
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2022

Continual learning from stationary and non-stationary data Continual learning from stationary and non-stationary data

Lukasz Korycki
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer Engineering Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6920

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarscompass.vcu.edu%2Fetd%2F6920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6920?utm_source=scholarscompass.vcu.edu%2Fetd%2F6920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

CONTINUAL LEARNING FROM STATIONARY AND NON-STATIONARY

DATA

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

 LUKASZ KORYCKI

Ph.D. Candidate

Director: Bartosz Krawczyk,

Assistant Professor, Department of Computer Science

Virginia Commonwealth University

Virginia Commonwealth University

Richmond, Virginia

May, 2022

Acknowledgements

This dissertation could not have been written without the guidance and active

support of my advisor – Dr. Bartosz Krawczyk. It started with the enthusiasm for

artificial intelligence that he instilled in me during my freshman year in Poland and

it continued for all of these years through our countless discussions that shaped me

as a researcher. His pure scientific optimism allowed me to believe that I can be not

only the reader but also the writer.

There are no words to fully express my gratitude towards my parents. Their love

and enormous effort allowed me to follow the direction I chose and realize my dreams.

My mother always impeccably believed that I can achieve my goals, helping me

develop the same conviction and encouraging to move forward regardless of my failures

and doubts. And it was the hard work of my father that gave me the opportunity to

focus on my growth. I owe them everything.

I would also like to thank my brother, who added so many bright colors to our

childhood, and my friends in Poland and in the USA, who accepted me as I am

and with whom I share so many great memories. I want to thank Damian Wiecek,

Mateusz and Magda Koguc, Grzegorz Drzazga and Bartosz Polek for almost 20 years

of friendship, Michal and Dominika Polanscy and Dominik and Agata Mrzyglod for

all of the great student years we could spend together, and Adam Ziemba, Andriy

Mulyar and Jorge Gonzalez Lopez for making the USA feel like home.

The last paragraph is reserved for my precious wife, Agnieszka, who has always

been next to me, and whose love makes me a better person every day. I am happy to

have you by my side.

i

Table of Contents

Table of Contents . ii

List of Tables . v

List of Figures . vii

Abstract . xiii

1 Introduction . 1

1.1 Research goals and problems . 3

1.2 Motivation . 5

1.3 Structure . 6

2 Background and related works . 7

2.1 Continual learning . 7

2.2 Learning from stationary data . 9

2.2.1 Catastrophic forgetting . 10

2.2.2 Preserving knowledge . 10

2.3 Learning from non-stationary data 16

2.3.1 Concept drift . 16

2.3.2 Change adaptation . 18

2.3.3 Holistic approaches . 24

3 Class-incremental gradient-based mixture of Gaussians 26

3.1 Mixture of Gaussians for class-incremental learning 27

3.1.1 Generic supervised mixture model 28

3.1.2 Optimization techniques . 29

3.1.3 Mixture optimization for class-incremental deep learning . . . 30

3.1.3.1 Loss design . 31

3.1.3.2 Constraints . 35

3.1.4 Memory buffer . 36

3.1.5 Classification . 37

3.2 Experimental study . 37

3.2.1 Data . 38

ii

3.2.2 Model configurations . 38

3.2.3 Algorithms . 40

3.2.4 Evaluation . 42

3.2.5 Results . 42

3.2.5.1 Configurations . 43

3.2.5.2 Baseline comparison 50

3.2.6 Lessons learned . 54

3.3 Summary . 55

4 Streaming decision trees for continual learning 57

4.1 Decision trees and continual learning 58

4.1.1 Forgetting in streaming decision trees 58

4.1.2 Overcoming catastrophic forgetting 63

4.2 Experimental study . 65

4.2.1 Data . 66

4.2.2 Algorithms . 66

4.2.3 Evaluation . 67

4.2.4 Results . 67

4.3 Summary . 75

5 Instance exploitation for learning temporary concepts from sparsely

labeled drifting data streams . 76

5.1 Learning on a budget and data dynamics 78

5.2 Risky adaptation . 80

5.2.1 Instance exploitation . 83

5.2.1.1 Framework . 84

5.2.1.2 Exploitation strategies 85

5.2.1.3 Dynamic parameters 87

5.2.2 Alleviating overfitting . 89

5.3 Experimental study . 92

5.3.1 Data streams . 93

5.3.2 Setup . 95

5.3.3 Results . 98

5.3.3.1 Intensity . 98

5.3.3.2 Instance window . 103

5.3.3.3 Elevating significance 108

5.3.3.4 Final comparison . 112

5.3.4 Lessons learned . 119

iii

5.4 Summary . 124

6 Online oversampling for sparsely labeled imbalanced and non-stationary

data streams . 126

6.1 Deceptive majority and budget constraints 127

6.2 Framework . 128

6.2.1 Generation methods . 130

6.2.2 Balancing strategies . 131

6.3 Experimental study . 132

6.3.1 Data . 133

6.3.2 Setup . 135

6.3.3 Results . 137

6.4 Summary . 145

7 Concept drift detection from multi-class imbalanced data streams 147

7.1 Challenges in learning from multi-class imbalanced data streams . 148

7.2 Restricted Boltzmann Machine for imbalanced drift detection . . . 152

7.2.1 Skew-insensitive Restricted Boltzmann Machine 152

7.2.2 Drift detection with RBM-IM 156

7.3 Experimental study . 160

7.3.1 Data stream benchmarks . 160

7.3.2 Setup . 161

7.3.3 Experiment 1: Drift detectors comparison 164

7.3.4 Experiment 2: Detection of local concept drifts 168

7.3.5 Experiment 3: Robustness to changing imbalance ratio . . . 171

7.4 Lessons learned . 173

7.5 Summary . 175

8 Unsupervised drift detector ensembles for data stream mining 176

8.1 Detection under labeling constraints 177

8.2 Incremental Kolmogorov-Smirnov test 178

8.3 Unsupervised ensemble drift detection with feature subspaces . . . 182

8.4 Experimental study . 187

8.4.1 Data stream benchmarks . 187

8.4.2 Setup . 187

8.4.3 Experiment 1: Role of feature subspaces 189

8.4.4 Experiment 2: Comparison with other detectors 191

8.5 Summary . 192

iv

9 Dynamic ensemble diversity and adaptation to concept drift 194

9.1 Proposed algorithm . 196

9.2 Experimental study . 199

9.2.1 Data . 200

9.2.2 Algorithms . 201

9.2.3 Evaluation . 202

9.2.4 Results . 203

9.3 Summary . 212

10 Reactive subspace buffers for continual learning from non-stationary data 214

10.1 Class-incremental experience replay under concept drift 215

10.1.1 Class buffers . 216

10.1.2 Centroid-driven memory . 217

10.1.3 Reactive subspace buffer . 218

10.2 Experimental study . 220

10.2.1 Data . 221

10.2.2 Algorithms . 221

10.2.3 Evaluation . 223

10.2.4 Results . 224

10.3 Summary . 229

11 Final summary . 231

11.1 Conclusions . 231

11.2 Open challenges and future directions 232

11.2.1 Improving continual learning from stationary data 232

11.2.2 Improving continual learning from non-stationary data . . . 235

References . 238

v

List of Tables

1 Summary of used datasets. 39

2 Average incremental accuracy for MIX using different numbers of components 47

3 Average incremental accuracy for MIX with diagonal and full covariance . 48

4 Average incremental accuracy for MIX and different baselines using

end-to-end learning . 50

5 Average incremental accuracy for MIX and different baselines using

pre-trained extractors . 53

6 Average accuracy on all class-incremental sequences 68

7 Summary of the used synthetic and real data streams 94

8 Summary of the parameter values evaluated in the tuning experiments . . 96

9 Average kappa given a budget for AHT and SGD using fixed intensities . 99

10 Average kappa given a budget for AHT and SGD using dynamic intensities 102

11 Average kappa given a budget for AHT and SGD using fixed sliding

windows . 104

12 Average kappa given a budget for AHT and SGD using dynamic sliding

windows . 107

13 Average kappa given a budget for AHT and SGD ensembles compared

with Base and single-classifier models . 109

14 Final average kappa for AHT and SGD on real data streams 113

15 Summary of the used data streams . 133

16 Average G-mean values calculated over all real streams and semi-

synthetic streams for different algorithms given a budget 138

vi

17 Average total running time per instance for all algorithms given a budget 143

18 Properties of real-world (top) and artificial (bottom) imbalanced data

stream benchmarks . 162

19 Examined drift detectors and their parameters 163

20 Results according to pmAUC and pmGM for the examined concept

drift detectors . 164

21 Results according to average processing times per batch for the exam-

ined concept drift detectors . 165

22 Array of G(x) for each observation . 181

23 Properties of used data stream benchmarks 188

24 Comparison of EDFS with randomly created subspaces and univariate

detector according to the prequential accuracy 189

25 Comparison of EDFS with randomly created subspaces and the uni-

variate detector according to the prequential accuracy 191

26 Summary of the used synthetic data streams 200

27 Summary of the used real data streams 201

28 Summary of synthetic streams results for accuracy and kappa 204

29 Results on real data streams with the respect to accuracy and kappa . . . 210

30 Normalized average accuracy (absolute values for the offline baseline)

for stationary sequences . 224

31 Normalized average accuracy (absolute values for the offline baseline)

for drifting sequences . 226

vii

List of Figures

1 Different continual learning settings: task-incremental, class-incremental

and data-incremental . 8

2 Example of real concept drift . 17

3 Three vital aspects of a holistic approach to continual learning: learn-

ing new classes, retaining previous knowledge and adapting to concept

drifts, illustrated by the example of a binary recommendation system . . 25

4 Learning subsequent classes incrementally with the inter-contrastive

loss utilizing the tightness bound . 33

5 Learning subsequent classes incrementally with regionalization and the

intra-contrastive loss utilizing the tightness bound 34

6 Average incremental accuracy for different losses combined with dif-

ferent classification methods . 43

7 Mixtures learned with cross-entropy and simple max-component strategy 44

8 Average incremental accuracy for different combinations of the tight-

ness parameter values (inter and intra) 45

9 Visualization of the inter-tightness effect on learned representations . . . 46

10 Visualization of the intra-tightness effect on learned representations . . . 46

11 Average incremental accuracy for different learning rates 48

12 Incremental accuracy after each class batch for different sizes of the

replay buffer . 49

13 Incremental accuracy after each class batch for our methods and dif-

ferent baselines (1/2) . 51

14 Incremental accuracy after each class batch for our methods and dif-

ferent baselines (2/2) . 52

viii

15 Catastrophic forgetting in streaming decision trees learning from a

class-incremental sequence . 62

16 Average class accuracy for the baseline tree-based models after each

class batch . 69

17 Average accuracy for selected classes of FASHION, CIFAR20 and IM-

AGENET20B for the baseline tree-based models and the proposed

ones after subsequent class batches . 71

18 Average confusion matrices . 72

19 Average retention after +k class batches since the moment a class appeared 73

20 Average class accuracy for other baseline models and the proposed

ones after each class batch . 74

21 Sparse labeling problem . 79

22 Decision boundaries created by an incremental classifier, while tackling

a concept drift, after learning on λ duplicates of the selected instances . . 81

23 Histograms for selected window indices depending on a strategy 87

24 Improvement over Base given a budget for AHT using fixed intensities . . 100

25 Improvement over Base given a budget for SGD using fixed intensities . . 101

26 Trade-off between performance and time-consumption for AHT and

SGD using dynamic intensity (vs. fixed) given a budget 103

27 Average kappa given a budget for AHT using fixed sliding windows . . . 105

28 Average kappa given a budget for SGD using fixed sliding windows 106

29 Trade-off between performance and memory given a budget for AHT

and SGD using dynamic windows (vs. fixed) 108

30 Improvement over Base given a budget for AHT using SE and the

SE-based ensembles . 110

ix

31 Number of elevations given a budget and significance level for ATH

and SGD using elevating ensembles . 111

32 Improvements over the best AL given a budget for AHT and SGD

using different strategies on real data streams 115

33 Bonferroni-Dunn test for different strategies on real data streams 116

34 Bonferroni-Dunn test for different strategies and other classifiers on

real data streams . 117

35 Ranks for AHT and SGD using different strategies compared with

other classifiers on real data streams . 118

36 Accuracy series for AHT given B = 10%: the best strategy vs. the

best AL and the best (not our) ensemble 120

37 Accuracy series for SGD given B = 10%: the best strategy vs. the

best AL and the best (not our) ensemble 121

38 Dynamic class ratios for the used multi-class real data streams, each

color represents a different class . 134

39 Ratios of the average G-mean for our algorithms to results for the best

active learning and ensembles on given budgets 139

40 Bonferroni-Dunn test over all examined budgets for the real streams . . . 140

41 Bonferroni-Dunn test over all budgets for the semi-synthetic streams . . . 140

42 Ratios of running time per instance for our algorithms to the results

for ARF . 144

43 Scenario 1 – global concept drift and dynamic imbalance ratio 149

44 Scenario 2 – global concept drift, dynamic imbalance ratio, and chang-

ing class roles . 150

45 Scenario 3 – local concept drift, dynamic imbalance ratio, and changing

class roles . 150

46 Bonferroni-Dunn test (pmAUC) . 165

x

47 Bonferroni-Dunn test (pmGM) . 165

48 Visualizations of the Bayesian signed test for comparison between Perf-

Sim and RBM-IM for pmAUC and pmGM 166

49 Visualizations of the Bayesian signed test for comparison between

DDM-CI and RBM-IM for pmAUC and pmGM 167

50 Relationship between pmAUC and the number of classes affected by

the local drift for the artificial benchmarks 169

51 Relationship between pmAUC and changing imbalance ratio for the

artificial benchmarks . 172

52 Posteriors for EDFS vs. RFS and univariate IKS from the bayesian

sign-rank test . 190

53 Posteriors for EDFS vs. LDCNet and EHCDD from the bayesian sign-

rank test . 192

54 Performance and diversity series for RBF2 and TREE4, using different

strategies . 203

55 Performance and diversity series for SEA1 and STAGGER2, using

different strategies . 205

56 Performance and diversity series for TREE3 and RBF4, using different

strategies . 206

57 Performance and diversity series for TREE1 and RBF2, using different

strategies . 207

58 Performance and diversity series: for HYPER1 and TREE4, using

different strategies . 208

59 Performance and diversity series for SEA2 and TREE2, using different

strategies . 209

60 Ranks of ensembles for all real data streams as a fraction of all cases . . . 211

61 General idea of the design for the drifting benchmark sequences 221

xi

62 Average accuracy over all classes for stationary class-incremental sequences 225

63 Average accuracy over all classes for drifting class-incremental sequences . 227

64 Accuracy for the selected classes under concept drift 228

xii

Abstract

Continual learning aims at developing models that are capable of working on

constantly evolving problems over a long-time horizon. In such environments, we

can distinguish three essential aspects of training and maintaining machine learning

models – incorporating new knowledge, retaining it and reacting to changes. Each of

them poses its own challenges, constituting a compound problem with multiple goals.

Remembering previously incorporated concepts is the main property of a model

that is required when dealing with stationary distributions. In non-stationary envi-

ronments, models should be capable of selectively forgetting outdated decision bound-

aries and adapting to new concepts. Finally, a significant difficulty can be found in

combining these two abilities within a single learning algorithm, since, in such sce-

narios, we have to balance remembering and forgetting instead of focusing only on

one aspect.

The presented dissertation addressed these problems in an exploratory way. Its

main goal was to grasp the continual learning paradigm as a whole, analyze its dif-

ferent branches and tackle identified issues covering various aspects of learning from

sequentially incoming data. By doing so, this work not only filled several gaps in the

current continual learning research but also emphasized the complexity and diversity

of challenges existing in this domain. Comprehensive experiments conducted for all of

the presented contributions have demonstrated their effectiveness and substantiated

the validity of the stated claims.

xiii

CHAPTER 1

INTRODUCTION

Almost all contemporary hardware and software products constantly exchange infor-

mation between each other not only to fulfill their basic tasks but also to provide

improved performance and extend the scope of their functionalities. As the rate and

diversity of data generators increases [1], the horizon of potential improvements and

new ideas seems to be limitless. Companies, developers and researchers compete with

each other to discover these new directions and either provide further improvements

to already known problems (e.g., market analysis based on social media content [2]

or autonomous driving adjustments based on information collected from individual

cars [3]), or propose completely new perspectives (e.g., blockchain [4], metaverse [5]).

The products of their work constitute a tightly interconnected and dynamic reality

where we can process and connect the dots practically indefinitely.

Due to the aforementioned observations, modern machine learning calls for algo-

rithms that are able not only to generalize patterns from a finite dataset but also to

continually maintain or improve their performance, as well as extend their capabilities

while accumulating knowledge from constantly arriving data. Continual (or lifelong)

learning aims at developing models that will be capable of working on constantly

expanding problems over a long-time horizon [6]. Such models should keep utilizing

new instances (online or data-incremental learning), new classes (class-incremental

learning), or even new tasks (multi-task learning) [7]. Whenever new information

becomes available it must be incorporated into the continual learning model to ex-

pand its knowledge base and make it suitable for predictive analytics over a new,

1

more complex view of the analyzed problem. This requires a flexible model structure

capable of continual storage of incrementally arriving data.

In such a setting, just like for humans, there are three fundamental aspects of

training and maintaining machine learning models – incorporating new knowledge,

retaining it and adapting to changes [8]. They pose their own specific challenges,

creating a complex multi-objective problem. While the first of them is essential to

any machine learning algorithm, either offline or online, the two remaining ones can

be considered specific to continual learning.

Remembering the previously incorporated concepts (classes or tasks) is the main

characteristic of a model that is needed when dealing with stationary data sources [9,

10]. Unfortunately, most of the state-of-the-art machine learning models seem to be

unfit for incremental learning scenarios. The reason for this is that they were designed

as offline, batch-based algorithms entirely focusing on a single data source given at

a time. As a consequence they tend to overwrite the previously learned knowledge

with the new one, leading to a phenomenon known as catastrophic forgetting [11, 12].

This problem has been explored mostly for (deep) neural networks, which, over the

last couple of years, has been resulting in the development of several new approaches

to mitigating the issue [9]. Nevertheless, we can still find this research domain to

be in its early stage, having the main focus on very constrained scenarios with many

limitations [7, 13] and with very little attention given to different than neural networks

models.

Learning in non-stationary environments comes with additional requirements and

challenges [14, 15]. Here, we have to take into consideration the fact that our data

generators are not static, therefore, they can generate different data distributions de-

pending on when we sample from them. In such scenarios, we have to be ready to

deal with dynamic, non-stationary data sources which are usually characterized by

2

concept drifts [1]. Learning from such data sources requires models to selectively for-

get outdated decision boundaries and adapt to new concepts. This subject has been

addressed mostly in the context of data stream mining [14, 16], which focuses on the

most generalized form of continual learning involving online, task-free scenarios with

revisiting concepts [17, 18]. Due to the broad generalization, in such environments,

one has to deal with various compound problems related to different forms of dy-

namics and resource management [19]. The natural consequence of relaxing all of the

constraints is that there is a plethora of potential research directions and problems

that have not been properly addressed yet [14, 19, 20].

Finally, if we carefully observe the current research in the deep continual learning

domain we will notice that almost all of the published works are entirely concentrated

on preventing catastrophic forgetting [6, 9, 21]. There is a strong emphasis on ag-

gregating only stationary concepts, which is a limited view of the required flexibility.

The problem of learning from drifting data is being addressed by data stream min-

ing, but, on the other hand, it is almost exclusively focused on the problem of change

adaptation and shallow learning, ignoring the issue of unwanted forgetting (insuffi-

cient retention) [14, 22]. A simple conclusion is that there are practically no works

that attempt to tackle both tasks at once. Those published trivialize the problem

since continual learning should not be solely focused either on accumulating observed

patterns nor on forgetting outdated information. Both mechanisms are needed to cre-

ate a complete generic learning paradigm, robust to difficulties present in real-world

problems [8, 18].

1.1 Research goals and problems

The general purpose of this dissertation is to: identify and address defi-

ciencies and shortcomings of the current state-of-the-art machine learning

3

models for continual learning. The main hypothesis is that for both stationary

and non-stationary data the learning algorithms and methods still have not been

sufficiently explored. They lack proper generalization to more realistic scenarios and

there is a lot of room for additional performance improvements or alternative so-

lutions. The presented work forms an attempt to explore and implement potential

enhancements, involving modifications, extensions and novel approaches, in order to

make the continual learning models more reliable, flexible and overall applicable to

real-world problems. More specific research goals for each of the aforementioned

subdomains are given as follows.

RG1: Improving continual learning from stationary data. Most of the works

on continual learning from stationary data are exclusively focused on handling catas-

trophic forgetting in neural networks. In addition, they usually avoid more complex

solutions and rely on strong assumptions, which impairs the retention of models and

stops us from scaling continual learning up (e.g., with the number of classes) to utilize

it in more feasible settings. This dissertation attempts to open new directions in the

research focused on tackling catastrophic forgetting by exploring alternative machine

learning models that could be applied to the given scenarios.

RG2: Improving continual learning from non-stationary data. Analogously

to the previous goal, the main focus can be put on addressing complex scenarios

of adaptive learning from drifting distributions, involving different problems at the

same time (real-world scenarios), and more in-depth analysis of existing approaches

to provide further improvements of already proposed ideas. This work considers

the following directions: learning and concept drift detection on a budget, handling

dynamic imbalance in data streams and improvements of the existing state-of-the-art

streaming methods.

4

RG3: Addressing the lack of holistic approaches. The improvements of meth-

ods providing stability, when data is stationary, and plasticity, when learning new

concepts or adapting to changes, are necessary yet not sufficient to significantly ad-

vance continual machine learning and provide generic frameworks. The main difficulty

can be found in combining these abilities within a single learning algorithm, since,

in such scenarios, we have to ensure optimal proportions between remembering and

forgetting instead of focusing on only one aspect. This work addresses the given prob-

lem by introducing a new benchmarking approach for deep learning problems along

with a method that explicitly considers catastrophic forgetting and concept drift.

1.2 Motivation

Intellectual merit. Advancing continual learning to a more complete form is of

significant importance since it is potentially a more generic learning paradigm than

the current state of the art – offline batch-based learning. Ideally, continual learning

should be providing at least the same capabilities (convergence) and, in addition

to that, even more of them (ability to handle dynamic data). Acknowledging non-

stationary classes and attempting to create adequate continual learning systems opens

new research perspectives, since we have to focus not only on the classes themselves

but also on existing dynamics in data. Exploring those areas may give us a much

better understanding of phenomena around us. Most of them are not static in nature,

thus without looking into their dynamics we will not be able to truly comprehend

them.

Broader impacts. Advanced continual machine learning may play a crucial role in

providing impactful benefits to society, including: better accessibility of specialized

services (it is enough to update a complex model with specific smaller tasks without

the need of having access to all expensive data), local and global empowerment (con-

5

tinual transfer learning may allow for benefiting in both directions – from everyone

to one and from one to everyone), more easily achievable fairness (no need to retrain

whole models to reduce imbalance/bias). Deploying online models will allow for the

development of new very important applications that should constantly maintain high

accuracy and reactivity, e.g., those related to medicine, which may elevate the quality

of life for the entire population. One of the most recent areas for such an application

could be COVID modeling [23, 24].

1.3 Structure

The structure of the dissertation is given as follows. After the general introduc-

tion of the continual learning ideas, presented in Chapter 1, Chapter 2 formalizes basic

concepts and taxonomy related to the subject in the context of learning from both

stationary and non-stationary data sources. In addition, it introduces research direc-

tions and works already published in the given area, emphasizing problems that have

not been sufficiently (or at all) covered yet. The next two chapters focus on continual

learning from stationary data (RG1) by introducing two alternative approaches – a

hybrid of the GMM model (Chapter 3) and streaming decision trees (Chapter 4) with

a deep learning extractor. After that, the subsequent chapters address the problem of

learning from non-stationary data (RG2) – intensive exploitation of scarce examples

of temporary concepts (Chapter 5), online oversampling for drifting concepts (Chap-

ter 6), concept drift detection for imbalanced data (Chapter 7), change detection

under strictly limited supervision (Chapter 8) and dynamically diversified ensembles

(Chapter 9). Finally, Chapter 10 introduces a holistic approach to learning from sta-

tionary and non-stationary data (RG3). At the end, a final summary consisting of

conclusions and future works is presented in Chapter 11.

6

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Continual learning

In continual learning we consider a sequence (continuum or stream) of data that

potentially infinitely comes to our incremental machine learning model from a source.

We can call it online learning, as opposite of the offline procedures that work only

with a finite, static dataset [1].

Data sequences. The sequence S, used for learning, may consist of different data

blocks Di, giving us S = ⟨D1, D2, ..., Dn, ...⟩, depending on a processing framework

or considered scenario, as given in Fig. 1. Here, we can distinguish three main

settings [7]: (i) task-incremental, where Di is a task Ti containing data for a fi-

nite set of classes Ti = ⟨C1, C2, ..., Cm⟩, (ii) class-incremental, where Di is a class

Ci containing data only for a given class Ci = ⟨(x1, y), (x2, y), ..., (xk, y)⟩, where y

is a class label, and (iii) data-incremental or domain-incremental, where we

do not distinguish any tasks or classes and simply accept batches of new instances

Bi = ⟨(x1, y1), (x2, y2), ..., (xk, yk)⟩ as our data blocks Di.

Other taxonomies. In addition to the most fundamental taxonomy, it is worth

elaborating on some details or different perspectives proposed in other works, com-

ing from slightly different research domains, that call for unification. First of all,

for data-incremental scenarios, we can distinguish either batch-incremental or on-

line/streaming learning [1], where for the latter we basically define a single data

block as a single instance Di = (xi, yi). In practice, mini-batches are usually treated

7

C1: Cats C2: DogsC1: Cars C2: Airplanes

TASK 1TASK 2

... TASK-
INCREMENTAL

LEARNER

CLASS 1

Cats

CLASS-
INCREMENTAL

LEARNER

CLASS 2

Dogs

CLASS 3

Cars

...

...

CLASS 4

Airplanes

DATA-
INCREMENTAL

LEARNER

Fig. 1.: Different continual learning settings: task-incremental, class-incremental and

data-incremental.

as a form of online/streaming processing. Secondly, streaming scenarios can also be

seen as a special case of the online settings. Here, we have to acknowledge very

restrictive time and memory requirements, usually boiling down to high-throughput

and discarding instances after processing them [1]. Finally, while the task-incremental

scenarios assume that task boundaries and ids are given as a part of the learning pro-

cedure [9], task-agnostic or task-free works apply relaxations to this very strong

assumption. They either state that tasks are not defined a priori, in which case an

algorithm has to discover and learn them, or assume that tasks do not exist at all [17,

25]. One should easily notice that, from the perspective of data processing, these sce-

narios (especially the latter one) are practically synonymous to the data-incremental

approaches.

Revisiting. One of the crucial aspects of incremental learning is whether we allow

for revisiting previously seen observations, in the form of tasks (Ti = Tj), classes

(Ci = Cj) or simply instances (xi = xj), where i < j. It is essential for learning

8

from non-stationary data sources and enables cumulative improvements in station-

ary environments [26]. Furthermore, it is worth noting that, task-incremental and

class-incremental methods that allow for revisiting can sometimes be seen as data-

incremental approaches, since we effectively switch to updates at the level of each

task or class instead of just incrementally adding them to the model.

Class distributions. We assume the supervised learning scenario with classification

goal and thus we will define each instance as xi ∼ pi(x
(1), · · · , x(d), y) = pi(x, y),

where pi(x, y) is a joint distribution of i-th instance, defined by a d-dimensional fea-

ture space and assigned to class y. Each instance is independent and drawn randomly

from a probability distribution Ψi(x, y), which, for the purpose of the further expla-

nations, we call a class generator of a data source. Obviously, the same definition

of the generator stands for task-incremental, class-incremental and data-incremental

scenarios, since in all of them sources generate data per class. Depending on whether

the generator is stationary or non-stationary, we encounter stationary or non-

stationary data1.

2.2 Learning from stationary data

The most basic continual learning scenarios assumes that all incoming data are

generated by stationary data sources, therefore, for any point in time t and any class

y we can state that pt(x, y) = pt+1(x, y). In such cases, where class distributions

remain static, our focus should be on effective incorporation of the arriving data

and retention of the acquired knowledge to provide sufficient stability to the learning

process [12].

1Some works consider stationary and non-stationary data based on the observed
distributions, instead of source generators. We do not use this definition, since in such
a case practically all continual learning scenarios could be treated as non-stationary.

9

2.2.1 Catastrophic forgetting

The main problem that learning algorithms will encounter here is catastrophic

forgetting [6]. In fact, most of the machine learning models cannot handle long

incremental learning sequences and they tend to overfit their learning parameters to

the most recent observations without considering the significance of the previously

obtained knowledge. This issue has been identified mainly in the context of neural

networks and their gradient-based learning, but can also be observed for other types of

models [27]. Nevertheless, almost all of the attention in the related research has been

given to the incremental deep neural networks, which resulted in multiple different

approaches dedicated to alleviating catastrophic forgetting in these models. The

description and examples for each of them can be found in the next paragraph.

2.2.2 Preserving knowledge

Experience replay. The most straightforward approaches involve replaying in-

stances of previously seen tasks or classes while learning new ones. The mixed com-

position of old and recent examples helps preserving subspaces modeled for the former

while simultaneously allowing for learning how to discriminate it from the latter [28].

To make such methods feasible in potentially infinite continual learning scenarios,

such methods usually rely only on a small memory buffer consisting of the most rep-

resentative examples. Several different strategies for selecting the exemplars have been

proposed, including simple uniform sampling, k-means or herding for the class mean

approximation [29], as well as more sophisticated methods including diversification

of the memory buffer based on classification uncertainty and synthetic augmentation

[30], cardinality-constrained bi-level optimization for core-sets construction [31] or

gradient-driven criteria proposed for GEM [32], A-GEM [33] and GSS [34]. There are

10

also different approaches when it comes to the form of the examples being stored –

iCaRL stores raw instances which are dynamically transformed by an adaptive extrac-

tor [29], REMIND maintains a buffer of compressed representations generated with an

auto-encoder to provide better memory management [35], while saliency maps (sup-

port regions) are added to the buffer in [36] to ensure that a model also remembers

reasoning (explanations) behind each example. Furthermore, the examples can also

be synthetically or semi-synthetically generated – they can be parametrized as so-

called mnemonics and trainable in a meta-learning optimization procedure [37], and

pillars consolidation (preserving the known) combined with contrastive loss (learning

new) can provide high-quality prototypes that can be used as the replay examples [26].

Finally, it is also possible to avoid storing any instances in the memory and generate

them on-the-fly. This can be achieved by either using the inversion of a classifier [38],

or by utilizing popular generative models [39, 40, 41, 42, 43]. The experience replay

methods have been proven as very solid baselines capable of keeping the incremental

model in low-loss training regions [28] and providing competitive results even using

the most simplistic configurations [13], even if they are still missing some crucial ele-

ments [44]. On the other hand, even though the size of the buffer can be effectively

reduced, their memory complexity still grows linearly or sublinearly with the number

of new tasks and classes, and, in addition to that, they tend to overfit towards the

very few instances stored in the buffer [28]. Both obstacles may be prohibitive for

more complex problems.

Regularization. Instead of putting instance-level constraints on the learning di-

rections, we can apply direct adjustments to the loss using dedicated regulariza-

tion terms. The most commonly used approach involves utilizing the knowledge-

distillation loss [45] combined with standard cross-entropy. Many of more advanced

11

methods are based on the task-incremental LwF algorithm [46], which uses the for-

mer loss to preserve the knowledge of older concepts by enforcing more stable extrac-

tor outputs while incorporating new tasks [47, 48]. Alternative approaches involve

maintaining importance weights to distinguish parameters that are crucial for the

retention. Here, we can focus on neuron weights, like in EWC [49] incorporating the

Fisher matrix into the training loss to preserve the most important weights per task,

contribution to the global loss, like in SI [50] using the synapse state space accumulat-

ing relevant information, or magnitude of gradient changes, like in MAS [51] tracking

the output sensitivity similarly to the Hebb’s learning. Some works emphasize the

the importance of controlling the outputs [52], especially in the context of provid-

ing sparse representations, instead of weights sparsity to ensure additional learning

space [53], while others motivate anticipatory (proactive) learning instead of post-hoc

knowledge safeguarding, based on self-supervised proxy tasks involving input trans-

formations [54] or unsupervised reconstruction loss [55], to provide more generic and

reusable knowledge base. Similar goal can be achieved through adversarial continual

learning where task-invariant features (trained against the task discriminator) are

maintained [56]. Finally, one can also apply regularization directly to all layers, like

in PODNet [57], or focus on alleviating critical changes in the feature space identified

in [26] and addressed with topology-preserving Hebbian graph-based learning. While

regularization-based methods are less prone to memory complexity (usually they have

to store only importance weights), one should notice that most of them have been ap-

plied only to task-incremental scenarios with shared feature extractors, task-specific

output layers and task oracles [46, 58]. These are very strong assumptions and while

there have been attempts to relax them [59, 60, 61], these methods generally cannot

be used in more realistic class-incremental or data-incremental scenarios (if they do

not use memory buffers), since they cannot learn how to discriminate new instances

12

from the older ones [7].

Bias correction. The analysis of the classification layers in continual neural net-

works revealed that one of the main reasons of catastrophic forgetting is a weight bias

(higher magnitudes) towards new classes [62, 63]. The skewness correction seems to

be crucial in the context of large-scale class-incremental scenarios and has been ad-

dressed, for example, by using simple weight scaling [63], linear bias correction [62]

or employing the cosine classifier in the output layer combined with intra-class sepa-

ration and additional geometric constraints [64, 65]. In addition, it has been shown

that KD-loss contributes to the new-old bias problem, since it takes only old classes

logits into loss, leading to the situation where mistakes between new and old classes

are less important that mistakes between previously observed classes [63]. While this

group of methods improves incremental learning performance, it does not solve the

problem of missing discrimiantive capabilities without a memory buffer.

Masking. Another group of methods employs masking to isolate parameters per

task to keep them static when learning new ones. They usually maintain a single

fixed or expandable backbone, upon which task-specific subnets are built, and binary

masks selecting weights trainable for a given task, like in Piggyback [66], PackNet [67]

or PathNet [68]. Since the backbone networks are usually implemented as fixed-size

extractors, it is essential to limit the size of each mask (subnet) in order to be able to

scale with a large number of tasks. This issue can be addressed with pruning, which

releases less important weights, that do not affect the performance in a significant

way, to make more space for new tasks [67, 69]. Some methods allow for extending the

backbone network with new weights [70]. Finally, although these methods provide

almost perfect isolation of learning parameters and are very efficient in preventing

catastrophic forgetting, they were applied only in task-incremental scenarios, they

13

struggle with scaling up to higher numbers of tasks and are very limited when it

comes to forward and backward transfer, which has been somehow addressed in [71]

considering similar and dissimilar tasks to decide whether trigger or not transfer

learning.

Dynamic structures. Isolating parameters per task can also be achieved through

dynamic expansion of the network. Most basic methods, like progressive neural net-

works [72], simply add new column weights and lateral connections (adapters) while,

at the same time, fixing the previously created ones. Such approaches tend to re-

lax the memory constraints too much (compared, for example, with masking that

attempts to pack everything into a fixed architecture), since they grow linearly with

the number of tasks. The expansion can be dynamically adjusted based on the com-

plexity of a problem, like in DEN [73] that finds relevant neurons using BFS and adds

new units if loss significantly increases, DER [74] that expands its feature extractor

and prunes it using channel-level mask-based shrinking, or modular networks [75]

that maintain modules representing atomic skills and dynamically decide whether to

reuse older units or add new ones, as well as how to combine them. Some methods

utilize continuous neural search approaches to look for the most efficient potential

expansions [76]. Most of the algorithms combine the dynamic structure growth with

other techniques to make the expansion even more efficient, including applying spar-

sity loss or detecting critically dissimilar tasks [73]. Analogously to masking, these

methods have been applied almost exclusively in task-incremental scenarios. On the

other hand, they offer much better scalability and natural opportunities for obtaining

forward transfer learning when utilizing previously created units [73, 75].

Ensembles. Probably the most extreme case of dynamic expansion is based on the

ensemble techniques where a separate model is created for each task (or class). Two

14

main improvement directions focus either on providing a reliable task selector, e.g.

using nearest-mean [59] or an autoencoder in ExpertGate [77], or compressing the task

learners, e.g., by using rank-one matrices and Hadamard product in BatchEnsemble

[78] or weight rectification and scaling [79]. The ensemble-based solutions can also be

implemented in class-incremental scenarios by using one-class classifiers, e.g. based

on VAE [80] or holistic regularization, parameter transfer and contrastive information

extraction [81]. Last but not least, diverse committees have been used to obtain more

generic, complementary and robust decision boundaries helping regularize forgetting

[82, 65]. The ensemble-based methods struggle with memory efficiency and decision

space unification (class-incremental scenarios), but, on the other hand, they may offer

a lot of improvements known from the vast research focused on offline settings, which

seemingly have not been fully utilized in continual learning.

Other approaches. There are several interesting works that either cannot be di-

rectly put in any of the main categories, or focus on more specific continual learning

scenarios. One group of such methods concentrates on working under strictly limited

supervision, in few-shot learning settings [83, 84], for example, by forcing gradients

to adapt to auxiliary simulated processes [85], employing neural gas and class cen-

troids [86], or addressing the weaknesses of the KD-loss when very few labels are

available [87]. A very promising category of methods consists of approaches utiliz-

ing meta-learning and hypernetworks, which usually allow for learning towards more

efficient representations [88, 89] or dynamic selection of parameters per task [90,

91, 92, 93]. Other works worth mentioning include: using efficient streaming LDA

as a data-incremental classifier [94], employing learning based on rate reduction and

white-box ReduNet [95], dynamically combined stable and plastic residual blocks [96],

methods utilizing the nearest-mean classifier in class-incremental scenarios [97, 98],

15

or algorithms built around Bayesian and Gaussian components [99, 100].

2.3 Learning from non-stationary data

In many real-world applications data do not fall under stationary assumptions

[101]. It is more likely to evolve over time and form temporary concepts, being

subject to various types of changes. In such scenarios, at least one of the data

source generators is non-stationary and may generate different distributions depend-

ing on time t. Therefore, we can distinguish some instances and classes y for which

pt(x, y) ̸= pt+1(x, y). The natural consequence of this is that previously modeled

decision boundaries may become outdated after a change, creating a situation where

a classifier should be able to forget the invalid information and adapt to a new state

[15]. When encountering dynamic distributions, the main goal of a learning algorithm

is to ensure efficient selective plasticity (flexibility) of a model.

2.3.1 Concept drift

The described phenomenon is known as concept drift [1, 14]. It may affect

different aspects of data and thus can be analyzed and addressed from multiple per-

spectives.

Influence on decision boundaries. Firstly, we need to take into account how

concept drift impacts the learned decision boundaries, distinguishing between real

and virtual concept drifts [102]. The former influences previously learned classification

boundaries, decreasing their relevance for newly incoming instances. Real drift affects

posterior probabilities pt(y|x) ̸= pt+1(y|x) and additionally may impact unconditional

probability density functions. It must be tackled as soon as it appears, since it

invalidates (to some extent) the underlying classifier. Virtual concept drift affects

only the distribution of features pt(x) over time. While it seems less dangerous than

16

(a) Before drift (b) During drift (c) After drift

Fig. 2.: Example of real concept drift.

real concept drift, it cannot be ignored. Despite the fact that only the values of

features change, it may trigger false alarms and thus force unnecessary and costly

adaptations.

Locality of changes. It is important to distinguish between global and local concept

drifts [103]. The former one affects the entire stream, while the latter one affects only

certain parts of it (e.g., regions of the feature space, individual clusters of instances,

or subsets of classes). Determining the locality of changes is of high importance, as

rebuilding the entire classification model may not be necessary. Instead, one may

update only certain parts of the model or sub-models, leading to a more efficient

adaptation.

Speed of changes. We can distinguish between three main types of concept drifts

[14]: (i) sudden, when instance distribution abruptly changes with t-th example ar-

riving from the stream, (ii) incremental, when we have a continuous progression from

one concept to another (thus consisting of multiple intermediate concepts in between),

such that the distance from the old concept is increasing, while the distance to the

new concept is decreasing, and (iii) gradual, where instances arriving from the stream

oscillate between two distributions during the duration of the drift, with the old con-

cept appearing with decreasing frequency.

17

Recurrence. In many scenarios it is possible that a previously seen concept may

reappear over time [14]. One may store models or instances for previously seen

concepts in order to speed up recovery rates after a known concept reemerges [104].

Presence of noise. Apart from concept drift, one may encounter other types of

changes in data. They are connected with the potential appearance of incorrect

information in the stream, and known as blips or noise. The former stand for singular

random changes in a stream that should be ignored and not mistaken for a concept

drift. The latter stands for significant corruption in the feature values or class labels

and must be filtered out in order to avoid feeding false [105] or even adversarial

information to the classifier [106].

Feature drift. This is a type of change that happens when a subset of features

becomes, or stops to be, relevant to the learning task [20]. Additionally, new features

may emerge (thus extending the feature space), while the old ones may cease to arrive.

2.3.2 Change adaptation

The problem of adaptation to non-stationary distributions has been addressed

mainly by the data stream mining research community [1, 14, 16], therefore, most

of the published works are focused on streaming/online algorithms working in data-

incremental regimes. In general, very few methods directly addresses the continual

learning perspective, with the main focus given to streaming decision trees.

Adaptive classifiers. In order to be able to adapt to evolving data, classifiers must

either use continuous learning to follow the progression of a stream (blind adaptation),

or have an explicit information on when to update their model (informed adaptation)

[1]. Algorithms based on sliding windows storing only the most recent instances are

very popular, allowing for natural forgetting of older instances [107]. The size of the

18

window is an important parameter and adapting it over time seems to yield the best

results [108]. Online learners are capable of learning instance by instance, discarding

data after it passed the training procedure. Here, streaming decision trees can be

considered to be state-of-the-art learning algorithms, including Adaptive Hoeffding

Trees [109] and its several improved versions [110]. Alternative approaches involve

change detectors that can be paired with any classifier to monitor a state of the

stream [111] and decide when to actively update a model. This reduces the cost of

adaptation by lowering the number of times when we train the new classifier, but

may be subject to costly false alarms or missing changes appearing locally or on

a smaller magnitude. Although very few, there are some works that focus directly

[18] or indirectly [112] on adapting neural networks to non-stationary environments,

including online deep neural networks [113], adaptive exemplar sets combined with

online nearest-mean classifier in the output layer [114], evolving prototypes [25] or

task-free models based on current task (change) detection [17] greedily adjusting to

incoming data.

Dynamic ensembles. Combining multiple classifiers is a very popular and powerful

approach for standard learning problems [115, 116]. The technique transferred seam-

lessly to data stream mining scenarios, where ensemble approaches have displayed a

great efficacy [22]. They not only offer improved predictive power, robustness, and

reduction of variance, but also can easily handle concept drift and use it as a natural

way of maintaining diversity. By encapsulating new knowledge in the ensemble pool

and removing outdated models, one can assure that the base classifiers are continu-

ously mutually complementary, while adapting to changes in the stream. There are

two main approaches for ensemble design in streaming environments: (i) updating

base classifiers or (ii) updating the ensemble setup. The first approach assumes that

19

our ensemble uses classifiers capable of incremental or online learning. New instances

arriving from the stream are used to continuously update those classifiers, without

adding or removing any models. Popular solutions are based on the usage of online

versions of Bagging [117], Boosting [118] or Random Forest [119]. Maintaining di-

versified base learners in an ensemble is a critical aspect of training effective online

committees as it plays a crucial role in improving adaptation and stabilization of the

multi-classifier models. It has been shown that diversification should be increased

when there is a change and our ensemble suffers from lower performance, and de-

creased when our model is stable and performs well [120]. The second approach to

the ensemble design assumes that we can add new classifiers to the ensemble pool

and that outdated or irrelevant classifiers can be removed via a pruning procedure.

Classifiers are combined with weights reflecting the time they spent in the ensemble

and their current performance [121]. AWE [122], AUE [123] and KUE [116] enable

natural encapsulation of changes in data in a form of new classifiers and allow for

using any base learner. However, methods using the dynamic ensemble setup react

slower to concept drifts than their online counterparts, as they need to gather enough

of new instances before updating the classifier.

Concept drift detection. During the last years, several algorithms have been pro-

posed to tackle the problem of drift detection [111]. In general, we can group them,

just like classifiers, into supervised, semi-supervised and unsupervised methods. The

critical difference between them is that the first one is able to detect changes in class

boundaries, while the last one can only indicate drifts in the data distribution [1].

Although, in fact, we look for the former changes, which explains a very high pop-

ularity of the supervised detectors, it has been shown that in practice detecting the

latter type of drifts may be sufficient enough [124, 125]. The most popular group of

supervised drift detectors is constituted by methods that are based on the classifi-

20

cation error or accuracy calculated over labeled instances, like DDM [126], EDDM

[127] or RDDM [128]. Some of them, in order to decide if a change occurs, apply

statistical tests to check whether differences between monitored drift measures are

significant, for example, FTDD [129] that triggers detection based on the Fisher’s ex-

act test, or WSTD [130] that relies on the Wilcoxon rank sum test. Another popular

category of detectors are methods based on metrics within subwindows of a stream,

like, for example, STEPD [131] monitoring correct predictions in the older and recent

window, or ADWIN [108] – an adaptive sliding window based on the Hoeffding’s in-

equality that inspired multiple novel detectors [132, 133, 134]. An interesting idea is

to use ensemble techniques for the purpose of drift detection. Several different hetero-

geneous and homogeneous committees along with various combining strategies have

been evaluated in [135]. Authors of [136] proposed a reservoir of diverse adaptive clas-

sifiers and drift detectors to address the problem of temporal optimality of different

combinations. Some of very few pure semi-supervised approaches include combining

detectors with active learning [137, 138]. Strictly unsupervised drift detectors focus

directly on finding differences only in unlabeled data without any additional supervi-

sion. It usually boils down to the statistical comparison of two samples of data – from

the older and recent chunk [139, 135]. Probably the most sophisticated and precise

methods try to go even further and attempt to find exact regions within the feature

space that are affected by drifts. We say that, as opposed to the time-based detectors

focusing on finding a moment of a drift, these detectors focus on the spatial search

[124] utilizing various partitioning schemes [140] or dissimilarity measures [141]. In

addition to standard learning scenarios, concept drift detection can also be considered

in the context of more complex tasks, like adversarial attacks [142].

Temporal imbalance. In non-stationary continual learning, not only class bound-

21

aries can be subject to changes. In fact, class ratios can also change over time,

which creates additional learning difficulty [143, 144]. Here, the proportions be-

tween classes change dynamically, as well as class roles – a minority may become a

majority over time. Long delays between receiving samples of the same class may

lead to local imbalance, even if for a much longer period of time the same stream is

balanced [145]. Obviously, the relation between class imbalance ratios may change

over time. The most complex and challenging scenarios consist of both concept drift

and dynamic skewness [143]. One way of overcoming the imbalance problems is to

use the algorithm-level adaptation [146]. It is often applied as cost-sensitive inter-

nal updates of a single algorithm (perceptron-based RLSCAP [147], CSOAL [148]),

adaptation of imbalance-sensitive weights in ensembles (DWMIL [149], ESOS-ELM

[150], WELM [151]), or even through the optimization of embeddings [152]. Another

very important group of methods for imbalanced data streams consists of those that

attempt to solve the problem using an instance-level approach – resampling [153,

154]. Here, oversampling or undersampling methods are dynamically adjusted based

on the class ratios to balance the learning process. In [155] two classifiers based on the

well-known Learn++.NSE algorithm [156] were proposed – Learn++.CDS utilizing

SMOTE for balancing and Learn++.NIE that applies bagging subensembles along

with imbalance-sensitive metrics for base learners. Dynamic resampling combined

with ensemble-level adaptation [157] was fully utilized in improved online bagging

presented in [158, 159]. It is also possible to combine balanced buffers of instances

with ensemble techniques as it was done in ROSE [160]. Finally, worth noting that

non-stationary class imbalance may affect not only the classifiers but also drift detec-

tors or sampling strategies [161], posing difficult challenges when using more complex

methods.

22

Learning on a budget. Companies generate incomparable amounts of data every

second [1] and the assumption that most of the instances can be labeled is rather

naive, due to the labeling costs [162]. This problem is especially severe in non-

stationary continual learning, since we are forced to constantly strictly control the

incoming data distributions and the whole learning process. An intuitive solution to

this problem is to limit labeling only to those instances that are likely to provide the

best trade-off between cost and information. Active learning focuses on finding such

valuable data points that should be labeled [162]. There are several ways of defining a

useful instance. It can be, for example, uncertainty of a classifier, representativeness

in a data distribution, potential influence on the error or variance reduction [163, 164,

151]. Ensemble techniques can also be used as active learning strategies. They are

known as Query by Committee [165] methods and they define valuable instances as

those for which there is a strong disagreement between voting base learners [166, 167].

Other active learning approaches include unsupervised querying based on deviation

from previously modeled distribution [168], sampling according to policy-adaptive

submodular functions [169], or aiming at reducing the estimated level of error [170].

The semi-supervised learning methods, which should be seen as a natural choice for

the considered scenarios (a lot of unlabeled data and limited supervision), are rep-

resented mainly by algorithms based on the incremental cluster-then-label approach

[171, 172], online self-labeling [173], graph-based label propagation techniques [174]

or online co-training [175]. The unsupervised methods present a different, proactive

approach, in which models try to anticipate changes in decision boundaries without

labeled instances [176, 177]. Some of the continual learning methods for neural net-

works address the problem of limited supervision by considering few-shot learning

scenarios [25, 114, 112]. Finally, by utilizing unsupervised drift detection methods we

may avoid the inconvenience of spending budget to save it, which occurs when we use

23

supervised drift detectors to trigger more budget-friendly classifier updates.

2.3.3 Holistic approaches

While the main distinctive goal of methods designed for non-stationary data is to

effectively handle concept drifts, one has to remember that these algorithms should

still fulfill requirements defined for stationary data since non-stationarity does not

have to occur for all of the classes or for all of the time [8, 83]. It means that at a given

time t for some classes ys the data source generators may be stationary pt(x, ys) =

pt+1(x, ys), while for other classes yn we may observe non-stationary properties leading

to pt(x, yn) ̸= pt+1(x, yn). Obviously, classes that have been static may become

dynamic and those that were changing may transition into static states. We can

consider a recommendation system as a real-world example where such scenarios may

very likely occur.

Users are constantly processing new information given to them from social media,

the internet, or news outlets, learning about new things they have not seen before.

Those new things may become interesting to a user or not – but they still need to be

processed in a continuous manner, calling for class-incremental mechanisms. A new

topic does not become the major or only interest for the user; thus it cannot over-

shadow the previously seen ones. Therefore, catastrophic forgetting must be avoided

to retain not only the most current, but all topics relevant to a given user. At the

same time, our preferences and tastes are not static. We change our interests within

the span of years, months, or even days. A concept that was interesting to the user at

a given point cannot be assumed to be interesting indefinitely. A continual learning

system must thus be able of revisiting previously learned knowledge and updating

it according to any shifts in preferences. This calls for concept drift adaptation ap-

proaches, as previously seen topics may evolve over time and the interest of users

24

1) New class
batch

Remember

Remember
Learn

Remember

Remember
Remember 2) New class

batch

Forget/update

Remember
Remember

3) Drifting class
batch

RememberLearn
Initial
classes

Fig. 3.: Three vital aspects of a holistic approach to continual learning: learning new

classes, retaining previous knowledge and adapting to concept drifts, illustrated by

the example of a binary recommendation system (like or dislike).

in them may either increase or decrease over time. Creating a true continual learn-

ing system over user preferences is a real-world and practical illustration explaining

the need for holistic approaches capable of remembering new concepts and selective

forgetting with adaptation to changes in the old ones (Fig. 3).

Unfortunately, if we carefully observe the current research in continual learning

domain we will notice that almost all of the published works are either entirely fo-

cused on concept drift adaptation, ignoring the problem of dealing with insufficient

retention, or almost exclusively targeting catastrophic forgetting, with a sole emphasis

on aggregating only stationary concepts. Methods that entirely focus on the former

will inevitably lead to only locally optimal solutions completely ignoring what was

observed over a longer period of time [27]. While, on the other hand, blindly following

the only objective of the latter may force a model to retain already invalid knowledge,

leading to completely counterproductive results and severely impeding required adap-

tation [178]. In fact, both mechanisms are needed to create a more generic learning

paradigm, robust to difficulties present in real-world problems [8].

25

CHAPTER 3

CLASS-INCREMENTAL GRADIENT-BASED

MIXTURE OF GAUSSIANS

Continual learning models for stationary data focus on effectively learning and re-

taining concepts coming to them in a sequential manner [9, 12]. While the initial

research done in this domain was, in large part, oriented towards task-incremental

solutions, more recent works attempt to address generalized cases consisting of purely

class-incremental and data-incremental (also known as domain-incremental) settings

[10, 179]. These scenarios are usually more universal but also more challenging and

restrictive mainly due to the lack of task or even class labels.

In the most generic class-incremental environment, we have to be ready to

deal with classes coming one by one, without any higher-level grouping. This re-

quirement invalidates many of the previously proposed methods, e.g., memory-free

regularization-based ones [9], which are not capable of discriminating between older

and new classes, even if they address the catastrophic forgetting problem [179, 61].

While the most standard experience replay methods can be effectively applied

in the class-incremental scenarios [180, 28], there has been also a search for alter-

native approaches that could provide natural capabilities required for such cases. A

significant group of methods can be identified based on their reliance on centroids

(or prototypes) combined with the nearest-centroid classification methods [98]. Since

those centroids can be independently added to the classifier, they are examples of

methods that can be very smoothly incorporated into class-incremental scenarios,

offering almost no interference in the latent space, as opposed to the regularization

26

models.

In this chapter, we explore an advanced version of these alternatives by propos-

ing the first incorporation of the gradient-based Gaussian mixture model into a class-

incremental deep continual learning framework, called MIX. In fact, it requires us to

tackle three major problems at the same time: (i) gradient-based mixture training,

(ii) combining it with a trainable deep feature extractor and, finally, (iii) making it

suitable for class-incremental scenarios. To achieve these goals, we introduce a set of

dedicated losses, configurations and methods, providing a probabilistic classifier on

top of a feature extractor and within a model capable of learning end-to-end. This

opens many potential research directions that could exploit the well-modeled statis-

tical properties of Gaussians. In addition to that, we show that our class-incremental

mixture model, analogously to the centroid-driven algorithms, is characterized by

some inherent properties useful in continual learning scenarios. They allow it for

much better separation of concepts at the level of the classification module, leading

to significant improvements in memory-free scenarios when pre-trained extractors are

used. Through an extensive empirical study, we analyze different configurations of

our method, provide the reader with some intuition about its parameters and show its

competitiveness in the context of other state-of-the-art continual learning algorithms.

3.1 Mixture of Gaussians for class-incremental learning

The general goal of our work is to incrementally learn a classification model

defined as ϕ(t) : X → C that can effectively incorporate subsequent class batches

⟨(X(1), c = 1), (X(2), c = 2), ..., (X(t), c = t)⟩, where X(t) contains instances x only

for a given class c. After t classes the model ϕ(t) should aim at minimizing the loss

27

for the current class c = t and all previously observed ones:

L(t) =
t∑

c=1

Nc∑
n=1

L(c)(ϕ(t)(x(c)
n)), (3.1)

where x
(c)
n ∈X(c) and L(c) can be any supervised loss.

Additionally, since we are interested in deep learning, we define the whole model

as a tuple ϕ(t) = ⟨F (t),G(t)⟩ consisting of a feature extractor F (t) and a classifier

G(t) jointly aggregating knowledge from t classes. The model makes prediction by

classifying the features provided from the extractor ϕ(t)(x) = G(t)(F (t)(x)) = G(t)(x̂).

In this work, we aim at employing the mixture of Gaussians as a jointly trained

incremental classifier. Although the model learns from dedicated features x̂, in the

next section, we use x for the sake of simplicity of notation.

3.1.1 Generic supervised mixture model

Formally, in a standard unsupervised setting the density for a given point x can

be expressed using a multivariate normal distribution defined as:

N (x|µk,Σk) =
1√

(2π)D|Σk|
exp{−1

2
(x− µk)TΣ−1

k (x− µk)}, (3.2)

where µ and Σ are its mean and covariance, and D is the size of the input (number of

dimensions). The Gaussian mixture models (GMM) have been designed to approxi-

mate more complex multivariate densities by decomposing them into K components:

p(x) =
K∑
k=1

ωkN (x|µk,Σk) (3.3)

where each of them is defined using a single Gaussian defined above and ωk are their

weights. The combined model, equipped with more degrees of freedom, should be

capable of providing more accurate expressions of the overall observed distributions

28

than a simpler approach utilizing only a single component. In such a framework, the

fitting of the mixture to given data X is based on minimizing the loss defined using

the log-likelihood function:

L̄ = − log p(X|ω,µ,Σ) = − 1

N

N∑
n=1

log
K∑
k=1

ωkN (xn|µk,Σk), (3.4)

where we adjust the free parameters of the model – means µ, covariance matrices Σ

and weights ω. To adapt the given framework to supervised scenarios we can simply

specify a separate mixture model for each class c:

p(x|c) =
K∑
k=1

ω
(c)
k N (x|µ(c)

k ,Σ
(c)
k), (3.5)

and focus on minimizing the aforementioned loss also per class L̄(c):

L̂ =
C∑
c=1

L̄(c) = − log
C∑
c=1

p(X(c)|ω(c),µ(c),Σ(c)), (3.6)

where X(c) are Nc class-specific observations.

In continual learning we should aim at minimizing the interference of current

updates with previously created models to alleviate the detrimental effect of catas-

trophic forgetting. Therefore, it is worth mentioning here that GMMs create such an

opportunity by allowing for maximizing the log-likelihood only for a currently learned

class through L̄(c). It provides a perfect separation at the level of the classification

model.

3.1.2 Optimization techniques

Various techniques can be applied for the task of fitting the mixture model to

given data. The most standard approach utilizes the EM algorithm, which can be

realized in both offline and online settings [181, 182]. While EM provides a stable

29

framework for learning the mixtures – in terms of mathematical constraints and con-

vergence – it is critically limited when it comes to working with high-dimensional data

and feasible memory consumption [183]. On top of that, this algorithm is intrinsically

incapable of being fully integrated with neural networks, preventing it from achieving

joint end-to-end deep learning and benefiting from dedicated features.

An alternative approach involves gradient-based optimization [183]. This method

has been proved to be able to provide more scalable and flexible algorithms capable

of working in challenging scenarios with high-dimensional data and in online set-

tings. Most importantly, the gradient-based approach naturally enables combining

the model as a classifier with a trainable deep feature extractor [184], allowing for

extending the optimization process with the input space adjustments. Methods utiliz-

ing such a compound learning process showed much evidence of its usability in offline

and unsupervised scenarios, while at the same time encouraging researchers to de-

velop further extensions and improvements [183, 185]. Given all of the characteristics,

we decided to use this approach in our scenario of continual learning.

3.1.3 Mixture optimization for class-incremental deep learning

In order to apply gradient-based learning to GMM in class-incremental deep

learning scenarios, we have to address several different issues. Some of them are

common for all GMM models using gradient-based learning, while others are specific

for the class-incremental deep learning settings.

In general, we say that our goal is to optimize the class-incremental joint model

ϕ(t) = ⟨F (t),G(t)⟩, defined in Sec. 3.1, using some supervised loss L. Since we set

G(t) = N (t), where N (t) is a whole GMM model, we have ϕ(t)(x) = N (t)(F (t)(x)) and

the trainable parameters are weights ∂L/∂W and biases ∂L/∂b for the extractor,

and means ∂L/∂µ, covariance matrices ∂L/∂Σ and component weights ∂L/∂ω for

30

the classifier. All of the subsequent paragraphs focus on designing optimization in

the classifier (mixture) space, just like it was introduced in Sec. 3.1.1.

3.1.3.1 Loss design

Max-component. It has been shown that optimizing the full loss L̄(c) given in

Eq. 3.4 may lead to some numerical instabilities, especially for high-dimensional

data [183]. To address this issue a max-component approximation can be used. This

approach is very straightforward. Since all p(x|c, k) in Eq. 3.5 are positive, any

component provides a lower bound for the whole sum used in L̄(c). If now, for every

point xn we find a component providing the highest log-likelihood and sum all of

them, we will get the largest (max-component) lower bound [183]:

L(c)
max = − 1

Nc

Nc∑
n=1

max
k

log(ω
(c)
k N (x(c)

n |µ
(c)
k ,Σ

(c)
k)). (3.7)

Since we can state that:

L(c)
max ≥ L̄(c), (3.8)

we are able to minimize L̄(c) by focusing only on L(c)
max. It is also worth mentioning

that just like the general formula given Eq. 3.6 may eliminate the interference with

previously learned classes, the max-component approximation can limit the same

issue at the level of class components, for example, in data-incremental scenarios

[179], making this approach a natural candidate for continual learning settings.

Inter-contrastive loss. All of the introduced losses are limited to scenarios either

without a feature extractor or with a fixed pre-trained one. Unfortunately, if we

operate in a setting where we can modify the input space of the mixture model

and we utilize any of the aforementioned metrics relying entirely on maximizing log-

likelihood, we will inevitably end up with a local minimum that for a joint model ϕ(t)

31

exists, for example, where ∀x(G(t)(x) = 0). This issue can be solved by incorporating

an inter-contrastive loss that will distance representations for different classes. We

define the loss as:

L(c)
inter =

1

Nc

max
j ̸=c

Nc∑
n=1

max
k

log(ω
(j)
k N (x(c)

n |µ
(j)
k ,Σ

(j)
k)), (3.9)

which boils down to finding the closest component in other classes, and then opti-

mizing against the class that on average is the closest to the one currently being

considered. We choose the outer maximum function instead of the mean since we

observed that for the latter the contrastive part becomes too fuzzy, preventing itself

from delivering what was intended. We keep the log-likelihood to ensure a similar

numerical space of loss values as the one for the positive part given in Eq. 3.7. How-

ever, now one should notice that minimizing such a loss may very easily destabilize

learning since optimization will gravitate towards L̄(c)
inter → −∞ preventing the model

from actually fitting to the class examples. To avoid it we introduce a tightness bound

τ that clips the contrastive loss value at some pre-defined point:

L(c)
inter(τ) = max(τ,L(c)

inter), (3.10)

which basically means that we stop the decrease of the contrastive loss below the

given bound, allowing for a more significant contribution of the actual fitting part

L(c)
max. We parametrize the τ value with a simple linear transformation:

τ = p̄(c)max −
1

τp
, (3.11)

where p̄
(c)
max is the average maximum density value observed across all class components

(can be obtained on-the-fly) and τp is a tunable hyperparameter that takes values

between (0, 1⟩. Such a loss can provide effective discrimination between components

of different classes, as shown for an example in Fig. 4.

32

0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=2 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=4 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=6 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=8 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=10

Fig. 4.: Learning subsequent classes of FASHION incrementally (K=1) with the inter-

contrastive loss utilizing the tightness bound (τp,inter=0.2).

Diverse components. While all of the introduced techniques and modifications

ensure reliable discrimination between components of different classes, they do not

consider differentiation between components of the same class or their quality. In

fact, even in offline gradient-driven settings without dynamic feature extraction it

is common to obtain mixtures reduced to a single component per class with all the

others practically meaningless, e.g., due to zeroed weights [183]. In scenarios with a

trainable extractor, this problem becomes even more significant as it is very easy for

the optimizer to focus on maximizing log-likelihood from a single component when

not only the mixture part allows for it but also the flexible extractor. While in stan-

dard scenarios this problem can be successfully addressed with a good initialization

method, e.g., using k-means [186], we observed that it was not enough in our case.

As a consequence, we introduced two elements to the learning process.

• Regionalization – before learning each class, we first divide it into K clusters

using the k-means clustering. Then we force each component to fit only to the

data from its cluster called a region R(c)
k . This replaces the max-component

loss L(c)
max defined in Eq. 3.7 with:

L(c)
reg = −

K∑
k=1

1

Nk

∑
x∈R(c)

k

log(ω
(c)
k N (x|µ(c)

k ,Σ
(c)
k)). (3.12)

33

0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=2 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1
t=3 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=4 0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=5
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

t=6

Fig. 5.: Learning subsequent classes of FASHION incrementally (K=3) with region-

alization and the intra-contrastive loss utilizing the tightness bound (τp,intra=0.25).

• Intra-contrastive loss – the regionalization approach is necessary yet not

sufficient to provide sufficient diversification between same-class components.

The reason for it is the same as for discrimination between different classes, as

described in the previous paragraph. Analogously to the inter-contrastive loss,

we add the intra-contrastive loss with the tightness bound τ :

L(c)
intra(τ) =

K∑
k=1

max(τ,max
m ̸=k

1

Nk

∑
x∈Rk

log(ω(c)
m N (x|µ(c)

m ,Σ(c)
m)). (3.13)

which for each class region pushes away other same-class components that on

average are closest to the currently being considered one, based on the regional-

ization conducted in the previous step. We choose the outer maximum function

for the same reason as for inter-contrastive loss. Obviously, one can define

separate τ for the inter- and intra-contrastive loss.

Such an approach can effectively increase the diversity of the same-class components,

as given for an example in Fig. 5. However, it also has to be mentioned that the

effectiveness of this algorithm is heavily dependent on the quality of the initial clus-

tering, which may be imperfect, especially when we just start learning a new class. In

addition to that, this approach imposes a hard constraint on how the representation

and mixture may look, which limits the flexibility of the whole model. Regardless of

34

these concerns, this method can still effectively improve the overall performance of

a multi-component model over a method without the proposed improvement, as we

will show in our extensive experiments.

Final component-based losses. To summarize, we distinguish two component-

based losses. One uses the max-component approach:

Lmc =
t∑

c=1

L(c)
max + L(c)

inter(τinter), (3.14)

while the second loss adds the regionalization technique with the intra-contrastive

part:

Lmcr =
t∑

c=1

L(c)
reg + β(L(c)

inter(τinter) + L(c)
intra(τintra)), (3.15)

where β=0.5 by default.

Cross-entropy loss. Last but not least, we can also attempt to directly optimize

the whole standard loss L̂ given in Eq. 3.4, using a high-level supervised wrapper

loss, e.g., cross-entropy. In such a case, our loss is defined as:

Lce = −
t∑

c=1

Nc∑
n=1

y(c)
n log ŷ(c)n , (3.16)

where y is a one-hot target vector and ŷ
(c)
n comes from the softmax function:

ŷ(c)n =
ep

(c)
n∑t

c=1 e
p
(c)
n

, (3.17)

and p
(c)
n = p(xn|c) is a density value for a given class produced by the mixture model

accordingly to Eq. 3.5.

3.1.3.2 Constraints

Other issues that have to be addressed when using gradient-based mixture train-

ing are the mathematical constraints that have to be enforced to preserve a valid

35

mixture model. This is required since gradient-based learning does not constrain the

possible values for means, covariance matrices and weights, and the last two have to

remain in a specific range of values.

Component weights. For the GMM model its component weights ωk have to sum

up to one:
∑K

k=1 ωk = 1. To ensure that the effective weights satisfy this requirement

we simply train auxiliary free parameters ω̂k and use the softmax-based normalization

to obtain required values [187, 183]:

ωk =
eω̂k∑K
j=1 e

ω̂j

. (3.18)

Covariance matrices. For a general case, the covariance matrices of the GMM

model should be symmetric positive definite vTΣv > 0 for all nonzero vectors v.

This can be enforced using the Cholesky decomposition [188]:

Σ = AAT , (3.19)

where A is a triangular matrix with positive diagonal values: aii > 0 and, at the same

time, our trainable proxy parameter. To enforce positive diagonal values, after each

gradient-based update we clamp them with aii = min(aii, dmin) using some predefined

dmin value. Finally, we also consider a case of a mixture using only the diagonal of

the covariance – variance σ, which we control using the same clamp-based approach:

σi = min(σi, dmin).

3.1.4 Memory buffer

In our work, we consider the class-incremental scenario with strictly limited

access to previously seen observations (classes). Therefore, in all of the introduced

losses we use all available data for the currently learned class t, while for the others

we sample from the memory buffersMc that store an equal number of examples per

36

each previously seen class. For the method with regionalization, these instances are

equally distributed between different components.

As shortly mentioned in Sec. 3.1.1, the standard GMM model (without the

inter-contrastive loss), due to the nature of its loss that is defined per each class, has

the capability of learning a new class without interfering with others. In fact, if the

feature extractor was pre-trained and static we could remove the inter-contrastive

loss and even get rid of the memory buffer, allowing for memory-free training, as we

will show in the experimental study. The memory buffer is needed in a general case

when we assume the joint training of the whole model.

3.1.5 Classification

Finally, in the presented model the classification of an instance xn can be per-

formed using two approaches, either the softmax function:

ŷ(c)n =
ep

(c)
n∑t

c=1 e
p
(c)
n

, (3.20)

where p
(c)
n = p(xn|c), or by taking the weighted support of the closest component:

ŷ(c)n = max
k

ω
(c)
k N (xn|µ(c)

k ,Σ
(c)
k). (3.21)

We will empirically show that these methods work best with specific loss functions

designed in the previous sections.

3.2 Experimental study

In our experiments, we want to empirically explore all of the introduced methods

and parameters to provide the reader with guidance and intuition about the effective

configurations of our algorithm. In addition to that, we put our method in the

performance context of different state-of-the-art baselines that can be used in class-

37

incremental settings. We show how our model performs in full end-to-end scenarios,

as well as with a pre-trained extractor, compared with other solutions.

3.2.1 Data

For the purpose of the evaluation we used commonly used visual datasets that

were turned into class-incremental sequences by presenting their classes subsequently

to the models [10, 61]. We used: MNIST, FASHION, SVHN, CIFAR10 and IM-

AGENET10 – a subset of the tiny IMAGENET200, to gain deeper insights into

our method while conducting experiments with hundreds of different configurations.

Then, we extended this set with CIFAR20 – the coarse-grained version of CIFAR100,

IMAGENET20A and IMAGENET20B – larger subsets of IMAGENET200 – to bench-

mark our method against other algorithms. Finally, for the experiments involving

fixed extractors, we used pre-trained features to construct four additional sequences –

CIFAR100-PRE10, CIFAR100-PRE100, IMAGENET200-PRE20 and IMAGENET200-

PRE200, which consisted of features extracted for CIAFR100 and IMAGENET200,

using extractors trained on 10, 20, 100 and 200 classes of the original datasets. The

summary of the used benchmarks is given in Tab. 1. Details of the feature extractors

can be found in the next section.

3.2.2 Model configurations

In the first section of our experiments, we explored different configurations of

our algorithm, which can be mostly seen as an ablation study. Firstly, we evaluated

different losses defined in Sec. 3.1.3.1 (CE, MC and MCR) combined with different

classification methods given in Sec. 3.1.5 (softmax, max-component). Secondly,

we checked different settings for the tightness bound parameter τp by evaluating a

grid of values for inter-tightness and intra-tightness – we considered τp ∈ ⟨1e-06, 1e-05,

38

Table 1.: Summary of used datasets.

Dataset Train Test Shape Cls Feats

MNIST 50 000 10 000 1x28x28 10 No

FASHION 60 000 10 000 1x28x28 10 No

SVHN 73 257 26 032 3x32x32 10 No

IMAGENET10 5000 500 3x64x64 10 No

CIFAR10 50 000 10 000 3x32x32 10 No

IMAGENET20A 10 000 1000 3x64x64 20 No

IMAGENET20B 10 000 1000 3x64x64 20 No

CIFAR20 50 000 10 000 3x32x32 20 No

CIFAR100-PRE10 50 000 10 000 3x32x32 100 128

CIFAR100-PRE100 50 000 10 000 3x32x32 100 512

IMAGENET200-PRE20 100 000 10 000 3x64x64 200 256

IMAGENET200-PRE200 100 000 10 000 3x64x64 200 256

0.0001, 0.001, 0.01⟩ for both. Thirdly, we analyzed how assuming different numbers

of components affects the classification performance on different datasets. We used

K ∈ ⟨1, 3, 5, 10, 20⟩. Then we checked if it is better to maintain a whole covariance

matrix or only its variance (FULL, VAR). Finally, we evaluated different learning

rates for the extractor and GMM part, using αF ∈ ⟨1e-07, 1e-06, 1e-05, 0.0001, 0.001⟩

and αG ∈ ⟨1e-05, 0.0001, 0.001, 0.01, 0.1⟩, to check whether it may be beneficial to

configure them separately, and different memory sizesMc ∈ ⟨8, 64, 128, 256, 512⟩

to analyze how our method exploits limited access to class examples.

While evaluating specific parameters we kept others fixed. For our base configu-

ration we chose a setup that was capable of providing performance comparable with a

standard experience replay. We used the MCR with max-component as our loss and

classification method, K = 3, τp,inter = 0.002, τp,intra = 0.01, αF =0.0001, αG =0.001

and dmin = 0.001 with only variance stored per each component. We assumed a mod-

39

est memory buffer per classMc = 256 and matched the size of a memory sample per

class with the training batch size. The model was trained for 10 (MNIST, FASHION)

or 20 epochs per class, with 32 (IMAGENET) or 64 instances in a mini-batch.

3.2.3 Algorithms

In the final section of this work, we compared our class-incremental Gaussian

mixture model (MIX) with other classifiers dedicated for continual learning sce-

narios. We considered: standard experience replay (ER) [189], experience replay

with subspaces (ERSB) [178], centroid-based iCARL [29], two gradient-based sam-

ple selection methods (GSS and AGEM) [34, 33], experience replay combined with

knowledge distillation and regularization (DER) [180], and two purely regularization-

based approaches – LWF [46] and SI [50]. For the last two we used their modifications

adjusted for single-task learning [61]. As our lower bound we used a naively learn-

ing net (NAIVE), and for the upper bound we present results for the offline model

(OFFLINE) either trained by us (IMAGENET20A, IMAGENET20B and fine-tuned

models for IMAGENET200), or by referring to other publications [190, 178].

Based on the observations made in the first section of the experiments, in the final

evaluation we used two variants of our algorithm: MIX-CE and MIX-MCR with

τp,inter =0.0001, τp,intra =0.001, αF =0.0001, αG =1e-05 and, once again, dmin = 0.001

with only variance maintained per each component. The only parameter that we

tuned per each dataset was the number of components K. We used Adam as the

optimizer. For the memory-free scenarios with pre-trained extractors, we turned off

the inter-contrastive loss to minimize interference with previously learned classes as

mentioned in Sec. 3.1.4.

The main parameters of the baselines methods were set based on the original

papers and other literature, including empirical surveys or works containing vast

40

empirical studies [61, 179, 10, 180, 178, 33]. For all memory sampling methods we

matched the memory sampling size with the training batch size. For ERSB we used

10 centroids per class each containing up to either 25 or 15 instances to match the

total memory size. DER used αd=0.5, for LWF we set the softmax temperature

T = 2 and progressively increased its distillation coefficient as suggested in [61], and

SI used λ =0.0001. All of the methods utilized the Adam optimizer with a learning

rate α=0.0001 as we did not observe any significant differences when changing this

parameter.

Analogously to the configuration section, all of the algorithms, including ours,

were trained for 10 (MNIST, FASHION) or 20 epochs per class, using 32 (IMA-

GENET) or 64 instances per mini-batch. The offline models were trained for either

50 or 100 epochs, until they achieved a saturation level. The memory buffer was

set to Mc = 128 (IMAGENET) or Mc = 256 for methods supporting memory per

class (ER, ERSB, iCARL), and M = C · 128 or M = C · 256 for the remaining ones

(GSS, AGEM, DER), where C was the total number of classes. The latter group was

equipped with reservoir buffers [180]. For the experiments with pre-trained extractors

we wanted to check the memory-free scenario, therefore we set Mc = 0 for our

methods and Mc = 1 or M = C for others, since most of them could not be run

without storing any examples.

All of the algorithms, including different configurations of our method described

in the previous section, were combined with feature extractors. For MNIST and

FASHION we used a simple CNN with two convolutional layers consisting of 32 (5x5)

and 64 (3x3) filters, interleaved with ReLU, batch normalization and max pooling

(2x2). For SVHN and IMAGENET we utilized ResNet18, its modified version for

CIFAR10 and CIFAR20, and ResNeXt29 for CIFAR100 [191]. The classification

layers consisted of the default configurations. Finally, for our method, ER, ERSB,

41

AGEM and DER we disabled batch normalization, since, consistently with [192, 193],

we observed a significant difference in performance when those layers were turned off

for the given methods. As mentioned in Sec. 3.2.1, for the memory-free scenarios,

the extractors were pre-trained on either 10, 20, 100 or 200 classes of CIFAR100 and

IMAGENET200.

3.2.4 Evaluation

We evaluated the presented methods in a class-incremental setting, where all of

the classes were presented to the models subsequently and were not shown again after

their initial appearance. Since our current algorithm do not support revisiting, we

do not consider this scenario. We measured the accuracy of a given algorithm after

each class batch, utilizing holdout testing sets, and then, based on [12], used it to

calculate the average incremental accuracy over the whole sequence:

Ωall =
1

T

T∑
t=1

αt, (3.22)

where αt is the model performance after t classes and T = C is the total number of

classes. In addition to the whole aggregation, for the final comparison, we provided

these values after each batch to present a more complete perspective of the obtained

results.

3.2.5 Results

In this section, we present and describe all of the results that were obtained for

the experiments introduced in the previous paragraphs. The first part consists of

the analysis of different configurations of MIX, while the second one focuses on a

comparison with other class-incremental algorithms.

42

3.2.5.1 Configurations

Loss and classification. First, we analyze different combinations of the proposed

losses and classification methods. Based on Fig. 6, we can make three major obser-

vations. Firstly, the softmax classification works significantly better with the CE loss

and max-component can be more efficiently paired with MC and MCR than softmax.

It was evident for almost all cases (except for MC on CIFAR10) and resulted in al-

most 0.15 difference on average between softmax and max-component for CE, and

about 0.05 for MC and MCR.

Secondly, the MCR loss performed better than MC, showing consistent improve-

ments, especially for more complex datasets like SVHN, CIFAR10 or IMAGENET10,

which resulted in more than 0.1 for a difference on average. This demonstrate that

the regionalization and intra-contrastive loss are capable of providing meaningful im-

provements over simpler MC loss utilizing only max-component and inter-contrastive

CE MC MCR
0.00

0.25

0.50

0.75

1.00

MNIST

CE MC MCR
0.00

0.25

0.50

0.75

1.00

FASHION

CE MC MCR
0.00

0.25

0.50

0.75

1.00

SVHN

CE MC MCR
0.00

0.25

0.50

0.75

1.00

CIFAR10

CE MC MCR
0.00

0.25

0.50

0.75

1.00

IMAGENET10

CE MC MCR
0.00

0.25

0.50

0.75

1.00

ALL
softmax
max-component

Fig. 6.: Average incremental accuracy for different losses combined with different

classification methods.

43

elements and that ensuring higher diversity among class components can be beneficial

to the model. Finally, we can see that overall CE with softmax could provide very

similar results as MCR with max-component, which means that the general GMM

learning formula, wrapped with a high-level supervised loss, can be sometimes as

useful as more complex MCR without the need for tuning additional parameters.

One drawback of using CE, however, is the fact that it does not model the

Gaussian mixtures well. As we can see in Fig. 7, the CE loss does not really have

to fit the mixtures to the data since it is enough for it to ensure high classification

quality. Compared with MC for K=1 or MCR for both K (Fig. 4 and 5), while it

still provides similar discriminative performance, it does not produce a high-quality

Gaussian model. It may be prohibitive if one wants to obtain a reliable description

of the latent space. Last but not least, the model produced for MC with K=3 clearly

shows that it is incapable of effectively utilizing multiple components for the same

class. Please notice that only the Gaussians in the middle actually cover some data

points, while the remaining components are completely unrelated to the observed

data. These are examples of the degenerate solutions that we mentioned in Sec.

3.1.3.1. While for FASHION this loss could still, analogously to CE, provide similar

performance as MCR (the components in the middle are fitted to the data and they

are sufficient to model it), the observed desynchronization of components results in

0.4 0.2 0.0 0.2 0.4

x2

0.4

0.2

0.0

0.2

0.4

x1

CE → 0.84
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

MC → 0.85
0.4 0.2 0.0 0.2 0.4

x2

0.4

0.2

0.0

0.2

0.4

x1

CE → 0.84
2 1 0 1 2 3

x2

1.5

1.0

0.5

0.0

0.5

1.0

x1

MC → 0.86

Fig. 7.: Mixtures learned with cross-entropy and simple max-component strategy

(K=1 and K=3) after 6 classes of FASHION.

44

its weaknesses for more complex data. The MCR loss achieves both objectives at the

same time: high classification accuracy and high quality of the mixture models for

features. This may be important if someone requires interpretable models or would

like to extend the proposed algorithm with some Gaussian-oriented techniques that

MCR may enable.

Tightness. In Fig. 8, we presented a grid of values for the average incremental

accuracy per each pair of inter- and intra-tightness for every dataset. One can clearly

see that imposing the constraint (tightness) on the inter- and intra-contrastive loss

values is beneficial to the learning process. Most of the benchmarks required τp,inter at

the level of 0.0001 or 0.001 and slightly higher intra-tightness τp,intra around 0.001 or

0.01 to achieve the best results. At the same time, one should notice that imposing too

1e-06 1e-05 1e-04 1e-03 1e-02

inter

1e-02

1e-03

1e-04

1e-05

1e-06

in
tr

a

0.77 0.75 0.98 0.99 0.29

0.57 0.96 0.97 0.98 0.66

0.53 0.92 0.96 0.75 0.5

0.45 0.65 0.57 0.38 0.37

0.45 0.47 0.35 0.32 0.35

MNIST

1e-06 1e-05 1e-04 1e-03 1e-02

inter

1e-02

1e-03

1e-04

1e-05

1e-06

in
tr

a

0.61 0.69 0.85 0.88 0.29

0.47 0.68 0.85 0.87 0.42

0.52 0.71 0.78 0.68 0.41

0.49 0.63 0.42 0.36 0.37

0.32 0.35 0.33 0.39 0.34

FASHION

1e-06 1e-05 1e-04 1e-03 1e-02

inter

1e-02

1e-03

1e-04

1e-05

1e-06

in
tr

a
0.33 0.29 0.65 0.71 0.29

0.31 0.29 0.67 0.51 0.38

0.3 0.6 0.62 0.4 0.3

0.41 0.43 0.35 0.3 0.29

0.31 0.36 0.3 0.29 0.29

SVHN

1e-06 1e-05 1e-04 1e-03 1e-02

inter

1e-02

1e-03

1e-04

1e-05

1e-06

in
tr

a

0.3 0.33 0.32 0.51 0.29

0.34 0.35 0.37 0.55 0.33

0.36 0.4 0.54 0.44 0.32

0.32 0.5 0.41 0.33 0.3

0.33 0.36 0.32 0.31 0.29

CIFAR10

1e-06 1e-05 1e-04 1e-03 1e-02

inter

1e-02

1e-03

1e-04

1e-05

1e-06

in
tr

a

0.49 0.47 0.46 0.76 0.34

0.45 0.44 0.64 0.73 0.39

0.47 0.51 0.7 0.52 0.37

0.41 0.47 0.52 0.37 0.34

0.31 0.42 0.35 0.29 0.33

IMAGENET10

1e-06 1e-05 1e-04 1e-03 1e-02

inter

1e-02

1e-03

1e-04

1e-05

1e-06

in
tr

a

0.5 0.51 0.65 0.77 0.3

0.43 0.54 0.7 0.73 0.44

0.44 0.63 0.72 0.56 0.38

0.42 0.54 0.46 0.35 0.33

0.35 0.39 0.33 0.32 0.32

ALL

Fig. 8.: Average incremental accuracy for different combinations of the tightness

parameter values (inter and intra).

45

0.5 0.0 0.5 1.0 1.5

x2

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

x1

0.05 → 0.55
0.4 0.2 0.0 0.2

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

0.1 → 0.69
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

0.2 → 0.72
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

0.5 → 0.7
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

1.0 → 0.7

Fig. 9.: Visualization of the inter-tightness effect on learned representations (K=1)

after 10 classes of FASHION.

high inter-tightness (0.01) leads to abrupt deterioration of quality, which is a result of

blocking the contrastive part of the loss from pushing components of different classes

from each other. The influence of setting too high intra-tightness is less important

since we may simply end up with a single component that can still be effectively used

for classification (Fig. 7).

The examples for FASHION, given in Fig. 9 and 10, show how increasing the

inter-tightness (the first one) and intra-tightness (the second one) affects learned

representations and mixture models. We can clearly see the positive impact of the

constraint and the potential for sweet spots providing a good balance between dif-

ferentiating components between each other and fitting them to the actual data.

It is evident that too low values will introduce critical instabilities to the learning

process (very high contrastive loss values overwhelming the fitting part), while too

0.4 0.2 0.0 0.2 0.4 0.6 0.8

x2

0.8

0.6

0.4

0.2

0.0

0.2

x1

0.05 → 0.46
0.6 0.4 0.2 0.0 0.2

x2

0.2

0.0

0.2

0.4

0.6

x1

0.1 → 0.51

0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

0.2 → 0.74
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

0.25 → 0.82
0.3 0.2 0.1 0.0 0.1 0.2 0.3

x2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

x1

0.3 → 0.82

Fig. 10.: Visualization of the intra-tightness effect on learned representations (K=3)

after 6 classes of FASHION.

46

high thresholds lead either to the decline of discriminative properties of the model or

degenerate solutions.

Number of components. Tab. 2 presents how many components were required

to obtain the best solutions per each dataset for the given settings. We can observe

that for simpler datasets (MNIST, FASHION) using a single component per class

for sufficient and that introducing additional ones led to slightly worse performance,

most likely due to the fact of fitting to simple concepts and overcomplicating the opti-

mization problem. On the other hand, more complex benchmarks (SVHN, CIFAR10,

IMAGENET10) preferred access to more components per class, which could provide

significant improvements, e.g., for SVHN the difference between K=1 and K=10 was

almost 0.3. While for these experiments we set the learning rate slightly higher for

the GMM model (0.001) than for the extractor (0.0001), we observed that when the

former used rate lower than the latter (as suggested by the results for learning rates

that will be presented below), the optimal K tended to be lower on average. It is pos-

sible that if GMM is dominant it prefers having more flexibility (components), while

when the extractor has a higher learning rate it may be more effective in adjusting

representations to lower numbers of components.

Table 2.: Average incremental accuracy for MIX using different numbers of compo-

nents K.

Config MNIST FASHION SVHN CIFAR10 IMGNET10 ALL

K=1 0.9885 0.8859 0.4862 0.4282 0.6466 0.6871

K=3 0.9875 0.8782 0.5978 0.5407 0.6584 0.7325

K=5 0.9463 0.8562 0.6994 0.5522 0.6604 0.7429

K=10 0.9393 0.8577 0.7438 0.5620 0.6252 0.7456

K=20 0.9521 0.8517 0.6868 0.5532 0.4270 0.6942

47

Table 3.: Average incremental accuracy for MIX with diagonal and full covariance.

Config MNIST FASHION SVHN CIFAR10 IMGNET10 ALL

FULL 0.7304 0.6577 0.2931 0.3298 0.3255 0.4673

VAR 0.9888 0.8849 0.6393 0.5777 0.6865 0.7555

Covariance. Results presented in Tab. 3, unequivocally show that our gradient-

based MIX can much better adapt to data if it maintains only the variance of the

covariance matrix (better by almost 0.3 when compared with full covariance). It is not

surprising since previous publications related to the gradient-based GMMs for offline

settings suggested a similar thing [183]. Most likely, working with a full covariance

matrix leads to less stable loss values, and many more free parameters (especially if

the feature space is high-dimensional) likely cause problems with convergence.

1e-07 1e-06 1e-05 1e-04 1e-03
αF

1e-01

1e-02

1e-03

1e-04

1e-05

α
G

0.44 0.5 0.69 0.93 0.99

0.88 0.93 0.98 0.99 0.98

0.87 0.93 0.98 0.99 0.98

0.9 0.93 0.98 0.99 0.98

0.91 0.91 0.98 0.99 0.99

MNIST

1e-07 1e-06 1e-05 1e-04 1e-03
αF

1e-01

1e-02

1e-03

1e-04

1e-05

α
G

0.49 0.48 0.67 0.74 0.85

0.75 0.8 0.84 0.89 0.84

0.74 0.77 0.86 0.88 0.84

0.76 0.79 0.85 0.89 0.87

0.76 0.78 0.84 0.88 0.88

FASHION

1e-07 1e-06 1e-05 1e-04 1e-03
αF

1e-01

1e-02

1e-03

1e-04

1e-05

α
G

0.29 0.29 0.3 0.31 0.29

0.29 0.29 0.31 0.62 0.29

0.29 0.3 0.4 0.73 0.29

0.3 0.31 0.5 0.73 0.29

0.29 0.29 0.35 0.77 0.29

SVHN

1e-07 1e-06 1e-05 1e-04 1e-03
αF

1e-01

1e-02

1e-03

1e-04

1e-05

α
G

0.29 0.29 0.3 0.3 0.3

0.33 0.32 0.37 0.52 0.3

0.32 0.34 0.46 0.53 0.32

0.31 0.33 0.42 0.56 0.29

0.34 0.33 0.41 0.56 0.29

CIFAR10

1e-07 1e-06 1e-05 1e-04 1e-03
αF

1e-01

1e-02

1e-03

1e-04

1e-05

α
G

0.29 0.31 0.36 0.45 0.3

0.38 0.51 0.62 0.63 0.33

0.48 0.52 0.63 0.66 0.48

0.39 0.49 0.66 0.7 0.38

0.41 0.44 0.6 0.7 0.38

IMAGENET10

1e-07 1e-06 1e-05 1e-04 1e-03
αF

1e-01

1e-02

1e-03

1e-04

1e-05

α
G

0.36 0.38 0.46 0.55 0.55

0.53 0.57 0.62 0.73 0.55

0.54 0.57 0.67 0.76 0.58

0.53 0.57 0.68 0.77 0.56

0.54 0.55 0.64 0.78 0.57

ALL

Fig. 11.: Average incremental accuracy for different learning rates.

48

Learning rates. Analogously to the experiments for tightness, in Fig. 11 we pre-

sented the grid evaluation results for different extractor (horizontal) and mixture

(vertical) learning rates. The obtained results suggest that the former part is more

important – once the optimal rate is set (0.0001 for the given settings) tuning the

latter seems less significant, although overall it should be set to a similar or slightly

lower value.

Memory size. Finally, if we look at the results of class-incremental learning using

different memory sizes, given in Fig. 12, we will see that MIX can effectively utilize

larger buffers and that it seems to be quite memory-dependent, especially for SVHN

where the difference between subsequent sizes ranged from 0.1 to 0.2. Still, the gap

was much smaller for all of the remaining datasets. While this characteristic of the

algorithm may be problematic (the fewer examples we need, the better), it is still

valid that if we can use a pre-trained extractor, the whole model does not need to

1 2 3 4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1.0

MNIST

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

FASHION

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

SVHN

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

CIFAR10

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

IMAGENET10

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

ALL

8
64
128
256
512

Fig. 12.: Incremental accuracy after each class batch for different sizes of the replay

buffer.

49

use the memory buffer at all, as discussed in Sec. 3.1.4, and as it will be shown in

the next section.

3.2.5.2 Baseline comparison

In the second section of our experimental study, we place our algorithm in the

class-incremental performance context by comparing it with the introduced baselines.

Tab. 4 and 5 present the average incremental accuracy for all of the considered

algorithms. First of all, we can see that the MIX-MCR variant performed better

than the MIX-CE for most of the datasets, while being very close to it for the longer

sequences (difference between less than 0.01 and 0.03). This proves that MIX-MCR

is capable of providing not only a better representation (mixture) model but also is

more reliable from the accuracy perspective. This also means that it is worth trying to

maximize the quality of the produced Gaussian models as an alternative to high-level

Table 4.: Average incremental accuracy for MIX and different baselines using end-to-

end learning.

Algorithm MNIST FASHION SVHN CIFAR10 IMG10 CIFAR20 IMG20A IMG20B ALL

OFFLINE 1.0 0.9865 1.0 1.0 1.0 0.7805 0.7180 0.7929 0.9097

NAIVE 0.2928 0.2929 0.2929 0.2929 0.2929 0.1799 0.1799 0.1799 0.2505

ER 0.9898 0.9022 0.7271 0.5210 0.7685 0.3886 0.4533 0.4622 0.6516

ERSB 0.9887 0.8791 0.7677 0.4903 0.6787 0.3463 0.3444 0.3158 0.6014

iCARL 0.9616 0.8711 0.8298 0.5724 0.8143 0.4524 0.4324 0.4243 0.6698

GSS 0.9748 0.8385 0.8406 0.6208 0.7292 0.3891 0.3198 0.3354 0.6310

DER 0.9899 0.8782 0.8375 0.6042 0.5133 0.4547 0.3255 0.3758 0.6224

AGEM 0.6696 0.5782 0.2929 0.2929 0.2929 0.1799 0.1799 0.1799 0.3333

LWF 0.3508 0.3150 0.2929 0.2929 0.2929 0.1799 0.1799 0.1799 0.2605

SI 0.3338 0.3081 0.2929 0.2929 0.2929 0.1799 0.1799 0.1799 0.2575

MIX-CE 0.9804 0.8617 0.6927 0.4841 0.6878 0.3432 0.3942 0.3795 0.6030

MIX-MCR 0.9856 0.8833 0.7249 0.5304 0.7876 0.3114 0.3802 0.3784 0.6227

50

cross-entropy for classification.

Secondly, although our model cannot be distinguished as the best classifier (sig-

nificantly worse than iCARL on average, with a difference equal to about 0.04), it is, at

the same time, reliably competitive when compared with the remaining baselines (ER,

GSS, DER) with a difference about 0.01 and less than 0.03. Also, it does not fall into

the same pitfalls as either the weakest replay method (AGEM) or the regularization-

based ones (LWF, SI), outperforming them by almost 0.4 for accuracy on average.

In Fig. 13 and 14 we can see that MIX could be found among the best models for

MNIST, FASHION, IMAGENET10, IMAGENET20A and IMAGENET20B, espe-

cially at the end of the datasets, providing relatively reliable performance throughout

the whole sequences. On the other hand, it struggled with catching up with the best

replay methods for SVHN and CIFAR-based datasets, showing that there is still a

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

MNIST

NAIVE
SI
LWF
AGEM
DER
GSS

ICARL
ERSB
ER
MIX-CE
MIX-MCR
OFFLINE

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

FASHION

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

SVHN

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

IMAGENET10

1 3 5 7 9 11 13 15 17 19

0.2

0.4

0.6

0.8

1.0

IMAGENET20A

1 3 5 7 9 11 13 15 17 19

0.2

0.4

0.6

0.8

1.0
IMAGENET20B

Fig. 13.: Incremental accuracy after each class batch for our methods and different

baselines (1/2).

51

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

CIFAR10

NAIVE
SI
LWF
AGEM
DER
GSS

ICARL
ERSB
ER
MIX-CE
MIX-MCR
OFFLINE

1 3 5 7 9 11 13 15 17 19

0.2

0.4

0.6

0.8

1.0

CIFAR20

10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

CIFAR100-PRE10

10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

CIFAR100-PRE100

10 30 50 70 90 110 130 150 170 190
0.00

0.05

0.10

0.15

0.20

0.25

0.30

IMAGENET200-PRE20B

10 30 50 70 90 110 130 150 170 190
0.0

0.2

0.4

0.6

0.8

IMAGENET200-PRE200

Fig. 14.: Incremental accuracy after each class batch for our methods and different

baselines (2/2).

potential for important improvements when it comes to predictive accuracy.

The overall very poor performance of LWF and SI (but also AGEM), which

were not much better than the NAIVE approach, confirms the observations made

in other publications that the regularization-based methods cannot handle the most

challenging 1-class-incremental scenarios without memory buffers [179] even after im-

provements proposed in [61].

We can also see that the for the scenarios with end-to-end training the models

were much closer (0.01-0.3) to the OFFLINE upper bound for the shorter sequences

(MNIST, FASHION, SVHN and IMAGENET10, except for CIFAR10) than for the

longer ones (IMAGENET20A, IMAGENET20B, CIFAR20) with differences between

0.4-0.5, which shows that all of the state-of-the-art methods still struggle with bridg-

ing the gap between incremental learning and offline optimum.

52

Table 5.: Average incremental accuracy for MIX and different baselines using pre-

trained extractors.

Algorithm
CIFAR100 CIFAR100 IMG200 IMG200

ALL
(PRE-10) (PRE-100) (PRE-20) (PRE-200)

NAIVE 0.1042 0.1969 0.0892 0.2836 0.1685

ER 0.1130 0.3898 0.1271 0.4713 0.2753

ERSB 0.1630 0.3087 0.0998 0.3505 0.2305

iCARL 0.1738 0.5100 0.1611 0.6556 0.3751

GSS 0.0872 0.1962 0.0352 0.1860 0.1261

DER 0.0859 0.1175 0.1143 0.4106 0.1821

AGEM - - - - -

LWF 0.0154 0.0269 0.0315 0.1024 0.0441

SI 0.0154 0.0273 0.0278 0.0899 0.0401

MIX-CE 0.1338 0.5999 0.1782 0.7470 0.4147

MIX-MCR 0.2756 0.6522 0.1771 0.7520 0.4642

Finally, the results for the memory-free scenarios with pre-trained models, given

in Tab. 5 and Fig. 14, exhibit the main strength of the MIX algorithm. Since in

these scenarios, it does not use the inter-contrastive loss, it can perfectly separate the

incremental learning process for each class, preventing catastrophic forgetting at the

level of the classifier. As a result, it does not have to rehearse the previous concepts

at all (Mc=0) while still being able to conduct very effective learning producing

results very close to the OFFLINE upper bounds (difference between about 0 and

0.1), regardless of the quality of the extractor (pre-trained on 10 and 20 or 100 and

200 classes). The MIX-MCR method outperforms all of the baselines for all cases

except for IMAGENET200-PRE20, for which only iCARL was able to provide slightly

higher accuracy, even though they had a slight advantage of having approximately one

example per class in the buffer. It is not a coincidence that practically only iCARL is

close to our method on average (worse by about 0.1), since it uses a somehow similar

paradigm in the classification layer by storing prototypes/centroids that are used

53

for classification. And even a single instance may be enough. All of the remaining

algorithms cannot handle the memory-free scenario effectively, producing solutions

worse by at least 0.2 on average. For AGEM we were not able to obtain any results,

given the assumed scenario. This can be a crucial property when one has to consider,

for example, data privacy issues or mobile and edge computing.

3.2.6 Lessons learned

Based on the theoretical and empirical analysis presented for this work we can

conclude the following.

Class-incremental learner. Regardless of many combined challenges, it is possible

to successfully hybridize the gradient-based mixture models on top of convolutional

feature extractors, and use them in class-incremental end-to-end continual learning

scenarios. The presented results show that MIX is capable of providing competitive

results when compared with well-known incremental baselines.

Dedicated losses. It has been shown that the training of the mixture models com-

bined with dynamic feature extractors requires the inter-contrastive loss to effectively

distinguish components of different classes from each other. In addition to that, to

ensure diversity among same-class components and avoid degenerate solutions, such

techniques as regionalization combined with the intra-contrastive loss are required.

We showed that not only do the proposed approaches deliver what was intended,

but also that they can translate into significant performance gains for more complex

datasets. Finally, although the more generic high-level cross-entropy loss may provide

good solutions in many cases, only the most advanced variant (MIX-MCR) delivers

both high predictive performance and high quality of generated mixture models, which

may be important from the perspective of interpretability or potential Gaussian-based

extensions.

54

Effective tightness.The tightness bounding plays a crucial role in stabilizing the

mixture learning procedure. Setting the optimal values of inter- and intra-tightness

leads to striking a balance between pushing different components from each other and

actually fitting them to the data. Intuitively, the inter-tightness prefers slightly lower

values than intra-tightness.

Recommended configurations. By analyzing other different hyperparameter set-

tings and combinations of our methods we could observe that: (i) the CE loss works

much better with the softmax classification method, while MC and MCR should be

combined with the max-component approach, (ii) different numbers of components

may be required for different data and different learning rates may also affect the

optimal number, (iii) maintaining only the diagonal of the covariance matrices leads

to more stable optimization and better results, (iv) the learning rate for the feature

extractor dominates over the one for the mixture model, and that (v) MIX is quite

memory-dependent in general end-to-end scenarios.

Memory-free scenarios. At the same time, MIX is capable of learning without a

memory buffer if we use a fixed pre-trained extractor and disable the contrastive loss

that is not needed in this case. Our method stands out as the best model for such

class-incremental scenarios which can be very important if there are any data privacy

concerns or strict memory limits.

3.3 Summary

In this chapter, we introduced a class-incremental mixture of Gaussians model

(MIX) for deep continual learning. We proposed different variants of the algorithm

to make it suitable for gradient-based optimization and, through an extensive experi-

mental study, we exhibited its practical configurations and capabilities in the context

of other state-of-the-art continual learning models.

55

As it has been shown in our experiments, there is still potential for improve-

ments of our class-incremental mixture. Firstly, the very strict regionalization based

on initial clustering may be eliminating many degrees of freedom of the algorithm

when adapting the feature extractor to new classes. It would be a good idea to find

a more flexible solution that do not assume any pre-training structure and allows

the gradient-based procedure to fully explore potential solutions. Some publications

dedicated to offline scenarios addressed this issue, for example, by utilizing an an-

nealing procedure [183]. Secondly, similar constraints may be imposed by the static

tightness hyperparameter. Probably, it could be more beneficial to either find a bet-

ter (parameter-free) distance function or propose an adaptive threshold. Thirdly, it

is still an open question whether it is possible to effectively train a gradient-based

mixture using a full covariance matrix. Finally, it is an exciting idea to consider some

kind of hybridization of the mixture models with the feature extractor to benefit from

the capabilities of the former to limit interference with previously learned concepts by

utilizing max-component losses. All of these potential improvements combined could

provide significant performance gains in the class-incremental continual learning sce-

narios.

56

CHAPTER 4

STREAMING DECISION TREES FOR

CONTINUAL LEARNING

Streaming decision trees are highly popular and effective algorithms for learning from

continuously arriving data. They offer a combination of a lightweight model, adaptive-

ness and interpretability while being able to handle ever-growing streams of instances

[109, 194]. At the same time, surprisingly, they have not been investigated from the

perspective of continual learning problems imposing the need for not only integrating

new knowledge into the model, but also retaining the previously learned one.

In fact, neither these trees, nor any streaming ensemble technique using them,

can retain useful knowledge over time. Their success in data stream mining can be

attributed to their ability to adapt to the newest information, but no research so

far has addressed the fact that they cannot memorize learned concepts well over a

long-term time horizon. This fundamental problem that can be found at leaves of

the streaming decision trees, as they are not able to maintain information about

distributions of previously seen classes.

In this chapter, we offer the first detailed analysis of Hoeffding Trees [194] in

the context of catastrophic forgetting. We show that the splitting procedure for

creating new leaves in this model directly contributes to the occurrence of the con-

sidered problem. To alleviate this issue, we enhance the streaming tree induction

with the propagation of class-conditional attribute estimators and utilization of the

class priors during entropy calculation and Bayesian classification. We demonstrate

that the proposed modification of Hoeffding Tree can be used to create highly effec-

57

tive ensembles robust to catastrophic forgetting, allowing us to introduce Incremental

Random Forest for continual learning. Finally, we empirically study the robustness

of the proposed streaming decision trees through a detailed experimental study in

a forgetting-aware continual learning setting. We evaluate not only the global and

per-class accuracy over time, but additionally the propagation of errors and model

retention after being exposed to multiple new classes.

4.1 Decision trees and continual learning

Typical scenarios of continual learning and catastrophic forgetting involve cases

in which classes arrive subsequently one after another. This means that once a given

class was presented it may never appear again. Extensive work on using neural

networks in such scenarios showed that such settings lead to severe learning problems

for them. While very little attention has been given to decision trees in similar

scenarios, our preliminary studies of hybridizing convolutional networks with tree-

based classifiers for continual learning indicated that streaming decision trees may

struggle with exactly the same problems as neural networks. In this section, we want

to emphasize this issue and propose a possible solution.

4.1.1 Forgetting in streaming decision trees

Online decision trees have been proven to be excellent algorithms for learning

from stationary and non-stationary data streams [110]. However, a more in-depth

analysis of the conducted experimental research may reveal that algorithms like Ho-

effding Tree [194] and Adaptive Random Forest [119] have been evaluated mainly

in scenarios where incoming data per class is generally uniformly distributed over

time, which means that instances of different classes are reasonably mixed with each

other, without long delays between them [22]. Although researchers usually take into

58

consideration the dynamic imbalance of analyzed streams [159], they still assume

that instances of all classes appear rather frequently, even if ratios between them are

skewed. The class-incremental scenarios are edge cases of extreme temporal imbal-

ance, where the older classes do not appear ever again and the newer ones completely

dominate the learning process. Let us introduce the main components of the state-

of-the-art streaming decision trees and analyze what consequences the given scenario

has for them.

Entropy and splits. The Hoeffding Tree model is built upon two fundamental

components used at leaves: (i) Hoeffding bound that determines when we should

split a node, and (ii) node statistics that are used for finding the best splits. The

former is defined as:

ϵ =

√
R2 ln(1/δ)

2n
, (4.1)

where R is a value range, equal to R = logC for information gain calculations (C

is the total number of classes), n is a number of examples seen at a node and δ is a

confidence parameter. If a difference between the best potential split and the current

state of the node is greater than ϵ, then there is a 1− δ confidence that the attribute

introduces superior information gain and it should be used to create a split. We can

express it using the following condition:

∆G(xi, sj) = E(xi, sj)− E0 > ϵ, (4.2)

where the best potential information gain ∆G(xi, sj) is equal to the difference between

the entropy after the best possible split E(xi, sj) on an attribute xi using a split value

sj, and before the split E0. Although the condition alone is not directly related to

the forgetting problem, the entropy values are, as we will show in the next steps.

59

The entropy for a given binary split sj on an attribute xi can be calculated as:

E(xi, sj) =
C∑

k=1

−p(ck|xi ≤ sj) log(p(ck|xi ≤ sj))− p(ck|xi > sj) log(ck|xi > sj) (4.3)

which simply boils down to the entropy on the left (xi ≤ sj) from the split sj and on

the right (xi > sj). For the current entropy E0 at the node we simply have:

E0 =
C∑

k=1

−p(ck) log(p(ck)). (4.4)

Based on the given formulas, in order to find the best potential splits over all attributes

and classes, we need to maintain two groups of estimators at leaves: (i) class priors

p(ck), and (ii) conditional class probabilities p(ck|xi). The former estimations can be

easily obtained by counting occurrences of each class:

p(ck) =
nk

n
, (4.5)

where nk is the number of instances of class k counted for a node and n is the total

number of examples received. For the latter values we use the fact that we have

discrete classes and apply the conditional probability formula:

p(ck|xi) =
p(xi|ck)p(ck)

p(x)
, (4.6)

where p(x) is the normalizing constant for all classes. The prior probability p(ck) can

be omitted here, as a part of the prior scaling, to alleviate the class imbalance prob-

lems. The required class-conditional attribute probabilities p(xi|ck) are modeled using

Gaussian estimators, which provide a quick and memory efficient way of obtaining the

required values [195]. We use triplets consisting of a count nk,i, mean µk,i and variance

σk,i for all pairs of classes ck and attributes xi. By having those models we can easily

apply Eq. 4.6 to obtain p(ck|xi ≤ sj) and p(ck|xi > sj) = 1.0 − p(ck|xi ≤ sj). We

60

end up with p(xi ≤ sj|ck), which can be calculated using the cumulative distribution

function for the standard normal distribution Φk(sj). It can be expressed using the

error function:

p(xi ≤ sj|ck) = Φk(sj) = 0.5(1 + erfk(sj/
√

2), (4.7)

where the value of the error function can be calculated using the stored triplets.

Finally, after finding the best possible split sj for an attribute xi that minimizes

the entropy after a split (Eq. 4.3) and passing the Hoeffding bound test (Eq. 4.2) we

can split the node and estimate the total number of instances that will go to the left

and right child:

pl(ck) = p(ck)p(ck|xi ≤ sj) = 1− pr(ck), (4.8)

where pl(ck) and pr(ck) are priors for the left and right child for the given class ck,

and xi is the selected split attribute.

By default, we omit the estimation of all p(ck|xi) after the split as it is a non-

trivial task, which most likely cannot be quickly solved in the current form of the

algorithm. This fact has a crucial impact on the streaming decision trees in the

class-incremental scenario as we will show in the subsequent paragraphs.

Classification at leaves. After forwarding an incoming instance to a leaf in the

decision tree, it is classified using majority voting based on the class priors. To

improve the classification process the simple procedure is often combined with a naive

Bayes classifier [109], which can be easily applied using the already stored estimators:

p(ck|x) =
p(x|ck)p(ck)

p(x)
, (4.9)

where x is the vector of input attributes and p(x|ck) is equal to:

p(x|ck) =
m∏
i=1

p(xi|ck), (4.10)

61

where m is the number of features. Each p(xi|ck) can be obtained using the Gaussian

density function.

Forgetting scenario. After the introduction of the leaf components and required

calculations, let us now consider what will happen in the class-incremental scenario

after subsequent splits. In Fig. 15 we can see an example of a sequence of 3 class

batches. In the beginning, there are only instances of the first class (C0) for which the

algorithm accumulates values for the prior count (Eq. 4.5) and conditional estimators

(Eq. 4.6) only at the root, since there is no need for a split.

C0

Priors: C0
Conds: C0

Priors: C0, C1
Conds: C1 (!)

Priors: C0, C1
Conds: C1 (!)

C1

Priors: C0, C1
Conds: C1 (!)

C2

Priors: C1,C2
Conds: C2 (!)

Priors: C1, C2
Conds: C2 (!) TIME

Fig. 15.: Catastrophic forgetting in streaming decision trees learning from a class-

incremental sequence.

Next, the second class (C1) starts arriving and at some point the Hoeffding Tree

algorithm finds a good split, which creates two additional nodes and distributes priors

accordingly to Eq. 4.8. After this step, the child nodes have some smaller priors for C0

and C1, however, the conditional estimators have been reset by default. Although we

can assume that after the split some instances of class C1 can still appear and rebuild

the conditional estimators, there is no chance that the same will happen for C0, which

means that while its priors will be good for now, its conditional estimators (Eq. 4.6)

will remain equal to zero, resulting in an inability of the naive Bayes classifier (Eq.

62

4.9) to recognize this class.

When the next class starts coming (C2) we can already observe a problem –

since there are no instances of C0, its p(c0|xi) is still equal to zero, which leads to the

situation in which the older class is completely ignored during the entropy calculations

when looking for a split (Eq. 4.3). Finally, once a new split is created, there will be

no prior for the class at the newest leaves, since based on Eq. 4.8 it has to be zeroed.

This concludes the learning process for class C0 which has been completely erased

at the third level of the tree, and which may very likely disappear from the model

completely. Even worse is the fact that the same will most likely happen to C1 and

C2 as soon as new classes arrive.

Based on the analysis, we can conclude that in the class-incremental scenario,

catastrophic forgetting in streaming decision trees manifests itself in three ways: (i)

by excluding older classes from a meaningful contribution to the best split criterion,

(ii) by disabling the conditional classification, and finally (iii) by erasing priors which

leads to complete class forgetting at a given node.

4.1.2 Overcoming catastrophic forgetting

The observations from the previous section clearly indicate that the source of the

problem with forgetting can be found at leaves and their conditional estimators. It is

worth emphasizing that this issue practically does not exist in most of the commonly

used data stream benchmarks, which provide instances of different classes most of the

time during the learning process. In such a case, the estimators can always rebuild

themselves after new instances arrive, preventing them from forgetting most of the

classes. The longer are gaps between subsequent instances of one class, the higher

the chance that the class will be temporarily or forever forgotten.

To make a step towards solving the introduced problem in Hoeffding Trees, we

63

propose using a rough class-conditional attribute estimation after the split to prevent

the model from forgetting older classes. The approach consists of two modifications:

(i) propagating class-conditional attribute estimators (needed for Eq. 4.7) to children

of a node being split, and (ii) keeping the class priors in the entropy and naive Bayes

calculations to calibrate the rough estimation.

Estimator propagation. We can simply achieve the first step by copying the Gaus-

sian parameters of each class-conditional distribution pt−1(xi|ck) before split at time

step t to the left node with pt,l(xi|ck) and to the right one with pt,r(xi|ck), which

results in:

pt,l(xi|ck) = pt,r(xi|ck) = pt−1(xi|ck), (4.11)

for each class ck and attribute xi. This is obviously a very rough estimate, however,

since we assume simple Gaussian distributions, the error does not have to be critical

and may provide more benefits than obstructions. Most likely, providing any platform

for an older class is more important than the risk of making the estimation error. In

addition, the estimate may still be fine-tuned by instances that come to this node

before the class batch ends.

Prior scaling. By sticking to the prior probabilities p(ck) in the entropy calculations

(Eq. 4.3) and Bayesian classification (Eq. 4.9), we attempt to somehow adjust the

rough estimate from the previous step. Since the split class priors are relatively well-

estimated, we can utilize them to softly scale the class-conditional distributions to

become more adequate to the state after the split. Although this step does not change

the shape of the distribution horizontally, it may increase or decrease the influence of

the distribution by scaling it vertically based on the formula:

pt(xi|ck) = pt−1(xi|ck)pt(ck). (4.12)

64

Ensembles. Finally, the modified Hoeffding Tree can be simply used as a base learner

of the Incremental Random Forest, which is an Adaptive Random Forest without

change detectors and node replacement mechanisms. The only difference between

the standard forest and the ensemble using our modified tree is that we have to keep

statistics for all attributes at leaves, not only for those within a random subspace,

since we do not know which attributes will be needed at a lower level. By combining

the robustness of ensemble techniques with improvements of the base learner we may

potentially alleviate the catastrophic forgetting problem even more.

4.2 Experimental study

In the following experiments, we aim at showing that our proposed modifications

of the Hoeffding Tree algorithm are capable of alleviating the catastrophic forgetting

in decision trees learning from class-incremental streams, allowing for the application

of these models in such scenarios. Our goal was to answer the following research

questions.

• RQ1: Does the proposed algorithm effectively address the problem of catas-

trophic forgetting in streaming decision trees?

• RQ2: Can the presented decision tree be utilized as a base learner of a random

forest? Does it further improve the classification performance?

• RQ3: Is it possible to solve the presented problem by using a different already

available ensemble technique?

In order to improve the reproducibility of this work, all of the presented algo-

rithms and details of the evaluation have been made available in a public repository:

github.com/lkorycki/lldt.

65

https://github.com/lkorycki/lldt

4.2.1 Data

To evaluate the baseline and proposed models in the scenario of continual learn-

ing and catastrophic forgetting, we used popular visual datasets commonly used for

the given task. The first three were used as simpler sequences consisting of 10

classes: MNIST, FASHION, SVHN. Next, we utilized 20 superclasses of the CI-

FAR100 dataset (CIFAR20), as well as we extracted two 20-class subsets of the IM-

AGENET: IMAGENET20A and IMAGENET20B. All of the sets were transformed

into class-incremental sequences in which each batch contained only one class and

each class was presented to a classifier only once. Although, our models can work

with recurring classes, we considered only the most standard class-incremental sce-

nario to limit the scope of experiments. The evaluated models were processing the

incoming batches in a streaming manner, one instance after another.

The MNIST and FASHION datasets were transformed into a series of flattened

arrays (from raw images), which provided us with feature vectors of size 784. The rest

of the used benchmarks were pre-processed using pre-trained feature extractors. For

SVHN and CIFAR20 we used ResNeXt-29 with its cardinality equal to 8 and using

widen factor equal to 4. We extracted the output of the last 2D average pooling

and processed it with an additional 1D average pooling, which resulted in a feature

vector consisting of 512 values. For the IMAGENET-based sets we directly utilized

the output of the last average pooling layer of the ResNet18 model, which once again

gave us 512-element vectors.

4.2.2 Algorithms

In our experiments, we compared the proposed single tree (HT+AE) with the

original streaming algorithm (HT) [194], as well as the incremental random forest

66

using our base learner (IRF+AE) with its baseline (IRF) to answer the first two

research questions. Next, we evaluated other ensemble techniques to check whether it

is possible that a solution to the introduced problem lies solely in a different committee

design (the last research question). We investigated drift-sensitive Adaptive Random

Forest (ARF) [119], online bagging without random subspaces per node (BAG) ,

online random subspaces per tree (RSP) [196] and the ensemble of 1-vs-all classifiers

(OVA) [197].

All of the algorithms used Hoeffding Trees as base learners with confidence set

to δ = 0.01, bagging lambda equal to λ = 5, split step s = 0.1 (10% of a difference

between the maximum and minimum attribute value) and split wait equal to w = 100

for all sets except for the slightly smaller IMAGENET-based ones for which we set

w = 10. All of the ensembles used n = 40 base learners.

4.2.3 Evaluation

Firstly, for all of the considered sequences, we measured hold-out accuracy

[198] per each class after each class batch and used it to calculate the average ac-

curacy per batch and the overall average for a whole sequence [12]. Secondly, we

collected data for confusion matrices after each batch to generate the average

matrices which could help us illustrate the bias related to catastrophic forgetting.

Finally, we measured the retention of the baseline and improved algorithms to show

how well the given models remember previously seen concepts.

4.2.4 Results

Analysis of the average predictive accuracy. Tab. 6 presents the average accu-

racy over all classes for all six used class–incremental benchmarks. This is the bird’s

eye view of the problem and the performance of the analyzed methods, allowing us to

67

assess the general differences among the algorithms. We can see that the standard HT

and IRF were significantly outperformed by the proposed HT+AE and IRF+AE ap-

proaches. For HT the proposed propagation of class-conditional attribute estimators

and storing the class priors led to very significant improvements on all datasets, which

is especially visible on CIFAR20 (almost 0.3) and IMAGENET20A (0.2). Similar im-

provements can be observed for IRF, especially for CIFAR20 where the modifications

led to 0.28 improvement. The SVHN benchmark shows the smallest improvements

out of all six datasets, which can be explained by the extractor potentially being very

strongly fine-tuned for this problem. Thus extracting well-separated class embeddings

may slightly alleviate the catastrophic forgetting on its own (although the proposed

modifications still help).

The impact of different ensemble architectures. To truly understand the im-

pact of catastrophic forgetting on HT and IRF, we decided to see if other ensemble

architectures may behave better in class-incremental continual learning scenarios.

Tab. 6 presents results for four other popular streaming ensemble architectures. We

can see that all of them performed poorly on every dataset, offering inferior predictive

Table 6.: The average accuracy on all class-incremental sequences.

Model MNIST FASHION SVHN CIFAR20 IMGN20A IMGN20B

HT 0.6283 0.5720 0.8845 0.3511 0.4589 0.5301

HT+AE 0.8398 0.7037 0.9510 0.6497 0.6530 0.6730

IRF 0.8662 0.7355 0.9334 0.4467 0.6890 0.7500

IRF+AE 0.9645 0.8698 0.9733 0.7298 0.7777 0.8121

ARF 0.2929 0.2929 0.2929 0.1799 0.2411 0.2849

OVA 0.3416 0.2929 0.5033 0.1805 0.3842 0.3847

BAG 0.7096 0.6446 0.9029 0.3737 0.5709 0.6635

RSP 0.6202 0.5898 0.9087 0.3734 0.6337 0.6995

68

accuracy to the baseline IRF. This shows that the choice of an ensemble architecture

on its own does not offer improved robustness to catastrophic forgetting. As a re-

sult, we have a good indication that our modifications of the HT splitting procedure

are the sole source of the achieved impressive gains in accuracy. However, a more

in-depth analysis of these models will allow us to gain better insights into the nature

of catastrophic forgetting in streaming decision trees.

Analysis of the class-batch performance. Fig. 16 depicts the average accuracy

after each class appearing incrementally. This allows us to visually analyze the sta-

bility of the examined methods and their response to the increasing model size (when

more and more classes need to be stored and remembered). We can see that both pro-

posed HT+AE and IRF+AE offered significantly improved stability over the baseline

approaches, maintaining their superior predictive accuracy regardless of the number

0 1 2 3 4 5 6 7 8 9

0.6

0.8

1.0

MNIST

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

FASHION

0 1 2 3 4 5 6 7 8 9

0.8

0.9

1.0

SVHN

0 3 6 9 12 15 18

0.2

0.4

0.6

0.8

1.0

CIFAR20

0 3 6 9 12 15 18

0.4

0.6

0.8

1.0

IMAGENET20A

0 3 6 9 12 15 18

0.4

0.6

0.8

1.0

IMAGENET20B

Fig. 16.: Average class accuracy for the baseline tree-based models (HT, IRF) and

the proposed ones (HT+AE, IRF+AE) after each class batch.

69

of classes. Additionally, we can see that the baseline models tended to deteriorate

faster when the number of classes became higher (e.g., HT and IRF on MNIST and

FASHION). At the same time, the proposed modifications could accommodate all the

classes from the used benchmarks without destabilization of their performance. It is

worth noting that HT+AE was often capable of outperforming IRF. This is a very

surprising observation, as the modification of class-conditional estimators allows a

single decision tree to outperform a powerful ensemble classifier. This shows that the

proposed introduction of robustness to catastrophic forgetting into streaming decision

trees is a crucial improvement of their induction mechanisms.

Analysis of the class-based performance. Fig. 17 presents the accuracy per

batch on selected classes. This allows us to understand how the appearance of new

classes affects the performance for previously seen ones. We can clearly see that both

HT and IRF were subject to catastrophic forgetting, very quickly forgetting the old

classes. While they were very good at learning the newest concept, their performance

degraded with every newly arriving class, showing their capabilities of aggressively

adapting to new knowledge, but not retaining it over time. This was especially

vivid for the first class for each dataset (C0), where it was completely forgotten (i.e.,

accuracy on it drops to zero) as soon as 1-2 new classes appeared. The proposed

propagation of class-conditional attribute estimators and storing the class priors in

HT+AE and IRF+AE led to a much better retaining of knowledge extracted from

old classes. In some cases (e.g., CIFAR20 or IMAGENET20) we can see that the

accuracy for old classes remained almost identical through the entire duration of the

continual learning process. This is a highly sought-after property and attests to the

effectiveness of our proposed modifications.

Analysis of the confusion matrices. Fig. 18 depicts the confusion matrices av-

70

0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

FASHION-C0

2 3 4 5 6 7 8 9

0.0

0.5

1.0

FASHION-C2

4 5 6 7 8 9

0.2

0.4

0.6

0.8

1.0

FASHION-C4

0 3 6 9 12 15 18

0.0

0.5

1.0

CIFAR20-C0

4 7 10 13 16 19

0.0

0.5

1.0

CIFAR20-C4

8 10 12 14 16 18

0.0

0.5

1.0
CIFAR20-C8

0 3 6 9 12 15 18

0.0

0.5

1.0

IMAGENET20B-C0

4 7 10 13 16 19

0.8

0.9

0.9

1.0
IMAGENET20B-C4

8 10 12 14 16 18

0.2

0.4

0.6

0.8

IMAGENET20B-C8

Fig. 17.: Average accuracy for selected classes of FASHION, CIFAR20 and IMA-

GENET20B for the baseline tree-based models (HT, IRF) and the proposed ones

(HT+AE, IRF+AE) after subsequent class batches.

eraged over all examined datasets (10 classes from each for the visualization sake).

Based on that we can directly compare how errors are distributed among classes for

HT vs. HT+AE and IRF vs. IRF+AE. We can see that the proposed modifications

in HT+AE and its ensemble version led to a much more balanced continual learn-

ing procedure that both avoided the bias towards the newest class (i.e., is robust to

catastrophic forgetting) and the bias towards older classes (i.e., offers capabilities for

71

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Predicted label

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

Tr
ue

la
be

l

0.14 0.02 0.02 0.05 0.01 0.14 0.23 0.04 0.21 0.14

0.01 0.37 0.0 0.17 0.01 0.05 0.03 0.04 0.25 0.05

0.0 0.0 0.33 0.02 0.02 0.02 0.18 0.15 0.14 0.14

0.0 0.0 0.01 0.3 0.02 0.13 0.17 0.04 0.17 0.15

0.0 0.01 0.01 0.01 0.36 0.02 0.21 0.05 0.14 0.2

0.01 0.0 0.0 0.01 0.01 0.42 0.05 0.17 0.06 0.27

0.01 0.0 0.01 0.02 0.03 0.02 0.59 0.06 0.03 0.22

0.01 0.0 0.0 0.01 0.0 0.02 0.04 0.44 0.18 0.29

0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.66 0.2

0.0 0.01 0.0 0.02 0.0 0.03 0.02 0.03 0.06 0.83

HT

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Predicted label

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

Tr
ue

la
be

l

0.64 0.02 0.02 0.03 0.02 0.01 0.17 0.01 0.06 0.01

0.15 0.72 0.01 0.02 0.02 0.01 0.01 0.01 0.04 0.01

0.02 0.02 0.7 0.01 0.16 0.01 0.03 0.02 0.02 0.01

0.03 0.03 0.04 0.73 0.06 0.04 0.02 0.01 0.02 0.03

0.03 0.01 0.05 0.02 0.77 0.01 0.04 0.01 0.03 0.03

0.02 0.01 0.01 0.04 0.02 0.59 0.05 0.18 0.04 0.04

0.05 0.01 0.06 0.02 0.04 0.02 0.71 0.02 0.03 0.04

0.04 0.02 0.02 0.02 0.03 0.02 0.03 0.7 0.04 0.08

0.06 0.02 0.02 0.03 0.04 0.02 0.04 0.01 0.71 0.05

0.04 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.74

HT+AE

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Predicted label

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

Tr
ue

la
be

l

0.33 0.03 0.01 0.01 0.01 0.01 0.22 0.04 0.2 0.15

0.0 0.59 0.01 0.02 0.01 0.01 0.01 0.15 0.17 0.05

0.0 0.0 0.43 0.01 0.02 0.0 0.19 0.15 0.15 0.04

0.0 0.0 0.0 0.57 0.02 0.15 0.04 0.03 0.15 0.04

0.0 0.0 0.0 0.0 0.48 0.0 0.19 0.03 0.06 0.22

0.0 0.0 0.0 0.01 0.0 0.54 0.03 0.16 0.04 0.22

0.0 0.0 0.0 0.0 0.0 0.0 0.74 0.02 0.05 0.19

0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.66 0.06 0.26

0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.02 0.92 0.04

0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.02 0.95

IRF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Predicted label

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

Tr
ue

la
be

l

0.85 0.03 0.01 0.02 0.01 0.01 0.03 0.01 0.03 0.01

0.05 0.89 0.01 0.01 0.0 0.0 0.0 0.01 0.01 0.0

0.03 0.01 0.85 0.02 0.04 0.0 0.02 0.01 0.01 0.01

0.02 0.01 0.02 0.89 0.01 0.01 0.01 0.01 0.0 0.01

0.03 0.03 0.04 0.01 0.82 0.0 0.03 0.01 0.01 0.02

0.02 0.01 0.0 0.02 0.01 0.84 0.03 0.04 0.01 0.02

0.05 0.0 0.03 0.01 0.02 0.01 0.83 0.02 0.02 0.02

0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.79 0.02 0.06

0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.84 0.02

0.02 0.01 0.01 0.0 0.0 0.01 0.02 0.02 0.01 0.9

IRF+AE

Fig. 18.: Average confusion matrices.

incorporating new information into the model in an effective manner). These confu-

sion matrices further confirm our observations that our proposed modifications lead

to robust streaming decision tree induction for continual learning.

Analysis of the retention of information. Fig. 19 shows the average retention

of information about a class after +k new classes appeared. This helps us analyze

how each of examined models manages its knowledge base and how flexible it is to

add new information to it. An ideal model would perfectly retain the performance

72

+0 +2 +5

0.4

0.5

0.6

0.7

0.8

0.9

1

MNIST

+0 +2 +5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FASHION

+0 +2 +5

0.8

0.9

1

SVHN

+0 +5 +10

0.2

0.4

0.6

0.8

CIFAR20

+0 +5 +10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
IMAGENET20A

+0 +5 +10

0.4

0.5

0.6

0.7

0.8

0.9

IMAGENET20B

Fig. 19.: Average retention after +k class batches since the moment a class appeared

for: HT, HT+AE, IRF, IRF+AE

on every previously seen class, regardless of how many new classes it has seen since

then. We can see that the baseline HT and IRF offered very good performance on the

newest class but drastically dropped it after seeing as few as 2 new classes. This fur-

ther enforces our hypothesis that standard decision trees and their ensembles cannot

avoid catastrophic forgetting and thus cannot be directly used for continual learning.

However, when we enhance HT with the proposed propagation of class-conditional

attribute estimators and storing the class priors, we obtain a streaming decision tree

that can learn new information almost as effectively as its standard counterpart,

while offering excellent robustness to catastrophic forgetting (RQ1 answered). Fur-

thermore, we can see that HT+AE can be utilized as a base learner for ensemble

approaches, leading to even further improvements (RQ2 answered).

73

Batch-based performance of the ensemble architectures. Fig. 20 depicts the

average accuracy after each class appearing incrementally for the reference ensemble

approaches. This confirms our observations from the earlier point that the ensemble

architecture itself does not have any impact on the catastrophic forgetting occurrence.

Reference methods use different ways of data partitioning (subsets of instances, fea-

tures, or classes), but none of them allowed for better retention of old information.

What is highly interesting is that HT+AE (a single decision tree) could outperform

any ensemble of trees that do not use our proposed modifications. This shows the

importance and significant impact of propagation of class-conditional attribute es-

timators and storing the class priors on the usefulness of streaming decision trees

for continual learning. Therefore, catastrophic forgetting can be avoided by using a

robust base learner, not changing the ensemble structure (RQ3 answered).

0 1 2 3 4 5 6 7 8 9

0.5

1.0

MNIST

0 1 2 3 4 5 6 7 8 9

0.5

1.0

FASHION

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1.0

SVHN

0 3 6 9 12 15 18

0.0

0.5

1.0

CIFAR20

0 3 6 9 12 15 18

0.2

0.4

0.6

0.8

1.0

IMAGENET20A

0 3 6 9 12 15 18

0.5

1.0

IMAGENET20B

Fig. 20.: Average class accuracy for other baseline models (OVA, BAG) and the

proposed ones (HT+AE, IRF+AE) after each class batch.

74

4.3 Summary

In this chapter, we identified and emphasized the issue of catastrophic forget-

ting that occurs when traditional streaming decision trees attempt to learn in class-

incremental continual learning scenarios. Through an in-depth analysis of the Ho-

effding Tree algorithm, we found out that the source of the algorithm’s weakness

comes from the lack of additional support for class-conditional attribute estimators,

which tend to forget older classes after splits. The issue critically affects different

aspects of tree-based learning, ranging from the procedure for finding new splits to

the classification at leaves.

To solve the introduced problem, we proposed a rough estimation of the con-

ditional distributions after a split, based on distributions and priors aggregated at

a node before it is divided. Our extensive experimental study has shown that this

simple yet effective approach is capable of providing excellent improvements for both

single trees and incremental forests. As a result, we demonstrated that the proposed

method turns the standard streaming trees into learners suitable for continual learning

scenarios.

In future works, we plan to find more precise estimators, which may need to

be supported by some local experience replay utilizing small buffers of either input

instances or prototypes. In addition to that different split conditions more robust to

different characteristics of data, e.g., based on the Hellinger distance [199, 200] or the

McDiarmid’s bound [201], can also be considered.

75

CHAPTER 5

INSTANCE EXPLOITATION FOR LEARNING

TEMPORARY CONCEPTS FROM SPARSELY

LABELED DRIFTING DATA STREAMS

In data stream mining, we assume that new information arrives continuously and our

learning model must be capable of making quick decisions and incorporating new data

on-the-fly. Designing machine learning methods for data streams can be viewed as

a multi-criteria optimization, where one aims at reaching a trade-off between several

factors that define efficacy in streaming environments [22]. Firstly, since we cannot

store the entire data stream, we should carefully choose which ones to keep and which

ones to discard (or, in the case of online learning, assume that each instance must

be discarded after a single pass). Secondly, the trained model must quickly provide

predictions for new arriving instances to avoid bottlenecks [19]. Finally, when faced

with concept drift, we need not only to detect it as soon as possible, but also adapt

the model to the new state of the stream with the lowest possible latency. The time

between the occurrence of the concept drift and classifier re-training is known as a

drift recovery rate [15].

Reducing the time when our classifier is incompetent (i.e., not adapted to the

new concept) should be seen as one of the main goals of learning from non-stationary

data streams. The speed of adaption can be affected by the training procedure of the

classifier, as well as by the access to data from the new concept – the more instances

representative for the new concept we have, the more likely we are to reduce the

recovery time. However, we must be aware that fully supervised learning from data

76

streams is an unrealistic scenario. It would require access to an oracle providing class

labels for every single instance in the stream. As such labels usually come from a

domain expert, we cannot assume that we can obtain all of them – we are restricted by

both the budget (i.e., the time of the domain expert is costly) and human limitations

(instances arrive with such a speed and in such a volume that is impossible for a

human to tackle). A realistic scenario for data stream mining assumes either limited

access to ground truth [163], or delayed labeling [202]. This restricted access to

labeled data strengthens another problem known as underfitting, making effective

drift adaptation even more challenging.

In this chapter, we address an extremely important challenge of data stream

mining: how to improve learning from drifting data while having only strictly limited

access to class labels. While many of the existing works focus on how to reasonably

choose instances for labeling, in this work, we aim at providing further improvements

based solely on the few labeled instances given to us and at no additional cost. Our

assumption is that any obtainable improvement under strict labeling constraints is of

vital usefulness to the underlying classifier, offering faster adaptation to new concepts.

The main contributions of this work include the following.

• Enhancing drift adaptation with instance exploitation. Our idea is

to intensively exploit labeled instances at our disposal, aiming at reinforcing

adaptation to non-stationary concepts and providing a faster classifier recovery.

By reusing the labeled instances we should be able to avoid underfitting and

offer a faster and more accurate reaction to concept drift.

• Exploitation techniques for improved drift adaptation. We introduce

three techniques for instance exploitation to empower active learning from

sparsely labeled drifting data streams. They are based on a reactive sliding

77

window that uses one of three probabilistic sampling techniques to select in-

stances for a more aggressive exposure to the online classifier.

• Ensemble architectures to avoid overfitting. In order to minimize the

risk of overfitting, we propose two simple, yet effective ensemble architectures.

They are based on two paired learners, one preferring aggressive instance ex-

ploitation and the other learning in a standard way. Our architectures are

capable of dynamic switching between these models, with an added procedure

for improving the weaker of the two learners.

• Flexible framework. Our proposal is a universal wrapper that can be used

to enhance any online active learning algorithm dedicated to data streams.

• Insights into the role of enhanced drift adaptation. We offer an ex-

haustive experimental study on both artificial and real data streams, paired up

with an in-depth analysis that offers unique insights and a better understanding

of how to efficiently improve the adaptation to concept drift by using already

labeled instances without any additional labeling costs.

5.1 Learning on a budget and data dynamics

Analogously to the traditional batch-based machine learning approaches, the

critical problem of limited supervision has been addressed by some semi-supervised

[171, 172, 175, 174, 203] and unsupervised methods [176, 177], which aim at alleviating

the lack of supervision by utilizing unlabeled instances. While utilizing unlabeled

data seems perfectly adequate for scenarios involving streams, it may be surprising

why the actual number of works using it is so limited. It is possible that obtaining

significant improvements from unreliable unlabeled data is very difficult in dynamic

environments. Indeed, one of the main assumptions of semi-supervised learning is that

78

in order to work correctly unlabeled data have to be drawn from the same, stable

distributions as observed labeled instances [204]. This may be prohibitive in many

streaming scenarios, especially if we add the fundamental cluster and smoothness

requirements. In fact, results from some publications suggest that either feasible

improvements from unlabeled data are barely significant or very unstable and highly

dependent on characteristics of a specific stream [203].

As a result of the potential weak spots, it is not a coincidence that significant

attention was given to methods shifted towards supervised approaches, which are

more likely to provide reliable information regardless of a state of a stream. These

methods are represented mainly by active learning [162, 163, 205, 206, 207].

20%

50%

100%

Time

OLD CONCEPT NEW CONCEPT

ONLINE
CLASSIFIER

...

Fig. 21.: Sparse labeling problem.

Unfortunately, all of the existing active learning strategies are significantly im-

paired when the label query budget (i.e., the number of instances allowed to be la-

beled) is small. In many real problems labeling even as little as 1% of instances from

the stream may be too costly. As a consequence, even if a strategy picks only valuable

objects to be labeled and used, the effect of the single update may still be insufficient.

Furthermore, it is crucial to remember that when we deal with evolving data streams

and only low budgets are available, we usually get very sparse snapshots of observed

concepts. Arriving labeled objects often come from distant parts of the stream, so

if the data is non-stationary, they likely represent different distributions constituting

79

temporary concepts (Fig. 21), especially when the rate of incoming instances is low.

As a result of these two observations, it is very likely that, while working with

dynamic streams and a substantially limited labeling budget, we will encounter the

underfitting problem. In fact, we may even completely overlook some of the ephemeral

concepts, leaving them unnoticed. Thus, the very few labeled objects we obtain are

essential for keeping our models up-to-date and we should exploit them as much as

possible to avoid the waste of potential benefits. Finally, since active learning meth-

ods can be seen as exploration methods and semi-supervised ones as regularization-

exploitation, approaches combining both of them are a promising research direction

[176, 203]. However, due to the mentioned problems with dynamic environments

and using unsupervised input, in this work, we focus on investigating how significant

improvements can be obtained solely from the exploitation of scarce but reliable su-

pervised information, provided with actively selected instances. To the best of our

knowledge, it is the first such approach to the problem.

5.2 Risky adaptation

Our hypothesis is that when dealing with temporary and evolving concepts under

strictly limited access to labeled data, it is reasonable to aggressively exploit the

data we currently have in order to overcome underfitting and obtain efficient up-

to-date models. Let us consider the following example. In Fig. 22 we can see an

adaptation process for a classifier while recognizing two classes (marked as red and

blue points). Fig. 22a presents a state just before a drift. The classifier has learned

the previous concept with sufficient accuracy, however, after the change (Fig. 22b)

its model becomes practically useless. There is a need to update it, but due to a

limited budget only few labeled instances selected by the active learning strategy are

available (yellow). Since we deal with data streams, we can assume that the data

80

(a) Before drift (b) After drift, λ = 0 (c) λ = 10

(d) λ = 50 (e) λ = 100 (f) λ = 200

Fig. 22.: Decision boundaries created by an incremental classifier, while tackling a

concept drift, after learning on λ duplicates of the selected instances.

points are currently stored in a sliding window.

In the standard active learning approach, the chosen objects are used only once

(λ = 0) and the effect is unacceptable – the class boundary did not change at all. This

observation is connected with the nature of many incremental parameters maintained

by the classifiers. Their internal estimators, cannot be updated efficiently using only

few new values. The most straightforward solution is to reuse the limited labeled

instances several times to influence the metrics in a more significant manner and

boost the adaptation. We can clearly see that after some number of repetitions λ

the decision boundary is reshaping towards a proper model – we exploit the acquired

knowledge (Fig. 22c - 22f). The final result is highly dependent on the representative-

ness of the instances selected by active learning, but this has been already investigated

in other publications [163]. While we are aware of the fact that such an approach

may potentially cause overfitting to the few instances [28, 208], our assumption is

81

that it is less important than the underfitting problem encountered before the risky

adaptation was performed.

Such a wrapper can work with many online base learners, especially with those

dedicated to evolving data streams. The currently most important online algorithm

– Adaptive Hoeffding Tree (AHT) – may benefit from such a method since its inter-

nal splits are rearranged only if a significantly large amount of data differs from a

previous concept [109]. In the case of the stochastic gradient descent classifier (SGD)

or neural networks, while exposing wrongly classified instances several times, we can

speed up the gradient-based optimization of a loss function. Of course, while using

such algorithms we can also directly focus on the criterion, for example by adjust-

ing the learning rate or momentum, however, such solutions are limited only to the

gradient-based classifiers [209]. Finally, Näıve Bayes may also work with the intro-

duced method since its internal estimators can be updated incrementally. It is also

worth noting that we may avoid reusing instances several times by employing weight-

sensitive classifiers, which can be straightforwardly adapted for this approach. In this

work, due to their greater flexibility, we focus only on the more generic instance-based

algorithms.

This approach can be associated with a mechanism similar to experience replay,

which is a method of tackling catastrophic forgetting in deep neural networks [210].

The fundamental difference is that instead of reusing instances for stabilizing models

of incoming classes, we want to erase outdated knowledge more quickly and practically

overfit an online model to current concepts. The method is also related to resampling,

known from imbalance learning, which also utilizes some instances multiple times

[146].

One may notice that another popular approach, that allows for the most current

instances to significantly affect a maintained model, is to simply retrain the model

82

from scratch, using a collected batch of data [1]. However, while such methods work

well with sudden concept drifts, they are not suitable for incremental changes. In

addition, forgetting the whole priorly gathered information may be a wrong idea if

the budget is limited and if we take into consideration the fact that streams may be

characterized by hybrid drifts or changes affecting only some parts of the analyzed

space. In the example above (Fig. 22), we would lose all the information about the

red points at the bottom, which were not influenced by the concept drift. We do not

want to completely forget previous knowledge, just quickly and incrementally adapt

to the current situation when lacking labels. One well-known way to overcome this

problem is to use ensembles that consist of classifiers constructed on the basis of the

most current batches [122]. Still, such an approach is much more time and memory-

consuming than single-classifier frameworks. Another problem is that highly limited

budgets may be prohibitive in the context of building a diverse pool of classifiers.

Finally, all the strategies using the retraining approach, are highly dependent on

effective concept drift detectors, which increase the overall complexity of a system

and are often affected by the limited access to labeled instances as well.

5.2.1 Instance exploitation

We propose a simple, generic, single-classifier framework that uses aggressive

online updates based on instances selected for labeling by an active learning strategy.

Our implementation utilizes a reactive sliding window that stores the most recent

labeled instances and exposes them several times to the online classifier in order to

exploit the knowledge that comes with them. We present three different probabilistic

sampling methods that determine how the instances are selected from the window.

The general assumption is that while active learning will effectively explore a decision

space, by selecting the most representative seeds, the instance exploitation wrapper

83

will sufficiently utilize them in order to enhance the adaptation of a classifier using

only few labels. That should help us tackle the underfitting problem.

5.2.1.1 Framework

The generic wrapper framework is presented in Alg. 1. When a new instance x

appears, the actual budget spending b̂ is checked. Since the data stream is infinite

by definition, the current spending has to be estimated as a ratio of objects that

have been already labeled to the total number of registered instances [163]. If the

value is below an available budget B, we use the active learning strategy to check if

the instance is worth labeling. Some of the online strategies that can be used here

were presented in [163]. The methods are focused on selecting instances close to the

decision boundary, based on the uncertainty of a classifier. The idea is that those

regions are most likely to be affected by drifts. In order to make the strategies more

exploratory and sensitive to changes in other subspaces, randomization techniques

can be utilized. One of the methods implementing hybrid comprehensive querying

Algorithm 1: Combining active learning with instance exploitation.

Data: labeling budget B, ActiveLearningStrategy,
ExploitationStrategy, window size ωmax

Result: classifier L at every iteration
Initialization: b̂← 0, I ← [], W ← []
repeat

receive incoming instance x;

if b̂ < B and ActiveLearningStrategy (x) = true then
request the true label y of instance x;

update labeling expenses b̂;
update classifier L and sliding window W with (x, y);

I ← ExploitationStrategy (W);
foreach i ∈ I do

update classifier L with wi ∈W ;

until stream ends ;

84

is the RandVar algorithm. In addition to the complex sampling, the strategy uses a

variable threshold balancing budget spending. We select this method as our default

strategy due to its theoretically sound design.

After receiving a positive response, the object is queried (we obtain its true label

y), the current labeling expenses are increased and the classifier is updated with

the labeled instance. Then, we activate our instance exploitation strategy, which

selects indices I of previously acquired labeled instances in order to reuse them and

boost the adaptation process. Since we want to adapt a predictive model to current

concepts, our exploitation methods work with a batch of the most recent instances.

We maintain a sliding window W that is updated with every labeled instance we

receive, before using an exploitation strategy. We define the window W as a sequence

of ω ∈ ⟨1, ωmax⟩ instances wi ∈ W , where i ∈ ⟨1, ω⟩, the oldest instance is w1 and

the newest one is wω. It is important to remember that for very low budgets, wide

windows may not be able to represent the actual concept properly, since the relatively

small number of labeled instances will cover only few batches. For example, if B = 1%,

ωmax = 1000 and a stream consists of 100 000 instances, then the window will not

slide at all, since all labeled instances will cover exactly one such window. Therefore,

in order to have a reactive sliding window, when using a low budget or dealing with

a low-rate stream, its size must be adequate.

5.2.1.2 Exploitation strategies

Our exploitation methods consists of strategies that simply reuse instances se-

lected from a sliding window. In practice, they generate a multiset consisting of indices

I = {i | i ∈ ⟨1, ω⟩}, where |I| = λ. The λ parameter determines the intensity of the

exploitation process. A single index is selected using the formula i = ϕ(ω, r) = ⌈rω⌉,

where r is a random variable r ∼ P(0, 1). As a result, each strategy is modeled by

85

a probability distribution P(0, 1) – it determines on which parts of the window a

strategy focuses. We may see the sliding window as a probabilistic or fuzzy one.

Uniform Window (UW) – the most straightforward solution is to select the in-

stances uniformly, which results in each instance having an equal chance of being

chosen (Fig. 23a). The probability value is given by the uniform distribution, so a

single object has 1/ω chance of being used again, where ω is a number of instances

within the window after a new object is added. Therefore, the indices i are drawn

by the strategy using r = u ∼ U(0, 1), where u is a random variable sampled from

the uniform distribution U(0, 1). This approach keeps adapting a classifier to a wider

context of the maintained batch of data and by doing so it may reduce the risk of

falling into local minima. On the other hand, if the sliding window is insufficiently

reactive, this method may fail at handling more rapid changes, since, in such case, the

strategy will keep providing outdated instances. We assume that this method may

work well while dealing with gradual concept drifts, when instances for both older

and newer concepts should contribute to updates. The complexity of this method is

solely based on the intensity λ, so it is O(λ).

Exponential Window (EW) – instead of selecting instances with an equal proba-

bility, we can focus more on the newer objects, while leaving a non-zero sampling rate

for the rest of the window (Fig. 23b). We model this behavior, using the normalized

exponential distribution r = e ∼ En(0, 1). Utilizing a truncated exponential trans-

form, we have e = −ln(u)/γ, where γ is the parameter of the exponential distribution

and u ∼ U(0, 1) [211]. This strategy assumes that a sliding window may imperfectly

represent the current concepts, e.g, by having an inadequate size or by insufficient

exploitation of the newer instances. It attempts to handle this problem on its own

by increasing the chances for the more recent data. Theoretically, this approach may

86

be adequate for more rapid incremental changes and, at the same time, acceptable

for gradual and sudden concept drifts. We set γ = 4 as our default value, which

provides a functionality balanced between the two other strategies. The complexity

is the same as for the previous approach – O(λ).

Single Exposition (SE) – the most extreme method is reusing only the latest in-

stance wω (Fig. 23c). Obviously, probabilities for such a strategy are: P [i = ω] = 1

and P [i ̸= ω] = 0, so formally I =
⋃

λ∈N{ω}. One of the advantages of this method is

that, in practice, we do not even have to maintain a sliding window. It is enough to

update the classifier with the instance several times and proceed to the next incom-

ing objects. The strategy is a fully online one. While it has indisputable advantages

regarding processing performance, it is also possible that such intensive focus on a

single instance may more likely lead to detrimental overfitting, which is opposite to

the problem we want to solve (we spend more time on this aspect in the next sec-

tions). On the other hand, it may be a good choice for sudden drifts. The complexity

of this strategy is also O(λ).

0 250 500 750 1000
0

250

500

750

1000

(a) Uniform window

0 250 500 750 1000
0

250

500

750

1000

(b) Exponential window

0 250 500 750 1000
0

250

500

750

1000

(c) Single exposition

Fig. 23.: Histograms for selected window indices (x-axis) depending on a strategy.

5.2.1.3 Dynamic parameters

It is easy to notice that two the most important parameters of the strategies are:

intensity λ and size of the sliding window ωmax. Generally, we may want to keep

87

λ relatively high for low budgets, low-rate data and unstable temporary concepts

to compensate for limited exploration, and low for the opposite, since having an

abundance of labeled data and a sufficiently updated model, we can rely on the

mechanism less. In addition, we have to control the computation time. When it

comes to ωmax, we most likely should do the opposite – keep the size of the window

low for limited budgets, low-rate data and drifting concepts, and high for more labeled

instances and stable streams. These two heuristics should give us more reactivity to

changes (plasticity) in the former case and provide us with a more comprehensive and

stable generalization (stability) in the latter one. In other words, depending on the

situation we may either need to entirely focus on tackling underfitting or to be a bit

more careful not to end up with overfitting.

In our work, we empirically analyze how the values of the parameters should

change depending on an amount of labeled data, as well as we provide a dynamic

control technique for adjusting the values adequately to the state of a stream in a

learning process. The idea is that since a model should quickly adapt to new data

when it suffers from underfitting or after a concept drift, we can control λ and ωmax

based on a value of a current error, which should be high in both situations and

which is a reliable state-of-the-art input in many drift detectors [111]. Therefore, if

ϵ ∈ ⟨0, 1⟩ is a currently registered error for a model learning from a stream, for the

intensity we can use:

λ(ϵ) = ϵλmax (5.1)

and for the size of a window:

ω′
max(ϵ) = (1− ϵ)ωmax, (5.2)

where λmax and ωmax are fixed maximum values selected for a given budget.

88

Obviously, a new problem emerges – how should we determine the current value

of ϵ? The most straightforward solution is to calculate an error within a sliding

window. However, in such a case, we will, again, struggle with finding a proper

window size ωϵ that should depend on the amount of available data and a state of

a stream. Fortunately, this problem has been already addressed by the well-known

ADWIN algorithm [108], which provides an adaptive window capable of calibrating

its size adequately to incoming data. At its core, the algorithm checks for each

subwindow W0 and W1 whether |ϵW0 − ϵW1| > θcut, where θcut is a significance

threshold based on the Hoeffding bound [212] using a specified confidence value αθ
1.

If the condition holds, the algorithm shrinks the window in order to keep only the

most recent consistent values, which are used for the calculation of the estimated

average ϵADW . We use this indicator as a control signal in our methods, so we have

ϵ = ϵADW . Finally, since ADWIN provides the optimal window size in an online way,

we can set ωmax = ωADW . We empirically show that all of those choices are reasoned,

also in our scenario involving strict limitations on supervision.

5.2.2 Alleviating overfitting

The presented approach to handling underfitting while learning on a budget

has one significant potential weakness – it may turn one problem into its opposite.

Since our method prefers aggressive updates using few labeled instances, it becomes

more likely that at some point we may encounter the overfitting problem instead

of underfitting, even if we try to adequately adjust the dynamic parameters λ and

ωmax or when we choose a safer exploitation strategy. To alleviate it, we propose

1Its actual implementation optimizes the computations, allowing updates with
O(1) amortized and O(logW) worst-case time [108]. Therefore, it is a very efficient
algorithm for streaming data.

89

an ensemble of two paired learners, in which one of them performs risky adaptation

with instance exploitation (Lr) and another one learns in a standard way, without

any additional enhancement (Ls). Such a simple ensemble can learn in two modes.

Switching – in this mode, we maintain both learners in parallel (Alg. 2) and use

only the currently better one for prediction, based on their respective errors ϵr and

ϵs (Alg. 3). The assumption is that for some parts of a stream the learner intensively

exploiting instances will take the risk in the right direction, providing an efficient up-

to-date model more quickly, while for the other parts (mostly more stable) it will fall

into local minima, giving way to the basic learner. Since the latter tries to learn in a

different way, it is possible that its perspective will allow it to temporarily outperform

its counterpart, preventing overfitting.

Elevating – in the alternative mode, we not only temporarily switch between better

approaches (Alg. 3), but also elevate the worse model (replacing it with the better

one), if a difference between them is significant according to a chosen test δ(ϵr, ϵs, αe)

(Alg. 4), where αe determines a significance level of the test. In this case, the idea is

that instead of waiting for one model to catch up with learning, we simply instantly

bring it up to speed by replacing with a more effective model. One should be careful,

however, since having a better model for one timestamp does not mean that it will

be easier to adapt it to a new concept from there.

Algorithm 2: Switching learning mode.

Input: incoming instance x, true label y, risky base learner Lr, standard
base learner Ls, ExploitationStrategy

Result: up-to-date models Lr, Ls

Initialization: ϵr ← 0, ϵs ← 0
update ϵr and ϵs;
update Lr with (x, y) using ExploitationStrategy (Algorithm 1);
update Ls with (x, y) ;

90

Algorithm 3: Switching and elevating prediction mode.

Data: incoming instance x risky base learner Lr, standard base learner Ls

Result: prediction ŷ
if ϵr < ϵs then

ŷ ← Lr(x);
else

ŷ ← Ls(x);
return ŷ;

To test whether two classifiers are significantly different we can use the Welch’s

test, which assumes that two populations (for ϵr and ϵs) have unequal variances [213].

We find this assumption reasonable in our case. The statistic t required for the test

is obtained using the formula:

t =
ϵr − ϵs√
σ2
r

Nr

+
σ2
s

Ns

, (5.3)

where required average errors ϵ, their variance σ and the numbers of samples N can

be easily calculated within a sliding window, including ADWIN, which we use as a

default estimator. The same values are required for the degrees of freedom ν, which

can be approximated using the Welch-Satterthwaite equation:

ν ≈

(
σ2
r

Nr

+
σ2
s

Ns

)2

σ4
r

N2
r νr

+
σ4
s

N2
s νs

, (5.4)

Algorithm 4: Elevating learning mode.

Input: incoming instance x, true label y, risky base learner Lr, standard
base learner Ls, ExploitationStrategy, significance level αe

Result: up-to-date models Lr, Ls

Initialization: ϵr ← 0, ϵs ← 0
update ϵr and ϵs;
if δ(ϵr, ϵs, αe) = True then

replace the worse model L and error ϵ with their counterparts;
update Lr and Ls as in Algorithm 2;

91

where νr = Nr−1 and νs = Ns−1 are the degrees of freedom associated with variance

estimates. Since the Welch’s test can be easily implemented in our setting, we use it

as our default test.

It is worth noting that the effectiveness of both modes highly depends on the

precision of determining the true value of a current error, especially when supervision

is strictly limited. This problem has been already mentioned in Sec. 5.2.1.3 and we

empirically investigate it in the context of the proposed ensembles.

5.3 Experimental study

In this section, we present a comprehensive empirical evaluation of the proposed

approaches. Our general goal was to provide a complex and, at the same time, in-

depth analysis of the strategies and their parameters in different settings. We focused

on showing how limiting the labeling budget affects learning from data streams with

or without the exploitation wrappers. The specific research questions we asked are

given as follows.

• RQ1: Does the instance exploitation improve classification while learning from

sparsely labeled non-stationary data streams?

• RQ2: How the proposed methods should be configured depending on the avail-

able labeling budget and stability of a stream?

• RQ3: Is the ensemble technique, using the standard and risky classifier, capable

of alleviating potential overfitting problems that may occur as a result of using

the approach? Does it improve the overall performance?

• RQ4: Are our methods competitive when compared with some of the state-of-

the-art classifiers dedicated to data streams?

92

In order to improve reproducibility of this study, the source code for the ex-

periments presented in the following sections, along with information about bench-

marks and details of configurations, have been uploaded to our public repository:

github.com/mlrep/ie-20 .

5.3.1 Data streams

For the purpose of the experiments we utilized two groups of data stream bench-

marks. Each of them was dedicated to a different goal of this study.

Synthetic streams. The first one consists of streams that were created using arti-

ficial drift generators. Such benchmarks are commonly used while evaluating algo-

rithms on dynamic data [111, 116]. Their well-defined characteristics can be utilized

to evaluate the algorithms in very specific situations, for example, when adapting to

stable or unstable concepts, or to different types of drifts. The streams were created

using tools available in MOA [214], which provides some state-of-the-art generators

that synthesize drifting streams by simulating transitions between different concepts.

They are based on the following sigmoidal formula:

f(t) = 1/(1 + e−s(t−t0)), (5.5)

where s controls the duration of change and t0 is a peak of it. There are several

different concepts that can be generated – gaussian clusters (RBF), decision spaces

modeled by a random decision tree (TREE), linearly separated subspaces (SEA) or

concepts defined by some fixed formulas (STAG). There is also a simulation of a

rotating hyperplane (HYPER), which does not use the function given above. We

generated 14 synthetic streams (Tab. 7), using different types of concepts and drifts.

The latter include very sudden, less or more gradual and very slow changes. For the

HYPER concept we used mediocre incremental rotations (defined by the rate param-

93

https://www.github.com/mlrep/ie-20

Table 7.: Summary of the used synthetic (left) and real (right) data streams.

Name Inst Attr Cls Drift Drifts Noise

RBF1 1m 15 5 100 3 0.05

RBF2 1m 15 5 10k 3 0.05

RBF3 1.2m 15 5 50k 2 0.05

RBF4 1.2m 15 5 100k 2 0.05

TREE1 1m 15 5 100 3 -

TREE2 1m 15 5 10k 3 -

TREE3 1.2m 15 5 50k 2 -

TREE4 1.2m 15 5 100k 2 -

SEA1 600k 3 2 100 3 0.05

SEA2 600k 3 2 10k 3 0.05

STAG1 600k 3 2 100 3 -

STAG2 600k 3 2 10k 3 -

HYPER1 500k 15 5 ρ = 0.001 - 0.05

HYPER2 500k 15 5 ρ = 0.01 - 0.05

Name Inst Attr Cls

Activity 10 853 43 8

Activity-Raw 1 048 570 3 6

Connect4 67 557 42 3

Cover 581 012 54 7

Crimes 878 049 3 39

DJ30 138 166 8 30

EEG 14 980 14 2

Elec 45 312 8 2

Gas 13 910 128 6

Poker 829 201 10 10

Power 29 929 2 24

Sensor 2 219 804 5 57

Spam 9 324 499 2

Weather 1 8158 8 2

eter ρ). This diversification of benchmarks should provide a reliable generalization of

observations.

Due to the deterministic character of the synthetic streams, we decided to use

them in the first part of our experiments, in which we thoroughly investigate the influ-

ence of different configurations and the potential usability of the presented heuristics.

Real streams. While the artificial data provides a well-defined environment for

evaluation, real-world streams may differ from them in some unspecified, unknown

aspects. There is still very little research done on the general dynamics of streams,

therefore, it is difficult to say how realistic are the concepts and drifts generated by

the artificial sources. Due to this reason, it is always important to evaluate streaming

algorithms on real examples. In our experiments, we used 14 state-of-the-art real

streams that are widely used in data stream mining [117, 116]. Analogously to the

synthetic streams, the chosen set represents a variety of different problems with di-

94

verse characteristics (Tab. 7). Most of the selected streams are snapshots of some

continuous observations registered in industrial systems or laboratories. All of them

can be found either in the UCI repository, Kaggle competitions or in popular related

publications.

As opposed to the synthetic data, most of the real streams are not transparent

when it comes to their internal characteristics. It means that usually we cannot say

when exactly a drift occurs or what its specific type is. On the other hand, they pro-

vide a more realistic general validation. Because of that, we utilized the real streams

in the second part of our experiments, conducting the final comparison between our

methods (tuned in the previous step), baseline models without instance exploitation

and some state-of-the-art streaming classifiers. By doing so, we also avoided fitting

parameters of our algorithms to a specific testing set and fairly evaluated proposed

default settings.

5.3.2 Setup

In this subsection, we present details of the setup used in the experiments. For

any very specific parameters or subroutines, please, refer to the source code given in

the aforementioned repository.

Overview. The experiments were conducted in the following order. First, using the

synthetic streams, we evaluated how the exploitation strategies should be configured.

We checked how different values of intensity (λmax) and window size (ωmax) affect the

learning process. We also investigated whether adjusting these values dynamically

provides any improvements in terms of performance and utilized resources. In the

last part of the tuning stage, we analyzed the behavior of the supporting ensembles,

focusing on the correctness of deciding which approach (standard or risky) is currently

the better one, depending on the significance threshold (αe). Finally, we prepared

95

the final comparison between the proposed algorithms, baseline and other well-known

classifiers learning in a conservative way. It was conducted using the real streams.

Last but not least, since at its core our work emphasizes the problem of limiting the

access to supervision, the whole analysis was considered mainly from the perspective

of having different labeling budgets (B).

Evaluated parameters. Below, we enclose values of parameters that were consid-

ered in our experiments. We evaluated all the values given in the third column. The

last one presents other parameters that were predetermined before evaluating the

main parameter.

Table 8.: Summary of the parameter values evaluated in the tuning experiments.

Parameter Description Values Other

λ intensity {1,10,100,1k} ωmax = ωADW , ϵ = ϵADW

ωmax sliding window size {10,100,1k,10k} λ = 100, ϵ = ϵADW

αe elevating significance {0.01,0.05,0.1,0.2}
λAHT = {1, 1, 1, 10, 10, 10},
λSGD = 100 (both dynamic)

ωmax = ωADW , ϵ = ϵADW

While the choice of the default value for ωmax and the input error ϵ was some-

how justified theoretically and empirically [108], we chose λ either arbitrarily for the

initial tests (ωmax), or based on empirical observations, for the experiments involving

ensembles (αe), which should use reasonably tuned base learners. Due to significant

differences, we decided to set individual λmax for both classifiers. Multiple values in

the last column mean that different settings were used for different labeling budgets.

In our experiments, we considered B = {50%, 20%, 10%, 5%, 1%} and B = 100%

where it was necessary, including the final comparison. In addition to the given fixed

values, we used αθ = {0.05, 0.1, 0.1, 0.2, 0.2} and 0.002 for B = 100% (its default

value) in all cases. It is the only parameter that has to be set for ADWIN. For

96

the final comparison we extracted recommended default configurations, based on ob-

tained results. We present them after the tuning phase, at the beginning of the final

evaluation.

Classifiers. We used two different base learners: AHT and SGD, in order to show

that our framework is, indeed, able to work as a flexible wrapper. Since these clas-

sifiers use completely different learning approaches, they seem to be good candidates

for providing a more general insight. As our baseline (Base) we used AHT and SGD

combined with RandVar (ALRV) – the active learning strategy mentioned in Sec.

5.2.1. Due to the fact that we utilize the same algorithm as the default query strategy

in our framework, the proposed methods differ from the baseline only by applying the

exploitation strategy. During the final comparison, besides the mentioned baseline, we

tested two additional variants using other active learning approaches: random query

(ALR) and selective sampling (ALS) [163]. Furthermore, since our methods involve

ensemble techniques, we compared them with some of the state-of-the-art committees

for streaming data: online bagging (OBAG) [118], incremental bagging with ADWIN

(ABAG), adaptive online boosting (ADOB) [215], DWM [121], LNSE [156], AUC

[123] (only for AHT due to the implementation constraints) and AWE [122] (only

for SGD). It is worth noting that the given ensembles represent diverse approaches

to adaptation, which, to the best of our knowledge, have not been evaluated in the

context of limited supervision. All of the mentioned classifiers used recommended

parameter settings given in MOA.

Metrics. Most of our experiments measured the predictive performance of the con-

sidered algorithms. For this purpose, we collected kappa values in two ways. The

first one involved obtaining averaged global results for whole streams (aggregated

predictions), based on the test-then-train procedure [1]. The second approach was

97

focused on registering temporal performance within a sliding window, using the pre-

quential evaluation technique [216]. In the case of synthetic streams, it allowed us

to distinguish between stable and drift periods, and to report them separately. It is

important to keep in mind that the global average tends to be biased towards sta-

ble periods, which are longer in most of the streams. Due to this reason, we also

reported the average of the two separated metrics, which is more balanced. Analo-

gously to the discussion made in previous sections, we used the ADWIN-based met-

rics, as recommended in [216]. In the final phase of the experiments, we employed the

Bonferroni-Dunn rank test (α = 0.05) to analyze the statistical generalization and

the significance of results. Finally, we find more specific metrics used in this study

self-explanatory. They are briefly introduced with their presentation.

5.3.3 Results

As we mentioned in the previous sections, the first part of the study presents

different configurations and versions of the proposed algorithms, evaluated using fully

controlled synthetic streams. It should provide the reader with some intuition about

what to expect from those techniques under specific levels of supervision. After that,

we proceed to the final evaluation and conclusions that can be drawn based on all

the conducted experiments.

5.3.3.1 Intensity

Fixed intensity. The first evaluation focused on studying how intense the instance

exploitation should be, meaning, how many labeled instances from the sliding window

should be sampled at each step, after receiving a new object.

In Tab. 9 we can see kappa values averaged over all streams for the given bud-

gets and both classifiers. One distinctive observation is that for different classifiers

98

Table 9.: Average kappa given a budget for AHT and SGD using fixed intensities.

AHT 50% 20% 10% 5% 1%

Base 0.8556 0.8311 0.8103 0.7850 0.6916

UW-1 0.8680 0.8446 0.8202 0.7944 0.7129

UW-10 0.8708 0.8533 0.8333 0.8115 0.7318

UW-100 0.8571 0.8428 0.8255 0.8144 0.7324

UW-1k 0.8359 0.8213 0.8022 0.7863 0.7059

EW-1 0.8668 0.8461 0.8252 0.8008 0.7226

EW-10 0.8720 0.8567 0.8380 0.8280 0.7669

EW-100 0.8555 0.8427 0.8347 0.8191 0.7753

EW-1k 0.8445 0.8326 0.8184 0.8009 0.7559

SE-1 0.8698 0.8420 0.8270 0.8040 0.7330

SE-10 0.6763 0.6648 0.6631 0.6532 0.6630

SE-100 0.4128 0.3986 0.3901 0.3853 0.3799

SE-1k 0.2438 0.2352 0.2289 0.2110 0.2295

SGD 50% 20% 10% 5% 1%

Base 0.4089 0.2892 0.2229 0.2018 0.1750

UW-1 0.4734 0.3806 0.2933 0.2245 0.1731

UW-10 0.6047 0.5243 0.4721 0.4088 0.2401

UW-100 0.6854 0.6557 0.6252 0.5774 0.4350

UW-1k 0.7069 0.6978 0.6826 0.6663 0.5573

EW-1 0.4774 0.3840 0.2944 0.2239 0.1812

EW-10 0.6078 0.5355 0.4798 0.4139 0.2259

EW-100 0.6934 0.6670 0.6372 0.5975 0.4532

EW-1k 0.7148 0.7037 0.6955 0.6817 0.5943

SE-1 0.4791 0.3851 0.3002 0.2335 0.1786

SE-10 0.6143 0.5460 0.4866 0.4195 0.2310

SE-100 0.6824 0.6594 0.6341 0.5964 0.4594

SE-1k 0.6760 0.6710 0.6654 0.6537 0.6024

we can observe significantly different preferences. While with AHT majority of the

best results were obtained for λ < 100, SGD worked best with the most intensive

exploitation for λ = 1000. It suggests that, in general, AHT better adapts to streams

even under limited supervision, while SGD severely suffers from underfitting, leaving

plenty of room for improvements.

Another pattern that the results suggest is that for AHT using UW and EW

there is a trend in the relation between required intensity and the available labeling

budget. Indeed, if we look closer and analyze Fig. 24, which presents the ratio

between our strategies and the baseline, we will notice that as supervision is getting

more and more limited, we gain more and more from exploiting the labeled instances

we have (from about 1.05 to 1.2 on average). Furthermore, one should notice that

for lower budgets below B = 10%, the difference between safer exploitation (λ ≤ 10)

and the riskier one (λ ≥ 100) becomes much more significant in favor of the latter

approach. Finally, the gain that comes with applying the strategies is higher during

99

50 20 10 5 1

1.00

1.05

1.10

1.15

Base

U
W

/
B
a
se

STABLE

50 20 10 5 1

1.00

1.20

1.40

Base

DRIFT

50 20 10 5 1

1.00

1.10

1.20

Base

AVG

50 20 10 5 1

0.40

0.60

0.80

1.00
Base

S
E

/
B
a
se

STABLE

50 20 10 5 1

0.40

0.60

0.80

1.00

1.20

Base

DRIFT

50 20 10 5 1

0.40

0.60

0.80

1.00
Base

AVG

Fig. 24.: Improvement over Base given a budget for AHT using fixed intensities:

1k, 100, 10, 1, best EW.

drifts (1-1.4), when underfitting is more likely to occur regardless of the budget, than

during stable periods (1.02-1.15).

One can also notice that the EW strategy (in Fig. 24, the red line represents

the best value for a given budget) was slightly better than UW, especially for the

lowest budget B = 1%. It is not surprising since in such scenarios even a reactive

sliding window may contain some relatively old instances, while it is more important

to focus on the strictly limited amount of the most recent information. The EW

strategy provides this additional focus.

Interestingly, in the case of AHT, the SE strategy was able to provide some

small improvements (1-1.1 on average) only for lower budgets and only with λ = 1,

so when using the newest instance twice. It shows that this strategy may tend to

overfit more than UW or EW as it focuses entirely on one instance without replaying

a wider context of instances. Nevertheless, even with λ = 1 the SE strategy provides

competitive results for budgets higher than B = 5%, when exploitation becomes less

100

important.

Trends presented in Fig. 25 confirm that SGD requires much more attention

that AHT, especially for lower budgets. One can easily see that the baseline using

this classifier benefits enormously from employing instance exploitation. Regardless

of the strategy used, our wrapper was able to improve the learning process 2-3 times

over the baseline. The characteristic curvature of the trends comes from the fact

that there is a sweet spot between possible improvements and available supervision.

Analogously to the results for AHT, the EW strategy seems to be the best choice.

Dynamic intensity. In our next experiment, we investigated if the proposed heuris-

tic for controlling intensity in a dynamic way – increasing it during drifts and decreas-

ing for stable concepts, based on the current error – may provide any improvements.

Tab. 10 presents the average performance of strategies using the dynamic control.

We can see that general trends and relations remained the same for both classifiers.

50 20 10 5 1

1.00

2.00

3.00

Base

U
W

/
B
a
se

STABLE

50 20 10 5 1

1.00

2.00

3.00

Base

DRIFT

50 20 10 5 1

1.00

2.00

3.00

Base

AVG

50 20 10 5 1

1.00

2.00

3.00

Base

S
E

/
B
as
e

STABLE

50 20 10 5 1

1.00

2.00

3.00

Base

DRIFT

50 20 10 5 1

1.00

2.00

3.00

Base

AVG

Fig. 25.: Improvement over Base given a budget for SGD using fixed intensities: 1k,

100, 10, 1, best EW.

101

Table 10.: Average kappa given a budget for AHT and SGD using dynamic intensities.

AHT 50% 20% 10% 5% 1%

Base 0.8556 0.8311 0.8103 0.7850 0.6916

UW-1 0.8677 0.8453 0.8203 0.7966 0.7092

UW-10 0.8763 0.8566 0.8391 0.8245 0.7500

UW-100 0.8612 0.8431 0.8312 0.8060 0.7382

UW-1k 0.8362 0.8240 0.8067 0.7831 0.7098

EW-1 0.8652 0.8467 0.8230 0.7994 0.7187

EW-10 0.8774 0.8577 0.8431 0.8225 0.7596

EW-100 0.8621 0.8461 0.8358 0.8207 0.7674

EW-1k 0.8472 0.8320 0.8232 0.8018 0.7467

SE-1 0.8668 0.8460 0.8263 0.8004 0.7201

SE-10 0.7058 0.6969 0.6950 0.6852 0.6825

SE-100 0.4587 0.4418 0.4380 0.4328 0.4347

SE-1k 0.3005 0.2872 0.2777 0.2773 0.2864

SGD 50% 20% 10% 5% 1%

Base 0.4089 0.2892 0.2229 0.2018 0.1750

UW-1 0.4731 0.3810 0.2941 0.2339 0.1766

UW-10 0.5756 0.4924 0.4186 0.3337 0.1987

UW-100 0.6618 0.6292 0.5865 0.5382 0.3592

UW-1k 0.7039 0.6888 0.6650 0.6394 0.5385

EW-1 0.4758 0.3819 0.2924 0.2292 0.1795

EW-10 0.5821 0.5020 0.4256 0.3393 0.1985

EW-100 0.6748 0.6361 0.5983 0.5547 0.3756

EW-1k 0.7101 0.6950 0.6813 0.6601 0.5651

SE-1 0.4799 0.3816 0.2987 0.2276 0.1779

SE-10 0.5845 0.5059 0.4292 0.3423 0.1980

SE-100 0.6632 0.6309 0.5989 0.5547 0.3830

SE-1k 0.6745 0.6655 0.6544 0.6361 0.5679

More useful information gives us Fig. 26 presenting the trade-off between ob-

tained change in performance and computation time for less (λmax = {1, 10}) and

more risky (λmax = {100, 1000}) exploitation, compared with its fixed-intensity coun-

terparts. It is clear that those adjustments provide speed-up approximately propor-

tional to the error used as the control signal (Eq. 5.1). In the case of AHT, it is the

most significant for the worst-performing risky SE (more than 2.5 times faster) and

lower for more reliable strategies and configurations (1.2-1.6). For SGD the speed-up

is extremely high (1.5-5.5) due to the generally worse performance of the classifier.

We can see that the speed-up for both base learners increases as the budget gets

smaller since the performance gets worse on average when we limit supervision.

On the other hand, one should notice that the mentioned improvements of the

running time come at some cost of the predictive performance. It is significant for

SGD, especially on very low budgets (about 0.9 of the kappa obtained for fixed in-

tensity), but barely noticeable for AHT with B ≤ 10% (0.98 at most) and practically

102

50 20 10 5 1

0.80

1.00

1.20

1.40

1.60

Fix

Im
p
ro
ve
m
en
t

AHT / EW

1-10 PERF 1-10 TIME

100-1k PERF 100-1k TIME

50 20 10 5 1

0.50

1.00

1.50

2.00

2.50

3.00

Fix

AHT / SE

50 20 10 5 1

100.2

100.4

100.6

100.8

Fix

Im
p
ro
ve
m
en
t
(l
o
g
)

SGD / EW

50 20 10 5 1

100.2

100.4

100.6

100.8

Fix

SGD / SE

Fig. 26.: Trade-off between performance and time-consumption for AHT and SGD

using dynamic intensity (vs. fixed) given a budget.

negligible for higher budgets. In fact, it even provided some improvements for SE,

which exhibited the worst performance so far (which we can most likely attribute

to overfitting). The explanation of these observations is simple – since the dynamic

control may only lower intensity and since SGD gained a substantial amount of en-

hancement by enabling very intensive instance exploitation, any reduction of it will

cause drops in obtained improvements. Due to the fact that AHT is less reliant on

our strategies, its adaptation will be impaired to a lesser extent.

5.3.3.2 Instance window

Fixed window size. In this subsection, we investigate how the size of a sliding

window of labeled instances should be configured in order to provide necessary reac-

103

tivity to new concepts and better performance as a consequence. The average results

presented in Tab. 11 definitely outline an easily visible trend for both classifiers – the

less labeled data we have, the smaller sliding window should be used.

Table 11.: Average kappa given a budget for AHT and SGD using fixed sliding

windows.

AHT 50% 20% 10% 5% 1%

UW-10 0.4966 0.4918 0.4887 0.4867 0.4864

UW-100 0.7340 0.7319 0.7286 0.7195 0.7054

UW-1k 0.8169 0.8093 0.7991 0.7713 0.6563

UW-10k 0.8323 0.7921 0.7220 0.6170 0.5323

EW-10 0.4752 0.4695 0.4641 0.4629 0.4534

EW-100 0.7060 0.7053 0.7040 0.7027 0.6860

EW-1k 0.8142 0.8062 0.7981 0.7818 0.7065

EW-10k 0.8446 0.8230 0.7786 0.7174 0.5618

SGD 50% 20% 10% 5% 1%

UW-10 0.6871 0.6650 0.6386 0.6018 0.4691

UW-100 0.6929 0.6706 0.6443 0.6084 0.4697

UW-1k 0.6953 0.6703 0.6400 0.5941 0.4117

UW-10k 0.6780 0.6275 0.5567 0.4614 0.2631

EW-10 0.6857 0.6634 0.6376 0.6022 0.4694

EW-100 0.6918 0.6697 0.6432 0.6078 0.4731

EW-1k 0.6952 0.6718 0.6435 0.6032 0.4505

EW-10k 0.6878 0.6512 0.6035 0.5349 0.3188

The differences between considered sizes for a given budget are more significant

and dynamic for AHT, which is visualized in Fig. 27 showing obtained kappa for

both UW and EW. It is clear and intuitive that larger windows (ωmax = 10000 and

ωmax = 1000) are more reliable when we have more labeled data and when concepts

are stable, since more labeled instances will better generalize a given problem and

help prevent overfitting. Once we limit the available supervision, the rate of changes

between subsequent instances is more likely to increase (Sec. 5.2). Therefore, in

order to keep the representation of current concepts up-to-date we need to replace

older instances with newer ones faster, so the window size should be smaller. For

example, we can see that while ωmax = 10000 is the optimal size if we can label half

of a whole stream, it becomes completely useless once we limit the budget to B = 1%,

when even ωmax = 1000 becomes less adequate than ωmax = 100. An observation that

the size has to be even smaller for drifting concepts is not surprising – the problem

104

50 20 10 5 1

0.60

0.70

0.80

0.90
U
W

STABLE

50 20 10 5 1

0.40

0.50

0.60

0.70

DRIFT

50 20 10 5 1

0.50

0.60

0.70

0.80

AVG

50 20 10 5 1

0.60

0.70

0.80

0.90

E
W

STABLE

50 20 10 5 1

0.40

0.50

0.60

0.70

DRIFT

50 20 10 5 1

0.40

0.50

0.60

0.70

0.80

AVG

Fig. 27.: Average kappa given a budget for AHT using fixed sliding windows: 10k,

1k, 100, 10, best EW.

of developing reactive windows for drifting data has been already covered in many

related publications [108].

In the case of SGD, the differences between window sizes are slightly smaller

(Fig. 28), since the overall performance of this classifier is predominantly reliant on

a proper choice of the level of intensity. Also, it seems that SGD works best with

ωmax ≤ 100, which suggests that it prefers intensive updates based on the most recent

data.

Finally, for both classifiers, the EW strategy was able to reduce the negative

impact of too large window sizes for smaller budgets – one can notice that the curves

for ωmax = 10000 and ωmax = 1000 are slightly elevated compared with UW. The

reason for that is the inherent focus of EW on the most recent instances, alleviating

the problem of storing too old instances, which we assumed in Sec. 5.2.1.2. Regard-

less of that, we did not find any significant difference between EW and UW in this

experiment, which suggest that intensity is a more impactful factor.

105

50 20 10 5 1

0.20

0.35

0.50

0.65

U
W

STABLE

50 20 10 5 1

0.20

0.30

0.40

0.50

DRIFT

50 20 10 5 1

0.20

0.35

0.50

0.65

AVG

50 20 10 5 1

0.20

0.35

0.50

0.65

E
W

STABLE

50 20 10 5 1

0.30

0.40

0.50

DRIFT

50 20 10 5 1

0.30

0.40

0.50

0.60

AVG

Fig. 28.: Average kappa given a budget for SGD using fixed sliding windows: 10k,

1k, 100, 10, best EW.

Dynamic window size. Analogously to the experiments focused on intensity, we

studied the impact of controlling the window size in a dynamic way. In Tab. 12

one can see that while the general trends and relations remain, again, unchanged,

using the size returned by ADWIN is definitely the most reliable solution for AHT,

providing from 0.02 to more than 0.15 higher kappa values than any other window.

For SGD differences between smaller sizes and ADWIN are hardly significant for

B ≥ 20% and in favor of the former for B ≤ 10%.

The trade-off between the quality of classification and memory consumption is

presented in Fig. 29. The results for EW (UW exhibits analogous characteristics)

show that while combining the dynamic adjustments with smaller windows we can

use less memory (about 1.4-1.7 times less) at a cost of impaired performance (about

0.94), doing the same with larger windows results in improving both (about 1.1-1.7

for memory and 1.01-1.05 for kappa). It is intuitive, since the shrinking heuristic (Eq.

5.2), by making the small windows (containing 10-100 instances) even smaller, will

106

Table 12.: Average kappa given a budget for AHT and SGD using dynamic sliding

windows.

AHT 50% 20% 10% 5% 1%

UW-10 0.4439 0.4295 0.4350 0.4281 0.4263

UW-100 0.7161 0.7128 0.7102 0.7068 0.6896

UW-1k 0.8161 0.8104 0.7988 0.7845 0.6976

UW-10k 0.8416 0.8078 0.7651 0.6896 0.5585

UW-ADW 0.8603 0.8452 0.8243 0.8098 0.7418

EW-10 0.4424 0.4252 0.4235 0.4259 0.4250

EW-100 0.6798 0.6779 0.6778 0.6748 0.6730

EW-1k 0.8081 0.8062 0.7985 0.7919 0.7356

EW-10k 0.8502 0.8306 0.8068 0.7557 0.6209

EW-ADW 0.8598 0.8483 0.8312 0.8202 0.7717

SGD 50% 20% 10% 5% 1%

UW-10 0.6864 0.6642 0.6395 0.6023 0.4664

UW-100 0.6940 0.6717 0.6459 0.6088 0.4712

UW-1k 0.6966 0.6730 0.6451 0.6041 0.4467

UW-10k 0.6831 0.6418 0.5887 0.5154 0.3180

UW-ADW 0.6892 0.6568 0.6275 0.5799 0.4379

EW-10 0.6851 0.6631 0.6373 0.6003 0.4679

EW-100 0.6918 0.6694 0.6445 0.6065 0.4731

EW-1k 0.6966 0.6731 0.6474 0.6072 0.4643

EW-10k 0.6908 0.6594 0.6208 0.5631 0.3823

EW-ADW 0.6941 0.6682 0.6380 0.5968 0.4572

more likely increase the chance of overfitting than efficiently improve reactivity. On

the other hand, making too large windows more flexible provides enhanced reactivity

to new concepts without too significant loss in generalization, especially for smaller

budgets B ≤ 10% for which concepts evolve at a higher rate.

When it comes to using a window size based on ADWIN, besides the good pre-

dictive performance, we also observed that this approach tends to aggregate relatively

large amounts of instances, especially for high budgets. Since there is no fixed coun-

terpart for ADWIN, in Fig. 29 we present a ratio between ADWIN and a standard

window storing a comparable number of instances, which was ωmax = 10000. Based

on that, we can see that the ADWIN-driven control provides the presented perfor-

mance at a quite relevant memory cost, which decreases with the budget. It is also

important that even if ADWIN stores plenty of instances, it maintains a good quality

of classification regardless of the number of labeled instances, doing it better than

ωmax = 10000 and ωmax = 1000 for AHT and competitively for SGD.

107

50 20 10 5 1

0.80

1.00

1.20

1.40

1.60

1.80

Fix

Im
p
ro
ve
m
en
t

AHT / EW

10-100 PERF 10-100 MEM

1k-10k PERF 1k-10k MEM

50 20 10 5 1

0.30

0.60

0.90

1.20

1.50

1.80

2.10

Fix

AHT / EW-ADW

ADW PERF ADW MEM

50 20 10 5 1

0.80

1.00

1.20

1.40

1.60

Fix

Im
p
ro
ve
m
en
t

SGD / EW

50 20 10 5 1

0.50

1.00

1.50

2.00

2.50

Fix

SGD / EW-ADW

Fig. 29.: Trade-off between performance and memory given a budget for AHT and

SGD using dynamic windows (vs. fixed).

5.3.3.3 Elevating significance

In the final section of the first part of the experiments, we analyze the significance

level αe, which is the only parameter that has to be set for the elevating strategy.

Simultaneously, we also use this section to investigate the potential usefulness of the

proposed ensemble techniques. All results for the elevating ensemble (EWE, SEE)

using different αe along with results for the switching committee (EWS, SES), baseline

and single-classifier exploitation methods (EW, SE) are presented in Tab. 13 . Since

EW performed at least as well as UW in all previous evaluations, we decided to omit

it in the rest of the study.

The presented results clearly indicate that there is no significant difference when

changing the αe value. Furthermore, it seems that for synthetic streams the ensemble

108

methods were not able to provide significant improvements over tuned EW or SE for

both classifiers. The only exception is for SE for which we purposely set nonoptimal

intensity λmax = 10, slightly higher than the previously obtained results suggested.

This allowed us to check whether the ensembles are able to surpass the ineffective

exploitation strategy by using the alternative standard base learner when it is needed.

In Fig. 30 we can see that, indeed, improperly configured SE failed for budgets B ≤

10%, performing worse than the baseline for stable concepts by leading to overfitting.

However, when combined with switching or elevating, the whole method was able to

achieve performance at least as good as the baseline, or even to improve upon it for

B ≤ 5%. In addition, the ensembles boosted adaptation during concept drifts (by

about 0.1), which is a very important observation, since dealing with changes under

strictly limited supervision is an extremely challenging task.
The elevation of results obtained for SE is a good indicator that our ensembles

should be able to increase the lower bound of our approach, by providing that it will

Table 13.: Average kappa given a budget for AHT and SGD ensembles compared

with Base and single-classifier models.

AHT 100% 50% 20% 10% 5% 1%

Base 0.8673 0.8556 0.8311 0.8103 0.7850 0.6916

EW 0.8779 0.8636 0.8425 0.8402 0.8226 0.7560

EWS 0.8798 0.8691 0.8457 0.8478 0.8318 0.7612

EWE-1 0.8795 0.8704 0.8451 0.8523 0.8301 0.7604

EWE-5 0.8787 0.8677 0.8440 0.8462 0.8272 0.7611

EWE-10 0.8793 0.8706 0.8462 0.8463 0.8323 0.7599

EWE-20 0.8796 0.8697 0.8449 0.8527 0.8286 0.7556

SE 0.8768 0.8695 0.8459 0.6914 0.6856 0.6800

SES 0.8800 0.8698 0.8470 0.8136 0.7919 0.7394

SEE-1 0.8817 0.8737 0.8457 0.8189 0.7983 0.7472

SEE-5 0.8819 0.8697 0.8424 0.8174 0.8022 0.7485

SEE-10 0.8782 0.8687 0.8441 0.8238 0.7966 0.7573

SEE-20 0.8808 0.8692 0.8450 0.8205 0.8018 0.7480

SGD 100% 50% 20% 10% 5% 1%

Base 0.4772 0.4089 0.2892 0.2229 0.2018 0.1750

EW 0.7026 0.6752 0.6424 0.6020 0.5621 0.3707

EWS 0.7027 0.6723 0.6415 0.6005 0.5508 0.3779

EWE-1 0.7030 0.6720 0.6365 0.5980 0.5536 0.3788

EWE-5 0.7028 0.6722 0.6401 0.5980 0.5530 0.3767

EWE-10 0.7025 0.6730 0.6389 0.5985 0.5503 0.3761

EWE-20 0.7023 0.6700 0.6371 0.5926 0.5532 0.3793

SE 0.6913 0.6632 0.6311 0.5987 0.5543 0.3813

SES 0.6953 0.6643 0.6311 0.5994 0.5551 0.3810

SEE-1 0.7001 0.6687 0.6325 0.6020 0.5576 0.3799

SEE-5 0.6995 0.6697 0.6385 0.6008 0.5564 0.3824

SEE-10 0.6994 0.6692 0.6309 0.6006 0.5566 0.3846

SEE-20 0.6986 0.6695 0.6320 0.5977 0.5564 0.3810

109

100 50 20 10 5 1

0.80

0.90

1.00

1.10

Base

S
E

/
B
as
e

STABLE

SE

SES

SEE

100 50 20 10 5 1

1.00

1.10

1.20

1.30

Base

DRIFT

100 50 20 10 5 1

0.90

1.00

1.10

1.20

Base

AVG

Fig. 30.: Improvement over Base given a budget for AHT using SE and the SE-based

ensembles.

never be worse than the baseline. After looking at the results in Fig. 31 we can

understand that this is not a coincidence. The bar plots present how many times

on average either the standard base learner (Stand-TP, Stand-FP) or the risky one

(Risky-TP, Risky-FP) was correctly (true positive, TP) or incorrectly (false positive,

FP) elevated with respect to the available budget and used significance level αe. The

correctness depended on the precision of the error estimated based on the partial

information from labeled instances. We can easily notice that a prevalent number of

elevations was done correctly. The only configuration that stands out with a visible

number of false positives is the one using αe = 0.2, which is, in fact, an unusual value

for the Welch’s test. Nevertheless, it still did not affect performance in a meaningful

way. The results prove that we can effectively track an error even under strictly

limited supervision and utilize it in switching or elevating techniques.

A more careful analysis of the average number of elevations gives us some addi-

tional observations. Firstly, the total number of elevations decreases with the budget

and significance level αe, which is intuitive. Secondly, in most of the cases, if an

exploitation strategy is properly configured, we will be replacing mainly the standard

learner with the risky one. This can be mostly seen for EW, however, we would ob-

serve the same relation also for SE, if it was properly configured for AHT, or for SGD

110

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

5

15

25

35

100 50 20 10 5 1

E
le
va
ti
on

s

AHT / EW

Stand-TP Stand-FP

Risky-TP Risky-FP

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

10

50

90

130

170

100 50 20 10 5 1

AHT / SE

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

5

15

25

35

45

55

100 50 20 10 5 1

E
le
va
ti
on

s

SGD / EW

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

0
.2

0
.1

0
.0
5

0
.0
1

10

50

90

130

170

100 50 20 10 5 1

SGD / SE

Fig. 31.: Number of elevations given a budget and significance level for ATH and

SGD using elevating ensembles.

with the exclusion of the SEA stream. This was the only benchmark for which the

SE strategy was constantly failing when combined with the latter classifier, resulting

in more than 500 elevations and biasing the average value. We could use median

instead, however, we decided to keep the average to show that the SE strategy tends

to be more sensitive to improper configuration and overfitting than EW or UW, tak-

ing into consideration results for both AHT and SGD. Finally, one may wonder why

even if we replace EW or SE with a standard learner multiple times, we do not obtain

significant improvements over them (except for the specified cases for AHT with SE)?

The reason may be that even if we elevate the exploiting learner it keeps falling into

111

the same pitfalls again and again, as the internal characteristics of the streams do

not allow any more improvements than the strategies give themselves in other parts

of the streams. For a similar reason, we cannot see additional enhancements when

using switching. Fortunately, the differences are more visible for real data streams, in

favor of the ensembles, which makes them more than just safe lower bound providers.

5.3.3.4 Final comparison

Default configurations. Based on the observations made in the previous sections,

we determined default settings for our strategies and used them in the final compari-

son, which was conducted using real streams. Since we found trade-offs obtained for

the dynamic heuristics fair, we decided to use dynamic intensity controlled by the

ADWIN error (ϵ = ϵADW), as well as dynamic window size determined by the same

algorithm (ωmax = ωADW). We used the same significance levels αθ as for synthetic

streams. For our elevating ensembles, due to the lack of impact, we chose one of the

widely used values, αe = 0.05. Finally, in order to find a compromise between evidence

suggesting lower values of intensity for AHT and making sure that we fully utilize

the potential of our strategies, we distinguished two groups of λmax values: less risky

λl
max and risky λr

max. In addition to that, since AHT and SGD exhibited substantially

different preferences regarding required intensity, we set: λl
max = {1, 1, 1, 1, 1, 10},

λr
max = {100, 100, 100, 1000, 1000, 1000} for AHT, where each value corresponds to a

budget ranging from B = 100% to B = 1%, respectively, and λl
max = 10, λr

max = 1000

for SGD.

Results. The average performance of all considered classifiers under varying budgets

is presented in Tab. 14. It provides a general overview of the final comparison. The

main observation is that the proposed instance exploitation strategies are capable

112

Table 14.: Final average kappa for AHT and SGD on real data streams.

AHT 100% 50% 20% 10% 5% 1%

EWl 0.5637 0.5275 0.4611 0.4116 0.3721 0.3040

EWSl 0.5831 0.5387 0.4765 0.4108 0.3880 0.3306

EWEl 0.5638 0.5246 0.4707 0.4177 0.3780 0.3326

SEl 0.5752 0.5378 0.4778 0.4362 0.3953 0.3401

SESl 0.5914 0.5516 0.4990 0.4463 0.4035 0.3503

SEEl 0.5838 0.5345 0.4859 0.4202 0.3842 0.3578

EWr 0.6432 0.5959 0.5520 0.5035 0.4521 0.3315

EWSr 0.6492 0.6128 0.5634 0.5161 0.4525 0.3287

EWEr 0.6569 0.6182 0.5620 0.5099 0.4690 0.3405

SEr 0.5655 0.5404 0.4915 0.3900 0.3530 0.2541

SESr 0.6424 0.6052 0.5594 0.4984 0.4684 0.3500

SEEr 0.6416 0.6044 0.5557 0.5025 0.4573 0.3473

ALR 0.5403 0.4978 0.4475 0.3946 0.3527 0.2997

ALRV 0.5063 0.5036 0.4466 0.3953 0.3537 0.3030

ALS 0.5242 0.5082 0.4424 0.3858 0.3496 0.2986

AUC 0.4297 0.4218 0.3680 0.2990 0.2656 0.2324

DWM 0.6154 0.5897 0.5309 0.4993 0.4501 0.3335

LNSE 0.2734 0.2986 0.3096 0.3000 0.2237 0.1717

ADOB 0.2588 0.2564 0.2608 0.2705 0.2562 0.2464

ABAG 0.6204 0.6003 0.5414 0.4918 0.4455 0.3203

OBAG 0.5752 0.5438 0.4711 0.4129 0.3805 0.2964

SGD 100% 50% 20% 10% 5% 1%

EWl 0.3397 0.3171 0.2685 0.2043 0.1568 0.0764

EWSl 0.3751 0.3519 0.3073 0.2706 0.2357 0.1345

EWEl 0.3684 0.3429 0.3021 0.2681 0.2304 0.1164

SEl 0.3954 0.3760 0.3363 0.3044 0.2819 0.1743

SESl 0.3956 0.3707 0.3355 0.3045 0.2804 0.1679

SEEl 0.3960 0.3710 0.3410 0.3073 0.2812 0.1647

EWr 0.4124 0.3962 0.3533 0.3027 0.2711 0.1753

EWSr 0.4351 0.4188 0.3879 0.3600 0.3184 0.2344

EWEr 0.4379 0.4208 0.3878 0.3576 0.3176 0.2114

SEr 0.4714 0.4455 0.4109 0.3813 0.3634 0.2891

SESr 0.4698 0.4421 0.4042 0.3730 0.3469 0.2664

SEEr 0.4683 0.4414 0.4044 0.3742 0.3411 0.2679

ALR 0.3440 0.3098 0.2644 0.2195 0.1865 0.1054

ALRV 0.3151 0.3156 0.2653 0.2215 0.1863 0.1228

ALS 0.3204 0.3135 0.2669 0.2199 0.1800 0.1158

AWE 0.1289 0.1062 0.0918 0.0559 0.0427 0.0298

DWM 0.3689 0.3375 0.2861 0.2593 0.2369 0.1404

LNSE 0.1242 0.1325 0.1163 0.0843 0.0456 0.0210

ADOB 0.4553 0.4347 0.4050 0.3632 0.3271 0.2299

ABAG 0.3673 0.3444 0.2873 0.2427 0.2169 0.1381

OBAG 0.3343 0.3056 0.2553 0.2147 0.1845 0.1239

of providing the best predictive quality (in bold) out of all models and that the

risky ones exhibited much better quality than the more conservative configurations.

Most importantly, our best strategies were able to outperform baseline models using

only active learning (ALR, ALRV, ALS) for both base learners (by about 0.1 kappa

for AHT and 0.15 for SGD), regardless of the available budget. It shows that the

depicted problem of underfitting while learning temporary drifting concepts under

limited supervision is critical in real scenarios and active learning fails to solve it

efficiently on its own.

In Fig. 32 we can see a gain obtained from using our exploitation strategies

113

compared with the best baseline model using only active learning (AL) for each

budget. It provides more insight into trends and relations present in the aggregated

results. Firstly, as we already mentioned, the more risky approaches, applying more

intense exploitation of labeled instances, outperform the safer configurations in almost

all cases. We can see that EWr and EWSr provided about 0.1-0.2 improvement in

gain over EWl and EWSl for both AHT and SGD. In the case of SE and SES, the

enhancement remained the same for SGD and for AHT using SES. These relations

are analogous for EWE and SEE. Interestingly, for AHT with SEr we noticed that

while for lower budgets the base learner did not work well with this extreme strategy,

the switching technique SESr empowered the strategy to become more efficient even

than SEl, which was initially better than SEr. This shows that taking even a very

risky adaptation while having a good lower-bound backup may still be beneficial. On

the other hand, results for AHT using SEr and SEl indicate that we may need to

be a bit more careful with more reactive classifiers. Statistical rank tests presented

in Fig. 33 prove that the advantage of the more risky exploitation is significant, as

the best risky strategies for AHT (EWSr, EWEr) and SGD (SEr, SESr, SEEr) are

significantly better than any less risky method.

Secondly, Fig. 32 shows that, generally and analogously to the results for the

synthetic streams, the improvement over the baseline models increases as we limit

available supervision. It is, again, intuitively correct, since if we have fewer labeled

instances, the risk of encountering underfitting becomes higher. The only exception

for this trend can be noticed when using the extremely limited budget B = 1%

and the reason for that is the same as the one given for the characteristic curve for

SGD in Fig. 25. The increase is more clear for SGD, which, in general, adapts

less efficiently than AHT, giving more occasions for improvements. Regardless of

the budget, almost all strategies turned out to be significantly better than a model

114

100 50 20 10 5 1

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

AL

Im
p
ro
ve
m
en
t

AHT / EW / EWS

EWr EWl

EWSr EWSl

100 50 20 10 5 1

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

AL

AHT / SE / SES

SEr SEl

SESr SESl

100 50 20 10 5 1

0.50

0.80

1.10

1.40

1.70

2.00

2.30

2.60

AL

Im
p
ro
ve
m
en
t

SGD / EW / EWS

100 50 20 10 5 1

0.50

0.80

1.10

1.40

1.70

2.00

2.30

2.60

AL

SGD / SE / SES

Fig. 32.: Improvements over the best AL given a budget for AHT and SGD using

different strategies on real data streams.

without instance exploitation (Fig. 33, ALRV, in bold), which proves the general

usefulness of the proposed approaches. Interestingly, since our methods were able to

provide some improvements also for fully labeled streams (B = 100%), we can assume

that it may enhance adaptation to unstable data in general – limiting budget only

makes the problem harder and more severe.

Finally, based on Fig. 32 and Fig. 33 we can claim that switching and elevating

ensembles provide intended improvements. In almost all cases they maintained at

least as good performance as the best base learner, either a single-classifier strategy

(SE, EW) or a standard model without exploitation (ALRV). As a consequence, the

ensembles are always at least as good as the baseline, providing noticeable improve-

ments in almost all cases, as opposed to simpler strategies (SEr for AHT and EWl for

115

4 5 6 7 8 9 10 11

EWEr EWSr EWr
SESr

SESl

SEEl

EWSl

SEEr

SEl EWEl SEr EWl ALRV

(a) AHT

3 4 5 6 7 8 9 10 11 12

SEr
SESr

SEEr
EWEr

EWSr

SESl

SEEl

SEl

EWr EWSl
EWEl

ALRV EWl

(b) SGD

5 6 7 8 9 10 11

EWEr

SESr

EWSr SEEr SEr

SESl

EWr

SEEl

SEl EWSl EWEl
EWl

ALRV

(c) Average

Fig. 33.: Bonferroni-Dunn test for different strategies on real data streams.

SGD). Fig. 33 suggests that the improvements over the single-classifier methods are

usually on the verge of significance. The only exception is, one more time, SEr for

SGD – since it worked outstandingly well with this classifier (especially for the lowest

budgets), there was a low chance that the baseline could provide better prediction

and, as a consequence, any incorrect switch led to some reduction in improvements.

This once again shows that even very extreme and risky exploitation makes sense. In

addition, compared with results obtained for synthetic streams, the ensembles were

also able to improve upon SE and EW in some cases, even if the simpler strategies

already provided a gain over the baseline. This very likely shows that real streams are

more unstable or complex than synthetic ones, thus requiring more intensive adap-

tation from classifiers. Last but not least, we did not obtain a significant difference

between the switching and elevating techniques.

As the final part of our experimental study, we compared our best strategies (the

risky ones) with some state-of-the-art classifiers, including models supported by dif-

116

ferent active learning strategies and popular ensembles. Based on the results in Tab.

14 and the statistical tests in Fig. 34, we can claim that our best strategies (in bold

in the latter) are capable of significantly improving upon all baseline models using

only active learning and upon most of the considered ensembles. We can distinguish

EWEr, EWSr and SESr methods. They outperformed all other classifiers on aver-

age, except for ABAG and DWM, which were significantly competitive, especially

for AHT, even under strictly limited supervision. It exhibits their generally good re-

silience to such limitations. The EW-based ensembles provided the best results with

AHT, while the SE-based ones dominated the highest ranks with SGD. This shows

that our ensembles are able not only to improve upon single-classifier models without

instance exploitation but also to compete with state-of-the-art ensembles designed

for data streams. One should also keep in mind, that while all the other committees

use at least 10 base learners, our ensemble utilizes only two of them.

4 5 6 7 8 9 10 11 12 13 14

EWEr

EWSr

ABAG
EWr

SESr

DWM
SEEr

OBAG

SEr

ALR
ALRV

ALS
AUC ADOB LNSE

(a) AHT

4 5 6 7 8 9 10 11 12 13 14

SEr

SESr

SEEr

EWEr

EWSr

ADOB

EWr

ABAG
DWM OBAG

ALRV
ALS
ALR AWE LNSE

(b) SGD

5 6 7 8 9 10 11 12 13 14

EWEr

SESr

EWSr

SEEr

SEr

ABAG
EWr

DWM OBAG

ADOB
ALRV
ALR

ALS AUC/AWE LNSE

(c) Average

Fig. 34.: Bonferroni-Dunn test for different strategies and other classifiers on real

data streams.

117

0 0.2 0.4 0.6 0.8 1

ALS
ALR

LNSE
ALRV
ADOB
AUC

OBAG
DWM
ABAG
SEEr
SEr

EWr
SESr

EWSr
EWEr

AHT / HIGH

0 0.2 0.4 0.6 0.8 1

ALS
LNSE
ALRV
ALR

ADOB
OBAG
AUC

DWM
ABAG
SEEr
SEr

SESr
EWEr
EWr

EWSr

AHT / LOW

0 0.2 0.4 0.6 0.8 1

ALS
ALRV
ALR

LNSE
DWM
AWE

OBAG
EWr

ABAG
EWSr
ADOB
EWEr
SEEr
SESr
SEr

SGD / HIGH

0 0.2 0.4 0.6 0.8 1

ALS
ALRV
ALR

LNSE
DWM
AWE
EWr

OBAG
EWSr
ABAG
EWEr
ADOB
SEEr
SESr
SEr

SGD / LOW

Fig. 35.: Ranks for AHT and SGD using different strategies compared with other

classifiers on real data streams.

The complementary results presented in Fig. 35 show the frequencies of occu-

pied ranks for each of the considered methods given high (B ≥ 20%) and low budgets

(B ≤ 10%). Unsurprisingly, we can see that the best strategies were most frequently

the best ones (green bars), while very rarely ending up as the worst ones (red bars),

regardless of the available supervision. One interesting observation is that our en-

sembles were able to maintain safer lower bounds also for the presented ranks – they

very efficiently reduced the number of lowest ranks compared with their simpler coun-

terparts (SEr, EWr), bringing them down to zero for the best strategies (EWSr and

118

EWEr for AHT, SESr and SEEr for SGD). It is important if someone cares about

the worst possible scenario.

In order to provide the reader with some specific examples of how our meth-

ods work in practice, in Fig.36 and Fig.37 we presented accuracy series (instead of

kappa for readability) registered for all real streams when the budget was reasonably

limited to B = 10%. The best exploiting strategy, the best baseline using active

learning and the best other ensemble were chosen for each stream separately. For

most of the streams, we can easily notice that instance exploitation (green) was able

to elevate the temporal performance of standard models that were reliant solely on

active learning (red). The improvements may have diverse forms. For example, our

strategies were able to provide overall a more stable, saturated and higher level of pre-

dictive performance for Activity-Raw, Covertype, EGG, Sensor or Weather, among

others, for both AHT and SGD. For other streams, the enhanced adaption meant that

instance exploitation was able to alleviate severe temporal drops in accuracy, most

likely due to concept drifts, for example, for Gas, Poker or Spam. There were very

few exceptions when none of our strategies was able to provide improvements, like

Airlines and DJ30, or Crimes for SGD. Finally, when compared with the considered

state-of-the-art ensembles (blue), we can also see that our strategies were, in most

cases, competitive in improving adaptation in the same way as against the baseline

models.

5.3.4 Lessons learned

To summarize all the presented results and observations, we finalize our study

with a list of the most important conclusions. Primarily, they address the research

questions introduced at the beginning of the experimental study.

119

2k 5k 7k 10k

0.00

0.25

0.50

0.75

1.00

ACTIVITY
ALR DWM EWS

250k 500k 750k 1m

0.00

0.25

0.50

0.75

1.00

ACTIVITY RAW
ALRV DWM SE

50k 200k 350k 500k

0.55

0.60

0.65

0.70

0.75

AIRLINES
ALRV DWM EWS

15k 30k 45k 60k
0.50

0.60

0.70

0.80

0.90

CONNECT4
ALS ABAG EWS

50k 200k 350k 500k

0.40

0.60

0.80

1.00

COVERTYPE
ALS DWM EWS

250k 500k 750k

0.15

0.20

0.25

0.30

CRIMES
ALRV ABAG EWS

30k 60k 90k 120k

0.96

0.98

1.00

DJ30
ALS AUC EWS

4k 8k 12k

0.25

0.50

0.75

1.00

EEG
ALS DWM SES

10k 20k 30k 40k

0.60

0.70

0.80

0.90

ELEC
ALRV DWM EWS

3k 6k 9k 12k

0.20

0.40

0.60

0.80

1.00

GAS
ALR ABAG EW

250k 500k 750k

0.40

0.50

0.60

0.70

0.80

POKER
ALRV DWM EWS

6k 12k 18k

0.05

0.10

0.15

0.20

POWER
ALS DWM SES

500k 1m 1m 2m

0.10

0.30

0.50

0.70

0.90

SENSOR
ALR ABAG EWS

2k 5k 7k

0.20

0.40

0.60

0.80

1.00

SPAM
ALS ADOB EWS

5k 10k 15k

0.60

0.65

0.70

0.75

0.80

WEATHER
ALRV ADOB EWS

Fig. 36.: Accuracy series for AHT given B = 10%: the best strategy vs. the best AL

and the best (not our) ensemble.

120

2k 5k 7k 10k

0.00

0.25

0.50

0.75

1.00

ACTIVITY
ALS ADOB SES

250k 500k 750k 1m

0.25

0.50

0.75

1.00

ACTIVITY RAW
ALS ADOB SE

50k 200k 350k 500k

0.55

0.60

0.65

AIRLINES
ALRV ABAG SE

15k 30k 45k 60k
0.40

0.60

0.80

1.00

CONNECT4
ALR ADOB SE

50k 200k 350k 500k

0.00

0.25

0.50

0.75

1.00

COVERTYPE
ALS ADOB SE

250k 500k 750k

0.05

0.10

0.15

0.20

0.25

CRIMES
ALS AWE SES

30k 60k 90k 120k

0.04

0.05

0.06

DJ30
ALRV OBAG SE

4k 8k 12k

0.85

0.90

0.95

1.00

EEG
ALR DWM SES

10k 20k 30k 40k

0.50

0.60

0.70

ELEC
ALR ADOB SE

3k 6k 9k 12k

0.40

0.60

0.80

1.00

GAS
ALRV ABAG SE

250k 500k 750k

0.20

0.40

0.60

0.80

POKER
ALRV ADOB SE

8k 16k 24k

0.00

0.02

0.04

POWER
ALR AWE SES

500k 1m 1m 2m

0.02

0.04

0.06

0.08

0.10

SENSOR
ALRV OBAG SES

2k 5k 7k

0.00

0.20

0.40

0.60

0.80

1.00

SPAM
ALS ADOB SE

5k 10k 15k

0.55

0.60

0.65

0.70

0.75

WEATHER
ALS OBAG SE

Fig. 37.: Accuracy series for SGD given B = 10%: the best strategy vs. the best AL

and the best (not our) ensemble.

121

Instance exploitation improves learning from drifting streams on a budget.

In most of the considered cases, almost all strategies provided significant improve-

ments over the baseline using only active learning and adapting in a conservative

way (RQ1). Without more intensive learning, the base classifiers were not able to

deal with strict supervision limitations and drifts at the same time, even if supported

by a more strategic label query. They struggled with providing reactive up-to-date

models for dynamic temporary concepts and end up with unresolved and severe un-

derfitting. Our method addressed this problem by forcing the classifiers to take the

risk of exploiting only the labeled instances they could use and enhancing the adap-

tation process as a result. The improvements were more impactful for real streams.

With the abundance of positive examples collected from diverse measurements and

statistical tests, and supported by the fact that generally higher intensity of exploita-

tion was preferred, we prove that the problem of underfitting is critical for realistic

streaming scenarios and that risking overfitting by using instance exploitation is more

reasonable in practice.

No free lunch theorem for strategies and settings. We were not able to explic-

itly select one of the three strategies (UW/EW, SE) as the best one (RQ2). While

EWr worked best with AHT, SGD exhibited the best synergy with SEr. Further-

more, although all the strategies generally worked better with the more risky settings

using higher values of intensity λmax, we were forced to distinguish different values

of this parameter for different classifiers. Also, AHT preferred larger sliding windows

than SGD. The distinction was caused by the fact that some algorithms may be more

reactive to changes (AHT) than others (SGD), therefore, they may need a different

amount of instance exploitation.

Dynamic control comes with a reasonable trade-off. The heuristics for con-

122

trolling intensity and window size in a dynamic way do not provide improvements

in predictive performance in most cases, even impairing it to some limited extent.

On the other hand, they are able to reduce running time and memory consumption,

respectively (RQ2). For the latter, adjusting the window size based on ADWIN is

a contradictory exception from the observations – this algorithm provides the best

quality of classification for AHT and reliable one for SGD, while requiring more mem-

ory than most of the other windows. We would recommend using fixed intensity λmax

and dynamic window size based on ADWIN (ωmax = ωADW), if someone does not

have problems with the utilization of resources. Otherwise, we suggest using dynamic

intensity (Eq. 5.1) and dynamic window (Eq. 5.2) with a limited size ωmax = 1000,

while utilizing ADWIN-based error as a control signal ϵ = ϵADW .

Switching and elevating alleviates the risk of overfitting. The ensemble-based

techniques for avoiding turning one problem (underfitting) into another (overfitting)

provided the assumed improvements (RQ3). The methods are able to guarantee a

more reliable lower bound on performance. Since we can efficiently track errors even

under limited supervision, the ensembles can correctly determine a temporarily better

approach. As a consequence in a prevalent number of cases (except for SGD using

SEr) they are at least as good as the standard or risky learner, providing additional

enhancements in many scenarios. One should, however, keep in mind that the ad-

vantage of using the ensembles is usually on the brink of significance. Furthermore,

we did not observe a significant difference between switching and elevating, therefore,

since the latter requires very time-consuming model replacements, we recommend us-

ing switching. Finally, taking into account all considered factors, we can distinguish

EWS and SES as the best methods on average.

Proposed strategies are competitive against other streaming classifiers.

123

The final comparison revealed that our algorithms, mainly committees, not only im-

prove upon the baseline using only active learning, but that they can also be at least

competitive against some of the state-of-the-art streaming ensembles, including bag-

ging and boosting, and outperform them in many cases (RQ4). At the same time,

while other ensembles utilize 10 base learners, ours use only two of them. Finally,

although we could extend this comparison to more ensembles, one should notice that

this study was not entirely focused on ensemble-based methods. In fact, there is a lot

of potential for further improvements in this direction. We conducted only a limited

comparison to place our algorithms in some recognizable context.

5.4 Summary

In this work, we have addressed a challenging, yet crucial issue in data stream

mining domain – how to increase the adaptation capabilities of classifiers under con-

cept drift while dealing with very limited access to class labels. Sparsely labeled data

streams are predominant in a plethora of real-world applications and a lack of labeled

instances increases the already high difficulty of recovery from changes. We have pro-

posed a novel and flexible framework for instance exploitation in order to boost the

learning from streaming data on a budget. By using a sliding window with a proba-

bilistic sampling for selecting instances for additional exposure to the online classifier

we were able to force faster adaptation rates, resulting in a significantly improved

robustness to concept drift. We developed three instance exploitation strategies to

alleviate the problem of underfitting of classifiers to new emerging concepts by various

levels of expositions of labeled instanced obtained from active learning. In order to

minimize the risk of overfitting, we have proposed two ensemble architectures that

dynamically switch between learners based on aggressive and standard instance ex-

position. All our strategies are incorporated in a flexible wrapper framework capable

124

of working with any active learning strategy and online classifier.

Based on an extensive experimental study, we were able to show the tremendous

gains of using our strategies while learning temporary concepts from data streams and

having limited access to class labels. The analysis of the results allowed us to reach

in-depth and unique insights into the adaptation of classifiers under concept drift,

showing how access (or lack of thereof) to an adequate number of labeled instances is

of crucial importance in the dynamic settings. We formed a set of recommendations

on how and when to use the proposed strategies in order to improve learning rates

from sparsely labeled non-stationary data streams at no additional cost.

Our future works will concentrate on using instance exploitation to leverage

ensemble learning and control ensemble diversity under concept drift, as well as to

improve learning from sparsely labeled imbalanced data streams. We will also take

into consideration noisy streams which may pose additional challenges when using

our aggressive updates.

125

CHAPTER 6

ONLINE OVERSAMPLING FOR SPARSELY

LABELED IMBALANCED AND

NON-STATIONARY DATA STREAMS

Skewed data distributions are a very challenging topic in standard machine learning,

being present there for over 25 years. In the continual learning domain, the class

imbalance becomes even more difficult, as we not only need to deal with disproportion

among classes but also with their evolving nature [143]. Here, the proportions between

classes change dynamically, as well as class roles – minority may become a majority

over time [146]. In addition to that, they may be subject to simultaneous concept

drifts. As a result, we get complex and perplexing scenarios that actually occur in

many real-life applications.

Although there exists a plethora of solutions for imbalanced problems [144],

adapting them to data streams and concept drift is not straightforward. Many of

the algorithms dedicated to imbalanced data streams concentrate on binary problems

[217, 207, 143]. From the context of data streams, multi-class imbalanced problems

are even more interesting, as they occur when new classes emerge, old ones disappear,

or break into subconcepts [218]. They pose a bigger challenge, as relationships among

classes are no longer well-defined and one cannot decompose them into binary sub-

problems without losing valuable information [146]. There exist but few algorithms

dedicated to multi-class imbalanced data streams, but they either focus on changing

class ratios without drifts [219, 159], or on handling concept drift with static class

ratios [150, 220]. Additionally, many existing solutions assume unrestricted access to

126

class labels.

We propose a novel learning framework for multi-class data streams that ad-

dresses all of the mentioned challenges: (i) changing imbalance ratios among multiple

classes; (ii) concept drift; and (iii) limited access to ground truth. We use active

learning for selecting the most valuable instances for labeling and then use them to

perform the multi-class oversampling. We guide our selection and instance gener-

ation procedures with a hybrid criterion that takes into account both current class

ratios and the classifier error on each class independently. This allows us to effectively

tackle both concept drift and class imbalance. At the same time, the fact that we

use the oversampling module, generating additional instances, may be a solution to

the underfitting after drifts regardless of a class imbalance, so it potentially addresses

the problem of the limited budget simultaneously. An experimental study shows that

our approach, based only on a single classifier, can provide sufficient solutions to the

described problems, improving upon both standard active learning and more sophis-

ticated ensembles, dedicated to learning from multi-class imbalanced data streams or

simply performing well in general cases.

6.1 Deceptive majority and budget constraints

The existing algorithms for multi-class imbalanced data streams with dynamic

class ratios do not take into account two crucial aspects of learning from streaming

sources. The first one is that while they adapt to changes in class proportions they

do not provide any explicit mechanism to handle concept drifts that are common in

streams and may occur concurrently with class ratio changes. Why is it important?

Let us consider a case in which we have a majority class c1 consisting of 80% of

all instances and minority c2 with 20% of incoming objects. Now, during some period

of time not only the ratios swap but also class concepts completely change, which

127

means that both c1 and c2 should now be represented by new models. If an algorithm

is based only on class ratios, it oversamples only the minority class c1, improving its

adaptation, while for the entirely new majority class c2, which also requires significant

updates, we will rely only on incoming instances. One may say that it is fine since we

balance learning and if c2 turned into majority it does not require additional instances.

It is reasonable until we take into consideration the second crucial facet of learning

from data streams – labeling budget constraints. If the number of instances that

can be used for updating is significantly limited, then not only do minority instances

may suffer from underfitting and require some amount of oversampling, but also we

may encounter a high error for the majority classes. We call it a deceptive majority.

Taking this fact into account may not only help with modeling the majorities more

accurately but also improve the minorities by excluding more precisely the subspaces

to which they do not belong. We assume that in such scenarios potential underfitting

is more likely to occur and impede learning more than overfitting.

6.2 Framework

In this section, we present our algorithms that are able to tackle all of the men-

tioned problems emerging during learning from imbalanced data streams. We de-

signed an online wrapper framework given in Alg. 5.

Active learning. Our approach is, in fact, a combination of active learning and

oversampling techniques. The former one (QueryStrategy) is used to limit the num-

ber of labeling requests for incoming instances x by asking only for valuable ones

given some criteria. If a current budget spending b̂ does not exceeds an available

budget B and the method decides that a new object should be labeled, we acquire a

true class c for the instance and use it to update a classifier L. The available budget

B is a fraction of instances that can be labeled. Since streams are infinite by defi-

128

Algorithm 5: Framework for learning from imbalanced data streams.

Data: labeling budget B, QueryStrategy, OversamplingStrategy, budget

spending b̂, generated instances S, metrics M
Result: classifier L at every iteration
Initialization: b̂← 0, S ← [], M ← []
repeat

receive incoming instance x;

if b̂ < B and QueryStrategy (x) = true then
request the true label c of instance x;

update labeling expenses b̂;
update classifier L with (x, c);

update class metrics mc ∈M

S ← OversamplingStrategy (x,mc);
for i← 1 to len(S) do

update classifier L with (si, c);

until stream ends ;

nition, we approximate the current spending b with b̂ as a ratio of labeled instances

to all already acquired. A few online strategies have been already proposed that can

be used in our framework [163]. They are usually based on uncertainty, like Rand-

Var or selective sampling, however, to the best of our knowledge, there are no active

learning strategies for multi-class imbalanced streams with dynamic ratios. We do

not focus on this module in our work. Instead, we are going to show that problems

with limited budgets (underfitting) and class imbalance, while relying on the active

learning alone, can be effectively handled by adding an additional module responsible

for oversampling.

Oversampling. While the active learning approach is a step forward to handling

realistic streaming scenarios, it may still be insufficient under strict budget con-

straints, when a very limited number of instances is used. To handle this problem, we

propose an adaptation enhancement in a form of synthetically generated instances.

Since in this work we focus on skewed data distributions, we use oversampling tech-

129

niques for this purpose. We generate additional instances S accordingly to a given

OversamplingStrategy. It takes the labeled instance x as a prototype and class

metrics mc for the class c the instance belongs to. The oversampling strategy may

use different: (i) generation methods that define how new instances are created; (ii)

balancing strategies that determine how many instances are generated based on class

metrics.

6.2.1 Generation methods

We specify two incremental generation methods that synthesize additional in-

stances S. They are rooted in the offline oversampling domain.

Single Exposition (SE) – it is a fully online approach that simply duplicates d times

a given instance x that is exposed to the algorithm only once.

SMOTE (SM) – in this method we maintain a sliding window W of ωmax latest in-

stances w that represent current concepts. Each class has its own window, so we keep

ωmax already received instances for each of them. New instances are generated using

the SMOTE algorithm [221]. For a labeled instance x we find its k nearest neighbors

(belonging to the same class c), generate synthetic instances using Algorithm 2 (the

gap is calculated using the uniform distribution U(0, 1)) and then duplicate them d

times.

Algorithm 6: SMOTE single instance generation.

Data: new instance x, window instance w
Result: generated instance s

gap← U(0, 1);
for i← 1 to len(x) do

diff ← w[i]− x[i];
s[i]← x[i] + gap ∗ diff ;

return s

130

6.2.2 Balancing strategies

This module is responsible for balancing the learning process. In general, we

want to use a function d(mc) = dmaxγ(mc), where dmax is a maximal number of

duplications that can be created and γ(mc) is a balancing function transforming

metrics mc for a class c into a value v ∈ ⟨0, 1⟩.

Dynamic Class Ratio (DCR). The most straightforward approach is to generate d

instances in a negative relation to a ratio λc for a class c. We can apply the ratios

directly to get:

γ(mc) = γ(λc) = 1− λc, (6.1)

however, in such a case, for balanced cases we would unnecessarily oversample some of

the classes. A more reasonable approach is to perform oversampling relatively to the

majority class λmax [159]. Then for each class we can define the ratio as λ′
c = λc/λmax,

so we will try to oversample up to the largest class:

γ(mc) = γ(λ′
c) = γ(λc, λmax) = 1− λc/λmax. (6.2)

Since we aim to solve not only multi-class but also dynamic ratio problems, we need

to apply an adaptation mechanism to the maintained class ratio values. We use

the sliding window approach in our algorithms. Although the presented method is

theoretically able to handle multi-class problems with dynamic ratios, it still does not

take into account the problem of the deceptive majority (Sec. 2.1).

Dynamic Hybrid Ratio (DHR). A possible solution to the problem is adding a

concept drift detector and using its indications to guide the class balancing. There

are a few existing online drift detectors (e.g., DDM [126]), which indicate a change

discretely (absent/present) based on registered errors. Since we want to control the

number of duplications in a continuous way, we utilize a class-wise error calculated

131

within a sliding window. Different performance metrics can be used for this purpose.

In our case, we apply G-mean measure gc that is calculated in one-vs-all manner for

each class c separately [222].

For each incoming instance x we combine both metrics – the relative class ratio

λ′
c and error (1− gc) – using a simple weighted sum:

γ(mc) = γ(λ′
c, gc) = αλ(1− λ′

c) + αg(1− gc), (6.3)

where αλ +αg = 1. Assuming that both coefficients are equal, one can easily see that

when one class is simply a stationary majority (for example, λ′
c = 0.8 and gc = 1.0),

the strategy will practically ignore this class regarding oversampling, however, if a

majority class is drifting (class error is expected to be high, for example, λ′
c = 0.8

and gc = 0.1), the strategy will maintain some level of oversampling for this class to

help a model adapt to a new class concept.

6.3 Experimental study

In our experimental study of learning from multi-class imbalanced streams with

evolving class ratios, concept changes and under strict budget constraints we wanted

to check the following research questions.

• RQ1: Does our combination of active learning and oversampling improve the

former?

• RQ2: Do the hybrid balancing strategies outperform the simple ratio-based

approaches? Is one generation method better than another?

• RQ3: Is our single-classifier framework competitive, in terms of classifica-

tion performance and time consumption, compared with solutions proposed

for learning from multi-class imbalanced data streams – MOOB/MUOB [159],

132

as well as with other state-of-the-art ensembles that are very efficient in general

cases?

6.3.1 Data

To evaluate the given questions we utilized a set of 13 real benchmarks widely

used in the data stream mining domain. Most of them come from the UCI repos-

itory (Connect4, Covertype, EEG, Gas, Poker) and Kaggle competitions (Crimes,

Olympic, Tags). The rest of them are very popular in related publications. They are

summarized in Tab. 15.

Table 15.: Summary of the used data streams.

Name Instances Att Cls Dyn SC Drifts ∆

Activity 10 853 43 8 ✓ 4 1 0.89

Activity-Raw 1 048 570 3 6 ✓ 4 1 0.99

Connect4 67 557 42 3 - 3 2 0.84

Covertype 581 012 54 7 ✓ 4 1 0.97

Crimes 878 049 3 39 - 4 2 0.98

DJ30 138 166 8 30 - 4 2 0.99

EEG 14 980 14 2 ✓ 2 - -

Electricity 45 312 8 2 ✓ 2 1 0.98

Gas 13 910 128 6 ✓ 3 1 0.65

Olympic 271 116 7 4 - 3 2 0.95

Poker 829 201 10 10 ✓ 4 2 0.98

Sensor 2 219 804 5 57 ✓ 4 2 0.99

Tags 164 860 4 11 - 4 2 0.98

We decided to split our evaluation into two parts. The first one is based on

those real data streams that exhibit significant variability of class ratios over time

(Dynamic). Since all of the presented data streams are supposed to consist of concept

133

0 500k 1m

0.00

0.20

0.40

0.60

0.80
ACTIVITY-RAW

0 5k 10k

0.00

0.25

0.50

0.75

1.00

ACTIVITY

0 200k 400k

0.00

0.20

0.40

0.60

0.80

COVERTYPE

0 5k 10k 15k

0.00

0.25

0.50

0.75

1.00

EEG

0 20k 40k

0.30

0.40

0.50

0.60

0.70

ELEC

0 5k 10k

0.00

0.20

0.40

0.60

0.80
GAS

0 250k 500k 750k

0.00

0.20

0.40

0.60

POKER

0 1m 2m

0.00

0.01

0.02

0.03

SENSOR

Fig. 38.: Dynamic class ratios for the used multi-class real data streams, each color

represents a different class.

drifts, we can safely assume that, in at least some cases the class ratio dynamics occur

simultaneously with the concept changes. We selected 8 of such data streams (Fig.

38, up to 4 classes are shown to preserve clarity).

To make sure that we evaluate our algorithms exactly in the described cases,

we generated additional 12 semi-synthetic data streams, based on the real ones,

using two fully controlled modifications. Firstly, we assigned classes in the streams to

supersets (superclasses Ci), creating usually highly imbalanced majority and minority

concepts. Secondly, we changed the assignments at some points to simulate class ratio

and concept drifts. For example, if in Activity-Raw we assigned Walking and Jogging

objects (about 70% of all instances) to a superclass C1, and Standing objects (less

than 5%) to C2, then during a drift we reverse the relation, so all Walking and Jogging

objects are C2 now and all Standing instances become C1. As a result, we simulate

critical class ratio changes (C1 is about 5% and C2 is 70% after the change), as well

as concept drifts, since both superclasses are represented by different distributions of

objects before and after a change. The concept transitions were generated analogously

134

to the formula from MOA, using the sigmoid function:

f(t) = 1/(1 + e−s(t−t0)), (6.4)

where s controls the duration of change and t0 is a peak of it. We created drifts

of moderate lengths. All necessary details regarding the generation process can be

found in our repository: github.com/mlrep/imb-drift-20.

In Tab. 15 we enclose a number of such changes (Drifts) and the proportion of

objects that change concepts due to drifts (∆). Both the concept drifts and class ratio

changes are severe in almost all cases, therefore the generated data streams represent

the most difficult scenarios we can encounter. If we also take into consideration the

fact that, most likely, not all of the class ratio changes in the real streams occur with

concept drifts at the same time, it is reasonable to say that, when it comes to handling

the described dynamics, the generated streams are more challenging on average than

the selected real ones. Since obtained class ratios are dynamic, we enclosed their

values over time as an appendix in the repository.

6.3.2 Setup

Below we present the setup of our experiments. They can be easily reproduced,

using the environment available on the given website.

Algorithms. To investigate if our combination of oversampling and active learning

improves the latter (RQ1), we collected results for random AL-R (Random), AL-

RV (RandVar) and AL-S (Sampling) without instance generation. We evaluated

all combinations of our strategies SE-DCR, SE-DHR, SM-DCR, SM-DHR to

check if there are substantial differences between generation and balancing strategies

(RQ2). As an active learning strategy for our framework we picked theoretically

universal AL-RV and Adaptive Hoeffding Tree (AHT) [109] as a base learner, which

135

https://github.com/mlrep/imb-drift-20

is a state-of-the-art classifier in the streaming data domain. Finally, we juxtaposed

results for our strategies with already published ensembles for multi-class dynamic

ratio streams – MOOB and MUOB (RQ3). In addition, we compared them with

other well-known ensembles: Online Bagging (OZABAG) [223], Leveraging Bagging

(LB) [117], Adaptive Random Forest (ARF) [119], Online Boosting using ADWIN

(OB-ADW) [223] and Dynamic Weighted Majority (DWM) [121]. The ensembles

used different versions of the Hoeffding Tree, depending on their default settings. All

of them were connected with the AL-RV strategy for working on a budget.

Budgets. The algorithms were evaluated on different budgets, with a particular

focus on realistic low ones, B ∈ {100%, 50%, 20%, 10%, 5%, 1%, 0.5%, 0.1%}.

Configurations. We varied the size of windows for SE and SM to make them reactive

to the limited number of labeled instances ωmax ∈ {1000, 500, 200, 100, 50, 10, 10, 10}.

We set a fixed maximum number of duplications dmax = 100, a fixed number of

nearest neighbors k = 10 for SM, as well as, equal coefficients for the DHR strategies:

αλ = αg = 0.5. For the size of ensembles we chose 10 base learners (we have not

observed significant improvement for larger ensembles). All the Hoeffding Trees used

default settings. For AL-RV we selected default θ = 0.01 as its variable threshold

step.

Metrics. We collected classification efficacy and computing performance for all clas-

sifiers. For the former, we used the generalized multi-class form of G-mean, which is

given as Gn = n
√
R1 ·R2 · ... ·Rn, where Ri is a class-wise recall and n is a number of

classes [222]. It was calculated using the prequential evaluation method. Bonferroni-

Dunn ranking test with significance level α = 0.05 was used to compare examined

algorithms over multiple datasets. For the performance of computations we registered

update and classification time per instance separately.

136

6.3.3 Results

We present the average results for all algorithms and data streams under different

budget constraints in Tab. 16.

Improving active learning. The first observation is that our framework was able to

enhance results over simple active learning strategies in all cases except for SM-DCR

on B = 100%. For the real data streams, we can see that the SM strategies provide a

steady increase of the improvements, compared with the best active learning strategy

for a given setting, as budget constraints are being tightened from B = 100% down

to B = 0.5% (Fig. 39). It starts from about 1.1 for SM-DHR and ends at more than

1.36 for the same strategy. Results for the SE approaches exhibit the same trend for

budgets higher than B = 1%, with slightly lower values between approximately 1.09

and 1.29. Below the given budgets, SM and SE still provide some gain, however, they

are no longer able to increase it. For the harder semi-synthetic streams the trend is

even more clear (Fig. 39). The improvements for the SM strategies ranges from about

1.09 to more than 2.4 for DHR, and from 1.02 to almost 2.1 for SE using the same

generation strategy. The most significant change can be observed after we limit the

number of labeled instances below 5%, when the improvements become drastically

higher. We suppose that the difference between results for the real streams and the

semi-synthetic ones comes from the lower quality of the controlling metrics maintained

by our algorithms (windowed class ratios, errors). It can be balanced by the difficulty

of changes in a stream (like in the semi-synthetic ones and probably some of the real

ones), when there is a higher chance that our approach will be effectively utilized.

Regardless of the quality of improvements, they are caused by the fact that the

active learning strategies alone are not able to update base learners sufficiently while

learning from extremely limited instances – single, sparsely labeled examples intro-

137

Table 16.: Average G-mean values calculated over all real streams (top) and semi-

synthetic streams (bottom) for different algorithms given a budget.

REAL 100% 50% 20% 10% 5% 1% 0.5% 0.1%

AL-R 0.6415 0.6014 0.5586 0.4919 0.3966 0.3405 0.3237 0.2849

AL-RV 0.6158 0.5981 0.5327 0.4637 0.4531 0.3699 0.3175 0.2768

AL-S 0.6183 0.6034 0.5493 0.4775 0.4362 0.3802 0.3233 0.2702

SE-DCR 0.6983 0.7103 0.6580 0.6187 0.5724 0.4667 0.3741 0.3393

SE-DHR 0.7179 0.7250 0.6820 0.6282 0.5839 0.4561 0.3816 0.3318

SM-DCR 0.7048 0.7121 0.6625 0.6087 0.5706 0.4850 0.4313 0.3421

SM-DHR 0.7397 0.7395 0.6901 0.6459 0.5985 0.4980 0.4424 0.3534

MOOB 0.6441 0.6518 0.5756 0.5248 0.4880 0.3953 0.3619 0.3194

MUOB 0.2290 0.2191 0.2223 0.2165 0.2090 0.1774 0.2065 0.1622

OZABAG 0.6140 0.6150 0.5262 0.4852 0.4528 0.3984 0.3174 0.2757

LB 0.7404 0.7419 0.6946 0.6436 0.6064 0.4694 0.3461 0.2685

ARF 0.7597 0.7596 0.7001 0.6524 0.5977 0.4421 0.3453 0.2012

OB-ADW 0.6432 0.6324 0.5936 0.5538 0.5088 0.3886 0.3202 0.2498

DWM 0.7222 0.7223 0.6690 0.6181 0.5751 0.4254 0.3497 0.2866

SYNTH 100% 50% 20% 10% 5% 1% 0.5% 0.1%

AL-R 0.7229 0.6677 0.5970 0.5668 0.5088 0.3685 0.2992 0.2071

AL-RV 0.6628 0.6617 0.6047 0.5727 0.5108 0.3840 0.3079 0.1672

AL-S 0.6884 0.6713 0.6090 0.5642 0.5429 0.3882 0.2868 0.1593

SE-DCR 0.7399 0.7458 0.6973 0.6898 0.6645 0.5626 0.5434 0.4062

SE-DHR 0.7636 0.7758 0.7363 0.7144 0.6720 0.5707 0.5391 0.4330

SM-DCR 0.7198 0.7104 0.6713 0.6357 0.5954 0.5280 0.4967 0.4245

SM-DHR 0.7862 0.7938 0.7688 0.7439 0.7142 0.6359 0.5946 0.5019

MOOB 0.7369 0.7456 0.6743 0.6451 0.5922 0.4821 0.4256 0.3002

MUOB 0.4471 0.4208 0.4124 0.3895 0.3716 0.3318 0.2562 0.2444

OZABAG 0.6287 0.6262 0.5605 0.4999 0.4213 0.3208 0.2802 0.2226

LB 0.7936 0.7913 0.7312 0.6651 0.6123 0.4995 0.4264 0.2895

ARF 0.8183 0.8115 0.7603 0.7138 0.6683 0.5430 0.4644 0.3086

OB-ADW 0.7787 0.7614 0.7479 0.7115 0.6752 0.5718 0.5034 0.3603

DWM 0.7215 0.7195 0.6564 0.6459 0.6005 0.4606 0.4103 0.2656

138

100 50 20 10 5 1 0.5 0.1

1

1.1

1.2

1.3

1.4

1.5

Gmax

G
/G

m
a
x

vs AL - REAL

SE-DCR SE-DHR

SM-DCR SM-DHR

100 50 20 10 5 1 0.5 0.1

0.9

1

1.1

1.2

1.3

Gmax

vs ENS - REAL

SE-DCR SE-DHR

SM-DCR SM-DHR

100 50 20 10 5 1 0.5 0.1
0.9

1.2

1.5

1.8

2.1

2.4

Gmax

Budget [%]

G
/G

m
a
x

vs AL - SYNTH

SE-DCR SE-DHR

SM-DCR SM-DHR

100 50 20 10 5 1 0.5 0.1
0.8

0.9

1

1.1

1.2

1.3

1.4

Gmax

Budget [%]

vs ENS - SYNTH

SE-DCR SE-DHR

SM-DCR SM-DHR

Fig. 39.: Ratios of the average G-mean for our algorithms (G) to results for the best

(Gmax) active learning (left) and ensembles (right) on given budgets.

duce inadequate changes to models in terms of reaction to skewed data distributions

and severe concept drifts. Adding properly controlled oversampling helps with main-

taining sufficiently balanced classifiers and prevents underfitting. The fact that we are

able to increase the enhancements for lower budgets is particularly encouraging since

these are the most realistic scenarios [163]. Results of ranking tests for all budgets

(Fig. 40 and 41) show the significance of the differences.

Hybrid over class ratio. When we look at different combinations of our generation

and balancing strategies (Tab. 16), we can conclude that methods based on DHR are

generally better than those using DCR. One can also notice that the differences are

139

3 4 5 6 7 8 9 10 11 12 13

SM-DHR

LB

ARF

SM-DCR

SE-DHR

SE-DCR

DWM

MOOB

OB-ADW

OZABAG

ALR

ALRV

ALS MUOB

Fig. 40.: Bonferroni-Dunn test over all examined budgets for the real streams.

3 4 5 6 7 8 9 10 11 12 13

SM-DHR

OB-ADW

SE-DHR

ARF

LB

MOOB

SE-DCR

SM-DCR

DWM ALS

ALR

ALRV

OZABAG MUOB

Fig. 41.: Bonferroni-Dunn test over all budgets for the semi-synthetic streams.

more substantial for SM (up to about 0.04 for the real streams and up to almost 0.12

for the semi-synthetic ones) than for SE (up to 0.02-0.03 and 0.04, respectively), for

which they are on the brink of significance when averaged over all examined budgets

(Fig. 40 and 41). It may mean that improvements for the very simple generation

strategy are harder to achieve.

The differences occur for both groups of data streams. However, they are defi-

nitely more significant for the semi-synthetic ones. The class ratio driven approaches

are not the best solutions that we can find if with the class ratio changes come severe

concept drifts. In such scenarios, especially when a budget is limited, the majority

classes also need to be sufficiently handled by boosting the adaptation process with

additionally generated instances. The DHR strategies provide the additional objects,

based on the drift indicator – an error for a class. One should also notice that even if

we claim that the DHR approach is more useful when data streams are characterized

by more severe simultaneous class ratio and concept changes, it almost never performs

worse than the DCR strategy, regardless of the difficulty of drifts.

140

Generation methods. The observation that the gap between DCR and DHR is

more clear for SM than for SE is correlated with the fact that the former works

exquisitely well with DHR and disappointingly with DCR, especially for moderate

budgets between B = 20% and B = 5%. In particular, it can be seen for the semi-

synthetic streams (Fig. 41). SE is more stable and combines better with DCR,

however, at the same time it does not achieve as good results as SM with DHR.

Eventually, we do not distinguish any generation method as significantly better than

another.

Comparison with ensembles. Most importantly, although our algorithms do not

improve upon ensembles for high and very high budgets above B = 20%, the relation

between gain and budget is similar as for the active learning strategies. In most

cases, except for the lowest budget for the real data stream, we can observe that

with decreasing budget our chances for improvements increase (Fig. 39), which once

again, is a very important property since smaller numbers of labeled instances are

more realistic.

Analogously to the results comparing our solutions with the active learning, we

can observe that improvements upon the best ensembles on given budgets (usually

LB or ARF) are much more clear for the results obtained from more challenging

semi-synthetic streams. In particular, it can be noticed for our the most efficient

combination – SM-DHR – which was better than any of the considered ensembles for

the real streams on very low budgets below B = 5% (from about 1.05 to more than

1.2, Tab. 16) and for the semi-synthetic streams on low budgets below B = 20%

(from 1.01 to nearly 1.4). The rest of our strategies were at least competitive on

budgets lower than B = 10%. One should notice that SM-DHR once again was

resilient to very low budgets while compared to other algorithms. As a result, SM-

141

DHR turned out to be the best algorithm overall (Fig. 40 and 41), outperforming

all other classifiers. Also, SM-DCR was very competitive for the real streams (most

likely due to the less severe concurrent class ratio and concept changes) and SE-DHR

for the semi-synthetic ones.

Furthermore, it is worth mentioning that in nearly all cases with a limited budget

each of our algorithms, except for SM-DCR working on the semi-synthetic streams,

was better than MOOB and MUOB (Tab. 16), which are considered state-of-the-art

algorithms for the problem of learning from multi-class imbalanced data streams. In

addition, one can notice that the DCR-based combinations, which use the similar

balancing principle as MOOB, can also be better than the ensemble – SE-DCR ex-

hibits higher quality for budgets lower than 50%, SM-DCR when less than 5% labeled

instances are available. It is most likely caused by the fact that our strategies tend to

generate many more additional instances than the bagging-based algorithms, so they

are less likely to suffer from underfitting, like MUOB. Finally, the negative results

for the undersampling ensemble prove that using this technique while working with

highly limited budgets is not a reasonable approach.

The presented results show that our hybrid approach is adequate to the presented

challenging scenarios and that currently available solutions can be meaningfully im-

proved, especially under realistic budget constraints.

Time consumption. In Tab. 17 we enclose the average total running time per

instance calculated over all data streams (real and semi-synthetic), as well as we

distinguish proportions (bars in cells) of the time used for updates and classification.

Interestingly, while ensembles spend more time on classification, our strategies use

most of it for updates. Generally, there is also a pattern of dominating updates on

higher budgets for all algorithms – it is probably caused by the nature of the base

142

Table 17.: Average total running time [ms] per instance for all algorithms given a

budget. Update time is blue, classification is red.

Algorithm 100% 50% 20% 10% 5% 1% 0.5% 0.1%

AL-R 0.0203 0.0104 0.008 0.0099 0.0061 0.0052 0.0042 0.0041

AL-RV 0.0107 0.0124 0.0101 0.0064 0.0056 0.0051 0.0049 0.0041

AL-S 0.0135 0.0127 0.0128 0.0063 0.0059 0.0045 0.0043 0.0041

SE-DCR 0.1741 0.1596 0.0788 0.0473 0.0275 0.0093 0.0067 0.0049

SE-DHR 0.1614 0.1485 0.0807 0.0486 0.0306 0.0111 0.0083 0.0055

SM-DCR 1.1116 1.0767 0.4873 0.2579 0.1457 0.039 0.0225 0.0089

SM-DHR 0.9837 0.9403 0.4716 0.2699 0.166 0.051 0.027 0.0102

MOOB 0.1329 0.1482 0.0919 0.0689 0.0655 0.0556 0.054 0.0521

MUOB 0.0194 0.0199 0.0221 0.0197 0.0167 0.0182 0.0149 0.0114

OZABAG 0.0764 0.0827 0.0633 0.0562 0.0526 0.0471 0.0464 0.0446

LB 0.1187 0.1235 0.0822 0.0672 0.0588 0.0476 0.0446 0.0459

ARF 0.0722 0.0638 0.0372 0.0276 0.0225 0.0171 0.0164 0.015

OB-ADW 0.3092 0.2153 0.1193 0.0584 0.0467 0.0386 0.0355 0.0279

DWM 0.0833 0.0764 0.0524 0.0368 0.0284 0.0259 0.0263 0.0239

learner used (Hoeffding Trees), which for more labeled instances builds more complex

structures that require more time-consuming updates.

For high budgets above 10% we can segregate the solutions into three groups –

fast active learning methods and MUOB (about 0.005-0.02 ms), moderate SE along

with all other ensembles (0.06-0.3 ms), and relatively very slow SM strategies (0.48-

1.11 ms). The performance of the last one is caused mainly by the naive nearest

neighbor search within the sliding window, which can be improved using a dedicated

data structure. On the other hand, one should also notice that the differences signifi-

cantly change as budgets get lower – and these are the scenarios to which we dedicate

our methods.

143

100 50 20 10 5 1 0.5 0.1

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

tARF

Budget [%]

t/
t A

R
F

SE - ALL

DCR

DHR

100 50 20 10 5 1 0.5 0.1

0

3

6

9

12

15

18

21

tARF

Budget [%]

t/
t A

R
F

SM - ALL

DCR

DHR

Fig. 42.: Ratios of running time per instance for our algorithms (t) to the results for

ARF (tARF). The update time is blue, classification is red and the total time is green.

Ratios for DHR are in darker colors than for DCR.

It is worth noting that since all our strategies depend on the number of classes

(class ratio and error), we observed that the total running time for the real data

streams is higher on average than for the semi-synthetic streams (larger numbers of

classes).

In Fig. 42 we can observe how the ratios of the computation time for our strate-

gies to measurements for the best ensemble – ARF (on average) – change with budget.

We can clearly see that as the budget decreases the ratios decrease, in favor of our

methods. The SE approaches are competitive on the highest budgets and become

even faster than ARF if less than 5% labeled objects are available. The SM methods

are more than 15 times slower than ARF on B = 50%, however, they smoothly re-

duce the processing time (smaller windows, simpler AHT) and become competitive

for budgets below 5%. Furthermore, for both generation methods we can see that

the DCR strategies are slightly faster than DHR (probably because the latter ones

tend to generate more instances). Finally, even if ratios for the update time remain

144

unfavorable in most cases, the overall time reduces faster, since as the update time

drops for all algorithms the ensemble classification time starts dominating not only in

proportions (Tab. 17) but also in absolute values, compared with our single-classifier

framework.

6.4 Summary

To conclude, in this chapter we presented a single-classifier framework addressing

the problem of learning from multi-class imbalanced data streams with dynamic class

ratios and concurrently drifting concepts. We analyzed our and referential solutions

under a wide range of budgets for labeling, including very strict constraints when

even less than 1% of labeled instances are available. The experimental results most

importantly show the following.

• Combining active learning with oversampling improves the former by preventing

underfitting and equilibrating adaptation between classes (RQ1).

• Hybrid balancing strategies enhance simple approaches based on class ratio

when dealing with concurrent ratio and concept changes (RQ2).

• Our single classifier framework using the best configuration (SM-DHR) is able

to outperform existing ensemble solutions, which ignore the fact that concept

changes may occur simultaneously also for dominating classes, making them-

selves susceptible to what we call the deceptive majority (RQ3).

• Our solutions are competitive also in terms of running time per instance.

Finally, we observe that the presented strategies exhibit their primacy over active

learning and the ensembles especially when the number of labeled instances is criti-

cally low – it reflects in both classification quality and computing performance. We

145

find it essential since these are the most realistic scenarios one can encounter. Tak-

ing into account both metrics, we recommend using SE-DHR when relatively higher

budgets are available (above 5%) and SM-DHR for the highly limited ones (below

5%). They provide the best quality-time improvement ratio for the given ranges of

budgets.

In our future works, we will consider providing a more in-depth analysis of used

parameters (window sizes, numbers of duplications, hybrid ratio weights) in the con-

text of different concept and ratio changes, including their severity. We may also

investigate other than G-mean measures for balancing strategies.

146

CHAPTER 7

CONCEPT DRIFT DETECTION FROM

MULTI-CLASS IMBALANCED DATA

STREAMS

While there exist a plethora of drift detectors proposed in the literature, most of them

share two limitations: (i) they assume roughly balanced data distributions and thus

are likely to omit concept drift happening in minority classes; and (ii) they monitor

global data stream characteristics, thus detecting concept drifts that affect the entire

stream, not particular classes or decision regions. This makes the state-of-the-art drift

detectors unsuitable for mining imbalanced data streams, especially when multiple

classes are involved. There is a need to develop a new drift detector that is skew-

insensitive, can monitor multiple classes at once, and can rapidly adapt to changing

imbalance ratios and classes switching roles, as none of the existing methods is capable

of this.

In this chapter, we propose RBM-IM, a trainable concept drift detector for

continual learning from multi-class imbalanced data streams. It is designed as a

Restricted Boltzmann Machine neural network with skew-insensitive modifications of

the training procedure. We use it to track the reconstruction error for each class

independently and signal if any of them has been subject to a significant change

over the most recent mini-batch of data. Our drift detector re-trains itself in an

online fashion, allowing it to handle dynamically changing imbalance ratio, as well as

evolving class roles (minority classes becoming the majority and vice versa). RBM-

IM is capable of detecting drifts occurring at both global and local levels, allowing for

147

complex monitoring of multi-class imbalanced data streams and understanding the

nature of each change that takes place.

We offer the following novel contributions to the field of continual learning from

data streams.

• Robustness to class imbalance. RBM-IM provides robustness to multi-

class skewed distributions, offering excellent detection rates of drifts appearing

in minority classes without being biased towards majority concepts.

• Detecting local and global changes. RBM-IM is capable of detecting con-

cept drifts affecting only a subset of minority classes (even when only a single

class is affected), offering a better understanding of the nature of changes than

any state-of-the-art drift detector.

• Taxonomy of multi-class imbalanced data streams. we propose a system-

atic view of possible challenges that can be encountered in continual learning

from multi-class imbalanced data streams and formulate three scenarios that

allow us to model such changes.

• Extensive experimental study. we evaluate the efficacy of RBM-IM on a

thoroughly designed experimental test bed using both real-world and artificial

benchmarks. We introduce a novel approach towards evaluating concept drift

detectors on imbalanced data streams, by measuring their reactivity to drifts

occurring only in a subset of minority classes, as well as by checking their

robustness to increasing imbalance ratio among multiple classes.

7.1 Challenges in learning from multi-class imbalanced data streams

In static scenarios there is a plethora of works devoted to two-class imbalanced

problems, but much less attention is paid to a much more challenging multi-class

148

imbalanced setup [146]. The same carries over to the continual learning from data

streams, where most of the works focused on binary streams [22]. This is highly

limiting for many modern real-world applications and thus there is a need to develop

skew-insensitive techniques that can handle multiple classes [224].

There is no single universal approach to how to view and analyze multi-class

imbalanced data streams. Therefore, we propose a taxonomy of the most crucial

problems that can be encountered in this setting, creating three distinctive scenarios.

They cover various learning difficulties that affect one or more classes and thus pose

significant challenges for both drift detectors and classifiers.

(a) Before drift (b) I drift (c) II drift

Fig. 43.: Scenario 1 – global concept drift and dynamic imbalance ratio.

Scenario 1: Global concept drift and dynamic imbalance ratio. Here we

assume that all classes are subject to a real concept drift that will influence the

decision boundaries. Additionally, the imbalance ratio among the classes changes

together with the drift occurrences. However, class roles remain static and classes

denoted as minority stay minority during the entire stream processing. This scenario

poses challenges to drift detectors by varying the degree of changes in each class and

how they actually impact the decision boundaries. Changes in minority classes may

get overlooked by detector bias towards the majority ones, as usually they gather

statistics over the entire data stream. This is depicted in Fig. 43.

Scenario 2: Global concept drift, dynamic imbalance ratio, and changing

149

(a) Before drift (b) I drift (c) II drift

Fig. 44.: Scenario 2 – global concept drift, dynamic imbalance ratio, and changing

class roles.

class roles. Here we extend Scenario 1 by adding the third learning difficulty –

changing class roles. Now the imbalance ratio is subject to more significant changes

and, as a result, classes may switch roles – minority may become majority and vice

versa. This is especially challenging to track in a multi-class case, where relationships

among classes are more complex. Drift detectors have difficulties with keeping any

reliable statistics coming from classes that rapidly change their roles. This may lead

to frequently switching bias towards whichever class is currently the most frequent

one. This is depicted in Fig. 44.

(a) Before drift (b) I drift (c) II drift

Fig. 45.: Scenario 3 – local concept drift, dynamic imbalance ratio, and changing

class roles.

Scenario 3: Local concept drift, dynamic imbalance ratio, and changing

class roles. This is the most challenging scenario that retains dynamic imbalance

150

ratio and changing class roles from Scenario 2, but moves from global concept drift to

the local one. That means in a given moment only a subset of classes (or even a single

one) may be affected by a real concept drift, while the remaining ones are subject

to no changes or a virtual concept drift that does not impact decision boundaries

(see Sec. 2). In such a setting we should not only be able to tell if drift takes

place but also which classes are affected. It is a big step towards understanding

the dynamics of concept drift and offering classifier adaptation to specific regions

of decision space (leading to savings in time and computational resources). This

is the most challenging scenario for concept drift detectors, as changes happening in

minority classes will remain unnoticed when a detector is biased towards the majority

class. This is depicted in Fig. 45.

Real-world problems affected by multi-class imbalance and concept drift.

The three defined scenarios are not only interesting from the theoretical point of view

but also directly transfer to a plethora of real-world applications. In cybersecurity, we

deal with multiple types of attacks that appear with varying frequencies (multi-class

extremely imbalanced problems). Some of those attacks will dynamically change over

time to bypass new security settings, while legal transactions will not be affected

by such concept drift. In computer vision, target detection focuses on finding few

specific targets, differentiating them from the information coming from a much bigger

background. Targets may change their nature over time, being subject to variations,

or even camouflage. In natural language processing, we must deal with constantly

evolving wording/slang utilized by various minority groups, where changes in those

groups will happen independently.

151

7.2 Restricted Boltzmann Machine for imbalanced drift detection

Overview of the proposed method. We introduce a novel concept drift detector

for multi-class imbalanced data streams, implemented as a Restricted Boltzmann

Machine (RBM-IM) with leveraged robustness to skewed distributions via a dedicated

loss function. It is a fully trainable drift detector, capable of autonomous adaptation

to the current state of a stream, imbalance ratios, and class roles, without relying on

user-defined thresholds.

7.2.1 Skew-insensitive Restricted Boltzmann Machine

RBM-IM neural network architecture. Restricted Boltzmann Machines (RBMs)

are generative two-layered neural networks [225] constructed using the v layer of V

visible neurons and the h layer of H hidden neurons:

v = [v1, · · · , vV] ∈ {0, 1}V ,

h = [h1, · · · , hH] ∈ {0, 1}H
(7.1)

We deal with supervised continual learning from data streams (as defined in

Sec. 2), thus we need to extend this two-layer RBM architecture with the third z

layer for class representation. It is implemented as a continuous encoding, meaning

that each neuron in z will return its real-valued support for each analyzed class (thus

being responsible for the classification process). By mz we denote the vector of RBM

outputs with support returned by the z-th neuron for the m-th class. This allows to

define z, known also as the class layer or the softmax layer:

z = [z1, · · · , zZ] ∈m1, · · · ,mZ . (7.2)

This class layer uses the softmax function to estimate the probabilities of activation

of each neuron in z.

152

RBMs do not have connections between units in the same layer, which holds

for v, h, and z. Neurons in the visible layer v are connected with neurons in the

hidden layer h, and neurons in h are connected with those in the class layer z. The

weight assigned to a connection between the i-th visible neuron vi and the j-th hidden

neuron hj is denoted as wij, while the weight assigned to a connection between the

j-th hidden neuron hj and the k-th class neuron zk is denoted as ujk. This is used to

define the RBM energy function:

E(v,h, z) = −
V∑
i=1

viai −
H∑
j=1

hjbj −
Z∑

k=1

zkck

−
V∑
i=1

H∑
j=1

vihjwij −
H∑
j=1

Z∑
k=1

hjzkujk,

(7.3)

where ai, bj, and ck are biases introduced to v,h, and z respectively. Energy formula

E(·) for state [v,h, z] is used to calculate the probability of RBM of being in a given

state (i.e., assuming certain weight values), using the Boltzmann distribution:

P (v,h, z) =
exp (−E(v,h, z))

F
, (7.4)

where F is a partition function allowing to normalize the probability P (v,h, z) to 1.

Hidden neurons in h are independent and use features given by the visible layer

v. The activation probability of the j-th given neuron hj can be calculated as follows:

P (hj|v, z) =
1

1 + exp
(
−bj −

∑V
i=1 viwij −

∑Z
k=1 zkujk

)
= σ

(
bj +

V∑
i=1

viwij +
Z∑

k=1

zkujk

)
,

(7.5)

where σ(·) = 1/(1 + exp(−·)) stands for a sigmoid function.

The same assumption may be made for neurons in the visible layer v, when

values of neurons in the hidden layer h are known. This allows us to calculate the

153

activation probability of the i-th visible neuron as:

P (vi|h) =
1

1 + exp
(
−ai −

∑H
j=1 hjwij

)
= σ

(
ai +

H∑
j=1

hjwij

)
,

(7.6)

where one must note that given h, the activation probability of neurons in v does

not depend on z. The activation probability of the class layer (i.e., decision on which

class the object should be assigned to) is calculated using the softmax function:

P (z = 1k|h) =
exp

(
−ck −

∑H
j=1 hjujk

)
∑Z

l=1 exp
(
−cl −

∑H
j=1 hjujl

) , (7.7)

where k ∈ [1, · · · , Z] and k ̸= l.

RBM training procedure. As RBM is a neural network model, we may train it

using a loss function L(·) minimization with any gradient descent method. Standard

RBM most commonly uses the negative log-likelihood of both external layers v and z.

However, our RBM-IM architecture must be designed to handle multiple imbalanced

classes. Therefore, we need to modify this loss function to make RBM-IM skew-

insensitive. We will achieve this by using the effective number of samples approach

[226] that measures the contributions of instances in each class. This allows us to

formulate a class-balanced negative log-likelihood loss for RBM-IM:

L(v, z) = − 1− β

1− βx
m

log (P (v, z)) , (7.8)

where βx
m stands for the contribution of x-th instance to the m-th class. By taking

154

each independent weight wij, we may now calculate the gradient of the loss function:

∇L(wij) =
δL(v, z)

δwij

=
∑
v,h,z

P (v,h, z)vihj

−
∑
h

P (h|v, z)vihj.

(7.9)

This equation allows us to calculate the loss function gradient for a single instance.

However, as we use RBM as a drift detector, we must be able to capture the evolving

properties of a data stream. If we based our change detection on variations induced

by a single new instance, we would be highly sensitive to even the smallest noise

ratio. Therefore, our RBM-based drift detector must be able to work with a batch of

the most recent instances in order to capture the current stream characteristics. We

propose to define RBM-IM model for learning on mini-batches of instances. This will

offer significant speed-up when compared to traditional batch learning used in data

streams. For a mini-batch of n instances arriving in t time Mt = [xt
1, · · · , xt

n], we can

rewrite the gradient from Eq. 7.9 using expected values with loss function:

δL(Mt)

δwij

= Emodel[vihj]− Edata[vihj], (7.10)

where Edata is the expected value over the current mini-batch of instances and Emodel

is the expected value from the current state of RBM-IM. Of course, we cannot trace

directly the value of Emodel (as this would require immediate oracle access to ground

truth), therefore we must approximate it using Contrastive Divergence with k Gibbs

sampling steps to reconstruct the input data (CD-k):

δL(Mt)

δwij

≈ Erecon[vihj]− Edata[vihj]. (7.11)

After processing the t-th mini-batch Mt, we can update the wights in RBM-IM

155

using any gradient descent method as follows:

wt+1
ij = wt

ij − η (Erecon[vihj]− Edata[vihj]) , (7.12)

where η stands for the learning rate of the RBM-IM neural network (responsible for

the speed of model update and forgetting of old information). The way to update

the ai, bj, and ck biases, as well as weights ujk is analogous to Eq. 7.12 and can be

expressed as:

at+1
i = ati − η (Erecon[vi]− Edata[vi]) , (7.13)

bt+1
j = btj − η (Erecon[hj]− Edata[hj]) , (7.14)

ct+1
k = ctk − η (Erecon[zk]− Edata[zk]) , (7.15)

ut+1
jk = ut

jk − η (Erecon[hjzk]− Edata[hjzk]) . (7.16)

7.2.2 Drift detection with RBM-IM

While RBM-IM is a skew-insensitive generative neural network model, we can use

it as an explicit drift detector. The RBM-IM model stores compressed characteristics

of the distribution of data it was trained on. By using any similarity measure between

the data prototypes and properties of newly arrived instances, one may evaluate

if there are any changes in the distribution. This allows us to use RBM-IM as a

drift detector. Our model uses an embedded similarity measure for monitoring the

state of a stream and the level to which the newly arrived instances differ from the

previously observed concepts. RBM-IM tracks the similarity measure for every single

class independently, using the class layer continuous outputs. RBM-IM is a fully

trainable and self-adaptive drift detector, capable not only of capturing the trends

of changes in each class independently (versus state-of-the-art drift detectors that

monitor changes in all classes with an aggregated measure), but also of learning and

156

adapting to the current state of a stream, class imbalance ratios, and class roles. This

makes it a highly attractive approach for handling multi-class imbalanced streams

with various learning difficulties discussed in Sec. 4.

Measuring data similarity. In order to evaluate the similarity of newly arrived

instances to old concepts stored in RBM-IM, we will use the reconstruction error

metric. We can calculate it online for each new instance, by inputting a newly arrived

d-dimensional instance Sn = [xn
1 , · · · , xn

d , y
n] to the v layer of RBM. Then values of

neurons in v are calculated to reconstruct the feature values. Finally, class layer z

is activated and used to reconstruct the class label. This allows us to keep track of

the reconstruction error for each class independently, offering per-class drift detection

capabilities. We can denote the reconstructed vector for m-th class as:

S̃m
n = [x̃n

1 , · · · , x̃n
d , ỹ

n
1 , · · · , ỹnZ], (7.17)

where the reconstructed vector features and labels are taken from probabilities cal-

culated using the hidden layer:

x̃n
i = P (vi|h), (7.18)

ỹnk = P (zk|h). (7.19)

The h layer is taken from the conditional probability, in which the v layer is identical

to the input instance:

h ∼ P (h|v = xn, z = 1yn). (7.20)

This allows us to write the reconstruction error in a form of the mean squared error

between the true and reconstructed instance for the m-th class:

R(Sm
n) =

√√√√ d∑
i=1

(xn
i − x̃n

i)2 +
Z∑

k=1

(1yn
k − ỹnk)2. (7.21)

157

For the purpose of obtaining a stable concept drift detector, we do not look for a

change in distribution over a single instance, but for the change over the newly arriving

mini-batch of instances. Therefore, we need to calculate the average reconstruction

error over the recent mini-batch of data for the m-th class:

R(Mm
t) =

1

n

n∑
m=1

R(xt
m). (7.22)

Adapting reconstruction error to drift detection. In order to make the re-

construction error a practical measure for detecting the presence of concept drift, we

propose to measure the evolution of this measure (i.e., its trends) over arriving mini-

batches of instances. The analysis of the trends is done for each class independently,

allowing us to effectively detect local concept drifts. We achieve this by using the

well-known sliding window technique that will move over the arriving mini-batches.

Let us denote the trend of reconstruction error for the m-th class over time as Qr(t)
m

and calculate it using the following equation:

Qr(t)
m =

n̄m
tT̄Rt − T̄tR̄t

n̄tT̄ 2
t − (T̄t)2

. (7.23)

The trend over time can be computed using a simple linear regression, with the terms

in Eq. 7.23 being simply sums over time as follows:

T̄Rt = T̄Rt−1 + tR(Mm
t), (7.24)

T̄t = T̄t−1 + t, (7.25)

R̄t = R̄t−1 + R(Mm
t), (7.26)

T̄ 2
t = T̄ 2

t−1 + t2, (7.27)

where T̄R0 = 0, T̄0 = 0, R̄0 = 0, and T̄ 2
0 = 0. We capture those statistics for each

class using a sliding window of size W . Instead of using a manually set size, which

158

is inefficient for drifting data streams, we propose to use a self-adaptive window size

[108]. This eliminates the need for manual tuning of the window size that is used

for drift detection. To allow flexible learning from various sizes of mini-batches, we

must consider a case where t > W . Here, we must compute the terms for the trend

regression using the following equations:

T̄Rt = T̄Rt−1 + tR(Mt)− (t− w)R(Mm
t−W), (7.28)

T̄t = T̄t−1 + t− (t−W), (7.29)

R̄t = R̄t−1 + R(Mt)−R(Mm
t−W), (7.30)

T̄ 2
t = T̄ 2

t−1 + t2 − (t−W)2. (7.31)

The required number of instances n̄m
t to compute the trend of Qr(t)

m for m-th class

as time t is given as follows:

n̄t =


t if t ≤ W

W if t > W.

(7.32)

Drift detection. The above Eq. 7.23 allows us to compute the trends for every

analyzed mini-batch of data. In order to detect the presence of drift we need to have

the capability of checking if the new mini-batch differs significantly from the previous

one for each analyzed class. Our RBM-IM uses Granger causality test [227] on trends

from subsequent mini-batches of data for each class Qr(M
m
t) and Qr(M

m
t+1). This is a

statistical test that determines whether one trend is useful in forecasting another. As

we deal with non-stationary processes we perform the variation of Granger causality

test based on first differences [228]. Accepted hypothesis means that it is assumed

that there exists a Granger causality relationship between Qr(M
m
t) and Qr(M

m
t+1),

which means there is no concept drift on the m-th class. If the hypothesis is rejected,

159

RBM-IM signals the presence of concept drift on the m-th class.

7.3 Experimental study

In this section, we present the experimental study used to evaluate the quality

of RBM-IM. It was carefully designed to offer an in-depth analysis of the proposed

method and gain insights into its behavior in various multi-class imbalanced data

stream scenarios. We tailored this study to answer the following research questions.

• RQ1: Does RBM-IM offer better concept drift detection than state-of-the-art

drift detectors designed for standard data streams?

• RQ2: Does RBM-IM offer better concept drift detection than state-of-the-art

skew-insensitive drift detectors designed for imbalanced data streams?

• RQ3: What is the capability of RBM–IBM to detect local drifts that affect a

subset of minority classes?

• RQ4: What robustness to increasing imbalance ratio is offered by RBM-IM?

All methods and experiments were implemented in MOA environment [214] and run

on Intel Core i7-8365u with 64GB DDR4 RAM.

7.3.1 Data stream benchmarks

For the purpose of this experimental study, we selected 24 benchmark data

streams: 12 come from real-world domains and 12 were generated artificially using

the MOA environment [214]. Such a diverse mix allowed us to evaluate the effective-

ness of RBM-IM over a plethora of scenarios. Using artificial data streams allows us

to control the specific nature of drift and class imbalance, as well as to inject local

160

concept drift into selected minority classes. Artificial data streams use a dynamic im-

balance ratio that both increases and decreases over time. Real-world streams offer

challenging problems that are characterized by a mix of different learning difficulties.

Properties of the data stream benchmarks are given in Tab. 18. We report the high-

est imbalance ratio among all the classes, i.e., the ratio between the biggest and the

smallest class.

7.3.2 Setup

Reference concept drift detectors. As reference methods to the proposed RBM-

IM, we have selected three state-of-the-art concept drift detectors for standard data:

WSTD [130], RDDM [128], and FHDDM [134]; as well as two state-of-the-art

drift detectors for imbalanced data streams: PerfSim and DDM-CI. Parameters of

all the six drift detectors are given in Tab. 19.

Parameter tuning. In order to offer a fair and thorough comparison, we performed

parameter tuning for every drift detector and for every data stream benchmark. As

we deal with a streaming scenario, we used self hyper-parameter tuning [231] that is

based on the online Nelder-Mead optimization.

Base classifier. In order to ensure fairness when comparing the examined drift

detectors they all use Adaptive Cost-Sensitive Perceptron Trees [201] as a base classi-

fier. This is a skew-insensitive and efficient classifier capable of handling both binary

and multi-class imbalanced data streams, but is strongly dependent on an attached

concept drift detection component. Therefore, it offers an excellent backbone for our

experiments, allowing us to directly measure how a given drift detector impacts the

classification quality.

RBM-IM training. Our drift detector uses the first instance batch to train itself

161

Table 18.: Properties of real-world (top) and artificial (bottom) imbalanced data

stream benchmarks.

Dataset Instances Attr Cls IR Drift

Activity-Raw 1 048 570 3 6 128.93 yes

Connect4 67 557 42 3 45.81 unknown

Covertype 581 012 54 7 96.14 unknown

Crimes 878 049 3 39 106.72 unknown

DJ30 138 166 8 30 204.66 yes

EEG 14 980 14 2 29.88 yes

Electricity 45 312 8 2 17.54 yes

Gas 13 910 128 6 138.03 yes

Olympic 271 116 7 4 66.82 unknown

Poker 829 201 10 10 144.00 yes

IntelSensors 2 219 804 5 57 348.26 yes

Tags 164 860 4 11 194.28 unknown

Aggrawal5 1 000 000 20 5 50.00 incremental

Aggrawal10 1 000 000 40 10 80.00 incremental

Aggrawal20 2 000 000 80 20 100.00 incremental

Hyperplane5 1 000 000 20 5 100.00 gradual

Hyperplane10 1 000 000 40 10 200.00 gradual

Hyperplane20 2 000 000 80 20 300.00 gradual

RBF5 1 000 000 20 5 100.00 sudden

RBF10 1 000 000 40 10 200.00 sudden

RBF20 2 000 000 80 20 300.00 sudden

RandomTree5 1 000 000 20 5 100.00 sudden

RandomTree10 1 000 000 40 10 200.00 sudden

RandomTree20 2 000 000 80 20 300.00 sudden

at the beginning of the stream processing. It continuously updates itself in an online

fashion together with the base classifier.

Evaluation metrics. As we deal with multi-class imbalanced and drifting data

streams, we evaluated the examined algorithms using prequential multi-class AUC

162

Table 19.: Examined drift detectors and their parameters.

Abbr. Name Parameters

WSTD [130] Wilcoxon Rank Sum Test sliding window size ω ∈ {25, 50, 75, 100}
Drift Detection warning significance αw ∈ {0.01, 0.03, 0.05, 0.07}

drift significance αd ∈ {0.001, 0.003, 0.005, 0.007}
max. no of old instances min ∈ {1000, 2000, 3000, 4000}

RDDM [128] Reactive Drift Detection warning threshold αw ∈ {0.90, 0.92, 0.95, 0.98}
drift threshold αd ∈ {0.80, 0.85, 0.90.0.95}
min. no. of errors e ∈ {10, 30, 50, 70}
min. no. of instances min ∈ {3000, 5000, 7000, 9000}
max. no. of instances max ∈ {10000, 20000, 30000, 40000}
warning limit wL ∈ {800, 1000, 1200, 1400}

FHDDM [134] Fast Hoeffding Drift Detection sliding window size ω ∈ {25, 50, 75, 100}
allowed error δ ∈ {0.000001, 0.00001, 0.0001, 0.001}

PerfSim [229] Performance Similarity differentiation weights λ ∈ {0.1, 0.2, 0.3, 0.4}
min. no. of errors n = {10, 30, 50, 70}

DDM–CI [230] Drift Detection Method warning threshold αw ∈ {0.90, 0.92, 0.95, 0.98}
for online class imbalance drift threshold αd ∈ {0.80, 0.85, 0.90.0.95}

min. no. of errors e ∈ {10, 30, 50, 70}

RBM-IM RBM Drift Detection mini–batch size M ∈ {25, 50, 75, 100}
for imbalanced data streams visible neurons V = no. of features

hidden neurons H ∈ {0.25V , 0.5V , 0.75V ,V }
class neurons Z = no. of classes

learning rate η ∈ {0.01, 0.03, 0.05, 0.07}
Gibbs sampling steps k ∈ {1, 2, 3, 4}

(pmAUC) [230] and prequential multi-class G-mean (pmGM) [232].

Windows. We used a window size W = 1000 for calculating the prequential met-

rics. ADWIN self-adapting window was used for both RBM-IM and reference drift

detectors to alleviate the need for manual window size tuning [233].

Statistical analysis. We used the Friedman ranking test with Bonferroni-Dunn

post-hoc and Bayesian signed test [234] for statistical significance over multiple com-

parison with significance level α = 0.05.

Drift injection. For experiment 2, we inject local concept drift starting with the

163

smallest minority class and then add classes according to their increasing size. This al-

lows us to consider the most difficult scenarios, where the smallest classes are affected

by the local concept drift and thus most likely to be neglected.

7.3.3 Experiment 1: Drift detectors comparison

The first experiment was designed to analyze the behavior of the six exam-

ined drift detectors under two different metrics measured on all 24 benchmark data

streams. This will allow us to evaluate how competitive is RBM-IM as compared with

the state-of-the-art reference methods. Results according to pmAUC and pmGM are

Table 20.: Results according to pmAUC and pmGM for the examined concept drift

detectors.

Dataset
pmAUC pmGM

WSTD RDDM FHDDM PerfSim DDM–CI RBM-IM WSTD RDDM FHDDM PerfSim DDM–CI RBM-IM

Activity-Raw 45.43 46.23 48.45 72.81 74.29 79.92 51.06 54.10 55.82 76.11 78.59 82.04

Connect4 54.19 53.48 55.27 64.19 69.10 75.04 55.03 55.39 56.29 66.08 70.21 77.92

Covertype 33.19 34.12 35.72 41.24 40.58 53.98 32.45 33.10 35.98 40.19 41.02 54.02

Crimes 19.93 20.04 22.11 28.56 30.02 64.59 21.88 23.92 26.01 30.99 32.07 69.58

DJ30 26.94 25.98 26.02 34.11 33.98 59.04 27.45 27.11 28.73 36.71 35.48 61.29

EEG 58.14 59.98 62.29 70.08 74.22 72.03 59.85 60.98 64.67 72.93 77.29 74.13

Electricity 68.94 72.10 73.45 80.04 83.20 79.39 70.45 75.90 77.28 83.92 85.44 81.99

Gas 48.83 47.23 46.92 63.59 67.54 64.20 50.05 49.54 49.17 65.98 70.02 66.13

Olympic 72.98 70.34 74.53 80.08 83.19 87.01 73.95 71.91 76.02 83.19 86.88 89.24

Poker 72.11 69.65 72.98 84.65 87.91 91.03 74.46 70.97 74.52 87.11 89.34 93.06

IntelSensors 9.45 11.45 13.99 36.23 37.08 58.10 10.02 13.01 14.38 37.82 38.03 60.39

Tags 30.45 28.67 29.45 42.68 40.18 39.04 33.10 30.08 31.14 45.28 43.21 41.02

Aggrawal5 78.34 77.45 80.41 84.92 88.34 90.38 77.19 79.02 80.93 85.99 90.02 93.01

Aggrawal10 70.12 68.34 70.23 74.99 78.32 88.02 71.04 70.16 71.88 75.38 79.14 90.49

Aggrawal20 55.62 56.23 58.93 65.76 66.98 83.87 56.45 57.22 59.39 66.28 67.57 85.09

Hyperplane5 62.05 63.66 62.07 70.45 73.98 75.06 65.39 67.20 66.14 74.82 78.05 81.80

Hyperplane10 53.56 54.37 54.02 63.74 66.59 72.30 56.93 59.14 57.92 66.72 70.56 78.03

Hyperplane20 40.04 38.45 42.19 50.10 57.67 66.48 42.06 41.99 40.86 52.19 59.37 68.27

RBF5 80.18 78.56 82.40 90.48 92.36 92.78 83.47 81.59 84.99 92.12 94.82 94.97

RBF10 69.45 67.84 73.29 82.19 84.48 88.82 72.19 70.48 76.44 85.11 87.81 90.26

RBF20 53.18 52.88 54.01 70.24 71.93 83.08 55.98 54.90 57.73 73.89 74.84 85.30

RandomTree5 45.29 47.21 47.93 58.90 64.32 67.98 46.12 48.52 49.11 60.05 66.30 69.93

RandomTree10 31.63 33.19 35.02 50.02 53.87 63.01 32.79 33.90 36.14 51.58 55.20 64.97

RandomTree20 19.83 20.04 21.38 36.29 43.22 59.42 20.02 20.88 22.94 38.01 44.87 60.33

ranks 5.46 4.78 3.84 2.97 2.56 1.39 5.80 5.05 4.15 2.45 2.29 1.26

164

1 2 3 4 5 6

RBM-IM

DDM-CI

PerfSim FHDDM

RDDM

WSTD

Fig. 46.: Bonferroni-Dunn test (pmAUC).

1 2 3 4 5 6

RBM-IM

DDM-CI

PerfSim FHDDM

RDDM

WSTD

Fig. 47.: Bonferroni-Dunn test (pmGM).

given in Tab. 20, Fig. 46 and 47 depict the outcomes of the post-hoc statistical tests of

significance, while Fig.21 presents average processing time per batch. Fig. 48 and 49

present visualizations of the Bayesian signed test for pairwise comparisons with two

best performing reference detectors.

Comparison with standard drift detectors. The standard drift detectors re-

turn unsatisfactory performance for all of the examined multi-class imbalanced data

streams. This shows that the metrics collected by them are unsuitable to monitor

skewed data streams. This also indicates that drift detectors, despite not being ac-

tually trainable models, are still prone to class imbalance. Despite the fact that the

underlying classifier used was designed for imbalanced data streams, it could not offer

accurate predictions when being fed incorrect information from the drift detectors.

Especially in the case of datasets with a high number of classes (such as Crimes, DJ20,

Table 21.: Results according to average processing times [s] per batch for the examined

concept drift detectors.

Time WSTD RDDM FHDDM PerfSim DDM–CI RBM-IM

Test 17.26±3.11 18.11±4.72 16.54±2.98 8.92±3.07 9.78±4.14 6.28±1.08

Update 0.02±0.01 0.08±0.02 0.11±0.05 19.83±6.98 18.54±7.82 12.22±0.92

165

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

Fig. 48.: Visualizations of the Bayesian signed test for comparison between PerfSim

and RBM-IM for pmAUC (left) and pmGM (right).

IntelSensor, or the artificial ones) standard drift detectors returned performance only

slightly above a random guess. Those detectors were not capable of capturing changes

affecting at the same time multiple class distributions and imbalance ratios. RBM-IM

alleviated those limitations while displaying comparable computational complexity.

Answer to RQ1: Yes, RBM-IM offers significant improvements over standard drift

detectors when applied to monitoring multi-class imbalanced data streams. Standard

detectors cannot handle both a high number of classes and simultaneous changes in

distributions and imbalance ratios. This shows that we need to have dedicated drift

detectors for such difficult scenarios.

Comparison with skew-insensitive drift detectors. Skew-insensitive detectors

performed significantly better when compared with their standard counterparts. How-

ever, for most of the real-world benchmarks and for all the artificial ones they still

could not compete with RBM-IM. The only four datasets on which they returned

a slightly better performance were EEG, Electricity, Gas, and Tags. All of them

are relatively small and have a low number of classes. Especially the former factor

166

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

Fig. 49.: Visualizations of the Bayesian signed test for comparison between DDM-CI

and RBM-IM for pmAUC (left) and pmGM (right).

might have had a strong impact on RBM-IM. As this is a trainable drift detector,

it probably suffered from the problem of underfitting when learning from small data

streams. This could be potentially alleviated by combining RBM-IM with transfer

learning or instance exploitation techniques, which we will investigate in our future

works. For all the remaining 20 data stream benchmarks RBM-IM outperformed in a

statistically significant manner both PerfSim and DDM-CI. This can be contributed

to the compressed information about the current concept for each class stored within

the RBM-IM structure, which allowed for a significantly more informative analysis of

the changing properties of incoming instances.

Answer to RQ2: Yes, RBM-IM is capable of outperforming state-of-the-art skew-

insensitive drift detectors, while additionally offering faster detection and update

times. This is especially visible on datasets with a high number of classes, where

monitoring simple performance measures is not enough to accurately and timely de-

tect occurrences of drifts. Moreover, by being a trainable detector RBM-IM can better

adapt to changes in data streams, allowing fine-tuned encapsulation of the definition

167

of what currently is considered a temporal concept.

7.3.4 Experiment 2: Detection of local concept drifts

This experiment was designed to understand if and how the examined drift de-

tectors can handle the appearance of local concept drifts on top of changing imbalance

ratios and class roles (see Sec. 3 – Scenario 3 for more details). We carried this exper-

iment only on artificial benchmarks, as they allowed us to directly inject concept drift

into a selected number of classes. We evaluated how the performance of drift detec-

tors changes with the decrease in the number of classes being affected by the concept

drift. For each of the 12 benchmark data streams, we created scenarios where from 1

to M classes are being affected by the drift, the M case standing for every single class

in the stream being subject to the concept drift. Fig. 50 depicts the behavior of all

the six drift detectors under various levels of the local concept drift for the pmAUC

metric. We do not show plots for pmGM as they have very similar characteristics

and would not provide any additional insights. Please note that the smaller number

of classes that are subject to concept drift, the more difficult its detection becomes.

Comparison with standard drift detectors. Unsurprisingly, standard detectors

completely failed when facing the task of local drift detection. When the number of

classes subject to concept drift dropped below 80%, we could see significant drops

in their pmAUC. When the number of affected classes dropped below 50%, all three

detectors started to completely ignore the presence of any drift. This crucially im-

pacted the underlying classifier that lost any adaptation capabilities, as drift detectors

were never signaling any change being present. Such results clearly support our ear-

lier statement that standard drift detectors cannot handle local changes, as statistics

they monitor relate to the entire stream, not specific classes. Furthermore, in the case

of imbalanced multi-class drifting streams, the underlying bias toward the majority

168

5
0

6
0

7
0

8
0

9
0

Aggrawal5

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5

WSTD

RDDM

FHDDM

PerSim

DDM−OCI

RBM−IM

2
0

4
0

6
0

8
0

Aggrawal10

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5 6 7 8 9 10

2
0

4
0

6
0

8
0

Aggrawal20

no. of classes with drift

p
m

A
U

C
[%

]

1 3 5 7 9 11 13 15 17 19

3
0

4
0

5
0

6
0

7
0

8
0

Hyperplane5

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5

2
0

3
0

4
0

5
0

6
0

7
0

Hyperplane10

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5 6 7 8 9 10

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Hyperplane20

no. of classes with drift

p
m

A
U

C
[%

]

1 3 5 7 9 11 13 15 17 19

6
0

7
0

8
0

9
0

RBF5

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5

4
0

5
0

6
0

7
0

8
0

9
0

RBF10

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5 6 7 8 9 10

2
0

4
0

6
0

8
0

RBF20

no. of classes with drift

p
m

A
U

C
[%

]

1 3 5 7 9 11 13 15 17 19

2
0

3
0

4
0

5
0

6
0

7
0

RandomTree5

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5

1
0

2
0

3
0

4
0

5
0

6
0

RandomTree10

no. of classes with drift

p
m

A
U

C
[%

]

1 2 3 4 5 6 7 8 9 10

0
1
0

2
0

3
0

4
0

5
0

6
0

RandomTree20

no. of classes with drift

p
m

A
U

C
[%

]

1 3 5 7 9 11 13 15 17 19

Fig. 50.: Relationship between pmAUC and the number of classes affected by the

local drift for the artificial benchmarks. The lower the number of classes subject to

concept drift, the more difficult its detection.

169

class had a strong impact on those statistics. This damaged the reactivity of those

detectors to an even greater degree, as changes happening in minority classes were

obscured by static properties of the majority class.

Comparison with skew-insensitive drift detectors. This experiment showed

the weak side of the skew-insensitive drift detectors published so far. While they can

display some robustness to changing class ratios and global concept drift, they did

not perform significantly better than standard detectors when facing local drifts. For

more than 90% of classes being affected by drift, both PerfSim and DDM-CI returned

satisfactory performance. Their quality started degrading when less than 70% of

classes were being affected, reaching the lowest plateau for less than 30% of classes

being affected. This shows that despite the fact of monitoring some performance

metrics for each class (like DDM-CI monitors recall) they do not extract strong enough

properties of those classes to properly detect local drifts. Only when the majority of

classes become subject to concept drift those detectors can pick up local changes.

RBM-IM sensitivity to local drifts. RBM-IM displayed an excellent sensitivity to

local drifts, even when they affected only a single class. This observation holds for any

dataset, any imbalance ratio, and any total number of classes. This can be contributed

to the effectiveness of the reconstruction error, used as a change detection metric,

combined with storing compressed information about each class independently, and

being able to compare reconstruction error for each class individually. This allows

RBM-IM to detect local drifts that at a given moment affect any number of classes.

Answer to RQ3: RBM-IM is the only drift detector among the examined ones that

can correctly detect local concept drifts, even when they affect only a single minority

class. This allows to gain a better understanding of what is the exact nature of

changes affecting the data stream and which classes should be more carefully analyzed

170

to discover useful knowledge. This RBM-IM’s capability of offering at the same time

global and local concept drift detection is a crucial step towards explainable drift

detection and gaining deeper insights into dynamics behind data streams, especially

those imbalanced.

7.3.5 Experiment 3: Robustness to changing imbalance ratio

The third experiment was designed for evaluating the robustness of the examined

drift detectors to changing imbalance ratio, especially for extremely imbalanced cases

(IR > 400). This will allow us to test the flexibility and trustworthiness of skew-

insensitive mechanisms used in the detectors and to see how reliable they are. For

each of 12 benchmark data streams, we created scenarios in which we generate varying

imbalance ratios from 50 to 500. Fig. 51 depicts the behavior of the six drift detectors

under various levels of class imbalance for the pmAUC metric. We do not show plots

for pmGM as, analogously to the previous experiment, they are very similar.

Analyzing robustness to changing imbalance ratios. As expected the stan-

dard drift detectors cannot handle any class imbalance ratios and do not return any

acceptable results, omitting drift detection. This can be seen in the extremely poor

performance of the underlying classifier that stopped being updated and could not

handle new incoming concepts. Two reference skew-insensitive detectors maintain

acceptable robustness to small and medium imbalance ratios (IR < 200), but start

to critically fail with further increasing IR. At extreme levels of IR their performance

becomes similar to standard detectors. This shows that none of the existing detec-

tors can handle high imbalance ratios in multi-class data streams. RBM-IM offers

excellent and stable robustness, filling the gap and providing a sought-after robust

drift detection approach. We can contribute this to a combination of the used loss

function and the ability of RBM-IM to continually learn from the stream. This is a

171

2
0

4
0

6
0

8
0

Aggrawal5

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

WSTD

RDDM

FHDDM

PerSim

DDM−OCI

RBM−IM

2
0

4
0

6
0

8
0

Aggrawal10

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

2
0

4
0

6
0

8
0

Aggrawal20

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Hyperplane5

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Hyperplane10

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

0
2
0

4
0

6
0

Hyperplane20

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

2
0

4
0

6
0

8
0

RBF5

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

2
0

4
0

6
0

8
0

RBF10

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

2
0

4
0

6
0

8
0

RBF20

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

1
0

2
0

3
0

4
0

5
0

6
0

7
0

RandomTree5

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

2
0

4
0

6
0

8
0

RandomTree10

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

RandomTree20

multi−class imbalance ratio

p
m

A
U

C
[%

]

50 100 200 300 400 500

Fig. 51.: Relationship between pmAUC and changing imbalance ratio for the artificial

benchmarks. The higher the imbalance ratio, the higher the disproportions among

multiple classes.

172

massive advantage, as all other drift detectors are using some preset rules for deciding

if the drift is present or not. RBM-IM can learn the current distribution in a skew-

insensitive manner, making its drift detection much more accurate and not affected

by the imbalance ratio.

Answer to RQ4: RBM-IM offers excellent robustness to various levels of dynamic

imbalance ratio in multi-class scenarios. Due to its trainable nature, RBM-IM is

capable of quickly adapting to the current state of any stream and re-aligning its

own structure regarding class ratios and class roles. This is the only drift detector

displaying robustness to extremely high levels of class imbalance (IR > 400).

7.4 Lessons learned

Let us now present a short summary of insights and conclusions that were drawn

from both the theoretical and experimental parts of this work.

Unified view on challenges in imbalanced multi-class data streams. Contin-

ual learning from non-stationary and skewed multiple distributions is a challenging

topic that requires more attention from the research community. It offers an excel-

lent field for developing and evaluating novel learning algorithms while calling for

enhancing our models with various valuable robust characteristics. Three mutually

complementary scenarios were identified by us, each dealing with different learning

difficulties embedded in the nature of data. One must remember that in multi-class

imbalanced streams both distributions, imbalance ratios, and class roles may change

over time and our models must be capable of swift adaptation to such evolving data.

Advantages of trainable drift detector. To the best of our knowledge, the exist-

ing state-of-the-art drift detectors are realized as external modules that track some

properties of the stream and use them to decide if a drift should be detected or

173

not. However, those models use static rules for determining the degree of change

that constitutes drift presence. This significantly limits them in capturing the unique

properties of each concept and thus may negatively impact their reactivity to changes.

We propose to use a trainable drift detector that can extract and store the most im-

portant characteristics of the current state of the stream and use them to make an

informative and guided decision on deciding whether the underlying classifier should

be retrained or not.

Handling global and local drifts. Most of the works in drift detection focus on

detecting global drifts that affect the entire stream. Detectors gather information

from every single instance and use those statistics to make a decision. However,

this makes them less sensitive to local drifts that affect only certain classes. The

situation becomes even more challenging when combined with multi-class imbalanced

distributions. Here, local drifts affecting the minority classes would go unnoticed,

as gathered statistics will be biased towards the majority classes. This shows the

importance of monitoring each individual class for local changes. This also provides

us with valuable insights into the nature of concept drifts and helps us understand

dynamics of changes. RBM-IM stores information about each class independently,

allowing for precise drift detection even if it affects only a single minority class.

Impact of class imbalance on drift detection. Not enough attention has been

given to the interplay between the concept drift and class imbalance. We observed

that imbalanced distributions will directly affect each drift detector in two possible

ways: (i) enhancing the presence of small changes in the majority classes; and (ii)

diminishing the importance of changes in the minority classes. The former problem

is caused by statistics gathered from more abundant classes that will dominate the

detector and thus may cause false alarms, as even small changes will be magnified by

174

the sheer disproportion among classes. The latter problem is caused by the minority

classes not contributing enough to the drift detector statistics and thus not being

able to trigger it to cause an alarm. We showed that by enhancing RBM-IM with a

skew-insensitive loss function we are able to handle a high range of imbalance ratios

in multi-class data streams.

7.5 Summary

In this chapter, we have discussed an important area of learning from multi-class

imbalanced data streams under concept drift. We proposed a unifying taxonomy of

challenges that may be encountered when learning from such data, and identified

three realistic scenarios representing various types of learning difficulties. This was

the first complete attempt to understand and organize challenges arising in this area

of machine learning. We introduced RBM-IM, a novel and trainable drift detector for

monitoring changes for continual learning from multi-class imbalanced data streams.

Our research was motivated by an apparent lack of drift detection methods designed

for skewed multi-class and evolving streams. We developed our drift detector on the

basis of the Restricted Boltzmann Machine neural network with a skew-sensitivities

loss function. We used it to store compressed information about each class indepen-

dently and use the reconstruction error over mini-batches of data to detect concept

drift per class. This, combined with the loss function robust to imbalanced data,

allowed RBM-IM to be highly sensitive and reactive to local concept drifts that affect

only a small subset of minority classes.

In our future works, we plan to combine RBM-IM with techniques for handling

underfitting (to make it applicable to small data streams), as well as make it robust

to adversarial concept drifts that may be injected by a malicious party as a poisoning

attack.

175

CHAPTER 8

UNSUPERVISED DRIFT DETECTOR

ENSEMBLES FOR DATA STREAM MINING

The blind adaptation to an incoming data stream may very easily turn out to be

impractical, if we take into consideration a substantial constraint put on every super-

vised adaptive machine learning model – limited labeling budget [163]. Also, spending

the budget on new data points, when there is no change, will inevitably lead to high

unnecessary costs that could be avoided. On the other hand, informed methods up-

date a model only when it is really needed, so after a drift occurred. In such a setting,

a reliable drift detector is a core element of such a system.

Unsupervised detectors do not require any additional labels, so by utilizing them

we may avoid the inconvenience of spending budget for saving it, which occurs in the

case of the supervised drift detectors. Furthermore, by applying more sophisticated

and meticulous detection [141] we may guide our adaptation even more precisely and,

as a result, achieve even more reasonable budget spending. In this context, interesting

ideas include local detection, which keeps attention to regional changes in features

[235] and ensemble techniques, which have been proven to be very effective in cases

when we have multiple weak models [22]. The latter may be the case when we have to

limit our labeling and we are forced to rely on uncertain information from unlabeled

data.

In this chapter, we propose an unsupervised incremental detector that reliably

recognizes changes in feature subspaces, utilizing ensemble techniques. To the best

of our knowledge, it is the first attempt to use unsupervised ensembles of detectors

176

for the purpose of local detection. We address the problem of budget spending by

including the whole detector in a streaming framework in which an adaptive classifier

is updated with some portion of labeled instances only when a substantial local change

is detected by the committees.

8.1 Detection under labeling constraints

Strictly unsupervised drift detectors aim at finding changes only in unlabeled

data without requiring additional supervision. Such approaches are usually imple-

mented in a form of a statistical comparison of two samples of data. Well-known tests

like Kolmogorov-Smirnov, two-sample t-test, Wilcoxon rank sum or Wald-Wolfowitz

can be used directly in a univariate way, by applying them to individual features and

combining the results [139]. In fact, we create an ensemble of detectors by doing

this, and various combinations of unsupervised detectors can be used for this purpose

[135]. Another interesting framework (LDCNet) has been proposed in [236]. This

algorithm utilizes prior information about possible data distributions and using an

ensemble of unsupervised detectors, decides if a current stream switched to one of the

given concepts.

The main problem with such approaches is that they ignore dependencies between

features (univariate tests), making themselves susceptible to increased false positive

rates. On the other hand, using much more complex multivariate approaches may

be prohibitive in the data streams domain, since even simple univariate methods

tend to be significantly slower than the supervised algorithms [237]. An intermediate

solution based on feature subspaces may be a good approach to balancing quality and

complexity.

We say that as opposed to the time-based detectors, which focus on finding

a moment of a drift, region-based detectors are oriented on the spatial search. In

177

general, these algorithms monitor local partitions of data and detect dissimilarities

between old and recent states. One of such algorithms is NN-DVI [235], which applies

a nearest-neighbors-based partitioning and checks whether distribution within each

created partition is stationary. Various partitioning schemes [140] or dissimilarity

measures [141] can be applied. The most crucial aspect of such methods is the fact

that we get very precise information about drifts, namely their localization, and we

can utilize it to intensify adaptation in specific regions [141]. Having such an insight

into data may also help us with maintaining a high quality of detection and, by

limiting false positives, it may limit the number of labeled instances we ask for. It is

also worth mentioning that the mentioned ensembles of univariate detectors can be

treated as a special case of spatial algorithms – in this case, partitioning is defined

by features.

Our approach focuses on combining the potential strength of ensembles with

local detection. We build our fully unsupervised solution based on the incremen-

tal Kolmogorov-Smirnov test [238]. In order to limit the number of false positives

generated by sensitive univariate detections and at the same time to avoid complex

multivariate computations, we encapsulate multiple detectors in ensembles specialized

in different diversified feature subspaces. In the following sections, we describe the

motivations for our choices in more detail, as well as present an empirical evaluation

of our algorithm.

8.2 Incremental Kolmogorov-Smirnov test

In this section, we will present the standard Kolmogorov-Smirnov test and discuss

its incremental version and how can it be applied for the purpose of unsupervised drift

detection.

Kolmogorov-Smirnov test. Kolmogorov-Smirnov (KS) test assumes that two sam-

178

ples A and B contain univariate observations. KS aims at deciding if we can reject

the null hypothesis that both A and B originate from the same distribution, with sig-

nificance level α. KS requires no a priori information about data distribution, apart

from the assumption that data is i.i.d.

The null hypothesis can be rejected at level α if the following is satisfied:

D > c(α)

√
n + m

nm
, (8.1)

where c(α) can be retrieved from a known statistical table, while n and m are the

number of observations in A and B respectively. On the right side of this inequality

we have the target p-value, while D is the Kolmogorov-Smirnov statistic (obtained

p-value). It can be calculated as follows:

D = sup
x
|FA(x)− FB(x)|, (8.2)

where

FC(x) =
1

|C|
∑

c∈C,c≤x

1. (8.3)

And it is important to note that there exist an efficient way of computing D:

D = max
x∈A∪B

|FA(x)− FB(x)|. (8.4)

KS test is a popular method for analyzing univariate samples and finds common

applications in machine learning and data mining. However, it does not work with

data streams and thus must be adapted to incremental domains.

Incremental Kolmogorov-Smirnov test. This version of KS assumes that A and

B may change over time, thus fulfilling requirements for data stream mining methods.

Incremental Kolmogorov-Smirnov (IKS) test [238] creates a data structure storing the

current state of samples and is based on five operations: (i) inserting new observation

179

into A; (ii) inserting new observation into B; (iii) removing old observation from

A; (iv) removing old observation from B; (v) performing KS test. The first four

operations must be done in a logarithmic time to the total number of observations to

make it applicable to data streams. The fifth operation time is constant.

IKS uses |A| and |B| along m and n. The distinction lies in |A| and |B| standing

for the number of observations inserted into the data structure, while m and n stand

for the total number of elements in these samples. This allows for controlling how

many instances incoming from the data stream are actually used to update A and B,

thus allowing for discarding potentially noisy or irrelevant observations.

IKS assumes that D is being computed in situations when |A| = r|B|, where

r ∈ R is a constant parameter used during stream processing. This allows for setting

the relationships between the two samples being compared, which in data stream

context are realized as two sliding windows – one storing instances from the previous

stream state and the other with newly arriving instances. As in most cases, we want

both windows to be of identical size, then r = 1. However, changing the relationships

between the sizes of those two windows may be useful for detecting specific types of

drifts.

We can rewrite Eq. 8.4 to incorporate |A| = r|B|:

D =
1

|A|
max
x∈A∪B

|F ′
A(x)− F ′

B(x)|, (8.5)

where F ′
A is a sum of ones:

F ′
A(x) =

∑
a∈A,a≤x

1, (8.6)

and F ′
B is a sum of r’s:

F ′
B(x) =

∑
b∈B,b≤x

r. (8.7)

Furthermore, we can define G(x) = F ′
A(x)−F ′

B(x), thus obtaining a new formulation

180

of D:

D =
1

|A|
max

{(
max
x∈A∪B

G(x)

)
,−
(

min
x∈A∪B

G(x)

)}
(8.8)

We should have a data structure (e.g., array) that stores all the observations

oi ∈ A ∪B, sorted that oi ≤ oi+1 [238]. Additionally, for each observation oi we have

a corresponding value gi = G(oi). Such a data structure is depicted in Table 22.

Table 22.: Array of G(x) for each observation x ∈ A ∪B, sorted so oi ≤ oi+1.

Index 1 2 · · · |A|+ |B| − 1 |A|+ |B|

oi o1 o2 · · · o|A|+|B|−1 o|A|+|B|

G(oi) g1 g2 · · · g|A|+|B|−1 g|A|+|B|

IKS assumes that each new observation is inserted into the data structure following

an order oi−1 < oi ≤ oi+1 [238]. This means that all older observations with the same

or higher value are kept on the right side of the new observation. This in consequence

leads to gi = gi−1 + v, where v = 1 if oi ∈ A or v = −r if oi ∈ B. Adding a new

observation or removing an old one from such an IKS data structure can be done in

O(log |A|+ |B|).

Drift detection. IKS is a univariate test and thus must be applied independently on

each feature describing an instance. This is done by storing two sliding windows, one

for the current state of the stream (one on which the classifier is being trained) and

one for the incoming instances. This allows us to use IKS to compare the previous

chunk of data with a new one and determine if they come from the same distribution

or not. If there is at least a change in a single feature, then it is considered a presence

of drift. After the detection, the system requires true labels for the instances from a

new window and uses them to rebuild the classifier [238]. This is done regardless of

how many features were denoted as drifting ones.

181

8.3 Unsupervised ensemble drift detection with feature subspaces

In this section, we will describe the motivations and details behind the proposed

ensemble drift detection with the feature subspaces (EDFS) method.

Limitations of IKS. The concept of IKS lies in detecting a drift on every single

feature independently. This is a strong oversimplification, as concept drift may be of

complex nature and may affect a combination of multiple features. In such scenarios,

it may be impossible to detect a drift as affecting a specific feature only and multi-

variate tests must be used to actually effectively detect a change. They are, however,

computationally costly and require a lot of instances to work properly. This also

makes IKS sensitive to false alarms and forces the classifier to be rebuilt too often.

Furthermore, IKS assumes that the entire model must be rebuilt if drift is detected

on at least one feature. This poses additional computational costs by treating local

drifts as global ones. A more local approach that will inform only on what parts of

the model should be rebuilt can be seen as a more attractive one.

Using feature subspaces for drift detection. We propose to combine IKS with

creating feature subspaces. Instead of working on individual features, our proposed

EDFS approach creates a set of feature subsets. In each of them, a voting scheme

is applied among all univariate IKS runs. Drift is detected only if a majority of

univariate IKS tests vote for change being detected. This increases the robustness

to false alarms and noisy features, allowing a more reliable detection. We obtain

an ensemble of drift detectors, each with local specialization. This can be seen as a

hybrid approach that alleviates the drawbacks of univariate IKS, while not requiring

the complex multivariate approach over the entire feature space.

Creating meaningful feature subspaces. Usage of feature subspaces is popular

in machine learning, where ensembles are built on randomly drawn combinations of

182

features. Let us note that this approach is not suitable for drift detection, as we aim at

detecting local drifts that may affect multiple features at once. Random subspaces are

not stable and do not guarantee significantly improved robustness to noise over using

the univariate approach. Therefore, we need a method for constructing meaningful

subspaces that will consist of features that have a high probability of being affected

by drift at the same time.

The proposed EDFS method creates feature subspaces in a guided manner that

utilizes two criteria: (i) quality of individual feature subspaces; and (ii) diversity

among the created subspaces. As we want EDFS to be computationally feasible

for high-speed data streams, we use several simplifications to the algorithm design.

Firstly, subspaces are being created in a greedy manner with a round-robin strategy.

This may lead to a non-optimal solution, yet offers a significant computational speed-

up. Secondly, we make a strong assumption that a subspace consisting of individually

strong features is itself of high quality. The proposed algorithm has two parameters:

(i) the number of subspaces to be created k; and (ii) the number of features selected

for every subspace n. The details are outlined in Algorithm 7.

Feature subspaces quality. As mentioned before, the estimation of subspace qual-

ity is based on the strength of the individual predictors. Using only the individually

strong features not necessarily will improve the discriminative power of the subspace,

or even more so of the whole ensemble. However, we claim that reducing the fre-

quency of the occurrence of the weak predictors will, on average, result in increased

performance.

Let us denote the y-th class label, encoded as an integer, as y ∈M = {1, 2, ...,M}.

Furthermore, let LS = {(x1, y1), (x2, y2), ..., (xn, yn)} be the learning set consisting

of n observations, x(f) = [x
(f)
1 , x

(f)
2 , ..., x

(f)
n] be the vector of observations of feature

x(f), and y = [y1, y2, ..., yn] be the vector of class labels associated with observations.

183

Algorithm 7: EDFS subspace creation algorithm.

Data: number of subspaces k, number of features per subspace n, set of
features X = {x(1), x(2), ..., x(d)}

Result: feature subspaces S

for i← 1 to k do
Si ←− ∅;

repeat
for i← 1 to k do

for f ← 1 to d do
if x(f) /∈ Si then

fscore(x
(f))←− qual m(x(f)) + div m(S, Si, x

(f));

x(best) ←− arg maxx(f) fscore(x
(f));

Si ←− Si ∪ x(best);

until every subspace consists of n features;

return S

In order to measure the individual quality of features, we propose to use mutual

information between the feature and the target qual mmi(x
(f)):

qual mmi(x
(f)) =

M∑
y=1

n∑
j=1

p(x
(f)
j , y) log

(
p(x

(f)
j , y)

p(x
(f)
j) p(y)

)
, (8.9)

where we denote marginal probabilities of x(f) andM as p(x
(f)
j) and p(y), respectively,

and their joint probability as p(x
(f)
j , y).

Please note that this is a supervised measure, requiring access to class labels.

While the proposed EDFS approach is an unsupervised drift detector, we follow the

assumptions of IKS that after the drift is detected, we query for class labels for the

recent window. Therefore, this allows us to recalculate mutual information every time

drift is being detected.

Feature subspaces diversity. Let S denote the set of the existing subspaces

and Sj stand for the j-th subspace. Let X be a set of the available features X =

{x(1), x(2), ..., x(d)}. Consider inserting additional feature x(f) into the currently con-

184

sidered subspace Sj. We define a diversity metric div m(S, Sj, x
(f)) as an average

of two components: the proportion of existing subspaces already containing the

considered feature div mx(S, x(f)) and the distance to the most similar subspace

div ms(S, Sj):

div m(S, Sj, x
(f)) =

div mx(S, x(f)) + div ms(S, Sj)

2
, (8.10)

where:

div mx(S, x(f)) = 1−
|
{
Sj : x(f) ∈ Sj

}
|

|S|
, (8.11)

and:

div ms(S, Sj) = 1−max
j ̸=l

|Sj ∩ Sl|
|Sj|

. (8.12)

By minimizing the proposed metric we ensure that the features are spread evenly

among the subspaces, which should contribute to the creation of a diverse set of

learners. We make an underlying assumption that large groups of features are not

highly correlated, in which case the proposed dissimilarity would be too simplistic. In

practice, the situations that would lead to a complete failure of the proposed metric

are very rare.

Drift detection with feature subspaces. The EDFS approach combines uni-

variate IKS with meaningfully constructed feature subspaces. Therefore, a proper

strategy when a change can be considered significant enough to raise an alarm is

needed. We will discuss here how to analyze changes in subspaces, in the entire

stream, as well as how EDFS reacts to the appearance of concept drift.

• Drift detection in subspaces. One of the major drawbacks of IKS lies in

its univariate nature and inability to detect drift that spans a combination of

multiple features. A simple application of IKS in each subspace would not dif-

fer from applying IKS over the entire feature space, as each feature would be

185

treated independently. We propose that for each subspace, IKS is performed

over all features assigned to this subspace. Then a majority voting over IKS

univariate outputs is performed and its outcome decided whether this subspace

is considered as affected by concept drift or not. This voting strategy offers in-

creased robustness to noise or small fluctuations as compared with IKS, leading

to a reduced risk of false alarms. These local decisions are then used to decide

the final output of the EDFS detector.

• Drift detection in the stream. A good drift detector aims to strike a balance

between sensitivity to changes and robustness to false alarms. Therefore, we

need a proper strategy to decide if the entire data stream is indeed affected by a

concept drift, based on local outputs of feature subspace-based decisions. While

using majority voting on a local scale may benefit the robustness of EDFS, it

may damper the sensitivity too much when it comes to making a final decision.

The majority voting would force EDFS to detect drift only when over 50% of

feature subspaces were considered as drifting ones. Therefore, on the global

level, we propose to use the winner-take-all approach. This means that if at

least one subspace is labeled as a drifting one, then EDFS detects drift over the

entire stream.

• Reacting to change. After EDFS detects a drift, three steps are being taken:

(i) class label query; (ii) classifier rebuilding; and (iii) subspace reconstruction.

Class labels are requested for the entire new window that has been labeled as

coming from a new distribution, as we need to adapt to the change. These new

instances are used to retrain a classifier, in order to forget old concepts and

make the classifier suitable for the current state of the stream. Additionally,

previously established feature subspaces may no longer be meaningful and EDFS

186

needs to build new feature subspaces by applying Algorithm 7 on newly acquired

instances.

8.4 Experimental study

This experimental study was designed to empirically evaluate the effectiveness

of EDFS for unsupervised drift detection, as well as to answer the three following

research questions.

• RQ1: Is using drift detection over feature subspaces more effective than using

a univariate IKS detector?

• RQ2: Does creating feature subspaces in a meaningful manner lead to a better

drift detection over random subspaces?

• RQ3: Does EDFS offer an improvement over state-of-the-art unsupervised drift

detectors?

8.4.1 Data stream benchmarks

For the purpose of evaluating our proposed algorithm, we generated 10 diverse

and large-scale data stream benchmarks using the MOA environment [214]. By using

data stream generators, we were able to fully control the nature and occurrence

of concept drifts, which in turn led to a more explainable experimental study. By

analyzing how the proposed method behaves in a controlled environment we may

gain more in-depth insights into its strong and weak points. Details of the used data

streams are given in Table 23.

8.4.2 Setup

Here, we will present the details of the experimental study design and its envi-

ronment.

187

Table 23.: Properties of used data stream benchmarks.

Stream Gen Inst Feat Cls Type Drifts

HYPIF HYPER 1 mln 10 2 inc-fast 20

HYPIS HYPER 1 mln 10 2 inc-slow 10

LEDM LED 1 mln 24 10 mixed 5

LEDS LED 1 mln 24 10 sudden 50

RBFB RBF 1 mln 100 5 blips 100

RBFG RBF 1 mln 40 20 grad 20

RBFGR RBF 6 mln 20 10 grad-rec 5

SEAG SEA 3 mln 3 4 grad 10

SEAS SEA 3 mln 3 4 sudden 20

TRES TREE 2 mln 10 6 sudden 50

Reference drift detectors. We compared the proposed EDFS with a univariate

IKS [238] (which allows us to answer RQ1) and RFS – an identical architecture that

utilizes random feature subspaces (which allows us to answer RQ2). Additionally, in

the second part of the study, we utilized two state-of-the-art unsupervised ensemble

drift detection methods – a committee of statistical detectors (LDCNet) [236] and

an ensemble of heterogeneous concept drift detectors (EHCDD) [135].

Base classifiers. All experiments were conducted with the usage of Adaptive Ho-

effding Tree [109] as an underlying learning and classification algorithm.

Parameters. EDFS and RFS used k = 10 subspaces and n = 0.1 for constructing its

local drift detectors. These values were established during our experimental investi-

gations as the most stable and effective ones. However, for each specific data stream,

one may use a dedicated parameter selection method [231] to tune EDFS. We used

windows of size 1000 for drift detection and batch processing. All reference methods

used parameters suggested by their authors.

188

Statistical analysis. We analyzed the significance of obtained results using the

Bayesian sign-rank test [234].

8.4.3 Experiment 1: Role of feature subspaces

In this experiment we wanted to answer RQ1 and RQ2, to establish if ensemble

drift detection in feature subspaces is beneficial to univariate drift detection, as well as

to evaluate the effect of creating features subspaces in a guided manner. The results

of the experiments according to the prequential accuracy are given in Tab. 24, while

the outcomes of the Bayesian sign-rank test of statistical significance are visualized

in Fig. 52.

Table 24.: Comparison of EDFS with randomly created subspaces and univariate

detector according to the prequential accuracy [%].

Algorithm HYPIF HYPIS LEDM LEDS RBFB RBFG RBFGR SEAG SEAS TRES

EDFS 87.21 84.09 63.54 62.18 87.36 92.84 94.06 83.79 81.02 81.52

RFS 82.42 82.23 60.12 60.02 80.74 90.11 89.38 81.25 78.01 77.42

IKS 84.95 82.87 56.43 58.95 85.43 92.02 92.14 85.04 81.97 75.20

Benefits of ensemble strategy. From the obtained results we can see that the

ensemble strategy proposed by EDFS offers superior results to standard IKS, both

in terms of performance over individual benchmarks, as well as in terms of statistical

significance. While the observation that an ensemble detector is better than a single

model does not seem novel and confirms recent trends [22], there is more to this

comparison. One must note that IKS is de facto an ensemble strategy that combines

univariate IKS detectors created over the entire feature space. Therefore, IKS is an

implicit ensemble approach that assumes no correlation between the drift occurrence

and the combination of features. EDFS takes IKS as a base model but combines it

189

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

Fig. 52.: Posteriors for EDFS (R) vs. (left) RFS / (right) univariate IKS from the

bayesian sign-rank test. Higher concentration of points on one of the sides of the

triangle shows that a given method has a higher probability of being statistically

significantly better.

with feature subspaces and two-level decision making (local and global). Obtained

experiments prove that this is a much better strategy and allows us to more efficiently

detect drifts, especially in scenarios where we deal with more complex types of drifts

(e.g., RBFGR or TRES).

Benefits of meaningful feature subspaces. EDFS assumes that drift detection

in feature subspaces is more beneficial than univariate drift detection as long as

the feature subspaces are of high quality and display some level of diversity. In

order to test this hypothesis, we compared our approach with RFS using identical

architecture and combination strategies but creating subspaces in a random manner.

The obtained results confirm our assumptions, showing that in all of the tested cases

EDFS returned statistically significantly better results. Furthermore, RFS in many

cases is outperformed by univariate IKS. This shows that creating feature subspaces

without any guidance may actually harm the drift detection procedure, leading to an

190

increased number of incorrect alarms.

8.4.4 Experiment 2: Comparison with other detectors

In this experiment we wanted to answer RQ3, to establish if the proposed EDFS

offers improvements over state-of-the-art unsupervised drift detectors. We selected

two unsupervised ensemble strategies to offer a fair comparison. The results of exper-

iments according to the prequential accuracy are given in Table 25, and the outcomes

of the Bayesian sign-rank test of statistical significance are visualized in Figure 53.

Table 25.: Comparison of EDFS with randomly created subspaces and the univariate

detector according to the prequential accuracy [%].

Algorithm HYPIF HYPIS LEDM LEDS RBFB RBFG RBFGR SEAG SEAS TRES

EDFS 87.21 84.09 63.54 62.18 87.36 92.84 94.06 83.79 81.02 81.52

LDCNet 84.81 83.04 57.41 55.36 84.99 91.86 95.27 80.18 75.44 79.90

EHCDD 85.82 83.51 58.02 57.11 85.82 90.59 91.88 84.92 82.91 78.84

Benefits of EDFS. From the obtained results, we can see that EDFS performs

favorably when compared to other unsupervised ensemble methods. LDCNet is an

ensemble of statistical detectors that aims at anticipating the potential directions

of drift. However, it is known to be very sensitive to noise and small changes in

streams. EDFS does not have such problems, as using feature subspaces created

in a guided manner allows for a more robust analysis of the magnitude of change.

EHCDD is an effective and flexible framework that combines heterogeneous detectors

with a weighted combination of their outputs. However, its main drawback lies in its

sensitivity to weak ensemble members. A poorly tuned or over-sensitive detector will

significantly impair the performance of EHCDD. EDFS uses a homogeneous pool of

detectors (IKS) and a two-level combination strategy, leading to statistically better

191

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

20

40

60

80

100

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

8
0

1
0
0

rope

L R

Fig. 53.: Posteriors for EDFS (R) vs. (left) LDCNet / (right) EHCDD from the

bayesian sign-rank test. Higher concentration of points on one of the sides of the

triangle shows that a given method has a higher probability of being statistically

significantly better.

performance.

8.5 Summary

In this chapter, we proposed EDFS – an unsupervised ensemble drift detector

for data stream mining that creates an ensemble of local drift detectors, each trained

on a different feature subspace. We employed a guided strategy for constructing fea-

ture subspaces that utilized a combination of feature quality and diversity measures.

This allowed us to alleviate the drawbacks of popular univariate drift detectors (e.g.,

discussed IKS) and offer a more robust change detection for complex drifts. EDFS

reconstructs its subspaces after every drift, allowing for capturing new properties of

the feature space. We used a two-level combination strategy, where univariate IKS

detectors within each feature subspace were combined using majority voting, while

drift was detected on a global scale using a winner-take-all strategy over outputs from

192

all subspaces. A carefully crafted experimental study showed that such an ensemble

architecture offers significant benefits as compared with the univariate approach, as

well as displayed the importance of creating feature subspaces in a guided manner.

Finally, we showed that EDFS compares favorably with state-of-the-art unsupervised

ensemble drift detectors.

Our future works will focus on evaluating different ways of constructing sub-

spaces, as well as applications to semi-supervised learning.

193

CHAPTER 9

DYNAMIC ENSEMBLE DIVERSITY AND

ADAPTATION TO CONCEPT DRIFT

Ensemble learning for data stream mining has been gaining increasing attention [22],

taking advantages of the mentioned solutions and using multiple classifiers at the same

time [239]. Ensembles have been shown not only to improve predictive accuracy, but

also to efficiently handle concept drift by replacing outdated classifiers in the pool

[240]. One of the key aspects of ensemble learning is diversity among base classifiers

[241]. In general, it is desirable to create mutually different, yet complementary, base

learners to expand the overall competency of the whole committee. One group of

methods used to diversify ensembles are region-based algorithms that train dedicated

classifiers for different subspaces of data. For static datasets, Lee and Kim [242]

proposed the eSVM ensemble, dividing the dataset into heterogeneous parts used by

base learners. It is also possible to generate clusters for each class or even split it

internally to create an ensemble of one-class models [243].

The idea of adapting diversity to streaming data environments is not a recent

one, however, the coverage of it is still surprisingly limited. The first and most

interesting work considering diversity and evolving data streams was presented by

Minku [120]. It posed the important question – how diversity may influence learning

from drifting streams. The main conclusion of the work is that high diversity improves

recovery from concept drifts, but on the other hand, it usually impedes the learning

process during stable periods. Additionally, the work points out that the more severe

is concept drift, the higher diversity is needed. To control the level of diversity,

194

authors dynamically manipulated the Poisson distribution used by the online bagging

algorithm [223]. Lower values of λ provided higher diversity, while higher values

of the parameter were suitable for stable periods. Minku and Yao [244] developed

the presented idea and created a more sophisticated algorithm (DDD), focusing on

maintaining a high-diversity ensemble for concept drifts and a low-diversity one for

stable substreams.

While ensemble diversification seems like a valuable direction in data stream

mining, it must be done in a controlled fashion. It is remarkable that although

there are some works presenting ensembles promoting diversification, almost none of

them investigate the diversity measures explicitly [245]. Brzezinski [246] presented a

work that emphasized the lack of diversity analysis in the data streams domain. He

investigated six well-known diversity measures, using different ensembles and drifting

data streams, showing that they can be easily used in such settings and analyzing

the impact of changes on the measures. It has to be mentioned here, however, that

substantial doubts about the usefulness of different diversity metrics were raised in

some publications [241].

In this chapter, we propose a new ensemble learning scheme that allows for

effective, empirically proven dynamical diversification of base classifiers. It uses an

online clustering approach to create locally specialized classifiers trained on chunks

of spatially related instances. Diversity management is controlled by a drift detector

that allows to dynamically change the diversification level according to the current

state of the stream. An extensive experimental study on synthetic and real data

stream benchmarks shows the efficacy of the proposed ensemble and offers an insight

into the role of diversity in data streams.

195

9.1 Proposed algorithm

We present the first attempt to build a clustering-driven ensemble that promotes

dynamic diversity for drifting data streams. Based on the published observations

concerning diversity and concept drifts, we dynamically adjust it accordingly to the

current state of a stream. Algorithm 8 presents the general framework implement-

ing the clustering-based idea, while in the next paragraphs we discuss each of its

components in detail.

Algorithm 8: Online clustering-driven ensemble.

Data: ensemble size e, ClusteringStrategy (parameters),
DriftIndicator (parameters), ControlStrategy (parameters)

Result: ensemble Li at every iteration i
Initialization: i← 1, L0 ← [], C0 ← []
repeat

receive incoming instance xi;
request the true label yi of instance xi;

update clusters ClusteringStrategy(Ci−1,xi, e);
if |Ci| > |Ci−1| then

add new classifier l to Li−1;

d← DriftIndicator(xi, yi);
r ← ControlStrategy(d);
Ic ← indices of r|Ci| centroids closest to xi;

for j ← 1 to len(Ic) do
update classifier Li[Ic[j]] with (xi, yi);

i← i + 1;
until stream ends ;

Ensemble. We use instances xi to update the core modules of our algorithm – a set

of clusters Ci and an ensemble Li (we maintain one of each for a whole stream). To

create a diverse ensemble we utilize one classifier per cluster. Whenever a new cluster

is formed, so the number of clusters increases |Ci| > |Ci−1|, a new base learner is

added to the ensemble. Each classifier learns only from data belonging to its cluster.

This space partitioning creates classifiers specialized in recognizing different parts of

196

data, so in general, they should be diverse, yet mutually complementary. We combine

decisions of the base learners using accuracy-weighted majority voting. One must also

remember that the base learners have to be able to handle concept drifts since the

framework improves adaptivity, but it does not provide it itself.

Clustering strategy. The clusters are actualized in an online manner. The incom-

ing instance xi is assigned to a cluster based on ClusteringStrategy used. Currently,

there are few such algorithms available, even fewer try to tackle data streams prob-

lems, like evolving concepts or anomaly detection. In our framework we use an online

k-means algorithm [247], which has been shown as a competitor to the offline k-

means++ algorithm. However, it tends to find slightly more clusters than a given

parameter e. The method generates clusters in an online manner, but it does not use

any direct mechanism to handle changes in data, so the approximation of the optimal

solution may be impeded. It is not a crucial aspect in our case, since we focus mainly

on the changes in the conditional probability, rather than on data distribution, there-

fore, we do not need very precise clusters. Nevertheless, the algorithm will modify

its centroids incrementally starting from near-optimal seeds. To boost this process

we use a windowing mechanism by applying the moving average to the centroid’s

features. Our experiments show that such an approach is sufficient in practice.

Drift indicator. After updating the clusters, we collect the measure of concept drift

d calculated by DriftIndicator. There are several online change detectors already

published, and many of them are based on statistical tests and error measures. They

are usually dedicated to different types of concept drift. In our framework, we use the

windowed error ϵω of size ω as a drift indicator, calculated using the moving average

method. It is assumed that the error increases when concept changes since classifiers

need time to adapt to the drifting data. One must remember that the indicator is

197

very sensitive to the window size and access to labeled instances.

Control strategy. The drift indicator d is used to control the value of the range

variable r ∈ ⟨0, 1⟩, by applying ControlStrategy. The strategy defines a relation

(trade-off) between d and r. The range variable determines how many classifiers

use a newly arriving instance. First, Euclidean distances between the object and all

centroids are calculated. Then, indices of the r|Ci| closest centroids are selected and

classifiers paired with them are updated. The varying range of classifiers controls the

level of diversity among base learners. The idea is as follows – when concept drift

appears the error increases and r decreases. As a result, instances are used only by

the closest classifiers and they start differentiating from each other. When a concept

becomes stable, the error decreases and r increases. This leads to the situation in

which base learners more frequently learn from the same instances, therefore, diversity

should decrease in favor of variance reduction.

Work presented in [120] indicates that dosing different amounts of diversity is

beneficial, however, it does not determine how high or low the diversity should be. The

linear relation is probably the most straight-forward one. We define three different

control strategies using a sigmoid function σ(x) = x(β − 1)/(2βx − β − 1), where

x = 1− ϵ and β ∈ ⟨0, 1⟩ controls the shape of the curve representing relation between

error (ϵ) and range (diversity).

– LINEAR (β = 0) – it maintains the linear relation between error and diversity,

so any change in the former will result in directly proportional change in the

latter.

– STABLE (β < 0) – diversity increases slower than error, so this approach

promotes low-diversity ensembles.

– DIVERSE (β > 0) – it is opposite to the previous strategy, so it promotes

198

higher-diversity committees.

Intensity. The algorithm presented above is a basic version. Since we want our

framework to be able to adapt to the varying speed of changes, we may need to

somehow intensify the diversification process. One should be aware of the fact that

when the drift appears abruptly and we have access to but few instances from the

new concept, the diversification method, based on a single instance usage, may be

insufficient for changing diversity effectively. We propose a simple improvement that

aims to boost the process by using a single instance several times. We consider two

approaches.

– FX – it uses a fixed number of duplicates regardless a state of a stream. The

idea is to equally intensify both increasing and decreasing diversification.

– ER – the strategy increases the number of duplications if an error is higher, so

it promotes intensification when concept drift occurs.

9.2 Experimental study

In our evaluation section, we aim to investigate three major properties of our

method. The first one is general performance during drifts (in tables: Drifts)

and stable periods (Stable). We report the average values of the prequentially calcu-

lated accuracy and Cohen’s kappa. For stable substreams, we also present standard

deviations (StdS) that indicate whether performance during them is indeed stable.

Secondly, we investigate the ability of our method to generate diversity during con-

cept drifts and to reduce it when stable periods appear. We explicitly measure 2

different diversity measures: disagreement (D) and double fault (DF) to show that

our method of diversification effectively manages it as intended. We present time

199

series of the metrics along with classification performance, which is, in fact, our drift

indicator. Finally, we evaluate our framework on real data streams to find if it is

able to compete with other well-known ensembles. Since currently we cannot define

concept drifts for most of the real streams, we investigate the algorithms in general,

using the prequential accuracy and kappa. Even if the streams are not as predictable

as the synthetic ones, they are surely more reliable, since we still do not know how

authentic data generators are.

9.2.1 Data

Using MOA [214], we generated 14 artificial streams based on 5 different synthetic

concepts and consisting of different types of concept drift. They are summarized in

Tab. 26.

Table 26.: Summary of the used synthetic data streams.

Name Inst Attr Cls First Dist Width Drifts Noise

SEA1 600k 3 2 150k 300k 100 3 0.05

SEA2 600k 3 2 150k 300k 10k 3 0.05

STAG1 600k 3 2 150k 300k 100 3 -

STAG2 600k 3 2 150k 300k 10k 3 -

RBF1 1m 15 5 250k 250k 100 3 0.05

RBF2 1m 15 5 250k 250k 10k 3 0.05

RBF3 1.2m 15 5 400k 400k 50k 2 0.15

RBF4 1.2m 15 5 400k 400k 100k 2 0.15

TREE1 1m 15 5 250k 250k 100 3 0.05

TREE2 1m 15 5 250k 250k 10k 3 0.05

TREE3 1.2m 15 5 400k 400k 50k 2 0.15

TREE4 1.2m 15 5 400k 400k 100k 2 0.15

HYPER1 500k 15 5 - - - - 0.01

HYPER2 500k 15 5 - - - - 0.01

200

Table 27.: Summary of the used real data streams.

Name Inst Attr Cls

Activity 10 853 43 8

ActivityRaw 1 048 570 3 6

Airlines 539 383 7 2

Connect4 67 557 42 3

Covertype 581 012 54 7

DJ30 138 166 8 30

Electricity 45 312 8 2

Gas 13 910 128 6

Name Inst Attr Cls

Hepatitis 1 000 000 20 2

Lymph 1 000 000 19 4

Poker 829 201 10 10

Sensor 2 219 804 5 54

Spam 9 324 499 2

Weather 18 159 8 2

Wine 1 000 000 658 2

The HYPER1 stream was generated using a magnitude of change t = 0.001 and

HYPER2 using t = 0.01. For the final evaluation, we used 15 real streams in total.

Most of them (12) are pure real streams, while 3 (Hepatitis, Lymph and Wine) were

generated on the basis of real datasets coming from UCI. They are presented in Tab.

27.

9.2.2 Algorithms

We evaluate our framework using different strategies for controlling diversity –

linear (CL), diversity-oriented (CLD) or stability-oriented (CLS), as well as, without

dynamic diversification (static SCL). We check how intensification methods using a

fixed (CL+FX) and error-driven (CL+ER) number of duplications influence per-

formance. Finally, we combine the strategies and evaluate them on synthetic streams.

Due to limited space, on real streams we evaluate only two configurations (CLD+ER

and CLS+ER).

For the online k-means strategy we selected e = 10 as a number of target clusters.

It determines the desired size of an ensemble, however, it may usually vary between

10 and 15 base learners [247]. Since we want to adapt to the various speed of changes,

201

including sudden ones, for windowed clusters and error indicators we use size ω = 100

to make it reactive. For the FX intensification strategy we set n = 20 as a number

of duplications per instance. As base learners we selected Adaptive Hoeffding Trees

(AHT).

During the detailed analysis of our framework on synthetic streams we com-

pare it with another algorithm that promotes dynamic diversity – online bagging

based on [120]. We control λ using the same control strategies as in our solution

(BAG, BAG-D and BAG-S). On real streams we compare our two most promising

configurations with the bagging algorithms and 6 well-known and widely cited on-

line ensembles: Learn++.NSE (LNSE) [156], Dynamic Weighted Majority (DWM)

[121], Accuracy Updated Ensemble (AUE) [123], Adaptable Diversity-based Online

Boosting (ADOB) [248], Online Smooth Boosting (OSB) [249] and OzaBag-ASHT

(OB-AHT) [223], which is a basic online bagging algorithm using AHT and main-

taining static diversity among them. For all ensembles we selected e = 10 for their

size. The rest of parameters are set to default values and base learners are AHT.

9.2.3 Evaluation

All presented series results (accuracy and kappa) were collected using the pre-

quential evaluation and window whose size was ω = 1000. We distinguish results for

concept drifts and stable periods by calculating averages separately. For each change

j that has its peak at pj and width wj we treat results within i ∈ ⟨pj −wj/2, pj +w′
j⟩

as measurements for drifts. We set w′
j = wj/2 for w ≥ 20000 and w′ = 10000 for

w < 20000, since we treat concept drift as something relative to the model perfor-

mance and drops in effectiveness can be longer than an actual period of concept

change, especially a short one. To make the evaluation setting more realistic, we

simulated limited access to labeled data. We provided a warm start on each data

202

stream using 10% of it, as a fully labeled initialization batch, and then only 10% of

randomly selected instances from the remaining part.

9.2.4 Results

Obtained results clearly show that our diversification heuristic is effective and

that the whole framework, if only properly configured, can effectively adapt to changes.

Different strategies and combinations evince different behaviors, but only some of

them can be established as the proper ones. In general, differences in results for

kappa are greater than for accuracy. Below we discuss all the results, showing why

certain approaches are better than the others.

Static vs. dynamic diversity. First of all, we can see in Fig. 54 that when

static diversification is used (SCL), the diversity level changes not adequately to the

300k 600k 900k

0.40

0.60

0.80

1.00

A
cc

ur
ac

y

RBF2
SCL CL

200k 600k 1m

0.10

0.30

0.50

0.70

0.90

K
ap

pa

TREE4
SCL CL

300k 600k 900k

0.00

0.20

0.40

0.60

0.80

D
F

200k 600k 1m

0.10

0.20

0.30

0.40

D

Fig. 54.: Performance and diversity series for RBF2 (left) and TREE4 (right), using

different strategies.

203

error (concept drift, between dotted lines) and the adaptation of the framework may

be very unstable. At the same time, once we add the linear control mechanism

(CL), the reaction to changes is significantly better adjusted. The dynamic range

effectively increases diversity just after a drift occurs and, as a result, leads to a

faster reduction of an error. One may look a bit closer to see that the error stops

increasing once diversity is high enough and that recovery begins subsequently. At

the same time, when the error is getting low, the diversity level is being reduced,

leading to stabilization. The same observation is valid for all results we describe in

the next paragraphs.

In the general summary (Tab. 28), one can see that CL outperforms the static

SCL during drifts and stable periods. These observations allow us to conclude that

our method is an effective mechanism for generating dynamic diversification. We

Table 28.: Summary of synthetic streams results for accuracy and kappa.

Accuracy Kappa

Algorithm All Drifts Stable StdS All Drifts Stable StdS

SCL 0.6753 0.5331 0.6519 0.0808 0.4833 0.2459 0.3477 0.1251

CL 0.8838 0.7221 0.9197 0.0420 0.8143 0.5615 0.8594 0.0734

CLD 0.8453 0.6569 0.8726 0.1010 0.7599 0.4625 0.7941 0.1580

CLS 0.8866 0.7564 0.9228 0.0297 0.8224 0.6052 0.8694 0.0573

CL+FX 0.8227 0.7856 0.8539 0.0246 0.7168 0.6268 0.7360 0.0492

CL+ER 0.9028 0.8258 0.9411 0.0272 0.8434 0.7042 0.8957 0.0526

CLD+FX 0.8241 0.7628 0.8550 0.0267 0.7164 0.5907 0.7353 0.0557

CLD+ER 0.8925 0.7855 0.9297 0.0352 0.8288 0.6365 0.8764 0.0674

CLS+FX 0.8042 0.7622 0.8369 0.0314 0.6848 0.5891 0.7069 0.0573

CLS+ER 0.8981 0.8247 0.9379 0.0283 0.8444 0.7026 0.8983 0.0492

BAG 0.8410 0.6989 0.9097 0.0481 0.7508 0.5291 0.8473 0.0796

BAG-D 0.7645 0.6468 0.8055 0.1062 0.6223 0.4354 0.6876 0.1606

BAG-S 0.8507 0.7499 0.9199 0.0298 0.7680 0.6164 0.8649 0.0548

204

made the comparison since for some ensembles it is possible that they increase their

diversity itself when drift occurs [246]. It does not happen in our case.

Change-diversity trade-off. The results for different relations between the drift

indicator and diversity show that, in general, stability-oriented or at least linear ap-

proaches improve adaptation, while strategies focusing on increased diversity tend to

impede it (Tab. 28). For both accuracy/kappa when our framework and the bag-

ging algorithm were promoting higher diversity (CLD and BAG-D) during the whole

learning process, they worked worse than the configurations using the linear (CL and

BAG) or stability-oriented control (CLS, BAG-S). The latter achieved better results

not only for stable periods (about 0.92/0.87 for CLS), than the former (0.87/0.79

for CLD), but also during drifts (about 0.75/0.61 for CLS, 0.66/0.46 for CLD). Dif-

ferences for the bagging approaches were even bigger than for our framework. We

100k 300k 500k

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

SEA1
CLD CLS BAG-S

100k 300k 500k

0.00

0.50

1.00

K
ap

pa

STAGGER2
CLD CLS BAG-D

100k 300k 500k

0.00

0.10

0.20

0.30

D

100k 300k 500k

0.00

0.15

0.30

0.45

D

Fig. 55.: Performance and diversity series for SEA1 (left) and STAGGER2 (right),

using different strategies.

205

can also notice that the high-diversity strategies were much more unstable during

pure concepts (about 0.10 for accuracy standard deviation and 0.16 for kappa) than

stability-based ones (about 0.3 and 0.6 respectively). The latter were also slightly

more stable than the linear approaches.

We can see in Fig. 55 and 56 that all high-diversity ensembles were, indeed, main-

taining higher values of disagreement. It could be beneficial during drifts, however,

CLD and BAG-D algorithms struggled with reducing the high level of diversification

after drifts. It usually resulted in prolonged adaptation, even if drops in performance

were sometimes on the same level (SEA1, STAGGER2). The linear and stability-

based methods maintained lower diversity even during drifts, but at the same time,

they were stabilizing learning much more quickly. CLS was able to trigger very pre-

cise diversification just around drift peaks on STAGGER2 and TREE3, as well as, to

significantly reduce the maximal loss on TREE3 and RBF4.

200k 600k 1m

0.20

0.40

0.60

0.80

1.00

A
cc

ur
ac

y

TREE3
CLD CLS BAG-D

200k 600k 1m

0.80

0.85

0.90

0.95

1.00

K
ap

pa

RBF4
CLD CLS BAG-S

200k 600k 1m
0.00

0.10

0.20

0.30

0.40

D

200k 600k 1m

0.00

0.10

0.20

0.30

0.40

D

Fig. 56.: Performance and diversity series for TREE3 (left) and RBF4 (right), using

different strategies.

206

Applying intensification. While considering intensification improvements, there is

a clear indication that the strategy using the error-driven heuristic (CL+ER) is more

reasonable in practice than the approach which tries to intensify both diversification

and stabilization (CL+FX). We can see in Tab. 28 that although CL+FX slightly

improves recovery from drifts (0.79/0.62) over basic CL (0.72/0.56) it impedes the

performance of our framework during stable periods (0.85/0.74 and 0.92/0.86, re-

spectively). Since the latter are longer than the former, the overall performance is

also worse (0.82/0.72 for CL+FX and 0.88/0.81 for CL). In Fig. 57 and 58 we can

see that CL+FX disturbed the diversity control, making it almost unresponsive to

drifts. On the other hand, CL+ER was maintaining relatively low diversity during

stable periods, similarly to basic CL, and at the same time, it was able to intensify

recovery from drifts by increasing diversity even more precisely. One can notice that

300k 600k 900k

0.20

0.40

0.60

0.80

1.00

A
cc

ur
ac

y

TREE1
CL CL+FX CL+ER

300k 600k 900k

0.40

0.60

0.80

1.00

K
ap

pa

RBF2
CL CL+FX CL+ER

300k 600k 900k

0.00

0.10

0.20

0.30

0.40

D

300k 600k 900k

0.00

0.10

0.20

D

Fig. 57.: Performance and diversity series for TREE1 (left) and RBF2 (right), using

different strategies.

207

100k 250k 400k

0.65

0.75

0.85

0.95

A
cc

ur
ac

y

HYPER1
CL CL+FX CL+ER

200k 600k 1m
0.10

0.40

0.70

1.00

K
ap

pa

TREE4
CL CL+FX CL+ER

100k 250k 400k

0.00

0.10

0.20

0.30

0.40

D

200k 600k 1m

0.10

0.30

0.50

0.70

D
F

Fig. 58.: Performance and diversity series: for HYPER1 (left) and TREE4 (right),

using different strategies.

diversification peaks were concurring with the lowest performance drops on TREE1,

RBF2 and TREE4.

CL+ER provides significant improvements over basic CL mainly during drifts

(0.83/0.70). Improvements are less significant for stable periods. The FX strat-

egy obtained the lowest standard deviation since better approaches were constantly

improving their performance, leading to bigger differences between the lowest and

highest values, even during stable periods.

Combinations. We can see that results for combinations of the two mentioned

mechanisms reflect the relations between these methods and that the intensification

strategies are the main factor behind obtained improvements. Firstly, for both CLD

and CLS heuristics differences between FX and ER were significant (about 0.07-

0.09/0.11-0.16) as for CL+FX and CL+ER. Secondly, differences between FX and ER

strategies combined with low or high diversity approaches were minor, similar to CLS

208

100k 300k 500k

0.60

0.70

0.80

0.90

1.00

A
cc

ur
ac

y

SEA2
CLD+FX CLS+FX CLD+ER

300k 600k 900k
0.00

0.25

0.50

0.75

1.00

K
ap

pa

TREE2
CLD+ER CLS+ER BAG-S

100k 300k 500k

0.00

0.10

0.20

0.30

0.40

D
F

300k 600k 900k

0.00

0.10

0.20

0.30

0.40

D

Fig. 59.: Performance and diversity series for SEA2 (left) and TREE2 (right), using

different strategies.

and CLD. Thirdly, one can notice that adding ER slightly reduced the gap between

CLD and CLS, as well as, that FX even reversed the relation between the control

strategies. Finally, out of the two best combinations, CLS+ER was better than

CLD+ER regarding performance during drifts (0.82/0.70 and 0.79/0.64, respectively

in Tab. 28). Nonetheless, they were still on a similar level as simpler CL+ER. In Fig.

59 we can see that the FX heuristic was disturbing the adaptation process regardless

of a control strategy used (SEA2) and that, depending on the strategy, ER worked

better or worse than BAG-S (TREE2).

Real data streams. In Tab. 29 we can see results for the final evaluation conducted

on real data streams. It presents average accuracies and kappa values for two different

configurations of our framework, all bagging heuristics and six popular ensembles.

We can see that while for bagging the dynamic λ approach was insufficient to make

it competitive with most of the ensembles, our best clustering-driven configuration

209

Table 29.: Results on real data streams with the respect to accuracy and kappa.

Stream CLD+ER CLS+ER BAG BAG-D BAG-S OB-AH LNSE DWM AUE ADOB OSB

Activity 0.7150 0.6961 0.6224 0.5821 0.6180 0.6819 0.4890 0.6877 0.5200 0.6494 0.6697

ActivityRaw 0.5837 0.8612 0.4558 0.4057 0.5683 0.6928 0.5139 0.8756 0.4993 0.4053 0.6270

Airlines 0.6033 0.6003 0.6220 0.6150 0.6182 0.6536 0.6181 0.6560 0.6323 0.4726 0.6365

Connect4 0.7038 0.7087 0.6818 0.6581 0.6876 0.7023 0.6300 0.7150 0.6603 0.6080 0.7127

Covertype 0.8046 0.8119 0.6713 0.6508 0.6860 0.7396 0.7564 0.7960 0.7440 0.3704 0.7359

DJ30 0.9475 0.9518 0.7956 0.6521 0.8451 0.9814 0.8230 0.9813 0.9912 0.9819 0.9858

Electricity 0.7997 0.8101 0.7231 0.7109 0.7368 0.7786 0.7185 0.7858 0.7308 0.7058 0.7724

Gas 0.6495 0.6652 0.5551 0.5459 0.5503 0.5526 0.4398 0.7162 0.4861 0.3848 0.5489

Hepatitis 0.9083 0.9093 0.8397 0.8347 0.8410 0.9026 0.8695 0.8886 0.9156 0.9111 0.9178

Lymph 0.8893 0.8726 0.7944 0.7868 0.7998 0.8947 0.8448 0.8623 0.8898 0.8806 0.8978

Poker 0.7315 0.7039 0.5855 0.5585 0.5982 0.7203 0.5465 0.6640 0.6047 0.5543 0.7155

Sensor 0.4518 0.6192 0.0616 0.0538 0.2611 0.4741 0.3344 0.6796 0.4421 0.0303 0.3678

Spam 0.9171 0.9152 0.8857 0.8544 0.8867 0.7508 0.6712 0.8044 0.4853 0.8607 0.7589

Weather 0.7329 0.7351 0.6879 0.6760 0.6819 0.7018 0.6791 0.6912 0.7234 0.7236 0.7063

Wine 0.9270 0.9239 0.8707 0.8686 0.8709 0.9323 0.9131 0.9208 0.9320 0.9283 0.9336

Average 0.7577 0.7856 0.6568 0.6302 0.6833 0.7440 0.6565 0.7816 0.6838 0.6311 0.7324

Stream CLD+ER CLS+ER BAG BAG-D BAG-S OB-AH LNSE DWM AUE ADOB OSB

Activity 0.6264 0.6048 0.4978 0.3991 0.5051 0.5933 0.3069 0.5971 0.3086 0.5592 0.5819

ActivityRaw 0.4723 0.8107 0.1699 0.0896 0.3561 0.5504 0.2839 0.8280 0.2731 0.0329 0.4494

Airlines 0.1914 0.1838 0.2114 0.1708 0.2079 0.2684 0.2132 0.2836 0.2371 -0.0823 0.2327

Connect4 0.3110 0.3601 0.1869 0.0004 0.2367 0.2661 0.1511 0.3293 0.1969 0.2202 0.3148

Covertype 0.6829 0.6981 0.4708 0.4362 0.4967 0.5784 0.6082 0.6739 0.5846 0.0126 0.5676

DJ30 0.9456 0.9502 0.7884 0.6399 0.8397 0.9807 0.8168 0.9807 0.9909 0.9813 0.9853

Electricity 0.5848 0.6075 0.4333 0.4024 0.4597 0.5315 0.4103 0.5513 0.4433 0.3547 0.5174

Gas 0.5716 0.5973 0.4661 0.4509 0.4614 0.4690 0.3257 0.6595 0.3855 0.2504 0.4656

Hepatitis 0.7061 0.7111 0.5567 0.5411 0.5602 0.6968 0.6159 0.6594 0.7310 0.7057 0.7398

Lymph 0.7934 0.7632 0.6462 0.6336 0.6551 0.8032 0.7132 0.7454 0.7939 0.7762 0.8092

Poker 0.5130 0.4640 0.2359 0.1771 0.2574 0.4807 0.2035 0.3908 0.2808 0.1188 0.4785

Sensor 0.4402 0.6110 0.0430 0.0349 0.2461 0.4631 0.3203 0.6728 0.4304 0.0111 0.3546

Spam 0.7860 0.7701 0.6932 0.6397 0.7011 0.4887 0.3516 0.5117 0.1688 0.6378 0.4936

Weather 0.3319 0.3512 0.3023 0.2123 0.0752 0.1428 0.2118 0.1154 0.2455 0.2605 0.1743

Wine 0.8893 0.8844 0.8043 0.8011 0.8045 0.8972 0.8681 0.8799 0.8968 0.8911 0.8992

Average 0.5897 0.6245 0.4337 0.3753 0.4575 0.5474 0.4267 0.5919 0.4645 0.3820 0.5376

(CLS+ER, 0.79/0.62) was able to outperform 8 out of 9 other algorithms on average

and to be at least competitive to the second best ensemble – DWM (0.78/0.59).

In fact, CLD+ER and CLS+ER were on a very similar level of performance on

210

almost all data streams, however, the latter one turned out to be much more effi-

cient on two very long and constantly unstable steams – ActivityRaw (0.58/0.47 for

CLD+ER and 0.86/0.81 for CLS+ER) and Sensor (0.45/0.44 and 0.62/0.61, respec-

tively). It is possible that these streams are characterized by several short drifts or

that the ensembles cannot saturate the concepts sufficiently, so they suffer from con-

stant fluctuations and as a result, CLD+ER had multiple problems while reducing

diversity.

The CLS+ER ensemble was the most often the best or second best solution (0.53

of cases for accuracy and 0.60 for kappa, Fig. 60), outperforming all other ensembles

for both metrics on Covertype, Electricity and Weather (bold green), and being better

than not our ensembles on Activity and Spam (green). Only for Poker the CLD+ER

ensemble was able to be more effective than CLS+ER and, at the same time, than

the other algorithms. Regarding accuracy, DWM was slightly more often the best

algorithm (0.33), however, it never was the second best (usually being worse than

both our algorithms in such cases) and more often 6th or 7th (0.33) than CLS+ER

C
L
S
+
E
R

D
W

M

C
L
D
+
E
R

O
S
B

O
B
-A

H

A
U
E

A
D
O
B

B
A
G
-S

B
A
G

L
N
S
E

B
A
G
-D

C
L
S
+
E
R

D
W

M

C
L
D
+
E
R

O
B
-A

H

O
S
B

A
U
E

A
D
O
B

B
A
G
-S

B
A
G

L
N
S
E

B
A
G
-D

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Accuracy Kappa

Fig. 60.: Ranks of ensembles for all real data streams as a fraction of all cases (15).

211

(0.2). For kappa both ensembles were equally frequently the best classifiers (0.27) and

the rest relations remained very similar. Between the best and the worst ensembles,

OB-AH and OSB were competitive with CLD+ER, however, still significantly worse

than CLS+ER, especially for kappa values (the gap was about 0.08). It is also worth

noting that even if CLS+ER was sometimes on further ranks (3-7), it was usually on

a similar level as the best ones (for example Connect4 or Poker) or on a lower, but

still not dramatically worse one (for example Gas or Sensor).

We can see that dynamic diversification for the online bagging performed much

worse than for the clustering-driven solutions. In general, BAG-S tuned out to be

the best option (0.68/0.46) and BAG-D (0.63/0.38) to be the worst one. Therefore,

considering both our framework and the bagging algorithms, the relations between

different configurations were very similar to those observed on synthetic streams.

However, the dynamically diversified bagging algorithms were worse than most of the

ensembles. They were not able to improve upon static OB-AH (0.74/0.55). BAG-S

was better on average only than very poorly performing LNSE (0.66/0.43) and ADOB

(0.63/0.38), which was very often the worst algorithm (0.47 of cases). BAG-D almost

always occupied the last positions (0.80 of cases for both metrics).

9.3 Summary

In this chapter, we proposed the online clustering-driven ensemble framework

exploiting dynamic diversification. Using fully-controlled synthetic streams, we in-

vestigated different approaches to diversity control and intensification, as well as, we

combined both methods and evaluated all configurations. As a summary based on

the presented results, we can conclude the following.

• The clustering-driven diversification based on the dynamic range parameter is

able to provide reactive and efficient diversification. The presented results also

212

confirm observations made in [120], that high diversity during changes improves

adaptation and that smooth reduction of diversification after drifts helps with

restoring stability.

• The stability-oriented or at least linear control is preferable in our framework

over the high-diversity one. The former can be still sensitive to changes and re-

cover sufficiently fast, while the latter does not provide any significant improve-

ment during drifts and, at the same time, it impedes adaptation by overdosing

diversity when stable periods emerge.

• The intensification methods, based on learning from duplications of single in-

stances, may significantly improve recovery from drifts. The error-driven method,

which intensifies diversification and leaves stabilization on a regular level, pro-

vides such enhancements over the basic algorithm without intensification, while

still being competitive during stable periods. Applying this mechanism to the

whole stream results in disturbed diversification control and impaired adapta-

tion.

• The best proposed configuration of our framework is able to outperform most of

the considered well-known and cited ensembles or, at least, to be competitive.

It proves that the abilities of our framework displayed and analyzed on synthetic

streams are also present in realistic scenarios.

In our future works, we plan to apply different drift-aware clustering methods

and more sophisticated intensification approaches, as well as analyze dynamic diver-

sification in the context of imbalanced streams.

213

CHAPTER 10

REACTIVE SUBSPACE BUFFERS FOR

CONTINUAL LEARNING FROM

NON-STATIONARY DATA

Standard continual learning methods for stationary data are built around the assump-

tion that once learned knowledge should be remembered and stored in the model as

long as possible. They assume that previously gathered information stays perma-

nently valid (stationary), which is usually reflected in the experiment design, e.g.,

through scenarios considering subsequently incoming classes or tasks that do not ap-

pear ever again [25, 10]. Unfortunately, the given assumption does not always hold

true since modern dynamic data sources may be affected by concept drift, as depicted

by the example of a binary recommendation system presented in the introduction of

this dissertation. Continual learning models should not only retain useful knowledge

but also be ready to update outdated concepts.

The adaptation to concept drifts is the main goal and domain of data stream min-

ing algorithms. As shown in the previous chapters, such models are usually focused

on tackling the most recent learning problems (from multiple perspectives) since in

the standard streaming setting their evaluation is based solely on the most recent

instances – we simply aim at maximizing streaming metrics and do not care about

instances that do not come to the model [22, 144]. While this assumption can be

valid in many cases, it makes such algorithms vulnerable to catastrophic forgetting in

scenarios where labeling of different concepts is not more or less uniformly distributed

in time, as shown for streaming decision trees in Chapter 4.

214

In general, the weaknesses and lack of universality of continual learning algo-

rithms calls for developing methods and benchmarks that can bridge the gap between

continual learning from stationary data (knowledge retention) and algorithms focused

on reacting to non-stationary distributions (concept drift adaptation) [8].

In this chapter, we propose a holistic approach to class-incremental continual

learning, based on experience replay. The novelty of our work is that our algorithm al-

lows for both avoiding catastrophic forgetting and updating previously learned classes

if they are affected by concept drift. We distinguish three vital aspects of the proposed

framework: (i) capability for class-instrumental continual learning; (ii) capability for

retaining useful knowledge to mitigate catastrophic forgetting; and (iii) capability for

adaptation to changes by forgetting outdated knowledge and updating the model.

Our approach combines centroid-driven memory for storing class-based prototypes

with a reactive subspace buffer that can detect and react to concept drift affecting

one or more classes. It traces the dominant class in each of the clusters, allowing

for switching labels among clusters and splitting them whenever local changes are

being detected. We simultaneously ensure the diversity of information stored within

class buffers with their reactivity to concept drifts. In our evaluation, we consider a

realistic and illustrative learning scenario – continual preference learning and recom-

mendation. To the best of our knowledge, it is the first benchmark explicitly designed

to evaluate holistic continual learning methods.

10.1 Class-incremental experience replay under concept drift

The prevalent majority of the class-incremental methods based on experience

replay focus on storing the most representative instances or prototypes for stationary

data [189]. They rely on the assumption that classes of the observed and selected

instances cannot change, therefore there is no need to control them. As a result,

215

the instances picked for a given class will remain in its buffer for a very long time

and the only criterion which may trigger their removal or replacement will be the

representativeness or diversity of the memory [250]. However, in many real-world

applications the mentioned assumption does not hold true. In the presented example

of a binary recommendation system, the preferences may change, invalidating some

of the experiences stored in the buffer. In such a case, we have to address the concept

drift problem and update our memory adequately.

In the following sections, we introduce two commonly used basic algorithms –

class buffers and centroid-driven memory – in the context of the given problem. We

also propose an adaptive experience replay approach capable of adapting to concept

changes.

10.1.1 Class buffers

Standard experience replay methods tackle the catastrophic forgetting problem

by storing a separate buffer per class. They assume that a label of an incoming

instance is known, so they can perfectly balance the storage and reasonably diversify

their available memory. Due to practical concerns, the class buffers have limited

capacity, therefore, there is the necessity of selecting which (or if) previously captured

instances should be replaced with the currently incoming ones.

The most simplistic approaches use basic algorithms like FIFO (queue) effectively

acting as sliding windows [251]. The problem with such methods is that they may

very quickly erase the memory of earlier examples, that may be representative for

a given problem, leading to catastrophic forgetting [252]. Assuming that incoming

instances may be somehow correlated in time, one possible modification mitigating

this issue is to enforce a wider spread of the stored instances across time. To achieve

216

that, we can sample instances stored in the buffer, using a simple formula:

r ∼ U(0, 1) < τ, (10.1)

where r is a random variable sampled from the uniform distribution and τ is a thresh-

old specified by a user. By increasing the threshold we can enforce quicker replace-

ments, while, on the other hand, by decreasing it we can make the buffer more con-

servative. Too low τ will lead to impaired learning from new data, while too high τ

will inevitably lead to catastrophic forgetting. Although balanced thresholds should

be preferable for classic stationary scenarios, such approaches will fail when concept

drift occurs, imposing unnecessary avoidance of forgetting and impeding adaptation

to changes.

10.1.2 Centroid-driven memory

Usually, the simple class buffer methods are too simplistic, since they do not uti-

lize any significant characteristics of the incoming data. This is especially important

when we have to deal with complex or high-level abstract classes (e.g., in recommen-

dation) since it is very likely that there are several different subspaces that should

be covered by the maintained buffers. This is where the clustering methods can be

found very useful [253]. They are usually utilized to diversify the replay buffer by

grouping instances into differing groups, which should result in better coverage of the

decision space [254]. The centroids can be used as instances themselves (prototypes)

[255], [256], or solely as representations of buffers to forward new examples to their

similar memory cells [257]. In this work, we focus on the latter approach.

Although the centroid-driven approaches are one step further than the simple

class buffers, they are still susceptible to concept drifts. The reason for that is the

fact that they very often do not check whether previously created clusters are still

217

valid for a given class. If a given subconcept cluster changes its label (e.g., from liking

to disliking), the new incoming instances will start (slowly) updating class centroids

for another class. However, they will not affect the old cluster for the previous class,

since the new instances will not be identified as those belonging to it, leaving it

obsolete and impeding the learning process when one samples from it. This will, once

again, lead to the opposite of catastrophic forgetting, resulting in much slower or

non-existent adaptation to the current concepts.

10.1.3 Reactive subspace buffer

To address the presented problem, we propose a modification of the clustering-

driven replay buffers, called Reactive Subspace Buffer (RSB), capable not only

of efficient knowledge aggregation but also of adequate forgetting when it is needed.

The outline of the algorithm is given in Algorithm 9. More details can be found in

our public repository: github.com/lkorycki/rsb.

In the given algorithm, for each new instance x with a label y, we first ensure

that there are at least cmin centroids for the class. Then, we find the nearest cluster

Cx for the given instance x. If the given cluster belongs to the class y of the instance,

we simply update it, its buffer Bx of maximum size bmax and sliding window Wx of

maximum size ωmax, where the last component is responsible for tracking the most

current concepts for the given centroid. Otherwise, there is a risk that a concept

drift appeared and instances of a different class have started appearing around the

centroid. Therefore, if the instance x is sufficiently close (we use simple standard

deviation rules), we update the sliding window of the centroid Cx, but not the cluster

itself. Now, if we detect that there is a significant number of instances with labels

different from the current label of the centroid, we switch it to the new majority class.

By doing so, we allow the buffer to quickly react to a potential drift. Otherwise, we

218

https://github.com/lkorycki/rsb

Algorithm 9: Reactive Subspace Buffer (RSB).

Data: min centroids cmax, max centroids cmax, buffer size bmax, window size
ωmax

Result: replay buffers B at every iteration
repeat

receive incoming instance x and its label y;
if cy < cmin then

add new centroid Cnew, buffer Bnew and window Wnew for y;
continue;

find the closest centroid Cx for x;

if yCx == y then
update centroid Cx, buffer Bx and its window Wx with (x, y);

else if x is within Cx then
update window Wx with (x, y);

if should switch Cx then
move Cx to centroids of y and update it using Wx;

else
find the closest centroid Cy,x for (x, y);

if x is within Cy,x or cy ≥ cmax then
update centroid Cy,x, buffer By,x and its window Wy,x with
(x, y);

else
add new centroid Cnew, buffer Bnew and window Wnew for y;

check for splits and removals
until stream ends ;

find the closest centroid Cy,x belonging to the same class y as x and we either update

it, if x is sufficiently close to the cluster and the maximum number of clusters cmax

has not been reached, or create a new centroid for the given class y.

Finally, for each centroid C, after every ns-th update of its sliding window W ,

we check whether it did not switch labels but is impure enough to be split into two

separate classes. We apply a simple formula checking if c1/c2−1.0 < τs, where c1 and

c2 are the first and second most numerous classes in the cluster and τs is a threshold

determined by a user. During this step, we also get rid of minuscule clusters for which

less than τr = αrωmax instances were registered, where αr is set by a user.

219

The whole algorithm is then used as a part of the experience replay method,

in which we attempt to sample one instance for each centroid C from its buffer B,

based on the purity criterion:

γC = tanh(β
c1 − c2
c1 + c2

) > r ∼ U(0, 1), (10.2)

where c1 and c2 are, once again, the most numerous classes in the cluster, and β = 4.

By doing so, we provide an additional mechanism preventing us from enhancing out-

dated or at least uncertain concepts. Finally, since by using probabilistic sampling we

make the total number of sampled instances non-deterministic, we apply oversampling

to balance the selected batch.

To summarize – by enabling: (i) tracking the current dominant classes in a given

cluster, (ii) switching labels between clusters, (iii) splitting them, and (iv) sampling

from the replay buffer based on clusters purity, we make the centroid-driven algo-

rithm sensitive to concept changes. At the same time, by maintaining stable replay

buffers for subspaces that do not change, we can still avoid catastrophic forgetting.

As a result, we are able to obtain a method capable of both remembering what is

valid and forgetting what is outdated. In addition, since our method is based on

local buffers, it should be able to efficiently diversify more complex concepts without

explicit knowledge of its subconcepts.

10.2 Experimental study

In the experimental study, we attempt to prove that our algorithm is capable

of class-incremental learning from stationary and non-stationary data. We aim to

show that it can both (i) avoid catastrophic forgetting by maintaining diversified

subspace-oriented replay buffers, and (ii) adapt to concept drifts by forgetting out-

dated information. All of the presented experiments can be conducted using scripts

220

provided in the mentioned repository.

10.2.1 Data

To evaluate the proposed algorithm we decided to simulate a binary recom-

mendation system by assigning superclasses (0/1) to the classes from the original

datasets. By doing so we could simulate the situation in which a user likes or dis-

likes certain types of available images (subconcepts). We constructed two types of

class-incremental datasets: stationary and drifting.

Batch 1: Cats -> 1 Batch 2: Cars -> 0 Batch 3: Dogs -> 1 Batch 4: Airplanes -> 0

Batch 5: Cats -> 0 (drift) Batch 6: Cars -> 1 (drift) Batch 7: Frogs -> 0 Batch 8: Ships-> 1

Fig. 61.: General idea of the design for the drifting benchmark sequences.

For the former, we simply used five image benchmarks: MNIST, FASHION,

SVHN, CIFAR10 and IMAGENET10, which is a subset of the 64x64 ImageNet set.

During the evaluation we were feeding our models class after class, interleaving 0/1

assignments (for example, the first class from CIFAR10 was 1, the second one was

0, and so on). For the latter scenario, we were changing the 0/1 labels for two

consecutive classes after three or four stationary ones. As a result, we obtained 30

batches of classes for each dataset, representing both stationary and concept drifting

periods (for more details please refer to the repository). An example of our approach

is depicted in Fig. 61.

10.2.2 Algorithms

We evaluated our algorithm as a part of the experience replay framework. The

module consisted of a classifier (a neural net) and the replay buffer, which was used to

221

sample additional instances for a given input batch. In order to compare our method

(RSB) with other mentioned approaches, we run experiments using four additional

classifiers: (i) offline neural network retraining after each batch (OFFLINE), (ii) a

naively fine-tuning neural network (NN), which learned from the batches without any

additional mechanisms for handling catastrophic forgetting, (iii) a simple class buffer

(CB), which stored separate buffers for both recommendation classes, and a centroid-

based method that utilized an on-line k-means algorithm to create representations of

the original classes treated as subconcepts (or subspaces) of the recommendation

space (SB).

While configuring our method, we used the following values of its parameters:

cmin = 0.5cmax, where cmax = 10 for all of the datasets except for FASHION for

which we set cmax = 20 based on preliminary experiments. Each buffer of the method

could store at most bmax = 100 instances and equal was the size of each sliding window

ωmax = 100. We also empirically set ns = 1000 and τs = 0.5 for splitting, and αr = 0.4

for removals. These settings worked very well with all of the considered datasets. We

used the same values of cmax and bmax for the SB algorithm. When it comes to

the CB method, we set bmax = 2000 per class to provide similar memory resources

compared with RSB and SB. Furthermore, we distinguished CB with τ = 0.0 (CBold)

and τ = 1.0 (CBnew) to check their performance in stationary and non-stationary

scenarios. We can say that CBold represents standard continual learning methods for

stationary data (it indefinitely stores once observed instances), while CBnew represents

streaming approaches (constantly replaces examples on the fly).

All of the mentioned algorithms used pre-trained convolutional feature extrac-

tors, from which we used representations returned by a middle layer of the classifier

(we needed a high-level representation due to the nature of our task). For MNIST

and FASHION we used a simple CNN with two convolutional layers consisting of

222

32 (5x5) and 64 (3x3) filters, interleaved with ReLU, batch normalization and max

pooling (2x2). For SVHN, CIFAR10 and IMAGENET10 we utilized ResNet18. As a

trainable classifier we chose a 3-layer fully connected net with 512, 256, 128 neurons in

the hidden layers interleaved with ReLU, batch normalization and dropout (p = 0.5).

During training, we used the Adam optimizer. After each batch, the classifier learned

for either 5 epochs (IMAGENET10) or 10 (the rest). Additionally, we initialized each

algorithm with 10% of the first and the second class.

10.2.3 Evaluation

We evaluated the presented methods in a class-incremental setting, where each

original class is treated as a subconcept of the binary recommendation space and

comes as a whole in a form of a batch (Fig. 61). In our scenario, we assume that

old subconcepts may become outdated and batches may change their labels. We

measured the accuracy of a given algorithm after each batch (a new or updated

class), utilizing holdout testing sets, and then, based on [12], used it to calculate the

normalized average accuracy over the whole sequence:

Ωall =
1

T

T∑
t=1

αt

αoffline,t

, (10.3)

where αt is the model performance after t classes and αoffline,t is the optimal perfor-

mance obtained by the offline learner.

To make our scenario more challenging, we assumed that we did not know the

classes of the original set, only the recommendation labels. This allowed us to create

a complex decision space without explicit knowledge of its subspaces and with a lot

of potential for local concept drifts.

223

10.2.4 Results

Performance on stationary continual learning. Firstly, we evaluated the perfor-

mance of RSB against the reference approaches in class-incremental continual learn-

ing with stationary properties. That means there was no concept drift present in

the data and the main challenge lay in aggregating learned knowledge and avoiding

catastrophic forgetting. We used this scenario first as an ablation study, to show

that RSB is capable of learning newly arriving classes, without forgetting the previ-

ously seen ones. Tab. 30 shows the normalized average accuracy results over the five

used benchmarks, while Fig. 62 depicts the changes in accuracy over time, calculated

after each class (subconcept) batch. We omit the MNIST plot as it has identical

characteristics as the FASHION plot.

In the presented results, we can see that all of the considered experience replay

approaches were able to obtain satisfactory performance on the stationary sequences,

slightly below the offline upper bound. They significantly improved upon the naive

fine-tuning (NN), which severely suffered from catastrophic forgetting. The simple

class buffers performed similarly on average. Holding instances of the earliest classes

Table 30.: Normalized average accuracy (absolute values for the offline baseline) for

stationary sequences.

Model MNIST FASHION SVHN CIFAR10 IMG10

OFFLINE 1.0 0.9865 1.0 1.0 1.0

NN 0.5529 0.5603 0.5529 0.5596 0.4886

ER-CBold 0.9537 0.9554 0.9414 0.9106 0.8828

ER-CBnew 0.8754 0.8990 0.9235 0.9298 0.9349

ER-SB 0.9897 0.9739 0.9750 0.9675 0.9513

ER-RSB 0.9967 0.9926 0.9816 0.9740 0.9405

224

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

Rand

FASHION (STAT)

RSB SB CBold

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

Rand

SVHN (STAT)

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

Rand

CIFAR10 (STAT)

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

Rand

IMAGENET10 (STAT)

Fig. 62.: Average accuracy over all classes for stationary class-incremental sequences.

(CBold) turned out to be a bit better approach on simpler benchmarks, while giving

a higher priority to the newer instances (CBnew) resulted in higher accuracy on CI-

FAR10 and IMAGENET10. The more sophisticated centroid-driven experience replay

(SB, RSB) provided even higher quality on all sequences by maintaining more diver-

sified memory buffers per recommendation class. Finally, the results indicate that

our method is often capable of improving upon the simpler centroid-based method

(SB), most likely by correcting partially inaccurate clusters.

In Fig. 62 we can clearly see that RSB displayed stable incremental learning

capabilities and was not affected by catastrophic forgetting. This is especially visible

on FASHION, SVHN and CIFAR10 datasets, where with the increasing number of

classes reference methods displayed drops of performance, while RSB achieved stable

results for all arriving classes. For SVHN, we can see that CBold returned to similar

225

performance as RSB after the 8-th class – but the intermediate learning process

between classes no. 4 and 8 was significantly impaired. SB was much more resilient

to forgetting, yet it performed slightly worse than RSB on 3 out of 4 sequences and on

average. This allows us to conclude that RSB is robust to both catastrophic forgetting

and false concept drift detection on stationary data.

Performance on continual learning under concept drift. After establishing

that RSB displays robustness to catastrophic forgetting, we needed to evaluate its

capability of simultaneous incremental learning and adaptation to drift. We used

the same five benchmarks that now were injected with concept drift as discussed in

Sec. 5.1. This way we should be able to see if RSB is able to detect changes in

previously learned classes and correctly modify the underlying classifier to update its

stored knowledge. Tab. 31 shows the normalized average accuracy results over five

used benchmarks, while Fig. 63 depicts the changes in accuracy over time. Again, we

omit MNIST plot as it has identical characteristics as the FASHION plot.

For continual learning under concept drift we can see significant differences

among the examined algorithms. Neither CBold, CBnew or SB was capable of keeping

Table 31.: Normalized average accuracy (absolute values for the offline baseline) for

drifting sequences.

Model MNIST FASHION SVHN CIFAR10 IMG10

OFFLINE 1.0 0.9744 1.0 1.0 1.0

NN 0.5894 0.6043 0.5872 0.5884 0.4546

ER-CBold 0.5977 0.6473 0.5494 0.5635 0.6084

ER-CBnew 0.7422 0.7931 0.7743 0.7918 0.8540

ER-SB 0.7268 0.7341 0.7267 0.7004 0.6696

ER-RSB 0.9938 0.9745 0.9722 0.9545 0.9187

226

0 2 4 6 8 10121416182022242628

0.4

0.6

0.8

1.0

Rand

FASHION (DRIFT)

RSB

SB

CBnew

0 2 4 6 8 10121416182022242628

0.4

0.6

0.8

1.0

Rand

SVHN (DRIFT)

0 2 4 6 8 10121416182022242628

0.4

0.6

0.8

1.0

Rand

CIFAR10 (DRIFT)

0 2 4 6 8 10121416182022242628

0.4

0.6

0.8

1.0

Rand

IMAGENET10 (DRIFT)

Fig. 63.: Average accuracy over all classes for drifting class-incremental sequences.

Drifts occur in batches 4, 5, 9, 10, 14, 15, 19, 20, 24 and 25.

up with the presence of concept drift in the data. The main reason for that was the

fact that CBold and SB kept outdated instances in their buffers, impeding the adap-

tation process by forcing the model to retain obsolete concepts. On the other hand,

CBnew adapted to newer concepts much better than CBold, but it was not able to store

instances for older classes, which inevitably led to catastrophic forgetting. For all five

datasets the proposed RSB displayed the most stable performance, which is especially

striking in the case of FASHION, SVHN and CIFAR10 sequences. By analyzing the

plots we can see how the reference methods were significantly impacted by the first

occurrence of concept drift, often dropping to similar or lower performance levels as

the random approach. Sometimes they were slowly recovering their performance over

time, but this was happening at an unacceptable rate.

227

To gain further insights into the performance of the experience replay under

concept drift let us look at Fig. 64 that depicts the accuracy over selected drifting

classes. We can see that both CBnew and SB were highly sensitive to any drift in

data. Even if sometimes they could spontaneously recover their performance (which

usually was rather a coincidence), the next occurrence of concept drift could easily

bring their performance back to the level of random decision (or even below). In the

case of the MNIST class 0 we can see that the SB method could not recover at any

point of time after the first drift. The extremely low accuracy was caused by obsolete

centroids, which did not update their label and kept generating invalid instances for

the recommendation class. These results clearly indicate that standard experience

replay approaches cannot handle concept drifts, and that some of the occurring errors

may even never be corrected. On the contrary, the proposed RSB is characterized by

excellent robustness to concept drift, stable performance, and on-the-fly adaptation

to changes in previously learned classes without any delay or loss in predictive power.

Finally, we should be aware that concept drift may affect not only the per-

formance of models on previously seen classes, but also their incremental learning

capabilities. As the underlying neural network model tries to handle the catastrophic

0 2 4 6 8 10121416182022242628

0.0

0.5

1.0

Rand

MNIST-C0

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.5

1.0

Rand

FASHION-C2

RSB

SB

CBnew

Fig. 64.: Accuracy for the selected classes under concept drift. C0 drifts in batches 4

and 5, and C2 drifts in 9 and 10.

228

forgetting by using instances from the buffer for experience replay, it utilizes in-

stances coming from outdated concepts that may be contradicting the most current

ones. Therefore, this may impact its ability to incorporate and retain new knowl-

edge, resulting in a significant decrease in the model’s predictive power. This allows

us to conclude that continual learning under concept drift requires a strong inter-

play between avoiding catastrophic forgetting and adaptation to concept drift, as

weaker performance on one will negatively affect the other. The proposed RSB offers

an excellent balance between these two tasks, leading to a well-rounded and stable

continual learning solution.

10.3 Summary

In this chapter, we have discussed a unified approach to continual learning that

bridges the gap between avoiding catastrophic forgetting and data stream mining

under concept drift. By pointing to the fact that these fields are two faces of the

same coin, we showed that there is a need for developing holistic systems that are

capable of incremental incorporation of new information while offering adaptation

capabilities by selective forgetting. This was illustrated by a practical example of

continual learning of user’s preferences that expand and evolve over time.

To address this challenging scenario, we have proposed an experience replay

approach based on a reactive subspace buffer. It combines clustering-driven mem-

ory, storing diverse instances per class, with adaptation components that allow for

dynamic monitoring, relabeling, and splitting of existing clusters. As a result, our

method provides both the capability of accommodating new classes without catas-

trophic forgetting and the ability to react to concept drift affecting the previously

learned classes. In our experimental study, we exhibited the effectiveness of our algo-

rithm and proved that it is an effective and complete approach to continual learning

229

that is not limited by either inability to accommodate new information, or by the

inability to adapt to changes.

We have shown that while existing standard experience replay approaches are

able to handle the problem of avoiding catastrophic forgetting, they do not possess

mechanisms allowing for adaptation in previously learned classes affected by concept

drift. We suppose that similar issues can be identified in other continual learning

algorithms. Therefore, our future works will focus on improving different approaches.

This may involve, for example, introducing adaptive masking, reactive regularization

and dynamic neural network structures capable of reacting to drifts. These will be

important steps towards creating a holistic view of continual learning systems that

can handle diverse challenges present in various real-life problems.

230

CHAPTER 11

FINAL SUMMARY

11.1 Conclusions

Continual learning is a challenging and vast research domain mainly because we

have to deal with an unlimited continuum of events, having strictly limited resources

and knowledge. Also, by enforcing incremental capabilities we open a new dimension

of problems that add more complexity to many of the issues known from the standard

offline settings.

The presented dissertation addressed these problems in an exploratory way. Its

main goal was to look at the continual learning paradigm as a whole, analyze its

various branches and address identified issues covering different aspects of learning

from sequentially incoming data. By doing so, this work not only filled several gaps

in the current continual learning research but also emphasized the complexity and

diversity of problems in this domain, encouraging (hopefully) the readers to look at

this concept from multiple perspectives.

The prevalent part of this work focused on addressing problems related to either

catastrophic forgetting or concept drift adaptation. For the former, we showed that

deep continual learning can be successfully extended to alternative machine learning

models (mixture models and decision trees), potentially stimulating new research di-

rections. For the latter, we presented works tackling compound problems that can

be easily encountered when learning from infinite non-stationary data streams – ef-

fective adaptation to concept drift under strictly limited supervision, dealing with

non-stationary imbalanced streaming environments, detecting changes in dynamic

231

skewed distributions and in unsupervised settings, or exploiting adjustable diversity

for the purpose of ensemble adaptation. Last but not least, we introduced a holistic

method for continual learning, highlighting how important it is to design algorithms

and experiments that explicitly address both catastrophic forgetting and change adap-

tation in order to provide reliable and robust continual learning solutions. Extensive

evaluations conducted for all of the presented contributions have substantiated their

effectiveness and supported the validity of the introduced suppositions.

We hope that this dissertation will help others with achieving the main contin-

ual learning goals, including convergence to offline baselines in stationary scenarios

and full extension of machine learning paradigms to more universal non-stationary

environments.

11.2 Open challenges and future directions

While the presented dissertation covered multiple different aspects and issues of

continual learning, the enormous challenge, that the problem poses as a whole, leaves

no doubt that it is just the tip of the iceberg that should be revealed more in the

coming years of research. In addition to more specific future works suggested for each

of the methods presented in the previous chapters, this final section extends them

and introduces other open challenges research directions identified by us.

11.2.1 Improving continual learning from stationary data

Current issues that can be addressed in the context of advancing methods pro-

viding stability for static concepts, flexibility when incorporating new stationary data

and scalability with the number of new concepts include the following directions.

Streaming. The prevalent number of works on continual learning assume that new

data come in the form of finite batches either per class (class-incremental) or task

232

(task-incremental) [9, 10, 61]. This is a very strong assumption since in many practical

applications it is not possible to define a discrete and finite set representing a class

or task once and for all. It is more likely that a user will be aggregating the data

across time, without complete information about classes and tasks, and without a

specific order (data-incremental). This is why to significantly increase universality of

continual learning systems, we have to enable fully streaming processing, in which

instances come one by one, without any additional assumptions.

Task and class imbalance. The problem of handling imbalanced data in continual

learning has not been properly addressed, making such systems susceptible to imbal-

anced/biased distributions. This issue cannot be simply boiled down to applying the

same solutions as those known for standard deep learning, since besides balancing the

learning process, we also have to be careful not to forget older information. The latter

problem has been already addressed in the context of imbalance and is known as a

bias between new and old classes [62, 63]. Combined with the standard imbalance

(class ratios) it constitutes a non-trivial problem requiring dedicated solutions in a

form of more sophisticated loss functions (e.g. combining knowledge distillation with

ratio-based weighting) and oversampling techniques (e.g. GAN-based). This is a crit-

ical problem for many real-world applications struggling with the issue of robustness

of models.

Continual ensembles. Committees seem like a natural candidate for continual

learning since each member of the committee can be treated as a memory cell that

aggregates different portions of the incoming knowledge. However, the utilization

of ensemble techniques in continual learning remains almost completely unexplored

for neural networks. While it is clear that using several deep neural nets may be

unrealistic, especially when confronted with a potentially infinite surge of data, the

233

idea of building intrinsic committees, in which internal subnets act as base learners,

or creating ensembles of lightweight output layers looks like a feasible and powerful

concept. There are but few works that introduced simple foundations for such re-

search by, for example, extracting members of the ensemble by masking, or utilizing

an autoencoder to select the most competent base learner for a given task. These ba-

sic frameworks suffer from critical limitations that should be addressed. Good results

of ensembles dedicated to data stream mining [22, 116] should provide further en-

couragement towards exploring this area in the context of incremental learning from

stationary data.

Continual transfer learning. One of the fundamental reasons why we may want to

use continual learning systems is their desired ability to enhance the creation of new

models with previously collected knowledge (forward transfer) and, at the same time,

to enrich utilized old models with new data whenever it is available (backward trans-

fer) [12]. Unfortunately, most of the proposed works offer the former to some limited

extent (e.g. only from a common backbone net in the mentioned ensembles), and

the latter is practically non-existent (e.g. in the masking techniques). Furthermore,

continual learning seems to lack mechanisms for avoiding forced transfer from incom-

patible concepts. It is important, as in the considered scenarios we can never know

what type of data we will encounter and if we should try to transfer the knowledge

to the maintained models.

More hybridization. The main problems with aggregating knowledge in deep learn-

ing models are strongly connected with the way neural networks learn. In this work,

we showed that it is possible to successfully hybridize deep neural networks with other

machine learning models that may be inherently resilient to catastrophic forgetting,

e.g. mixture models as classifiers. Therefore, a natural compelling idea should be to

234

consider using different machine learning models in continual learning scenarios. One

should also remember that it does not have to be limited only to classification layers –

these methods could be potentially mixed into the whole deep learning architectures,

including feature extractors [258].

11.2.2 Improving continual learning from non-stationary data

Important issues related to improving the quality and flexibility of methods de-

signed for handling adaptation to concept drifts include, but are not limited to, the

topics given below.

Learning on a budget. One of the primary issues that can be identified, is insuffi-

cient attention given to the problem of supervision availability in streaming learning.

While we addressed this problem at the level of supervised and some unsupervised

approaches, there is also a very important domain of semi-supervised methods that

theoretically seem to be designed for such cases as learning from data streams (hav-

ing a vast amount of unlabeled instances and only few annotated). The utilization

of such methods could potentially with improving recovery rates after drifts, without

additional labeling costs. However, as pointed out by us and shown in one of our ad-

ditional works, semi-supervised techniques suffer from the non-stationary properties

of data [203], therefore, it is an open question how to adapt them to such scenar-

ios. Furthermore, few-shot or zero-shot learning approaches, known mainly from the

offline deep learning domain, could also find a lot of applicability here [83].

Concept drift detection. As mentioned in our works dedicated to the problem

of drift detection, it may be extremely useful to have access to detectors capable of

detecting changes in an unsupervised way and sensitive to local drifts [124]. Tak-

ing that into consideration, designing detectors capable of recognizing multivariate

235

changes in feature subspaces without supervision seems like an important issue that

is definitely worth further exploration. Furthermore, we can say the same about de-

signing explainable change detection allowing for a better understanding of dynamics

present in data (all of the published detectors are black boxes). Finally, because the

proposed drift detectors were not designed specifically for deep neural networks, it is

possible that there is a great potential for finding more precise, localized and accu-

rate detection algorithms for deep architectures by utilizing information coming from

individual layers or groups of neurons.

Proactive approaches. The majority of algorithms designed for non-stationary

data exhibits solely reactive adaptation properties. This means that they will adapt to

observed changes only post-factum, which will usually result in significant adaptation

delays and prolonged periods of a model’s incompetence. An alternative approach

assumes the presence of proactive techniques capable of predicting that a change

may occur and preparing a model for the drift before it actually appears [177]. Such

methods focus not only on modeling the concepts themselves but also on creating

models for the changes (dynamics) observed in the data across time – we can call it

change mining. It is almost a completely unexplored area with a great potential for

novelty and substantial advancements in contemporary machine learning models.

Addressing the lack of holistic approaches Combining methods for tackling

catastrophic forgetting and concept drift within a single learning algorithm can be

seen as one of the ultimate goals of continual learning. In practice, the final mod-

els should be capable of effectively distinguishing what to remember and what to

forget without negatively affecting either of these abilities. The gap in the research

related to the given problem, introduced in this work, can be further addressed by

preparing unifying studies comprehensively analyzing both considered scenarios from

236

the perspective of a shared goal [8], proposing new evaluation approaches, or design-

ing dedicated algorithms capable of handling the complex issue. The last part may

consist of: adjusting methods designed for the stabilization of stationary concepts to

make them suitable for non-stationary data, or adjusting data stream mining models

to tackle the catastrophic forgetting issue. The outcome of these attempts should be

a group of generic unified continual learning algorithms capable of incorporating new

concepts, remembering those that do not change (tackling catastrophic forgetting)

and updating those that become outdated (tackling concept drift). The algorithms

should provide equilibrium between stability and complete flexibility, offering a holis-

tic approach to next-level continual learning.

Benchmarks and applications. Last but not least, it can be easily noticed that

there is a lack of real-world applications of continual machine learning algorithms.

We think that it is important for the popularization of the proposed methods to

exhibit their abilities to handle realistic problems at each stage of the research. Some

of the potential ideas include: medical applications (learning new cases, patients,

evolving diseases etc.), recommendation systems (e.g. user’s taste is subject to more

or less frequent changes) or models for social media (unstable concepts, data streams).

Furthermore, one of the main problems that may be slowing down the development

of continual models is the limited scope of data benchmarks that are taken into

consideration. For example, if we use only data from such classification tasks as

MNIST, CIFAR or ImageNet, then we will never recognize the need of developing

continual learning models (and metrics) that can handle concept drifts, since nines

will always be nines and cats will always be cats. Therefore, inspired by collections

like [259], it would be a great idea to prepare real-world benchmarks consisting of

concept drifts and make them public.

237

References

[1] João Gama et al. “A survey on concept drift adaptation”. In: ACM Comput.

Surv. 46.4 (2014), 44:1–44:37.

[2] Scott Coyne, Praveen Madiraju, and Joseph Coelho. “Forecasting Stock Prices

Using Social Media Analysis”. In: 2017 IEEE 15th Intl Conf on Dependable,

Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence

and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and

Cyber Science and Technology Congress. 2017, pp. 1031–1038.

[3] Sorin Mihai Grigorescu et al. “A Survey of Deep Learning Techniques for

Autonomous Driving”. In: arXiv abs/1910.07738 (2020).

[4] Yang Yan, Bin Wang, and Jun Zou. Blockchain. WORLD SCIENTIFIC, 2021.

doi: 10.1142/12264.

[5] Tim Sweeney. “Foundational Principles Technologies for the Metaverse”.

In: ACM SIGGRAPH 2019 Talks. SIGGRAPH ’19. Los Angeles, California:

Association for Computing Machinery, 2019. isbn: 9781450363174.

[6] German I. Parisi et al. “Continual lifelong learning with neural networks: A

review”. In: Neural Networks 113 (2019), pp. 54–71. issn: 0893-6080.

[7] Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. “Re-evaluating Continual

Learning Scenarios: A Categorization and Case for Strong Baselines”. In:

arXiv abs/1810.12488 (2018).

[8] Rudolf Szadkowski, Jan Drchal, and Jan Faigl. “Continually trained life-long

classification”. In: Neural Computing and Applications (2021).

238

https://doi.org/10.1142/12264

[9] Matthias De Lange et al. “Continual learning: A comparative study on how

to defy forgetting in classification tasks”. In: CoRR abs/1909.08383 (2019).

[10] Marc Masana et al. “Class-incremental learning: survey and performance eval-

uation”. In: CoRR abs/2010.15277 (2020).

[11] Robert M. French. “Catastrophic forgetting in connectionist networks”. In:

Trends in Cognitive Sciences 3.4 (1999), pp. 128–135.

[12] Ronald Kemker et al. “Measuring Catastrophic Forgetting in Neural Net-

works”. In: AAAI. 2018.

[13] Ameya Prabhu, Philip H. S. Torr, and Puneet Kumar Dokania. “GDumb: A

Simple Approach that Questions Our Progress in Continual Learning”. In:

ECCV. 2020.

[14] Jie Lu et al. “Learning under Concept Drift: A Review”. In: IEEE Transac-

tions on Knowledge and Data Engineering 31.12 (2019), pp. 2346–2363.

[15] Ammar Shaker and Eyke Hüllermeier. “Recovery analysis for adaptive learn-

ing from non-stationary data streams: Experimental design and case study”.

In: Neurocomputing 150 (2015), pp. 250–264.

[16] Gregory Ditzler et al. “Learning in Nonstationary Environments: A Survey”.

In: IEEE Computational Intelligence Magazine 10.4 (2015), pp. 12–25.

[17] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. “Task-Free Con-

tinual Learning”. In: CoRR abs/1812.03596 (2018).

[18] Massimo Caccia et al. “Online Fast Adaptation and Knowledge Accumulation

(OSAKA): a New Approach to Continual Learning”. In: NeurIPS. 2020.

239

[19] Sergio Ramı́rez-Gallego et al. “A survey on data preprocessing for data stream

mining: Current status and future directions”. In: Neurocomputing 239 (2017),

pp. 39–57.

[20] Jean Paul Barddal et al. “A survey on feature drift adaptation: Definition,

benchmark, challenges and future directions”. In: Journal of Systems and

Software 127 (2017), pp. 278–294.

[21] Benedikt Pfülb and Alexander Rainer Tassilo Gepperth. “A comprehensive,

application-oriented study of catastrophic forgetting in DNNs”. In: arXiv

abs/1905.08101 (2019).

[22] Bartosz Krawczyk et al. “Ensemble learning for data stream analysis: A sur-

vey”. In: Inf. Fusion 37 (2017), pp. 132–156.

[23] Furqan Rustam et al. “COVID-19 Future Forecasting Using Supervised Ma-

chine Learning Models”. In: IEEE Access 8 (2020), pp. 101489–101499.

[24] Martin Müller and Marcel Salathé. Addressing machine learning concept drift

reveals declining vaccine sentiment during the COVID-19 pandemic. 2020.

[25] Matthias De Lange and Tinne Tuytelaars. “Continual Prototype Evolution:

Learning Online from Non-Stationary Data Streams”. In: arXiv abs/2009.00919

(2020).

[26] Xiaoyu Tao et al. “Bi-Objective Continual Learning: Learning ’New’ While

Consolidating ’Known’”. In: AAAI. 2020.

[27] Lukasz Korycki and Bartosz Krawczyk. “Streaming Decision Trees for Life-

long Learning”. In: Machine Learning and Knowledge Discovery in Databases.

Research Track. Ed. by Nuria Oliver et al. Cham: Springer International Pub-

lishing, 2021, pp. 502–518.

240

[28] Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. “Rehearsal revealed:

The limits and merits of revisiting samples in continual learning”. In: arXiv

abs/2104.07446 (2021).

[29] Sylvestre-Alvise Rebuffi et al. “iCaRL: Incremental Classifier and Representa-

tion Learning”. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2017), pp. 5533–5542.

[30] Jihwan Bang et al. “Rainbow Memory: Continual Learning with a Memory

of Diverse Samples”. In: 2021 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer

Society, 2021, pp. 8214–8223.

[31] Zalán Borsos, Mojm’ir Mutn’y, and Andreas Krause. “Coresets via Bilevel Op-

timization for Continual Learning and Streaming”. In: arXiv abs/2006.03875

(2020).

[32] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient Episodic Memory for

Continual Learning”. In: Proceedings of the 31st International Conference on

Neural Information Processing Systems. Long Beach, California, USA, 2017,

6470–6479.

[33] Arslan Chaudhry et al. “Efficient Lifelong Learning with A-GEM”. In: arXiv

abs/1812.00420 (2019).

[34] Rahaf Aljundi et al. “Gradient based sample selection for online continual

learning”. In: NeurIPS. 2019.

[35] Tyler L. Hayes et al. “REMIND Your Neural Network to Prevent Catastrophic

Forgetting”. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al.

2020, pp. 466–483.

241

[36] Sayna Ebrahimi et al. “Remembering for the Right Reasons: Explanations

Reduce Catastrophic Forgetting”. In: CoRR abs/2010.01528 (2020).

[37] Yaoyao Liu et al. “Mnemonics Training: Multi-Class Incremental Learning

Without Forgetting”. In: 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) (2020), pp. 12242–12251.

[38] James Smith et al. “Always Be Dreaming: A New Approach for Data-Free

Class-Incremental Learning”. In: arXiv abs/2106.09701 (2021).

[39] Timothée Lesort et al. “Generative Models from the perspective of Contin-

ual Learning”. In: 2019 International Joint Conference on Neural Networks

(IJCNN). 2019, pp. 1–8.

[40] Amanda Rios and Laurent Itti. “Closed-Loop Memory GAN for Continual

Learning”. In: Proceedings of the 28th International Joint Conference on Ar-

tificial Intelligence. IJCAI’19. Macao, China, 2019, 3332–3338.

[41] Mengyao Zhai et al. “Lifelong GAN: Continual Learning for Conditional Im-

age Generation”. In: 2019 IEEE/CVF International Conference on Computer

Vision (ICCV) (2019), pp. 2759–2768.

[42] Xin Su et al. “Generative Memory for Lifelong Learning”. In: IEEE Transac-

tions on Neural Networks and Learning Systems 31.6 (2020), pp. 1884–1898.

[43] Mohammad Rostami et al. “Generative Continual Concept Learning”. In:

AAAI. 2020.

[44] Tyler L. Hayes et al. “Replay in Deep Learning: Current Approaches and

Missing Biological Elements”. In: Neural Computation 33.11 (Oct. 2021),

pp. 2908–2950.

242

[45] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowl-

edge in a Neural Network”. In: arXiv abs/1503.02531 (2015).

[46] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 40.12 (2018),

pp. 2935–2947.

[47] Saihui Hou et al. “Lifelong Learning via Progressive Distillation and Retro-

spection”. In: ECCV. 2018.

[48] Prithviraj Dhar et al. “Learning Without Memorizing”. In: 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) (2019),

pp. 5133–5141.

[49] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-

works”. In: Proceedings of the National Academy of Sciences 114.13 (2017),

pp. 3521–3526.

[50] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual Learning through

Synaptic Intelligence”. In: Proceedings of the 34th International Conference

on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia, 2017,

3987–3995.

[51] Rahaf Aljundi et al. “Memory Aware Synapses: Learning What (not) to For-

get”. In: Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari et al. 2018,

pp. 144–161.

[52] Pingbo Pan et al. “Continual Deep Learning by Functional Regularisation of

Memorable Past”. In: arXiv abs/2004.14070 (2020).

[53] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. “Selfless Sequential

Learning”. In: arXiv abs/1806.05421 (2019).

243

[54] Jhair Gallardo, Tyler L. Hayes, and Christopher Kanan. “Self-Supervised

Training Enhances Online Continual Learning”. In: arXiv abs/2103.14010

(2021).

[55] Alaa El Khatib and Fakhri Karray. “Preempting Catastrophic Forgetting in

Continual Learning Models by Anticipatory Regularization”. In: 2019 Inter-

national Joint Conference on Neural Networks (IJCNN) (2019), pp. 1–7.

[56] Sayna Ebrahimi et al. “Adversarial Continual Learning”. In: Computer Vision

– ECCV 2020. Ed. by Andrea Vedaldi et al. 2020, pp. 386–402.

[57] Arthur Douillard et al. “PODNet: Pooled Outputs Distillation for Small-Tasks

Incremental Learning”. In: ECCV. 2020.

[58] Jonathan Schwarz et al. “Progress & Compress: A scalable framework for

continual learning”. In: arXiv abs/1805.06370 (2018).

[59] Amanda Rios and Laurent Itti. “Lifelong Learning Without a Task Oracle”.

In: 2020 IEEE 32nd International Conference on Tools with Artificial Intel-

ligence (ICTAI) (2020), pp. 255–263.

[60] Arthur Douillard et al. DyTox: Transformers for Continual Learning with

DYnamic TOken eXpansion. 2021.

[61] Davide Maltoni and Vincenzo Lomonaco. “Continuous learning in single-

incremental-task scenarios”. In: Neural Networks 116 (2019), pp. 56–73.

[62] Yue Wu et al. “Large Scale Incremental Learning”. In: 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) (2019),

pp. 374–382.

244

[63] Bowen Zhao et al. “Maintaining Discrimination and Fairness in Class Incre-

mental Learning”. In: 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) (2020), pp. 13205–13214.

[64] Saihui Hou et al. “Learning a Unified Classifier Incrementally via Rebalanc-

ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 2019.

[65] Guile Wu, Shaogang Gong, and Pan Li. “Striking a Balance Between Sta-

bility and Plasticity for Class-Incremental Learning”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV). 2021,

pp. 1124–1133.

[66] Arun Mallya and Svetlana Lazebnik. “Piggyback: Adding Multiple Tasks to

a Single, Fixed Network by Learning to Mask”. In: arXiv abs/1801.06519

(2018).

[67] Arun Mallya and Svetlana Lazebnik. “PackNet: Adding Multiple Tasks to a

Single Network by Iterative Pruning”. In: 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (2018), pp. 7765–7773.

[68] Chrisantha Fernando et al. “PathNet: Evolution Channels Gradient Descent

in Super Neural Networks”. In: CoRR abs/1701.08734 (2017).

[69] Shivangi Srivastava et al. “Adaptive Compression-based Lifelong Learning”.

In: arXiv abs/1907.09695 (2019).

[70] Steven C. Y. Hung et al. “Compacting, Picking and Growing for Unforgetting

Continual Learning”. In: arXiv abs/1910.06562 (2019).

[71] Zixuan Ke, Bing Liu, and Xingchang Huang. “Continual Learning of a Mixed

Sequence of Similar and Dissimilar Tasks”. In: NeurIPS. 2020.

245

[72] Andrei A. Rusu et al. “Progressive Neural Networks”. In: abs/1606.04671

(2016).

[73] Jaehong Yoon et al. “Lifelong Learning with Dynamically Expandable Net-

works”. In: arXiv abs/1708.01547 (2018).

[74] Shipeng Yan, Jiangwei Xie, and Xuming He. “DER: Dynamically Expandable

Representation for Class Incremental Learning”. In: arXiv abs/2103.16788

(2021).

[75] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient Continual

Learning with Modular Networks and Task-Driven Priors. 2021.

[76] Xi lai Li et al. “Learn to Grow: A Continual Structure Learning Framework

for Overcoming Catastrophic Forgetting”. In: ICML. 2019.

[77] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate:

Lifelong Learning with a Network of Experts”. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (2017), pp. 7120–7129.

[78] Yeming Wen, Dustin Tran, and Jimmy Ba. “BatchEnsemble: An Alternative

Approach to Efficient Ensemble and Lifelong Learning”. In: arXiv abs/2002.06715

(2020).

[79] Pravendra Singh et al. “Rectification-based Knowledge Retention for Con-

tinual Learning”. In: 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) (2021), pp. 15277–15286.

[80] Felix Wiewel, Andreas Brendle, and Bin Yang. “Continual Learning Through

One-Class Classification Using VAE”. In: ICASSP 2020 - 2020 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP).

2020, pp. 3307–3311.

246

[81] Wenpeng Hu et al. “Continual Learning by Using Information of Each Class

Holistically”. In: Proceedings of the AAAI Conference on Artificial Intelli-

gence 35.9 (2021), pp. 7797–7805.

[82] Ya jun Liu et al. “More Classifiers, Less Forgetting: A Generic Multi-classifier

Paradigm for Incremental Learning”. In: ECCV. 2020.

[83] Chi Zhang et al. “Few-Shot Incremental Learning with Continually Evolved

Classifiers”. In: 2021 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR) (2021), pp. 12450–12459.

[84] Xiaoyu Tao et al. “Few-Shot Class-Incremental Learning”. In: CoRR abs/2004.10956

(2020).

[85] Kai Zhu et al. “Self-Promoted Prototype Refinement for Few-Shot Class-

Incremental Learning”. In: 2021 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) (2021), pp. 6797–6806.

[86] Sung Whan Yoon et al. “XtarNet: Learning to Extract Task-Adaptive Rep-

resentation for Incremental Few-Shot Learning”. In: ICML. 2020.

[87] Ali Cheraghian et al. “Semantic-Aware Knowledge Distillation for Few-Shot

Class-Incremental Learning”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2021, pp. 2534–2543.

[88] Khurram Javed and Martha White. “Meta-Learning Representations for Con-

tinual Learning”. In: Advances in Neural Information Processing Systems. Ed.

by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[89] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th

International Conference on Machine Learning. Ed. by Doina Precup and

247

Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. 2017,

pp. 1126–1135.

[90] Johannes von Oswald et al. “Continual learning with hypernetworks”. In:

CoRR abs/1906.00695 (2019).

[91] Xu He et al. “Task Agnostic Continual Learning via Meta Learning”. In:

arXiv abs/1906.05201 (2019).

[92] Wenpeng Hu et al. “Overcoming Catastrophic Forgetting for Continual Learn-

ing via Model Adaptation”. In: ICLR. 2019.

[93] Shawn Beaulieu et al. “Learning to Continually Learn”. In: CoRR abs/2002.09571

(2020).

[94] Tyler L. Hayes and Christopher Kanan. “Lifelong Machine Learning with

Deep Streaming Linear Discriminant Analysis”. In: 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops (CVPRW)

(2020), pp. 887–896.

[95] Ziyang Wu et al. “Incremental Learning via Rate Reduction”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2021, pp. 1125–1133.

[96] Yaoyao Liu, Bernt Schiele, and Qianru Sun. “Adaptive Aggregation Networks

for Class-Incremental Learning”. In: Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR). 2021, pp. 2544–

2553.

[97] Lu Yu et al. “Semantic Drift Compensation for Class-Incremental Learning”.

In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) (2020), pp. 6980–6989.

248

[98] Zheda Mai et al. “Supervised Contrastive Replay: Revisiting the Nearest Class

Mean Classifier in Online Class-Incremental Continual Learning”. In: 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW). 2021, pp. 3584–3594.

[99] Nikhil Mehta et al. “Continual Learning using a Bayesian Nonparametric

Dictionary of Weight Factors”. In: AISTATS. 2021.

[100] Dushyant Rao et al. “Continual Unsupervised Representation Learning”. In:

CoRR abs/1910.14481 (2019).

[101] Andrés R. Masegosa et al. “Analyzing concept drift: A case study in the

financial sector”. In: Intell. Data Anal. 24.3 (2020), pp. 665–688.

[102] Gustavo H. F. M. Oliveira, Leandro L. Minku, and Adriano L. I. Oliveira.

“GMM-VRD: A Gaussian Mixture Model for Dealing With Virtual and Real

Concept Drifts”. In: International Joint Conference on Neural Networks, IJCNN

2019 Budapest, Hungary, July 14-19, 2019. IEEE, 2019, pp. 1–8.

[103] João Gama and Gladys Castillo. “Learning with Local Drift Detection”. In:

Advanced Data Mining and Applications, Second International Conference,

ADMA 2006, Xi’an, China, August 14-16, 2006, Proceedings. Vol. 4093. Lec-

ture Notes in Computer Science. Springer, 2006, pp. 42–55.

[104] Paulo Mauricio Gonçalves Jr and Roberto Souto Maior de Barros. “RCD:

A recurring concept drift framework”. In: Pattern Recognition Letters 34.9

(2013), pp. 1018–1025. issn: 0167-8655.

[105] Bartosz Krawczyk and Alberto Cano. “Online ensemble learning with abstain-

ing classifiers for drifting and noisy data streams”. In: Applied Soft Computing

68 (2018), pp. 677–692.

249

[106] Tegjyot Singh Sethi and Mehmed M. Kantardzic. “Handling adversarial con-

cept drift in streaming data”. In: Expert Systems with Applications 97 (2018),

pp. 18–40.

[107] Sergio Ramı́rez-Gallego et al. “Nearest Neighbor Classification for High-Speed

Big Data Streams Using Spark”. In: IEEE Transactions on Systems, Man, and

Cybernetics: Systems 47.10 (2017), pp. 2727–2739.

[108] Albert Bifet and Ricard Gavaldà. “Learning from Time-Changing Data with

Adaptive Windowing”. In: Proceedings of the Seventh SIAM International

Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota, USA.

SIAM, 2007, pp. 443–448.

[109] Albert Bifet and Ricard Gavaldà. “Adaptive Learning from Evolving Data

Streams”. In: Advances in Intelligent Data Analysis VIII, 8th International

Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August

31 - September 2, 2009. Proceedings. Vol. 5772. Lecture Notes in Computer

Science. Springer, 2009, pp. 249–260.

[110] Albert Bifet et al. “Extremely Fast Decision Tree Mining for Evolving Data

Streams”. In: Proceedings of the 23rd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August

13 - 17, 2017. ACM, 2017, pp. 1733–1742.

[111] Roberto Souto Maior de Barros and Silas Garrido Teixeira de Carvalho San-

tos. “A large-scale comparison of concept drift detectors”. In: Information

Sciences 451-452 (2018), pp. 348–370.

[112] Jogendra Nath Kundu et al. “Class-Incremental Domain Adaptation”. In:

Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. 2020, pp. 53–

69.

250

[113] Doyen Sahoo et al. “Online Deep Learning: Learning Deep Neural Networks

on the Fly”. In: Proceedings of the Twenty-Seventh International Joint Con-

ference on Artificial Intelligence, IJCAI-18. International Joint Conferences

on Artificial Intelligence Organization, July 2018, pp. 2660–2666.

[114] Jiangpeng He et al. “Incremental Learning in Online Scenario”. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2020.

[115] Michal Woźniak, Manuel Graña, and Emilio Corchado. “A survey of multiple

classifier systems as hybrid systems”. In: Inf. Fusion 16 (2014), pp. 3–17.

[116] Alberto Cano and Bartosz Krawczyk. “Kappa Updated Ensemble for drifting

data stream mining”. In: Machine Learning 109.1 (2020), pp. 175–218.

[117] Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. “Leveraging Bag-

ging for Evolving Data Streams”. In: Machine Learning and Knowledge Dis-

covery in Databases, European Conference, ECML PKDD 2010, Barcelona,

Spain, September 20-24, 2010, Proceedings, Part I. Vol. 6321. Lecture Notes

in Computer Science. Springer, 2010, pp. 135–150.

[118] Nikunj C. Oza and Stuart J. Russell. “Online Bagging and Boosting”. In:

Proceedings of the Eighth International Workshop on Artificial Intelligence

and Statistics, AISTATS 2001, Key West, Florida, USA, January 4-7, 2001.

Ed. by Thomas S. Richardson and Tommi S. Jaakkola. Society for Artificial

Intelligence and Statistics, 2001.

[119] Heitor Murilo Gomes et al. “Adaptive random forests for evolving data stream

classification”. In: Machine Learning 106.9-10 (2017), pp. 1469–1495.

251

[120] Leandro L. Minku, Allan P. White, and Xin Yao. “The Impact of Diversity

on Online Ensemble Learning in the Presence of Concept Drift”. In: IEEE

Transactions on Knowledge and Data Engineering 22.5 (2010), pp. 730–742.

[121] J. Zico Kolter and Marcus A. Maloof. “Dynamic Weighted Majority: An En-

semble Method for Drifting Concepts”. In: Journal of Machine Learning Re-

search 8 (2007), pp. 2755–2790.

[122] Haixun Wang et al. “Mining concept-drifting data streams using ensemble

classifiers”. In: Proceedings of the Ninth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, Washington, DC, USA,

August 24 - 27, 2003. ACM, 2003, pp. 226–235.

[123] Dariusz Brzezinski and Jerzy Stefanowski. “Reacting to Different Types of

Concept Drift: The Accuracy Updated Ensemble Algorithm”. In: IEEE Trans-

actions on Neural Networks and Learning Systems 25.1 (2014), pp. 81–94.

[124] Anjin Liu et al. “Accumulating regional density dissimilarity for concept drift

detection in data streams”. In: Pattern Recognition 76 (2018), pp. 256 –272.

[125] Tegjyot Singh Sethi and Mehmed Kantardzic. “On the reliable detection of

concept drift from streaming unlabeled data”. In: Expert Systems with Appli-

cations 82 (2017), pp. 77 –99. issn: 0957-4174.

[126] João Gama et al. “Learning with Drift Detection”. In: Advances in Artificial

Intelligence, Proceedings of SBIA 2004. Vol. 3171. LNCS. Springer Verlag,

2004, pp. 286–295.

[127] Manuel Baena-Garćıa et al. “Early drift detection method”. In: In Fourth

International Workshop on Knowledge Discovery from Data Streams. 2006.

252

[128] Roberto S.M. Barros et al. “RDDM: Reactive drift detection method”. In:

Expert Systems with Applications 90 (2017), pp. 344 –355.

[129] Danilo Rafael de Lima Cabral and Roberto Souto Maior de Barros. “Concept

drift detection based on Fisher’s Exact test”. In: Information Sciences 442-

443 (2018), pp. 220 –234.

[130] Roberto Souto Maior de Barros, Juan Isidro González Hidalgo, and Danilo

Rafael de Lima Cabral. “Wilcoxon Rank Sum Test Drift Detector”. In: Neu-

rocomputing 275 (2018), pp. 1954 –1963.

[131] Kyosuke Nishida and Koichiro Yamauchi. “Detecting Concept Drift Using

Statistical Testing”. In: Discovery Science. Ed. by Vincent Corruble, Masayuki

Takeda, and Einoshin Suzuki. 2007, pp. 264–269.

[132] David Tse Jung Huang et al. “Detecting Volatility Shift in Data Streams”.

In: 2014 IEEE International Conference on Data Mining. 2014, pp. 863–868.

[133] I. Fŕıas-Blanco et al. “Online and Non-Parametric Drift Detection Methods

Based on Hoeffding’s Bounds”. In: IEEE Transactions on Knowledge and

Data Engineering 27.3 (2015), pp. 810–823.

[134] Ali Pesaranghader and Herna L. Viktor. “Fast Hoeffding Drift Detection

Method for Evolving Data Streams”. In: Machine Learning and Knowledge

Discovery in Databases. Ed. by Paolo Frasconi et al. 2016, pp. 96–111.

[135] Andrzej Lapinski et al. “An Empirical Insight Into Concept Drift Detectors

Ensemble Strategies”. In: 2018 IEEE Congress on Evolutionary Computation

(CEC). 2018, pp. 1–8.

253

[136] Ali Pesaranghader, Herna Viktor, and Eric Paquet. “Reservoir of diverse

adaptive learners and stacking fast Hoeffding drift detection methods for

evolving data streams”. In: Machine Learning 107.11 (2018), pp. 1711–1743.

[137] Edwin David Lughofer et al. “Drift detection in data stream classification

without fully labelled instances”. In: 2015 IEEE International Conference on

Evolving and Adaptive Intelligent Systems (EAIS). 2015, pp. 1–8.

[138] Bartosz Krawczyk, Bernhard Pfahringer, and Michal Woźniak. “Combining

active learning with concept drift detection for data stream mining”. In: 2018

IEEE International Conference on Big Data (Big Data). 2018, pp. 2239–2244.

[139] Piotr Sobolewski and Micha l Woźniak. “Comparable Study of Statistical Tests

for Virtual Concept Drift Detection”. In: Proceedings of the 8th International

Conference on Computer Recognition Systems CORES 2013. Ed. by Robert

Burduk et al. 2013, pp. 329–337.

[140] Tamraparni Dasu et al. “An information-theoretic approach to detecting changes

in multi-dimensional data streams”. In: In Proc. Symp. on the Interface of

Statistics, Computing Science, and Applications. 2006.

[141] Anjin Liu et al. “Regional Concept Drift Detection and Density Synchronized

Drift Adaptation”. In: Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI-17. 2017, pp. 2280–2286.

[142] Lukasz Korycki and Bartosz Krawczyk. Adversarial Concept Drift Detection

under Poisoning Attacks for Robust Data Stream Mining. 2020.

[143] Shuo Wang, Leandro L. Minku, and Xin Yao. “A Systematic Study of Online

Class Imbalance Learning With Concept Drift”. In: IEEE Transactions on

Neural Networks and Learning Systems 29.10 (2018), pp. 4802–4821.

254

[144] Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. A survey on learning

from imbalanced data streams: taxonomy, challenges, empirical study, and

reproducible experimental framework. 2022.

[145] T. Ryan Hoens, Robi Polikar, and Nitesh V. Chawla. “Learning from stream-

ing data with concept drift and imbalance: an overview”. In: Progress in

Artificial Intelligence 1.1 (2012), pp. 89–101.

[146] Bartosz Krawczyk. “Learning from imbalanced data: open challenges and fu-

ture directions”. In: Progress in AI 5.4 (2016), pp. 221–232.

[147] Adel Ghazikhani, Reza Monsefi, and Hadi Sadoghi Yazdi. “Recursive least

square perceptron model for non-stationary and imbalanced data stream clas-

sification”. In: Evolving Systems 4.2 (2013), pp. 119–131.

[148] Peilin Zhao and Steven C.H. Hoi. “Cost-sensitive Online Active Learning

with Application to Malicious URL Detection”. In: Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. KDD ’13. Chicago, Illinois, USA, 2013, pp. 919–927.

[149] Yang Lu, Yiu ming Cheung, and Yuan Yan Tang. “Dynamic Weighted Ma-

jority for Incremental Learning of Imbalanced Data Streams with Concept

Drift”. In: Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence, IJCAI-17. 2017, pp. 2393–2399.

[150] Bilal Mirza, Zhiping Lin, and Nan Liu. “Ensemble of subset online sequential

extreme learning machine for class imbalance and concept drift”. In: Neu-

rocomputing 149 (2015). Advances in neural networks Advances in Extreme

Learning Machines, pp. 316 –329.

255

[151] Hualong Yu et al. “Active Learning From Imbalanced Data: A Solution of On-

line Weighted Extreme Learning Machine”. In: IEEE Transactions on Neural

Networks and Learning Systems 30.4 (2019), pp. 1088–1103.

[152] Lukasz Korycki and Bartosz Krawczyk. “Low-Dimensional Representation

Learning from Imbalanced Data Streams”. In: Advances in Knowledge Dis-

covery and Data Mining. 2021, pp. 629–641.

[153] Hang Zhang et al. “Resample-Based Ensemble Framework for Drifting Imbal-

anced Data Streams”. In: IEEE Access 7 (2019), pp. 65103–65115.

[154] Siqi Ren et al. “Selection-based resampling ensemble algorithm for nonsta-

tionary imbalanced stream data learning”. In: Knowledge-Based Systems 163

(2019), pp. 705 –722.

[155] Gregory Ditzler and Robi Polikar. “Incremental Learning of Concept Drift

from Streaming Imbalanced Data”. In: IEEE Transactions on Knowledge and

Data Engineering 25.10 (2013), pp. 2283–2301.

[156] Ryan Elwell and Robi Polikar. “Incremental Learning of Concept Drift in

Nonstationary Environments”. In: IEEE Transactions on Neural Networks

22.10 (2011), pp. 1517–1531.

[157] Wing W. Y. Ng et al. “Cost-Sensitive Weighting and Imbalance-Reversed

Bagging for Streaming Imbalanced and Concept Drifting in Electricity Pricing

Classification”. In: IEEE Transactions on Industrial Informatics 15.3 (2019),

pp. 1588–1597.

[158] Shuo Wang, Leandro L. Minku, and Xin Yao. “Resampling-Based Ensemble

Methods for Online Class Imbalance Learning”. In: IEEE Transactions on

Knowledge and Data Engineering 27.5 (2015), pp. 1356–1368.

256

[159] Shuo Wang, Leandro L. Minku, and Xin Yao. “Dealing with Multiple Classes

in Online Class Imbalance Learning”. In: Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence. IJCAI’16. New York,

New York, USA, 2016, pp. 2118–2124.

[160] Alberto Cano and Bartosz Krawczyk. “ROSE: robust online self-adjusting

ensemble for continual learning on imbalanced drifting data streams”. In:

Machine Learning (2022).

[161] Lukasz Korycki and Bartosz Krawczyk. “Concept Drift Detection from Multi-

Class Imbalanced Data Streams”. In: 2021 IEEE 37th International Confer-

ence on Data Engineering (ICDE). 2021, pp. 1068–1079.

[162] Edwin Lughofer. “On-line active learning: A new paradigm to improve prac-

tical useability of data stream modeling methods”. In: Inf. Sci. 415 (2017),

pp. 356–376.

[163] Indre Zliobaite et al. “Active Learning With Drifting Streaming Data”. In:

IEEE Trans. Neural Networks Learn. Syst. 25.1 (2014), pp. 27–39.

[164] Pawel Ksieniewicz et al. “Data stream classification using active learned neu-

ral networks”. In: Neurocomputing 353 (2019), pp. 74–82.

[165] H. S. Seung, M. Opper, and H. Sompolinsky. “Query by Committee”. In: Pro-

ceedings of the Fifth Annual Workshop on Computational Learning Theory.

COLT ’92. Pittsburgh, Pennsylvania, USA, 1992, pp. 287–294.

[166] Bartosz Krawczyk and Michal Woźniak. “Online query by committee for ac-

tive learning from drifting data streams”. In: 2017 International Joint Con-

ference on Neural Networks (IJCNN). 2017, pp. 2120–2127.

257

[167] Bartosz Krawczyk and Alberto Cano. “Adaptive Ensemble Active Learning

for Drifting Data Stream Mining”. In: Proceedings of the Twenty-Eighth Inter-

national Joint Conference on Artificial Intelligence, IJCAI-19. International

Joint Conferences on Artificial Intelligence Organization, July 2019, pp. 2763–

2771.

[168] Cheong Hee Park and Youngsoon Kang. “An active learning method for data

streams with concept drift”. In: 2016 IEEE International Conference on Big

Data (Big Data). 2016, pp. 746–752.

[169] Kaito Fujii and Hisashi Kashima. “Budgeted stream-based active learning

via adaptive submodular maximization”. In: Advances in Neural Information

Processing Systems 29. 2016, pp. 514–522.

[170] Saad Mohamad, Moamar Sayed-Mouchaweh, and Abdelhamid Bouchachia.

“Active learning for classifying data streams with unknown number of classes”.

In: Neural Networks 98 (2018), pp. 1 –15.

[171] G. Ditzler and R. Polikar. “Semi-supervised learning in nonstationary envi-

ronments”. In: The 2011 International Joint Conference on Neural Networks.

2011, pp. 2741–2748.

[172] Giovanna Castellano and Anna Maria Fanelli. “Classification of Data Streams

by Incremental Semi-supervised Fuzzy Clustering”. In: Fuzzy Logic and Soft

Computing Applications. Cham, 2017, pp. 185–194.

[173] Lukasz Korycki and Bartosz Krawczyk. “Combining Active Learning and Self-

Labeling for Data Stream Mining”. In: Proceedings of the 10th International

Conference on Computer Recognition Systems CORES 2017. 2018, pp. 481–

490.

258

[174] Tal Wagner et al. “Semi-Supervised Learning on Data Streams via Temporal

Label Propagation”. In: Proceedings of the 35th International Conference on

Machine Learning. Vol. 80. 2018, pp. 5095–5104.

[175] Ricardo Sousa and João Gama. “Co-training Semi-supervised Learning for

Single-Target Regression in Data Streams Using AMRules”. In: Foundations

of Intelligent Systems. 2017, pp. 499–508.

[176] Karl B. Dyer, Robert Capo, and Robi Polikar. “COMPOSE: A Semisupervised

Learning Framework for Initially Labeled Nonstationary Streaming Data”. In:

IEEE Transactions on Neural Networks and Learning Systems 25.1 (2014),

pp. 12–26.

[177] Atsutoshi Kumagai and Tomoharu Iwata. “Learning Dynamics of Decision

Boundaries without Additional Labeled Data”. In: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. KDD ’18. London, United Kingdom, 2018, 1627–1636.

[178] Lukasz Korycki and Bartosz Krawczyk. “Class-Incremental Experience Re-

play for Continual Learning under Concept Drift”. In: 2021 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops (CVPRW)

(2021), pp. 3644–3653.

[179] Gido M. van de Ven and Andreas Savas Tolias. “Three scenarios for continual

learning”. In: arXiv abs/1904.07734 (2019).

[180] Pietro Buzzega et al. “Dark Experience for General Continual Learning: a

Strong, Simple Baseline”. In: arXiv abs/2004.07211 (2020).

[181] Volodymyr Melnykov and Ranjan Maitra. “Finite mixture models and model-

based clustering”. In: Statistics Surveys 4 (2010), pp. 80 –116.

259

[182] Paulo Martins Engel and Milton Roberto Heinen. “Incremental Learning of

Multivariate Gaussian Mixture Models”. In: Advances in Artificial Intelli-

gence – SBIA 2010. Ed. by Antônio Carlos da Rocha Costa, Rosa Maria

Vicari, and Flavio Tonidandel. 2010, pp. 82–91.

[183] Alexander Rainer Tassilo Gepperth and Benedikt Pfülb. “Gradient-Based

Training of Gaussian Mixture Models for High-Dimensional Streaming Data”.

In: Neural Process. Lett. 53 (2021), pp. 4331–4348.

[184] Ehsan Variani, Erik McDermott, and Georg Heigold. “A Gaussian Mixture

Model layer jointly optimized with discriminative features within a Deep Neu-

ral Network architecture”. In: 2015 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP). 2015, pp. 4270–4274.

[185] Benedikt Pfülb and Alexander Rainer Tassilo Gepperth. “Overcoming Catas-

trophic Forgetting with Gaussian Mixture Replay”. In: 2021 International

Joint Conference on Neural Networks (IJCNN) (2021), pp. 1–9.

[186] Ting Su and Jennifer G. Dy. “In search of deterministic methods for initial-

izing K-means and Gaussian mixture clustering”. In: Intell. Data Anal. 11

(2007), pp. 319–338.

[187] Reshad Hosseini and Suvrit Sra. “Matrix Manifold Optimization for Gaussian

Mixtures”. In: Advances in Neural Information Processing Systems. Vol. 28.

2015.

[188] Nicholas J. Higham. “Cholesky factorization”. English. In: Wiley Interdisci-

plinary Reviews: Computational Statistics 1.2 (Sept. 2009), pp. 251–254.

[189] David Rolnick et al. “Experience Replay for Continual Learning”. In: Ad-

vances in Neural Information Processing Systems 32: Annual Conference on

260

Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,

2019, Vancouver, BC, Canada. 2019, pp. 348–358.

[190] Massimiliano Patacchiola and Amos Storkey. Self-Supervised Relational Rea-

soning for Representation Learning. 2020.

[191] Saining Xie et al. “Aggregated Residual Transformations for Deep Neural Net-

works”. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR) (2017), pp. 5987–5995.

[192] Minghao Zhou et al. Diagnosing Batch Normalization in Class Incremental

Learning. 2022.

[193] Quang Hong Pham, Chenghao Liu, and Steven C. H. Hoi. “Continual Nor-

malization: Rethinking Batch Normalization for Online Continual Learning”.

In: arXiv abs/2203.16102 (2022).

[194] Pedro Domingos and Geoff Hulten. “Mining High-Speed Data Streams”. In:

Proceedings of the Sixth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. KDD ’00. Boston, Massachusetts, USA,

2000, 71–80.

[195] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. “Handling Nu-

meric Attributes in Hoeffding Trees”. In: Advances in Knowledge Discovery

and Data Mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan,

May 20-23, 2008 Proceedings. Vol. 5012. Lecture Notes in Computer Science.

Springer, 2008, pp. 296–307.

[196] Heitor Murilo Gomes, Jesse Read, and Albert Bifet. “Streaming Random

Patches for Evolving Data Stream Classification”. In: 2019 IEEE Interna-

261

tional Conference on Data Mining, ICDM 2019, Beijing, China, November

8-11, 2019. IEEE, 2019, pp. 240–249.

[197] Sattar Hashemi et al. “Adapted One-versus-All Decision Trees for Data Stream

Classification”. In: IEEE Trans. Knowl. Data Eng. 21.5 (2009), pp. 624–637.

[198] Sebastian Raschka. “Model Evaluation, Model Selection, and Algorithm Se-

lection in Machine Learning”. In: CoRR abs/1811.12808 (2018).

[199] David A. Cieslak et al. “Hellinger distance decision trees are robust and skew-

insensitive”. In: Data Mining and Knowledge Discovery 24 (2011), pp. 136–

158.

[200] R. J. Lyon et al. “Hellinger Distance Trees for Imbalanced Streams”. In: 2014

22nd International Conference on Pattern Recognition (2014), pp. 1969–1974.

[201] Bartosz Krawczyk and Przemyslaw Skryjomski. “Cost-Sensitive Perceptron

Decision Trees for Imbalanced Drifting Data Streams”. In: Machine Learn-

ing and Knowledge Discovery in Databases - European Conference, ECML

PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part

II. Vol. 10535. Lecture Notes in Computer Science. Springer, 2017, pp. 512–

527.

[202] Joshua Plasse and Niall M. Adams. “Handling delayed labels in temporally

evolving data streams”. In: 2016 IEEE International Conference on Big Data,

BigData 2016, Washington DC, USA, December 5-8, 2016. IEEE Computer

Society, 2016, pp. 2416–2424.

[203] Lukasz Korycki and Bartosz Krawczyk. Mining Drifting Data Streams on a

Budget: Combining Active Learning with Self-Labeling. 2021.

262

[204] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised

Learning. 1st. The MIT Press, 2010.

[205] Saad Mohamad, Abdelhamid Bouchachia, and Moamar Sayed Mouchaweh.

“A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams”. In:

IEEE Trans. Neural Netw. Learning Syst. 29.1 (2018), pp. 74–86.

[206] Jing Zhang, Xindong Wu, and Victor S. Sheng. “Learning from crowdsourced

labeled data: a survey”. In: Artificial Intelligence Review 46 (2016), pp. 543–

576.

[207] Lukasz Korycki and Bartosz Krawczyk. “Active Learning with Abstaining

Classifiers for Imbalanced Drifting Data Streams”. In: 2019 IEEE Interna-

tional Conference on Big Data (Big Data). 2019, pp. 2334–2343.

[208] Ziqing Lu et al. “LocalDrop: A Hybrid Regularization for Deep Neural Net-

works”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

(2021), 1–1. issn: 1939-3539.

[209] Yue Zhu, Kai Ming Ting, and Zhi-Hua Zhou. “New Class Adaptation Via

Instance Generation in One-Pass Class Incremental Learning”. In: 2017 IEEE

International Conference on Data Mining, ICDM 2017, New Orleans, LA,

USA, November 18-21, 2017. 2017, pp. 1207–1212.

[210] Cyprien de Masson d’Autume et al. “Episodic Memory in Lifelong Language

Learning”. In: Advances in Neural Information Processing Systems 32. Ed. by

H. Wallach et al. 2019, pp. 13143–13152.

[211] Bennett Eisenberg. “On the expectation of the maximum of IID geometric

random variables”. In: Statistics & Probability Letters 78.2 (2008), pp. 135

–143.

263

[212] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded Random

Variables”. In: Journal of the American Statistical Association 58.301 (1963),

pp. 13–30.

[213] Bernard Lewis Welch. “The Generalization of ‘Student’s’ Problem when Sev-

eral Different Population Variances are Involved”. In: Biometrika 34.1/2 (1947),

pp. 28–35.

[214] Albert Bifet et al. “MOA: Massive Online Analysis”. In: Journal of Machine

Learning Research 11 (2010), pp. 1601–1604.

[215] Silas Garrido Teixeira de Carvalho Santos et al. “Speeding Up Recovery

from Concept Drifts”. In: Machine Learning and Knowledge Discovery in

Databases. 2014, pp. 179–194.

[216] Albert Bifet et al. “Efficient Online Evaluation of Big Data Stream Classi-

fiers”. In: Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’15. Sydney, NSW, Australia,

2015, 59–68.

[217] Bogdan Gulowaty and Pawel Ksieniewicz. “SMOTE Algorithm Variations in

Balancing Data Streams”. In: Intelligent Data Engineering and Automated

Learning - IDEAL 2019 - 20th International Conference, Manchester, UK,

November 14-16, 2019, Proceedings, Part II. Springer, 2019, pp. 305–312.

[218] Yu Sun et al. “Online Ensemble Learning of Data Streams with Gradually

Evolved Classes”. In: IEEE Trans. Knowl. Data Eng. 28.6 (2016), pp. 1532–

1545.

[219] Shuo Wang, Leandro L. Minku, and Xin Yao. “A multi-objective ensemble

method for online class imbalance learning”. In: 2014 International Joint Con-

264

ference on Neural Networks, IJCNN 2014, Beijing, China, July 6-11, 2014.

2014, pp. 3311–3318.

[220] Shuya Ding et al. “Kernel based online learning for imbalance multiclass clas-

sification”. In: Neurocomputing 277 (2018), pp. 139–148.

[221] Nitesh V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Tech-

nique”. In: J. Artif. Intell. Res. 16 (2002), pp. 321–357.

[222] Paula Branco, Lúıs Torgo, and Rita P. Ribeiro. “Relevance-Based Evaluation

Metrics for Multi-class Imbalanced Domains”. In: Advances in Knowledge

Discovery and Data Mining - 21st Pacific-Asia Conference, PAKDD 2017,

Jeju, South Korea, May 23-26, 2017, Proceedings, Part I. 2017, pp. 698–710.

[223] Nikunj C. Oza. “Online bagging and boosting”. In: Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii,

USA, October 10-12, 2005. IEEE, 2005, pp. 2340–2345.

[224] Amal Saadallah et al. “BRIGHT - Drift-Aware Demand Predictions for Taxi

Networks (Extended Abstract)”. In: 35th IEEE International Conference on

Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 2019,

pp. 2145–2146.

[225] Savitha Ramasamy, Arulmurugan Ambikapathi, and Kanagasabai Rajara-

man. “Online RBM: Growing Restricted Boltzmann Machine on the fly for

unsupervised representation”. In: Appl. Soft Comput. 92 (2020), p. 106278.

[226] Yin Cui et al. “Class-Balanced Loss Based on Effective Number of Samples”.

In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation

/ IEEE, 2019, pp. 9268–9277.

265

[227] Xiaohai Sun. “Assessing Nonlinear Granger Causality from Multivariate Time

Series”. In: Machine Learning and Knowledge Discovery in Databases, Euro-

pean Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19,

2008, Proceedings, Part II. Vol. 5212. Lecture Notes in Computer Science.

Springer, 2008, pp. 440–455.

[228] Chahira Mahjoub et al. “On the performance of temporal Granger causality

measurements on time series: a comparative study”. In: Signal Image Video

Process. 14.5 (2020), pp. 955–963.

[229] Daniel K. Antwi, Herna L. Viktor, and Nathalie Japkowicz. “The PerfSim Al-

gorithm for Concept Drift Detection in Imbalanced Data”. In: 12th IEEE In-

ternational Conference on Data Mining Workshops, ICDM Workshops, Brus-

sels, Belgium, December 10, 2012. IEEE Computer Society, 2012, pp. 619–628.

[230] Shuo Wang and Leandro L. Minku. “AUC Estimation and Concept Drift De-

tection for Imbalanced Data Streams with Multiple Classes”. In: 2020 Inter-

national Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United

Kingdom, July 19-24, 2020. IEEE, 2020, pp. 1–8.

[231] Bruno Veloso, João Gama, and Benedita Malheiro. “Self Hyper-Parameter

Tuning for Data Streams”. In: Discovery Science - 21st International Con-

ference, DS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings. 2018,

pp. 241–255.

[232] Lukasz Korycki and Bartosz Krawczyk. “Online Oversampling for Sparsely

Labeled Imbalanced and Non-Stationary Data Streams”. In: 2020 Interna-

tional Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United

Kingdom, July 19-24, 2020. IEEE, 2020, pp. 1–8.

266

[233] Lukasz Korycki and Bartosz Krawczyk. Instance exploitation for learning tem-

porary concepts from sparsely labeled drifting data streams. 2020.

[234] Alessio Benavoli et al. “Time for a Change: a Tutorial for Comparing Multi-

ple Classifiers Through Bayesian Analysis”. In: Journal of Machine Learning

Research 18 (2017), 77:1–77:36.

[235] Anjin Liu et al. “Accumulating regional density dissimilarity for concept drift

detection in data streams”. In: Pattern Recognition 76 (2018), pp. 256 –272.

[236] Piotr Sobolewski and Michal Woźniak. “Concept Drift Detection and Model

Selection with Simulated Recurrence and Ensembles of Statistical Detectors”.

In: J. UCS 19.4 (2013), pp. 462–483.

[237] J. David Destephen Lavaire et al. “Dimensional scalability of supervised and

unsupervised concept drift detection: An empirical study”. In: 2015 IEEE

International Conference on Big Data (Big Data). 2015, pp. 2212–2218.

[238] Denis Moreira dos Reis et al. “Fast Unsupervised Online Drift Detection Us-

ing Incremental Kolmogorov-Smirnov Test”. In: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, San Francisco, CA, USA, August 13-17, 2016. 2016, pp. 1545–1554.

[239] Diego Marron et al. “Low-latency multi-threaded ensemble learning for dy-

namic big data streams”. In: 2017 IEEE International Conference on Big

Data, BigData 2017, Boston, MA, USA, December 11-14, 2017. 2017, pp. 223–

232.

[240] Michal Woźniak. “Application of Combined Classifiers to Data Stream Clas-

sification”. In: Computer Information Systems and Industrial Management

267

- 12th IFIP TC8 International Conference, CISIM 2013, Krakow, Poland,

September 25-27, 2013. Proceedings. 2013, pp. 13–23.

[241] Ludmila I. Kuncheva and Christopher J. Whitaker. “Measures of Diversity in

Classifier Ensembles and Their Relationship with the Ensemble Accuracy”.

In: Machine Learning 51.2 (2003), pp. 181–207.

[242] Yu-Ri Lee and Hyoung-Nam Kim. “A data partitioning method for increasing

ensemble diversity of an eSVM-based P300 speller”. In: Biomedical Signal

Processing and Control 39 (2018), pp. 53 –63.

[243] Bartosz Krawczyk, Michal Woźniak, and Bogus Cyganek. “Clustering-based

Ensembles for One-class Classification”. In: Inf. Sci. 264 (Apr. 2014), pp. 182–

195. issn: 0020-0255.

[244] Leandro L. Minku and Xin Yao. “DDD: A New Ensemble Approach for Deal-

ing with Concept Drift”. In: IEEE Transactions on Knowledge and Data En-

gineering 24.4 (2012), pp. 619–633.

[245] Silas Garrido Teixeira de Carvalho Santos et al. “Speeding Up Recovery from

Concept Drifts”. In: Proceedings of the 2014th European Conference on Ma-

chine Learning and Knowledge Discovery in Databases - Volume Part III.

ECMLPKDD’14. Nancy, France, 2014, pp. 179–194.

[246] Dariusz Brzezinski and Jerzy Stefanowski. “Ensemble Diversity in Evolving

Data Streams”. In: Discovery Science. 2016, pp. 229–244.

[247] Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. “An Algorithm for On-

line K-Means Clustering”. In: 2016 Proceedings of the Eighteenth Workshop

on Algorithm Engineering and Experiments (ALENEX). 2016, pp. 81–89.

268

[248] Silas Santos et al. “Speeding Up Recovery From Concept Drifts”. In: Sept.

2014, pp. 179–194.

[249] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. “An Online Boosting Al-

gorithm with Theoretical Justifications”. In: Proceedings of the 29th Interna-

tional Coference on International Conference on Machine Learning. ICML’12.

Edinburgh, Scotland, 2012, 1873–1880.

[250] Jakob N. Foerster et al. “Stabilising Experience Replay for Deep Multi-Agent

Reinforcement Learning”. In: Proceedings of the 34th International Confer-

ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 Au-

gust 2017. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017,

pp. 1146–1155.

[251] Tom Schaul et al. “Prioritized Experience Replay”. In: 4th International Con-

ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,

May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun. 2016.

[252] Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly. “Complementary

Learning for Overcoming Catastrophic Forgetting Using Experience Replay”.

In: Proceedings of the Twenty-Eighth International Joint Conference on Arti-

ficial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org,

2019, pp. 3339–3345.

[253] Jérémie Sublime, Basarab Matei, and Pierre-Alexandre Murena. “Analysis of

the influence of diversity in collaborative and multi-view clustering”. In: 2017

International Joint Conference on Neural Networks, IJCNN 2017, Anchorage,

AK, USA, May 14-19, 2017. IEEE, 2017, pp. 4126–4133.

269

[254] Stefan Lee et al. “Stochastic Multiple Choice Learning for Training Diverse

Deep Ensembles”. In: Advances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Processing Systems 2016, Decem-

ber 5-10, 2016, Barcelona, Spain. 2016, pp. 2119–2127.

[255] Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. “Memory Efficient

Experience Replay for Streaming Learning”. In: 2019 International Confer-

ence on Robotics and Automation (ICRA). 2019, pp. 9769–9776.

[256] Haobin Shi et al. “A Sample Aggregation Approach to Experiences Replay of

Dyna-Q Learning”. In: IEEE Access 6 (2018), pp. 37173–37184.

[257] Mengmi Zhang et al. “Prototype Reminding for Continual Learning”. In:

CoRR abs/1905.09447 (2019).

[258] Peter Kontschieder et al. “Deep Neural Decision Forests”. In: 2015 IEEE

International Conference on Computer Vision (ICCV). 2015, pp. 1467–1475.

[259] Vincenzo Lomonaco and Davide Maltoni. “CORe50: a New Dataset and

Benchmark for Continuous Object Recognition”. In: Proceedings of the 1st

Annual Conference on Robot Learning. Ed. by Sergey Levine, Vincent Van-

houcke, and Ken Goldberg. Vol. 78. Proceedings of Machine Learning Re-

search. PMLR, 2017, pp. 17–26.

270

	Continual learning from stationary and non-stationary data
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Research goals and problems
	Motivation
	Structure

	 Background and related works
	Continual learning
	Learning from stationary data
	Catastrophic forgetting
	Preserving knowledge

	Learning from non-stationary data
	Concept drift
	Change adaptation
	Holistic approaches

	 Class-incremental gradient-based mixture of Gaussians
	Mixture of Gaussians for class-incremental learning
	Generic supervised mixture model
	Optimization techniques
	Mixture optimization for class-incremental deep learning
	Loss design
	Constraints

	Memory buffer
	Classification

	Experimental study
	Data
	Model configurations
	Algorithms
	Evaluation
	Results
	Configurations
	Baseline comparison

	Lessons learned

	Summary

	 Streaming decision trees for continual learning
	Decision trees and continual learning
	Forgetting in streaming decision trees
	Overcoming catastrophic forgetting

	Experimental study
	Data
	Algorithms
	Evaluation
	Results

	Summary

	 Instance exploitation for learning temporary concepts from sparsely labeled drifting data streams
	Learning on a budget and data dynamics
	Risky adaptation
	Instance exploitation
	Framework
	Exploitation strategies
	Dynamic parameters

	Alleviating overfitting

	Experimental study
	Data streams
	Setup
	Results
	Intensity
	Instance window
	Elevating significance
	Final comparison

	Lessons learned

	Summary

	 Online oversampling for sparsely labeled imbalanced and non-stationary data streams
	Deceptive majority and budget constraints
	Framework
	Generation methods
	Balancing strategies

	Experimental study
	Data
	Setup
	Results

	Summary

	 Concept drift detection from multi-class imbalanced data streams
	Challenges in learning from multi-class imbalanced data streams
	Restricted Boltzmann Machine for imbalanced drift detection
	Skew-insensitive Restricted Boltzmann Machine
	Drift detection with RBM-IM

	Experimental study
	Data stream benchmarks
	Setup
	Experiment 1: Drift detectors comparison
	Experiment 2: Detection of local concept drifts
	Experiment 3: Robustness to changing imbalance ratio

	Lessons learned
	Summary

	 Unsupervised drift detector ensembles for data stream mining
	Detection under labeling constraints
	Incremental Kolmogorov-Smirnov test
	Unsupervised ensemble drift detection with feature subspaces
	Experimental study
	Data stream benchmarks
	Setup
	Experiment 1: Role of feature subspaces
	Experiment 2: Comparison with other detectors

	Summary

	 Dynamic ensemble diversity and adaptation to concept drift
	Proposed algorithm
	Experimental study
	Data
	Algorithms
	Evaluation
	Results

	Summary

	 Reactive subspace buffers for continual learning from non-stationary data
	 Class-incremental experience replay under concept drift
	 Class buffers
	 Centroid-driven memory
	 Reactive subspace buffer

	 Experimental study
	 Data
	 Algorithms
	 Evaluation
	 Results

	 Summary

	 Final summary
	Conclusions
	Open challenges and future directions
	 Improving continual learning from stationary data
	 Improving continual learning from non-stationary data

	References

