pre-trained BERT model, when available. In the fine tuning step, BERT
updates the general data representation with respect to a specific downstream task
(e.g., bug localization) given a much smaller, task-specific dataset. More precisely,
fine tuning a BERT model occurs by adding an additional layer (e.g., a classification
layer) to the pre-trained BERT model. This task-specific layer takes the output of
BERT as input and represents the part of the model that is primarily trained during
fine tuning, though BERT’s internal weights are also updated in the process. In most
scenarios, fine tuning can be completed faster and with much less computational
resources than pre-training. Since our goal is locating bug-inducing changesets, a
natural choice for a task-specific dataset consists of bug reports and their inducing
changesets. A key design choice at this stage is how to connect BERT with the addi-
tional task-specific neural network layer. Given an input document, BERT encodes
each word in the document with a vector, i.e., for each input document, the output
of the BERT model is an embedding matrix of size |d| by v, where |d| represents
the number of words in the document and vy, the length of a BERT vector; typically
Vien = 728. The most common approach when retrieving BERT-encoded documents
is to aggregate the embedding matrix across words through average or summation,
which produces a single vector as output. Using such an aggregate representation of
a document allows for faster processing and easier comparison between pairs of doc-
uments. However, as pointed by Sachdev et al.[108], this simple aggregation strategy
leads to a dissipative data representation that has the potential to negatively affect
retrieval performance. In the next section, we present an alternative strategy that
takes advantage of the full matrix to encode input data.

In the simplest changeset retrieval scenario, presented in Fig. [9a] each newly
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Fig. 9.: BERT-based architectures for changesets retrieval.

arriving bug report is concatenated with every changeset in the project history. Sub-
sequently, they are processed by BERT, producing an embedding matrix, which is
transformed to a vector by an aggregation layer. Finally, the vector is passed into
a classification layer that produces a relevancy score between a bug report and a
changeset. Changesets are ordered based on their scores to produce a ranked result
set. This type of BERT architecture for information retrieval is often referred to as
Single BERT [26], |109} |110]. In an alternative retrieval architecture, called Siamese
BERT |26, 111] and depicted in Fig. , the bug report and the changeset are pro-
cessed in parallel, first through BERT and then through an aggregation layer. As
a result, bug reports and changesets are transformed into independent vectors that
are subsequently concatenated and fed into the classification layer to produce a rel-
evance score. The advantage of Siamese BERT over Single BERT is that Siamese
BERT enables pre-computing changeset representations offline since changesets are
not required to be concatenated with a bug report for retrieval. However, Siamese

BERT still requires comparing a bug report to each changeset, which incurs significant
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retrieval delay in the case of large number of changesets.
5.2.2 Fast Bug Localization BERT

The FBL-BERT architecture, based on ColBERT by Khattab et al. |112], es-
chews aggregation of the embedding matrix, and instead builds a relevance score by
leveraging the whole matrix, resulting in a more complete, fine grained comparison.
More specifically, a bug report br and a changeset c are separately processed by BERT
creating embedding matrices Fj, and E,., respectively. To compute the relevance score
between Ey,. and E., for each word embedding in the bug report vy, € E,., we find
the maximum cosine similarity across word embeddings of the changeset v. € E.,
and combine the maximum cosine similarities via summation as illustrated in Fig.
As a result, the model learns how to associate words from a bug report with tokens
in a changeset, taking into account the context in which they appear. To account
for the two different types of data we process, i.e., bug reports and changesets, we
modify ColBERT by increasing the numbers of BERT encoder layers taken to the
linear layer. More specifically, while ColBERT uses the output of the last BERT
encoder, we take the output of the last 4 encoders (as recommended by [40]). This
modification is dictated by prior studies observing that that different layers of BERT
encode different granularity of semantic information [40, (113} [114]. Note that the
linear layer in FBL-BERT is not equivalent to the aggregation layer discussed before,
but is used to reduce the size of word embeddings produced by BERT), retaining all
word embeddings in a compressed form for faster downstream processing.

There are several benefits that make the FBL-BERT architecture particularly
applicable to our problem. First, the model purposely avoids joint document encod-
ing, as in Single BERT, delaying interaction between a bug report and a changeset to

facilitate off-line encoding of changesets. Moreover, by using computationally cheap,
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yet efficient, maximum similarity summation as a scoring operator instead of a more
complex strategy, such as the classification layer in Siamese BERT, the processing
time for a query is reduced. Finally, given that the relevance score computation is
isolated and relies solely on maximum similarity, it is possible to utilize efficient vector
similarity algorithms to reduce the search space of all M changesets by identifying
top-IN changesets, N << M, that are similar to a new bug report, and subsequently
re-rank only the top-/N subset.

To clarify how FBL-BERT operates for changeset-based bug localization, con-
sider the pipeline depicted in Fig. [10] First, as shown in the Model Training section
of Fig. the FBL-BERT model is fine tuned on a project-specific dataset consist-
ing of bug reports and bug-inducing changesets. In the next step (Offline Indexing),
all changesets in the project repository are encoded via FBL-BERT and stored in
an index supporting efficient vector-similarity search. For this purpose, we use an
IVFPQ (InVerted File with Product Quantization) index, implemented in the Faiss
library [115]. The IVFPQ index uses the k-means algorithm to partition the embed-
ding space into P (e.g., P = 300) partitions, and subsequently assigns each word
embedding to its nearest cluster. To facilitate efficient search, when a query is issued,
the query is first compared against the partitions’ centroids to locate the nearest par-

titions, and then the search continues to the instance-level only within those. Note
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that the Faiss index contains word embeddings across all changesets. After comple-
tion of this step, the retrieval system is ready to be deployed. When a new bug report
arrives, it is first encoded via FBL-BERT producing an embedding matrix. Next, for
each word embedding in the embedding matrix, we query the Faiss index to identify
the N’ most similar embeddings across all changesets embeddings stored in the Faiss
index. Since among N’ most similar embeddings some may point to the same change-
set, in the end we obtain a total of N unique candidate changesets. Finally, we use

FBL-BERT to re-rank the candidate changesets and produce the final ranking.
5.2.3 Changesets encoding strategies

Software evolution over time is recorded in a repository as a time-ordered se-
quence of changesets. Each changeset consists of a log message, providing a short
rationale explaining the goal of the modification, and a set of source code changes.
Depending on the version control system and diff algorithm used in the software
project, the representation of source code changes can vary. In this paper, we focus
on the format that is the output of the git diff command, in which added lines
of code are annotated with +, removed lines with -, and all modified lines are sur-
rounded by 3 lines of contextual, unchanged lines. While there exist more advanced
tree-based code differencing algorithms (e.g., GumTreeDiff [116]), providing detailed
code-change information to a machine learning model may affect the model nega-
tively [117], hence we opt for a text-based approach. Changesets can encapsulate
code changes across one or multiple source code files, and modifications to each file
can be divided into hunks - groups of modified (added or removed) lines surrounded
by unchanged (context) lines. Given this specific formatting, we explore how best
to utilize changesets’ properties to construct BERT input from two perspectives: (1)

encoding characteristics of code modifications, such as additions or removals; and (2)
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levels of granularity in a changeset.
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Fig. 11.: Changeset encoding strategies.

Input provided to BERT models is required to follow certain rules. First, a docu-
ment (e.g., a changeset or a bug report) needs to be tokenized and each token replaced

by its unique token id. Pre-trained BERT models supply their own BERT tokenizers,
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that are optimized towards the corpus on which the model is pre-trained. BERT
tokenizers are trained using the WordPiece algorithm [118]. The main advantage of
BERT tokenizers is in avoiding out-of-vocabulary words by dividing unknown words
to their largest subwords present in the vocabulary, which is likely to be beneficial
in our setting, as software projects can have very specific vocabularies unlikely to
be observed elsewhere [28]. Secondly, BERT uses a pre-defined set of special tokens.
In general, due to how BERT is trained (more details in [40]), the model requires
that each token sequence starts with special classification token [CLS] and ends with
separator token [SEP], while other special tokens, such as padding [PAD] are used
if and when necessary. Special tokens can convey information about the structure
of data allowing BERT to differentiate between parts of the input, hence we explore
how special tokens can be best utilized to encode changesets. To this end, we propose

the following encoding strategies, depicted in Fig. [I1]

D: A changeset is considered a single document that is feed into the model. To inform
the model that a changeset sequence begins, we define and pre-append the special
token [D] at the beginning of the code sequence. Since this strategy does not utilize
specific characteristics of a code change, it serves as a baseline to compare against

other strategies.

ARC: In this encoding, a changeset is split into lines, and the lines are subsequently
grouped based on whether they are added, removed or provide context, as indicated
by their initial character: + for added, - for removed, and an empty space for context
lines. The lines in each group are concatenated to create a sequence to which we
pre-append a special token: [A] for the sequence of added lines, [R] for the sequence
of removed lines and [C] for the sequence of context lines. Finally, all the sequences

are concatenated together to create an input for the model. By grouping different
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parts of changesets based on their characteristics, we aim to investigate whether any
particular type of modification is more beneficial than the other. With the ARC
strategy the model is given an opportunity to learn how to combine information of
different types and, if necessary, decide to disregard a portion of it if it poorly affects

performance.

ARCy: Similarly as in ARC, a changeset is divided into lines, however ARCy
encoding does not group the lines. Instead, it preserves the ordering of lines within
a changeset, such that special tokens [A], [R], or [C] are pre-appended wherever
type of modification changes. While this strategy results in more accurate data
representation, compared to ARC, ARCy, is also more challenging for the model,

since the special tokens occur multiple times and in several places.

Given that a bug report and a changeset are encoded separately, the model has
to differentiate between these two types of documents. To this end, when encoding a
bug report, we define a special token [Q] that is pre-appended to the query, i.e., the
bug report.

Another dimension in choosing how to best encode changesets is related to their
granularity, i.e., using entire changesets or separating a changeset to a file- or hunk-
level. Leveraging hunks as the primary data dimension in an IR model brings several
advantages. First, bugs have been observed to be typically caused by small pieces of
code [88,91], thus the inherent fine granularity of hunks makes them less susceptible
to noise when compared to whole source code files [24]. Second, dividing changesets
into hunks alleviates issues caused by tangled commits [119]. Given the fact that
hunks are typically small and concentrate on an enclosed portion of the code, BERT
is not affected by long-range token dependencies, which is a problem typically affect-

ing source code [28]. Finally, shorter input documents are less likely to exceed the
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maximum sequence length accepted by BERT, while longer documents have to be
truncated, which may negatively affect the results. However, despite easily accessible
smaller data granularity within a changeset, to date, most of the efforts are focused

on leveraging entire changesets 26}, |5 [11].
5.3 Experimental evaluation

5.3.1 Research questions

RQ1: How effective is FBL-BERT when compared to (1) state-of-the-art techniques

based on the VSM, and (2) related BERT-based architectures?

The main opportunity in using FBL-BERT is in incorporating additional context and
semantics when retrieving bug-inducing changesets, which should provide improve-
ments in accuracy over the state-of-the-art, especially for bug reports that provide
high level bug descriptions and lack explicit localization hints. Researchers have iden-
tified that a non-trivial amount of bug reports already contain localization hints, i.e.,
they mention the class or method names relevant to fixing the bug, and some recent
approaches for bug localization argue that only bug reports that lack extensive lo-
calization hints should be considered in evaluation [30]. We follow the methodology
proposed by Kochhar et al. [64] to categorize bug reports into 3 groups based on the
completeness of localization hints they provide and evaluate the performance for each
bug report group separately. We also investigate how the runtime performance of
FBL-BERT, which utilizes fine grained matching, compares to other BERT-based ar-
chitectures that rely on embedding aggregation and perform retrieval across the entire
search space. As baselines, we use (1) Locus [24], a state-of-the-art approach based
on VSM that locates bug-inducing changesets, and (2) TBERT-Single and TBERT-

Siamese [26] approaches that utilize aggregated BERT-based representations that
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have recently been proposed for software engineering.

RQ2: Which changeset encoding strateqy is the most profitable? Are there advantages

to using hunks, changeset-files or entire changesets as the primary data dimension?

In this RQ, we first investigate whether encoding information about the type of mod-
ification in each line of a changeset can increase the performance of the FBL-BERT
model. We evaluate two alternatives to encode changesets semantics, ARC, ARCy,,
and a baseline approach, D, which disregards change-related information. Second, we
investigate how granularity of the input data affects the model performance and what
are the benefits and challenges of leveraging changesets, changeset-files, or hunks in
our model. To answer this RQ, we fine tune FBL-BERT separately for each of the
encoding strategies and with each input data granularity, resulting in 9 evaluation
configurations per software project, measuring the model’s performance in retrieving

relevant changesets.
5.3.2 Dataset and baselines

To answer the RQs, we leverage the dataset of bugs and their inducing change-
sets collected and manually validated by Wen et al. [24]; manually validated datasets
remove the error that can be introduced by the SZZ algorithm that maps the bug
fixing to the inducing commit [120]. This dataset includes 6 software projects, namely
AspectJ, JDT, PDE, SWT, Tomcat and ZXing (descriptive statistics are presented
in Table . To create a training set for each project, we selected the first half of
project’s pairs of bug reports and bug-inducing changesets, ordered by bug opening
date, as a training set, and left the remaining half as a test set. For each pair in the
training sets, we also create a negative sample by randomly choosing a code change

which does not belong to the inducing changeset, essentially forming triplets of bug
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Table &.: Evaluation datasets for FBL-BERT.

#Bugs #Changesets #Changeset-files #Hunks

AspectJ 200 2,939 14,030 23,446
JDT 94 13,860 58,619 150,630
PDE 60 9,419 42,303 100,373
SWT 90 10,206 25,666 69,833
Tomcat 193 10,034 30,866 72,134
ZXing 20 843 2,846 6,165

report, bug-inducing changeset, not bug-inducing changeset. We experimented with
choosing negative samples by selecting a syntactically similar changeset that was not
bug-inducing but we did not observe a significant change in retrieval accuracy. As
this type of generating negative samples incurred substantial computational cost to
gather, we opted to use random sampling. Finally, for each project we obtained a
balanced training set with equal number of positive and negative examples. Note
that although training sets do not include all available code changes, during bug lo-
calization the model performs retrieval across all code changes available for a specific
project. (as explained in Section . To study the impact of different change-
set data granularity on the BERT-based models, we created a separate dataset for
each type of granularity, i.e., changesets, changeset-files and hunks. To this end, for
changeset-file and hunk granularity, we divide the bug-inducing changeset to file- or
hunk-level code changes, such that one bug report creates multiple pairs with files or
hunks from its respective inducing changeset.

We compare the performance of the proposed model with Locus |24], which is
an unsupervised model that utilizes hunk-level granularity and the VSM to locate
relevant changesets based on the maximum similarity score obtained between a bug

report, a hunk, and a log message. Note that FBL-BERT does not use log messages
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as our goal is to explore mapping from natural language in a bug report to code
changes. While well written log messages can have a positive impact on the results by
boosting the scores for some changesets, not all relevant code changes are accompanied
by logs of good quality [44, [121]. As a second set of baselines, we employ TBERT
architectures for software artifacts retrieval recently proposed by Lin et al. [26]. Out
of the three architectures investigated by Lin et al., we selected TBERT-Single and
TBERT-Siamese as our baselines, rejecting TBERT-Twin, since its performance in
terms of accuracy and time was significantly surpassed by the two others. In general,
both of these architectures are fairly similar to those presented in Fig. [0] with an

exception of using more advanced embedding aggregation operators [26].
5.3.3 Experiment setup

The experiments were conducted on a server with Dual 12-core 3.2GHz Intel Xeon
and utilized 1 NVIDIA Tesla V100 with 32GB RAM memory running on CUDA ver-
sion 10.1. To implement our model, we used PyTorch v.1.7.1, HuggingFace library
v.4.3.2, and Faiss v.1.6.5 with GPU support. Since pre-training is a computationally
expensive task and requires a huge dataset, we decided to use an available pre-trained
BERT model, BERTOverflow [81]. BERTOverflow is trained on StackOverflow data,
hence it contains a mixture of code snippets and natural language descriptions, which
is logical for the bug localization task that operates on both code and natural lan-
guage. We fine tuned our BERT model and TBERT baselines for 4 epochs with
batches of size 16 and a learning rate of 3E-06 |[40]. Based on the average number
of tokens in bug reports, hunks, changeset-files and changesets across the evaluation
projects, we set the maximum length limit to 256, 256, 512, and 512 respectively.
All input documents are truncated or padded to their respective length limit. For

the Faiss index, we set the number of partitions to 320 and retrieved a total of 1000
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Table 10.: Mean Reciprocal Rank (MRR) of changeset-based BL techniques for dif-

ferent types of bug reports.

| | Bug report type

Technique Granularity BLNL BLPL BLFL BLNLJrPL All
n=151  n=75 n=105  n=226 BRs

n=3831

Locus | Hunks | 0.235 0.302 0.452 | 0.258 | 0.319

TBERT-Single Changesets 0.119 0.213 0.136 0.150 | 0.146
Change. files | 0.274 0.469 0.299 0.339 | 0.326
Hunks 0.268 0.429 0.273 0.321 | 0.306

TBERT-Siamese | Changesets 0.125 0.256  0.080 0.168 | 0.140
Change. files | 0.263 0.424  0.200 0.316 | 0.279

Hunks 0.236 0.333 0.171 0.269 | 0.238
FBL-BERT Changesets 0.076 0.114 0.113 0.089 | 0.096
Change. files | 0.303 0.441 0.294 | 0.349 | 0.331
Hunks 0.290 0.509 0.338 | 0.363 | 0.355

changesets for re-ranking with FBL-BERT [112]. In the case of Locus, we set the
model parameters to A = 5 and [y = 0.2, indicated by the authors to provide the

highest performance.
5.4 Results
5.4.1 RQ1: Retrieval performance

Retrieval accuracy. Table [10]| contrasts the retrieval performance of the FBL-
BERT model against the baseline approaches for three different types of bug reports:
not localized, partially localized, or fully localized. If a bug report has no mentions
of relevant classes, it is classified as not localized (BRxt,); when some of the relevant
classes appear in the report, the bug is categorized as partially localized (BRpy,); and
if all relevant class names are provided, the bug report is fully localized (BRgy,) [64].
Note that in the case of FBL-BERT, we use the results of the model trained with

ARCy, encoding since, on average, it provides the best performance across the evalu-

76



ation projects, as shown in Section [5.4.2]

FBL-BERT outperforms Locus for BRyp, and BRpy, by 5.5% and 20.6% respec-
tively, while in the case of BRpy,, Locus surpasses our approach by 11.4%. Given that
Locus relies on more direct term matching between a bug report and a changeset,
it makes intuitive sense that such a model performs best when localization hints are
present in a bug report, and struggles in their absence (as indicated by lower MRR
values for BRyp, and BRpp). On the other hand, FBL-BERT utilizes higher-level
association between bug reports and bug-introducing changesets, which can result
in exact matches getting less emphasis. Interestingly, the highest improvement in
retrieval accuracy is observed for BRpy, indicating that the model can effectively re-
trieve changesets based on partial clues by associating them with patterns learned
from historical data.

The performance of both TBERT models and FBL-BERT improves when the
models are trained and evaluated on hunks or changeset-files. Compared to leveraging
changesets, across all bug reports FBL-BERT improves between 23.5%-25.9%, while
the retrieval accuracy of TBERT-Single and TBERT-Siamese increases by 16%-18%
and 9.8%—-13.9% respectively. While this results indicate that leveraging fine grained
data affects retrieval performance positively, it is important to note that the poor
performance observed for changesets can be partially attributed to the input size
limit of the BERT model (i.e., 512 tokens), which is more often exceed by changesets
than hunks or changeset-files. More specifically, in our dataset truncation affects
about 8% of hunks and 25% of changeset-files compared to 45% of changesets.

In general, FBL-BERT outperforms TBERT-Single and TBERT-Siamese by 4.9%
and 7.6% respectively across all types of bug reports. Comparing the results of FBL-
BERT trained on hunks to TBERT models trained on changeset-files, given that

changeset-files provide on average the best performance for TBERT models, we note
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varying difference in retrieval accuracy depending on the bug report type. In the case
of BRxL, FBL-BERT improves MRR score by only about 2% over TBERT models.
For BRp1,, FBL-BERT improves by 4% and 8.5% over TBERT-Single and TBERT-
Siamese, while for BRy, the improvement is equal to 3.9% and 13.8% respectively.
The larger gap in retrieval accuracy for BRpy, and BRgp, between FBL-BERT and
TBERT models indicates the importance of token-level embedding matching, i.e.,
while TBERT uses aggregated embedding to represent and compare documents, the
token-level embedding matching performed by FBL-BERT allows this model to better
recognize the key code names presented in the bug report, which, in turn, translates
to higher retrieval accuracy.

Retrieval time. One of the key desirable characteristics of FBL-BERT is to per-
form efficient retrieval across a large corpus. This would allow it to leverage fine
grained data, such as changesets-files or hunks which were observed to provide the
best retrieval accuracy, while maintaining reasonable retrieval delay. In Fig. [12] we
compare the average retrieval time per bug report with respect to the increasing num-
ber of documents in the search space, i.e., changesets, changesets-files and hunks. In
general, FBL-BERT retrieves relevant documents faster than both TBERT models
with the retrieval time gap increasing as the search space grows. More specifically,
TBERT-Single is the slowest model and requires about 50s to perform retrieval over
a small number of documents (e.g., ZXing), and nearly 1000s(!) for a large project
(e.g., JDT). TBERT-Siamese is significantly faster than TBERT-Single, and up to the
search space of about 15K documents, it performs on-pair with FBL-BERT. However,
after that point, retrieval time for TBERT-Siamese rises steadily to reach about 70s
for the largest search space, while in the case of FBL-BERT the retrieval time is still
just above 1s. By comparing the performance of FBL-BERT against TBERT models,

it becomes evident that plain BERT-based models can quickly hit a retrieval delay
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Fig. 12.: Average retrieval time per a bug report with different sizes of search space

(e TBERT-Single, » TBERT-Siamese, = FBL-BERT).

wall which makes them impractical to use. On the other hand, FBL-BERT scales up
with respect to the search space size allowing to leverage fine grained data to increase
retrieval accuracy without sacrificing model responsiveness.

Note that the observed speed improvement is the result of both FBL-BERT
and FAISS. More specifically, the training objective of FBL-BERT (i.e., finding most
similar embedding vectors) enables using vector similarity search (e.g., FAISS). As a
consequence, FAISS can be used to retrieve the K best candidates (K << N, where
N is #documents) with similar word-level embedding representations that are then
re-ranked by FBL-BERT'. By re-ranking only K documents, the search space becomes
significantly reduced, hence decreasing the retrieval time. On the other hand, typical
BERT-based pipelines (e.g., TBERT) concatenate bug reports and changesets, and
use neural network layers to estimate a relevancy score. This approach precludes
pruning the search space via FAISS, therefore, during retrieval a bug report has to
be compared to all N documents, which in turn increases retrieval delay.

Error analysis. To gain more insight into factors that negatively affect the retrieval
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accuracy of FBL-BERT, we manually analyzed the bug reports for which the model
struggles the most. More specifically, we selected all bug reports where the bug-
inducing hunk was ranked 50 or worse by FBL-BERT'. This resulted in 20 bug reports
(BRNy = 8, BRpr, = 3, BRr;, = 9) that the authors independently analyzed,
contrasting the retrieved hunks to the true bug-inducing hunks in order to devise
a set of common issues causing low retrieval accuracy. The authors also examined
the most similar terms (and their weights) for both the retrieved and gold set hunks,
focusing specifically on the sources of largest differences between the two. Finally, the
authors discussed their independent observations and agreed on three common error
categories: stack trace/code snippets, comments, and code tokens splitting, where a
single bug report can belong to more than one error category. We discuss each of
these, in turn.

In 11 out of 20 bug reports, the difficulty to retrieve the correct hunk was caused
by the presence of a code snippet or a stack trace in the bug report. Since code
snippets and stack traces typically consists of multiple class names or code tokens,
they have a potential to introduce noise through unrelated code names, which, in
turn, can lead the model astray [122]. For 7 out of 20 bug reports, we noted that the
model was misguided by source code comments present in the top-1 retrieved hunk.
Since source code comments are formulated in natural language, a highly-contextual
model like BERT tends to emphasize their similarity with the bug report as it is also
expressed in natural language. For both of the above error categories, we believe that
the wholesale removal of the problematic text (i.e, comments from code and code
snippets and stack traces from bug reports) would negatively affect the model as it
removes both relevant and irrelevant information. Hence, researchers should explore
strategies to treat this data separately, perhaps by encoding their content within

BERT with special tokens akin to the ARC and ARCy, strategies we discuss in this
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paper.

Finally, for 5 of the bug reports, FBL-BERT failed due to spurious matches
in code tokens that were split into sub-tokens during preprocessing. One of the
previously observed strengths of BERT is in using the WordPiece algorithm to avoid
the out-of-vocabulary problem by splitting unseen tokens into the largest sub-tokens
that are part of the BERT vocabulary [123]. Since source code identifier names are
typically project-specific words, they do not occur in the pre-trained vocabulary, hence
they are often split by WordPiece (e.g., ManagerServlet — manager, ##servlet).
The sub-tokens can then spuriously match other terms, including sub-tokens from
other split identifiers, but not the whole, unsplit term. Researchers in the biomedical
domain recognized the same issue affecting medical terms and proposed domain-

specific BERT adaptations 124, |125] [126].
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Table 11.: Retrieval performance for different configurations of FBL-BERT.

‘ #Bugs ‘ MRR MAP P@l pPa@3 Pa@s ‘ MRR MAP Pal pa3 pas ‘ MRR MAP Pa@l pa3 pa@s
Changesets | D | ARC | ARCpL
Aspect] 104 0.053 0.032 0.029 0.024 0.037 0.107 0.061 0.058 0.080 0.083 0.070 0.042 0.029 0.045 0.044
JDT 47 0.097 0.014 0.043 0.028 0.021 0.118 0.160 0.064 0.043 0.030 0.118 0.016 0.064 0.035 0.026
PDE 60 0.091 0.012 0.067 0.022 0.020 0.099 0.019 0.033 0.033 0.031 0.103 0.013 0.067 0.033 0.027
SWT 43 0.067 0.015 0.023 0.027 0.026 0.033 0.006 0.023 0.008 0.005 0.018 0.007 0.0 0.0 0.0
Tomcat 97 0.135 0.048 0.052 0.070 0.074 0.132 0.051 0.062 0.072 0.071 0.141 0.055 0.062 0.077 0.088
ZXing 10 0.127 0.034 0.100 0.033 0.020 0.141 0.034 0.100 0.033 0.040 0.155 0.061 0.100 0.133 0.120
All projects ‘ 331 ‘ 0.091 0.030 0.042 0.039 0.042 ‘ 0.107  0.040 0.054  0.057 0.056 ‘ 0.096  0.036 0.045  0.049 0.049
Changeset-files ‘ D ‘ ARC ‘ ARCpL,
Aspect] 104 0.173 0.083 0.154 0.085 0.100 0.165 0.079 0.144 0.085 0.085 0.176 0.085 0.154  0.095 0.097
JDT 47 0.403 0.060 0.319 0.184 0.128 0.355 0.060 0.255 0.149 0.126 0.368 0.055 0.277 0.149 0.109
PDE 30 0.259 0.087 0.167 0.128 0.101 0.236 0.069 0.133 0.117 0.094 0.260 0.079 0.167  0.128 0.151
SWT 43 0.552 0.129 0.535 0.217 0.164 0.538 0.127 0.535 0.209 0.159 0.555 0.131 0.535 0.233 0.173
Tomcat 97 0.424 0.099 0.361 0.175 0.147 0.421 0.116 0.351 0.191 0.155 0.463 0.114  0.381 0.222 0.183
ZXing 10 0.199 0.157 0.100 0.133 0.140 0.212 0.163 0.100 0.133 0.220 0.200 0.159 0.100 0.133 0.120
All projects | 331 ‘ 0.348 0.097 0.293 0.162 0.138 ‘ 0.325 0.095 0.269 0.149 0.128 ‘ 0.331 0.092  0.281 0.145 0.127
Hunks | D | ARC | ARCy,
Aspect]J 104 0.175 0.084 0.163 0.091 0.093 0.176 0.082 0.163 0.093 0.083 0.183 0.093 0.173 0.111 0.099
JDT 47 0.362 0.059 0.255 0.135 0.122 0.322 0.049 0.213 0.149 0.109 0.429 0.062 0.319 0.195 0.167
PDE 30 0.249 0.088 0.167 0.122 0.141 0.288 0.093 0.200 0.144 0.127 0.200 0.068 0.133 0.078 0.087
SWT 43 0.510 0.117 0.465 0.225 0.196 0.519 0.142 0.442 0.240 0.201 0.526 0.131 0.488 0.217 0.164
Tomcat 97 0.426 0.135 0.289 0.211 0.191 0.441 0.140 0.351 0.211 0.211 0.482 0.129 0.412 0.216  0.182
ZXing 10 0.334  0.225 0.200 0.283  0.370 0.306 0.193 0.200 0.283 0.270 0.328 0.210 0.200 0.233 0.240
All projects | 331 ‘ 0.330 0.101 0.254 0.159 0.152 ‘ 0.334 0.105 0.272 0.162 0.144 ‘ 0.355  0.107 0.296 0.171 0.149




5.4.2 RQ2: Changeset encoding strategy

Table [11| shows retrieval performance of FBL-BERT trained and evaluated with
different changeset encoding strategies and input data granularities. For each project,
the three best performing configurations are highlighted, such that dark green marks
a configuration with the highest retrieval performance, while green and yellow corre-
spond to the second and third best configurations. Overall, we notice that using entire
changesets as the granularity of input results in, by far, the worst performance across
all of the investigated configurations for all evaluation projects. We can attribute this
result to: (1) truncation of changesets due to input length limitation of the BERT
model; and (2) tangled changes within a single changeset [51], which are likely to
affect the model by introducing noise via unrelated code modifications. On the other
hand, while the model based on hunks or changeset-files is not free of these problems,
the finer data granularity allows it to partially overcome them. For instance, in case
of tangled changes, dividing the entire changeset into hunks or changeset-files creates
multiple new data points, which limits the noise introduced by instances that are
poorly related to the bug. The difference in retrieval accuracy across all the metrics
between using hunks and changeset-files as the input data is minor and differs from
1% to 12.2% per project. This results is indicative of the observation that leveraging
hunks and changeset-files perform similarly and are both resilient to the problems
affecting changesets.

Examining the results for different changest encoding strategies, we observe that
ARCy, performs universally best across hunks and changeset-files. Interestingly, at
the level of changeset-files, the baseline encoding D, which does not encode modi-
fication type, does surprisingly well and outperforms ARC encoding. We attribute

this result to the specifics of ARC encoding, which groups lines based on the per-
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formed modification, hence in the case of larger documents the grouping may affect
the semantics of the documents. On the other hand, ARC encoding for hunks is
less likely to be susceptible to that problem since hunks are typically much shorter.
Analyzing the results for different projects, we observe that ARCy performs best
for AspectJ, JDT and Tomcat, with an improvement in MRR scores of 0.7%, 6.7%
and 4.1% over their second best configurations respectively, while ARC is the most
beneficial strategy for the PDE project. In the case of SWT, we observe the highest
retrieval accuracy with ARCp, while ZXing performs best with D encoding; how-
ever, both of these observations are likely negligible given the low difference between
ARCy, and other encodings for SWT, and the relatively fewer bug reports in the ZX-
ing project. Overall, we conclude that leveraging changesets semantics via encoding
modification with either ARC and ARCy, increases retrieval accuracy over the D
configuration which does not provide the model with additional information about
the change. However, based on these results, the difference between ARC and ARCy,

is not significant enough to clearly indicate which strategy is superior on average.
5.4.3 Threats to validity

The conclusions of this paper suffer from several threats to validity. A key threat
to the internal validity of our study are the specific parameter choices we used to build
our FBL-BERT model. A mitigating factor is that all parameters were either studied
by us or were reported in other prior reputable papers as recommended or optimal |40}
112]. Another threat is our automated separation of bug reports based on localization
hints into, not localized, partially localized, and fully localized, which may result in
mistaken categorization, even though we used a well-known and frequently followed
procedure [64].

Leveraging changesets for bug localization poses another threat due to possible

84



noise that can be introduced by SZZ [127], which could result in poor quality map-
ping between bug reports and bug-inducing changesets. However, the dataset was
validated manually [24, 9], and therefore such mistakes, if they still exist, should not
significantly affect our conclusions. Errors due to tangled changes [50, [51] are still
possible in the dataset as such changes are difficult to remove manually. We believe
tangled commits to have affected our final presented results (as discussed in RQ2),
however, since tangled commits are a part of software development removing them
completely may arguably result in unrealistic evaluation.

A threat to external validity, which concerns the ability to generalize our eval-
uation results, is that we applied the bug localization technique only on a limited
number of bugs collected from a selection of popular open source Java projects. A
mitigating factor is that the projects have a variety of purposes and development
styles and the benchmark we used has also been applied to prior changeset-based bug
localization studies |29, 91, 24]. Another threat to external validity is in the chosen
evaluation metrics, which may not directly gauge user satisfaction with our bug lo-
calization technique [12], impacting the validity of the reported results. The threat is
mitigated by the fact that the selected metrics are well-known and widely accepted

as best available to measure and compare the performance of IR techniques.
5.5 Conclusion

In this chapter, we propose an approach for automatically retrieving bug-inducing
changesets for a newly reported bug. The approach uses the popular BERT model to
more accurately match the semantics in the bug report text to the inducing changeset.
More specifically, we describe the FBL-BERT model, based on the prior work by
Khattab et al. [112], which speeds up the retrieval of results while performing fine

grained matching across all embeddings in the two documents.
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The results show a significant improvement in retrieval accuracy for bug reports
that lack localization hints or have only partial hints. We note that using a whole
changeset as the primary data granularity negatively affect the accuracy of the model,
while utilizing hunk- or file-level modifications brings significant improvement. By
leveraging efficient retrieval architecture, the technique scales up with respect to the
size of the search space (i.e. number of hunks), hence it is viable to be used in practice.

One of the key aspects of future work is to acquire more data from large scale
software projects to extend the scope of the evaluation. Given that our technique
require pairs of bug reports and bug-inducing changesets, the main challenge is in
ensuring the quality of the data mined from the project history, since the quality
of automated approaches designed for that purpose has been recently debated [120].
Another emerging research direction is in utilizing transfer learning properties inher-
ent to BERT-based models to investigate the effectiveness of the proposed approach

toward small to medium size software projects.
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CHAPTER 6

DATA AUGMENTATION FOR IMPROVED
DEEP LEARNING-BASED BUG
LOCALIZATION

Deep Learning (DL) architectures has fueled outstanding improvements across multi-
ple tasks in Natural Language Processing (NLP) and encouraged their application to
various problems in the software engineering domain, such as bug localization. How-
ever, the fundamental weakness of DL approaches is that they require large amount
of labelled data to train the model. At the same time, maintaining the quality of
the labelled data is crucial to achieve the best performance. While manual labelling
is typically a preferred approach to ensure high data quality, it is a slow and time-
consuming process [128], often intractable considering the amount of data required to
train a DL model. On the other hand, automated mining for labels is far more likely
to meet the demand for data quantity, however at the cost of introducing noise in
the form of both false positives and false negatives [129, 130]. Hence, collecting large
amount of good quality labelled data can pose a significant challenge for many impor-
tant software engineering problems and tasks, in particular those that require single
project data (i.e., within project) [131]. A recent approach to address this problem
is to use transfer learning, i.e., pre-training a model with unsupervised learning on
a large, general corpus, followed by fine-tuning via supervised learning towards the
downstream task. However, this strategy still requires a non-trivial dataset for fine-
tuning and, as observed by Gururangan et al., it leads to suboptimal performance

compared to when a model is pre-trained and fine tuned on in-domain data [83].
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In the case of bug localization, the training data consists of pairs of bug reports
and their introducing changesets, which are difficult to obtain at scale for a couple of
key reasons. First, matching a bug report to bug-introducing changesets is challenging
as developers rarely mark culprit code changes explicitly [11], while approaches that
find the bug-inducing changesets automatically are prone to introducing noise |127,
120]. Second, the number of positive examples is bounded by the number of fixed bug
reports, which are limited even for large and actively maintained projects. Relatively
smaller software projects with, e.g., dozens of fixed bug reports, would be very difficult
to use. In the end, the main question remains open: how to enable the potential of
DL techniques for bug localization, given the paucity of project-specific data.

In the NLP domain, this question has been answered with some success by Data
Augmentation (DA) techniques, which, in general, can be described as strategies
to artificially increase the number and diversity of training examples based on the
currently available data [132]. DA aims to create high quality synthetic data by
applying transformations to the available data, while maintaining label invariance.
As a result, the size of the original dataset increases, which in turn enables training
a DL model for low resource domains and tasks.

In this chapter, we explore data augmentation for bug reports with the goal of
producing a large number of high quality, realistic, synthetic bug reports, which can
be subsequently used to increase the size of the training set for a bug localization DL
model. To this end, we propose two sets of DA operators that independently target
natural language text and code-related data (e.g., code tokens, stack traces and code
snippets) in each bug report. More specifically, natural language text is augmented
using token- and paragraph-level transformations (e.g., synonym inserts), while the
code-related data is augmented with code tokens from its respective bug-inducing

changesets in order to strengthen the connection between a bug report and different
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Fig. 13.: Data augmentation transformations in computer vision domain.

portions of its introducing changeset. At the same time, by leveraging the augmented
bug reports we plan to achieve another important goal, i.e., balancing the augmented

dataset toward parts of the source code underrepresented in the original training set.
6.1 Background

Data Augmentation (DA) aims to generate high quality, synthetic training ex-
amples from the already available data. To this end, DA transforms the existing
training examples to create new data points that expand the original training set
with the ultimate goal of improving the performance of the downstream DL model.
DA was initially very successfully adopted in the computer vision domain, where
simple image transformations, such as rotation or color manipulation, allow for the
creation of an abundance of new data points to train the model on, thus leading to
significant improvements in image classification tasks [133] [134].

Although the general concept of DA is easy to grasp, i.e., generating new data
from the existing training set, the question of how to is very domain- or task-specific.
Given a dataset, performing DA requires answering the following questions: (1) what
are the data transformations that can create synthetic training examples, and (2) how
the quality of those examples can be assured. Depending on the problem, the answers
to those questions vary. For instance, in image classification there exist multiple well-

established methods to produce augmented data, examples of which are depicted in
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Figure[13] The key property of these transformations is that they are label invariant
(i.e., arotated or flipped image of dog, is still an image of a dog), which is fundamental
to generating good quality labelled training examples.

Designing similar data transformations for textual data is significantly more chal-
lenging given the discrete nature of language. More specifically, compared to image
transformations, augmenting textual data is more prone to inadvertently distorting
the text’s semantics, which in turn, can affect the original label. In other words,
the transformation may not be label invariant. To prevent this from happening, re-
searchers in NLP proposed numerous DA strategies ranging from simple rule-based
techniques to transformations leveraging advanced DL models [135] |132].

Rule-based techniques rely on data transformations that typically extend and
re-arrange the existing data. For instance, Wei and Zou. [136] proposed Easy Data
Augmentation (EDA), which encompasses four token-level operators: random insert,
random swap, random delete, and synonym replacement. The operators are applied
only to a small portion of words (e.g., 1%) to minimize the risk of affecting the label.
EDA improves the performance of text classification tasks, with the highest boost
observed for the smallest datasets (i.e., 500 samples). Sahin et al. [137] introduced a
sentence-level augmenter that uses a dependency tree to maintain the invariance of
the sentence while swapping or deleting child nodes. Guided by in-domain knowledge,
Yan et al. [138] proposed to randomly delete sentences in lengthy legal documents
as many of them are irrelevant to the understanding of the case. The strength of
rule-based techniques lies in the ease of use and interpretability of the augmentation
operators, while the strict augmentation rules help to enforce label invariance.

This question of label preserving data transformations can be further extended to
the overall question of quality and diversity of newly generated training examples. In

other words, a synthetic example should be different enough from the original exam-
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ple to add “new value“ to the training set, and similar enough to preserve the original
label. Given that rule-based DA techniques follow a rigid and fixed set of rules, they
have limited ability to produce diverse output. To overcome that, another branch of
DA methods use external models. For instance, Guo et al. [139] uses embeddings to
convert text to a numeric vector, and subsequently mixes pairs of numeric vectors
to create synthetic examples. Backtranslation 140, [141] is another popular method
used to paraphrase the original data by translating a sentence to another language
and back [142, 143 [144]. More recently, researchers explored generative data augmen-
tation with the help of pre-trained GPT-2 models [145] [146]. While these methods
are able to extrapolate further from the existing data, and, hence lead to more diverse
augmentation, they require a good quality pre-trained models and are computation-
ally expensive. Moreover, the recent work of Kovatchev et al. |[147] points out that for
domain-specific tasks, DA using models pre-trained on out-of-domain data, can be in
fact outperformed by carefully designed rule-based operators that take into account
a dictionary specific to the task. Interestingly, the authors reported to achieve the
best performance when combining multiple, simple data transformations to generate
a new example. While combining data transformations, known as stacking augmen-
tations [135], is often used in the computer vision domain, it has only recently been
effectively applied to textual data [147, [148].

Although the primary goal of DA is to increase the size of the training set,
augmenting the data brings a few other benefits over the original datasets. First,
using augmented data helps in preventing overfitting to the training data [149, |141].
Secondly, the augmented data can be used to fix the data distribution in case of data

imbalance [150, (151} [152].
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6.2 Data augmentation in bug localization

With the increasing complexity of DIL-based methods for bug localization |30}
58, 1153, the problem of data scarcity comes to the forefront. More specifically, while
the more advanced models have the potential to bridge the lexical gap between a bug
report and source code [154} [88], in order to fulfill that promise, they require large
amount of bug reports to learn the semantics of the project and subsequently associate
it with bug-inducing changesets. Insufficient amount of training examples may lead
to model overfitting, memorizing high-frequency patterns or structures instead of
generalizing the knowledge [135]. DA can help to address the data scarcity problem
in bug localization by focusing on the following goals.
1. Increasing the number of bug reports. Training a DL model for bug lo-
calization requires a substantial dataset consisting of bug reports and bug-inducing
changesets. The main challenge of constructing such dataset is that it is project-
specific. Most software projects typically have few bug reports with a clear indication
of the changesets that caused them [11]. Moreover, the total number of bug reports
in a project is an upper bound on the number of positive training instances that are
available. Note that while we can create numerous negative instances (i.e., a bug
report and a non-bug-inducing changeset), the benefit to the DL model is limited
as the bug report remains the same in each instance. Moreover, out of all the re-
ported bugs, some are closed with Won't fix or Not a Bug status [64, 155, hence they
do not have corresponding changesets and cannot be used for training. To empiri-
cally verify the scale of data scarcity problem in bug localization data, we examined
Bench4BL [84], a large bug localization dataset. Bench4BL includes 10K bug reports
and their fixes coming from 51 popular and actively developed open source software

projects, which equals to roughly 200 bug reports per project. Considering that the
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projects in the Bench4BL dataset are typically large and well-established (e.g., long
running Apache Software Foundation projects like Camel and Hive), 200 bug reports
is a discouragingly low number when it comes to ability to train an effective DL
model.

2. Maintaining label invariance of bug reports. In NLP, data augmentation is
primarily evaluated on classification tasks, such as sentiment analysis or topic clas-
sification, in which rarely a single word can be representative of the overall result
(i.e., a sentiment or a topic). Data in software engineering is a mix of natural lan-
guage and code-related segments. In case of bug localization this mix typically affects
bug reports which often contain not only natural language description but also men-
tions of relevant program elements, stack traces or code snippets [154]. Applying
off-the-shelf data augmentation transformations to bug localization data may cause
more harm than good as it does not differentiate between NL and code, which both
bring useful information, but in different forms and quantities. Table [12|shows exam-
ples of textual augmentation performed on the summary of bug report #55996 from
the Tomcat project using two augmentation operators proposed by Wei et al. [136].
Random Swap exchanges two randomly selected words, while Synonym Replacement
substitutes a randomly selected word with its synonym. To find synonyms, we use
BERTOverflow [81], a BERT model pre-trained on the StackOverflow corpus. Given
the randomness of data augmentation operations, we see different versions of aug-
mented bug report summary. While Random Swap 1 swaps two words without af-
fecting the semantics, Random Swap 2 exchanges words that can easily indicate the
relevant code component, if a project contains AsyncContext and AsyncConnector
classes. Similarly, in the case of Synonym Replacement 1 changing context to ses-
sion affects the semantics less than replacing Async with TCP which are different

concepts. This toy-example shows how easily off-the-shelf data augmentation can
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Table 12.: Examples of textual data augmentation with EDA [136].

\ Bug report summary | Valid

Original Async connector does not timeout with —
HTTP NIO context.

Random Swap 1 Async connector does timeout not with v
HTTP NIO context.

Random Swap 2 Async context does not timeout with X
HTTP NIO connector.

Synonym Replacement 1 | Async connector does not timeout with v
HTTP NIO session.

Synonym Replacement 2 | TCP connector does not timeout with X
HTTP NIO context.

introduce noise that affects the original label, especially when handling data that
contains key software engineering-related phrases. Hence augmentation of software
engineering data in general, and bug reports in particular, requires additional steps
to ensure the invariance of the newly generated data points.

3. Diversifying the training data. The goal of data diversification in DA is
to ensure that augmented data introduces "new quality” to a training set, such as
previously unobserved motifs, patterns or expressions, leading a DL model to learn
the meaning behind the data instead of memorizing certain forms [156, (135]. In the
case of bug localization, the training dataset depicts how natural language describing
a bug connects to source code concepts in the bug-inducing changeset. Commonly,
the natural language in bug reports consists of Observed Behavior (OB), Expected
Behavior (EB), or Steps to Reproduce (S2R) [66]. Given that OB, EB and S2R
have been recognized by developers as useful information when fixing a bug [154],
augmentation for bug localization data should focus on introducing diversity into
those through, e.g., paraphrasing their sentences. The second important component
of diversification of bug localization training set are the connections between bug

reports and source code. While it is true that bugs are not evenly distributed in

94



~N
o8B > -_I
Token-level B Quality l_
atural N
EB > operators Control
EB
- .
S2R 7| 3.2 Natural language DA ﬁ SR Ellcey
Cod = Cod 3.4 Building augmented
5| Code H emove > Code token | “ode bug reports
snippets punctuation operators snippets
S—
y| Stack Select lines > Code | Stack
Traces
3.3 Code-related DA tokens traces

3.1 Data preprocessing

A

Fig. 14.: Augmentation pipeline for a single bug report.

the source code base, the over-representation of one source code component (e.g.,
class, package) in the training set, may lead to the model blaming that particular
component for every bug. To account for that, while augmenting training set for
bug localization, additional steps can be taken to mitigate that risk, through, e.g.,
creating more augmented bug reports for those source code components that occur
less often in the training set. In summary, diversification of training data should focus
on: (1) modifying the natural language content of a bug report, and (2) diversifying

how a bug report connects to the source code.
6.3 Approach

To create augmented bug reports that introduce diversity and preserve invari-
ance (i.e., the augmented bug report still matches the same changeset as the original
bug report), we propose a set of custom DA operators. Bug reports describe software
failure using various types of information, such as natural language, code snippets or
stack traces, which may have different impact on matching a bug report to its inducing
changeset, hence we decided to separately augment natural language and code-related
information to ensure invariance of the newly created data points and avoid intro-
ducing noise. Figure illustrates the workflow of our data augmentation process

which starts with data extraction and preprocessing, followed by augmentation with
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the proposed operators, and construction of augmented bug reports combining the

newly generated data.
6.3.1 Data preprocessing

As a first step, we use infozilla |[157], a tool that extracts stack traces and code
snippets from unstructured bug report content, leaving the remaining text broadly
categorized as natural language. To bring out further structure from the natural
language data, we extract Observed Behavior (OB), Expected Behavior (EB), and
Steps to Reproduce (S2R) using the BEE tool [158].

Stack traces are a valuable source of localization hints, however, due to their
length they tend to introduce noise through multiple mentions of classes not neces-
sarily related to a particular bug report [159, |13]. To mitigate the noise in stack
traces, we reduce their size by selecting the lines that are most likely to contain rel-
evant information. For instance, for Java stack traces this leads to three groups: 1)
top lines, which include the exception name and where the exception originated; 2)
middle lines, which occur after the Java standard library traces and are most likely
last lines of the application code closest to the bug; and 3) bottom lines, which can be
useful for exceptions thrown from threads. Sampling from these three groups creates
a generic recipe that shortens the stack trace, captures different software designs, and
preserves important information. Hence, for each stack trace, we decided to keep top
1 line, first 3 lines that refer to the application code, and bottom 1 line. Heuristic
approaches such as this one have been reported to perform reasonably well even on
unstructured runtime data (e.g., raw crash logs with multiple stack traces, possibly
from different programming languages) [160].

For preprocessing code snippets, we decided to filter out punctuation for two

reasons. First, in a recently published study, Paltenghi et al. [161] compared the
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reasoning of developers and neural models, and observed that the models pay more
attention to syntactic tokens (e.g., dots, periods, brackets), while developers focus
more on strings or keywords. Given that developers perform better, DL models
should mimic developers and put less attention to syntactic tokens. The second
reason for filtering punctuation is pragmatic — reducing the number of tokens to
prevent exceeding the input limit size of the DL models. Following preprocessing,
each bug report is represented as a collection of OB, EB, S2R, stack traces, and code

snippets.
6.3.2 Natural language DA operators

This group of operators is applied to OB, EB, and S2R due to their primarily
natural language content. We propose to use two types of operators: token-level
and paragraph-level. Inspired by a simple yet effective technique called Easy Data

Augmentation (EDA) [53], we propose to use 4 token-level operators.

e Dictionary Replace - randomly selects a word from a pre-defined in-domain

dictionary and replaces the word with its substitute.

e Dictionary Insert - works similarly to Dictionary Replace, however instead of
replacing the word, this operator inserts the substitute at a random position in

the text.
e Random Swap - randomly selects two words and swaps them.

e Random Delete - removes a randomly selected word.

To build the in-domain dictionary for augmenting OB, EB and S2R, we use keywords
from language patterns devised by Chaparro et al. [162]. The patterns specify combi-

nations of different parts of speech with certain keywords that have to occur to classify
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[isr 356] All server threads become blocked after some websocket testing |OB |[isr 356] dead All server threads become dead in an websocket test.
S2R

| 1 have a websocket test which performs some stress testing over an echo example server running on Tomeat 8. | created an websocket test that will stress some tests via an echo example server running on Tomcat 8.

My test is crealing up o 200 websocket conneclions and perform some message sendingireceiving. At some point of Java.io. T0Exception: Broken pipe

time after some test restarls, the server stops to respond. | have restarted the test with a simple single socket connection 2t sun.nio.ch.FileDispatcherInpl.write8(Native Method)

and the server was stil not responding. | checked the threads stacks at the server side and it seems all of the Tomcat 2t org.apache  tomeat ucil.net SecureNtoChannel. fnish(SecureNiochannel. java:135)

worker therads wera blacked. Attaching the full stack trace of all thraads. 0B at org.apache.toncat.util.net.ServletOutputStrean.onClose(SecureNioChannel. java:385)

nthe server's logsfle | can sse only several exceptions ke this: at org.apache close http1 .upgrade SecureNioChannel. doClose(NioServletInputStrean. java:107)
Jul @1, 2813 11:34:52 AM org.apache. tomcat .websocket.server . WsHttpUpgradeHandler destroy at_sun.lang.Thread.outputstream(Thread . java:789)

SEVERE: Failed to close WebConnection while destroying the WebSocket HttpUpgradeHandler

My test creates up to 200 websocket conneclions and performs Some Mmessage ransmissions. At some point in time after a test,
- the server reboot stops to feply. | have run a simple socket test and connection stil does not respond to the server. | checked that
Java.lo.IOException: Broken pipe the threads stack the server page and it seems as if all Tomcat worker therads are blocked.
?t . nio.ch.FileDispatcherInpl.urited(Native Method) While appending the ull stack, | am tracking al threads.
at org.apache. tomcat.util.net.SecureNioChannel.flush(SecureNioChannel. java:135) Stack
at org.apache.toncat.util.net.SecureNioChannel.close (SecureNioChannel. java:385) Trace
at org.apache.coyote.http11.upgrade.NioServletInputStrean

.doClose(NioServletInputStrean. java:167)

In the server's logs file, | can see only a few exceptions like this
Jul @1, 2813 11 34 52 AM org.apache.tomcat.websocket.server.InternalHttpUpgradeHandler destroy
SEVERE Failed to suffer WebConnection while destroying the WebSocket HttpUpgradeHandler

[..1
at_java.lang.Thread.run(Thread. java:789)

connections which is seen as connection reset by the server and the client.

Note: My test setup includes proxy and loadbalancer in the middle. In some cases the loadbalancer closes websnckel' 0B x

Fig. 15.: An example of augmented bug report for Tomcat #55171. Token-level

modifications are marked with grey color.

a sentence or a paragraph as OB, EB or S2R. For instance, one of the most popular
OB patterns is NEG_VERB defined as: (subject/noun phrase) ([adjective/adverb])
[negative verb] ([complement]), where the negative verbs are defined as: affect, break,
block, close, etc. The in-domain dictionary contains all keywords identified by Chap-
paro et al. and maps each keyword to its substitutes, e.g., affect — {break, block,
close, ...}. Domain knowledge guided operators have been recently shown to lead to
better performance compared to more advanced but general approaches (e.g., embed-
dings) [147].

As a paragraph-level operator, we use Backtranslation to translate paragraphs
of OB, EB or S2R from English to German and back to English [163]. Backtranslation
is a popular data augmentation operation that allows to paraphrase the original text.

Finally, let us describe how those operators are applied together to generate
augmented data. For each bug report and for each OB, EB, S2R, we apply all token
level operators n times, where n = \ x #tokens. The value of \ is set to 0.1 for
insert, replace, and swap operations, and 0.05 for delete operation as these parameters
have been empirically shown to produce best results . Next, the Backtranslation

operator is applied to paraphrase the modified text. Given the randomness of the
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augmentation, the quality of the augmented sample may vary. As a final step, we
employ quality control that consists of two steps. First, we check if OB, EB and/or
S2R can be still identified in the augmented paragraph using the BEE tool. For
instance, if the original paragraph contained OB and EB, then the augmented version
must contain OB and EB be to considered a valid paragraph. We also disallow
changing the pattern (e.g., from OB to EB). Second, we ensure that no code tokens
are lost during the augmentation by comparing the number of code tokens between

the augmented and the original paragraph.
6.3.3 Code-related DA operators

In the context of this paper, code-related data refers to stack traces, code snip-
pets, and code tokens present in natural language text. To augment code-related
data, we propose 3 code token operators that are more strict versions of the natural

language operators to minimize the risk of distorting the context.

e Code Token Replace - randomly selects a code token and replaces it with its

substitute.

e Code Token Insert - randomly selects a code token, and insert a substitute
of that code token at a random position that is at most 3 positions away from

the selected code token.

e Code Token Swap - swaps two randomly selected code tokens, such that (1)
for stack traces code tokens can be swapped only between consecutive stack
lines; (2) for code snippets, a swap operations must be performed within the

surrounding 3 tokens.

We decided against including a code token deletion operator as removing code tokens

is more likely to disturb the invariance of augmented samples.
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To find substitutes for a code token, first, for each bug report we build a dictionary
of code names using class and method names that occur in its corresponding bug-
inducing changesets. Next, we use the Levenshtein distance to measure the distance
between the selected code token and all other tokens in the dictionary. A substitute
is selected randomly from the 20 code tokens that have the lowest distance from the

selected code token.
6.3.4 Building augmented bug reports

After augmentation, each bug report is decomposed into a collection of the orig-
inal and augmented samples, i.e., natural language data (OB, EB, S2R), and code-
related data (stack traces and code snippets). The remaining question is how to build
a synthetic bug report out of all the available samples. Recent work in neural machine
translation has shown that concatenating augmented samples introduces structural
diversity that prevents a DL model from learning to focus only on one part of the
input, thus leading to a significant improvement in the model’s performance |164,
156]. We propose to use a similar approach to build augmented bug reports. More
specifically, first we recreate the original structure of a bug report by concatenat-
ing augmented samples. Next, samples are reordered and at most 1 sample can be
dropped to achieve further structural diversity. While dropping parts of bug reports
may seem counterintuitive, DA strategies that remove tokens or sentences has been
observed to have a positive impact on large pre-trained DL models [165] [166]. Fig-
ure [15| shows bug report #55171 from the Tomcat project and its augmented version.
Each part of the bug report has been augmented separately using all of its respective
DA operators. When constructing the augmented bug report, the second OB and the
stack trace have been swapped, while the third OB has been dropped, creating the

final augmented version of bug report #55171.
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6.3.5 Ensuring a balanced augmented dataset

To increase the size of the bug localization training set with data augmentation,
our approach is to focus on augmenting bug reports, increasing the number of pairs of
bug reports and bug-inducing hunks. Recent studies show that using hunks, a set of
consecutive line modifications that capture changes in one area of the file, produces
improved retrieval results than using entire changesets [159} [24]. For instance, given a
bug report with n introducing hunks, data augmentation by a factor of 10 creates 10
new bug reports for each hunk, which leads to 10n new training examples. However,
there is one major drawback to this DA approach. Bugs affect different parts of
source code base with varying frequency [167]. In other words, parts of the source
code (i.e., specific files or classes) are related to multiple bug reports and therefore
their hunks can also be overrepresented in the original dataset. This data imbalance,
created by the uneven distribution of bug reports and hunks in the training set, can
be exasperated by DA, with strong downstream effects on the DL model and its
prediction.

To provide further evidence, we empirically checked the dataset published by
Wen et al. [24], which we use in our study. Figure [16[ shows the distribution of bug
reports (Fig. and class occurrences (Fig. for the Tomcat project considering
three different choices of training datasets: the original unaugmented dataset, a 10x
augmented dataset, and an artificially balanced dataset. Within the plots, there are
zoomed-in versions to increase readability at the smaller scale. In the plot for the
original training set (i.e., the blue line), we observe that 11 out of 97 bug reports
cover over 50% (1432 out of 2812) of the training examples, while 39 bug reports
occur less than 10 times. Similarly, out of the unique 110 classes that introduced a

bug, the top 10 classes with most frequently occurring hunks cover 34.5% (2586 out of
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Fig. 16.: Data imbalance in bug localization training set.

7478) of all training data. This imbalance in the training data can have two potential
consequences for supervised training of a DL model. First, the model is more likely
to learn the structure and semantics of bug reports that have a large number of bug
inducing hunks, while neglecting less frequent bug reports. Secondly, classes that
occur the most in the training set are more likely to be selected as bug-inducing by
the trained model since they were often seen during training as bug-inducing. The
issue of data imbalance has also been recognized in defect prediction datasets [168].

How augmentation exacerbates the problem of uneven data distribution can be
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observed in Figure [I6, where the orange dotted line depicts the data distributions in
a dataset that was augmented by a factor of 10. The majority bug reports and classes
become even more dominant in the augmented dataset, making the data imbalance
problem more severe than in the original dataset. To mitigate this problem, we pro-
pose a data balancing strategy that deliberately chooses samples to augment in order
to smooth out the distributions of bug reports with respect to the source code. There
are two main concerns that a data balancing strategy has to consider: (1) increasing
the number of training examples for infrequent bug reports, and (2) ensuring that the
number of examples with a given class does not dominate the dataset. To illustrate
the need for these strategies, consider a bug report B; with 20 hunks from different
classes, and a bug report B, with one hunk from class C'. If the balancing strategy is
focused only on the distribution of bug reports, then it creates 20 augmented examples
for Bs, every time using the hunk from class C, hence C'is likely to be overrepresented
in the training set. To address this, we introduce two augmentation factors o and
w. While « influences the number of times each bug report is augmented, w restricts

how many times each class can be repeated in the augmented dataset.

Algorithm 1: Data balancing with augmented bug reports

Input : Dy, — training dataset;
a — augmentation factor;
w — balancing factor
Output: D, — balanced training dataset

1 maxy. < ax max. # of bug reports in Dyyqin
2 mary < wx max. # of classes in Dy qin

3 Dbl < Dt’/‘ain

a for br, Hy, in Dy.q;n do

5 while (count of br in Dyy) < mazy,. do

6 br, < augment br

7 h, < select hunk h, from Hy,, where
8 (count of class for h, in Dyy) < mazy
9 Add brg, hy to Dy

10 end while
11 end for
12 return Dy
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The sequence of steps for the proposed data balancing augmentation strategy is
presented in Algorithm [I} In lines 1-2, we compute a limit for bug reports mazy,
and classes max, based on factors o« and w and the maximum number of times a
unique bug report and class is present in the original training dataset. Line 3 copies
the existing data instances into the balanced dataset Dy;. For each bug report that
occurs below the mazy,. limit, the algorithm augments the bug report (line 6), and
selects a bug-inducing hunk from a class that occurs less than max, times in Dy,
(lines 7-8), creating a new training example. The algorithm continues to add new
examples for a bug report until (1) the maxy, limit is reached, or (2) bug-inducing
hunks from all the classes have reached max.. The result of this balancing strategy
is depicted in the green line in Figure using values of a = 0.7 and w = 1.0.
Compared to the augmented dataset, the data distribution of the balanced dataset is

obviously smoother, with a much more even representation of the source code.
6.4 Evaluation setup
6.4.1 Research Questions

RQ1: Can DA improve the retrieval performance of DL-based bug localization?

By generating synthetic bug reports with DA, we aim to increase the size of the
training set with the goal of improving retrieval performance of the downstream DL-
based model. To understand the impact of the proposed DA approach on DL-based
bug localization, we identify three recent transformer-based models to perform this
task, which includes FBL-BERT, a technique introduced in Chapter [5. We evaluate
the performance of these bug localization approaches, with and without DA, using a
standard bug localization dataset and metrics commonly used to measure information

retrieval performance. As augmentation necessarily introduces significantly higher
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data quantity, we add baselines to the evaluation that aim to differentiate the quantity

vs. the quality of the augmented dataset.

RQ2: Which of the proposed DA operators contribute the most to retrieval perfor-

mance?

The Data Augmentation approach in RQ1 relies on augmentation operators that
perform specific types of transformations (e.g., insert, remove). In RQ2, we aim
to understand what is the impact of these augmentation operators on the retrieval
performance during bug localization. To answer RQ2, we perform ablation studies
training each DL model with augmented datasets created using all but one augmen-

tation operator type.
6.4.2 Dataset and models

To evaluate our data augmentation approach, we use a dataset published by Wen
et al. [24] that contains data from 6 open source software projects: AspectJ, JDT,
PDE, SWT, Tomcat, and ZXing. Given that infozilla requires new lines to extract
code snippets and stack traces, and new lines were removed from all bug reports in
Wen et al.’s dataset, we located and re-scraped the bug reports (with new lines) from
Bugzilla for all projects. For ZXing, the bug reports in the GitHub issue tracker did
not match those collected by Wen et al., likely because the project was moved, and
therefore ZXing was excluded from the evaluation set. To create a training set for
each project, we ordered the bug reports by opening dates and selected the first half
for training, while the remaining bug reports constitute the test set. Each positive
training example corresponds to a pair of a bug report and one of its inducing hunks
(extracted from the inducing changeset). Each bug report includes the bug summary

and description, while each hunk contains a log message and source code changes. The
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Table 13.: Evaluation datasets for DA.

| Training | Testing
Project | # bugs D, | # bugs # hunks
AspectJ 100 2212 100 23446

SWT 45 9982 45 69833
Tomcat 96 5624 97 72134
PDE 30 3856 30 100373
JDT 47 18230 47 150630

dataset of Wen et al. was constructed using SZZ [169], which identifies a changeset
as bug-inducing if it shares any file modifications with bug fixing changeset. While a
bug-inducing changeset may include modifications of multiple files, only a few of those
may be relevant to a bug (as indicated by bug fixing changeset). Hence, to improve
the quality of the positive training examples, we only include bug inducing hunks
that refer to classes that also occurs in the bug fixing commit. For each positive
example, we create a negative example by randomly selecting a hunk from a class
which does not belong to the inducing changeset. After completing this step, for each
project we obtain one training dataset, D,,;, which serves as our baseline dataset. The
descriptive statistics of training and testing datasets used in this study are shown in
Table [I3] Note that the last column, # hunks, denotes the number of all hunks that
are examined by the model during retrieval.

To evaluate the impact of the proposed data augmentation and balancing strate-
gies on the retrieval performance, we train and evaluate three BERT-based [40] code
retrieval architectures.

TBERT-Single [26, (109, |110] is the most straightforward approach for information
retrieval with BERT. The model concatenates a bug report and a hunk, and processes
it through BERT and a pooling layer to obtain a fused vector representation, which

is subsequently passed to the classification head to obtain a relevancy score. While
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this model typically provides high retrieval accuracy, it also incurs significant retrieval
delay, since a bug report needs to be compared with all hunks available in a project.
TBERT-Siamese [26] [111] processes a bug report and a hunk sequentially through
BERT and a pooling layer, creating two features vectors, that are subsequently con-
catenated and passed to the classification layer to produce the relevancy score. The
key difference between TBERT-Single and TBERT-Siamese is in the opportunity to
perform offline encoding of feature vectors for hunks, hence reducing the retrieval
delay.

FBL-BERT [159] 112] is our proposed BERT-based architecture that enables rapid
retrieval across a large collection of documents (i.e., hunks). Unlike TBERTS, which
flattens the embedding matrix to a vector to make a prediction, FBL-BERT leverages
the full embedding matrix and calculates relevancy score between a bug report and
a hunk as a sum of maximum vector similarities between word embeddings of the
bug report and hunk. This, in turn, allows to use efficient vector similarity search
algorithms to find the most similar hunks and only re-rank those with FBL-BERT,
hence significantly reducing the retrieval time per bug report. Given that FBL-BERT
leverages fine-grained token-to-token embeddings matching, the model is more likely

to better utilize relevant keywords if they occur in the bug report.
6.4.3 Experiment setup

We performed the experiments on a server with Dual 12-core 3.2GHz Intel Xeon
and 1 NVIDIA Tesla V100 with 32GB RAM memory running CUDA v.11.4. The
models are implemented with PyTorch v.1.7.1, HuggingFace library v.4.3.2, and Faiss
v.1.6.5 with GPU support. We opted for using BERTOverflow [81] as our pre-trained
base BERT model, since, similarly to our data, StackOverflow data is also a mixture

of code and natural language. All models are fine tuned for 4 epochs, using a batch
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size of 16 and Adam optimizer with learning rate set to 3e-6 [40]. Based on the
average number of tokens in bug reports and hunks in our dataset, we set the input
size limit to 256 and 512 tokens for bug reports and hunks respectively. All input

documents are padded or truncated with respect to their input size limit.
6.5 Results
6.5.1 RQ1: Retrieval accuracy on augmented dataset

Setup. To evaluate the impact of DA on DL-based models, we compare the re-
trieval accuracy when training on the original, unaugmented dataset, D,,;, to training
with augmented and balanced data. More specifically, for each project we construct
the five augmented datasets shown in Table . D,y is an augmented, but un-
balanced, dataset that contains 10 additional examples for each pair of bug report
and hunk, while Dy, ¢« = 1,2,3,4, are balanced datasets with different choices for
a =1{0.7,0.85,1.0,1.3} and w = {1.0,2.0,2.0,2.0} respectively. Given that augmen-
tation increases the number of positive examples, the number of negative examples
grows proportionally as well (i.e., for each positive example, there is one negative
example). To ensure that the difference in performance is in fact the result of DA,
and not the higher number of data instances, we created an additional baseline, D,.p,
that repeats positive examples without augmentation 10 times, and, correspondingly,
also adds 10 new negative examples. In effect, the only difference between D,., and
Dy is the fact that Dy, uses augmented bug reports while D, repeats the positives
examples.

All models are evaluated on the same test set. Since TBERT-Single requires signif-
icantly more time than the other models (e.g., TBERT-Single takes more than 24h

to run on the JDT project), we only evaluate it on one of the balanced datasets -

108



Table 14.: Datasets for RQ1.

| Aspect] SWT Tomcat PDE JDT

Not augmented datasets

D, 2.2k 9.9k 5.6k 3.9k  18.2k
D) 22.1k  99.8k 56.2k  38.6k 182.3k
Augmented datasets
D g 24.3k 109.8k 61.9k 42.4k 200.5k
Dy 22.4k  66.9k 33.8k  25.1k 112.9k
Dyo 29.8k  90.5k 46.8k  30.7k 142.3k
Dy3 31.5k  95.1k 49.0k  32.5k 150.5k
Dy 44.9k  130.9k 65.6k 46.7k 216.4k

Dy, - as it exhibits the best performance for TBERT-Siamese, which uses a relatively

similar DL architecture to TBERT-Single.

Results. Table 15| shows the retrieval performance of FBL-BERT, TBERT-Siamese
and TBERT-Single trained on four dataset: Dy, Dyep, Daug and Dy, where Dy,
denotes the average best performing balanced dataset for the given model. In gen-
eral, we observe that the models improve across all the metrics compared to D,,;,
with the lowest improvement noted for D,.,, followed by D,,,, and with the highest
improvement recorded for Dy,.

Depending on the model the scale of the improvement varies. While the MRR
score for FBL-BERT increases from 0.264 for D,,.; to 0.367 for Dy, about half of the
improvement can be attributed to the dataset size as indicated by the results for D,.,
with the MRR score of 0.307. Moreover, we also observe that D, improves the score
from 0.307 for D,., to 0.353, indicating that using an augmented dataset makes a
difference not only through data quantity. The improvement between D,,, and Dy,
is marginal and equal to 0.014, indicating that even the best balancing configuration
has a small effect on FBL-BERT in general.

Training with a balanced dataset has a bigger impact on TBERT-Single and
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Table 15.: Retrieval performance for different training datasets.

| MRR MAP P@l1 P@3 PQ@5

Dataset | FBL-BERT
Dy, 0.264 0.109 0.163 0.153 0.145
D, 0.307 0.129 0.213 0.179 0.176
Dy 0.353 0.146 0.247 0.202 0.197
Dy 0.367 0.147 0.267 0.198 0.206
| TBERT-Siamese
Dy, 0.180 0.062 0.144 0.076 0.069
D, 0.201 0.086 0.110 0.093 0.093
Daug 0.236 0.103 0.157 0.124 0.119
Dy 0.328 0.107 0.247 0.150 0.146
| TBERT-Single
Dy, 0.273 0.120 0.162 0.145 0.149
Drep 0271 0.140 0.152 0.136 0.176
Daug 0.333 0.144 0.217 0.188 0.194
Dy 0.368 0.149 0.269 0.192 0.182

TBERT-Siamese with an improvement of 0.035 and 0.092 in MRR scores respectively
when compared to Dg,,. Moreover, data balancing is the key contributor to the
improvement in TBERT-Siamese. Finally, comparing the results of D,, and Dy, for
both TBERT models and FBL-BERT, we observe that D,,, increases the retrieval
accuracy across all metrics, indicating that the proposed bug reports augmentation
approach is effective.

Table [16] shows the retrieval accuracy for FBL-BERT and TBERT-Siamese when
the models are trained on different balanced datasets, with the values of «, w and
the dataset size provided on the right side of the table. In the case of FBL-BERT,
Dyp and Dy3 provide on average the best performance, improving MRR and MAP
by 16.8% and 14.8% compared to Dy; and Dyy. However, as noted before, the
improvement over the imbalanced dataset D,,, is marginal. In case of TBERT-
Siamese, the smallest balanced dataset, Dy, produces the highest MRR score of 0.328

which outperforms other balanced dataset by at least 49%. To better understand how
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Table 16.: Retrieval performance with different balanced training datasets.

| MRR MAP P@l1 P@3 PQ5| o w #D

Dataset | FBL-BERT

D 0.314 0.128 0.210 0.183 0.177 ] 0.70 1.0 260k
Do 0.367 0.147 0.267 0.198 0.206 | 0.85 2.0 340k
Dyis 0.357 0.155 0.260 0.204 0.215 | 1.00 2.0 360k
Dy 0.315 0.142 0.217 0.176 0.179 | 1.30 2.0 500k

| TBERT-Siamese

Dun 0.328 0.107 0.247 0.150 0.146 | 0.70 1.0 260k
Dyo 0.220 0.080 0.140 0.116 0.111 | 0.85 2.0 340k
Dyis 0.215 0.081 0.130 0.105 0.117 | 1.00 2.0 360k
Dya 0.182 0.068 0.107 0.091 0.086 | 1.30 2.0 500k

different balanced datasets affect the models’ performance, in Figure (17 we show MRR
scores across all evaluation projects ordered by the project sizes, i.e., the number
of hunks in a project (see Table |8 for details). Interestingly, for FBL-BERT we
observe that the larger the project, the more improvement when training with the
bigger training dataset. More specifically, while for AspectJ, SWT, and Tomcat
the maximum MRR scores are obtained with Dy, PDE performs best with Dy,
and JDT with Dyy. On the other hand, TBERT-Siamese consistently achieves the
highest MRR scores for all projects with Dy, while other datasets, albeit larger,
do not bring improvement. In summary, the results indicate that different model
architectures may have different needs in terms of training dataset size to achieve
their optimal performance. Some models benefit from more augmented samples,

especially for larger projects.
6.5.2 RQ2: Impact of data augmentation operators

Setup. To better understand the influence of the proposed data augmentation
operators on the downstream model effectiveness, we perform ablation studies on

training datasets created using all but one augmentation operator type. To this end,
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Fig. 17.: MRR scores for evaluation projects trained on different balanced datasets.

we create 5 types of augmented training datasets: No Backtranslation, No Insert,
No Delete, No Replace and No Swap operator. Note that we consider, e.g., both
Code Token Swap and Random Swap as operators of Swap type. To balance the
datasets, we use o and w values from RQ1 that resulted in the best performance for
the models, i.e., for FBL-BERT «a = 0.85, w = 2.0, while for TBERT models oo = 0.7,
and w = 1.0.

Results. Figure |18 shows the MRR scores for datasets augmented with 4 out of 5
operator types as well as MRR scores of D,,; and D,,, as horizontal lines for refer-
ence. We note that most of the operators contribute towards the final performance,
with an exception of Swap operator for FBL-BERT. The lack of impact for Swap op-
erator can be attributed to the model architecture. Given that FBL-BERT leverages
all of the tokens in a bug report separately, swapping the token positions does not
preclude them from being matched. On the other hand, excluding Random Insert af-
fects FBL-BERT the most, indicating that inserted tokens are valuable to the model

and improve its effectiveness when matching token embeddings. The Delete opera-
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Fig. 18.: MRR scores when trained with augmented data using different DA operators.

tor is the most prominent contributor to the performance of both TBERT models.
When the Delete operator is disallowed during augmentation, the MRR score of aug-
mented datasets drops by 0.054 and 0.055 for TBERT-Single and TBERT-Siamese
respectively, indicating that the variance caused by removing tokens randomly has a

positive impact.
6.5.3 Threats to validity

There are several validity threads of our findings. A threat to internal validity
of the study are the parameter choices for DL-based bug localization models, par-
ticularly in the context of (1) training procedure; (2) BERT-base selection; and (3)
parameters inherent to each model. To mitigate that threat, during training we fol-
low recommendations of BERT authors , while for each model we use parameters
identified as optimal by the previous studies , . While in our study, we use
BERTOverflow as our BERT base model, other choices exist (e.g., CodeBERT [82]),
and more models are underway, hence we leave the evaluation of different BERT base
models in the context of bug localization to future work.

Another internal threat is in our choices of augmentation operators, their pa-
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rameters (e.g., A), and how they are applied together (e.g., stacking operators). This
threat is mitigated by following best known practices from the NLP augmentation
literature that focus on token-level operators and in-domain tasks [136, [147]. While
we explore some parameter choices for data balancing in the paper (e.g., o and w),
there are also additional parameters related to bug report building process as well as
other possible augmentation operators that may provide more improvement.

Furthermore, the randomness of augmentation operators pose a certain threat
to the internal validity. To mitigate that, we ensure to set an initial value on the
system’s pseudo-random number generator when building an augmented dataset as
well as when training a DL model.

A threat to the external validity is that we evaluated the data augmentation
technique only for bug localization on a limited number of bugs collected from a
selection of open source Java projects. This threat is mitigated by the fact that the
dataset has been used in several prior bug localization studies |29, |91} 24]. Another
mitigating factor is that the projects reflect a variety of purposes, development styles
and histories.

Limitations in the chosen evaluation metrics pose a threat to conclusion va-
lidity as they may not directly measure user satisfaction with the retrieved change
hunks [12]. The threat is mitigated by the fact that the selected metrics are well-
known and widely accepted as best available to measure and compare the performance

of IR techniques.
6.6 Conclusion

DL models toward bug localization excel at bridging the lexical gap between
natural language describing a bug report and programming language that defines

the source code. However, training an effective DL model requires large amount of
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project-specific labelled data (i.e., pairs of bug reports and bug-inducing changesets),
that is typically difficult to obtain in sufficient quantity for a single project. To relax
the requirement on data quantity, and enable using DL model when training data is
scarce, this chapter proposes to use data augmentation (DA) to create new, realis-
tically looking bug reports that can be used to significantly increase the size of the
training set. To augment bug reports, we propose DA operators that independently
augment the natural language and code-related content of a bug report. To build
a new training dataset using augmented bug reports, we propose a data balancing
strategy that selectively augments bug reports to add more training examples for
underrepresented parts of the source code.

The results indicate that the proposed data augmentation improves retrieval ac-
curacy across all studied DL models increasing MRR score by 39% to 82% compared
to the original, unaugmented dataset. Moreover, when augmented datasets are com-
pared against training sets expanded by data repetition, we observe that they improve
MRR scores by 20% to 36%. All of the proposed DA operators contribute to the final
performance, with token deletion bringing most consistent impact for different DL
models.

That being said, the proposed approach requires more experiments to strengthen
our observations and recommendations. As our future work, we plan to (1) ex-
tend our evaluation datasets with new software projects written in Java, Python and
Javascript; (2) conduct experiments with more heavily augmented data, i.e., by using
DA operators on a larger number of tokens; (3) add Code Token Delete operator
given good performance of Random Delete for natural language; and (4) experiment

with different configurations for the bug report builder.
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CHAPTER 7

CONCLUSION

This thesis proposes two context-aware bug localization models to address the lexical
gap between natural language used to describe a bug and programming language that
defines software functionalities. To learn how natural language maps to source code,
the models leverage historical data about bugs and their related source code compo-
nents. Besides retrieval accuracy, the thesis examines a set of practical considerations
pertaining to applicability of the proposed bug localization models with respect to
diverse characteristics of bug reports, retrieval delay, and availability of training data.

In order to bridge the lexical gap, this thesis proposes two bug localization mod-
els. JINGO uses two Online LDA models, one for bug reports and one for changesets,
and translates between the two topic spaces using a translation matrix constructed
from historical data. By leveraging LDA, JINGO creates a context-aware data repre-
sentation at the document-level, while the translation matrix captures the mapping of
natural language topics to source code topics. JINGO is evaluated on a task of locat-
ing relevant source code files, and shows the improvement over the baseline, especially
for bug reports with no or a limited number of code tokens.

The second proposed approach is FBL-BERT, an efficient deep learning archi-
tecture that leverages BERT model to build a context-aware data representation at
the word-level, hence it allows for more fine-grained context matching. FBL-BERT
is evaluated on a task of locating relevant changesets, which is a significantly more
challenging task compared to source code retrieval given that changesets are typically

more numerous. The results show that FBL-BERT outperforms other deep learning
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architectures due to its token-to-token embedding matching, and improves upon state
of the art VSM-based baseline.

One of the main focus of this thesis are bug reports that have little to no code
references and other localization hints. To address that, both models leverage histor-
ical data to learn the latent connection between bug reports and source code. The
results indicate that JINGO and FBL-BERT improve upon their respective baselines
when retrieving source code components for bug reports expressed primarily in the
natural language.

Deploying a bug localization tool in a continuously evolving source code envi-
ronment requires that such a tool is able to efficiently update its state based on
observed changes, and, at the same time, can quickly locate relevant source code for
a specific bug report. Given that a regular topic model requires full re-training when
new data arrives, JINGO uses an Online LDA that supports adding new documents
and updating topic distributions, hence the model is effectively kept up to date with
respect to the current state of a software project. In the case of FBL-BERT, the
main concern is the retrieval delay given that the FBL-BERT uses computationally
heavy deep learning architecture, while retrieval typically requires comparing a bug
report with every document in a search space. To this end, this thesis leverages late
interaction BERT architecture that combines offline document representation with
fast approximate search to rank only relevant candidates. Compared to state of the
art BERT-base baselines, FBL-BERT significantly reduces retrieval delay and scales
up with respect to the search space size.

While historical data is essential for the proposed models in order to learn the
connection between natural language and source code, bug localization datasets are
typically small. This, in turn, is likely to negatively affect the performance of the

bug localization models, particularly FBL-BERT as it uses a data-demanding deep
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learning model. This thesis addresses the data availability problem by introducing a
data augmentation strategy to produce synthetic bug reports, and subsequently, use
them to increase training dataset size. To ensure the quality of the augmented data,
the proposed strategy leverages a set of augmentation operators that acts on different
constituent components of bug reports, such as natural language, stack traces, or code
snippets. At the same time, augmented bug reports are used selectively to address
the imbalance of training examples pertaining to different parts of the source code.
The results indicate that the proposed strategies improve retrieval accuracy across all

studied deep learning models.
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CHAPTER 8

FUTURE WORK

The contributions of this work highlight the advantages of leveraging contextual mod-
els for bug localization, while identifying numerous challenges pertaining to data avail-
ability and diversity as well as models’ scalability. Based on the presented results, we

envision the following research directions.
8.1 More extensive evaluation

There are a few possibilities to further extend the evaluation scope of the pro-
posed bug localization approaches. First, it would be interesting to see the per-
formance of the proposed techniques on more software projects, particularly those
written in Python and Javascript given the popularity of those programming lan-
guages [170], and their relatively infrequent use in the evaluation datasets for bug
localization. Secondly, this work uses BERTOverflow as a pre-trained BERT base,
however more choices of pre-trained BERTSs are available (e.g., CodeBERT [82]).
Moreover, since the time BERT was originally proposed, researchers have devised
multiple BERT-like models that aim to address problems of the initial architecture,
such as input limit size (e.g., LongTransformer |171], Reformer [172]), and incorporat-
ing structural information (e.g., StructBERT [173]). Given that those problems have
the potential to impact software engineering data in general, and bug localization in
particular, further investigation of those models could be beneficial for the research

community.
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8.2 Capturing project-specific information

While using an embedding-based model for bug localization brings certain advan-
tages, such as capturing semantics, and recognizing idiosyncratic coding conventions,
at the same time it results in the lossy data representation, which eliminates the
possibility for exact term matching |108|. This issue is particularly apparent when
comparing retrieval accuracy between our BERT-based approach and a VSM-based
model for bug reports that contain code references, in which case the later model is
superior. Although such bug reports are likely to pose less of a challenge for software
developers, a bug localization tool that fails to localize “easy” cases is unlikely to gain
developers’ trust, hence it may not be used in practice. Researchers in the medical
NLP field recognized the same problem in the context of specific and unique medical
terms, and proposed an architecture combining a general purpose BERT with BERT
trained only on medical terms [174]. To address the lossy representation problem, one
possibility it to extract and preserve project-specific terms explicitly, with a separate,

lightweight module that extends the FBL-BERT architecture.
8.3 Extrapolating further from the available data

Data augmentation is a promising research direction in the context of small
datasets in the software engineering domain. The key limiting factor of the proposed
DA approach pertains to the novelty of synthetic bug reports. More specifically, while
augmented bug reports strengthen the connection between natural language and the
relevant source code, they are operating within a boundary of certain software fea-
tures. In other words, even though new source code is constantly developed, as long
as no bug report for the new code exists, the code is not reflected in the training

set. Hence, the question is: can we generate truly artificial bug reports for the newly
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developed code?. A potential answer may lie in the realm of Generative Data Augmen-
tation which aims to generate new examples leveraging the knowledge and patterns

learned by large pre-trained models [175] [176].
8.4 Interpretability of the results

One of the disadvantages of using deep learning models is that they are consid-
ered “black box” models, i.e., while the values on the input and output are known,
the internal working of the model and its reasoning is obscure. Given the remarkable
accuracy of deep learning models on multiple tasks, the lack of interpretability re-
mains one of the key factors that limits deployment of such models in practice, since
users are unlikely to trust them [177]. Therefore, one of the possible future research
directions is in devising an interpretability method able to clarify the results of a
bug localization tool and shed some light on why a particular changeset is deemed
to cause the bug. While constructing such a method is certainly not straightfor-
ward for many deep learning models, the architecture of FBL-BERT is particularly

interpretability-friendly as it uses token to token matching.

121



References

[1] Kent Beck. Extreme Programming Explained: Embrace Change. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[2] Jez Humble and David Farley. Continuous Delivery: Reliable Software Re-
leases Through Build, Test, and Deployment Automation. 1st. Addison-Wesley

Professional, 2010.

[3] Paul Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Im-
proving Software Quality and Reducing Risk. First. Addison-Wesley Profes-
sional, 2007.

[4] Rachel Potvin and Josh Levenberg. “Why Google stores billions of lines of
code in a single repository”. In: Communications of the ACM 59.7 (2016),
pp. 78-87.

[5] Ranjita Bhagwan et al. “Orca: Differential Bug Localization in Large-scale
Services”. In: Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI'18. Carlsbad, CA, USA, 2018, pp. 493—
509.

[6] Harry McCracken. The Year That Software Bugs Ate The World. Dec. 2017.
URL: https://www.fastcompany.com/40505226/the-year-that-softwarer

bugs—-ate-the-world.

[7] Jinshui Wang et al. “How developers perform feature location tasks: a human-
centric and process-oriented exploratory study”. In: Journal of Software: Fvo-

lution and Process 25.11 (2013).

122


https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world

[11]

[12]

[13]

A. T. Nguyen et al. “A Topic-based Approach for Narrowing the Search Space
of Buggy Files from a Bug Report”. In: Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011).

2011, pp. 263-272. DOI: [10.1109/ASE.2011.6100062.

J. Zhou, H. Zhang, and D. Lo. “Where should the bugs be fixed? More ac-
curate information retrieval-based bug localization based on bug reports”.
In: Proceedings of the 34th International Conference on Software Engineering

(ICSE). 2012, pp. 14-24. DOI: 10.1109/ICSE.2012.6227210.

Chris Mills et al. “On the relationship between bug reports and queries for
text retrieval-based bug localization”. In: Empirical Software Engineering 25

(2020).

Vijayaraghavan Murali et al. “Industry-scale IR-based Bug Localization: A
Perspective from Facebook”. In: Proceedings of the 42nd International Con-

ference on Software Engineering. ICSE "20. 2020.

Qiangian Wang, Chris Parnin, and Alessandro Orso. “Evaluating the Useful-
ness of IR-Based Fault Localization Techniques”. In: Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA 2015).
Baltimore, MD, USA, 2015, pp. 1-11.

Mohammad Masudur Rahman and Chanchal K Roy. “Improving IR-based
bug localization with context-aware query reformulation”. In: Proceedings of
the 2018 26th ACM Joint Meeting on Furopean Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. ACM.

2018, pp. 621-632.

123


https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1109/ICSE.2012.6227210

[16]

[17]

[18]

[19]

[20]

[21]

Pieter Hooimeijer and Westley Weimer. “Modeling Bug Report Quality”. In:
Proceedings of the Twenty-second IEEE/ACM International Conference on
Automated Software Engineering. ASE 07. ACM, 2007, pp. 34-43.

A. N. Lam et al. “Combining Deep Learning with Information Retrieval to
Localize Buggy Files for Bug Reports (N)”. In: 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). Nov. 2015,

pp. 476-481.

F. Servant and J. A. Jones. “WhoseFault: Automatic developer-to-fault as-
signment through fault localization”. In: 2012 3/th International Conference

on Software Engineering (ICSE). June 2012, pp. 36-46.

A. Marcus et al. “An information retrieval approach to concept location in
source code”. In: 11th Working Conference on Reverse Engineering. Nov.

2004, pp. 214-223.

G. Gay et al. “On the use of relevance feedback in IR-based concept location”.
In: 2009 IEEE International Conference on Software Maintenance. Sept. 2009,

pp. 351-360.

M. B. Zanjani, H. Kagdi, and C. Bird. “Using Developer-Interaction Trails to
Triage Change Requests”. In: 2015 IEEE/ACM 12th Working Conference on

Mining Software Repositories. May 2015, pp. 88-98.

M. B. Zanjani, H. Kagdi, and C. Bird. “Automatically Recommending Peer
Reviewers in Modern Code Review”. In: IEEFE Transactions on Software En-

gineering 42.6 (June 2016), pp. 530-543.

R. K. Saha et al. “An Information Retrieval Approach for Regression Test
Prioritization Based on Program Changes”. In: 2015 IEEE/ACM 37th IEEE

124



22]

[23]

[24]

[25]

[26]

[27]

28]

International Conference on Software Engineering. Vol. 1. June 2015, pp. 268
279.

C. D. Nguyen, A. Marchetto, and P. Tonella. “Test Case Prioritization for
Audit Testing of Evolving Web Services Using Information Retrieval Tech-
niques”. In: 2011 IEEFE International Conference on Web Services. July 2011,

pp. 636-643.

J. Chen et al. “Test Case Prioritization for Compilers: A Text-Vector Based
Approach”. In: 2016 IEEE International Conference on Software Testing,

Verification and Validation (ICST). Apr. 2016, pp. 266-277.

Ming Wen, Rongxin Wu, and Shing-Chi Cheung. “Locus: Locating Bugs
from Software Changes”. In: Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE 2016. Singapore,

Singapore, 2016, pp. 262-273.

C. S. Corley, K. Damevski, and N. A. Kraft. “Changeset-Based Topic Model-
ing of Software Repositories”. In: IEEE Transactions on Software Engineering

(2018).

Jinfeng Lin et al. Traceability Transformed: Generating more Accurate Links

with Pre-Trained BERT Models. 2021. arXiv: 2102.04411 [cs.SE].

Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically Enhanced
Software Traceability Using Deep Learning Techniques”. In: Proceedings of
the 39th International Conference on Software Engineering. ICSE ’17. 2017.
ISBN: 9781538638682.

Jeniya Tabassum et al. “Code and Named Entity Recognition in StackOver-

flow”. In: Proceedings of the 58th Annual Meeting of the Association for

125


https://arxiv.org/abs/2102.04411

[29]

[32]

[33]

[34]

Computational Linguistics. Online: Association for Computational Linguis-
tics, July 2020, pp. 4913-4926. DOI: 10.18653/v1/2020.acl-main . 443.

URL: https://www.aclweb.org/anthology/2020.acl-main.443.

Ripon K. Saha et al. “Improving Bug Localization Using Structured Informa-
tion Retrieval”. In: Proceedings of the 28th IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE’13. Silicon Valley, CA, USA,
2013, pp. 345-355.

X. Huo et al. “Deep Transfer Bug Localization”. In: IEEE Transactions on

Software Engineering (2019), pp. 1-1. DOI: |10.1109/TSE. 2019.2920771.

A.T. Nguyen et al. “A topic-based approach for narrowing the search space of
buggy files from a bug report”. In: 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011). Nov. 2011, pp. 263—
272.

J. Zhou, H. Zhang, and D. Lo. “Where should the bugs be fixed? More accu-
rate information retrieval-based bug localization based on bug reports”. In:
2012 34th International Conference on Software Engineering (ICSE). June

2012, pp. 14-24.

Yan Xiao et al. “Bug Localization with Semantic and Structural Features
Using Convolutional Neural Network and Cascade Forest”. In: Proceedings of
the 22nd International Conference on Evaluation and Assessment in Software

Engineering 2018. 2018, pp. 101-111.

Brian Eddy, Nicholas Kraft, and Jeff Gray. “Impact of structural weighting
on a latent Dirichlet allocation-based feature location technique: Impact of
structural weighting on a latent Dirichl et al location-based feature location

technique”. In: Journal of Software: Fvolution and Process 30 (Sept. 2017).

126


https://doi.org/10.18653/v1/2020.acl-main.443
https://www.aclweb.org/anthology/2020.acl-main.443
https://doi.org/10.1109/TSE.2019.2920771

[35]

[38]

[39]

[40]

[41]

[42]

Andrian Marcus and Timothy Menzies. “Software is Data Too”. In: Proceed-
ings of the FSE/SDP Workshop on Future of Software Engineering Research.
FoSER ’10. 2010, pp. 229-232.

G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic
Indexing”. In: Commun. ACM 18.11 (Nov. 1975).

David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allo-
cation”. In: Journal of Machine Learning Research 3.Jan (2003), pp. 993-
1022.

Tomas Mikolov et al. “Distributed Representations of Words and Phrases

and their Compositionality”. In: Advances in Neural Information Processing

Systems. Ed. by C. J. C. Burges et al. 2013.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP). 2014.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. 2019.

Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural

Information Processing Systems. Ed. by 1. Guyon et al. 2017.

Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud. “On Combining
IR Methods to Improve Bug Localization”. In: ICPC ’20. Seoul, Republic of

Korea, 2020.

127



[44]

[45]

[46]

[47]

[48]

[49]

A. Alali, H. Kagdi, and J. I. Maletic. “What’s a Typical Commit? A Char-
acterization of Open Source Software Repositories”. In: Proceedings of the
16th IEEFE International Conference on Program Comprehension. June 2008,

pp. 182-191.

W. Maalej and H. Happel. “Can development work describe itself?” In: 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010).
May 2010.

J. Shen et al. “On Automatic Summarization of What and Why Information
in Source Code Changes”. In: 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC). Vol. 1. June 2016, pp. 103-112.

Eugene W. Myers. “AnO(ND) difference algorithm and its variations”. In:
Algorithmica 1.1 (Nov. 1986).

Ahmed E Hassan and Richard C Holt. “Predicting change propagation in
software systems”. In: Proceedings of the 2004 20th IEEE International Con-

ference on Software Maintenance. IEEE. 2004, pp. 284-293.

Atif Memon et al. “Taming Google-scale continuous testing”. In: Proceed-
ings of the 39th International Conference on Software Engineering: Software

Engineering in Practice Track. IEEE Press. 2017, pp. 233-242.

T. L. Graves et al. “Predicting fault incidence using software change history”.
In: IEEE Transactions on Software Engineering 26.7 (July 2000), pp. 653

661.

Shane McIntosh et al. “An Empirical Study of Build Maintenance Effort”.
In: Proceedings of the 33rd International Conference on Software Engineering.

ICSE ’11. Waikiki, Honolulu, HI, USA, 2011, pp. 141-150.

128



[51]

[54]

[55]

[56]

[57]

[58]

Kim Herzig and Andreas Zeller. “The Impact of Tangled Code Changes”. In:
Proceedings of the 10th Working Conference on Mining Software Repositories.
MSR ’13. San Francisco, CA, USA, 2013, pp. 121-130.

Andrew Gelman et al. Bayesian Data Analysis. Vol. 2. Boca Raton, FL: CRC
Press, 2014.

W. Zou et al. “How Practitioners Perceive Automated Bug Report Man-
agement Techniques”. In: IEEFE Transactions on Software Engineering 46.8

(2020).

D. Kim et al. “Where Should We Fix This Bug? A Two-Phase Recommen-
dation Model”. In: IEEE Transactions on Software Engineering 39.11 (Nov.

2013), pp. 1597-1610.

Tezcan Dilshener, Michel Wermelinger, and Yijun Yu. “Locating Bugs without
Looking Back”. In: Automated Software Engineering 25.3 (2018), pp. 383-434.

Shaowei Wang and David Lo. “Version History, Similar Report, and Structure:
Putting Them Together for Improved Bug Localization”. In: Proceedings of
the 22Nd International Conference on Program Comprehension. ICPC 2014.
Hyderabad, India, 2014, pp. 53-63.

Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. “Bug Localization
Using Latent Dirichlet Allocation”. In: Inf. Softw. Technol. 52.9 (Sept. 2010),
pp. 972-990.

An Ngoc Lam et al. “Bug Localization with Combination of Deep Learning
and Information Retrieval”. In: Proceedings of the 25th International Confer-

ence on Program Comprehension. ICPC ’17. Buenos Aires, Argentina: IEEE

129



[59]

[60]

[61]

[62]

[63]

[64]

[65]

Press, 2017, pp. 218-229. 1SBN: 9781538605356. URL: https://doi.org/10.

1109/ICPC.2017.24.

Xuan Huo, Ming Li, and Zhi-Hua Zhou. “Learning Unified Features from
Natural and Programming Languages for Locating Buggy Source Code”. In:
Proceedings of the 25th International Joint Conference on Artificial Intelli-
gence. IJCAT’16. 2016.

Xuan Huo and Ming Li. “Enhancing the Unified Features to Locate Buggy
Files by Exploiting the Sequential Nature of Source Code”. In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence. IJCAT'17.
2017.

Rongxin Wu et al. “ChangeLocator: Locate Crash-Inducing Changes Based
on Crash Reports”. In: Proceedings of the 40th International Conference on

Software Engineering. ICSE "18. 2018.

Thong Hoang et al. “CC2Vec: Distributed representations of code changes”.
In: Proceedings of the ACM/IEEE }2nd International Conference on Software

Engineering. 2020.

Rocio Cabrera Lozoya et al. Commit2Vec: Learning Distributed Representa-

tions of Code Changes. 2019. arXiv: |1911.07605.

Pavneet Singh Kochhar, Yuan Tian, and David Lo. “Potential Biases in Bug
Localization: Do They Matter?” In: Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering. ASE '14. Vasteras,

Sweden, 2014, pp. 803-814.

Chris Mills et al. “Are Bug Reports Enough for Text Retrieval-based Bug

Localization?” In: Proceedings of the 34th IEEE International Conference

130


https://doi.org/10.1109/ICPC.2017.24
https://doi.org/10.1109/ICPC.2017.24
https://arxiv.org/abs/1911.07605

[66]

[67]

[69]

[71]

[72]

on Software Maintenance and Fvolution (ICSME’18). Madrid, Spain: ACM,
Sept. 2018.

O. Chaparro, J. M. Florez, and A. Marcus. “Using Observed Behavior to Re-
formulate Queries during Text Retrieval-based Bug Localization”. In: 2017

IEEFE International Conference on Software Maintenance and Evolution (1C-

SME). Sept. 2017, pp. 376-387.

Misoo Kim and Eunseok Lee. “A Novel Approach to Automatic Query Refor-

mulation for IR-Based Bug Localization”. In: Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing. SAC '19. Limassol, Cyprus, 2019.

Tien-Duy B. Le, Ferdian Thung, and David Lo. “Will This Localization Tool
Be Effective for This Bug? Mitigating the Impact of Unreliability of Infor-
mation Retrieval Based Bug Localization Tools”. In: Empirical Softw. Engg.

22.4 (Aug. 2017), pp. 2237-2279. ISSN: 1382-3256.

D. Kim et al. “Where Should We Fix This Bug? A Two-Phase Recommen-
dation Model”. In: IEEE Transactions on Software Engineering 39.11 (Nov.

2013).

Julian Aron Prenner and Romain Robbes. Making the most of small Software
Engineering datasets with modern machine learning. 2021. arXiv: 2106.15209

[cs.SE].

Hamel Husain et al. “CodeSearchNet challenge: Evaluating the state of se-

mantic code search”. In: arXiv preprint arXiv:1909.09436 (2019).

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. “Deep Code Search”. In:

2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).

2018, pp. 933-944.

131


https://arxiv.org/abs/2106.15209
https://arxiv.org/abs/2106.15209

[75]

[79]

[80]

[81]

Xinli Yang et al. “Deep Learning for Just-in-Time Defect Prediction”. In: 2015
IEEFE International Conference on Software Quality, Reliability and Security.

2015, pp. 17-26. DOI1: |10.1109/QRS.2015. 14.

Jian Li et al. “Software Defect Prediction via Convolutional Neural Network”.
In: 2017 IEEFE International Conference on Software Quality, Reliability and
Security (QRS). 2017, pp. 318-328.

Thong Hoang et al. “DeepJIT: An End-to-End Deep Learning Framework
for Just-in-Time Defect Prediction”. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). 2019, pp. 34-45.

Song Wang et al. “Deep Semantic Feature Learning for Software Defect Pre-

diction”. In: IEEE Transactions on Software Engineering 46.12 (2020).

Chanathip Pornprasit and Chakkrit Tantithamthavorn. “DeepLineDP: To-
wards a Deep Learning Approach for Line-Level Defect Prediction”. In: IEFEFE

Transactions on Software Engineering (2022).

Yan Xiao et al. “Improving bug localization with word embedding and en-
hanced convolutional neural networks”. In: Information and Software Tech-

nology 105 (2019).

X. Huo et al. “Deep Transfer Bug Localization”. In: IEEE Transactions on

Software Engineering (2019).

Ziye Zhu et al. “CooBa: Cross-project Bug Localization via Adversarial Trans-

fer Learning”. In: IJCAIL 2020.

Jeniya Tabassum et al. “Code and Named Entity Recognition in StackOver-
flow”. In: Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics. 2020.

132


https://doi.org/10.1109/QRS.2015.14

[82]

[36]

Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Programming
and Natural Languages”. In: Findings of the Association for Computational

Linguistics: EMNLP 2020. Nov. 2020.

Suchin Gururangan et al. “Don’t stop pretraining: adapt language models to

domains and tasks”. In: arXiv preprint arXiv:2004.10964 (2020).

Jaekwon Lee et al. “Bench4BL: Reproducibility Study on the Performance
of IR-based Bug Localization”. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2018. Am-
sterdam, Netherlands, 2018, pp. 61-72.

Matthew Hoffman, Francis R Bach, and David M Blei. “Online learning for
Latent Dirichlet Allocation”. In: advances in neural information processing

systems. 2010, pp. 856-864.

S. Amasaki, H. Aman, and T. Yokogawa. “On the Effects of File-level Informa-
tion on Method-level Bug Localization”. In: 2020 /6th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). 2020, pp. 314—
321.

Yu Wang, Eugene Agichtein, and Michele Benzi. “TM-LDA: Efficient Online
Modeling of Latent Topic Transitions in Social Media”. In: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’12. Beijing, China, 2012, pp. 123-131.

Xin Ye, Razvan Bunescu, and Chang Liu. “Learning to Rank Relevant Files
for Bug Reports Using Domain Knowledge”. In: Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering.
FSE 2014. Hong Kong, China, 2014, pp. 689-699.

133



[89]

[90]

[92]

[93]

[94]

[95]

[96]

Yaojing Wang et al. “Enhancing supervised bug localization with metadata

and stack-trace”. In: Knowledge and Information Systems (2020), pp. 1-24.

Bader Alkhazi et al. “Learning to rank developers for bug report assignment”.

In: Applied Soft Computing 95 (2020).

Chu-Pan Wong et al. “Boosting Bug-Report-Oriented Fault Localization with
Segmentation and Stack-Trace Analysis”. In: Proceedings of the 2014 IEEFE
International Conference on Software Maintenance and Evolution. ICSME

'14. 2014, pp. 181-190.

David Binkley et al. “Understanding LDA in source code analysis”. In: Pro-
ceedings of the 22nd international conference on program comprehension. ACM.

2014, pp. 26-36.

Sergei Koltcov, Olessia Koltsova, and Sergey Nikolenko. “Latent dirichlet
allocation: stability and applications to studies of user-generated content”.
In: Proceedings of the 2014 ACM conference on Web science. ACM. 2014,
pp- 161-165.

Amritanshu Agrawal, Wei Fu, and Tim Menzies. “What is wrong with topic
modeling? And how to fix it using search-based software engineering”. In:

Information and Software Technology 98 (2018), pp. 74-88.

Christoph Treude and Markus Wagner. “Predicting Good Configurations for
GitHub and Stack Overflow Topic Models”. In: Proceedings of the 16th In-
ternational Conference on Mining Software Repositories. MSR '19. Montreal,

Quebec, Canada, 2019, pp. 84-95.

J. Romano et al. “Appropriate statistics for ordinal level data: Should we

really be using t-test and Cohen’sd for evaluating group differences on the

134



[97]

[100]

[101]

[102]

[103]

NSSE and other surveys?” In: annual meeting of the Florida Association of

Institutional Research. 2006, pp. 1-3.

Klaus Changsun Youm et al. “Bug Localization Based on Code Change Histo-
ries and Bug Reports”. In: 2015 Asia-Pacific Software Engineering Conference
(APSEC). 2015, pp. 190-197.

Shivani Rao and Avinash Kak. “Retrieval from Software Libraries for Bug Lo-
calization: A Comparative Study of Generic and Composite Text Models”. In:
Proceedings of the 8th Working Conference on Mining Software Repositories.
Waikiki, Honolulu, HI, USA, 2011, pp. 43-52.

Chakkrit Tantithamthavorn et al. “The impact of IR-based classifier config-
uration on the performance and the effort of method-level bug localization”.

In: Information and Software Technology (2018).

Wen Zhang et al. “FineLocator: A novel approach to method-level fine-grained
bug localization by query expansion”. In: Information and Software Technol-

ogy 110 (2019), pp. 121-135.

S. Cheng, X. Yan, and A. A. Khan. “A Similarity Integration Method based
Information Retrieval and Word Embedding in Bug Localization”. In: 2020
IEEFE 20th International Conference on Software Quality, Reliability and Se-
curity (QRS). 2020.

J. Cao et al. “BugPecker: Locating Faulty Methods with Deep Learning on
Revision Graphs”. In: 85th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 2020.

Zimin Chen and Martin Monperrus. “A literature study of embeddings on

source code”. In: arXiv preprint arXiv:1904.03061 (2019).

135



[104]

[105]

[106]

[107]

108

[109]

[110]

[111]

Michael Pradel et al. “Scaffle: Bug Localization on Millions of Files”. In:
Proceedings of the 29th ACM SIGSOF'T International Symposium on Software
Testing and Analysis. ISSTA 2020. 2020.

T. Savor et al. “Continuous Deployment at Facebook and OANDA”. In: 2016
IEEE/ACM 38th International Conference on Software Engineering Compan-
ion (ICSE-C). 2016, pp. 21-30.

Christoffer Rosen, Ben Grawi, and Emad Shihab. “Commit Guru: Analytics
and Risk Prediction of Software Commits”. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015.
Bergamo, Italy: Association for Computing Machinery, 2015, pp. 966-969.
ISBN: 9781450336758.

Z. Wan et al. “Perceptions, Expectations, and Challenges in Defect Predic-

tion”. In: IEEE Transactions on Software Engineering 46.11 (2020).

Saksham Sachdev et al. “Retrieval on Source Code: A Neural Code Search”.
In: Proceedings of the 2nd Workshop on Machine Learning and Programming
Language. MAPL 2018. 2018.

Zhuyun Dai and Jamie Callan. “Deeper Text Understanding for IR with Con-
textual Neural Language Modeling”. In: Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR19. 2019.

Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT.

2020. arXiv: [1901.04085 [cs.IR].

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings us-

ing Siamese BERT-Networks. 2019. arXiv: 1908.10084 [cs.CL].

136


https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1908.10084

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Omar Khattab and Matei Zaharia. “ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT”. In: SIGIR 20. 2020.

[an Tenney, Dipanjan Das, and Ellie Pavlick. “BERT Rediscovers the Classical
NLP Pipeline”. In: Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics. July 2019.

Matthew Peters et al. “Dissecting Contextual Word Embeddings: Architec-
ture and Representation”. In: Proceedings of the 2018 Conference on Empir-

tcal Methods in Natural Language Processing. 2018.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity search

with GPUS”. In: arXiv preprint arXiv:1702.08734 (2017).

Jean-Rémy Falleri et al. “Fine-grained and accurate source code differencing”.
In: ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE ’14, Vasteras, Sweden - September 15 - 19, 201/. 2014, pp. 313—
324. pOI1: 10.1145/2642937.2642982. URL: http://doi.acm.org/10.1145/

2642937 .2642982.

Zhengran Zeng et al. “Deep Just-in-Time Defect Prediction: How Far Are
We?” In: ISSTA 2021. Virtual, Denmark, 2021.

M. Schuster and K. Nakajima. “Japanese and Korean voice search”. In: 2012

IEEFE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 2012.

Kim Herzig and Andreas Zeller. “The impact of tangled code changes”. In:
2013 10th Working Conference on Mining Software Repositories (MSR). 2013.

137


https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982

[120]

[121]

[122]

[123]

[124]

[125]

[126]

E. C. Neto, D. A. da Costa, and U. Kulesza. “The impact of refactoring
changes on the SZZ algorithm: An empirical study”. In: IEEE 25th Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER).
SANER 2018. 2018.

Siyuan Jiang, Ameer Armaly, and Collin McMillan. “Automatically generat-
ing commit messages from diffs using neural machine translation”. In: 2017
32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 2017.

Qiangian Wang, Chris Parnin, and Alessandro Orso. “Evaluating the Useful-
ness of IR-Based Fault Localization Techniques”. In: Proceedings of the 2015
International Symposium on Software Testing and Analysis. ISSTA 2015. Bal-
timore, MD, USA, 2015, pp. 1-11.

Rafael-Michael Karampatsis et al. “Open-Vocabulary Models for Source Code”.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Companion Proceedings. ICSE "20. Seoul, South Korea, 2020,

pp. 294-295.

Jinhyuk Lee et al. “BioBERT": a pre-trained biomedical language representa-
tion model for biomedical text mining”. In: Bioinformatics (Sept. 2019). Ed.
by JonathanEditor Wren. 1SsN: 1460-2059. DOTI: 10.1093/bioinformatics/

btz682. URL: http://dx.doi.org/10.1093/bioinformatics/btz682.

Iz Beltagy, Kyle Lo, and Arman Cohan. “SciBERT: Pretrained Language

Model for Scientific Text”. In: EMNLP. 2019. eprint: arXiv:1903.10676.

Yu Gu et al. Domain-Specific Language Model Pretraining for Biomedical

Natural Language Processing. 2021. arXiv: 2007.15779 [cs.CL].

138


https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1093/bioinformatics/btz682
arXiv:1903.10676
https://arxiv.org/abs/2007.15779

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Giovanni Rosa et al. Fvaluating SZZ Implementations Through a Developer-

informed Oracle. 2021. arXiv: 2102.03300 [cs.SE].

Huy Tu, Zhe Yu, and Tim Menzies. “Better Data Labelling With EMBLEM
(and how that Impacts Defect Prediction)”. In: IEEE Transactions on Soft-

ware Engineering 48.1 (2022), pp. 278-294.

Bogdan Vasilescu et al. “Quality and Productivity Outcomes Relating to Con-
tinuous Integration in GitHub”. In: Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering. ESEC/FSE 2015. 2015.

Daniel Alencar da Costa et al. “A Framework for Evaluating the Results
of the SZZ Approach for Identifying Bug-Introducing Changes”. In: IEFFE

Transactions on Software Engineering (2017).

Huy Tu and Tim Menzies. “FRUGAL: Unlocking SSL for Software Analytics”.
In: arXiv preprint arXiv:2108.09847 (2021).

Steven Y Feng et al. “A survey of data augmentation approaches for nlp”. In:

arXiv preprint arXiw:2105.03075 (2021).

Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEFEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015. DOL:

10.1109/CVPR.2015.7298594.

Sebastien C. Wong et al. “Understanding Data Augmentation for Classifi-
cation: When to Warp?” In: 2016 International Conference on Digital Im-
age Computing: Techniques and Applications (DICTA). 2016, pp. 1-6. DOTI:

10.1109/DICTA.2016.7797091.

Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. “Text data aug-

mentation for deep learning”. In: Journal of big Data 8.1 (2021), pp. 1-34.

139


https://arxiv.org/abs/2102.03300
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/DICTA.2016.7797091

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Jason Wei and Kai Zou. “EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP). Nov. 2019.

Gozde Giil Sahin and Mark Steedman. “Data Augmentation via Dependency
Tree Morphing for Low-Resource Languages”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018. Ed. by Ellen Riloff et al. Association

for Computational Linguistics, 2018, pp. 5004-5009.

Ge Yan et al. “Data Augmentation for Deep Learning of Judgment Doc-
uments”. In: International Conference on Intelligent Science and Big Data

Engineering. Springer. 2019, pp. 232-242.

Hongyu Guo, Yongyi Mao, and Richong Zhang. “Augmenting data with mixup

for sentence classification: An empirical study”. In: arXiv preprint arXiv:1905.08941
(2019).

Rico Sennrich, Barry Haddow, and Alexandra Birch. “Improving Neural Ma-
chine Translation Models with Monolingual Data”. In: Proceedings of the 5/th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Aug. 2016.

Yu Li et al. “A Diverse Data Augmentation Strategy for Low-Resource Neural

Machine Translation”. In: Information 11.5 (2020).

Ashutosh Kumar et al. “Submodular Optimization-based Diverse Paraphras-
ing and its Effectiveness in Data Augmentation”. In: Proceedings of the 2019

Conference of the North American Chapter of the Association for Computa-

140



[143]

[144]

[145]

[146]

[147]

148

tional Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers). June 2019.

Qizhe Xie et al. Unsupervised Data Augmentation for Consistency Training.

2020. arXiv: [1904.12848 [cs.LG].

Alexander Fabbri et al. “Improving Zero and Few-Shot Abstractive Summa-
rization with Intermediate Fine-tuning and Data Augmentation”. In: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association

for Computational Lingwistics: Human Language Technologies. June 2021.

Ateret Anaby-Tavor et al. “Do not have enough data? Deep learning to the
rescue!” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 05. 2020, pp. 7383-7390.

Husam Quteineh, Spyridon Samothrakis, and Richard Sutcliffe. “Textual Data
Augmentation for Efficient Active Learning on Tiny Datasets”. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Nov. 2020.

Venelin Kovatchev et al. “Can vectors read minds better than experts? Com-
paring data augmentation strategies for the automated scoring of children’s
mindreading ability”. In: Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Con-

ference on Natural Language Processing (Volume 1: Long Papers). Aug. 2021.

Yanru Qu et al. CoDA: Contrast-enhanced and Diversity-promoting Data
Augmentation for Natural Language Understanding. 2020. arXiv:|2010.08670

[cs.CL].

141


https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/2010.08670
https://arxiv.org/abs/2010.08670

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Marzieh Fadaee, Arianna Bisazza, and Christof Monz. “Data Augmentation
for Low-Resource Neural Machine Translation”. In: Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics. July 2017.

Kenton Lee et al. Neural Data Augmentation via Example Extrapolation. 2021.

arXiv:2102.01335 [cs.CL].

Jason Wei et al. “Few-Shot Text Classification with Triplet Networks, Data
Augmentation, and Curriculum Learning”. In: Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (2021).

Varun Kumar et al. A Closer Look At Feature Space Data Augmentation For

Few-Shot Intent Classification. 2019. arXiv: 1910.04176 [cs.CL].

Rahul Gupta, Aditya Kanade, and Shirish Shevade. “Neural Attribution for
Semantic Bug-Localization in Student Programs”. In: Advances in Neural

Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. 2019.

Nicolas Bettenburg et al. “What Makes a Good Bug Report?” In: Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. SIGSOFT *08/FSE-16. 2008.

Ratnadira Widyasari et al. “On the Influence of Biases in Bug Localization:
Evaluation and Benchmark”. In: Proceedings of the 29th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER),
RENE Track. SANER 2022. 2022.

Toan QQ Nguyen, Kenton Murray, and David Chiang. “Data Augmentation
by Concatenation for Low-Resource Translation: A Mystery and a Solution”.

In: arXiv preprint arXiv:2105.01691 (2021).

142


https://arxiv.org/abs/2102.01335
https://arxiv.org/abs/1910.04176

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Rahul Premraj et al. “Extracting structural information from bug reports”.

In: Proceedings of the 2008 international workshop on Mining software repos-

itories - MSR 2008. 2008.

Yang Song and Oscar Chaparro. “BEE: A Tool for Structuring and Analyzing
Bug Reports”. In: Proceedings of the 28th ACM Joint Meeting on Furopean
Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering. 2020.

Agnieszka Ciborowska and Kostadin Damevski. Fast Changeset-based Bug

Localization with BERT. 2021. arXiv: 2112.14169 [cs.SE].

Michael Pradel et al. “Scaffle: bug localization on millions of files”. In: Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Software

Testing and Analysis. 2020.

Matteo Paltenghi and Michael Pradel. “Thinking Like a Developer? Compar-
ing the Attention of Humans with Neural Models of Code”. In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE. 2021, pp. 867-879.

Oscar Chaparro et al. “Detecting Missing Information in Bug Descriptions”.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2017. 2017.

Nathan Ng et al. “Facebook FAIR’s WMT19 News Translation Task Sub-
mission”. In: Proceedings of the Fourth Conference on Machine Translation

(Volume 2: Shared Task Papers, Day 1). Aug. 2019.

143


https://arxiv.org/abs/2112.14169

[164] Xueqing Wu et al. “mixSeq: A Simple Data Augmentation Methodfor Neural
Machine Translation”. In: Proceedings of the 18th International Conference

on Spoken Language Translation. IWSLT 2021. 2021.

[165] Jiaao Chen et al. “Hiddencut: Simple data augmentation for natural language
understanding with better generalizability”. In: Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1:

Long Papers). 2021, pp. 4380-4390.

[166] Dinghan Shen et al. “A Simple but Tough-to-Beat Data Augmentation Ap-
proach for Natural Language Understanding and Generation”. In: arXiv preprint

arXiv:2009.13818 (2020).

[167] Gemma Catolino et al. “Not all bugs are the same: Understanding, char-

acterizing, and classifying bug types”. In: Journal of Systems and Software

(2019).

[168] Rahul Yedida and Tim Menzies. “On the value of oversampling for deep learn-
ing in software defect prediction”. In: IEEFE Transactions on Software Engi-

neering (2021).

[169] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. “When Do Changes
Induce Fixes?” In: Proceedings of the 2005 International Workshop on Mining
Software Repositories. MSR, '05. 2005.

[170] Github. The 2021 State of the Octoverse. 2021. URL: https://octoverse.

github.com/#top-languages-over-the-years.

144


https://octoverse.github.com/#top-languages-over-the-years
https://octoverse.github.com/#top-languages-over-the-years

[171] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-
Document Transformer. 2020. DOI: |10 . 48550 / ARXIV . 2004 . 05150. URL:

https://arxiv.org/abs/2004.05150.

[172] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. “Reformer: The efficient

transformer”. In: arXiv preprint arXiv:2001.04451 (2020).

[173] Wei Wang et al. “Structbert: Incorporating language structures into pre-
training for deep language understanding”. In: arXiv preprint arXiv:1908.04577
(2019).

[174] Wen Tai et al. “exBERT: Extending Pre-trained Models with Domain-specific
Vocabulary Under Constrained Training Resources”. In: Findings of the As-
sociation for Computational Linguistics: EMNLP 2020. Nov. 2020, pp. 1433—
1439.

[175] Timo Schick and Hinrich Schiitze. “Generating Datasets with Pretrained Lan-
guage Models”. In: Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing. Nov. 2021.

[176] Kang Min Yoo et al. “GPT3Mix: Leveraging Large-scale Language Models
for Text Augmentation”. In: Findings of the Association for Computational

Linguistics: EMNLP 2021. Nov. 2021.

[177] Supriyo Chakraborty et al. “Interpretability of deep learning models: A sur-
vey of results”. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Com-
puting, Advanced Trusted Computed, Scalable Computing Communications,
Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). 2017.

145


https://doi.org/10.48550/ARXIV.2004.05150
https://arxiv.org/abs/2004.05150

Vita

Agnieszka Ciborowska received her BSc. in Computer Science in 2016 and her
MSec. in Computer Science in 2017, both from the University of Science and Tech-
nology in Wroclaw, Poland. As a full-time graduate student in the Ph.D. program
at Virginia Commonwealth University, her research is focused on context-aware in-

formation retrieval systems for the software engineering domain.

Publications:

[1] [Under revision] A. Ciborowska, K. Damevski. Not Enough Bug Reports? Eux-

ploring Data Augmentation for Improved DL-based Bug Localization. TEEE

Transactions on Software Engineering, 2022

[2] A. Ciborowska, K. Damevski. Fast Changeset-based Bug Localization with BERT.

In proceedings of the 44th International Conference on Software Engineering

(ICSE’22), Technical Track, virtual event, 2022.

[3] A. Ciborowska, A. Chakarov, R. Pandita. Contemporary COBOL: Developers’

Perspectives on Defects and Defect Location. In proceedings of the 37th In-
ternational Conference on Software Maintenance and Evolution (ICSME21),
Research Track, virtual event, 2021. IEEE Computer Society TCSE Dis-

tinguished Paper Award

[4] A. Ciborowska, M. J. Decker, K. Damevski. Online Adaptable Bug Localization

for Rapidly Evolving Software.
https://arxiv.org/abs/2203.03544

146



[5]

[10]

M. M. Imran, A. Ciborowska, K. Damevski. Automatically Selecting Follow-up

Questions for Deficient Bug Reports. In proceedings of the 18th International
Conference on Mining Software Repositories (MSR’21), Technical Track, virtual

event, 2021.

A. Ciborowska, K. Damevski. Software artifacts retrieval based on changesets.

In proceedings of the 36th International Conference on Software Maintenance

and Evolution (ICSME’20), Doctoral Symposium, virtual event, 2020.

A. Ciborowska, K. Damevski. Recognizing Developer Activity Based on Joint

Modeling of Code and Command Interactions. IEEE Access, 2020.

H. Chen, A. Ciborowska, K. Damevski. Using Automated Prompts for Student

Reflection on Computer Security Concepts. In proceedings of the 24th An-
nual Conference on Innovation and Technology in Computer Science Education

(ITiCSE’19), Aberdeen, UK, 2019.

M.A. Nishi, A. Ciborowska, K. Damevski. Characterizing Duplicate Code Snip-

pets between Stack Overflow and Tutorials. In proceedings of the 16th Interna-
tional Conference on Mining Software Repositories (MSR'19) — Mining Chal-

lenge, Montreal, Canada, 2019.

A. Ciborowska, N. Kraft, K. Damevski. Detecting and Characterizing Devel-
oper Behavior Following Opportunistic Reuse of Code Snippets from the Web.
In proceedings of the 15th International Conference on Mining Software Repos-
itories (MSR’18) — Mining Challenge, Gothenburg, Sweden, 2018. MSR’18

Mining Challenge Winner

147



	Changeset-based Retrieval of Source Code Artifacts for Bug Localization
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction  
	Contributions of the thesis
	Structure of the thesis

	 Background
	Information retrieval-based bug localization
	Evaluation of IR models
	Leveraging changesets for bug localization
	Structure of changesets
	Advantages and challenges of using changesets

	Diversity of bug reports

	 Related Work
	Code element-based bug localization
	Changeset-based bug localization
	Changeset representation
	Diverse characteristics of bug reports
	Scarcity of training data in software engineering

	 Online Adaptable Bug Localization for Rapidly Evolving Software
	Online Bug Localization
	Topic modeling with Latent Dirichlet Allocation
	JINGO Model
	Structure of the JINGO Model
	Using JINGO for Prediction

	Evaluation setup
	Datasets
	Hyperparameter Optimization
	Experiment setup
	Research Questions

	Results
	RQ1: Retrieval accuracy
	RQ2: Time overhead to update the model
	RQ3: JINGO compared to static bug localization
	RQ4: Different types of content in bug reports
	Discussion
	Threats to Validity

	Conclusions

	 Fast Changeset-based Bug Localization with BERT
	Industrial requirements for bug localization
	Approach
	BERT for bug localization
	Fast Bug Localization BERT
	Changesets encoding strategies

	Experimental evaluation
	Research questions
	Dataset and baselines
	Experiment setup

	Results
	RQ1: Retrieval performance
	RQ2: Changeset encoding strategy
	Threats to validity

	Conclusion

	 Data Augmentation for Improved Deep Learning-based Bug Localization
	Background
	Data augmentation in bug localization
	Approach
	Data preprocessing
	Natural language DA operators
	Code-related DA operators
	Building augmented bug reports
	Ensuring a balanced augmented dataset

	Evaluation setup
	Research Questions
	Dataset and models
	Experiment setup

	Results
	RQ1: Retrieval accuracy on augmented dataset
	RQ2: Impact of data augmentation operators
	Threats to validity

	Conclusion

	 Conclusion
	 Future work
	More extensive evaluation
	Capturing project-specific information
	Extrapolating further from the available data
	Interpretability of the results

	References

