
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2022

Improving Feature Learning Capability and Interpretability of Improving Feature Learning Capability and Interpretability of

Unsupervised Neural Networks Unsupervised Neural Networks

Chathurika S. Wickramasinghe Brahmana
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computational Engineering Commons, and the Computer Engineering Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6925

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=scholarscompass.vcu.edu%2Fetd%2F6925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarscompass.vcu.edu%2Fetd%2F6925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6925?utm_source=scholarscompass.vcu.edu%2Fetd%2F6925&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Chathurika S Wickramasinghe, May 2022

All Rights Reserved.

IMPROVING FEATURE LEARNING CAPABILITY AND INTERPRETABILITY

OF UNSUPERVISED NEURAL NETWORKS

This dissertation is submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy at Virginia Commonwealth University.

by

CHATHURIKA S. WICKRAMASINGHE BRAHMANA

Bachelor of Science, University of Peradeniya, Sri Lanka, 2016

Director: Milos Manic,

Professor, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

May, 2022

i

Acknowledgements

First, I would like to thank my advisor and mentor, Prof. Milos Manic, for

his help, support, and guidance. Second, I would like to thank Dr. Craig Rieger,

Dr. Ronald Boring, Dr. Eyuphan Bulut, and Dr. David C. Shepherd for serving

in my dissertation committee and for their valuable feedback. Further, I would like

to acknowledge the continuous support given to me by the Idaho National Labora-

tory (INL), especially for the data provided for the experimentation and testing of

methodologies presented in this dissertation. I also want to acknowledge the sup-

port provided by the Commonwealth Cyber Initiative (CCI), an investment in the

advancement of cyber R&D, innovation and workforce development.

I extend my gratitude to all the great colleagues of the Modern Heuristics Re-

search Group, Daniel, Kasun, Javi, Sandun, Victor, and Morgan for their support and

contributions throughout my Ph.D. program. Last but not least, I wish to thank my

family and friends, my brother Dhanushka, Sister-in-law Malika, my dearest friends,

Buddhini, Pradeepa, Dinendra, Chanaka, Sharon, Sahan, Dumidu, Sam, Kalani, Ak-

ila, Shama, Hiran, Dileindree, Jayani, Paolo, for their immense support during my

academic journey.

I dedicate my doctoral dissertation to my mother, Anula Jayawardhana, whose

guidance, support, and values are the grounds that supported me through this jour-

ney.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

List of Tables . iv

List of Figures . vi

Abstract . x

1 Introduction . 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Organization . 7

2 Background . 9

2.1 Supervised Machine Learning . 9

2.2 Unsupervised Machine Learning 10

2.3 Neural Networks . 12

2.4 Explainable Machine Learning . 16

3 Improving and Interpreting Self Organizing Neural Network 21

3.1 Contribution and Published Papers 21

3.2 Introduction . 22

3.3 Unsupervised Deep Self Organizing Map algorithm 25

3.4 Interpretable Clustering using Self Organizing Map algorithm . . . 50

3.5 Contribution 1: Chapter Summary 76

4 Improving and Interpreting Autoencoder Neural Network 78

4.1 Contributions and Published Papers 78

4.2 Introduction . 79

4.3 ResNet Autoencoder based Unsupervised Feature Learning 82

4.4 ResNet Autoencoder based Deep Embedded Clustering 100

iii

4.5 Interpretable Anomaly Detection using ResNet Autoencoders . . . 112

4.6 Contribution 2: Chapter Summary 137

5 Discussion and Future Research Directions 139

5.1 Towards XAI in Unsupervised Machine Learning 139

5.2 Application areas of XUnML . 140

5.3 Research Directions in Explainable Unsupervised Machine Learning 144

6 Conclusions . 149

Appendix A Abbreviations . 155

Appendix B List of Publications by the Author 156

B.1 Journal Publications . 156

B.2 Conference Publications . 157

References . 160

Vita . 189

iv

LIST OF TABLES

Table Page

1 Algorithm for training the Self-Organizing Map 27

2 Algorithm for training the E-DSOM . 31

3 The DSOM Architecture . 34

4 The E-DSOM Architecture . 34

5 Classification Accuracy comparison between DSOM and E-DSOM 36

6 Generalization error comparison between DSOM and E-DSOM 37

7 Comparison of test accuracies of unsupervised algorithms 43

8 Proposed approach for Explainable SOM 57

9 Proposed approach for Explainable SOM 58

10 Proposed approach for Explainable SOM 59

11 Comparison between XUnML methodologies 74

12 Algorithm for training the proposed RAE 90

13 Classification Accuracies of models for different datasets 94

14 Comparative Analysis . 94

15 Pseudo-code for training of RAE . 106

16 Hyper-parameters of models . 107

17 Clustering accuracies of DEC and RDEC 107

18 Feature List . 123

19 Proposed feature extraction method . 124

v

20 RX-ADS anomaly detection comparison with recent literature: OTIDS

dataset . 126

21 RX-ADS anomaly detection comparison with recent literature: Car

Hacking Dataset . 132

vi

LIST OF FIGURES

Figure Page

1 Application of DL for CPSs . 14

2 Shallow vs Deep Neural Networks . 14

3 XAI concept and taxonomy . 18

4 Two layered DSOM architecture used for handwritten character recog-

nition [88] . 25

5 Sampling layer creation in DSOM . 26

6 E-DSOM architecture with one hidden layer (two parallel layers in the

hidden layer) . 29

7 Change in accuracy with different noise levels for E-DSOM and DSOM.

(a) MNIST, (b) GSAD and (c) SP-HAR 39

8 Effect of patch size and map sizes on classification accuracy for E-

DSOM and DSOM: (a) MNIST, (b) GSAD, (c) SP-HAR 40

9 Hitmap representations for (a) SOM, (b) DSOM-scaled, and (c) DSOM-

unscaled) . 45

10 Hitmap representations for (a) SOM, (b) DSOM-scaled, and (c) DSOM-

unscaled) . 46

11 U-Matrix representations for (a) SOM, (b) DSOM) 46

12 Data Histogram representations for (a) SOM, (b) DSOM) 47

13 Cluster quality evaluation approach for K clusters using Silhouette

Coefficient and Davies-Bouldin Index for different SOM map sizes 64

vii

14 Fidelity test, Experiment I: Changed the values of p% number of most

important (active) features, p% number of randomly picked features,

and p% number of least important (inactive) features and calculated

the percentage of data points where the cluster label changes after

changing %p feature out of all the feature. we checked the two cases;

1) What is the percentage of test data records where the cluster label

can be swapped by at least one other cluster label (left), 2) What is

the percentage of test data records where all other clusters can swap

the cluster label (right). 68

15 The percentage of closest K number of features included in the most

important feature list of the BMU . 69

16 Local Interpretability; Explanation for a single data record, features

are ordered from ascending order based on feature wise distance to

BMU . 69

17 Global Interpretability; Feature behavior for ’flag’ feature of KDD data

set across clusters (SOM neurons were clustered into three categories,

U-matrix visualize the distances between clusters and how well clusters

are separated, the ’flag’ feature value is different across clusters). 70

18 The need for Deep Neural Networks (DNN) based unsupervised feature

learning and its advantages . 79

19 Standard architecture of Stacked Convolutional Auto-Encoder. 87

20 RAE based feature learning (a) Training of C-RAE, (b) C-RAE based

classification/Clustering . 89

21 Architecture . 92

22 Classification accuracy vs number of hidden layers 95

23 Accuracy distribution . 95

24 Deep Embedded Clustering (DEC) . 101

25 Resnet Architecture [158] . 103

viii

26 RAE based deep embedded representation learning (a) AE, (b) RAE,

and (c) RDEC . 104

27 Clustering accuracy vs number of hidden layers . (a) MNIST, (b)

Fasion MNIST, and (f) CIFAR . 108

28 Clustering Accuracy distribution of DEC 108

29 Performance Degradation for DEC . 109

30 CAN data frame . 115

31 Interpretable Anomaly Detection System Framework 119

32 Explanations generated for DoS records and Fuzzy records 128

33 Feature behavior of DoS data and Adversarial data compared to nor-

mal behavior . 130

34 Feature behavior of DoS data and Adversarial data compared to nor-

mal behavior . 131

35 Explanations generated for DoS records and Fuzzy records for Car

Hacking Dataset . 133

36 Normal Communication during Intrusions (DoS) 135

ix

Abstract

IMPROVING FEATURE LEARNING CAPABILITY AND INTERPRETABILITY

OF UNSUPERVISED NEURAL NETWORKS

By Chathurika S. Wickramasinghe Brahmana

A submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Director: Milos Manic,

Professor, Department of Computer Science

The motivation for this dissertation is two-prong. Firstly, the current state of

Machine Learning (ML) imposes the need for unsupervised machine learning. Sec-

ondly, once such models are developed, a deeper understanding of ML models is

necessary for humans to adapt and use such models.

Why is unsupervised ML needed? Real-world systems generate massive amounts

of unlabelled data at rapid speed, limiting the usability of state-of-the-art supervised

machine learning approaches. Further, the manual labeling process is expensive and

time-consuming as it requires domain experts manually annotate the data. There-

fore, the existing supervised learning algorithms are unable to take advantage of the

abundance of real-world unlabelled data. Thus, relying on supervised learning alone

is not sufficient in many real-world settings. Therefore, improving on existing and

developing novel unsupervised machine learning algorithms is necessary.

Once the unsupervised ML models have been developed, these models need to be

understood by humans in order to adapt them efficiently. Even with the tremendous

x

success of ML in many domains, humans are still hesitant to develop, deploy, and use

machine learning methods because humans cannot understand the internal decision-

making process of machine learning methods (black-box nature). Therefore, it is

essential to develop machine learning algorithms that are either explainable or to

develop techniques that can apply to ML models to explain their decision-making

process. This process is typically referred to as explainable or interpretable machine

learning. Therefore, developing novel methodologies for interpreting unsupervised

machine learning methods is necessary.

The objectives of this dissertation are: 1) improving the feature learning capabil-

ity of unsupervised neural networks and 2) interpreting the decision-making process

of unsupervised neural networks. We address the objectives using two widely used

unsupervised neural networks: Self-organizing Maps (SOM) and Autoencoders. For

each of these unsupervised neural networks, we present architectural changes that

improve feature learning capabilities. Further, we present novel interpretation meth-

ods for SOM based clustering and Autoencoder based anomaly detection. Thus, the

contributions of this dissertation are summarized as follows: 1) Improving and Inter-

preting Self Organizing Neural Network; 2) Improving and Interpreting Autoencoder

Neural network.

xi

CHAPTER 1

INTRODUCTION

Why ML: Machine Learning (ML) is a branch of computer science and artificial

intelligence. It consists of algorithms that are capable of learning from data to imitate

the way that human learns and thinks [1]. The main goal of machine learning is

making machines that can learn automatically without human intervention. Machine

learning is undoubtedly an essential component in the field of data science. It consists

of many components including logistic regression, linear regression, decision trees, K-

means, PCA, and Neural Networks. Out of that, neural network-based algorithms

have shown remarkable performances during the past couple of decades.

Why NNs: Artificial Neural Networks (ANNs) consist of a set of stacked layers

that learn a series of hidden representations hierarchically [2]. Usually, they consist of

an input layer, one or more hidden layers, and an output layer. Due to this hierarchical

architecture, the higher-level representations contain amplified aspects of input sam-

ples that are suitable for discrimination and suppression of irrelevant features. ANNs

have improved the state-of-the-art performance in many tasks, including speech recog-

nition, object detection, natural language processing, and pattern recognition. Many

neural network architectures belong to two categories of machine learning, namely

supervised machine learning and unsupervised machine learning algorithms.

Why UnML: Unsupervised Machine Learning (UnML) has gained significant

attention during the last decade. The main reason for this is the availability of a large

amount of unlabelled data. Real-world settings bring the challenge of dealing with

high volumes of unlabeled data. The manual labeling process is time-consuming,

1

expensive, and requires the expertise of the data [3]. Further, supervised feature

learning is not only unable to take advantage of unlabelled data, but it also can

result in biases by relying on labeled data. Due to these limitations, relying on

supervised learning alone is not sufficient for data-driven decision making. Therefore,

improving on existing and developing novel unsupervised machine learning algorithms

is necessary.

Why Explainable AI (XAI): Even with the tremendous success of ML in

many domains, humans are still hesitant to develop, deploy, and use machine learning

methods because humans cannot understand the internal decision-making process of

machine learning methods (black-box nature) [4]. Especially for human-in-the-loop

systems, humans need to understand these algorithms such that they can trust these

models. By addressing this question, the Explainable Machine Learning (XAI/ Inter-

pretable AI) research area has been introduced and received lot of attention within

many domains [5]. The goal of explainable ML is to provide reasoning for ML model

outputs, allowing humans to understand and trust ML models’ decision-making pro-

cess. However, in the current literature, very little work has been performed to develop

interpretable methods for unsupervised ML algorithms. Real-world systems impose

the need for unsupervised Machine Learning. Therefore, developing novel techniques

for interpreting unsupervised machine learning methods is necessary. (In this disser-

tation, transparency, interpretability and explainability are used interchangeably)

1.1 Motivation

1.1.1 Motivation for theoretical domain

As described above, the motivation for this dissertation is two-prong.

1. Real-world systems generate massive amounts of unlabelled data at rapid speed,

2

limiting the usability of state-of-the-art supervised machine learning approaches.

Further, the manual labeling process is expensive, time-consuming, and requires

the expertise of the data. Therefore, the existing supervised learning algorithms

are unable to take advantage of the abundance of real-world unlabelled data.

Thus, relying on supervised learning alone is not sufficient in many real-world

settings. Therefore, improving on existing and developing novel unsupervised

machine learning algorithms is necessary.

2. Once the unsupervised ML models are developed, these models need to be un-

derstood by humans in order to adapt them efficiently. Unfortunately, even

with the tremendous success of ML in many domains, humans are still hesitant

to develop, deploy, and use machine learning methods because humans cannot

understand the internal decision-making process of machine learning methods

(black-box nature). Hence, it is essential to develop machine learning algorithms

that are either explainable or develop approaches to the decision-making pro-

cess of existing methods. This process is typically referred to as explainable

or interpretable machine learning. Therefore, developing novel techniques for

interpreting unsupervised machine learning methods is necessary.

1.1.2 Motivation for application domain

This dissertation focuses on Cyber-Physical Systems (CPSs) as the application

domain. Modern infrastructure and systems in many domains have become heavily

reliant on CPSs, and they can be found in areas ranging from sensor networks [6],

intelligent transportation systems, and smart grids to space exploration systems [7, 8,

9, 10, 11]. They typically consist of interconnected computing and physical resources,

which enable interactive processing among systems [7]. Such systems integrate com-

putations, communication, control, and physical processes to achieve a specific task

3

[8]. Due to widespread usage and economic benefits, ensuring the secure, reliable,

resilient, and consistent performance of CPSs is crucial. Many independent agencies

and national institutes such as the National Science Foundation (NSF), U.S. De-

partment of Homeland Security (DHS), U.S. Department of Transportation (DOT),

National Cancer Institute (NCI), and European Commission (E.C.) have recently put

their attention towards the advancements of CPS. Their interests include the Inter-

net of Things, Industrial Internet, Smart Cities, Smart Grids, and ”smart” anything

(Manufacturing, Cars, Buildings) [12, 13, 8, 9, 10].

CPSs produce massive amounts of data, creating opportunities to use predictive

Machine Learning (ML) models to improve their operation reliability, improve their

performance (in terms of production capacity and cost), performance optimization,

preventive maintenance, and threat detection [13, 14, 12]. It has to be noticed that

these CPSs produce massive amounts of unlabeled data rapidly. Consequently, relying

on supervised learning alone is not sufficient for data-driven decision making in CPSs.

If we are to maximize the use of ML in CPSs, it is necessary to have explainable

unsupervised ML models. Therefore, in this work, we explore how unsupervised

explainable ML could be used within the CPS domain for different applications such

as clustering, unsupervised feature learning, classification, and anomaly detection. We

experimented with these ML tasks on different data types such as image data, sensor

readings, financial data, and network communication data.

1.2 Objectives

The objective of this dissertation is improving and interpreting unsupervised

neural networks which is divided into two sub-objectives.

1. Improving the feature learning capability of unsupervised neural networks

4

2. Interpreting the decision making process of unsupervised neural networks

In this dissertation, improving unsupervised neural networks refers to improving

the feature learning capability of these algorithms. Real-world systems generate a

massive amount of unlabelled data. These data are coming through various sources

resulting in high-dimensional feature spaces with a lot of data inconsistencies. There-

fore, it is essential to extract/learn relevant features to improve the reliability and

performance of downstream machine learning tasks such as clustering. This can be

achieved by improving the feature learning capability of unsupervised neural net-

works.

In this dissertation, interpreting unsupervised neural networks refers to develop-

ing techniques to explain the underline decision-making process of these algorithms

on down stream tasks such as clustering. To use unsupervised algorithms efficiently,

users need to understand the rationale behind these algorithms. Further, it allows

domain experts to understand, trust, debug, diagnose, and adapt them to different

applications efficiently.

1.3 Contributions

This dissertation exemplifies the objectives using two widely used unsupervised

neural networks: Self Organizing Neural Networks and Autoencoder Neural Networks.

Therefore, the main contributions of this dissertation are divided into two sections as

follows:

1. Contribution 1: Improving and Interpreting Self Organizing Neural Network

(SOM)

(a) A novel unsupervised Self Organizing Neural Network architecture for

learning features of different resolutions in parallel layers: improve clas-

5

sification accuracy and generalizability

(b) A novel technique for interpreting Self Organizing Neural Network algo-

rithm for unsupervised clustering

2. Contribution 2: Improving and Interpreting Autoencoder (AE) Neural Net-

works

(a) A deep Autoencoder Neural Network based framework for unsupervised

feature learning and deep embedded clustering: improve robustness to

network depth

(b) A novel technique for interpreting deep Autoencoder based framework for

anomaly detection

6

1.4 Organization

Dissertation Organization

Chapter 2: Background

Supervised Machine Learning

Unsupervised Machine Learning

Neural Networks

Explainable Machine Learning

Chapter 3: Contribution 1. (a) and (b)

A Novel Unsupervised Deep Self Organizing Map Algorithm

Interpretable Technique for Self Organizing Map

Chapter 4: Contribution 2. (a) and (b)

Autoencoder based Unsupervised Feature Learning

Autoencoder based Deep Embedded Clustering

Interpretable Technique for Autoencoders

Chapter 5: Discussion and Future Research Directions

Chapter 6: Conclusions

The organization of the rest of the chapters is presented above. Chapter 2 dis-

cusses the relevant background and related work; Chapter 3 presents the Contribution

1. (a) and (b), which are the novel Self Organizing Map architecture and technique

for interpreting Self Organizing Neural Network algorithm for unsupervised cluster-

ing; Chapter 4 presents Contribution 2. (a) and (b). Contribution 2. (a) consists

of two sections, presenting the deep AE framework for unsupervised feature learning

and AE framework for deep embedded clustering. Contribution 2. (b) presented as

the third main section of Chapter 4, presenting the technique for interpreting deep

AE based framework for anomaly detection. Chapter 5 presents the discussion and

7

possible future research directions, Chapter 6 concludes the dissertation objectives,

contributions, and future work.

8

CHAPTER 2

BACKGROUND

In this chapter, we discuss relevant literature briefly. In the first two sections, we

discuss two main areas of Machine learning; Supervised Machine Learning (SML),

Unsupervised Machine Learning (UnML). Then we discuss Neural Networks and in-

troduce different neural network architectures. Finally, we discuss current literature

on XAI and its terminologies which are used within this dissertation.

2.1 Supervised Machine Learning

Supervised Machine Learning (SML) algorithms require prior knowledge of data

to train them and make desired outcomes/predictions. SML is frequently used in data

science due to its high predictive performance. However, the major drawback of these

algorithms is that they can not be trained with unlabelled data. SML algorithms can

be categorized into main areas, namely classification algorithms and regression, which

are briefly explained below [15].

• Classification: Classification algorithms require class labels as categorical vari-

ables. Therefore, it limits the number of possible prediction outcomes to a finite

set of categorical variables. Widely used classification algorithms includes Sup-

port Vector Machines, Decision Trees, Random Forest, Naive-Bayes, K Nearest

Neighbor, and Supervised Neural Networks [16, 17] These algorithms can be

further categorized into binary classification and multi-class classification. Bi-

nary classification algorithms categorize data samples into two classes, whereas

multi-class algorithms can categorize data samples into more than two classes.

9

• Regression: Regression algorithms can take data labels as real value and predict

real value as an output. Hence, the outcomes of regression algorithms can have

an infinite number of values. Widely used regression algorithms include linear

regression, logistic regression, and polynomial regression [17, 16].

2.2 Unsupervised Machine Learning

Unsupervised Machine Learning (UnML) has gained significant attention during

the last decade. The main reason for this is the large amount of unlabelled data

generated to the public. To use these data effectively and efficiently, it is crucial to

analyze these unlabeled data (exploratory data analysis) to identify hidden patterns

within them and reduce the amount of data for high-level tasks such as labeling

through dimensionality reduction [18]. In this way, UnML provides initial insight

into data allowing domain experts to use them appropriately.

The traditional concept of UnML was mainly limited to the idea of exploratory

data analysis and dimensionality reduction. The expansion of deep learning meth-

ods and data mining, combined with this era of big data, has given a much broader

perspective to traditional unsupervised learning. Therefore, unsupervised learning is

used not only for clustering and dimentionality reduction [18], but also for generative

modelling [19] [20], auto-regressive modelling [21] [22] and represntation learning (un-

supervised feature learning) [23]. Some of the widely used application areas of UnML

techniques are discussed below.

• Clustering: Clustering is one of the most common uses of UnML, where it

organizes data into sensible groups based on similarities and characteristics of

data [24]. This uses the same concepts as in classification tasks. However, this

does not depend on labels to identify hidden patterns. Instead, this uses some

similarity criteria to group data.

10

• Pre-trained models in transfer learning: This is the process of learning a machine

learning model from a substantial amount of unlabeled data and using these pre-

trained models for similar problem domains. These learned representations,

have shown improved performance on downstream tasks for which the amount

of data is limited, e.g., deep neural networks. [25].

• Unsupervised feature learning: This is the process of learning useful representa-

tions of data without manual annotations [26]. When the learned representation

has a lower dimension than the input dimension, it is referred to as dimension-

ality reduction [27].

• Dimensionality reduction: This is the process of learning a low dimensional

representation of the data set while preserving topological properties of data

[28]. This low dimension can be either in the number of data points or the

number of features in each data point.

• Association Rule Mining: This is the process of finding interesting associations

(relationships, dependencies) in large sets of data items [29].

• Generative modeling: This is a typical use of unsupervised learning that mod-

els the probability distribution of data for generating new samples from the

learned distribution [30]. These learned distributions are used to find good

representations for large data sets and deal with missing data.

• Auto-regressive modeling: This is a process of time series modeling that uses

previous observation from the previous timestamp as input to predict the value

of the next timestamp [21].

11

2.3 Neural Networks

Artificial Neural Networks, also commonly referred to as Neural Networks (NNs),

are a subset of machine learning. They are inspired by the human brain, mimicking

the process of biological neurons or signaling to one another. In other words, it

uses the computational principles of the nervous system to build artificial systems to

achieve intelligence in machines. However, the learning or decision-making process of

NNs is different from the brain as NNs only learn by extracting structure—statistical

regularities -from input data (training examples), whereas the human brain depends

on complex processes such as learned and innate mechanisms [31].

Starting from 1944, NNs have evolved over many years. McCulloch Pitt Neuron

model is considered to be the first NN design. The building blocks of NN are ’artificial

neurons,’ which use a somewhat similar but primitive concept of a biological neuron.

Like biological neurons, artificial neurons also receive input signals and produce an

output signal. The output signal is calculated by calculating a weighted sum of inputs

and which is transformed through a non-linear function (activation). These artificial

neurons are arranged in multiple layers, making deep structures of NNs. Today,

it has advanced to perform exceedingly complex tasks. Sometimes NNs perform

better than humans: finding hidden patterns in large volumes of data, revealing

complex relationships in data, and making fewer mistakes than humans. However,

they also have some disadvantages, such as learning NNs requires massive amounts of

data. Training of NNs is computationally expensive with high-dimensional and large

volumes of data, making mistakes when fed with incomplete or mislabeled data, and a

majority of NNs act as black-box models. Despite the disadvantages, NN application

has shown state-of-the-art performance in many domains. Thus, research community

is actively work on developing and improving NN models.

12

NN models consist of hierarchical architectures with many layers of neurons

where higher level features are defined in terms of lower level features. They have

the capability of extracting features and abstractions from underline raw data with

minimal human involvement [32]. Figure 1 illustrates the overall idea of CPS and the

use of NNs for CPSs. It shows examples of existing CPSs, what kind of features can

be extracted from such systems, possible NN models and advantages of using NNs.

Further, the data collected from CPSs is typically high dimensional. NN models

are specifically designed to deal with high-dimensional data. Many researchers have

experimentally shown that these architectures are capable of yielding outstanding

results in many applications in cyber-physical systems domain [33] [34].

Neural Networks can be divided into two main categories; Shallow NNs and

Deep NNs. Figure 2 presents important features that characterize the deep NNs

and shallow NNs. Typically, Shallow architectures refer to models with only very few

(usually one) hidden layers, whereas deep architectures are composed of several hidden

layers [35]. These methods are capable of representing more abstract representations

of data due to the multi-level architecture. In many practical applications, deep

learning models have shown better generalization capability than shallow NNs and

maximize unstructured data utilization. Other advantages of deep NNs include: it is

computationally cheaper to add layers (deeper) than to add units (shallow), Worry

less about feature engineering with deep NN as the hierarchy of concepts allows

NNs to learn complicated concepts by building them out of simpler ones and can

represent functions with increased complexity. However, the relative simplicity of

shallow ANNs translates to a better understanding of shallow architectures compared

to deep models. Few neural network architectures are discussed here;

• Deep Feed Forward Neural Networks:

13

Fig. 1. Application of DL for CPSs

Fig. 2. Shallow vs Deep Neural Networks

These are often called Multilayer Perceptrons (MLPs) as they are made with

combining many layers of perceptrons (another type of shallow machine learning

algorithms) into a deeper structure. These models are called ’feed forward’

because there are no feedback connections where the output of the network is

fed back to the network MLPs have been successfully applied in many areas such

as malware detection [36], intrusion detection [37] and access control systems

14

[38].

• Convolutional Neural Network (CNNs):

CNNs are special kind of neural network for processing data with grid-like

topology such as images and videos [39]. It combines three architectural ideas:

local receptive fields, shared weights, and spatial subsampling to ensure some

degree of shift and distortion invariance [40]. In cyber-security, it has been

used for tasks like intrusion detection, classification and detection of malware

variants [41] [42].

• Long Short-Term Memory:

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network

(RNN) proposed to solve the problem of vanishing and exploding gradient prob-

lem of conventional RNNs [38]. In cyber-security LSTMs have been used for

tasks like classification and detection of malware variants [41] and anomaly

detection [43] [42].

• Restricted Boltzmann Machines (RBMs):

An RBM consist of two-layered undirected graphical models [44]. They are a

stochastic model used to learn the underlying probability distribution of the

dataset. They are used in many applications including image and speech recog-

nition, dimensionality reduction, classification, feature learning, topic modeling

and cyber-security. In cyber-security, it has been used for tasks like intrusion

detection [45] , malicious code detection [46] and anomaly detection [43].

• Deep Belief Networks (DBNs):

DBNs consist of a series of unsupervised multi-layered RBM networks (stacked

RBMs) and a supervised back-propagation network [45][46]. DBNs are more

15

effective compared to other ANNs specially with unlabeled data [44]. They

have been successfully used in many areas including image classification, speech

recognition and information retrieval, natural language processing and cyber-

security. In cyber-security, DBNs have been used for tasks like malicious code

detection [46], intrusion detection [45] and anomaly detection [43].

• Autoencoders: Autoencoder (AE) structure is divided into two parts: encoder

and decoder. The encoder converts the input data into an abstract representa-

tion which is then reconstructed using the decoder. They are widely used for

the purpose of dimensionality reduction. In cyber-security, it has been used for

tasks like malicious code detection [46], detection of malware variants [41] and

anomaly detection [43].

2.4 Explainable Machine Learning

As we discussed in Section I, the effectiveness of AI systems was limited by the

inability to explain its decision-making process to human users (black-box behavior)

[47, 48, 49]. This has triggered a new research area named Interpretable Machine

Learning or Explainable Artificial Intelligence (XAI). XAI focuses on making ma-

chine learning models with the ability to explain their rationale, characterize their

strengths and weaknesses, and convey an understanding of how they will behave in

the future. It allows to produce AI models with high-performance levels while allow-

ing users to understand, trust, and effectively manage machine learning algorithms

[47, 50]. Explainable AI research can take two main approaches: 1) developing novel

explainable machine learning algorithms, 2) modifying the existing machine learning

algorithms to make them understandable to humans.

Based on the literature, the need for XAI consists of four somewhat overlapping

reasons [50]; Explain to Justify, Explain to Control, Explain to Improve, and Explain

16

to Discover. Explain to Justify refers to the need for reasons/justifications for a par-

ticular outcome, rather than providing a description of the inner workings or the logic

of reasoning behind the decision-making process in general. It ensures that the AI-

based decisions were not made erroneously. Explain to Control protect models from

making wrongful outcomes by providing visibility of unknowns vulnerabilities, flows,

and help to identify and correct errors through debugging. Explain to Improve refers

to the fact that explainable and understandable models are easier to be improved.

Since the user knows why the model produces certain outcomes and flows, users can

make models smarter through continuous improvements. Explain to Discover refers

to explaining to learn new facts, gather information, and gain knowledge. The learned

pattern from machine learning models can result in some new and hidden knowledge

revealed through explanations. Explainable machine learning is a diverse research

area that consists of many components. Figure 3 presents a taxonomy of XAI and a

list of common terms used in XAI. They are briefly described below.

• Intrinsic or Extrinsic (post hoc): This distinguishes whether the model itself is

interpretable or needs to apply methods that analyze models after training to

achieve interpretability [51]. Intrinsic refers to simple, explainable models such

as short decision trees. Extrinsic refers to the use of an interpretation method

after training to achieve interpretability.

• Model Specific or Model Agnostic: This distinguishes whether the interpreta-

tion method is limited to a specific model or not [51]. Model Specific refers

to methods and tools which are specific to a model (Ex: regression weights in

a linear model, tools only work for neural networks). Model Agnostic refers

to methods that can be used on any machine learning model to achieve inter-

pretability. These models do not have access to internal model details such as

17

Feedback
 Looop

Model Debugging
Model Visualizing

Train

Model Evaluation
Compliance Testing

QA

Model Launch Signoff
Model Release MgmtDeploy

Explainable Decisions
API support

Predict

Model Comparison
Cohort Analysis

A/B Test

Performace monitoring
Fairness Monitoring Monitor

Model Diagnostics
Root Cause Analysis

Debug

Building
Explainability into

AI Workflow

Interpretable Machine
Learning

Intrinsic
Ex: short decision
trees, sparse linear

models

Extrinsic
EX: Permutation

feature importance

Model Specific
Ex: interpretation of
regression weights

Model Agnostic
EX: PArtial

Dependence plot,
SHAP, LIME,

Anchors

Local Interpretation

Global Interpretation

Feature Summery Statictics

Feature Summery Visualization

Model Internals

Data Points

Intrinsically Interpretable model

Taxonomy of Interpretable
Machine Learning

Local Interpretation

Global Interpretation

Fig. 3. XAI concept and taxonomy

weights or structural details.

• Local or Global: This distinguishes whether the interpretation method explains

a specific data record or the entire behavior of a model [51]. Local refers to

methods that explain specific prediction, whereas global refers to methods and

tools which provide interpretation for the entire model.

• Result of the interpretation method: The various interpretation methods result

in various interpretation outcomes. Some of them are listed below,

18

– Feature summary statistic: Interpretation methods can result in feature

summary statistics for a single feature or multiple features together. For

example, it can be a feature importance score for each feature or pair-wise

feature importance.

– Feature summary visualization: Some feature statistics are meaningful

only when presented visually. For example, partial dependence plots show

the dependence between the output of the model and a set of input fea-

tures. If this result is presented in tabular format, it is difficult to see the

dependency between features and the model outcome.

– Model internals (e.g., learned weights): Typically, intrinsic interpretable

models result in model internals such as learned weights in linear models

and tree structure of decision trees.

– Data point: Some models’ output already exists or newly created data

points to make the model interpretable. For example, counterfactual ex-

planation methods change the feature values of a data point to flip the

class label of the data point.

– Intrinsically interpretable model: Some black box models can be inter-

preted using interpretable models. The result of this approach can be

feature summary statistics or visualizations of the interpretable model.

Today, many companies such as Amazon, Google, NVIDIA, and IBM, and na-

tional institutes focus on adding explainability to the AI life cycle to ensure to ethical

and fair algorithms for their users. Figure 3 present the idea of incorporating XAI

into AI workflow, proposed by Fiddler lab, who is a member of NVIDIA inception.

They point out that many people working within companies have no idea how to ex-

plain the inner workings of AI to customers. They are working towards bridging the

19

gap between hardcore data scientists who are building the models and the business

teams using these models to make decisions.

20

CHAPTER 3

IMPROVING AND INTERPRETING SELF ORGANIZING NEURAL

NETWORK

3.1 Contribution and Published Papers

This chapter presents the Contribution 1, (a) and (b);

a. A novel unsupervised Self Organizing Neural Network architecture for learning

features of different resolutions in parallel layers: improve classification accuracy

and generalizability

b. A novel technique for interpreting Self Organizing Neural Network algorithm

for unsupervised clustering

Papers supports this work:

1. ©[2022] IEEE. Reprinted, with permission from C. S. Wickramasinghe, K.

Amarasinghe, D. L. Marino, C. Rieger and M. Manic, ”Explainable Unsuper-

vised Machine Learning for Cyber-Physical Systems”, in IEEE Access, vol. 9,

pp. 131824-131843, 2021.

2. ©[2022] IEEE. Reprinted, with permission from C. S. Wickramasinghe,

K. Amarasinghe, Milos Manic, ”Deep Self-Organizing Maps for Unsupervised

Image Classification”, in IEEE Transactions on Industrial Informatics , vol. 15,

no. 11, pp. 5837-5845, Nov. 2019.

3. ©[2022] IEEE. Reprinted, with permission from C. S. Wickramasinghe, K.

Amarasinghe, M. Manic, ”Parallalizable Deep Self-Organizing Maps for Image

21

Classification”, in Proc. 2017 IEEE Symposium Series on Computational Intel-

ligence, IEEE SSCI 2017, Honolulu, Hawaii, USA, Nov, 27- Dec 1, 2017.

4. ©[2022] IEEE. Reprinted, with permission from C. S. Wickramasinghe,

K. Amarasinghe, D. Marino, and M. Manic, “Deep Self-Organizing Maps for

Visual Data Mining”, in Proc. 11th International Conference on Human System

Interaction, IEEE HSI 2018, Gdansk, Poland, July 04-06, 2018.

5. ©[2022] IEEE. Reprinted, with permission from K. Amarasinghe, C. S. Wick-

ramasinghe, D. Marino, C.Rieger, M. Manic, ”Framework for Data-Driven

Health Monitoring of Cyber-Physical Systems”, in IEEE Resilience Week (RW)

2018, Denver, CO, USA, Aug 20-23, 2018.

3.2 Introduction

In this era of industrial big data, a massive amount of data is available to the

public through various industries such as intelligent transportation [52] [53], power

grids [2], cloud computing [54], and finance [55]. Successful mining of these data (clas-

sification, clustering) can lead to several advantages including process optimization,

fault diagnosis, and improved cyber-security [56], [57, 58, 59, 60, 61]. In classification

tasks, deep learning algorithms such as Deep Convolutional Neural Networks (CNN)

have shown unprecedented performance [62, 55]. Recent attempts have focused on

improving the efficiency of these algorithms by developing light-weight deep neural

networks [63]. Despite many advantages, one major drawback of these state-of-the-

art classification algorithms is that they are dependent on the availability of large

labeled datasets. The scarcity of labeled data in the real world is a major hurdle to

deploy supervised models in the real-world [57], [64, 65, 66]. Therefore, unsupervised

approaches are ideal to leverage the abundantly available unlabeled data in industrial

22

applications [57], [65], [66].

Several unsupervised classification methodologies have been explored in literature

such as Bayesian hierarchical clustering [67], [68] and Markovian models [69]. In

more recent attempts, specialized deep learning methodologies such as Spiking Neural

Networks (SNN) [70] and Generative Adversarial Nets (GANs) [71] were proposed.

These algorithms have shown comparable performance with supervised algorithms

for the MNIST dataset [70]. However, these models have some limitations when it

comes to deploying them in the real-world. For example, the complex architecture

of SNNs leads to low understandability and requirements of specialized hardware to

deploy [72], [73]. Similarly, GANs suffer from poor interpretability and it has been

shown that they suffer from high training times [74]. In addition, deep learning

methodologies such as stacked convolutional Autoencoders (CAEs) have shown much

promise in unsupervised learning for image classification [55], [75].

In this work, we focus on using Self-Organizing Maps (SOMs) based methodol-

ogy for classification and clustering using unsupervised learning. The Self-Organizing

Map is a widely used unsupervised learning algorithm capable of mapping a high-

dimensional data distribution onto a low-dimensional grid while preserving impor-

tant topological, and metric relationships of the input data [76, 77, 78]. It consists

of a topological neuron grid (typically 2D or 3D), with each neuron consisting of a

weight vector. It adapts its neuron weight vectors to represent topological properties

of input data using the unsupervised “winner-take-all” learning algorithm [79, 80].

Since SOMs can represent topological properties of input data, they have been widely

used for visual data mining and dimensionality reduction [81, 82]. Other advantages

of SOMs include ease of optimization [83], the better capability of revealing over-

lapping structures in clusters compared to other traditional clustering methods, and

suitability for visualizing and mining high dimensional data [84]. SOMs have been

23

successful in many areas, including speech recognition, robotics, telecommunication,

and process optimization [85, 86, 83, 79].

Due to the above-discussed advantages of SOM, the first part of this work fo-

cus on improving the feature learning capability of SOM by introducing novel SOM

architecture. As we discussed in the introduction, it is also essential to focus on

explainable techniques for unsupervised ML methods. Therefore, the second part of

this work also focuses on developing a novel interpretable technique for Self Organiz-

ing Map (SOM) based clustering. We present a model-specific interpretation method

that identifies the most important features used by the decision-making process of

the SOM algorithm. Further, it generates global and local interpretations for iden-

tified clusters and data records. Therefore, the rest of this chapter presents the first

contribution of the dissertation, with its two sub contributions,

a. A novel unsupervised Self Organizing Neural Network architecture for learning

features of different resolutions in parallel layers: improve classification accuracy

and generalizability (Section 3.3)

b. A novel technique for interpreting Self Organizing Neural Network algorithm

for unsupervised clustering (Section 3.4)

The rest of the section is organized as follows. Section 3.3 presents the novel

unsupervised deep Self Organizing Map algorithm with improved feature learning

capability; Section 3.4 presents the novel interpretable technique for Self Organiz-

ing Map based clustering; and finally, Section 3.5 provides a summary of the first

contribution of this dissertation.

24

3.3 Unsupervised Deep Self Organizing Map algorithm

As we discussed in the Introduction, SOMs have many advantages including vi-

sual data mining capabilities [87, 88, 89], ease of optimization [90], and better capabil-

ity of revealing overlapping structures in clusters compared to traditional clustering

methods [91]. Thus, SOMs have been successful in a multitude of areas including

speech recognition, robotics and process control [92], [93, 94]. The major drawback

of SOMs is its limited capability of high-level feature abstraction due to the shallow

structure [95].

One of the recent attempts at alleviating this limitation was to explore a deep

architecture of SOMs, named Deep Self-Organizing Maps (DSOM) by Liu et al [88].

Since DSOM architecture uses the same learning mechanism as SOMs, it inherits all

the advantages of SOMs mentioned above. However, the authors of [88] explored a

supervised learning algorithm with DSOM and thus relied on the availability of la-

beled data. In our work, we explore a parallelized version of an unsupervised DSOM

architecture. An accurate unsupervised DSOM architecture has the following main

advantages: 1) the ability to leverage unlabeled datasets, 2) hierarchical feature ab-

straction based unsupervised learning, and 3) the ability to deploy without special

hardware.

Kernel
Stride

Input
Image

Hidden Layer2Input Layer Hidden Layer1 Output Layer

Output
SOM

Output
SOM

SOM
Phase

SOM
Phase

Sampling
Phase

Sampling
Phase

Fig. 4. Two layered DSOM architecture used for handwritten character recognition

[88]

This section presents the proposed novel DSOM architecture, referred as En-

hanced DSOM (E-DSOM). E-DSOM enhances the DSOM in two ways: 1) the learn-

25

S

Input
Image

(X)

SOM
Phase

Sampling
Phase

M

⋯

K

Feature
Map

C1,1 C1,2 C ,Nmaps Nmaps

BMUs
from
SOMs

Fig. 5. Sampling layer creation in DSOM

ing algorithm is completely unsupervised and 2) the architecture learns features of

different resolutions in parallel in a single hidden layer. Please note that in the rest

of the chapter, DSOM refers to the architecture proposed by Liu et al. in [88] and

E-DSOM refers to the architecture presented in this chapter. The main contributions

of this work are summarized as follows:

1. An unsupervised, easy to understand, easy to implement deep SOM architec-

ture for classification. The goal of this work is not to improve on the accuracies

of other supervised learning architectures such as CNN. The goal is to present

an unsupervised learning methodology, with high-level feature abstraction ca-

pability.

2. A deep SOM architecture capable of learning features of different resolutions

simultaneously. We hypothesize that this capability improves classification ac-

curacy and the generalization capability of the model. Further, we hypothesize

that this will result in a shallower model compared to the DSOM and lead to

reduced training times.

26

3.3.1 Background

This section provides the background information needed to present the E-DSOM

algorithm. First, the single-layered SOM is introduced. Then, the DSOM algorithm

proposed by Liu et al. in [88] is presented.

Table 1. Algorithm for training the Self-Organizing Map
Algorithm I: SOM Training

Inputs: Training set of images (X)

Outputs: Trained SOM

1: Random Weight initialization

2: for each epoch e do

3: for number of training samples do

4: x← pick random input record from X

5: md← initialize to the largest float

6: for number of neurons in SOM do

7: di ← ∥X −Wi∥
% find the BMU

8: if di < md do

9: BMUx ←Wi % weight of BMU

10: BMUIndexx ← i % index of BMU

11: md← di
12: end if

13: end for

% update weights

14: for number of neurons in SOM neighborhood do

15: n←− e
−
(

BMUx−w

2δt2

)
16: △Wi ←−Wi × α× η × (x− w)

17: Wi ←−Wi +△Wi

18: end for

% Decay the neighborhood and learning rate

19: end for

20: end for

3.3.1.1 Self-Organizing Maps

SOMs consist of a topological neuron grid (typically 2D) with each neuron con-

sisting of a weight vector. The SOM adapts itself to the topological properties of input

data using the unsupervised ”winner-take-all” learning algorithm. Both DSOM and

E-DSOM use this as the underlying learning mechanism in the hidden layers.

The learning algorithm for a SOM is given in Algorithm I (Table 1). For each

input pattern, the SOM selects the neuron that best matches the pattern in terms

27

of Euclidean distance. This neuron is called the Best Matching Unit (BMU). Then,

the SOM updates weights of the neurons in the neighborhood of the BMU so that

they move closer to the BMU (line 14-18 in Algorithm I). The learning rate and

the radius of the BMU neighborhood are used as the controlling hyper-parameters.

The learning rate and the neighborhood radius is decayed with time. The neigh-

borhood radius is halved at each epoch. The learning rate is decayed as follows:

η(t) = 0.49
(
1− e

epochs

)
+ 0.01 (3.1)

Where e is the current epoch and epochs is the total number of epochs. The most

important hyper-parameter of the SOM is the size of the map. If the map size is too

small, it will lead to the model not capturing the feature space adequately (under-

fitting). Conversely, if the map size is too large, it will lead to over-fitting the training

data and unnecessary computations.

3.3.1.2 Deep Self-Organizing Maps

The DSOM is a multi-layered SOM architecture, which consists of an input layer,

hidden layers, and an output layer. The initial design of DSOMs merged the concepts

of SOMs and Convolution Neural Networks (CNNs). SOMs provided the underlying

learning mechanism to DSOM while CNNs inspired the high-level feature abstraction

process.

In CNNs, in each hidden layer, each unit (neuron) receives inputs from a subset

of units in the preceding layer (local receptive field/patch) [96], [97]. The lower-level

features learned in the preceding layer are combined in the current hidden layer to

generate higher-level features. This idea was incorporated into the DSOM architec-

ture so that higher-level layers are capable of learning more abstract information than

lower-level layers.

28

Input
Image

(X)

SOM
Phase

Sampling
Phase

Patch Size 1

⋯

Feature
Map

C ,Nmaps Nmaps

C1,1

C1,2

Combined Sampling
Phase

Parallel Layer 2

Single Layer
SOM

Input
Layer

Hidden
Layer

Output
Layer

⋯

Feature
Map

C ,Nmaps Nmaps

C1,2

BMUs
from
SOMs

Parallel Layer 1

Patch Size 2

C1,1

Fig. 6. E-DSOM architecture with one hidden layer (two parallel layers in the hidden

layer)

Although DSOM uses local receptive fields, the function of hidden layers is com-

pletely different from CNN. In CNN hidden layers, a convolution operation followed

by a pooling step generates the feature map for the next layer. Conversely, hidden

layers in DSOM process the patches with SOMs and aggregate the BMUs to gener-

ate the feature map. Therefore, the only similarity between DSOM and CNN is the

notion of the local receptive field. Figure 4 shows a DSOM architecture with two

hidden layers, which was used for MNIST classification by Liu et al [88].

The function of each layer in the DSOM can be summarized as follows:

Input layer: Forwards the input images to the DSOM

Hidden Layer: Each hidden layer consists of two phases: 1) SOM phase and 2)

sampling phase. In the SOM phase, each input image is segmented into smaller local

regions (patches). Then, each patch is sent to its own SOM unit in this layer, i.e.

each patch is processed by its own SOM. Each SOM finds the BMU for the input

patch using the Algorithm I. In the sampling phase, the BMUs of the hidden SOM

29

units are combined to generate a single 2D grid (see Figure 5). This 2D grid acts as

the input image (feature map) to the next hidden layer. This process is repeated for

all hidden layers.

Output layer: The output layer contains a single SOM. It receives the feature map

generated by the last hidden layer. The output SOM extracts abstract and pertinent

information for classification.

3.3.2 Novel Deep Self-Organizing Maps

This section presents the novel DSOM (E-DSOM) architecture, its unsupervised

learning algorithm, classifier implementation and a discussion on computational com-

plexity.

3.3.2.1 E-DSOM Architecture

Similar to the DSOM architecture, the E-DSOM consists of an input layer, hidden

layers, and an output layer. The main differences in the E-DSOM architecture are in

the hidden layers. As opposed to the DSOM, E-DSOM hidden layers contain several

parallel layers (See Figure 6). Each parallel layer has its SOM phase and sampling

phase. In the sampling phase, first, a feature map for each parallel layer is created.

Then, those feature maps are combined to generate one feature map.

E-DSOM uses different sized patches (multi-scale patches) in parallel SOM layers

of the hidden layers. It has been shown that multi-scale patch approaches help to

improve classification accuracy by extracting complementary information [98, 99].

Figure 6 shows an E-DSOM architecture with two parallel layers with different patch

sizes.

The above architecture modification enables the algorithm to learn feature spaces

of different size and resolution by using different map sizes and patch sizes in the

30

parallel layers. We hypothesize that this ability will 1) improve classification accuracy,

2) improve generalization capability, and 3) reduce the need for sequential hidden

layers (reduce training time). In this work, more emphasis is laid on changing the

patch size, i.e., changing the size of the local region of focus to enable the learning

features of different resolutions.

Table 2. Algorithm for training the E-DSOM
Algorithm II: E-DSOM Training

Inputs: Training set of images (X)

Outputs: Trained E-DSOM

1: Random Weight initialization

2: for each epoch e do

3: for number of training samples do

4: x← pick random input record from X

5: for each hidden layer l do

6: featureMapList← empty list of length P

7: for each parallel SOM layer p do

8: featureMapList[p]← ParallelLayer(x)

9: end for

10: x← CombinedSampling(featureMapList)

11: end for

12: OutputSOM ← Algorithm I (x)

% Find the BMU for (x) using SOM algorithm

13: end for

14: end for

Procedure I: ParallelLayer

Inputs: Input record (x), Number of patches (p)

Outputs: Sampled featureMap

1: featureMap← empty list of length p

2: for each patch x‘ do:

3: indexx ← the location of x‘ w.r.t. x

4: BMUx‘ ← get BMU index for x‘ on corresponding SOMx‘

5: featureMap[index]← BMUindex

6: end for

Procedure II: CombinedSampling

Inputs: List of feature maps from each parallel layer (featureMapList)

Outputs: Combined Feature Map

1: comFeatureMap← Append featureMapList to a single list

2: l← length of comFeatureMap

3: if
√
l /∈ N for; N = {1, 2, 3, 4, ...}

4: Use zero-padding on comFeatureMap until
√
l ∈ N

5: CFM ← Reshape comFeatureMap to a 2D vector of size
√
l ∗
√
l

6: return CFM

31

3.3.2.2 Training the E-DSOM

Training algorithm of the E-DSOM is presented in Algorithm II (Table 2). Sim-

ilar to the SOM and DSOM, weights of the network are randomly initialized. In a

hidden layer, the SOM phase consists of P parallel SOM layers with P different patch

sizes (Algorithm II, lines 7-9). For each patch size, the number of patches along one

dimension is calculated as follows:

Nmap = ceil
(M −K

S

)
+ 1 (3.2)

where ceil(·) calculates the smallest integer upper, M is the pixel width/height of the

input image X (M×M image) K is the width/height of the patch (K×K patch) and

S is the stride of the patch. Therefore, Nmap × Nmap number of patches are created

form the input image for each patch size (see Figure 5), i.e. Nmap ×Nmap number of

SOMs are created for each parallel layer.

In all the parallel SOM layers, the BMU selection for its respective patches is

carried out followed by its sampling process(see Procedure I). Therefore, P feature

maps are created (see Algorithm II) [88]. All feature maps are converted to one-

dimensional arrays and concatenated into a single array. Then, the resultant array

is reshaped to a 2D grid which acts as the input image to the next hidden layer (see

Procedure II).

After processing the hidden layers, the combined feature map generated from

the last hidden layer acts as the input to the output SOM. The output layer SOM is

trained using Algorithm I.

32

3.3.2.3 Classifier

A classifier is implemented based on the trained output layer SOM to assign the

class labels to the input records. It has to be noted that E-DSOM algorithm is trained

purely unsupervised, without using any prior knowledge about class labels.

The classifier requires some labeled data. Each neuron in the output layer SOM is

assigned a class label using the labeled dataset. First, the labeled dataset is processed

through the trained E-DSOM. For each neuron j in the output layer, the number of

times it was selected as the BMU for each class is stored as, N j,c
BMU where c is the

class label. The class label with the highest BMU frequency is assigned as the neuron

label:

labelj = argmax
c

N j,c
BMU (3.3)

In case of a tie one of the tied labels of maximum N j,c
BMU values, is assigned at

random.

Once each output SOM neuron is assigned a class label, test data can be classified

using the E-DSOM. When an input data record (image) is processed through the E-

DSOM, the label of its BMU in the output layer is assigned to the data record.

3.3.2.4 Computational Complexity

As mentioned, each hidden layer consists of multiple parallel layers where each

patch is processed by a separate SOM (Procedure I), i.e., for each patch, Algorithm

I is used to find the BMU and the BMUindex is stored in its feature map (Algorithm

II steps 7 to 9). The Algorithm I executes in two phases. Phase 1 calculates the

Euclidean distances between the input vector x and the SOM units and finds the best

matching unit (BMU). Phase 2 updates the neuron weights in the BMU neighborhood.

33

The computational complexity of each phase in the E-DSOM hidden layer can be

expressed as follows:

O(K2N2N2
map) (3.4)

Where K2 is the number of elements in a single patch, N2 is the number of units

in a SOM and N2
map is the number of patches/SOMs. Both phases are highly paral-

lelizable. Therefore, traversing the SOM for distance calculation and weight update

can be reduced to O(1) in the ideal case. Therefore, for a highly parallelized ideal

implementation, the above computational complexity can be reduced to:

O(K2N2
map) (3.5)

Table 3. The DSOM Architecture
Hidden Layer 1 Hidden Layer 2 Output Layer

Dataset Map Size Patches (K) Stride Map Size Patches (K) Stride Map Size

MNIST 4–24 10—20 2 15 6 1 8

GSA 4–24 3-–7 2 14–16 3–5 1 5–8

SP-HAR 4–24 5-–17 2 14–16 3–7 1 5–8

Table 4. The E-DSOM Architecture
Dataset

Hidden Layer 1 Output Layer

Map Size Patches (K) Stride Map Size

MNIST 4-24 10-20 2 8

GSA 4-24 3-7 2 5-8

SP-HAR 4-24 5-17 2 5-8

In the combined sampling phase of a hidden layer, all the feature maps from

P parallel layers are combined into one (Procedure II). Concatenating these arrays

take linear computational complexity. Therefore, the computational complexity of

creating the combined sampling map can be expressed as follows:

O(N2
mapP) (3.6)

The P parallel layers can be executed in parallel. Therefore, increasing the

number of parallel layers very little effect on the computational time is given in Eq.

34

(5). However, it does affect Eq. (6). When the number of parallel layers (p) increase,

the time taken to combine them into a combined sampling layer increase linearly.

When considering the space complexity of the E-DSOM model, the number of

parameters that need to be stored per hidden layer can be approximated as follows:

|θ| = PK2N2N2
map (3.7)

The number of parameters that need to be stored linearly grows with the number of

hidden layers. This can be used to infer the space complexity of the model. Unlike

time complexity, space complexity grows with the increase of parallel layers.

3.3.3 Experiments and Discussion

This section discusses the experiments and results. The experimental setup is

presented followed by a comparative analysis against DSOM and other state-of-the-

art unsupervised algorithms.

3.3.3.1 Datasets

Three datasets were used for experimentation: 1) MNIST [100], 2) Gas Sensor

Array Drift (GSAD) dataset [101], and 3) Smart Phone dataset for Human Activity

Recognition (SP-HAR) [100] . All the datasets were normalized to zero mean and

unit variance. For all datasets, balanced subsets of the data records were selected to

alleviate the class imbalance problem. Further, data records in numerical datasets

(GSAD and SP-HAR) were converted into 2D square images.

The MNIST dataset contains images of hand-written characters (digits from

0-9), each 28× 28 pixels in size. The complete MNIST dataset contains 55000 train

images and 10000 test images. In this work, a significantly smaller training set of

3000 images was used to reduce the classifier training time. The complete testing set

35

(10000 images) was used to test the accuracy of the algorithms.

The GSAD dataset contains 13910 records collected from 16 chemical sensors

from a gas delivery facility. The dataset contains data about 6 gases and the classifier’s

goal is to discriminate between the gasses. The dataset contains data collected for

36 months. In this work, only the first 21 months were used to avoid concept drift

in data. A balanced dataset of 4500 records was selected and the train/test split was

chosen as 2400/2100. The sensor data were rearranged to a 2D grid and is processed

as an image. Since each data record consists of 121 dimensions, each data record was

arranged to an 11× 11 image.

SP-HAR consists of 10299 smartphone sensor records of 30 subjects performing

six different daily living activities. A balanced dataset of 4792 records was selected

and the train/test split of 3300/1492 was chosen. Similar to the GSAD dataset,

data were rearranged to a 2D grid. Since the dataset contained 561 dimensions, the

features were reduced to the closest square number (529) using information gain based

feature selection. Then, each record was re-arranged into a 23× 23 image.

Table 5. Classification Accuracy comparison between DSOM and E-DSOM

DatasetModel
Layer1 Test Accuracy for Different Noise level (%)

Patch
Scale1

Patch
Scale2

Map
Size1

Map
Size2

Train
Acc

Test
Acc

2 5 10 20 40 50 60

MNIST
DSOM 10 - 24X24 -

85.06±
1.94

83.47±
2.85

83.37±
3.04

83.14±
2.81

83.14±
2.68

82.39±
2.63

74.46±
2.72

62.00±
3.25

20.37±
1.55

E-
DSOM

10 20 24X24 24X24
88.04±
1.96

87.12±
2.41

87.12±
2.35

87.15±
2.14

86.88±
2.17

86.51±
1.87

79.91±
1.77

69.34±
1.98

23.63±
1.71

GSAD
DSOM 3 - 24X24 -

83.35±
2.73

57.24±
8.63

49.76±
6.19

45.20±
3.18

38.08±
1.93

32.59±
1.45

27.12±
0.83

23.84±
0.45

21.88±
1.27

E-
DSOM

3 9 24X24 24X24
91.24±
1.19

72.73±
6.78

66.82±
5.06

61.19±
3.90

50.01±
4.89

37.86±
3.34

28.59±
3.64

24.12±
2.03

22.45±
2.41

SP-HAR
DSOM 11 - 24X24 -

62.85±
1.08

57.88±
2.31

56.90±
3.28

55.60±
2.37

52.58±
2.32

44.81±
2.12

27.17±
2.92

19.52±
2.19

17.78±
0.76

E-
DSOM

11 17 22X22 22X22
67.39±
1.12

64.36±
0.28

63.22±
1.22

61.90±
0.83

58.22±
1.57

48.51±
2.69

24.14±
1.46

19.69±
0.88

17.35±
1.01

36

Table 6. Generalization error comparison between DSOM and E-DSOM

Dataset Model
Generalization Errror (%) for different Noise Levels

0 2 5 10 20 40 50 60
Computational
Time (s)

MNIST
DSOM 1.59 1.69 1.92 1.92 2.67 10.60 23.06 64.69 3788
E-
DSOM

0.92 0.92 0.89 1.16 1.53 8.12 18.69 64.41 3114

GSAD
DSOM 26.10 33.59 38.15 45.27 50.76 56.23 59.51 61.46 390
E-
DSOM

18.51 24.42 30.05 41.23 53.38 62.65 67.12 68.78 313

SP-HAR
DSOM 4.97 5.95 7.25 10.27 18.04 35.68 43.32 45.07 3098
E-
DSOM

3.04 4.18 5.49 9.18 18.88 43.25 47.70 50.04 2602

3.3.3.2 Hyper-parameter and Model Architecture Selection

As mentioned in Section I, we hypothesize that due to the parallel architecture

of E-DSOM, a shallower model compared to the DSOM can be used. This results in

a reduction of serial operations, resulting in reduced training time. In order to test

this, for all the tests, a DSOM with two hidden layers and an E-DSOM with only

one hidden layer were implemented. In the E-DSOM hidden layer, two parallel layers

were implemented.

Table 3 summarizes the architecture and the hyper-parameters chosen for DSOM

for the three datasets. For the MNIST dataset, the set of hyper-parameters were

selected based on the experiments done by Liu et al [88] and our previous work [102].

For the other datasets, the hyper-parameters were selected experimentally through

cross-validation. For each dataset, different experiments were conducted by changing

the map size and the patch size within the ranges shown in Table 3.

Table 4 presents details of the E-DSOM architecture. Different combinations of

patch sizes and map sizes were tested within the presented ranges. Across parallel

layers of the same model, different patch sizes were used, but the map size was kept

the same. The shallower model of E-DSOM enabled the use of bigger patch sizes

than the DSOM. In order to ensure a fair comparison of classification accuracies, the

37

output layer of DSOM and E-DSOM was implemented with a SOM of the same size.

3.3.3.3 Experimental Results: MNIST

Classification accuracies for the MNIST dataset is presented in Table 5. The

DSOM was able to achieve the best test accuracy of 83.468% while E-DSOM was able

to achieve 87.118 % (A 3.65% improvement).

Generalization capability was analyzed with noisy test data. Table 5 and

Fig. 4 (a) show the performance of the two algorithms. There was no significant

difference in classification accuracy for both models until the noise level increased

beyond 20%. Despite the drop in accuracy beyond 20% noise, it was observed that

E-DSOM consistently outperformed the DSOM. Further, E-DSOM showed a lower

generalization error at all the noise levels (see Table 6).

When computational time was compared (Table 6), it was observed that the

E-DSOM was able to reduce the training time by more than 670 seconds compared

to the DSOM (17% improvement).

3.3.3.4 Experimental Results: GSAD

Classification accuracies for the GSAD dataset are presented in Table 5.

DSOM achieved 57.24% as its best classification accuracy while E-DSOM achieved

72.73% (A 15.49% improvement).

Generalization capability: Classification accuracies with noisy data are pre-

sented in Table 5 and Figure 7 (b). E-DSOM outperformed DSOM at all noise levels.

Further, the E-DSOM showed a lower generalization error at noise levels of 0%-20%

(see Table 4).

When computational time was considered (Table 6), it was observed that the

E-DSOM was able to finish training more than 70 seconds faster than the DSOM

38

with GSAD dataset (19% improvement).

3.3.3.5 Experimental Results: SP-HAR

Classification accuracies for the SP-HAR dataset are presented in Table 5.

DSOM was able to achieve a maximum test accuracy of 57.88% while E-DSOM was

able to achieve 64.36 (6.48% improvement).

In terms of generalization capability, E-DSOM outperformed DSOM at all

noise levels except at 40% and 60% (Table 5 and Figure 7(c)). Further, E-DSOM

showed a lower generalization error for 0%-10% noise levels (see Table 6).

Table 6 shows the computational times of the two models. E-DSOM was

able to finish training over 490 seconds faster than the DSOM for SP-HAR dataset

(around 16% improvement).

0 10 20 30 40 50 60
Noise Level (%)

20

30

40

50

60

70

80

90

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

MNIST
DSOM
E-DSOM

(a)

0 10 20 30 40 50 60
Noise Level (%)

20

30

40

50

60

70

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

GSAD
DSOM
E-DSOM

(b)

0 10 20 30 40 50 60
Noise Level (%)

20

30

40

50

60
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

SP-HAR
DSOM
E-DSOM

(c)

Fig. 7. Change in accuracy with different noise levels for E-DSOM and DSOM. (a)

MNIST, (b) GSAD and (c) SP-HAR

3.3.3.6 Overall Results Discussion

For MNIST and GSAD datasets, E-DSOM showed superior performance in clas-

sification accuracy, generalization capability and computational time.

For the SP-HAR dataset, the E-DSOM achieved superior classification perfor-

mance and reduced computational time. However, the E-DSOM failed to outperform

39

4 8 12 16 20 24
Map Size

10

20

30

40

50

60

70

80
Ac

cu
ra

cy

MNIST

DSOM
E-DSOM

(a)

4 8 12 16 20 24
Map Size

20

30

40

50

60

70

Ac
cu

ra
cy

GSAD
DSOM
E-DSOM

(b)

4 8 12 16 20 24
Map Size

50

52

54

56

58

60

62

64

66

Ac
cu

ra
cy

SP-HAR
DSOM
E-DSOM

(c)

Fig. 8. Effect of patch size and map sizes on classification accuracy for E-DSOM and

DSOM: (a) MNIST, (b) GSAD, (c) SP-HAR

the DSOM at noise levels beyond 40%, but scores remained comparable. SP-HAR

dataset contains data from smartphone sensors, which can be less precise than the

industrial grade sensors in GSAD. The noisy data could be the reason for the lower

classification accuracies shown by both algorithms.

The overall classification accuracy results support our hypothesis that the E-

DSOM architecture with parallel layers is able to achieve better/higher accuracy with

a fewer number of serial layers compared to DSOM, i.e., using less computational time.

3.3.3.7 Analysis: Effect of patch size and map sizes on classification ac-

curacy

The analysis studied the effect of the two most important hyper-parameters—

patch size and map size—on the classification accuracy. We used square maps of the

size range 4–24 and different square patch sizes with each map size. For simplicity,

the parameters were changed only in the first layer of both algorithms.

For MNIST and GSAD datasets, patch sizes in the range of 10–20 pixels (per

dimension) and 3–7 pixels were used, respectively. The patch size was incremented

in two pixels between tests. Patch sizes for SP-HAR were kept within the range of

5-17 and incremented in four pixels between tests (See Table 5 and 6).

40

The results from the analysis are given in box and whisker graphs (See Figure

8(a) –(c)). Each box plot relates to specific map size. The height of the box plot

indicates the variability of classification accuracy for the different patch sizes, i.e., a

shorter box plot indicates low variability classification accuracies and vice-versa.

Effect of Map Size: Classification accuracies were observed for different map

sizes. For all tests, E-DSOM outperformed the DSOM in classification accuracy.

Further, for all datasets, if the map size wasn’t very low, E-DSOM’s classification

accuracies remained consistent across map sizes. Conversely, DSOM showed signifi-

cant variations in its classification accuracies across map sizes with the exception of

MNIST. Further, the smallest map size yielded the smallest classification accuracy

for both models. This is expected as a small map can be inadequate to capture the

feature space.

Therefore, from these datasets, it can be inferred that for the E-DSOM, as long

as the map size is not too small, the classification accuracies will not change much

with the map size. However, with the DSOM, in order to find the optimal map size,

a thorough cross-validation process is needed.

Effect of Patch Size: As mentioned, for each map size, several patch sizes

were tested. The E-DSOM consistently outperformed the DSOM despite different

configurations. With the exception of SP-HAR dataset, the classification accuracies

remained fairly consistent across different patch sizes with E-DSOM (shorter box

plots). However, in DSOM, the results varied significantly across patch sizes for a

single map size (taller box plots). In the SP-HAR dataset, the E-DSOM algorithm

showed some variability for the patch sizes when the map size was 8 and 12. Therefore,

it can be inferred that generally, the E-DSOM algorithm shows less dependency on

the patch sizes when compared to the DSOM. This leads to an easier process of hyper-

parameter selection. This could be a result of E-DSOM balancing out the effect of

41

patch size by detecting complementary features of different resolutions in the parallel

layers.

3.3.3.8 Comparison of E-DSOM with other unsupervised algorithms

The proposed E-DSOM architecture was compared against three other unsu-

pervised algorithms: 1) single layer SOM, 2) stacked Autoencoder and 3) stacked

Convolutional Autoencoder. A single layer SOM with an 8 × 8 neuron grid was

implemented for the completeness purpose.

Stacked Autoencoders (AE) are deep unsupervised learning architectures

[55]. AE consists of two functions, an encoder, and a decoder. Encoder learns a com-

pressed representation of the input data and decoder reconstructs the input data us-

ing the compressed representation. AEs are widely used for dimensionality reduction

[103], feature learning and data denoising [75]. In this work, AEs was implemented

with a SOM (8 × 8) connected to the last hidden layer. The SOM was trained with

the encoded data, and the same classifier as E-DSOM was implemented. AEs with

up to three hidden layers were tested and the best classification results are reported.

Stacked Convolutional Autoencoders (CAEs) are a variant of AEs that

contains convolutional layers. CAEs are unsupervised learning algorithms, which use

the building blocks—convolution layers and max-pooling layers—of supervised CNNs

[103]. Similar to AE, CAE was implemented with up to three hidden layers followed

by a SOM classifier. The number of filters was changed within the range 4–30. The

kernel size was set to 3× 3 as it resulted in the best classification accuracies. ReLU

activation function was used for the non-linear transformations.

Table 7 presents the test accuracy comparison between algorithms. ForMNIST,

E-DSOM achieved the best accuracy while AE came in second. Single layers SOM

showed the lowest accuracy for the MNIST. For GSAD, E-DSOM yielded the best

42

Table 7. Comparison of test accuracies of unsupervised algorithms

Dataset
Test Accuracy (%)

SOM DSOM E-DSOM Stacked AE
Stacked
CAE

MNIST 71.26 83.47 87.12 84.24 81.93

GSAD 66.62 57.24 72.73 63.59 70.12

SP-HAR 62.80 57.88 64.36 67.41 66.47

accuracy while CAE showed the second best accuracy. DSOM showed the lowest

accuracy for the GSAD dataset. For the SP-HAR dataset, the AE and CAE came

in first and second respectively, in terms of classification accuracy. DSOM showed

the lowest accuracy for the SP-HAR dataset.

3.3.3.9 Comparing Visual Data Mining Capabilities SOM and DSOM

Data mining methodologies have become almost indispensable with the increase

of amount and complexity in data in almost every domain. Data mining is an inter-

active process which requires intuition and human knowledge coupled with modern

machine learning techniques. Visual data mining (VDM) is the process of exploration,

interaction, and reasoning with abstract data in human perceivable way [2]. Thus,

it allows humans to incorporate human intelligence in the data mining process, and

it has been shown that human involvement increase the effectiveness of data mining

processes. Visual data mining facilitates the involvement of domain experts in the

data mining processes.

The effectiveness of visual data mining is especially dominant when paired with

unsupervised methods due to the abundance of unlabeled data. Therefore, in this

work, we analyzed the effectiveness of using novel DSOMs for visual data mining.

DSOM’s visual data mining capability was evaluated using the following visual data

explorations methodologies: 1) U-Matrix, 2) hit maps and 3) data histograms.

• U-matrix: (Unified Distance Matrix) is one of the most widely used methods

43

for visualizing the cluster structure of SOMs [28], [29]. It shows the distance

between weight vectors of neighboring neurons (immediate neighbors) using

color codes [30]. If distances between neighboring units are small, then they

represents a cluster pattern with similar characteristics. If neighboring units

are far apart, then these units are located on low dense input space with few

patterns. They can be considered as separation between clusters.

• HitMaps: This shows how often a neuron is chosen as the BMU. Hit map

information can be utilized in clustering the SOM by using zero-hit units to

indicate cluster boarders [28] .

• Data Histograms: These represent how many data items are represented by a

specific unit. This is also a slightly different representation of hitmap represen-

tation.

The MNIST data set is used for the comparing the VDM capabilities of SOM and

DSOM. The ratio of training to test data set was used as 3:10. For this experiment,

a significantly smaller training set of 3000 images were used to reduce the classifier

training time. The complete test set of 10000 images were used to test the accuracy

of algorithms. Building an efficient classifier using a small training data will be

advantageous in cases where there is only limited amount of training data to training

a supervised classifier and to for implementing classifiers which are time and cost

efficient. The training data set was selected randomly while maintaining the balance

class labels. Since the classifications of all the DSOM models were performed on a

2D neuron map of size 8X8 (last SOM layer), the SOM model with 8X8 was selected

for the comparison.

Hit map representation which shows how often a unit is chosen as a BMU. Figure

9 (a) and (b) represents the hit map observed for SOM and DSOM, respectively. Hit

44

(a) (b)

(c)

Fig. 9. Hitmap representations for (a) SOM, (b) DSOM-scaled, and (c) DSOM-un-

scaled)

maps SOM and DSOM were mapped to the same scale for comparison purposes. It

was observed that only a few units of the SOM were activated and most units showed

0 hit value, whereas in DSOM, all units showed a hit value greater than 0 (all units

were active). When comparing the neuron hits, active SOM units showed very high

neuron hits compared to DSOM. In Fig 9 (b), it appears as if the DSOM neurons

do not show a difference in operation. However, In Figure 9(c), which represents

an unscaled hit map of DSOM, it can be seen that some units show higher activity

45

(a) (b)

Fig. 10. Hitmap representations for (a) SOM, (b) DSOM-scaled, and (c) DSOM-un-

scaled)

(a) (b)

Fig. 11. U-Matrix representations for (a) SOM, (b) DSOM)

compared to the other units.

Figure 10 represents the special hit map which we used for implementation of the

unsupervised classifier. Using that we generated a new hit map representation where

each unit represents the class label which it activated as BMU at the highest frequency

(See Figure 10). It was observed that (8*8) SOM model doesn’t show proper clusters

whereas DSOM hit map shows better clusters, where neighboring units act as one

cluster to represent one class. The ‘-1’ value is assigned for neurons with 0 BMU hits.

Figure 11 (a) represents the U-matrix obtained for SOM architecture whereas

Figure 11 (b) represents the U-matrix observed for DSOM architecture. It was ob-

served that SOM U-matrix doesn’t show any large clusters or cluster separations for

both SOM and DSOM but for DSOM it showed some cluster separations. Large blue

color area in the SOM U-matrix corresponds to the area with inactive units. Further

46

(a) Data Histogram for SOM

(a) Data Histogram for DSOM

Fig. 12. Data Histogram representations for (a) SOM, (b) DSOM)

analysis of the U-Matrix is needed to improve the visualization on this front. There

are several methodologies proposed in literature on ways of calculating the U-Matrix.

These methodologies will have to be explored. Furthermore, as alternatives of the u-

matrix, other weight vector visualization techniques such as t-distributed Stochastic

Neighbor Embedding (t-SNE) can be evaluated [33].

Figures 12 (a) and (b) represent the data histograms obtained for SOM and

DSOM architectures respectively. Data histograms visualize which units are activated

and how often it became BMU compared to other units in the map. It also represents

the amount of each unit acted as the BMU for each class label. According to the data

histogram of SOM, it was observed that all the activated units were activated for

more than one class label. There were very few units which were activated for only

47

a single class (See neuron number 51, for class label 0). Further, number of hits per

unit was significantly higher for SOM units compared to DSOM units. According to

the data histogram for DSOM, it can be seen that all the units have been activated to

some degree. However, it can be seen that most of the neuron has been activated only

for a specific class label. In the ones that has many class labels, one class label has

dominated the others in terms of frequency. The better cluster separations observed

in hit map and data histograms, make it easier for the domain expert to label the

neuron and group the neurons based on classes. Hence, hit map and data histograms

improve the visual data mining process.

In comparison with traditional single layered SOM architectures, experimental

results showed that DSOMs produced more accurate visual representations of the

underlying data distributions. Therefore, DSOM is a viable method for generating

easily understandable visual representations of high-dimensional complex datasets.

These visual representations can be powerful tools in the real world, leading to better

understanding of systems and thus enabling the design of better algorithms for control

and monitoring.

3.3.4 Contribution 1 (a): Findings, Discussion, and Future Work

This section presented a deep self-organizing map architecture (E-DSOM) for

unsupervised image classification. The E-DSOM extended the originally proposed

Deep Self-Organizing Maps (DSOM) in two ways: 1) the learning algorithm was

modified to be completely unsupervised, 2) the architecture was modified to learn

features of different resolutions in parallel. The modifications were made to improve

the following: 1) classification accuracy, 2) generalization capability, and 3) training

time. E-DSOM was tested on three datasets and compared with DSOM. E-DSOM

outperformed DSOM in terms of classification accuracy with improvements of up to

48

15%. Generalization capability was tested by adding noise to test data. E-DSOM out-

performed DSOM at all noise levels (barring one instance with comparable results),

evidencing better generalization capability. Computational time was improved by

gaining the same or better classification accuracies with a shallower model. E-DSOM

showed training time improvements up to 19%. Therefore, empirical evidence sup-

ports our hypothesis.

Further, E-DSOM architecture was compared to other unsupervised algorithms.

E-DSOM showed comparable performance to the AE and the CAE while outperform-

ing them on two datasets. Therefore, empirical results show that E-DSOM algorithms

are competitive and a viable option for unsupervised learning.

In terms of visualizations for VDM, experimental results showed that DSOM

based hit maps and data histograms provided a better representation of the underly-

ing data distribution than the SOM. Due to its high-level feature abstraction capa-

bilities, DSOM is able to produce visualizations Figure 7: Data Histogram for SOM

Figure 8: Data Histogram for DSOM, which accurately reflect the input data distri-

butions. This enables a user to examine these visualizations and extract patterns,

relationships, and behavior in data and glean a better understanding of systems. This

understanding can lead to better predictive systems, monitoring systems, and control

schemes. Therefore, based on experimental results, it can be concluded that DSOM

is a viable method for visual data mining.

In future work, the following avenues will be explored: 1) capability of creating

low dimensional embedding of high dimensional datasets using E-DSOM; 2) exploring

the capability of using E-DSOM for real-world applications.

49

3.4 Interpretable Clustering using Self Organizing Map algorithm

Despite the tremendous benefits of machine learning (AI), many people hesitate

to trust AI-based systems due to their black-box nature, which makes it difficult to

get insight into the internal decision-making process of AI models [50]. Especially for

human-in-the-loop systems, humans need to understand these algorithms such that

they can trust these models. By addressing this question, the explainable machine

learning (XAI) research area has been received a lot of attention. The goal of XAI

is to provide reasoning for ML model outputs, allowing humans to understand and

trust ML models’ decision-making process. Currently, many entities have put their

attention to XAI. DARPA is one of the first organizations that initiated XAI pro-

grams focusing on developing explainable models [5]. Their program is interested

in developing a toolkit library consisting of machine learning and human-computer

interface software modules that could be used to develop future explainable AI sys-

tems. Currently, many entities have put their attention to XAI, such as European

Commission, NSF, NIST, and IBM [104, 105, 106].

While XAI has become a trendy research topic, the majority of the work has been

focused on supervised machine learning methods. However, real-world settings such

as CPSs bring the challenge of dealing with high volumes of unlabeled data at a rapid

pace. The manual labeling process is expensive, time-consuming, and requires the

expertise of the data [3]. It has been found that the 25% of time allocated to machine

learning projects is for data labeling. Further, supervised feature learning is not only

unable to take advantage of the abundance of real-world unlabelled data, but it also

can result in biases by relying on labeled data. These limitation has gained the focus

towards unsupervised ML algorithms and is predicted to be far more important in the

long term [107]. Given the abundance of real-world unlabelled data, it is important to

50

focus on developing explainable unsupervised ML methods. However, in the current

literature, very little work has been performed focusing on explainable unsupervised

ML. Therefore, this work focuses on unsupervised explainable ML.

In this work, we explored Explainable Unsupervised Machine Learning on differ-

ent aspects. Further, we propose a novel Explainable Unsupervised Machine Learning

(XUnML) approach using the Self Organizing Map (SOM) algorithm.

3.4.1 Background

As we discussed in the Introduction section, existing work on XAI is mainly con-

centrated on supervised learning algorithms. For domain areas such as CPSs, UnML

is essential for assisting human decisions in building effective ML models. These

systems generate a massive amount of unlabelled data at a rapid speed. Therefore,

relying on SML alone is not sufficient for data-driven decision-making for CPSs. Fur-

ther, unsupervised learning has a wide range of application areas, including model

pre-training, auto-regressive modeling, and generative modeling.

This section explores what XAI would look like in an unsupervised context, the

need for unsupervised XAI methods, current literature on unsupervised XAI, and

how unsupervised XAI can be used within the domain of CPSs. Further, this section

discuss on visual data mining capabilities of SOM, which are used towards developing

the novel interpretable SOM technique.

3.4.1.1 Desiderata of Explainable Unsupervised Machine Learning

As we discussed in the previous section, UnML offers a solution to analyze the

large amount of real-world unlabelled data generated at a rapid speed. However, most

of the existing UnML methods do not provide a way for people to understand their

underlying decision-making process. Especially for non-domain experts, these models

51

act as black-boxes. This black-box behavior leads to many drawbacks, including lim-

iting the user’s involvement with model improvement, limiting user input integration

for model debugging, and harming the user trust in these models, making humans

not deploy them in real-world environments [108, 109, 110, 111, 112]. Interpretable

models are essential for high-risk environments where the model outcomes can result

in severe consequences. For example, one use case is anomaly detection systems in

critical infrastructures. On these systems, it is not enough to get the predictions

(anomaly or not) of UnML models. It is crucial to produce an explanation of why it

is an anomaly. This information is essential to identify where the anomaly occurred,

possible catastrophic effects and make decisions to recover the system. Therefore, it

is essential to analyze and explain the result obtained through these UnML models

[108, 109, 110, 111, 112].

Analyzing and interpreting the results obtained through UnML is a very chal-

lenging process. This process often requires expert-based sophisticated manual in-

spection, which takes a significant amount of time [108][110]. Further, complexities,

high-dimensionality, and real-world data volume make it impossible to use manual

expert-based data analysis. Existing unsupervised quality metrics such as Silhouette

or Rank Index do not provide any explanations on why data record belongs to a

specific cluster [108]. They only provide a structural insight that is not perceivable

to non-domain experts. Further, many available methods are hard to explain, par-

tially because they depend on all the data features in a complicated way, making

it difficult to explain in a perceivable manner [111]. Other supervised quality met-

rics such as cluster purity requires labeled data, requiring expensive manual labeling.

This approach is expensive and can result in partial, incorrect, or biased results [108].

Therefore, there is a crucial need to develop explainable UnML methods or develop

methods to explain existing UnML methods.

52

3.4.1.2 Current literature on Explainable Unsupervised Machine Learn-

ing

Principle Component Analysis (PCA) has been used for interpreting the clusters

by visualizing them across two or three dimensions [110]. However, it limits the

number of dimensions that can be used for explaining the clusters, as visualizing is

not possible when the number of dimensions increases. In [108], researchers have used

existing supervised XAI methods for interpreting UnML approaches (EXPLAIN-IT).

First, they cluster the input data using existing clustering methods such as K-Means

or DBSCAN. A classifier is then trained on input data using the generated cluster

labels as class labels for the classifier. Finally, the classifier is explained using existing

model agnostic methods such as LIME. However, these can result in model biases,

and the current research on this is at a primitive stage.

Interpretable tree-based clustering models have gained much attention recently

as the decision tree model itself is an explainable model [113, 114]. In [113, 114], an

explainable decision tree method was introduced by generating the smallest binary

tree possible (threshold tree) with k leaves. Each node in the tree iteratively divides

the input data into k clusters. By restricting to k leaves, they ensure that each such

path accesses at most k − 1 features. The explanations were generated using k − 1

features. Also, in [109], researchers have proposed an explainable decision tree model

(eUD3.5) where they have use compactness and separation of data clusters when

evaluating feature splitting in the tree.

Deep Neural Networks (DNNs) have shown state-of-the-art performance in many

areas such as computer vision and natural language processing. However, many DNNs

are used as black-boxes. There are a couple of initial attempts toward explaining

unsupervised DNNs such as Autoencoders. In [115]s, interpretable Variational AE

53

has been presented. This is performed by analyzing the gradient contributed by

each feature of a data record. Another interpretable VAE is presented in [116], and

[117] by changing the decoder to embody explicit expert knowledge. Therefore, these

architectures result in a latent space that has semantic meaning. Fuzzy logic combined

with ML has also been used for achieving interpretability There are some initial

attempts towards developing interpretable systems combining fuzzy logic systems

with DNNs and clustering algorithms. However, majority of these system has some

degree of the supervised learning process within their pipeline.

3.4.1.3 Visual Data Mining Capabilities of SOM

The following items outline exploratory data analysis capabilities of SOM. Later

of this chapter present how to use these capabilities to make explainable SOM.

• Histograms: These neuron histograms shows the data distribution of the 2D

data topology of SOMs. It can be used as a visual indication for identifying

whether the network can cluster the input data correctly. A properly trained

network topically shows data grouped in some regions of the map (high data

distribution density), making clear boundaries between clusters.

• T-distributed Stochastic Neighbor Embedding (t-SNE): This is a dimensionality

reduction technique that is widely used for visualizing high-dimensional data.

For SOMs, this can be used to represent the input data points and neuron

weight together. It indicates to users that the network weights can represent

the distribution of input data. Therefore, it is a clear indication to visually

explore whether the trained network represents the trained data.

• Heat Maps: These are intensity representations of SOM network properties.

Several types of heat-maps can be generated using cluster labeled or data labeled

54

if available.

– Class hits: This is a different visualization of Neuron Hit Histogram. This

will represent the number of classes where each neuron fired for the whole

SOM network topology. If majority of data fired a neuron belong to one

class label, then it can be use as an indication for a well trained SOM

network.

– Data hits: This represents the number of data points where each neuron

fired for. If many neurons do not fire for any data point, then network size

can be reduced. Therefore, this can be used to decide the SOM network

size.

– Class Percentages: This will represent the percentage purity of each neu-

ron. Percentage purity can be use to ignore neurons with low purity allow-

ing users to increase the quality of the network by retraining, redesigning,

expanding the network. In case of tie, neighboring neurons are used to

decide the class/cluster label.

• U-Matrix: Unified Distance Matrix (U-Matrix) is the standard visualization for

SOMs representing the information regarding the distances between neighboring

neurons. These maps are used to identify the naturally existing clusters and to

identify well-separated clusters from overlapping clusters.

• Component Planes: This visualization shows the value of a single feature in each

SOM neuron. A single component plane represents how a specific feature value

changes across clusters. Further, by comparing multiple plans, it is possible to

identify correlated features.

• U-Map: Similar to t-SNE, this also use to visualize high dimensional data. This

55

builds a high dimensional graph representation of the input data then optimizes

a low-dimensional graph to be as structurally similar as possible. For SOMs,

this can be used to represent the input data points and neuron weight together.

It indicates to users that the network weights can represent the distribution of

input data.

As described above, SOM has many visual data mining capabilities which allows

domain experts and non-domain experts to interact with SOM, making SOMs good

candidates for exploring application in CPSs. Further, there have many improve-

ments have been proposed that can be done on SOMs to improve it’s capabilities.

However, to the best of out knowledge, there is no efforts done towards making the

model interpretable. Therefore, in the next section, we propose an approach toward

developing an explainable SOM algorithms.

3.4.2 Novel Explainable Technique for SOM

As we discussed above, SOM algorithm has many visual data mining capabil-

ities. SOM is a unsupervised clustering method which is trained to produce a low

dimensional representation of a large training dataset. U-Matrix of SOM neuron

weights can represent any natural clusters available within training data. Component

planes of SOM neuron weights can be used to visualize how the feature values change

across clusters (feature summary visualization). In this work, we used SOMs training

approach (winner-take-all algorithm) together with the above discussed visual data

mining capabilities of SOM to make the algorithm explainable. We propose a model-

specific, post-hoc interpretable method for SOMs. The result of this method consists

of feature summary statistics, model internals, and feature summary visualizations.

The proposed approach is able to provide both global and local explanations. Further,

we will discuss how each of these generated explanations can be used for CPS opera-

56

Table 8. Proposed approach for Explainable SOM
Algorithm II: SOM Interpretation

Inputs: Trained SOM, Testing dataset (X), standard deviation threshold (th)

Outputs: Local interpretation, Global interpretation

1: % Calculating list of important features for each neuron in SOM

2: for each neuron i do

3: X ′i ← initialize an empty array

4: for each data record x in X do

5: bmu← calculate BMU using trained SOM

6: if(bmu == i) : X ′i.append(x)

7: end for

8: for each feature j in n dimensional feature space

% Calculating standard deviation for each feature

9: σfi,j =

√∑n
j=0(X

′
i,j−X̄′

i,j)

n−1

10: if(fi,j > th) : fi,j = INF

11: end for

12: % Calculating the order of important features for each neuron in SOM

13: f ′i ← sort indices j of σfi in acceding order if fi,j! = INF

14: end for

15: KMeans← Apply K-Means clustering to SOM neurons and find optimal K

16: clus← initialize an empty array for storing cluster labels

17: for each neuron i do

18: clusi ← apply KMeans to ith neuron and find its cluster label

19: end for

tions. Here we will discuss the steps for identifying most important feature list using

SOM algorithm, model fidelity evaluation method, and generating interpretations.

1. Training of the SOM with dim dXd:

Trained the SOM with the winner-take-all algorithm discussed in Algorithm I

(Table 1).

2. Calculating the order of important features for each neuron (Table 8, Algorithm

II, line 1-13):

After training SOM with the training dataset, the trained SOM acts as a set of

data points which represent the entire training dataset. Therefore, each neuron

57

Table 9. Proposed approach for Explainable SOM

Algorithm III: Experiment I

Inputs: Trained SOM, X, f ′i , clus

Outputs: Swap Percentages

1: X ′i ← initialize an empty array

2: count← 0 %initialize a variable

3: for p number of features out of n where (p ∗ 100/n)% <= 50%

4: for each data record x in X do

5: bmu← calculate BMU for x using trained SOM

6: x′ ← change first p features of x from f ′bmu

7: bmu′ ← calculate BMU for x′ using trained SOM

8: if(clusbmu! = clusbmu′) : count++

9: end for

10: tot← number of data records in X

12: Swap Percentage = count ∗ 100/tot

13: end for

is a generalized representation of a set of training data records. We use the

training data set and extract a set of data points (X ′i) that selected ith neuron

as their BMU to calculate the ordered list of important features for ith neuron.

The importance of a feature is decided by calculating the standard deviation.

We calculate the standard deviation for each feature j in x′i.

σfj =

√∑n
j=0(X

′
i,j − X̄ ′i,j)

n− 1
(3.8)

3. Calculating the ordered list of important features for neuron i (Table 8 Algo-

rithm II, line 1-13):

Then the indices of features are ordered from lowest standard deviation to the

highest standard deviation, representing the ordered list of feature from highest

importance to lowest feature importance. Each neuron in SOM represents a set

58

Table 10. Proposed approach for Explainable SOM

Algorithm IV: Experiment II

Inputs: Number of features (t), Trained SOM, X, f ′i

Outputs: Feature Percentages

1: list1← initialize an empty array

2: for each data record x in X do

3: bmu← calculate BMU for x using trained SOM

4: ld = |x− bmu| %Calculate L1 distance between x and bmu

5: closets−features← find closest t feature indices

6: tot1← cardinality of closets−features

7: tot2← cardinality of f ′bmu

8: %percentage of t feature are in f ′bmu

9: list1.append(tot1 ∗ 100/tot2)

10: end for

11: tot← number of data records in X

12: Percentage = sum(list1)/tot

13: end for

of data points, and low standard deviation of a feature represents low variation

of a feature values, indicating that many data points have that feature value

within a small range. The domain expert/user can decide on a threshold (th)

standard deviation value so that any feature with equal or less standard devia-

tion value is considered as the most important (active) feature. These ordered

important features were used to achieve interpretability.

4. Cluster SOM neurons (Table 8, Algorithm II, line 14):

To achieve interpretability, we clustered the trained SOM neurons. In this

experiment, we used K-Means clustering. The number of clusters (K) was

decided based on two cluster quality metrics: Silhouette Coefficient and Davies-

Bouldin Index. Further, cluster quality metrics together with U-matrix and

other visualization capabilities of SOM allows the domain expert to visually

59

analyze the natural clusters of training data and evaluate the quality of K

clusters to decide whether the results are reasonable.

5. Model fidelity evaluation:

We designed two experimentation to evaluate whether the identified features

for each neuron are actually important for the decision-making process of SOM

(fidelity test). This is performed by performing two experiments on the test

data-set.

• Changing the feature values of identified important features and checking

whether the cluster labels (model outcomes) changes (Table 9, Algorithm

III, Experiment I). Through this experiment, we calculate the percentage

of data points where the cluster label an be changes by changing their

feature values of important features.

• Calculating the percentage of important features which are included in

identified important features (Table 10, Algorithm IV, Experiment II)

Through his experiment, we check whether the calculated order of im-

portance feature lists are valid for the test data-set.

These are discussed in detail in the next section.

6. Results interpretation: Once we identified the most important features and

evaluated the features, we generated local and global explanations using SOM.

• Local interpretability: Once an ordered set of important features are cal-

culated for each neuron; it is used to generate local interpretation for a

specific input record by providing the user a subset from important fea-

tures and its value range (very low, low, medium, high, very high). It has

60

to be noticed that the feature value granularity can be defined by users

based on their preferences.

• Global Interpretability: For each feature, we can visualize how the feature

value is different across clusters and what features are active within clus-

ters. Ordered important feature summary (features and values(range) of

important features) for a set of neurons belonging to a particular cluster

is used as a global interpretation.

3.4.3 Experiments and Discussion

In this section we discuss the five data sets we used for this experiment, the

design of the evaluation methods, results, and discussion on results. First we will

discuss the data sets used for this experiment.

KDD: This is a commonly used benchmark dataset for network intrusion detec-

tion and anomaly detection. It has around 2 million records divided into train and

test sets. It consists of 41 features, and all the records are labeled into two classes,

attack or normal. The attack data represent four categories, namely, Denial of Service

(DOS), User to Root Attack (U2R), Remote to Local (RTL), and Probing Attack.

For this experiment, we used normal records and DOS records (attack). This choice

was made as other types of attacks have subcategories that do not include the test

set. SOM algorithms, in general, does not handle huge variation in new data. This

dataset has both categorical and numerical feature values.

German Credit: This dataset has 1000 data records with 20 features. It has both

categorical and numerical feature values. Each record represents a person who takes

a credit from a bank. Each person is labeled as good or bad credit risks.

Bank marketing: This dataset is derived from a marketing phone call campaign

of a Portuguese banking institute. This data set has 45211 records, each with 12

61

features. Features are only numerical values. This has two classes, yes and no. The

classification goal is to predict if the client will subscribe to a term deposit or not.

Adult Income: This dataset has 48842 records, each with 14 features. Features

have both categorical and numerical features. The data set is labeled into two classes,

representing whether the salary exceeds 50k or not based on the features. This dataset

has missing values. In this experiment, we removed records with missing values.

DoHBrw-2020: Canadian Institute for Cybersecurity provides a set of datasets

for building intrusion detection systems. For this experiment, we used the CIRA-

CIC-DoHBrw-2020 dataset, which consists of benign and malicious records for DoH

(DNS over HTTPS protocol) traffic along with non-DoH traffic. It consists of roughly

around 250k records with 28 features. It has both categorical and numerical feature

values. Benign and malicious records were considered as two classes.

Since these datasets have categorical variables, we used the frequency encoding

method to convert categorical variables to nominal variables. Min-max scalar was

used to scale the data into the 0-1 range. When there are separate train and test sets,

they were used as it is for training and testing purposes. If the original data set is

not divided into train and test, 70% of the data was randomly selected for training,

and the rest was used for testing.

To decide the optimal number of clusters and dimension of the SOM, we used

u-matrix together with two widely used clustering performance metrics, namely Sil-

houette Coefficient and Davies-Bouldin Index. They do not require labels to evaluate

the clusters. They use different methods to calculate the compactness (density) of a

cluster and separation (distance) between clusters.

• Silhouette Coefficient: This is calculated using the mean intra-cluster distance

and the mean nearest-cluster distance for each sample. The score is higher when

62

clusters are dense and well separated, which relates to a standard concept of

a cluster. The score is bounded between -1 for incorrect clustering and +1 for

highly dense clustering. Scores around zero indicate overlapping clusters.

• Davies-Bouldin Index: This index signifies the average ‘similarity’ between clus-

ters, where the similarity is a measure that compares the distance between

clusters with the size of the clusters themselves. A lower Davies-Bouldin in-

dex relates to a model with better separation between the clusters. Lower the

better, Values closer to zero indicate a better partition.

Figure 13 shows the change in cluster quality matrices used for this experiment

for the Bank Marketing data set. It shows how these matrices change with respect

to SOM dimensions and the number of clusters. For a given SOM size, we calculate

cluster quality metrics for SOM neuron weights (Blue) as well as for the training

dataset (Orange). This analysis is used to identify the optimal SOM dimension and

number of clusters. If the trained SOM neurons are a good representation of the whole

data set, then cluster analysis of SOM weights and the whole data set should follow

similar trends. Figure 13 shows that they follow the same trends when increasing the

number of clusters. Based on the Silhouette Coefficient and Davies-Boulding index

value, 3 to 5 clusters seem to be the best option for the tested SOM dimensions

(8,16,2,40).

3.4.3.1 Model Fidelity

Once the ordered list of important features is calculated for each neuron in trained

SOM, it is necessary to evaluate whether the identified ordered features are actually

important using the a data perturbation experiments discussed in the previous section

(Algorithm III). First, for each data point x in the test set, we check its BMU index

63

Fig. 13. Cluster quality evaluation approach for K clusters using Silhouette Coefficient

and Davies-Bouldin Index for different SOM map sizes

64

i and the cluster label (m) of the BMU. Based on BMU index i, we have a list of

most important features f ′i . It has to be noticed that different BMUs have a different

number of important features based on a user-specified threshold (th) on standard

deviation. To evaluate whether the identified ordered features are actually important,

we change the feature values of important features of the test data record. First, we

calculated the average feature values for each cluster using the neurons belong to

that cluster. Then, the feature values of important features of x were replaced by the

mean feature values of a cluster k where k! = m. Then we check whether the BMU

of x is changed to another BMU, which does not belong to the original cluster label

of that data point (m). Our hypothesize is that when we change the values of the

most important features, the cluster label of the data point should change. We did

this for the whole test data set and calculated the percentage of data records where

we can change the original cluster label by changing the feature values of important

features (Swap percentage). If it does, it confirms our hypothesis that the identified

features decided the cluster label of that data point.

It is also essential to identify the minimum number of important features that

define the cluster label of a data point. Explanations should be generated using a small

number of features so that it is easy to perceive by the user rather than explaining

with a higher number of features. Therefore, the cardinality of f ′i should be limited to

a user-defined value. In this experiment, we tested with different cardinalities; 10%,

20%, 30%, 40%, and 50% of important features out-of the total number of features of

the dataset, which is also bounded by the threshold (th) of standard deviation (total

number of identified important features for neuron i). To evaluate our hypothesis, we

changed the feature values of randomly selected features and unimportant features

(considering highest standard deviation to lowest). I.e., given the cardinality p%, we

changed the values of p% number of most important features (features with lowest

65

std values), p% number of randomly picked features, and p% number of most minor

important features. For each data record in the test set, we checked whether it changes

its cluster label when we change the feature value under the three scenarios described

above. For each scenario, we checked the two cases; 1) What is the percentage of

test data records where the cluster label can be swapped by at least one other cluster

label, 2) What is the percentage of test data records where all other clusters can

swap the cluster label. The reason for this is, for some data points, feature value

perturbation using a close-by cluster features may be not strong enough to push it

out of the original cluster. Therefore, we checked whether the the cluster label of

a given data point can be change by using the feature values of at-least one other

cluster. For example, assume we have 4 clusters and a data point j, which belong to

cluster 2. We replace its feature values with average feature values of clusters 1, 2,

and 4 and check whether we can change its cluster label from 2 to some other cluster

label. It has to be noted that lower cardinality n% and higher swapped percentages

are expected. The result of swap percentage calculation for all the data sets is present

in Figure 14. It can be seen that the best results for swapped percentages (tallest bar)

were shown by important features (blue), and the second-best was shown by random

features (brown bar) for all the data sets except for the second scenario (What is the

percentage of test data records where all other clusters can swap the cluster label)

of KDD dataset (second column, last raw). The reason for this can be the highly

imbalanced classes of KDD data-set and higher differences between train data and

test dat, resulting poor performance. However, KDD also performce as expected for

first scenario (What is the percentage of test data records where the cluster label

can be swapped by at least one other cluster label). This empirical results confirms

our hypothesis that the identified important features using the proposed approach for

SOM decided the cluster labels of data records.

66

Another experiment was performed to check the percentage of selected K number

of features included in the most important feature list of a BMU (Algorithm IV). For

each data record in the test set, we calculated the feature-wise l1 distance between the

data record and its BMU. Then the features were arranged based on the ascending

order of l1 distances. Our hypothesis was that the closest features are the most

important features of that data point, and they will be included in the identified

important feature lists of its BMU. Once features distances are arranged in ascending

order, K features are selected on three different strategies; 1) Closest, 2) Random,

and 3) Furthest. We then calculated the percentage of K features are included in the

important feature list of the BMU. The results are presented in Figure 15 where the

X-axis represents the K number of features, and Y-axis represents the percentage of

K features that were included in the important feature list. Blue color represents the

closes feature, yellow represents the random features, and the green represents the

furthest features. It can be seen that the blue bar shows the highest percentage for

all K features, whereas yellow shows the second higher percentage. It infers that the

closes features are included in the identified important feature lists of each BMU.

As described above, we identified the most important ordered set of features

for each neuron in the SOM network and evaluated the model fidelity using two

experimentations. Then we used the identified ordered list of important features to

generate explanations.

3.4.3.2 Local Interpretability

For a given data point, a local explanation is generated based on the important

features of its BMU, which were identified using Algorithm III. It has to be noticed

that two different data points with the same BMU can have different orders of impor-

tant features based on the l1 feature distance to the BMU. We provide a set of most

67

Fig. 14. Fidelity test, Experiment I: Changed the values of p% number of most im-

portant (active) features, p% number of randomly picked features, and p%

number of least important (inactive) features and calculated the percentage

of data points where the cluster label changes after changing %p feature out

of all the feature. we checked the two cases; 1) What is the percentage of

test data records where the cluster label can be swapped by at least one other

cluster label (left), 2) What is the percentage of test data records where all

other clusters can swap the cluster label (right).
68

Fig. 15. The percentage of closest K number of features included in the most impor-

tant feature list of the BMU

Most Important Features
Remaining Features

Fig. 16. Local Interpretability; Explanation for a single data record, features are

ordered from ascending order based on feature wise distance to BMU

69

Fig. 17. Global Interpretability; Feature behavior for ’flag’ feature of KDD data set

across clusters (SOM neurons were clustered into three categories, U-matrix

visualize the distances between clusters and how well clusters are separated,

the ’flag’ feature value is different across clusters).

70

important features and their feature values which are ordered based on the l1 feature

distance calculated between the data point and its BMU. All the feature values are

presented in several levels (very low, low, medium, high, very high). Low l1 distance

indicates more important features specific to that data point. It has t be noticed

that two data points can have the same set of important features, but the order of

importance can be different.

Figure 16 shows the local explanation for a single data point of bank loan data

set, generated using the proposed approach. The features are ordered based on l1

distance in ascending order (bottom to top) to its BMU. Thus, ’Education’ is the

furthest feature indicating the lowest importance, whereas the ’loan’ is the closest

feature indicating the highest feature importance. The most important features of

the BMU are colored in green, whereas the rest is colored in red. It can be seen that for

the given data point, the closes features are included in the set of the most important

features of its BMU. In this manner, we can generate a local explanation of the

important features that contributed to deciding the outcome of the SOM algorithm.

3.4.3.3 Global Interpretability

Using the experiments above, we identified the model behavior of SOM, in terms

or important features for each neuron in SOM map. Once we identify important

features, then we can use them to explore and discuss how each feature behaves

within a cluster. In this experiment, we used the neuron-wise important features and

their value ranges for global interpretability to explain the clusters.

For each feature, we checked whether it is important for one cluster or multiple

clusters. We observed that some features are not important for any cluster, whereas

some are important for one or more clusters. The feature value ranges of important

features were visualized against the cluster assignments. Further, u-maps were used

71

to check the separation between clusters. Figure 17 presents an example of the ‘flag’

feature of the KDD dataset. First raw, the first image shows the cluster separation

of SOM neurons. The second image of the first row represents the feature value of

the ‘flag’ feature across 3 clusters (component plans). It can be seen that the ‘flag’

feature value is different across 3 clusters. The third image of the first raw shows that

the three clusters are well separated as there is a light color area that represents the

distance between neurons. Lighter the area, better the separation between clusters.

The second row of Figure 17 shows fine-grain visualization of feature value scale across

clusters. It has to be noticed that a given cluster contains a set of neurons, and the

feature value for a given feature can be different from one neuron to another, even

within the same cluster. This information is essential for a domain expert to check

whether how a given feature behave within a cluster. For the ‘flag’ feature, it shows

a higher feature value (0.7-1.0) for cluster 0; for cluster 1, it shows an intermediate

feature value range (0.45-0.52); for cluster 3, it shows a very low feature value range

(0.15). Further, it shows the probability of having a specific feature value within a

cluster as well. For example, for cluster 0, 90% of neurons belonging to cluster 0 show

a 0.9-1.0 range for that specific feature.

3.4.3.4 Discussion

It has to be noticed that the desired outcomes and evaluation methods for ex-

plainable machine learning methods are different based on many factors, including

domain areas, applications, user groups, expected performance criterion, and medium

of explanation. Therefore, it is not easy to establish a set of generalized requirements

or outcomes of explainable machine learning systems. Further, evaluating explainable

algorithms and their effectiveness is complicated as there is no clear way of measuring

it [51]. Especially in the unsupervised domain, there was no clear way of measuring

72

and comparing the quality of the explanation methods. One classic approach for that

is doing a human study with existing unsupervised explainable ML approaches for a

specific problem domain, which is out of this dissertation’s scope. However, we ex-

plore the model-specific features, limitations, and usability of the proposed approach

with other existing explainable unsupervised ML approaches, presented in Table 11.

When looking at Table 11, it can be noted that different unsupervised XAI

methods have different usability, features, and limitations. The current literature of

XUnML is mainly concentrated on clustering and dimensionality reduction. When

looking at Explainable SOM, the main advantage of it comes from its many Visual

Data Mining capabilities, which are described in Section III. All the other methods

discussed above have very limited visual data mining capabilities, limiting their usage

in tasks that require VDM capabilities. A human study will be performed in future

work to analyze the above methods to explore the advantages and limitations of the

above methods.

It is also necessary to understand the difference between SOM neural networks

and typical Feed-Forward Neural Networks (FFNNs) in terms of the learning ap-

proach, visualization capabilities, and global/local interpretability. SOMs use the

winner-take-all algorithm for training while preserving the input space’s topologi-

cal properties. Thus the trained set of neurons in SOM represents the topological

properties of input data distribution. Whereas FFNNs use error-correction learning

(such as backpropagation with gradient descent) for training which does not have the

capability of representing the topological properties of input data using trained neu-

rons. FFNNs are trained to perform classification and regression, whereas SOMs are

trained to perform clustering tasks. As discussed in the previous section, SOM has

many in-build visual data exploration approaches for visualizing feature behaviors,

whereas FFNNs have very limited inbuilt VDM capabilities.

73

Table 11. Comparison between XUnML methodologies
Explainable SOM EXPLAIN-IT Interpretable Trees PCA Variational AE

Interpretation Approach:

Model-specific Model agnostic Model-specific Model-specific Model-specific

Used for:

Clustering Clustering Clustering Dimension Reduction Dimension Reduction

Data Distribution Visualization Capability:

Inbuild capability
to visualize input data
distribution: High
dimensional data space
to a low dimensional
grid (2 dimensions)

NA NA

Inbuild capability to
visualize input data
distribution: High
dimensional data to
low dimensional data
(2 dimensions)

NA

Visual data mining capabilities:

Many visual data
mining capabilities:
histograms,component
plane

Limited Limited Limited Limited

Model quality evaluation:

Can apply unsupervised
quality matrix such as
adjusted mutual
information,
adjusted random score,
completeness,
Fowlkes-Mallows,
homogeneity,
silhouette, and
V-measure

Can apply
unsupervised
quality matrix
such as
adjusted mutual
information, adjusted ran-
dom score, completeness,
Fowlkes-Mallows,
homogeneity,
silhouette, and
V-measure

Splitting
criteria such as
information gain and
entropy

Reconstruction error
measurements
(Variability)

Reconstruction
error measurements
(MSE)

Local vs Global Explanation:

Both local and global
explanations

Both local and global
explanations

Both local and global
explanations

NA NA

Integrating clustering capability:

Can work with
any clustering
algorithm

Can work with
any clustering
algorithm

NA NA NA

Time Complexity with respect to the number of training samples (n):

O(n)
Depend on the model
used for clustering

O(nlog2n) O(n3) O(n)

Limitations:

Depending on which
type of distance metric
used,
the result may very

Model biases can
occur,
Explainability is
dependant
on other models
makes this approach
complicated

Split evaluation measure
are required

Principle components
of the model are
not interpretable,
Data should be
standardize

High model
complexity,
Need expert
knowledge base
for training

74

The difference between FFNNs and SOMs in terms of global and local inter-

pretability are: 1) The presented interpretation technique for SOMs generates lo-

cal/global interpretations for clustering tasks, whereas the most popular interpre-

tation techniques for FFNNs generate local/global interpretations for classification

and regression tasks; 2) Local interpretability: Most popular local interpretation

techniques used for FFNNs produce relative feature importance scores, whereas the

presented technique for SOMs does not generate relative feature importance scores.

It only generates a sorted features list indicating the most important features to the

least important feature; 3) Global interpretability: Most popular global interpreta-

tion techniques used for FFNNs produce a set of IF-THEN rules for explaining the

model behavior for different classes, whereas the presented technique for SOMs gen-

erates a set of component planes and feature value distributions for explaining how

different features behave across different data clusters; 4) SOMs carry an inherent

topological understanding of data and clusters. This inherent topology directly re-

flects notions of local and global belonging of data to clusters and addresses local vs

global interpretability, unlike FFNNs that do not have the topological understanding

of the data.

3.4.4 Contribution 1 (b): Findings, Discussion, and Future Work

We proposed a novel model-specific explainable method for the Self-Organizing

Map (SOM) algorithm, generating local and global explanations. Through feature

value perturbation, we evaluated the model fidelity and showed that the proposed

approach identifies the most important feature used by the decision-making process

of SOMs. We showed that the changing of features values of important features

affects the model outcomes of SOMs. We presented the proposed approach as a

strong candidate as a XUnML method by comparing it with current XUnML methods

75

in terms of model-specific features, limitations, and usability. In future work, the

proposed approach will be further evaluated through a human study.

3.5 Contribution 1: Chapter Summary

This chapter presented the first contribution of the dissertation ”Improving and

Interpreting Self Organizing Neural Network”. This contribution consisted of two

sub-contributions: 1) A novel deep Self Organizing Neural Network algorithm with

an improved feature learning capability and 2) A novel technique for interpreting Self

Organizing Neural Network algorithm for unsupervised clustering.

Under the first sub-contribution, a novel Deep Self Organizing Neural Net-

work architecture was presented. The presented Enhanced DSOM (E-DSOM) archi-

tecture showed improved performance compared to the initial DSOM in terms of 1)

classification accuracy, 2) generalization capability, and 3) training time. E-DSOM

was tested on three datasets and compared with DSOM. E-DSOM outperformed

DSOM in terms of classification accuracy with improvements of up to 15%. Gener-

alization capability was tested by adding noise to test data. E-DSOM outperformed

DSOM at all noise levels (barring one instance with comparable results), evidencing

better generalization capability. Finally, computational time was improved by gaining

the same or better classification accuracies with a shallower model. E-DSOM showed

training time improvements up to 19%. Therefore, empirical evidence supports our

hypothesis.

Under the second sub-contribution, a novel model-specific explainable method

for the Self-Organizing Map (SOM) algorithm was presented. The presented ap-

proach identifies the most important features for the decision-making process of SOM

for clustering tasks. Then it generates both local and global explanations for clus-

tering tasks using the identified important features. We showed that the changing

76

of features values of important features affects the model outcomes of SOMs. We

presented the proposed approach as a strong candidate as an eXplainable Unsuper-

vised Machine Learning (XUnML) method by comparing it with current XUnML

methods in terms of model-specific features, limitations, and usability. The presented

interpretable SOM based clustering approach will be extended to the proposed novel

DSOM architecture in future work. Further, the proposed approaches will be evalu-

ated through a human study and human readiness level while exploring the capability

of using proposed approaches for real-world applications.

77

CHAPTER 4

IMPROVING AND INTERPRETING AUTOENCODER NEURAL

NETWORK

4.1 Contributions and Published Papers

This chapter presents the Contribution 2, (a) and (b) ;

a. A deep Autoencoder neural network based framework for unsupervised feature

learning and deep embedded clustering with improved robustness to network

depth.

b. Interpreting the Autoencoders for Anomaly Detection

Papers supports this work:

1. C. S. Wickramasinghe, D. L. Marino, and M. Manic, ”RX-ADS: Inter-

pretable Anomaly Detection method using Adversarial ML for Electric Vehicle

CAN data”, 2022. (Under review in IEEE Transactions on Intelligent Trans-

portation Systems).

2. ©[2022] IEEE. Reprinted, with permission from C. S. Wickramasinghe,

D. L. Marino, and M. Manic, ”ResNet Autoencoders for Unsupervised Fea-

ture Learning From High-Dimensional Data: Deep Models Resistant to Per-

formance Degradation”, in IEEE Access, vol. 9, pp. 40511-40520, 2021, DOI:

10.1109/ACCESS.2021.3064819.

3. ©[2022] IEEE. Reprinted, with permission from C. Wickramasinghe, D.

Marino, and M. Manic, “Deep Embedded Clustering with ResNets”, in Proc.

78

14th International Conference on Human System Interaction, IEEE HSI 2021,

Poland, July 8-10. 2021.

4. ©[2022] IEEE. Reprinted, with permission from C. S. Wickramasinghe,

D. Marino, K. Amarasinghe, M. Manic, ”Generalization of Deep Learning For

Cyber-Physical System Security: A Survey”, in Proc. 44th Annual Conference

of the IEEE Industrial Electronics Society, IECON 2018, Washington DC, USA,

Oct. 21-23, 2018. DOI: 10.1109/IECON.2018.8591773.

5. ©[2022] IEEE. Reprinted, with permission from D. L. Marino, C. S. Wick-

ramasinghe, and M. Manic, ”An Adversarial Approach for Explainable AI in

Intrusion Detection Systems”, in IECON 2018 - 44th Annual Conference of the

IEEE Industrial Electronics Society, 2018, pp. 3237-3243, doi: 10.1109/IECON.2018.8591457.

4.2 Introduction

Various
Industries

High Dimensional Data
Noise
Unlabeled data generated
at a rapid pace

DNNs for Unsupervised Feature Learning

No need for labeled data/ Expertise
Non-linear feature extraction
Automatic
Save time and storage through
dimensionality reduction

Robust
features

System
Modelling

System improvements
Process automation
Resilience improvements

Fig. 18. The need for Deep Neural Networks (DNN) based unsupervised feature learn-

ing and its advantages

In this era of industrial big data, a massive amount of data is available to the

public through various industries such as intelligent transportation [52] [53], power

grids [2], cloud computing [54], and finance [55]. Knowledge extraction on these data

is crucial for continuous improvements, process automation, and resilience improve-

ments of these industrial systems [118]. Generally, the knowledge extraction of these

79

vast quantities of records is performed using machine learning approaches such as

classification and clustering [119]. Even though data availability increases exponen-

tially with time, these multi-variety data has many intricacies such as incompleteness,

high-dimensionality, noise, and rarely labeled [120]. This work motivated by two main

intricacies; high-dimensional and unlabeled data.

The first area of focus is the high-dimensionality of data. The reliability of

knowledge extraction methods generally deteriorates due to the curse of dimension-

ality [121]. In other words, extracting relevant features leads to a reduced number

of features that results in efficient knowledge extraction methods with high accuracy

[122]. Therefore, when using high-dimensional data for data-driven machine learning

tasks, it is necessary to capture only the relevant information [53] [123] [121]. Extrac-

tion of relevant features and reduction of input data dimensions are performed using

various feature learning and dimensionality reduction techniques. This is achieved by

performing non-linear mapping of input data into an embedded representation [124]

[125] [126]. Since the embedded representation only contains relevant information,

we can use these learned embedded representations to perform various down stream

machine learning tasks such as classification and clustering.

The second area of focus is the abundance of unlabeled data. Real-world set-

tings bring the challenge of dealing with high volumes of unlabeled data. The manual

labeling process is time-consuming, expensive, and requires the expertise of the data

[3]. Further, supervised learning not only is unable to take advantage of unlabelled

data, but it also can result in biases by relying on labeled data. Therefore, unsuper-

vised learning approaches such as unsupervised feature learning(feature extraction)

and clustering has gained tremendous attention.

Many dimensionality reduction based unsupervised feature learning methods has

been proposed in the recent literature. Widely used unsupervised feature learning

80

techniques include Principal Component Analysis (PCA) [127], Independent compo-

nent analysis (ICA), Locally Linear Embedding (LLE) [127], Factor Analysis em-

bedding, and SVD embedding. Recently, Deep Learning has shown remarkable per-

formance in many areas. It has been successfully used to convert high-dimensional

feature spaces into new embedded representations with relevant and robust features

[121][3][128]. This effective transformation of the input data space to embedded space

has been achieved through unsupervised deep learning methods such as deep convolu-

tional autoencoders (C-AEs) [124][126]. Figure 18 shows current applications of Deep

Neural Network (DNN) based approaches for various industrial applications such as

process automation and resilience improvement. Further, deep learning-based clus-

tering algorithms have gained huge attention due to the state-of-the-art performance

of neural networks in many machine learning applications. This process is called

deep clustering [129]. Deep clustering techniques boost the clustering algorithm per-

formance by using the powerful feature extraction ability of Deep Neural Networks

(DNNs) such as variants of Autoencoders (AEs).

Even though Deep learning had become the primary technique with state-of-

the-art performance in many areas, they have the problem of vanishing gradient,

i.e., when the network goes deeper, its performance gets saturated or even starts

degrading rapidly. [130]. Because of this, the shallow counterparts can perform

better than deep networks [130]. He et al. proposed residual blocks between layers

to alleviate the problem of performance degradation [130]. These networks are called

ResNets [131, 131, 132, 133, 134, 135]. While the ideas of adding residual connections

do exist, there has been very limited work that has applied it to both unsupervised

feature learning and deep clustering. I.e., the existing work does not address the

effect of performance degradation of deep neural networks for unsupervised feature

learning and deep clustering. Therefore in this work, we present a framework that

81

consists of residual blocks in AE architectures. We analyse the effectiveness of the

presented framework for both unsupervised feature learning based classification and

deep clustering. Further, we integrate a interpretation technique into the presented

framework for performing interpretable anomaly detection. Thus this chapter consists

of following three sections where first two covers the Contribution 2 (a) whereas third

one covers Contribution 2 (b) of this dissertation.

• ResNet Autoencoder based unsupervised feature learning (Section 4.3)

• ResNet Autoencoder based Deep Embedded Clustering (Section 4.4)

• Interpretable anomaly detection using ResNet Autoencodes (Section 4.5)

The rest of the section is organized as follows. Section 4.3 presents the deep

Autoencoder framework for unsupervised feature learning; Section 4.4 extends the

framework for deep embedded clustering; Section 4.5 presents the interpretation tech-

nique for Autoencoder based anomaly detection; and finally, Section 4.6 provides a

summary of the second contribution of this dissertation.

4.3 ResNet Autoencoder based Unsupervised Feature Learning

In this work, we use AEs to perform unsupervised feature learning. The unsu-

pervised here refers to the unsupervised process of feature learning, i.e., learning of

embedded representation from input data without using any labels. We used data la-

bels only for the evaluation of learned embedded representations. We hypothesize that

AEs with residual connections (RAE) will have improved resistance to performance

degradation of learned features and improved feature learning capability compared to

standard AEs. I.e., residual connections will alleviate possible information loss when

increasing the number of hidden layers, and embedded representation will provide

better separability for classification/clustering tasks.

82

Mainly for unlabeled data, it is challenging to decide the optimal number of hid-

den layers ahead when designing dimensionality reduction experiments. The proposed

approach will always perform similar or better, even with a higher number of layers.

Therefore, users have the advantage of designing few experiments with large net-

works, knowing that there is no adverse effect on the network’s dimension reduction

performance. To test our hypothesis, it is necessary to show that RAEs have lower

performance degradation of unsupervised feature learning than AEs when increasing

the networks’ depth. We showed the effectiveness of the approach quantitatively by

calculating the classification accuracy drop. I.e., we increased the number of hidden

layers on both AEs and RAEs and checked how the classification accuracies on em-

bedded representations change with the increase of the number of hidden layers. We

used K Nearest Neighbor (KNN) for classification, as it allows us to check whether

the same class samples are close to each other in the learned embedded representation

(if the learned feature space learns a representation that encodes high-level concepts

such as the classes of the input datasets).

As described before, this subsection presents the following:

• Address the effect of performance degradation of deep neural networks for un-

supervised feature learning

• Performance comparison between proposed architecture (RAE) and standard

AE based feature learning, using a different number of hidden layers on three

different datasets.

• Performance comparison between widely used unsupervised dimensionality re-

duction methods

We compare the presented method against two relevant groups of methods (a

total of 7 different methods). The first group is represented by Autoencoders, which

83

the literature indicates to be the most commonly used state-of-the-art deep learning

based unsupervised dimensionality reduction architectures. We focus on standard

Autoencoder and standard Convolutional Autoencoders because these are: 1) most

frequently used; 2) other variants of AEs in the literature follow the principles of

these two. Our objective was to evaluate how residual connections improve ”feature

learning”, as such we compared against the same models with and without residual

connections to evaluate improvement. The second group represents other types of

feature extraction methods (five of those): Principal Component Analysis, Indepen-

dent Component Analysis, Locally Linear Embedding, Factor Analysis, and Singular

Value Decomposition.

4.3.1 Background and related work

This section consists of three subsections. The first subsection discusses widely

used traditional unsupervised dimensionality reduction techniques. The second sec-

tion discusses Autoencoder based deep learning approaches for dimensionality reduc-

tion. The third section discusses the theory behind residual connections.

Traditional unsupervised machine learning for dimensionality reduc-

tion: As discussed in the introduction, feature learning is essential for efficient and

accurate machine learning tasks. Two types of dimensionality reduction based feature

learning techniques exist, namely feature selection and feature transformation [136].

A subset of features from the original space is selected in feature selection, whereas

in feature transformation (Dimension reduction), it generates an entirely new set of

features. Both try to keep as much information in the data as possible while reducing

the dimension. However, feature selection can be misleading as it assigns weights to

individual features ignoring the correlation between features [136]. Therefore, feature

transformation approaches are preferable. Widely used such dimension reduction

84

techniques are discussed below.

• Principal Component Analysis (PCA): A linear algorithm which preserves most

of the data’s variability in the latent space [127]. It minimizes the redundancy

(measured through covariance) of data while maximizing information (Measured

through variance) in the resulted space. Limitations include; 1) it only considers

linear correlation, 2) input variables are assumed to be scaled at the numeric

level [137].

• Independent Component Analysis (ICA): A linear transformation method that

minimizes the dependence of the components of the transformed feature space

[137]. Linearity is a major disadvantage of this method.

• Locally Linear Embedding (LLE): This is a non-linear algorithm that uses neigh-

borhood preservation learning to generate subspace [127, 137]. However, this

method has a high sensitivity for noise/outliers.

• Factor Analysis: This is the same as PCA in cases where the added noise is

zero [138]. This method assumes that input data represent independent, random

samples from a multivariate distribution. If variables are correlated, generated

factors can be highly correlated [139].

• Singular Value Decomposition (SVD): This is mainly used for sparse data, i.e.

when data contains many zero values. It converts the input data space to

a latent representation with a reduced number of features while keeping the

maximum information from the original space [140]. This approach is compu-

tationally expensive.

Unsupervised Deep Autoencoders For Dimensionality Reduction: The

traditional concept of unsupervised learning was mainly limited to the idea of data

85

clustering and association rule mining. However, the expansion of deep learning

methods and data mining combined with this era of big data has given a much broader

perspective to traditional unsupervised learning. Therefore, unsupervised learning

is used not only for clustering, but also for dimentionality reduction (also referred

as unsupervised feature learning / deep embedded representation learning) [18][23],

generative modelling [19] [20], and auto-regressive modelling [21] [22]. This work

focuses on deep unsupervised feature learning, which is the process of transforming

the input space to an embedded space, preferably a lower dimension compared to the

input data space, using deep neural networks.

Many recent classification tasks use different variants of AEs, to learn feature

representation from high-dimensional input data, where the learned (extracted) fea-

tures will provide good separability for classification tasks. In these cases, feature ex-

traction will be performed in an unsupervised manner, whereas classification will be

performed on the extracted features in the reduced dimension in a supervised manner.

Feature learning using variants of AEs has shown the following advantages: improve

the robustness of feature learning [126], non-linear feature extraction [125], replacing

handcrafted features with efficient algorithms for unsupervised feature learning [141],

and reduces the time and storage space through dimensionality reduction [142].

The variant of deep AEs has been successfully used for deep embedded cluster-

ing tasks that perform feature learning and clustering simultaneously. In the past,

clustering and feature learning were performed sequentially, i.e., it embeds the input

space to a latent space and then performs clustering on the embedded space [23] [143].

With deep embedded clustering, it performs a joined optimization of feature learning

(dimensionality reduction), and clustering [23]. For example, in [144], the authors

have presented a deep clustering approach using fully connected convolutional AEs.

They argue that the embedded representations extracted from an encoder may not be

86

Convolution Convolution Convolution De-Convolution De-Convolution De-Convolution

Max	Pooling Max	Pooling Max	Pooling UnpoolingUnpooling Unpooling

Encoder Decoder

Fig. 19. Standard architecture of Stacked Convolutional Auto-Encoder.

discriminative enough for efficient clustering. To overcome that, they have proposed

a soft k -means model on top of the encoder to make a unified clustering model.

Residual Connection Within Deep Neural Networks: He et al. raised

the awareness towards the problem of performance degradation [131]. I.e., when

the network’s depth increases, the network’s performance will start to saturate, and

eventually, it can even deteriorate [132]. This is not caused due to the over-fitting,

but by the vanishing gradient of deep neural networks [132].

This problem has been addressed by various network designs networks such as

ResNets [131, 133], Highway Networks [134], and DenseNets [135]. All these net-

works use the same design principle, i.e., skip connections or residual connections

[132]. These networks with skip connections have consistently shown state-of-the-art

performances in different neural network typologies [131, 134]. Other advantages of

skip connection includes better easier training [132], numerical stability and easier

optimization [145] [132]. Empirical evidence has shown that these deep architectures

with skip connections should not produce a large error than their shallow counterparts

[131, 133].

4.3.2 Proposed Approach: ResNet Autoencoder Based Feature Learning

for Deep Embedded Classification

This section discusses the stacked ResNet Autoencoder (RAE) based feature

learning approach for classification. Figure 19 presents the standard C-AE architec-

87

ture with multiple convolution and max-pooling layers with multiple filters.

In this work, we implemented standard and convolutional AEs (AEs and C-AEs)

with residual connections. Our intent was to convey the advantages of adding residual

connection into AE networks to improve feature learning capability. Therefore, we

designed a simple and reproducible experiment, which can run in a reasonable amount

of time. We introduced residual connection into the AE architecture and presented

the novel Residual Autoencoder (RAE) framework for deep embedded classification.

We call its convolutional counterpart C-RAE. The proposed framework is presented

in Figure 20 where (a) presents the training of presented RAE and (b) represent the

classification task on learned features.

As similar to AEs, RAEs are trained to regenerate their inputs from its output

(Figure 20 (a)). The input sample x is typically a n dimensional vector. Therefore

the input layer consists of n neurons. Since the RAE network is trained to reconstruct

the input, the output layer has the same number of neurons as the input layer. The

hidden layers consist of m neurons.

Similar to AE, RAE also consists of two phases, i.e., encoding phase and decoding

phase [6], [146]. For a high-dimentional input x, the encoder E computes a hidden

representation z = E(x). The decoder D reconstructs the hidden representation back

to the high-dimensional input space y = D(z). Both encoder and decoder have several

hidden layers, making a deep (stacked) RAE.

For the decoder, each hidden layer is a non-linear mapping of the form σ(V z+c),

where σ is an activation function such as sigmoid, tanh, softsign, or Relu [146]. V

is the weight matrix. We use superscripts V (l) to denote the weight matrix that

corresponds to layer l. In convolutional neural networks (C-RAE), the matrix multi-

plication is replaced by a convolution operation and max-pooling (see Fig. 20).

For the encoder, each hidden layer l is composed by a non-linear mapping f(·)

88

Convolution

Max	Pooling

Input	(X)

Convolution

Max	Pooling

Reconstruction	(X')

encoded
representation

De-Convolution

Unpooling

De-Convolution

Unpooling

Convolution

Max	Pooling

+

Repeating
of	hidden
layers

Repeating
of	hidden
layers

(a)

Convolution

Max	Pooling

Input	(X)

Convolution

Max	Pooling

encoded
representation

Convolution

Max	Pooling

+

Repeating
of	hidden
layers

Trained
Encoder

Classification/Clustering

(b)

Fig. 20. RAE based feature learning (a) Training of C-RAE, (b) C-RAE based classi-

fication/Clustering

and a residual connection r(·). Each hidden representation h(l) in a hidden layer l is

computed follows:

h(l+1) = r
(
h(l)

)
+ f

(
h(l)

)
(4.1)

The residual connection r(h) = Wrh is a linear mapping that ensures the dimensions

match the output of the function f . The function f can be thought of as a smaller

network with F number of layers. Each layer in f is a non-linear mapping σ(Wh+b),

similar to the decoder layers. W is the weight matrix, and we use superscripts W (l,j)

to denote the weight matrix that corresponds to layer l and sub-layer j. For C-RAEs,

both matrix multiplications (Wr and W) are replaced by convolution operations and

max pooling (see Fig. 20).

Similar to AE, the loss function Jθ of the RAE network is also computed using

89

Table 12. Algorithm for training the proposed RAE
Algorithm I: RAE Training

Inputs: Training set of images (X)

Outputs: Trained RAE,Encoder

1: Random Weight initialization

2: for each epoch e do

3: for i = 1...T do //number of training samples

4: xi ← pick random input record from X

5: h← xi

6: for l = 1...Le do //each hidden layer l in encoder

7: hf ← h

8: for j=1...F do //each layer j in f

9: hf ← σ(W (l,j)hf + b(l,j))

10: end for

11: add residual connection to the hidden activation hf

h←W
(l)
r h+ hf

12: end for

13: yi ← h

14: for l = 1...Ld do //each hidden layer l in decoder do

15: yi ← σ
(
V (l)yi + c(l)

)
16: end for

17: end for

18: Compute the reconstruction loss:

Jθ = 1
T

∑T
i=1(xi − yi)

2

19: Perform one-step of the optimizer:

θ = argminθ(Jθ)

20: end for

Algorithm II: Deep Embedded Classification using KNN

Inputs: Training set(X), Training labels (Y), Testing set(X′), Testing labels (Y ′), Trained Encoder

Outputs: Accuracy

1: ztrain ← Encoder(X) %convert training data to embedded representation

2: ztest =← Encoder(X′) %convert testing data to embedded representation

3: Initialize a list (zy) to store predicted class label

4: for each sample (i) in ztest do

5: Initialize a list (list) to store < distance, class > pairs

6: dist← 0 , label← 0

7: for each sample (j) in ztrain do

8: dist← ∥ztest,i − ztrain,j∥
9: label← classlabelofhx

10: list← append < dist, label >

11: class list← find list of labels of K nearest neighbors

12: predicted class← mode(class list)

13: zy =← append(predicted class)

14: end for

15: end for

16: calculate accuracy using zy and Y ′

the difference between input(x) and the output(y), I.e. the error.

Jθ =
1

T

T∑
i=1

∥xi − yi∥2 (4.2)

90

where xi is the ith input sample, yi is the output for ith input sample, θ denotes the

set of parameters of the autoencoder (weights and biases).

The RAE is trained to minimize the above loss function with T training samples

using error-back-propagation. The pseudo-code for RAE training is presented in

Algorithm I.

Similar to AE, the dimension of the hidden representations (z) of RAE can be

smaller or larger than the dimension of x. When the hidden representation is small,

the RAE performs dimensionality reduction (data compression) [146].

The encoded value z is viewed as the extracted feature or the hidden represen-

tation for the input data. Once the encoder converts the input samples (x) to an

embedded representation z, then classification or clustering can be performed on this

latent space (shown in Figure 20 (b)).

For classification purposes, any supervised classification algorithm can be inte-

grated at the end of the encoder (Figure 20 (b)). For this experiment, the K-Nearest

Neighbor algorithm (KNN) is used. Algorithm II presents the KNN based deep em-

bedded classification.

As presented in Algorithm II, the trained RAE’s encoder is used to generate

an embedded representation of train and test data (line 1-2). Then class labels for

test data can be predicted by comparing each test record with all the train records

and find the mode class label of K nearest train records (Algorithm II line 4-12).

The distance between a test record and a train record should be calculated using

a distance calculation method to find the nearest neighbors. For this experiment,

Euclidean distance is calculated:

dist(ztest, ztrain) =

√√√√dim∑
i=0

(ztest,i − ztrain,i) (4.3)

91

Conv	Layer	with	Stride
2

Input

Output (14,14,32)

(28,28,1)

Leaky	Relu	and	Batch
Normalization	Layers

Input

Output (14,14,32)

(14,14,32)

Input	Layer
Input

Output (28,28,1)

(28,28,1)

Conv	Layer	with	Stride
1

Input

Output (14,14,32)

(14,14,32)

Leaky	Relu	and	Batch
Normalization	Layers

Input

Output (14,14,32)

(14,14,32)

Add	
Input

Output (14,14,32)

(14,14,32),	(14,14,32)

Batch	Normalization	
Input

Output (14,14,32)

(14,14,32)

Repeat		2X

Conv	Layer	with	Stride
2

Input

Output (7,7,64)

(14,14,32)

Leaky	Relu	and	Batch
Normalization	Layers

Input

Output (7,7,64)

(7,7,64)

Conv	Layer	with	Stride
1

Input

Output (7,7,64)

(7,7,64)

Leaky	Relu	and	Batch
Normalization	Layers

Input

Output (7,7,64)

(7,7,64)
Repeat		2X

Add	
Input

Output (7,7,64)

(7,7,64),	(7,7,64)

Batch	Normalization	
Input

Output (7,7,64)

(7,7,64)

Flatten
Input

Output (3136)

(7,7,64)

Dense	Layer
Input

Output (32)

(3136)

Fig. 21. Architecture

where ztest is the test record, ztrain is the train record, and dim is the dimension

of the embedded feature space (z). However, it is possible to use other distance cal-

culation methods such as Minkowski, Manhattan, Mahalanobis, and cosine. Finally,

predicted labels and actual labels are compared to calculate the accuracy of the KNN

92

algorithm.

4.3.3 Experiment and Results

This section discusses the experiments and results. First, we discuss the datasets

used for experimental evaluation. Then, we present the experimental set-up and

architecture details of the networks. Finally, we discuss the results of the experiment

with a comparison between existing dimensionality reduction methods.

Datasets: Three datasets were used for experimental evaluation: 1) MNIST

[147], 2) CIFAR10 [148], and 3) Fashion MNIST [149]. All the datasets were scaled

to the 0-1 range. These benchmark datasets were selected due to their relatively high

dimension and reasonable training time with deep networks. Datasets were directly

obtained from the Keras library [150].

The MNIST dataset consists of hand-written digits (0-9), where each digit is

an image of 28 X 28 pixels in size. The complete MNIST dataset was used, which

consist of 55000 train images and 10000 test images.

The Fashion MNIST dataset benchmark dataset consist of images used for

clothing classification. It consists of images with 28 X 28 pixels in size. Class labels

include (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag,

Ankle boot) The complete Fashion MNIST dataset was used, which consists of 60000

train images and 10000 test images. Images belong to 10 classes.

The CIFAR10 dataset consists of color images of 32 X 32 pixels in size. These

images correspond to 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, truck). The complete CIFAR10 dataset was used, which consist of 50000 train

images and 10000 test images.

Hyper-parameters and architectural details: To maintain consistency in

the experiments, all the architectures were kept constant across datasets when in-

93

Table 13. Classification Accuracies of models for different datasets
No of Repeated Layers

Dataset Model
2 6 10 20 30 40 50 60 70 80 90

Performance

Degradation

C-AE 0.9849 0.9836 0.9830 0.9824 0.9805 0.9767 0.9806 0.9482 0.9379 0.5559 0.3752 61.90
MNIST

C-RAE 0.9846 0.9853 0.9845 0.9835 0.9776 0.9768 0.9762 0.9761 0.9753 0.9764 0.9770 0.86

C-AE 0.4285 0.4233 0.4158 0.4134 0.4052 0.4107 0.4026 0.3817 0.3076 0.2262 0.1480 65.46
CIFAR

C-RAE 0.4313 0.4333 0.4312 0.4281 0.4246 0.4268 0.4239 0.4231 0.4289 0.4263 0.4217 2.68

C-AE 0.8844 0.8839 0.8838 0.8795 0.8785 0.8600 0.8558 0.8078 0.7875 0.6805 0.5892 33.38Fashion

MNIST C-RAE 0.8858 0.8850 0.8826 0.8805 0.8751 0.8750 0.8733 0.8692 0.8698 0.8712 0.8683 1.97

Table 14. Comparative Analysis

Dataset
KNN applied after unsupervised feature extraction (Embedded classification) KNN on original

high-dimensional

feature space
AE RAE C-AE C-RAE PCA

Standard

LLE

ICA

Embedding

Factor Analysis

Embedding

Truncated SVD

Embedding

MNIST 0.9745 0.9758 0.9849 0.9853 0.9758 0.9684 0.9713 0.9621 0.9755 0.9688

Fashion

MNIST
0.8599 0.8617 0.8844 0.8858 0.8524 0.8126 0.8538 0.8499 0.8517 0.8552

CIFAR10 0.4182 0.4201 0.4285 0.4333 0.4039 0.2831 0.4134 0.4070 0.4019 0.3398

creasing the number of layers. Only two filters were used with size 32 and 64. The

size of the embedded representation is kept at 32. The number of layers were in-

creased by repeating the convolution layer and pooling layer for a given filter size.

For this experiment number of repeating layers were increased from 2 to 90 for each

filter. Optimizer (adadelta) and K(5) were kept constant for all the experiments

across datasets. Batch normalization and leakyRelu was used to improve model per-

formance. For illustration purposes, the MNIST dataset architecture with two filters

(32,64) and 2 repeats is presented in Figure 21. For a given number of repeats (f),

the total number of hidden layers is 2+(f*no. of filters).

Classification Accuracy: The trained autoencoder models were used to gen-

erate the embedded representation for the datasets. These embedded representations

were used for the classification using the KNN algorithm, i.e., encoder followed by

KNN used as the classification network. Each experiment was repeated five times,

94

0 20 40 60 80
No of Repeated layers

0.2

0.3

0.4

A
cc

u
ra

cy

CIFAR C-AE

CIFAR C-RAE

(a) CIFAR

0 20 40 60 80
No of Repeated layers

0.4

0.6

0.8

1.0
A

cc
u
ra

cy

MNIST C-AE

MNIST C-RAE

(b) MNIST

0 20 40 60 80
No of Repeated layers

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Fasion MNIST C-AE

Fasion MNIST C-RAE

(c) Fashion MNIST

Fig. 22. Classification accuracy vs number of hidden layers

M
N

IS
T
 C

-A
E

M
N

IS
T
 C

-R
A

E

Fa
si

o
n

M
N

IS
T
 C

-A
E

Fa
si

o
n

M
N

IS
T
 C

-R
A

E

C
IF

A
R

 C
-A

E

C
IF

A
R

 C
-R

A
E

0.2

0.4

0.6

0.8

1.0

Fig. 23. Accuracy distribution

and the average performances were recorded.

Table 13 shows the deep embedded classification accuracy obtained using the

two models, C-AE and C-RAE, for different datasets when increasing the number

95

of hidden layers. When comparing all the models, C-RAE showed improved accu-

racy compared to C-AE for all three datasets (highlighted values in Table 13). Table

13, column 6 shows the classification performance of KNN on the original high di-

mensional data. It can be seen that both C-AE and C-RAE based deep embedded

classification showed better accuracies than just applying KNN on original data. This

infers that these deep neural network models convert original data into embedded rep-

resentations that are more suitable than using the original input data for down-stream

tasks such as classification.

Figure 22 shows a plot of the accuracies against no of repeated layers. When

increasing the number of layers, a small fluctuation of accuracy was observed for

small models (up to 20 repeated layers) for all the datasets. For large models, when

increasing the no of hidden layers, the accuracies started to decrease. However, C-

RAE showed significantly lower degradation compared to C-AE. Therefore, it can be

inferred that C-RAE based embedded representations are less likely to under-perform

when increasing the number of layers.

Figure 23 shows classification accuracy distribution in box and whisker graphs

for all three datasets when increasing the number of layers. The height of the box plot

indicates the variability of classification accuracy for each model. Anything outside

the normal distribution is marked as outliers shown as ”X” marks. A shorter box

and whiskers plot indicates low variability of classification accuracies. For all the C-

RAE, the whiskers are shorter than C-AEs, and there are no outliers. It shows that

C-RAE has consistent performance with low variability when increasing the number

of layers. Mean values are marked with ”O”. All C-RAEs mean values are higher

than the C-AEs. These observations show that with the change of the number of

hidden layers, C-RAEs have consistent performance, whereas, for standard C-AEs, a

thorough cross-validation process is needed.

96

The last column of Table 13 shows the overall performance degradation for deep

embedded classification when increasing the number of hidden layers. The perfor-

mance degradation (PD) was calculated as the percentage accuracy drop when in-

creasing the number of layers:

PD =
(MaximumAcc−MinimumAcc) ∗ 100

MaximumAcc
(4.4)

Both C-RAE and C-AE showed some performance degradation for all three

datasets. C-AE without residual connection showed 33.38% - 65.46% performance

degradation whereas C-RAE showed 0.86% - 1.97% performance degradation. Based

on the experimental result, it can be seen that residual connections reduce possible

performance degradation significantly.

Comparison Between Widely used Dimensionality Reduction Meth-

ods:

Table 14 presents the performance comparison between proposed approaches and

widely used unsupervised dimensionality reduction methods. We compared the pro-

posed approach with two state-of-the-art deep neural network based dimensionality

reduction methods (AE and C-AE) and five most widely used conventional dimen-

sionality reduction methods in the recent literature (PCA, LLE, ICA, Factor Analysis

embedding, Truncated SVD embedding). As described in the previous section, all

these methods were used to convert the high dimensional input space to an embed-

ded representation of 32 features. Then, KNN was used to perform the classification

on the embedded representations. Further, KNN was ran to calculate the classifi-

cation accuracy on the original high dimensional space (last column of Table 14).

For MNIST, all the embedded classification approaches except LLE and FAE showed

better accuracies compared to applying KNN on the original high dimensional feature

97

space. C-RAE showed the highest accuracy (0.9853) for MNIST. For Fashion MNIST,

only deep neural network based embedded classification showed higher accuracy com-

pared to KNN. C-RAE showed the highest accuracy (0.8858) for Fashion MNIST. For

CIFAR10, all the embedded classification methods except LLE showed higher accu-

racy compared to KNN. C-RAE showed the highest accuracy (0.4333) for CIFAR10.

When comparing AEs and RAEs on all three datasets, RAEs showed slightly better

performance. When comparing RAE and C-RAE, C-RAE showed better accuracy

on all three datasets. The results of Table 13 and Table 14 infers that deep neural

network models convert original data into embedded representations that are more

suitable than using the original input data for down-stream tasks such as classifica-

tion, and C-RAE based embedded representations are less likely to under-perform

when increasing the number of layers.

Overall discussion and future work: Our hypothesis was that when adding

new layers to standard AEs, their ability for effective feature learning degrades.

Through accuracy comparison in Table 13, we confirmed that addition of residual

connections to AEs (RAEs), improved their overall classification accuracy without

incurring significant performance degradation (relative to standard AEs).

Through a comprehensive comparison of widely used unsupervised dimensional-

ity reduction methods in Table 14, we demonstrated that the C-RAE outperforms

widely used feature learning methods such as standard AE, KNN, PCA, LLE, ICA,

Factor Analysis, and SVD by 1%-3% improvements of classification accuracy. In ad-

dition to the accuracy improvement over standard CAE, C-RAE showed significantly

lower performance degradation of classification accuracy (less than 3%) compared to

CAE (33%-65%), when increasing the network depth. These results evidenced the

advantages and the overall superiority of C-RAEs for unsupervised feature learning

compared to standard AEs and widely used traditional methods.

98

Finally, by implementing the novel RAE framework presenting here, one does

not need to go through a trial and error process of finding the best architecture.

Instead, one can safely go with more layers in case a more complex model is required

for improved overall performance while not sacrificing the dimensionality reduction

performance.

The experiment was tested using three datasets that can be trained with deep

neural networks within a reasonable amount of time. However, it has to be noticed

that the advantage of using a deep neural network is more prominent when dealing

with more complex datasets. Therefore, in future work, the framework will be tested

with more complex datasets, which are high in dimension and number of data records.

4.3.4 Contribution 2 a): Findings, Discussion, and Future Work

In this subsection, we tackle the performance degradation problem of automated

deep unsupervised feature learning. We introduced an unsupervised deep learning

framework, consisting of ResNet Autoencoder (RAE) and its convolutional version

C-RAE, that allows making deeper neural networks while not sacrificing its dimen-

sionality reduction based feature learning performance. In this way, we improve

resistance to performance degradation compared to standard Autoencoders (AEs) for

feature learning. The performance of RAE on learning deep embedded representa-

tions was evaluated on a classification task using KNN. RAE was compared against

AE while increasing the number of hidden layers. We did this comparison on three

benchmark datasets. We demonstrated that C-RAE showed the highest accuracy on

all three datasets. At the same time, C-RAE based classification only showed 0.86%

to 2.68% performance degradation, which is significantly lower than the performance

degradation showed by standard C-AE (33.38% - 65.46%).

The empirical results confirmed that RAE reduces performance degradation of

99

deep embedded representation based classification. This framework allows users to

design fever number of experiments knowing that larger networks will not affect the

network performance, especially when dealing with unlabelled data where the optimal

network size is challenging to decide. Further, the classification accuracy distribution

showed that RAE models perform better in terms of mean accuracy and accuracy

variance (low variance), making them more suitable for deep embedded classification

tasks than AE. Finally, we compared RAEs with widely used dimensionality reduction

methods and showed that C-RAE outperforms on all experimented datasets. As

future work, this framework will be integrated to real-world CPS setting and explore

how to adapt this framework for specific needs of CPSs.

4.4 ResNet Autoencoder based Deep Embedded Clustering

Clustering is the method of grouping a collection of data records based on some

similarity criteria such that records in the same category are similar to each other com-

pared to records in another category [151, 119, 152]. It is a major task in exploratory

data analysis and a commonly used technique in machine learning for many fields such

as image analysis, bio-informatics, finance, and natural language processing. All the

clustering methods primarily follow two steps: 1) picking initial clusters randomly

and (2) optimize the clusters gradually, until an optimal solution is reached [153,

152]. Widely used non-neural network based clustering techniques include K-Mean,

Mean shift, DBSCAN, Gaussian Mixture Models (GMM), and hierarchical clustering

[154, 155]. Recently, deep clustering-based clustering algorithms have gained huge at-

tention due to the state-of-the-art performance of neural networks in many machine

learning applications. This process is called deep clustering [129].

Deep clustering techniques boost the clustering algorithm performance by using

the powerful feature extraction ability of Deep Neural Networks (DNNs) such as vari-

100

Encoder

Clustering

Decoder

Reconstruction
Loss

Clustering Loss

x

x'

Fig. 24. Deep Embedded Clustering (DEC)

ants of Autoencoders (AEs). DNNs have the capability to convert input data space

into a cluster-friendly feature space through non-linear transformations [156]. Recent

approaches have shown that dimensionality reduction and representation learning

techniques can be used to transform the input data space into an embedded latent

representation. Then, the clustering and classification tasks can be performed on the

embedded space more efficiently compared to direct use of input data space. This

AE-based deep embedded clustering approach was initially proposed by Song et al.

in 2013 [157, 129]. They have proposed a new object function and embedded it in

the Autoencoder model. This allows a joint optimization of the Autoencoder’s non-

linear mapping (minimizing reconstruction error) and clustering (updating the cluster

centers). In [158], the authors proposed a novel clustering method, Deep Embedded

Clustering (DEC), which concurrently learns embedded representation and cluster

assignments using DNNs. The idea of DEC is presented in Figure 24. This approach

gradually improves the clustering performance and the learned feature representation,

resulting in significant improvements over cutting edge clustering methods [158].

Even though deep learning has shown state-of-the-art performance in many ma-

chine learning tasks, when increasing the network’s depth, their performance gets

saturated or even degrade. This happens due to the vanishing gradient problem of

101

deep networks, resulting in shallow counterparts performs better than their deep neu-

ral networks [130]. In [130], authors proposed residual blocks (ResNets) within the

layers of deep neural networks to avoid possible performance degradation (Figure 25)

[130]. In our previous chapter, we explored the performance drop of DNNs for un-

supervised feature learning [27]. We analysed the change of classification accuracies

on latent representations when increasing the network depth (no of layers) for both

AEs and RAEs (AE with residual connections: RAEs). Our experiments evidenced

that compared to AE, the RAE has improved feature learning capability and reduces

classification performance on learned features.

In this subsection, we perform DEC with ResNets (RDEC). While the idea of

ResNets does exist, ResNets mainly has been used for classification tasks. There has

been very limited work that had been done on DEC with ResNets. Moreover, the cur-

rent work does not illustrate how performance degradation of neural networks affects

DEC. Therefore, in this work, we introduced improved DEC approach in which we

perform DEC by introducing residual connections. Then we use the joint optimiza-

tion approach proposed by Xie at el. in [158] for performing DEC. To illustrate the

advantage of having residual connections, we performed DEC using AE and RAEs.

We performed DEC while increasing the number of network hidden layers and cal-

culated the clustering accuracy drop of AE and RAE. The results showed that the

RDEC has less clustering accuracy drop compared to DEC. The major advantage

of this strategy is that the use of ResNets for DEC allows practitioners to reduce

possible clustering performance degradation when designing large neural networks.

4.4.1 Methodology: ResNet Based DEC

This section discuss the DEC with Resnet Autoencoder (RDEC). The presented

algorithm consist of basic architecture of AE (Figure 26 (a)) with residual connections

102

Fig. 25. Resnet Architecture [158]

(Figure 25). The proposed RAE architectures are presented in Figure 26 (b). Figure

26 (c) presents the proposed DEC with RAE (RDEC).

As similar to AE, RAE is trained to reproduce the input image from its output

(Figure 26 (b)). The input (x) is a vector with n dimensions. I.e., the input layer

consists of n neurons. RAE reconstructs the input data sample from the output of the

network; therefore, the output layer also has n neurons. The hidden layers consists

of m neurons. Between the input layer and the hidden layer, the weight matrix W ′

has the size Rm×n. Between the hidden layer and the output layer, the weight matrix

W ′ has the size Rn×m.

Both AE and RAE architectures have an encoder and decoder, consisting of many

hidden layers creating deep AEs and deep RAEs. Therefore, training of them consists

of two stages, i.e., encoding stage and decoding stage. The input is transformed into

an embedded representation by the encoder. In the encoding phase, the input is

transformed by the first hidden layer as follows:

h = f (Wx+ b) (4.5)

where f is the activation function and b is the bias term. For all the other hidden

layers, the h generated by previous hidden layer act as the x to the next hidden layer

(line 5-7 of Algorithm I).

In the decoding phase, the embedded representation h is reproduced back to the

103

Encoder
x'x

Reconstruction
Loss

(a)

Encoder Decoder

Reconstruction
Loss

+ +

(b)

Clustering

Decoder of pre-
trained RAE

Reconstruction
Loss

Clustering Loss

+ +

Encoder of pre
trained RAE

(c)

Fig. 26. RAE based deep embedded representation learning (a) AE, (b) RAE, and (c)

RDEC

original input data record as follows:

y = g
(
W

′
h+ b

′
)

(4.6)

In here, g denotes the activation function of the decoder. This will be performed

for all the hidden layers of decoding phase (line 10-12 of Algorithm I). Encoding

functions and decoding functions are non-linear mapping functions such as sigmoid,

tanh, softsign and Relu [146]. For this experiment, we were using Relu as the no-linear

mapping.

104

When adding a residual connection, the intermediate encoded representation

(h) and input (x) should add together into one representation. To do that, both

representations must be in same dimension. Therefore, a non-liner mapping of input x

to a dimension which matches the intermediate encoded representations is performed.

The new encoded representation is calculated as follows:

y = W
′′
x+ y (4.7)

The Jθ denotes the loss function of the RAE network. It is computed using

the difference between input data record and the reconstructed generated by the

decoder(y).

Jθ =
1

tot

tot∑
i=1

(xi − yi)
2 (4.8)

In above, xi denotes the ith input data record, tot is the total number of data records

in the input data, yi is the reconstruction of ith input sample generated by the

decoder, parameter set of the encoder is denotes as θ (ex: W,W
′
,W

′′
, b, b

′
).

The error-back-propagation was used to minimise the above loss function during

training. The algorithm is resented in Algorithm I in Table 15.

The training of the network does not require any class labels or prior knowledge

of input training data. The h is the extracted feature or the hidden representation

generated from the the input data x. The dimension of h can be different from the

dimension of input. When the size of h is small, the process is known as dimensionality

reduction, which is a widely used data compression technique.

Then the trained encoder is used for DEC technique. The ResNet based DEC

(RDEC) is presented in Figure 26 (b) and Figure 26 (c). The encoder is used to con-

vert the input data samples (x) to a hidden representation Xembedded, then clustering

is performed on the embedded representation. For DEC, any clustering algorithm

105

Table 15. Pseudo-code for training of RAE
Inputs to the algorithm: Set of training samples (X)

Outcomes: Encoder, Trained ResNet AE

1: Network parameter initialization (Weights)

2: FOR each epoch DO

3: FOR each samples in training data DO

4: x← randomly pick an input data sample from X

5: h← x

6: FOR each layer l in hidden layers of encoder DO

7: h = f
(
W lh+ bl

)
8: compute the residual connection:

h = W
′lx+ h

9: END FOR

10: y ← h

11: FOR each layer l in hidden layers of decoder DO

12: y = g
(
W

′ly + b
′l
)

13: END FOR

14: Calculate the error of reconstruction using the loss function:

Jθ =
1
tot

∑tot
i=1(xi − yi)

2

15: Perform one-step of error-back-propagation using a optimizer:

θ = argθmin(Jθ)

16: END FOR

17: END FOR

can be used. This is done by integrating a clustering algorithm into the encoder so

that encoder output will be fed into the clustering algorithm. In this experiment, the

DEC architecture proposed by Xie et al. is used.

It has to be noticed that it is not mandatory to add residual connections for

each and every hidden layer. They can be added only to some selected hidden layers.

Further, these residual connection does not have to come from input x. It can come

from some intermediate layer outputs h as well. Various types of shortcut connections

have been proposed in the past [159].

106

Table 16. Hyper-parameters of models
Dataset Number of neurons in each layers of the network Number of Neurons

in the output layer

MNIST
2 layers: 2000

4 layers: 500, 500, 2000

6 layers: 500, 500, 500, 500, 2000

8 layers: 500, 500, 500, 500, 500, 500, 2000

10 layers: 500, 500, 500, 500, 500, 500, 500, 500, 2000

12 layers: 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 2000

10

Fashion MNIST
10

CIFAR10
10

Table 17. Clustering accuracies of DEC and RDEC

Dataset Model
Number of Hidden Layers

1 2 4 6 8 10 12

MNIST
DEC 0.4467 0.6690 0.8429 0.6678 0.4607 0.2011 0.1139

RDEC 0.4467 0.7095 0.8388 0.8387 0.7406 0.6552 0.6758

Fashion

MNIST

DEC 0.5243 0.5306 0.5335 0.5010 0.5070 0.5572 0.2635

RDEC 0.5243 0.5497 0.5572 0.5999 0.5931 0.5775 0.5704

CIFAR10
DEC 0.1662 0.1692 0.1862 0.1511 0.1314 0.1493 0.1272

RDEC 0.1662 0.1653 0.2117 0.2224 0.2215 0.2150 0.2137

4.4.2 Experiment set up Results and Discussion

This section discusses the setup of the experiments, the data sets used, and

the results. The performance comparison was performed between DEC and RDEC

while increasing the network’s hidden layers. The architectures (number of layers

and neurons in each layer) were kept the same for all the datasets for the simplicity

of the experiment. For this experiment, we used the same benchmark datasets used

in for ResNet based feature learning in the previous section: 1) MNIST, 2) Fashion

MNIST, and 3) CIFAR.

4.4.2.1 Hyper-parameters and architectural details

Hyper-parameters of the models are presented in Table 16. For keeping the

simplicity of this experiment, we used the same architecture for all the datasets,

except for the number of neurons in the final hidden layer of the encoder. It has

to be noticed that the number of neurons in the final hidden layer of the encoder is

107

2 4 6 8 10 12
Number of hidden layers

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

MNIST DEC
MNIST RDEC

(a)

2 4 6 8 10 12
Number of hidden layers

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Fasion_MNIST DEC
Fasion_MNIST RDEC

(b)

2 4 6 8 10 12
No of Repeated layers

0.125

0.150

0.175

0.200

0.225

Ac
cu

ra
cy

CIFAR_DEC
CIFAR_RDEC

(c)

Fig. 27. Clustering accuracy vs number of hidden layers . (a) MNIST, (b) Fasion

MNIST, and (f) CIFAR

MNIST Fashion MNIST CIFAR
0

10

20

30

40

50

60

70

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

72.89

29.38

5.9

16.29

2.95 0.87

AE DEC
RAE DEC

Fig. 28. Clustering Accuracy distribution of DEC

108

M
NI

ST
_D

EC

M
NI

ST
_R

DE
C

Fa
sio

n_
M

NI
ST

_D
EC

Fa
sio

n_
M

NI
ST

_R
DE

C

CI
FA

R_
DE

C

CI
FA

R_
RD

EC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 29. Performance Degradation for DEC .

equivalent to the number of classes for a given data set. The detailed explanation

on this is presented in original DEC paper [158]. For example, RDEC for MNIST

has 10 neurons at the last hidden layer of the encoder. During clustering, both

mean squared error (MSE) and KL divergence were minimized simultaneously. KL

divergence is minimized between the auxiliary distribution and target distribution as

described in [158]. The number of layers was increased from 1 to 12. For simplicity,

one residual connection was added from input to the hidden layer just before the

last hidden layers. After training of AE and RAE, the encoders of both models was

integrated with the clustering algorithm (DEC), which is proposed in [160] by Xie at

el. The clustering performance was compared between DEC and RDEC.

109

4.4.2.2 Clustering Accuracy

Figure 27 and Table 17 presents the clustering accuracy with respect to the

number of hidden layers. For all the datasets, the clustering accuracies of both models

were increased at the beginning and then started to decrease after some number of

hidden layers (Figure 27). For all the datasets, the clustering accuracy of at least

one or more deep models (models with two or more layers) showed better accuracy

compared to the single-layer models. Therefore, it can be inferred that DEC and

RDEC models have better performance compared to direct input data clustering on

these datasets. Further, it can be inferred that deep models (models with two or

more layers) perform better compared to single-layered neural network models.

For all the datasets, when increasing the network depth, RDEC based model

shows less clustering accuracy degradation compared to DEC (see Figure 27). There-

fore it can be inferred that, RDEC are less likely to show performance degradation for

clustering tasks when increasing the neural network depth. This observation supports

our hypothesis of RAE. Figure 28 presents the box and whisker graphs of clustering

accuracy distributions of two models when increasing the network depth of AE and

RAE. It shows that RDEC has a low variance of clustering accuracy compared to

DEC. Further, the mean clustering accuracy value of RDEC was higher compared to

DEC.

4.4.2.3 Performance Degradation

Figure 29 shows the performance degradation for deep embedded clustering when

increasing the network depth (number of hidden layers from 2 to 12). The performance

degradation of clustering was calculated as the difference between the maximum ac-

curacy and minimum accuracy for all tested architectures (models).

110

According to the result, we observed a clear clustering performance degradation

on three datasets (MNIST, HAR and Fashion MNIST), when increasing the network

depth of AEs. For embedded representation-based clustering, the RDEC showed

significantly lower reduction in performance degradation compared to DEC. Based

on the empirical result, it can be seen that the ResNet connection can decrease

the clustering performance degradation. Further, RDEC based models showed very

steady performance (low variance) when increasing the number of layers (Figure 27).

Therefore, the results inferred that adding residual connections result in better deep

embedded clustering tasks than the models that don’t use residual connections.

4.4.3 Contribution 2 a): Findings, Discussion, and Future Work

This subsection explored Deep Embedded Clustering (DEC) performance degra-

dation when increasing the depth of the deep neural networks. We introduced ResNet

architectures into DEC by using Autoencoders with residual connections (RAEs), re-

ferred to as RDEC. This modification was made to improve DEC’s resistance to

performance degradation when using deep Autoencoders (AEs). RDEC was com-

pared with DEC while increasing the network depth of both AE and RAE, on four

benchmark datasets. The empirical result showed that RDEC showed up to 56% of

less performance degradation compared to DEC. Further, when comparing the vari-

ance of the clustering accuracy distribution, RDEC outperformed DEC by showing

a lower accuracy variance. Therefore, the empirical results supported our hypothesis

and confirmed that RDEC had improved resistance to clustering performance degra-

dation compared to DEC. As future work, we will perform a comparative analysis of

RDEC using variants of AEs with residual connections and other widely used cluster-

ing methods. Further, the proposed DEC will be applied to the real-world industrial

setting and explore the advantages of the proposed method for the specific needs of

111

CPSs.

4.5 Interpretable Anomaly Detection using ResNet Autoencoders

In the previous section, we extensively studied the advantages of ResNet based

Autoencoders for unsupervised feature learning and deep embedded clustering. In this

section, we used the presented ResNet architecture for developing an Interpretable

Anomaly Detection System (RX-ADS). In this effort, we are focusing on Electric Ve-

hicle (EV) infrastructure as EVs are becoming a primary component in Intelligent

Transportation Systems (ITSs) as it decreases fossil fuel consumption and green-

house gas emissions, reducing negative environmental impact [161]. In recent years,

there has been a rapid growth in EV infrastructure, expanding to various areas, in-

cluding EV manufacturing, charging stations, battery advancements, electric vehicle

supply equipment, and other roadside infrastructures [162, 163, 164]. Within EV

infrastructure, different communication technologies such as vehicletoVehicle (V2V),

Vehicletosensorboard (V2S), vehicletoinfrastructure (V2R), vehicletohuman (V2H),

and vehicletointernet (V2I) plays a major role in building resilient operations [165].

Security of these technologies is critical to avoid vulnerabilities such as DoS attacks,

false data injections, spoofing and modification [165, 166].

Intrusion Detection Systems (IDSs) are widely used in critical infrastructures

such as EV infrastructure [167, 168]. The purpose of IDS is to detect attacks and

intruders in communication systems of critical infrastructure, thus avoiding possible

catastrophic failures and economic losses. For example, in an EV, attacks can cause

break malfunction, engine overheating, control steering issues, and door lock issues,

resulting in life-threatening and catastrophic damages [167]. Not only EVs, other

infrastructure components such as charging stations are prone to severe advanced

persistent threats (APT) such as ransomware and malware [168]. Thus building IDSs

112

has become a vital component within EV infrastructure.

During the last decade, data-driven machine learning approaches such as Neural

Networks (NNs) have been widely used for building IDSs for various critical infras-

tructure settings [169]. There are two main type of IDSs: Signature based IDS and

Anomaly Based IDS [170]. Typically, Anomaly Detection systems (ADSs) have the

advantage of detecting both known attacks and unknowns/new attacks/abnormalities

in the systems [170, 171]. The idea of ADSs is to learn the normal behavior of a sys-

tem such that anything outside learned normal behavior is detected as an anomaly.

The majority of ADSs are trained using only data coming from normal class/behavior.

Therefore, it does not require expensive data labeling process (time-consuming, costly,

and requires expertise in data) [27]. Further, ADSs can be developed with an abun-

dance of unlabelled data generated in real-world systems. Out of widely used NN

architectures for ADS development, Autoencoders (AE) has gained much attention.

The reasons for this include many advantages of AEs such as in-build anomaly de-

tection capability, can be trained with unlabelled data, scalability, feature extraction

and dimentionality reduction capability. Therefore, in this work, we are developing a

RAE based ADS.

Trustworthy AI is a widely discussed topic when applying NNs for mission-

critical infrastructures. Despite the performance benefits of NNs, people hesitate

to trust these systems. The main reason for this is the difficulty of understanding the

decision-making process of the AI models, making these systems black-box models

[4]. It is crucial to address these trust-related issues to build trust between humans

and these AI systems. By addressing these issues, the Trustworthy AI research area

has emerged. One main component of Trustworthy AI is the Explainability or Inter-

pretability of AI systems (XAI). XAI aims to provide an understanding of black-box

models, enabling users to question and challenge the outcomes of AI systems. It pro-

113

vides many advantages, including justifying outcomes of AI systems, improving trust

in AI models, model debugging, and diagnosing [172]. Therefore, this work presents

an interpretable ADS developed using RAEs.

This work presents the followings:

1. Feature Extraction: Window based feature engineering approach which uses

a overlapping sliding window of data frames to extract cyber features.

2. Anomaly Detection: ResNet AE based Anomaly Detection System Frame-

work: Framework only used baseline behavior data for learning the normal

behavior of the system, thus any deviation from the baseline are tagged as

anomaly.

3. Explainable Interface: Explanations for anomalous behaviors are generated

by using adversarial machine learning. These explanation helps with under-

standing anomalous behavior, understanding the decision making process of

AE, and distinguishing different types of anomalies.

The presented approach was tested on two benchmark datasets which were pro-

vided by the Hacking and Countermeasures Research Laboratory. This approach was

developed for an ongoing effort with Idaho National Laboratory (INL) for building

ADS for an EV charging system (EVCS). Specifically for EVCSs, RX-ADS can provide

multiple advantages, including understanding root courses of a given anomaly, allow-

ing domain experts to distinguish different types of anomalies and common anomaly

behaviors, and AI model debugging and diagnostics. Further, to the best of the au-

thors’ knowledge, no prior research has been attempted to develop Explainable ADSs

for CAN data.

114

SOF Arbitration
Field

Control
Field

Data
Field

CRC
Field

ACK
Field EOF

Fig. 30. CAN data frame

4.5.1 Background

This section first discusses the Data used for building the presented ADS: CAN

data, a widely used communication protocol for in-vehicle communication. Then, we

discuss the current work on IDSs developed for CAN data. Finally, we discuss the

background of adversarial sample generation and its applications.

4.5.2 CAN Protocol

Controller Area Network (CAN) is the most widely used standard bus protocol

for in-vehicle communication. It enables efficient communication between Electronic

Control Units (ECUs). It is a broadcast-based protocol that allows multi-master

communication, and every node can initiate communication to any other node in

the network. Thus, CAN frames do not contain a destination address unlike other

protocols. In CAN protocol, each ECU is able to sends messages to the vehicle

communication network using data frames [166]. ECUs send frames with their ID

number, and the ECU on destination identifies messages by the sender ID included in

the frame. The collision of messages and data is avoided by comparing the message ID

of the node; the highest priority frame has the lowest ID. CAN is proved to have many

advantages, including reducing wiring cost, low weight, low complexity, and operating

smoothly in an environment where electromagnetic disturbance factors exist [173].

CAN protocol operates with four main types of frames: the data frame, the

remote frame, the error frame, and the overload frame [173]. Most of the commu-

nication happens using CAN data frame. The structure of the CAN data frame is

115

presented in Figure 30, which consists of several common fields that are explained

below [173].

• SOF (Start of Frame): indicates the beginning of the frame.

• Arbitration Field : is composed of message Id and RTR (Remote Transmission

Request) bit. Depending on RTR state the frame will be identified as data or

remote frame. During communication frames are prioritized using the ID of the

frame.

• Control Field : sends the data size

• Data Field : the actual data that node wants to send using a data frame, this

field can have 0-64 bits.

• CRC Field : contains 15-bit checksum that is used for error detection

• Ack Field : is used to acknowledge that a valid CAN farme was received by

sending a dominant state.

• EOF (End of Frame): indicates the ending of the frame

4.5.3 Anomaly detection using CAN data

Modern vehicles highly rely on ECU communication. Thus CAN has become

the standard protocol for facilitating the data exchange between ECUs. While CAN

protocol has many advantages, it also has security flaws such as lack of authentication,

vulnerability for various attack vectors, and lack of encryption technologies [174]. In

the last couple of years, there has been a surge in research addressing security and

vulnerabilities of the CAN protocol, most recent work proposes different IDS methods.

This subsection discusses existing IDS work on CAN data, specifically focusing on

neural network methods and feature extraction techniques.

116

To develop CAN IDSs, there are four types of feature extraction approaches that

have been tested in the literature [174]. First, frequency or time-based features where

timing between CAN frames and sequencing of CAN frame IDs were used for devel-

oping CAN IDSs. In [175], the broadcast time interval for each ID within a window

(a discrete, non-overlapping, contiguous set of CAN frames) of CAN frames were

calculated. Similar approach was used in [176], where they calculate the signal co-

occurrence time of IDs to calculate the absolute-error from expectation for identifying

intrusions. Second feature extraction approach is the Payload-based approach, where

message content bits are directly used for building CAN IDSs [174]. Third approach

is the Signal-based approach where message content is decoded into a signal before

feeding into the IDS. For example in [177], payload bits are encoded before feeding

into Neural network architecture for detection intrusions in CAN. Finally, the forth

approach is the Physical side channels approach, where physical attributes such as

voltage and temperature are used to detect intrusions [174, 178]. Other than these

four approaches, some IDSs have used rule based methods where characteristic of

CAN communication was encoded into rules for detecting intrusions [174].

Neural Network (NN) based CAN IDSs are mainly developed by encoding the

characteristics of CAN communication into a set of features and training NN al-

gorithms on these extracted sets of features. The features are extracted to ensure

capturing the normal behavior patterns of CAN bus communication apart from ab-

normalities. For example, in [177], Long Short Term Memory (LSTM) and AE-based

unsupervised IDS was developed for detecting intrusions. This architecture consists

of a neural network architecture where CAN data from each ID type is presented to

its assigned LSTM. The results of LSTM networks are aggregated into AE NN. They

have tested their approach on Synthetic CAN data only. A similar approach was

used in [179] where they used LSTM for detecting anomalies. However, they have

117

not aggregated results of multiple LSTMs using AE. In [180], deep NN-based IDS was

presented, which used Deep Belief Network (DBN) for initial parameter optimization.

This approach is a supervised approach where labeled data was required to build the

IDS. Convolutional Neural Network (CNN) based supervised CAN IDS was proposed

in [181] where they have tested their system on a real CAN data set. They have

directly fed information in CAN frames as features for the training of CNN.

4.5.4 Adversarial Machine Learning

Adversarial samples are generally referred to as malicious input samples designed

to fool machine learning algorithms [182]. These samples are typically created by

adding a slight modification into real data samples, such that the outcome of a ma-

chine learning model for crafted samples will be different than the real sample [169].

Typically, machine learning models are vulnerable to these generated adversarial sam-

ples, resulting in unintended or incorrect outcomes. Generally, adversarial samples

are generated to maximize the impact on the model while minimizing the ability to

identify the adversarial sample apart from a real sample. This ensures by keeping the

adversarial sample inside the domain of valid inputs.

Adversarial machine learning has been widely used for exposing vulnerabilities

in machine learning [169]. The positive or negative impact of adversarial ML depends

on the purpose of the use of these samples. For example, an attacker can use these

samples to gain information on a trained ML model, obtain information on the data

set the model was trained on, and attack a model. These results in possible privacy

invasion, safety failures, data corruption, and model theft [169, 183]. On the other

hand, adversarial machine learning also can be used for improving the performance

of machine learning models. For example, it can be used to eliminate undefined

behaviors of ML models, exploit vulnerabilities, assess model robustness and improve

118

Baseline
Data

Trained ML model

Test Data
with

Anomalies

Anomalous Data
Samples

Modify records into normal
behavior using adversarial

approach

Modified Data
Samples

Interpretable
Interface

Interpretable Anomaly Detection
System

X

X'

Fig. 31. Interpretable Anomaly Detection System Framework

generalization [169, 183, 184, 185]. This work uses adversarial ML to interpret CAN

ADS, which helps with understanding the decision making process of black-box NN

models and helps with NN model debugging and diagnostics.

4.5.5 Interpretable Anomaly Detection System

This work develops an interpretable ADS that generates explanations for identi-

fied anomalies. Figure 31 illustrates the framework of the proposed approach. First,

it trains the ML model using baseline data, i.e., data that represent the normal be-

havior of the system. Then the trained ML model was tested using various abnormal

scenarios. Once it identifies an abnormal sample, these samples are modified using an

adversarial approach, i.e., it performs the minimum modification required to change

the anomalous records (x′) into normal/baseline records (x). The difference between

x and x′ is used to explain the ADS outputs, illustrating the most relevant features

that lead to anomalous behaviors. The individual system components are explained

below.

Data-Driven Machine Learning Model: As discussed in the introduction,

the Autoencoder (AE) NN model was used to learn the normal/baseline behavior

of the system. Specifically, we used deep ResNet AE architecture to avoid possible

119

performance degradation, and easy parameter optimization [27]. AE has an encoder

and decoder, each consisting of multiple hidden layers. Training of the model con-

sists of two stages, the encoding stage, and the decoding stage. The encoding stage

transforms the input data into an embedded representation, whereas in the decoding

stage, the embedded representation is reproduced back to the original input record

(reconstruction). Encoding and decoding functions are non-linear transformation

functions. The loss function (Jθ) of the AE model is computed using the difference

between the input (x) and the reconstruction (x′). Thus reconstruction error of the

AE is calculated as follows,

Jθ =
1

T

T∑
i=1

∥xi − x′i∥2 (4.9)

where xi is the i th input sample, x′i is the reconstruction for ith input sample, θ

denotes the set of parameters of the AE (weights and biases).

During training, AE is trained with data coming from the normal behavior of

the system. Therefore, it only learns the possible normal behaviors of the system.

When unseen records are presented to the trained AE, the amount of reconstruction

error indicates how much the presented data differs from the learned normal behavior.

A threshold value is defined to identify possible anomalies. The data records were

detected as anomalies if the reconstruction error is higher than the defined thresholds

value. Thus, given data record xi is detected as anomaly (y = 1) or normal (y = 0)

as follows,

Jθ,i = ∥xi − x′i∥2 (4.10)

y =

 1 : Jθ,i ≥ th

0 : Jθ,i < th
(4.11)

where Jθ,i is the reconstruction error of ith data record, th denotes the threshold

120

value of reconstruction error, and y represents predicted label: anomaly or not. The

threshold value is optimized based on the training baseline data, i.e., the threshold

value should capture the baseline data boundary, capturing the normal behavior

fluctuations.

Modifying Anomalous Samples: This work uses adversarial Machine Learn-

ing (ML) to understand why a given sample is detected as an anomaly. Explanations

of individual data samples are aggregated to understand different scenarios and how

they are different from each other by identifying what feature changes are prominent

in each scenario. The presented adversarial ML approach aims to understand the

decision boundary of normal data and to understand how abnormal scenarios affects

the system.

The concept of adversarial sample generation was used to find the minimum

modification needed to change the anomalous sample x′ into a normal behavior sam-

ple. This is achieved by finding an adversarial sample x′′ that is detected as normal

sample with the given th while minimizing the distance between abnormal sample x′

and adversarial/modified sample x′′.

min
x′′
∥x′ − x′′∥2 (4.12)

s.t : Jθ,x′′ ≤ th

xmin <= x′′ <= xmax

(4.13)

We constrain the adversarial sample x′′ o be inside the bounds (xmin, xmax).

These bounds are defined using the training data, ensuring that the adversarial sam-

ples are inside the domain of data distribution.

Interpretable Interface: The presented interpretable interface generates ex-

planations for detected anomalies. For calculating explanations, RX-ADS uses the

121

identified anomalous samples as references, then uses Eq 4 and 5 to find the adver-

sarial samples with minimum modifications. Explanations are generated under two

categories:

• Explanations for individual Anomaly Samples: These explanations are

generated by calculating the difference between the anomaly sample and the

closest adversarial sample (x′−x′′) and visualizing it using a bar chart. This bar

chart shows the deviation of the anomaly sample from what the model learned

as normal behavior. Domain experts can analyze these graphs quantitatively

to understand the root courses of a given anomaly.

• Explanations for global anomalous behavior: Explanations generated for

anomalous data records can be aggregated to understand common anomaly

behaviors in the system. It allows domain experts to distinguish different types

of anomalies and common anomaly behaviors.

4.5.6 Feature Engineering Approach

In this work, we present a window-based feature extraction approach. This is

motivated by widely used window-based network flow feature extraction methods in

industrial control ADSs [186]. The main goal of this approach is to extract a set of

features using the messages contained within a defined sized time window. These

features are selected based on the available literature on CAN bus data [187, 166].

These features are extracted to represent the fluctuation in normal behavior compared

to attack/abnormal behaviors in the system. The set of extracted features with their

description is presented in Table 18. All or some of the features are extracted for

each tested dataset.

The sliding window based feature extraction algorithm is presented in Algorithm

122

Table 18. Feature List
Feature Description

no of records Number of CAN messages

no of ids Number of unique CAN message IDs

no of dlc Number of unique CAN message payload lengths

time interval Time interval between messages (minimum, maximum and mean)

no of req msgs Number of request frames

no of res Number of responses

no of lost Number of lost responses

ratio (min, max, mean) Number of messages between request frame and response frame

instant reply count Number of instant reply messages

reply time interval (min, max, mean) Time difference between request frame and corresponding response frame

high priority count/ 0000 Number of high priority messages

no XXXX Number of messages with ID XXXX

payload P1 XXXX Mean payload of signal P1 with ID XXXX

I in Table 19. For each dataset, we used a time window and extracted features using

the CAN data frames within that window. Overlaps between two windows are kept

as half of the window size. In this experiment, window features are extracted using

different time window sizes (winSize). The extracted features were fed into the AE

model for building data-driven ADS.

4.5.7 Experimental setup, Results, and Discussion

The proposed system was tested against two well-studied benchmark datasets

and an electric vehicle charging system dataset provided by INL. Both datasets con-

tain CAN bus data representing normal behavior and several abnormal/attack behav-

iors. This section first describes the training of RX-ADS. Then it discusses RX-ADS

results and discussion for each dataset.

Training of RX-ADS: We experimented with different time window sizes and

different RAE architectures. Since some of the features, such as payload values, can

123

Table 19. Proposed feature extraction method
Algorithm I: Extract features

Inputs: Dataset (X), Time window size (winSize), Possible set of signal IDs (IDList)

Outputs: Window features

1: startT ime = 0

2: listRecords = []← = Initialize a list to store window features

3: endT ime = TimestampoflastrecordofX ← = Store the last timestamp of the dataset

4: % Calculating features for each overlapping time window

5: while startT ime < endT ime do

6: windowMessages← Extract massages from X where timestamp is within range startT ime− (startT ime+ winSize)

7: no of records← Number of messages in windowMessages

8: no of ids← Number of unique IDs in windowMessages

9: no of dlc← Number of unique data length of messages in windowMessages

10: time interval← Minimum/Maximum/Mean timestamp differences of messages in windowMessages

11: no of req msgs← Number of remote frames in windowMessages

12: no of res← Number of response frames in windowMessages

13: no of lost← Number of lost response frames in windowMessages

14: ratio← Number of messages between requests and responses in windowMessages (Minimum, Maximum, Mean)

15: reply time interval← Minimum/Maximum/Mean timestamp differences of requests and responses in windowMessages

16: 0000← Number of high priority messages (ID=0000) in windowMessages

17: no XXXX ← Number of messages with ID = XXXX in windowMessages

18: payload pX XXXX ← Mean signal values of payload signal x from messages with ID = XXXX in windowMessages

19: startT ime+ = (winSize/2)← Calculate start time of next window

20: end while

result in data sparsity. Therefore, L1 regularized RAE architecture was used. Mean

squared error was used as the loss function. A different number of hidden layer sizes

were tested. The observed best anomaly detection performance was reported here.

We divided the window features of baseline/normal data into two sets (train/test)

with a 0.7/0.3 ratio. The data was scaled to the 0-1 range. Once the RAE model is

trained with baseline data, the reconstruction errors on train data were used to define

an error threshold by keeping 99.99% train data within the defined threshold. The

trained RAE’s performance and the threshold were tested on test baseline data and

abnormal scenario data.

124

The presented adversarial approach was used to generate explanations for iden-

tified abnormal data records. First, the minimum modification needed to correctly

detect them as normal records were calculated for the identified abnormal samples

(x0). Then, the explanations are generated by calculating the difference (x0 − x′)

between identified abnormal samples (x0) and the modified/adversarial samples (x′).

This difference shows the deviation of the abnormal records from what the model

considers as normal behavior of the system. Explanations are generated for different

abnormal scenarios separately to compare and distinguish properties of different ab-

normal behaviors (Ex Dos vs. Fuzzy). The explanation can be generated in two ways.

First, they can be generated for a set of abnormal records by calculating the average

deviation. These aggregated results help with distinguishing different types of ab-

normal behaviors. Second, explanations can be generated for an individual abnormal

record, presenting how much it deviates from the learned normal behavior.

4.5.7.1 OTIDS dataset

This benchmark CAN dataset was released by Hacking and Countermeasures

Research Lab (HCRL) [173]. This dataset contains real CAN data collected from a

Kia Soul vehicle in normal behavior as well as during a set of attacks: DoS, Fuzzy, and

impersonate. With the release of this dataset, the authors also proposed an Offset

Ratio and Time interval-based Intrusion Detection System (OTIDS). Their approach

uses offset ratio and time interval of remote frame responses to identify CAN data’s

Dos, Fuzzy, and Impersonate attacks. In this experiment, we used their baseline, DoS

and Fuzzy CAN data to simplify the experiment and compare the explanations. All

the features except payload PX XXXX were extracted for this dataset. This was

performed due to the available domain knowledge on this dataset shows that it is

possible to identify abnormalities by only using remote request and response-based

125

Table 20. RX-ADS anomaly detection comparison with recent literature: OTIDS

dataset

Approach Normal Behavior DoS Fuzzy

HIDS [187] 100% 100% 100%

OCSVM 99.77% 100% 100%

LOF 99.32% 100% 100%

RX-ADS 100% 100% 100%

features. It has to be noticed that this is the only open dataset with remote frames

and responses, such that it is important to experiment on how this information is

essential for anomaly identification.

Anomaly Detection System Performance: We experimented with different

millisecond time windows: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5. We found that when

the time window was too small (< 0.02), the performance of the fuzzy detection

rate was low. Further, the baseline accuracy was reduced if the time window is too

large (> 0.1). The best-observed results were observed for 0.05 milliseconds window

size, which is reported in this section. Table 20 shows the detection performance

of presented RX-ADS compared to recent state-of-the-art IDSs on OTIDS dataset:

Histogram-based approach (HIDS) presented in [187]. We also implement two widely

used anomaly detection algorithms: Local Outlier Factor (LOF) and One-Class SVM

(OCSVM).

It can be seen that RX-ADS shows comparable performance with the state-of-

the-art approach on this dataset.Both HIDS and RX-ADS used window-based feature

exaction methods; however, the Histogram-based approach uses a fixed number of

CAN frames as a window, whereas RX-ADS uses CAN message within a fixed time

window. It has to be noted that the Histogram-based approach uses the K-Nearest

126

Neighbor (KNN) algorithm for performing multi-class classification. Thus it requires

labeled data from all the classes (normal, DoS, and Fuzzy) for training. However, RX-

ADS only requires data from normal class for training which provide an advantage

when dealing with data unlabeling. To the best of our knowledge, none of the IDSs

proposed on the literature for this dataset use an explainable approach. It has to

be noted that the goal of our approach is not only to detect anomalies but also to

interpret the reasons behind anomalies and interpret the decision-making process of

black-box AI models.

Explanation generation: Figure 32 shows the generated explanations for two

types of abnormal/attack behaviors (DoS and Fuzzy). As we discussed before, these

deviations of feature values not only explain the behavior of attacks compared to

normal behavior but also help with distinguishing different types of attacks. To make

the comparison easy, deviations for two types of attacks were presented with the same

scale. Explanations for attack behaviors can be naturally interpreted in the following

manner:

These samples are detected as anomalies (bot DoS and Fuzzy) due to following

reasons (see Fig. 32):

• Higher number of high priority messages with ID 0000

• Higher min/max/mean time interval between remote and response messages

• Higher number of CAN messages between the remote frame and its correspond-

ing response frame (min/max/mean ratio)

• Higher number of lost response messages

• Lower number of instant reply, request, and response messages

• Lower number of unique IDs, number of records, and unique DLC values

127

3 2 1 0 1 2 3 4
no_of_records

no_of_ids
no_of_dlc

min_time_interval
max_time_interval

mean_time_interval
no_of_req_msgs

no_of_res
no_of_lost
min_ratio
max_ratio

mean_ratio
instant_reply_count

reply_min_time_interval
reply_max_time_interval

reply_mean_time_interval
 0000

DoS Attacks

(a) DoS

3 2 1 0 1 2 3 4
no_of_records

no_of_ids
no_of_dlc

min_time_interval
max_time_interval

mean_time_interval
no_of_req_msgs

no_of_res
no_of_lost
min_ratio
max_ratio

mean_ratio
instant_reply_count

reply_min_time_interval
reply_max_time_interval

reply_mean_time_interval
 0000

Fuzzy Attacks

(b) Fuzzy

Fig. 32. Explanations generated for DoS records and Fuzzy records

Related literature on this dataset confirms that the normal state has a very low

lost reply rate, a higher number of instant reply rates, and a very low/zero amount

of high priority messages. Thus, the identified features on attacks match the domain

experts knowledge on this data.

The explanation generated for two types of attacks can be compared against

each other to identify distinguishing features between them. The explanations for

distinguishing two behaviors can be naturally interpreted in the following manner:

128

DoS and Fuzzy attacks affects the system differently based on the following

observations:

• DoS result in a higher number of high priority messages (0000), whereas Fuzzy

does not result in high priority messages with ID 0000

• Min/Max/Mean ratio is higher for DOS due to high priority message commu-

nication.

• No of lost response message rate is higher for DoS.

The explanation generated for two types of attacks also can be used to under-

stand the decision-making process of the model. These identified important features

allow domain experts to question the model, debug the model, and diagnose the

model. These features should be further discussed with domain experts, and possible

improvements should be implemented based on the feedback.

Once adversarial samples are generated, feature value distribution of baseline,

attack, and adversarial records also give insights into how different features behave

under abnormalities. Figure 33 illustrates the feature behavior for selected features

under DoS attacks. It can be seen that many of the identified features deviate from

the baseline behavior with different magnitudes (Orange line). However, generated

adversarial samples (green line) have a much closer feature value distribution than the

baseline (blue line). Feature value distribution during Fuzzy attacks is also presented

in Figure 34, which also shows similar behavior.

4.5.7.2 Car Hacking dataset

This is the most recent dataset released by the Hacking and Countermeasures

Research Lab (HCRL). This dataset contains real CAN data collected from Hyundai

YF Sonata. This dataset contains a baseline data file, a data file with DoS attacks,

129

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0

5

10

15

20

25

30

35

De
ns

ity

no_of_lost
Baseline
DoS
Adversarial

(a) no of lost

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

De
ns

ity

no_of_lost
Baseline
Adversarial

(b) no of lost

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

De
ns

ity

mean_ratio
Baseline
DoS
Adversarial

(c) mean ratio

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

De
ns

ity

mean_ratio
Baseline
Adversarial

(d) mean ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

12

14

De
ns

ity

instant_reply_count
Baseline
DoS
Adversarial

(e) instant reply count

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

De
ns

ity

instant_reply_count
Baseline
Adversarial

(f) instant reply count

Fig. 33. Feature behavior of DoS data and Adversarial data compared to normal be-

havior

a data file with Fuzzy attacks, and a data file with Spoofing attacks. CAN frame

structure is very similar compared to their first released OTIDS dataset. Remote

frames indicators are only included in baseline data; thus, this experiment ignores

remote information bit from CAN frames. Similar to the previous experiment, we

used only baseline, DoS and Fuzzy CAN data to simplify the experiment and compare

the explanations. All the features except payload PX XXXX were extracted for this

dataset. This was performed due to the available domain knowledge confirming that

it is possible to identify intrusions only using timing information and ID frequencies.

This dataset seems to be the most widely used dataset in the CAN IDS literature

[174]. Further, initial data analysis indicated large gaps between CAN frames during

attacks. These analysis also confirms the previous research work on this data [188,

174]. Hence we trimmed attack datasets before using them for the experimentation.

Further, compared to baseline, time intervals between CAN frames are higher during

130

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

De
ns

ity

no_of_lost
Baseline
Fuzzy
Adversarial

(a) no of lost

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

De
ns

ity

no_of_lost
Baseline
Adversarial

(b) no of lost

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

De
ns

ity

mean_ratio
Baseline
Fuzzy
Adversarial

(c) mean ratio

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

De
ns

ity

mean_ratio
Baseline
Adversarial

(d) mean ratio

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

De
ns

ity

instant_reply_count
Baseline
Fuzzy
Adversarial

(e) instant reply count

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

De
ns

ity

instant_reply_count
Baseline
Adversarial

(f) instant reply count

Fig. 34. Feature behavior of DoS data and Adversarial data compared to normal be-

havior

attack communication.

Anomaly Detection System Performance: We experimented with different

millisecond time windows: 0.01, 0.02, 0.03, 0.04, 0.05. When looking at frames within

the window, we observed some differences between normal and attack communica-

tion. When the window size is too small, there are many windows without injected

intrusion frames (During attack communication). However, even without any injected

frames, the window features of CAN frames are different due to the fact that these

windows exist during attacks. Thus, considering these windows as normal windows

is inaccurate. If the time window is too large, the number of records generated from

window based feature extraction decreases. This results in less number of data records

for training. Out of the tested time windows, 0.03 and 0.04 milliseconds gave the best

results. The best-observed results were recorded in this section. Table 21 shows the

detection performance of presented RX-ADS compared to recent state-of-the-art IDSs

131

Table 21. RX-ADS anomaly detection comparison with recent literature: Car Hacking

Dataset

Method Data Accuracy Precision Recall F1

HIDS [187]
DoS 97.28 100 96.2 98.06

Fuzzy 95.17 99.55 94.3 97.18

GIDS [166]
DoS 97.9 96.8 99.6 -

Fuzzy 98.0 97.3 99.5 -

RX-ADS

Baseline

Test
100 - - -

DoS 99.47 99.6 99.74 99.67

Fuzzy 99.19 99.39 99.63 99.51

on Car hacking dataset: Histogram-based approach (HIDA) presented in [187] and

GIDS presented in [166]. We calculate Accuracy, precision, recall, and F1 scores for

comparison purposes with available literature.

It can be seen that the anomaly detection rate of RX-ADS is higher for both DoS

and Fuzzy intrusions compared to other approaches. As we discussed before, RX-ADS

has an advantage over the HIDS approach as RX-ADS does not require labeled data

for training. Further, they have implemented different variants of OCSVM-attack

models for each intrusion, whereas RX-ADS only implements one model. RX-ADS

can use aggregated explanations for distinguishing DoS from Fuzzy intrusions. GIDS

is similar to RX-ADS as they only train on normal data. GIDS requires converting

CAN data into image format for training [166]. Thus it is a complex and expensive

pre-processing step compared to the simple window-based feature extraction used

in RX-ADS. The major advantage of RX-ADS is the model interpretability, making

domain experts verify model outcomes and debug and diagnose when necessary.

132

0 100 200 300 400 500 600 700 800

no_of_records

no_of_ids

no_of_dlc

min_time_interval

max_time_interval

mean_time_interval

high_priority_msgs

high_0000_msgs

odd_id_msgs

DoS

(a) DoS

0 100 200 300 400 500 600

no_of_records

no_of_ids

no_of_dlc

min_time_interval

max_time_interval

mean_time_interval

high_priority_msgs

high_0000_msgs

odd_id_msgs

Fuzy

(b) Fuzzy

Fig. 35. Explanations generated for DoS records and Fuzzy records for Car Hacking

Dataset

Explanation generation: Figure 35 shows the generated global explanations

for two types of abnormalities (DoS and Fuzzy). It can be seen that some features

highly deviated during abnormal behaviors compared to baseline. Further, there

is a clear difference between the two abnormal behaviors. Explanations for attack

behaviors can be naturally interpreted in the following manner:

• DoS: Compared to baseline, there are more frames with ID 0000 and odd IDs

133

during DoS attacks. Further, the mean time interval between frames is higher

during DoS attacks.

• Fuzzy: Compared to baseline, a higher number of unique ID frames can be seen

during Fuzzy attacks. The mean time interval between frames is also higher

during the Fuzzy attacks. The number of odd ID frames is also higher.

We can also compare the behaviors between two attacks for distinguishing unique

behaviors of them. DoS and Fuzzy attacks affect the system differently based on the

following observations

• During attack behaviors, both Fuzzy and DoS shows a higher number of odd

ID frames (frame with IDs that have not been encountered during baseline

behavior). However, during DoS, these are mainly are coming from frames with

ID 0000, whereas in Fuzzy, these are not high priority frames. These are coming

from random IDs which haven’t encounter during baseline behavior.

• Mean time interval between frames is higher for both compared to baseline.

However, the Fuzzy attack shows the highest mean time interval than DoS.

• Number of unique IDs is very high during fuzzy attacks compared to DoS.

Related literature on this dataset confirms the above-discussed behavior. For

example, normal communication has a very low number of high-priority messages. In

addition, the Fuzzy attacks result in CAN frames with random IDs which have not

been encountered during baseline behaviors. During DoS, the number of high-priority

messages with ID 0000 is higher compared to baseline and Fuzzy attacks. Both attacks

result in fewer frames within a time window. This happens because, during attacks,

it generates high-priority messages or spoofs random messages. These high-priority

134

0 5 10 15 20

no_of_records

no_of_ids

no_of_dlc

min_time_interval

max_time_interval

mean_time_interval

high_priority_msgs

high_0000_msgs

odd_id_msgs

Normal

Fig. 36. Normal Communication during Intrusions (DoS)

frames and other attack frames can have multiple effects, such as packet collisions and

paralyzing the functions of a vehicle resulting in delays or even suspension of other

messages [173]. Therefore, the mean time interval between frames is higher compared

to the baseline. These may be due to the CAN frame collisions and paralyzing the

functions of a vehicle resulting in delays, or even suspension of other CAN messages

[173].

Figure 36 shows the explanations generated for normal communication frames,

which are in-between attack behaviors. Even though these samples do not have

injected attack frames, the overall communication pattern of these windows was sig-

nificantly different from the baseline. Thus, the error threshold value was increased

to detect these windows as normal windows. This can also be used as a similar

filtering method to detect windows without injected frames within attacks (a simi-

lar filtering approach was proposed in HIDS). These normal windows during attack

communication are expected to be different from baseline communication as attack

behaviors result in pre and post-effects in the systems, resulting in deviations from

the baseline behavior. These deviations seem to mainly result from higher mean time

135

intervals between frames. Further, the number of unique IDs and DLC values seems

low compared to the baseline. This matches domain experts’ knowledge: attack com-

munication results in a latency of CAN frames. These features need to discuss with

domain experts.

4.5.8 Contribution 2 b): Findings, Discussion, and Future Work

This subsection presented an approach (RX-ADS) for generating explanations

for abnormal behaviors in CAN protocol communication. The ResNet Autoencoder

model was used to learn the baseline/normal behavior from the CAN communication

data. The reconstruction error threshold of ResNet Autoencoder was used to distin-

guish abnormal behaviors. The explanation generation method uses an adversarial

sample generation approach for identifying the deviation of abnormal behavior from

learned baseline behavior. This is achieved by finding the minimum modification re-

quired to covert abnormal samples to normal samples. These modifications are used

to identify, visualize and explain the relevant feature behaviors for abnormalities. The

approach was tested on two widely used benchmarks CAN datasets released by the

Hacking and Countermeasures Research Lab.

RX-ADS detected abnormalities in the two benchmark CAN protocol datasets

and showed comparable performance compared to the current work on these two

datasets. Further, the proposed approach is able to explain the abnormal behav-

iors of the intrusions matching the expert knowledge. The relevant features found

by the presented approach helped with distinguishing between different abnormal

behaviors. Experimental results showed that the presented RX-ADS methodology

provided insightful and satisfactory explanations for the selected datasets. In future

work, the proposed approach will be extended to add physical features for providing

more holistic abnormal behavior detection in EV infrastructure.

136

4.6 Contribution 2: Chapter Summary

This chapter presents the second contribution of the dissertation ”Improving

and Interpreting Autoencoder Neural Networks”. This contribution consisted of two

sub-contributions: a) A deep Autoencoder based framework for unsupervised feature

learning and deep embedded clustering with improved robustness to network depth,

and b) Interpreting Autoencoders for anomaly detection.

Under the first sub-contribution, a ResNet Autoencoder based deep neural

network framework was presented for both unsupervised feature learning based

classification and deep embedded clustering. The framework allows making deeper

neural networks while not sacrificing its dimensionality reduction based feature learn-

ing performance. This framework allows users to design a fewer number of experi-

ments knowing that larger networks will not affect the network performance, espe-

cially when dealing with unlabelled data where the optimal network size is challenging

to decide. Thus, this framework has the advantage of easy optimization of Deep Au-

toencoders for unsupervised feature learning and deep embedded clustering tasks.

The presented framework was tested with three widely used Deep NN benchmarking

datasets. The empirical result showed that the proposed framework showed signifi-

cantly less performance degradation of the above tasks compared to just using Deep

Autoencoders.

Under the second sub-contribution, the presented framework was used for de-

veloping an interpretable Anomaly Detection System (RX-ADS). This sub

contribution first introduced a time window-based cyber feature extraction method

for CAN protocol data. The proposed method was tested on two benchmark CAN

datasets, and the results showed that the presented RX-ADS methodology provided

insightful and satisfactory explanations for the selected datasets. These explanation

137

helps with understanding anomalous behavior, understanding the decision-making

process of AE, and distinguishing different types of anomalies. In future work, the

proposed approach will be extended to add physical features for providing more holis-

tic abnormal behavior detection in Electric Vehicle infrastructure.

138

CHAPTER 5

DISCUSSION AND FUTURE RESEARCH DIRECTIONS

This section discusses the possibility of using existing terms and concepts of XAI in

unsupervised machine learning approaches, application areas of eXplainable Unsu-

pervised Machine Learning (XUnML), and possible future research directions.

5.1 Towards XAI in Unsupervised Machine Learning

As we discussed before, existing explainable AI mainly concentrates on supervised

algorithms and is composed of many overlapping terms and concepts. Therefore, it is

essential to explore how these existing concept of XAI fits the unsupervised learning

domain. Here we discuss our view on mapping from existing XAI concepts to the

unsupervised domain.

Intrinsic or Extrinsic: The Intrinsic or Extrinsic model concepts can be used

as it is in the domain of unsupervised learning. For example, unsupervised models

like Principle Component Analysis visualized with two or three dimensions can be

considered as an Intrinsic interpretable model. Association rule mining techniques

can be considered as intrinsic models as they generate rules based on the conditions

specified by the user. These conditions can utilize for generating interpretations.

Unsupervised models like Mean Clustering go under Extrinsic interpretable models

as they need external interpretation models after training to achieve interpretability.

Model Specific and Model Agnostic: The terms Model Specific and Model

Agnostic can also be used as it is in the unsupervised domain. Small decision trees

are one such example of Models Specific interpretable model as the splitting crite-

139

ria used to explain decision trees are restricted to decision tree algorithms. Some

existing agnostic models can be used to explain existing unsupervised clustering ap-

proaches. Typically, model agnostic models require labels on data records to achieve

interpretability. We can use the cluster labels generated through unsupervised clus-

tering algorithms as dummy labels to existing model agnostic methods. However,

this area of research is still at a primitive stage.

Local Interpretability and Global Interpretability: In the unsupervised

domain, Local Interpretability can be used to explain how a specific data point belongs

to a given cluster or how to change the cluster label of a data point by changing

its feature values. In auto-regressive modeling, we can present what features of the

previous data records lead to predicting future data records. TheGlobal interpretation

can be defined as generating explanations on why a set of data points belongs to a

specific cluster, the important features that decide the similarities between points

within a cluster, and the feature value differences between different clusters.

Feature Summary Statistics: Methods used in the supervised domain to

present the result of interpretation models can also be mapped to the unsupervised

domain. For example, important feature summary statistics can be presented using

different visualization mediums such as bar charts, tabular format, and linguistic

explanations for clustering tasks. Model internal values such as cluster centers of

K-Means clustering can be used as a general representation for the data distribution.

5.2 Application areas of XUnML

In this section, we discuss how to use XUnML, specifically interpretable SOMs

and interpretable AEs for specific requirements of CPSs.

Trustworthy AI Artificial Intelligence (AI) nowadays influences all the areas of

day to day human activities with the state-of-the-art performance in many areas in-

140

cluding health [55], industry [2], natural language processing [55], space exploration

[55] and science [80]. Despite their tremendous benefits, many people hesitate to

trust AI-based systems due to the black box behaviors, which makes it difficult to

get insight into their internal decision-making process [50]. In order to build trust

between AI systems and humans, it is essential that AI systems answer the following

questions, Why did you do that?, Why not something else?, When do you succeed?,

When do you fail?, When can I trust you?, How do I correct an error?. To ad-

dress these trust related issues, the research area of Trustworthy AI was introduced

recently. Trustworthy AI aims to strengthen human trust in AI systems, allowing

humans and societies to develop, deploy, and use AI systems without fear and doubt.

Many respectful academic and non-academic organizations define trustworthyness as

combination of diverse research areas which includes fairness, robustness, explain-

ability, accountability, verifiability, transperency, and sustainability of AI systems.

Therefore, the proposed approaches contribute to one main area of trustworthy AI:

the transparency and explainability of AI systems.

Safety and Security: One of the main challenges of CPSs is maintaining safety

and security of CPSs. Many modern critical infrastructures have CPSs at their core.

Therefore, these systems are highly vulnerable to various attack vectors. Conse-

quently, maintaining the safety and security of CPSs is a primary focus. One ap-

proach is to develop data-driven ML-based Anomaly Detection Systems (ADSs) to

ensure the security of CPSs. Typically, for developing ADSs, data-driven ML algo-

rithms require collecting data that represents the normal behavior of CPSs. SOMs

can be trained with normal data records for this task and identify possible natural

clusters (different normal behaviors) and interpretations for each cluster. The domain

expert can analyze SOM based explanation to decide whether the collected data rep-

resent all status of the normal behavior, what are the dominant natural status in the

141

system, what features are dominant in each cluster, and the amount of data record

distribution among identified normal status are good enough to train ML algorithms.

Interpretable AEs also can use to train ADS by using only with normal behaviors.

Proposed RX-ADS can use to identify abnormal behaviors, normal behaviors, and

explanations for different behaviors. This information allows domain experts to take

necessary actions such as attack identifications, root course identification, attack lo-

calization, avoiding possible data biases, improving resilience, and reducing the data

dimension.

Strategic planning: Today, many large companies need sales strategies tar-

geting different customer groups, which is essential for developing customized sales

strategies targeting customer satisfaction and profit increase. Clustering is a widely

used approach for discovering customer groups in companies. SOM and DEC can

be used to identify cluster groups; then, cluster explanations can determine why a

set of customers belongs to a specific cluster. Domain experts can use generated

global explanations and evaluate whether the cluster explanations are meaningful or

proceed with possible clustering method improvements. These identified meaningful

explanations can be used towards building marketing strategies targeting meaningful

customer clusters. Further, local explanation allows for analyzing individual cus-

tomers and provides customer-specific customization.

Generalizability: Lack of generalizability is one main problem in CPS as data-

driven ML models mode for one system may not be useful to other CPSs even when

both have many similarities. One approach is to retrain and re-purpose models used

within one CPSs to another by using pre-trained ML models. SOMs can be used

as pre-trained models as SOM can arrange their neuron weights to represent the

input data distribution. Therefore, a trained SOM for one task can be used and

retrained efficiently for another similar task. Deep AEs are also widely used neural

142

network models for transfer learning as they can be trained with rich data sources and

can be used in target tasks with less amount of data. However, to use pre-trained

models effectively, it is essential to evaluate whether the trained models represent

meaningful clusters and feature representations. Therefore, presented explainable

methods provide a way to evaluate these models and get insights into how they will

behave on unseen scenarios.

Real-time Operations: In CPSs, a large amount of high-dimensional data is

generated at a rapid speed. For example, in power grids, large volumes of readings

come from physical components of the system (voltages, currents) and cyber compo-

nents (network flow features such as packet rate, payload size, flag). When it comes

to high-dimensional data, training ML algorithms can be very costly: generating out-

comes from real-time high-dimensional data can be computationally expensive, and

storing data can be difficult due to large volumes. Further, it can be impossible

to perform real-time processing of these vast volumes of data generated at a rapid

speed. In such situations, feature learning is beneficial as it reduces the dimension of

input feature space, reducing the number of computations in downstream ML tasks.

Further, it reduces the storage requirements for storing data. SOM-based global ex-

planations can be used to identify feature correlations in these situations as it shows

how different features values change across clusters. Thus, domain experts can iden-

tify and remove highly correlated features, resulting in low dimensional feature spaces.

AEs are also used widely as a dimensionality reduction technique, resulting in low

computational costs in downstream machine learning tasks. Further, the scalability

of AEs is also an advantage as they scale well with the increase of the data due to

their data compression capability. Consequently, reducing the storage requirements

and computational cost of downstream ML tasks.

Model debugging and diagnostics: The developed AI system should be able

143

to provide a general understanding of the system, which enables those adversely

affected by the system to question and challenge its outcomes. This includes im-

plementing methods that enable users to understand the outcomes of the AI system

plainly and easily. The presented interpretable techniques for SOM based cluster-

ing and AE based anomaly detection allows users to understand what features these

models depend on, some insights into feature importance, and the decision-making

process of these algorithms. Therefore, which allows domain experts and machine

learning experts to evaluate these models on whether ML models predict the right

outcomes for the right reasons, when they can fail, why they fail, and take necessary

actions to debug and diagnose ML models.

5.3 Research Directions in Explainable Unsupervised Machine Learning

As we discussed in the background, the traditional concept of UnML was mainly

limited to the idea of exploratory data analysis and dimensionality reduction. How-

ever, this era of big data and advancements of Deep Neural Networks has given much

broader perspective to traditional UnML. Currently, UnML is used in many areas

including generative modelling [19], dimentionality reduction [18], feature learning

[23], and auto-regressive modelling [21, 20]. This subsection discuss some of these

concepts and how explainable AI could help with them.

Transfer Learning: Unsupervised learning can be very successfully used for

Transfer Learning [189]. The concept here is to perform representation learning (fea-

ture learning or self-taught learning) on a data-rich source to transfer that learned

knowledge to an under-resourced target task [190]. In computer vision, this pre-

trained model concept is widely used to learn generic features from high-resource

datasets like ImageNet and then fine tune the models on other image classification

tasks. The availability of unlabeled data is abundant. Thus, applying UnML can

144

greatly help other target tasks such as classification and regression. Incorporating

XUnML help human users to understand the UnML models and their outcomes ef-

fectively, allowing better utilization of learned knowledge from these rich data sources.

Unsupervised Generative learning: Unsupervised Generative learning is

typically used for generating new data samples from a learned representation from

unlabeled data [30]. These learned distributions are used to find good representations

for large data sets and deal with missing data. Recently, they are also using these

models for performing Exploratory Data Analysis and Representation Learning [191].

Specialty, exploratory data analysis plays a significant role in this era of big data as

learning hidden structures from large volumes and revealing inconsistencies in data

such as corrupted data, missing data, and redundancies of data [191]. Thus, perform-

ing these techniques and communicating the learned knowledge through XUnML to

humans is essential.

Qualitative and Quantitative Analysis: It is crucial to notice that qualitative

and quantitative analysis in unsupervised explainable models can be problematic. The

main reason for this is that many existing model evaluation methods require some

prior knowledge/data labels. In the unsupervised domain, prior knowledge of data is

not available. Further, as described in the previous section, available unsupervised

quality metrics are not explainable. Therefore, new evaluation mechanisms should be

developed for XUnML methods.

Human study is a classic evaluating mechanism for XAI approaches, where

machine learning experts apply the UnML method to a real-world application and

provide global/local explanations to domain experts/users using appropriate visu-

alization methods (Application-level evaluation). Domain experts can qualitatively

evaluate explanations on whether the learned clusters represent some important sim-

ilarities (human-level evaluation) or whether the model depends on correct features

145

for predicted outcomes. Therefore, it is important to focus on researching the effec-

tiveness of human studies in XAI applications.

Model fidelity: Another approach is to use model fidelity which evaluates how

truthfully the explanation represents the underlying model [192]. Model fidelity of

UnML can evaluate by using the information on important subsets of features [193]s.

These features can be perturbed, removed, or weighting can be used to get some

notion of the truthfulness of features for the decision-making process on a model.

For example, model faithfulness of clustering can be evaluated by checking how the

cluster label changes when changing the feature values of data samples (quantita-

tive). In unsupervised machine learning, these approaches are not adequately dis-

cussed/experimented within the literature. Thus, there is a research gap in using

model fidelity not only in UnML but also using them in XUnML.

Human Readiness Levels: Another effective approach for evaluating XUnML

is using Human Readiness Levels which is a technique that enables evaluating, track-

ing, and communicating the readiness of a system to human use. The majority of

AI systems are only focused on Technology readiness levels, which does not focus

enough on the human-ware or users of the system [194]. Therefore, it is crucial to

evaluate these generated explanations based on experts’ opinions encouraging human

involvement for the development stage of XUnML system.

Human-in-the-loop XAI: The concept of Human-in-the-loop XAI system is al-

ready exist in the literature [195]. However, the existing work is mainly domain/application-

specific. Thus, it will be interesting to focus on the Human-in-the-loop XUnML

system, exploring: how to effectively communicate the knowledge extracted from un-

labeled data to domain experts using XUnML, and how to integrate domain experts

knowledge back into XUnML systems.

Uncertainty quantification is also can be used to improve the explanation gen-

146

eration approaches. They can be used to provide additional security and minimize the

risk of wrongful explanations generated from an AI system for many possible reasons,

including unseen data, data drifts, data biases, model biases, misleading/noisy data,

and possible attacks. This gives additional assurance to users on an XAI system.

Bias is a frequently addressed topic in the machine learning community. Bias

in machine learning can exist in many shapes and forms, such as data biases (ex:

measurement biases, representation biases, data processing biases), algorithmic biases

(ex: algorithmic design choices related biases), and user biases (ex: user interaction

biases and evaluation biases). Interpretable unsupervised machine learning can be

used to address some forms of Bias in ML models. Unsupervised models that perform

clustering and dimensionality reduction can be used to eliminate data biases, revealing

what such data actually represents (data clusters), how clusters are different, and how

clusters are correlated/overlapped. Thus, using the global and local explanations,

users can understand which features the model depends on, feature behaviors on

different clusters, and what features drive the model decisions. This information

allows machine learning experts and domain experts to understand what the training

data represents, helping them preprocess data appropriately to improve the data

quality, hence reducing data biases.

Benchmark datasets with domain knowledge: Current research commu-

nity has access to millions of benchmark datasets representing different domains.

The majority of these datasets contain data labels. However, these datasets do not

have comprehensive domain knowledge descriptions included with them. These do-

main knowledge descriptions can include information such as system details, common

properties of each class, distinguishing properties of classes, and information from do-

main experts on possible system behaviors and how they can be represented within

data. Therefore, it limits the research advancements in XAI, as once the explanations

147

are generated, one of the very accurate ways of evaluating these XAI outcomes is by

comparing with the domain knowledge of the dataset.

148

CHAPTER 6

CONCLUSIONS

This chapter summarizes the objectives, contributions, conclusions, and possible fu-

ture research directions of this dissertation.

Real-world systems generated a massive amount of unlabeled data at a rapid

phase, limiting the use of supervised Machine Learning (ML) algorithms. Further,

even with the tremendous success of ML models, their black-box nature makes humans

not trust ML models. Therefore, the objective of this dissertation is to improve and

interpret unsupervised neural networks.

In this dissertation, improving unsupervised neural networks refers to improving

the feature learning capability of unsupervised neural networks, whereas interpreting

unsupervised neural networks refers to developing techniques to explain the underline

decision-making process of these algorithms effectively. This dissertation focus on two

unsupervised learning algorithms, Self Organizing Neural Network and Autoencoder

Neural Network. Thus, this dissertation provided two main contributions, each with

two sub-contributions;

1. Contribution 1: Improving and Interpreting Self Organizing Neural Network

(SOM)

(a) A novel unsupervised Self Organizing Neural Network architecture for

learning features of different resolutions in parallel layers: improve clas-

sification accuracy and generalizability

(b) A novel technique for interpreting Self Organizing Neural Network algo-

149

rithm for unsupervised clustering

2. Contribution 2: Improving and Interpreting Autoencoder (AE) Neural Net-

works

(a) A deep Autoencoder Neural Network based framework for unsupervised

feature learning and deep embedded clustering: improve robustness to

network depth

(b) A novel technique for interpreting deep Autoencoder based framework for

anomaly detection

Contribution 1: Improving and Interpreting Self Organizing Neural

Network (SOM)

Under the contribution 1 a), we developed a novel Enhanced Deep Self-organizing

Map (E-DSOM) architecture that can perform unsupervised learning of features of

different resolutions in parallel layers. The proposed DSOM architecture enhances

the performance of existing Deep SOM (DSOM) architecture in two ways: 1) the

learning algorithm is completely unsupervised, and 2) the architecture learns features

of different resolutions in parallel in a single hidden layer. E-DSOM was tested on

three datasets and compared with DSOM. E-DSOM outperformed DSOM in terms

of classification accuracy with improvements of up to 15%. Generalization capability

was tested by adding noise to test data. E-DSOM outperformed DSOM at all noise

levels (barring one instance with comparable results), evidencing better generalization

capability. E-DSOM also showed improved computational time by gaining the same

or better classification accuracy with a shallower model. E-DSOM showed training

time improvements up to 19%. Therefore, the empirical results evidenced that the

presented architecture showed improved performance compared to the DSOM archi-

tectures in terms of 1) classification accuracy, 2) generalization capability, and 3)

150

training time. Additionally, E-DSOM architecture was compared to other unsuper-

vised algorithms. Empirical results show that E-DSOM algorithms are competitive

and a viable option for unsupervised learning.

Under the contribution 1 b), we presented a novel model-specific explainable

method for the SOM based clustering. Through feature value perturbation, we eval-

uated the model fidelity and showed that the proposed approach identifies the most

important feature used by the decision-making process of SOMs. We showed that the

changing of features values of important features affects the cluster label outcomes

of SOMs. We presented the proposed approach as a strong candidate as an eXplain-

able Unsupervised Machine Learning (XUnML) method by comparing it with current

XUnML methods in terms of model-specific features, limitations, and usability.

As future work for the contribution 1: The presented interpretable SOM-

based clustering approach will be extended to the proposed E-DSOM architecture.

Further, the proposed approaches will be evaluated through a human study and

human readiness level while exploring the proposed approach’s capability for cyber-

physical system applications.

Contribution 2: Improving and Interpreting Autoencoder Neural Net-

work (SOM)

The second contribution consists of sub-contributions: a) A deep Autoencoder

based framework for unsupervised feature learning and Deep Embedded Clustering

(DEC), and b) Interpreting deep Autoencoders for anomaly detection.

Under the contribution 2 a), we introduce a deep Autoencoder neural network

framework for unsupervised feature learning and deep embedded clustering. This

framework consisting of ResNet Autoencoder (RAE) that allows for making deeper

neural networks while not sacrificing its dimensionality reduction-based feature learn-

ing performance and deep clustering performance. In this way, we improve resistance

151

to performance degradation compared to standard Autoencoders (AEs) for feature

learning as well as deep clustering. The performance of RAE on learning deep em-

bedded representations was evaluated on a classification task (using the K Nearest

Neighbors algorithm). RAE was compared against AE while increasing the number of

hidden layers on three benchmark datasets. We demonstrated that RAE showed the

highest accuracy on all three datasets. Both RAE and AE showed performance degra-

dation when increasing the network depth. However, RAE based classification only

showed 0.86% to 2.68% performance degradation, which is significantly lower than

the performance degradation shown by standard AE (33.38% - 65.46%). Further, the

classification accuracy distribution showed that RAE models perform better in terms

of mean accuracy and accuracy variance (low variance), making them more suitable

for deep embedded classification tasks than AE. Further, we compared RAEs with

widely used dimensionality reduction methods and showed that RAE outperforms on

all experimented datasets.

Under DEC, we introduced ResNet architectures into DEC by using Autoen-

coders with residual connections, referred to as RDEC. This modification was made

to improve DEC’s resistance to performance degradation when using deep Autoen-

coders (AEs). RDEC was compared with DEC while increasing the network depth

of both AE and RAE, on the same three benchmark datasets used for RAE based

classification. The empirical result showed that RDEC showed up to 56% of less per-

formance degradation compared to DEC. Further, when comparing the variance of the

clustering accuracy distribution, RDEC outperformed DEC by showing a lower accu-

racy variance. The above empirical results confirmed that RAE reduces performance

degradation of deep embedded representation based classification and DEC. Further,

this framework allows users to design a fever number of experiments knowing that

larger networks will not affect the network performance. This is a major advantage

152

with unlabelled data where the optimal network size is challenging to decide.

Under the contribution 2 b), the presented framework was also used for de-

veloping an explainable Anomaly Detection System - ResNet Autoencoder based eX-

plainable Anomaly Detection System (RX-ADS). RX-ADS was developed to detect

anomalies in the CAN bus protocol, which is the standard communication protocol

for in-vehicle communication. The ResNet Autoencoder framework was used to learn

the baseline/normal behavior from the data. The reconstruction error threshold was

used to distinguish abnormal behaviors. The explanation generation method uses

an adversarial sample generation approach for identifying the deviation of abnormal

behavior from learned baseline behavior. This is achieved by finding the minimum

modification required to covert abnormal samples to normal samples. These mod-

ifications are used to identify, visualize and explain the relevant feature behaviors

for abnormalities. The approach was tested on two widely used benchmarks CAN

datasets released by the Hacking and Countermeasures Research Lab: OTIDS and

Car Hacking.

RX-ADS detected abnormalities in the two tested datasets and showed compa-

rable performance compared to the current work on these two datasets. Further,

the proposed approach is able to explain the abnormal behaviors of the intrusions

matching the expert knowledge. The relevant features found by the presented ap-

proach helped with distinguishing between different abnormal behaviors. Experimen-

tal results showed that the presented RX-ADS methodology provided insightful and

satisfactory explanations for the selected datasets. This work was funded by Idaho

National Laboratory (INL). The presented RX-ADS is currently being transitioned

to testbed at Idaho National Laboratory.

As future work for contribution 2, we will perform a comparative analysis

of feature learning and RDEC using variants of AEs with residual connections and

153

other widely used clustering methods. Further, the proposed RX-ADS approach will

be extended to add physical features for providing more holistic abnormal behavior

detection in EVCS communication.

154

Appendix A

ABBREVIATIONS

AI Artificial Intelligence

ML Machine Learning

SML Supervised Machine Learning

UnML Unsupervised Machine Learning

XAI Explainable/interpretable Machine Learning

ANN Artificial Neural Network

DNN Deep Neural Network

CPS Cyber Physical System

AE Autoencoder

CNN Convolutional Neural Network

RAE ResNet Autoencoder

C-RAE Convolutional ResNet Autoencoder

DEC Deep Embedded Clustering

SOM Self Organizing Neural Network

DSOM Deep Self Organizing Map

EDSOM Enhanced Deep Self Organizing Neural Network

RX-ADS ResNet eXplainable Anomaly Detection System

IDS Intrusion Detection System

BMU Best Matching Unit

VDM Visual Data Mining

XUnML Interpretable Unsupervised Machine Learning

155

Appendix B

LIST OF PUBLICATIONS BY THE AUTHOR

This appendix presents a list of the author’s published journal and peer-reviewed

conference publications.

B.1 Journal Publications

• C. S. Wickramasinghe, D. L. Marino, and M. Manic, ”RX-ADS: Inter-

pretable Anomaly Detection method using Adversarial ML for Electric Vehicle

CAN data,” 2022. (Under review in IEEE Transactions on Intelligent Trans-

portation Systems)

• C. S. Wickramasinghe, K. Amarasinghe, D. L. Marino, C. Rieger and M.

Manic, ”Explainable Unsupervised Machine Learning for Cyber-Physical Sys-

tems”, in IEEE Access, vol. 9, pp. 131824-131843, 2021, doi: 10.1109/AC-

CESS.2021.3112397.

• C. S. Wickramasinghe, D. L. Marino, and M. Manic, ”ResNet Autoencoders

for Unsupervised Feature Learning From High-Dimensional Data: Deep Models

Resistant to Performance Degradation”, in IEEE Access, vol. 9, pp. 40511-

40520, 2021, DOI: 10.1109/ACCESS.2021.3064819.

• Chathurika S. Wickramasinghe, Kasun Amarasinghe, Milos Manic, ”Deep

Self-Organizing Maps for Unsupervised Image Classification”, in IEEE Trans-

actions on Industrial Informatics , vol. 15, no. 11, pp. 5837-5845, Nov. 2019,

DOI: doi: 10.1109/TII.2019.2906083, 2018-2019.

156

• D. L. Marino, C. S. Wickramasinghe, B. Tsouvalas, C. Rieger and M. Manic,

”Data-Driven Correlation of Cyber and Physical Anomalies for Holistic System

Health Monitoring”, in IEEE Access, vol. 9, pp. 163138-163150, 2021, doi:

10.1109/ACCESS.2021.3131274.

• D. L. Marino, C. S. Wickramasinghe, V. K. Singh, J. Gentle, C. Rieger

and M. Manic, ”The Virtualized Cyber-Physical Testbed for Machine Learning

Anomaly Detection: A Wind Powered Grid Case Study”, in IEEE Access, vol.

9, pp. 159475-159494, 2021, doi: 10.1109/ACCESS.2021.3127169.

• Vaagensmith B, Kumar Singh V, Ivans R, Marino DL, Wickramasinghe CS,

Lehmer J, Phillips T, Rieger C, Manic M., ”Review of Design Elements within

Power Infrastructure Cyber-Physical Test Beds as Threat Analysis Environ-

ments”, in Energies 2021, DOI: https://doi.org/10.3390/en14051409

• Deepak Kumbhare, Viktoras Palys, Jamie Toms, Chathurika Wickramas-

inghe, Kasun Amarasinghe, Milos Manic, Evan Hughes, Kathryn Lois Hol-

loway, ”Nucleus Basalis of Meynert stimulation for dementia: Theoretical and

Technical considerations”, in Frontiers in Neuroscience 2018, vol. 12, pp.614.

DOI: doi: 10.3389/fnins.2018.00614

B.2 Conference Publications

• C. Wickramasinghe, D. Marino, and M. Manic, “Deep Embedded Clustering

with ResNets”, in Proc. 14th International Conference on Human System In-

teraction, IEEE HSI 2021, Poland, July 8-10. 2021.

• C. Wickramasinghe, D. Marino, J. Grandio, and M. Manic, “Trustworthy AI

Development Guidelines for Human System Interaction”, in Proc. 13th Inter-

157

national Conference on Human System Interaction, IEEE HSI 2020, Tokyo,

Japan, June 6-8. 2020.

• C. Wickramasinghe, K. Amarasinghe, D. Marino, and M. Manic, “Deep Self-

Organizing Maps for Visual Data Mining”, in Proc. 11th International Con-

ference on Human System Interaction, IEEE HSI 2018, Gdansk, Poland, July

04-06, 2018. , DOI: 10.1109/HSI.2018.8430845.

• C. Wickramasinghe, K. Amarasinghe, M. Manic, ”Parallalizable Deep Self-

Organizing Maps for Image Classification” , in Proc. 2017 IEEE Symposium

Series on Computational Intelligence, IEEE SSCI 2017, Honolulu, Hawaii, USA,

Nov, 27- Dec 1, 2017. sDOI: 10.1109/SSCI.2017.8285443.

• D. Marino, C. Wickramasinghe, M. Manic, ”An Adversarial Approach for Ex-

plainable AI in Intrusion Detection Systems”, in Proc. 44th Annual Conference

of the IEEE Industrial Electronics Society, IECON 2018, Washington DC, USA,

Oct. 21-23, 2018. DOI: 10.1109/IECON.2018.8591457

• C. Wickramasinghe, K. Amarasinghe, D. Marino, Z. Spielman, I. Pray, D. Gert-

man, and M. Manic, “Intelligent Driver System for Improving Fuel Efficiency

in Vehicle Fleets”, in Proc. 12th International Conference on Human System

Interaction, IEEE HSI 2019, Richmond VA, USA, June 25-27, 2019.

• C. Wickramasinghe, D. Marino, F. Yucel, E. Bulut, and M. Manic, “Data-

Driven Hourly Taxi Drop-offs Prediction using TLC Trip Record Data”, in

Proc. 12th International Conference on Human System Interaction, IEEE HSI

2019, Richmond VA, USA, June 25-27, 2019.

• C. Wickramasinghe, D. Marino, K. Amarasinghe, M. Manic, ”Generalization of

Deep Learning For Cyber-Physical System Security: A Survey”, in Proc. 44th

158

Annual Conference of the IEEE Industrial Electronics Society, IECON 2018,

Washington DC, USA, Oct. 21-23, 2018.

• K. Amarasinghe, C. Wickramasinghe, D. Marino, C.Rieger, M. Manic, ”Frame-

work for Data-Driven Health Monitoring of Cyber-Physical Systems”, in IEEE

Resilience Week (RW) 2018, Denver, CO, USA, Aug 20-23, 2018.

• M. Stuart, C. Wickramasinghe, D. Marino, D. Kumbhare, K. Holloway, M.

Manic, “Machine Learning for Deep Brain Stimulation Efficacy using Dense

Array EEG”, in Proc. 12th International Conference on Human System Inter-

action, IEEE HSI 2019, Richmond VA, USA, June 25-27, 2019.

• D. Marino, C. Wickramasinghe, C. Rieger, M. Manic, ”Data-driven Stochas-

tic Anomaly Detection on smart-Grid communications using Mixture PoissonD

istributions”, in Proc. 45th Annual Conference of the IEEE Industrial Elec-

tronics Society, IECON 2019, Lisbon, Portugal, Oct. 14-17, 2019.

• Daniel L. Marino, Chathurika S. Wickramasinghe, Kasun Amarasinghe, Hari

Challa, Philip Richardson, Ananth A. Jillepalli, Brian K. Johnson, Craig Rieger,

Milos Manic, ”Cyber and Physical Anomaly Detection in Smart-Grids”, in Proc.

of the IEEE Resilience Week (RW) 2019, San Antonio, TX, USA, Nov 4-7, 2019.

• D. Marino, J. Grandio, C. Wickramasinghe, K. Schroeder, K. Bourne, A.V.

Filippas, and M. Manic, ”AI Augmentation for Trustworthy AI: Augmented

Robot Teleportation”, in Proc. 13th International Conference on Human Sys-

tem Interaction, IEEE HSI 2020, Tokyo, Japan, June 6-8. 2020.

159

REFERENCES

[1] By: IBM Cloud Education. What is Machine Learning? url: https://www.

ibm.com/cloud/learn/machine-learning.

[2] ©[2022] IEEE. Reprinted with permission from Chathurika S. Wickramas-

inghe et al. “Generalization of Deep Learning for Cyber-Physical System Se-

curity: A Survey”. In: IECON 2018 - 44th Annual Conference of the IEEE

Industrial Electronics Society. 2018, pp. 745–751. doi: 10.1109/IECON.2018.

8591773.

[3] Martin Längkvist, Lars Karlsson, and Amy Loutfi. “A review of unsuper-

vised feature learning and deep learning for time-series modeling”. In: Pattern

Recognition Letters 42 (2014), pp. 11–24.

[4] ©[2022] IEEE. Reprinted with permission from Chathurika S. Wickramas-

inghe et al. “Trustworthy AI Development Guidelines for Human System In-

teraction”. In: 2020 13th International Conference on Human System Inter-

action (HSI). 2020, pp. 130–136. doi: 10.1109/HSI49210.2020.9142644.

[5] Explainable Artificial Intelligence (XAI). url: https://www.darpa.mil/

program/explainable-artificial-intelligence.

[6] Sushant Jain et al. “Exploiting Mobility for Energy Efficient Data Collection

in Wireless Sensor Networks”. In: MONET 11 (June 2006), pp. 327–339. doi:

10.1007/s11036-006-5186-9.

[7] J. Shi et al. “A survey of Cyber-Physical Systems”. In: 2011 International

Conference on Wireless Communications and Signal Processing (WCSP). 2011,

pp. 1–6. doi: 10.1109/WCSP.2011.6096958.

160

https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://doi.org/10.1109/IECON.2018.8591773
https://doi.org/10.1109/IECON.2018.8591773
https://doi.org/10.1109/HSI49210.2020.9142644
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/s11036-006-5186-9
https://doi.org/10.1109/WCSP.2011.6096958

[8] Y. Zhang et al. “Optimal Adaptive System Health Monitoring and Diagnosis

for Resource Constrained Cyber-Physical Systems”. In: 2009 20th Interna-

tional Symposium on Software Reliability Engineering. 2009, pp. 51–60. doi:

10.1109/ISSRE.2009.21.

[9] Guangyu Wu, Jian Sun, and Jie Chen. “A survey on the security of cyber-

physical systems”. In: Control Theory and Technology 14 (Feb. 2016), pp. 2–

10. doi: 10.1007/s11768-016-5123-9.

[10] R. Rajkumar et al. “Cyber-physical systems: The next computing revolu-

tion”. In: Design Automation Conference. 2010, pp. 731–736. doi: 10.1145/

1837274.1837461.

[11] S. Vashi et al. “Internet of Things (IoT): A vision, architectural elements, and

security issues”. In: 2017 International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC). 2017, pp. 492–496. doi: 10.1109/I-

SMAC.2017.8058399.

[12] Anonymous. Cyber-Physical Systems. Oct. 2020. url: https://ec.europa.

eu/digital-single-market/en/cyber-physical-systems.

[13] Cyber-Physical Systems (CPS). url: https://www.nsf.gov/pubs/2021/

nsf21551/nsf21551.htm.

[14] Kristy.thompson@nist.gov. Cyber-Physical Systems. Nov. 2019. url: https:

//www.nist.gov/el/cyber-physical-systems.

[15] Aishwarya Mujumdar and V. Vaidehi. “Diabetes Prediction using Machine

Learning Algorithms”. In: Procedia Computer Science 165 (Jan. 2019), pp. 292–

299. doi: 10.1016/j.procs.2020.01.047.

161

https://doi.org/10.1109/ISSRE.2009.21
https://doi.org/10.1007/s11768-016-5123-9
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1109/I-SMAC.2017.8058399
https://doi.org/10.1109/I-SMAC.2017.8058399
https://ec.europa.eu/digital-single-market/en/cyber-physical-systems
https://ec.europa.eu/digital-single-market/en/cyber-physical-systems
https://www.nsf.gov/pubs/2021/nsf21551/nsf21551.htm
https://www.nsf.gov/pubs/2021/nsf21551/nsf21551.htm
https://www.nist.gov/el/cyber-physical-systems
https://www.nist.gov/el/cyber-physical-systems
https://doi.org/10.1016/j.procs.2020.01.047

[16] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. “A review of su-

pervised machine learning algorithms”. In: 2016 3rd International Confer-

ence on Computing for Sustainable Global Development (INDIACom). 2016,

pp. 1310–1315.

[17] Tammy Jiang, Jaimie L. Gradus, and Anthony J. Rosellini. “Supervised Ma-

chine Learning: A Brief Primer”. In: Behavior Therapy 51.5 (2020), pp. 675–

687. issn: 0005-7894. doi: https://doi.org/10.1016/j.beth.2020.

05.002. url: https://www.sciencedirect.com/science/article/pii/

S0005789420300678.

[18] A.A. Mohamed. “An effective dimension reduction algorithm for clustering

Arabic text”. In: Egyptian Informatics Journal (2019).

[19] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neu-

ral Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran

Associates, Inc., 2014, pp. 2672–2680.

[20] Ian J. Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”.

In: CoRR abs/1701.00160 (2017).

[21] Pauline Luc et al. “Predicting Deeper into the Future of Semantic Segmenta-

tion”. In: Oct. 2017, pp. 648–657.

[22] Guang-yong Chen, Min Gan, and Guo-long Chen. “Generalized exponential

autoregressive models for nonlinear time series: Stationarity, estimation and

applications”. In: Information Sciences 438 (2018), pp. 46–57.

[23] Elie Aljalbout et al. “Clustering with Deep Learning: Taxonomy and New

Methods”. In: arXiv e-prints, arXiv:1801.07648 (Jan. 2018), arXiv:1801.07648.

162

https://doi.org/https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/https://doi.org/10.1016/j.beth.2020.05.002
https://www.sciencedirect.com/science/article/pii/S0005789420300678
https://www.sciencedirect.com/science/article/pii/S0005789420300678

[24] Memoona Khanam et al. “A Survey on Unsupervised Machine Learning Al-

gorithms for Automation, Classification and Maintenance”. In: International

Journal of Computer Applications 119 (June 2015), pp. 34–39. doi: 10.5120/

21131-4058.

[25] Steffen Schneider et al. wav2vec: Unsupervised Pre-training for Speech Recog-

nition. 2019. arXiv: 1904.05862 [cs.CL].

[26] Feng Wang et al. Unsupervised Representation Learning by InvariancePropa-

gation. 2020. arXiv: 2010.11694 [cs.CV].

[27] ©[2022] IEEE. Reprinted with permission from C. S. Wickramasinghe, D. L.

Marino, and M. Manic. “ResNet Autoencoders for Unsupervised Feature

Learning From High-Dimensional Data: Deep Models Resistant to Perfor-

mance Degradation”. In: IEEE Access 9 (2021), pp. 40511–40520. doi: 10.

1109/ACCESS.2021.3064819.

[28] Piotr Bojanowski and Armand Joulin. “Unsupervised Learning by Predict-

ing Noise”. In: Proceedings of the 34th International Conference on Machine

Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of

Machine Learning Research. PMLR, June 2017, pp. 517–526. url: http:

//proceedings.mlr.press/v70/bojanowski17a.html.

[29] Krzysztof J. Cios et al. “Unsupervised Learning: Association Rules”. In: Data

Mining: A Knowledge Discovery Approach. Boston, MA: Springer US, 2007,

pp. 289–306. isbn: 978-0-387-36795-8. doi: 10.1007/978-0-387-36795-

8_10. url: https://doi.org/10.1007/978-0-387-36795-8_10.

[30] Zhao-Yu Han et al. “Unsupervised Generative Modeling Using Matrix Prod-

uct States”. In: Phys. Rev. X 8 (3 July 2018), p. 031012. doi: 10.1103/

163

https://doi.org/10.5120/21131-4058
https://doi.org/10.5120/21131-4058
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/2010.11694
https://doi.org/10.1109/ACCESS.2021.3064819
https://doi.org/10.1109/ACCESS.2021.3064819
http://proceedings.mlr.press/v70/bojanowski17a.html
http://proceedings.mlr.press/v70/bojanowski17a.html
https://doi.org/10.1007/978-0-387-36795-8_10
https://doi.org/10.1007/978-0-387-36795-8_10
https://doi.org/10.1007/978-0-387-36795-8_10
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012

PhysRevX . 8 . 031012. url: https : / / link . aps . org / doi / 10 . 1103 /

PhysRevX.8.031012.

[31] Anthony Zador. “A critique of pure learning and what artificial neural net-

works can learn from animal brains”. In: Nature Communications 10 (Dec.

2019). doi: 10.1038/s41467-019-11786-6.

[32] Maryam M. Najafabadi et al. “Deep learning applications and challenges in

big data analytics”. In: Journal of Big Data 2.1 (Feb. 2015), p. 1. issn: 2196-

1115. doi: 10.1186/s40537-014-0007-7. url: https://doi.org/10.1186/

s40537-014-0007-7.

[33] Yoshua Bengio et al. “Greedy Layer-wise Training of Deep Networks”. In:

Proceedings of the 19th International Conference on Neural Information Pro-

cessing Systems. NIPS’06. Canada: MIT Press, 2006, pp. 153–160. url: http:

//dl.acm.org/citation.cfm?id=2976456.2976476.

[34] Ian Goodfellow et al. “Measuring Invariances in Deep Networks”. In: Advances

in Neural Information Processing Systems 22. Ed. by Y. Bengio et al. Curran

Associates, Inc., 2009, pp. 646–654. url: http://papers.nips.cc/paper/

3790-measuring-invariances-in-deep-networks.pdf.

[35] Jürgen Schmidhuber. “Deep Learning in neural networks: An overview”. In:

Neural Networks 61 (2015), pp. 85–117. issn: 18792782. doi: 10.1016/j.

neunet.2014.09.003. arXiv: 1404.7828. url: http://dx.doi.org/10.

1016/j.neunet.2014.09.003.

[36] Mohd Zaki Mas’ud et al. “Analysis of Features Selection and Machine Learn-

ing Classifier in Android Malware Detection”. In: 2014 International Confer-

ence on Information Science & Applications (ICISA) (2014), pp. 1–5. issn:

164

https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://link.aps.org/doi/10.1103/PhysRevX.8.031012
https://link.aps.org/doi/10.1103/PhysRevX.8.031012
https://doi.org/10.1038/s41467-019-11786-6
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-014-0007-7
http://dl.acm.org/citation.cfm?id=2976456.2976476
http://dl.acm.org/citation.cfm?id=2976456.2976476
http://papers.nips.cc/paper/3790-measuring-invariances-in-deep-networks.pdf
http://papers.nips.cc/paper/3790-measuring-invariances-in-deep-networks.pdf
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://arxiv.org/abs/1404.7828
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003

2162-9048. doi: 10.1109/ICISA.2014.6847364. url: http://ieeexplore.

ieee.org/document/6847364/.

[37] Basant Subba, Santosh Biswas, and Sushanta Karmakar. “A Neural Net-

work based system for Intrusion Detection and attack classification”. In: 2016

Twenty Second National Conference on Communication (NCC) (2016), pp. 1–

6. doi: 10.1109/NCC.2016.7561088. url: http://ieeexplore.ieee.org/

document/7561088/.

[38] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Computation 9.8 (1997), pp. 1735–1780. issn: 08997667. doi: 10.

1162/neco.1997.9.8.1735. arXiv: 1206.2944.

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016.

[40] Y LeCun and Y Bengio. “Convolutional networks for images, speech, and

time series”. In: The handbook of brain theory and neural networks 3361.April

2016 (1995), pp. 255–258. issn: 1098-7576. doi: 10 . 1109 / IJCNN . 2004 .

1381049. arXiv: arXiv:1011.1669v3. url: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.32.9297%7B%5C&%7Drep=rep1%7B%

5C&%7Dtype=pdf.

[41] Wei Wang, Mengxue Zhao, and Jigang Wang. “Effective android malware de-

tection with a hybrid model based on deep autoencoder and convolutional

neural network”. In: Journal of Ambient Intelligence and Humanized Com-

puting 0.0 (123), p. 0. issn: 1868-5145. doi: 10.1007/s12652-018-0803-6.

url: https://doi.org/10.1007/s12652-018-0803-6.

165

https://doi.org/10.1109/ICISA.2014.6847364
http://ieeexplore.ieee.org/document/6847364/
http://ieeexplore.ieee.org/document/6847364/
https://doi.org/10.1109/NCC.2016.7561088
http://ieeexplore.ieee.org/document/7561088/
http://ieeexplore.ieee.org/document/7561088/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1206.2944
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/IJCNN.2004.1381049
https://doi.org/10.1109/IJCNN.2004.1381049
https://arxiv.org/abs/arXiv:1011.1669v3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1007/s12652-018-0803-6

[42] Bojan Kolosnjaji et al. “Deep Learning for Classification of Malware System

Call Sequences”. In: 9992 (2016), pp. 137–149. doi: 10.1007/978-3-319-

50127-7. url: http://link.springer.com/10.1007/978-3-319-50127-7.

[43] Weibo Liu et al. “A survey of deep neural network architectures and their

applications”. In: Neurocomputing 234.October 2016 (2017), pp. 11–26. issn:

18728286. doi: 10.1016/j.neucom.2016.12.038. url: http://dx.doi.

org/10.1016/j.neucom.2016.12.038.

[44] Weibo Liu et al. “A survey of deep neural network architectures and their

applications”. In: Neurocomputing 234 (2017), pp. 11–26. issn: 0925-2312.

doi: https://doi.org/10.1016/j.neucom.2016.12.038. url: http:

//www.sciencedirect.com/science/article/pii/S0925231216315533.

[45] Ni Gao et al. “An Intrusion Detection Model Based on Deep Belief Networks”.

In: 2014 Second International Conference on Advanced Cloud and Big Data

(2014), pp. 247–252. issn: 2329-6267. doi: 10.1109/CBD.2014.41. arXiv:

arXiv:1011 .1669v3. url: http:/ /ieeexplore.ieee .org/document /

7176101/.

[46] Yuancheng Li, Rong Ma, and Runhai Jiao. “A hybrid malicious code detection

method based on deep learning”. In: International Journal of Security and its

Applications 9.5 (2015), pp. 205–216. issn: 17389976. doi: 10.14257/ijsia.

2015.9.5.21.

[47] David Gunning and David Aha. “DARPA’s Explainable Artificial Intelligence

(XAI) Program”. In: AI Magazine 40.2 (June 2019), pp. 44–58. doi: 10.1609/

aimag.v40i2.2850. url: https://ojs.aaai.org/index.php/aimagazine/

article/view/2850.

166

https://doi.org/10.1007/978-3-319-50127-7
https://doi.org/10.1007/978-3-319-50127-7
http://link.springer.com/10.1007/978-3-319-50127-7
https://doi.org/10.1016/j.neucom.2016.12.038
http://dx.doi.org/10.1016/j.neucom.2016.12.038
http://dx.doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/https://doi.org/10.1016/j.neucom.2016.12.038
http://www.sciencedirect.com/science/article/pii/S0925231216315533
http://www.sciencedirect.com/science/article/pii/S0925231216315533
https://doi.org/10.1109/CBD.2014.41
https://arxiv.org/abs/arXiv:1011.1669v3
http://ieeexplore.ieee.org/document/7176101/
http://ieeexplore.ieee.org/document/7176101/
https://doi.org/10.14257/ijsia.2015.9.5.21
https://doi.org/10.14257/ijsia.2015.9.5.21
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://ojs.aaai.org/index.php/aimagazine/article/view/2850
https://ojs.aaai.org/index.php/aimagazine/article/view/2850

[48] R. Roscher et al. “Explainable Machine Learning for Scientific Insights and

Discoveries”. In: IEEE Access 8 (2020), pp. 42200–42216. doi: 10.1109/

ACCESS.2020.2976199.

[49] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):

Concepts, taxonomies, opportunities and challenges toward responsible AI”.

In: Information Fusion 58 (2020), pp. 82–115. issn: 1566-2535. doi: https:

/ / doi . org / 10 . 1016 / j . inffus . 2019 . 12 . 012. url: https : / / www .

sciencedirect.com/science/article/pii/S1566253519308103.

[50] A. Adadi and M. Berrada. “Peeking Inside the Black-Box: A Survey on Ex-

plainable Artificial Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–

52160. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2870052.

[51] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black

Box Models Explainable. https://christophm.github.io/interpretable-

ml-book/. 2019.

[52] Q. Zhang et al. “An Efficient Deep Learning Model to Predict CloudWorkload

for Industry Informatics”. In: IEEE Transactions on Industrial Informatics

14.7 (2018), pp. 3170–3178.

[53] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. “Density-Connected

Subspace Clustering for High-Dimensional Data”. In: Proceedings of the 2004

SIAM International Conference on Data Mining. 2014, pp. 246–256.

[54] Y. Xu et al. “Industrial Big Data for Fault Diagnosis: Taxonomy, Review, and

Applications”. In: IEEE Access 5 (2017), pp. 17368–17380.

[55] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. en. In:

Nature 521.7553 (May 2015), pp. 436–444.

167

https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1109/ACCESS.2018.2870052
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[56] Long Wen et al. “A New Convolutional Neural Network-Based Data-Driven

Fault Diagnosis Method”. In: IEEE Transactions on Industrial Electronics

65.7 (2018), pp. 5990–5998. doi: 10.1109/TIE.2017.2774777.

[57] Di Wu et al. “A Highly Accurate Framework for Self-Labeled Semisupervised

Classification in Industrial Applications”. In: IEEE Transactions on Industrial

Informatics 14.3 (2018), pp. 909–920. doi: 10.1109/TII.2017.2737827.

[58] FengJi Luo et al. “Advanced Pattern Discovery-based Fuzzy Classification

Method for Power System Dynamic Security Assessment”. In: IEEE Trans-

actions on Industrial Informatics 11.2 (2015), pp. 416–426. doi: 10.1109/

TII.2015.2399698.

[59] Marco Cococcioni, Beatrice Lazzerini, and Sara Lioba Volpi. “Robust Diag-

nosis of Rolling Element Bearings Based on Classification Techniques”. In:

IEEE Transactions on Industrial Informatics 9.4 (2013), pp. 2256–2263. doi:

10.1109/TII.2012.2231084.

[60] H. Akagi. “New trends in active filters for power conditioning”. In: IEEE

Transactions on Industry Applications 32.6 (1996), pp. 1312–1322. doi: 10.

1109/28.556633.

[61] J.R. Stack, T.G. Habetler, and R.G. Harley. “Fault classification and fault

signature production for rolling element bearings in electric machines”. In:

4th IEEE International Symposium on Diagnostics for Electric Machines,

Power Electronics and Drives, 2003. SDEMPED 2003. 2003, pp. 172–176.

doi: 10.1109/DEMPED.2003.1234568.

[62] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2015,

pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

168

https://doi.org/10.1109/TIE.2017.2774777
https://doi.org/10.1109/TII.2017.2737827
https://doi.org/10.1109/TII.2015.2399698
https://doi.org/10.1109/TII.2015.2399698
https://doi.org/10.1109/TII.2012.2231084
https://doi.org/10.1109/28.556633
https://doi.org/10.1109/28.556633
https://doi.org/10.1109/DEMPED.2003.1234568
https://doi.org/10.1109/CVPR.2015.7298594

[63] Andrew Howard et al. “MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications”. In: (Apr. 2017).

[64] Friedhelm Schwenker and Edmondo Trentin. “Pattern classification and clus-

tering: A review of partially supervised learning approaches”. In: Pattern

Recognition Letters 37 (2014). Partially Supervised Learning for Pattern Recog-

nition, pp. 4–14. issn: 0167-8655. doi: https://doi.org/10.1016/j.

patrec.2013.10.017. url: https://www.sciencedirect.com/science/

article/pii/S0167865513004091.

[65] J. F. Martins, V. Ferno Pires, and A. J. Pires. “Unsupervised Neural-Network-

Based Algorithm for an On-Line Diagnosis of Three-Phase Induction Motor

Stator Fault”. In: IEEE Transactions on Industrial Electronics 54.1 (2007),

pp. 259–264. doi: 10.1109/TIE.2006.888790.

[66] M.R.G. Meireles, P.E.M. Almeida, and M.G. Simoes. “A comprehensive re-

view for industrial applicability of artificial neural networks”. In: IEEE Trans-

actions on Industrial Electronics 50.3 (2003), pp. 585–601. doi: 10.1109/

TIE.2003.812470.

[67] Sanghoon Lee and M. M. Crawford. “Unsupervised Multistage Image Classi-

fication Using Hierarchical Clustering with a Bayesian Similarity Measure”.

In: Trans. Img. Proc. 14.3 (Mar. 2005), pp. 312–320. issn: 1057-7149. doi:

10.1109/TIP.2004.841195. url: https://doi.org/10.1109/TIP.2004.

841195.

[68] Sanghoon Lee and M.M. Crawford. “Hierarchical clustering approach for un-

supervised image classification of hyperspectral data”. In: IGARSS 2004. 2004

IEEE International Geoscience and Remote Sensing Symposium. Vol. 2. 2004,

941–944 vol.2. doi: 10.1109/IGARSS.2004.1368563.

169

https://doi.org/https://doi.org/10.1016/j.patrec.2013.10.017
https://doi.org/https://doi.org/10.1016/j.patrec.2013.10.017
https://www.sciencedirect.com/science/article/pii/S0167865513004091
https://www.sciencedirect.com/science/article/pii/S0167865513004091
https://doi.org/10.1109/TIE.2006.888790
https://doi.org/10.1109/TIE.2003.812470
https://doi.org/10.1109/TIE.2003.812470
https://doi.org/10.1109/TIP.2004.841195
https://doi.org/10.1109/TIP.2004.841195
https://doi.org/10.1109/TIP.2004.841195
https://doi.org/10.1109/IGARSS.2004.1368563

[69] Zoltan Kato, Josiane Zerubia, and Marc Berthod. “Unsupervised Parallel Im-

age Classification Using a Hierarchical Markovian Model”. In: Apr. 1995,

pp. 169–174. doi: 10.1109/ICCV.1995.466790.

[70] SAMANWOY GHOSH-DASTIDAR and HOJJAT ADELI. “SPIKING NEU-

RAL NETWORKS”. In: International Journal of Neural Systems 19.04 (2009).

PMID: 19731402, pp. 295–308. doi: 10.1142/S0129065709002002. eprint:

https://doi.org/10.1142/S0129065709002002. url: https://doi.org/

10.1142/S0129065709002002.

[71] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014.

[72] Hélène Paugam-Moisy and Sander Bohte. “Computing with Spiking Neuron

Networks”. In: Handbook of Natural Computing. Ed. by Grzegorz Rozenberg,

Thomas Bäck, and Joost N. Kok. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2012, pp. 335–376. isbn: 978-3-540-92910-9. doi: 10.1007/978-3-540-

92910-9_10. url: https://doi.org/10.1007/978-3-540-92910-9_10.

[73] E. Goodman and D. Ventura. “Effectively using recurrently-connected spiking

neural networks”. In: Proceedings. 2005 IEEE International Joint Conference

on Neural Networks, 2005. Vol. 3. 2005, 1542–1547 vol. 3. doi: 10.1109/

IJCNN.2005.1556107.

[74] Kunfeng Wang et al. “Generative adversarial networks: introduction and out-

look”. In: IEEE/CAA Journal of Automatica Sinica 4.4 (2017), pp. 588–598.

doi: 10.1109/JAS.2017.7510583.

[75] Christos Ferles, Yannis Papanikolaou, and Kevin Naidoo. “Denoising Autoen-

coder Self-Organizing Map (DASOM)”. In: Neural Networks 105 (May 2018),

pp. 112–131. doi: 10.1016/j.neunet.2018.04.016.

170

https://doi.org/10.1109/ICCV.1995.466790
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1007/978-3-540-92910-9_10
https://doi.org/10.1007/978-3-540-92910-9_10
https://doi.org/10.1007/978-3-540-92910-9_10
https://doi.org/10.1109/IJCNN.2005.1556107
https://doi.org/10.1109/IJCNN.2005.1556107
https://doi.org/10.1109/JAS.2017.7510583
https://doi.org/10.1016/j.neunet.2018.04.016

[76] T. Kohonen et al. “Engineering applications of the self-organizing map”. In:

Proceedings of the IEEE 84.10 (1996), pp. 1358–1384. doi: 10 . 1109 / 5 .

537105.

[77] Cenk Budayan, Irem Dikmen, and M. Birgonul. “Comparing the performance

of traditional cluster analysis, self-organizing maps and fuzzy C-means method

for strategic grouping”. In: Expert Systems with Applications 36 (Nov. 2009),

pp. 11772–11781. doi: 10.1016/j.eswa.2009.04.022.

[78] A. Rauber, D. Merkl, and M. Dittenbach. “The growing hierarchical self-

organizing map: exploratory analysis of high-dimensional data”. In: IEEE

Transactions on Neural Networks 13.6 (2002), pp. 1331–1341. doi: 10.1109/

TNN.2002.804221.

[79] T. Kohonen. “The self-organizing map”. In: Proceedings of the IEEE 78.9

(1990), pp. 1464–1480. doi: 10.1109/5.58325.

[80] ©[2022] IEEE. Reprinted with permission from C. S. Wickramasinghe, K.

Amarasinghe, and M. Manic. “Deep Self-Organizing Maps for Unsupervised

Image Classification”. In: IEEE Transactions on Industrial Informatics (2019),

pp. 1–1.

[81] J. Vesanto and E. Alhoniemi. “Clustering of the self-organizing map”. In:

IEEE Transactions on Neural Networks 11.3 (2000), pp. 586–600. doi: 10.

1109/72.846731.

[82] Christos Ferles, Yannis Papanikolaou, and Kevin Naidoo. “Denoising Autoen-

coder Self-Organizing Map (DASOM)”. In: Neural Networks 105 (May 2018),

pp. 112–131. doi: 10.1016/j.neunet.2018.04.016.

171

https://doi.org/10.1109/5.537105
https://doi.org/10.1109/5.537105
https://doi.org/10.1016/j.eswa.2009.04.022
https://doi.org/10.1109/TNN.2002.804221
https://doi.org/10.1109/TNN.2002.804221
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/72.846731
https://doi.org/10.1109/72.846731
https://doi.org/10.1016/j.neunet.2018.04.016

[83] Thore Graepel, Matthias Burger, and Klaus Obermayer. “Self-organizing maps:

Generalizations and new optimization techniques”. In: Neurocomputing 21.1

(1998), pp. 173–190. issn: 0925-2312. doi: https://doi.org/10.1016/

S0925 - 2312(98) 00035 - 6. url: https : / / www . sciencedirect . com /

science/article/pii/S0925231298000356.

[84] Cenk Budayan, Irem Dikmen, and M. Birgonul. “Comparing the performance

of traditional cluster analysis, self-organizing maps and fuzzy C-means method

for strategic grouping”. In: Expert Systems with Applications 36 (Nov. 2009),

pp. 11772–11781. doi: 10.1016/j.eswa.2009.04.022.

[85] Marco Cococcioni, B. Lazzerini, and Sara Volpi. “Robust Diagnosis of Rolling

Element Bearings Based on Classification Techniques”. In: IEEE Transactions

on Industrial Informatics (Jan. 2012). doi: 10.1109/TII.2012.2231084.

[86] Teuvo Kohonen. “Self-Organization of Very Large Document Collections:

State of the Art”. In: ICANN 98. Ed. by Lars Niklasson, Mikael Bodén, and

Tom Ziemke. London: Springer London, 1998, pp. 65–74. isbn: 978-1-4471-

1599-1.

[87] J. Vesanto and E. Alhoniemi. “Clustering of the self-organizing map”. In:

IEEE Transactions on Neural Networks 11.3 (2000), pp. 586–600. doi: 10.

1109/72.846731.

[88] Nan Liu, Jinjun Wang, and Yihong Gong. “Deep Self-Organizing Map for

visual classification”. In: 2015 International Joint Conference on Neural Net-

works (IJCNN). 2015, pp. 1–6. doi: 10.1109/IJCNN.2015.7280357.

[89] ©[2022] IEEE. Reprinted with permission from Chathurika S. Wickramas-

inghe et al. “Deep Self-Organizing Maps for Visual Data Mining”. In: 2018

172

https://doi.org/https://doi.org/10.1016/S0925-2312(98)00035-6
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00035-6
https://www.sciencedirect.com/science/article/pii/S0925231298000356
https://www.sciencedirect.com/science/article/pii/S0925231298000356
https://doi.org/10.1016/j.eswa.2009.04.022
https://doi.org/10.1109/TII.2012.2231084
https://doi.org/10.1109/72.846731
https://doi.org/10.1109/72.846731
https://doi.org/10.1109/IJCNN.2015.7280357

11th International Conference on Human System Interaction (HSI). 2018,

pp. 304–310. doi: 10.1109/HSI.2018.8430845.

[90] Thore Graepel, Matthias Burger, and Klaus Obermayer. “Self-organizing maps:

Generalizations and new optimization techniques”. In: Neurocomputing 21.1

(1998), pp. 173–190. issn: 0925-2312. doi: https://doi.org/10.1016/

S0925 - 2312(98) 00035 - 6. url: https : / / www . sciencedirect . com /

science/article/pii/S0925231298000356.

[91] Cenk Budayan, Irem Dikmen, and M. Birgonul. “Comparing the performance

of traditional cluster analysis, self-organizing maps and fuzzy C-means method

for strategic grouping”. In: Expert Systems with Applications 36 (Nov. 2009),

pp. 11772–11781. doi: 10.1016/j.eswa.2009.04.022.

[92] Teuvo Kohonen et al. Chapter 10 Self-organization of very large document

collections.

[93] Teuvo Kohonen. “The self-organizing map”. In: Neurocomputing 21.1 (1998),

pp. 1–6. issn: 0925-2312. doi: https://doi.org/10.1016/S0925-2312(98)

00030-7. url: https://www.sciencedirect.com/science/article/pii/

S0925231298000307.

[94] T. Kohonen et al. “Engineering applications of the self-organizing map”. In:

Proceedings of the IEEE 84.10 (1996), pp. 1358–1384. doi: 10 . 1109 / 5 .

537105.

[95] Andreas Rauber, Dieter Merkl, and Michael Dittenbach. “The Growing Hi-

erarchical Self-Organizing Map: Exploratory Analysis of High-Dimensional

Data”. In: Neural Networks, IEEE Transactions on 13 (Nov. 2002), pp. 1331–.

doi: 10.1109/TNN.2002.804221.

173

https://doi.org/10.1109/HSI.2018.8430845
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00035-6
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00035-6
https://www.sciencedirect.com/science/article/pii/S0925231298000356
https://www.sciencedirect.com/science/article/pii/S0925231298000356
https://doi.org/10.1016/j.eswa.2009.04.022
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00030-7
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00030-7
https://www.sciencedirect.com/science/article/pii/S0925231298000307
https://www.sciencedirect.com/science/article/pii/S0925231298000307
https://doi.org/10.1109/5.537105
https://doi.org/10.1109/5.537105
https://doi.org/10.1109/TNN.2002.804221

[96] Y. Lecun et al. “Gradient-based learning applied to document recognition”.

In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.

726791.

[97] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convo-

lutional Networks”. In: Computer Vision – ECCV 2014. Ed. by David Fleet

et al. Cham: Springer International Publishing, 2014, pp. 818–833. isbn: 978-

3-319-10590-1.

[98] Ritwik K. Kumar, Arunava Banerjee, and B. Vemuri. “Volterrafaces: Discrimi-

nant analysis using Volterra kernels”. In: 2009 IEEE Conference on Computer

Vision and Pattern Recognition (2009), pp. 150–155.

[99] Pengfei Zhu et al. “Multi-scale Patch Based Collaborative Representation

for Face Recognition with Margin Distribution Optimization”. In: Computer

Vision – ECCV 2012. Ed. by Andrew Fitzgibbon et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 822–835. isbn: 978-3-642-33718-5.

[100] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url:

http://archive.ics.uci.edu/ml.

[101] Alexander Vergara et al. “Chemical gas sensor drift compensation using clas-

sifier ensembles”. In: Sensors and Actuators B: Chemical 166-167 (2012),

pp. 320–329. issn: 0925-4005. doi: https://doi.org/10.1016/j.snb.

2012.01.074. url: https://www.sciencedirect.com/science/article/

pii/S0925400512002018.

[102] ©[2022] IEEE. Reprinted with permission from Chathurika S. Wickramas-

inghe, Kasun Amarasinghe, and Milos Manic. “Parallalizable deep self-organizing

maps for image classification”. In: 2017 IEEE Symposium Series on Computa-

tional Intelligence (SSCI). 2017, pp. 1–7. doi: 10.1109/SSCI.2017.8285443.

174

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://archive.ics.uci.edu/ml
https://doi.org/https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/https://doi.org/10.1016/j.snb.2012.01.074
https://www.sciencedirect.com/science/article/pii/S0925400512002018
https://www.sciencedirect.com/science/article/pii/S0925400512002018
https://doi.org/10.1109/SSCI.2017.8285443

[103] G.E. Hinton and R.R. Salakhutdinov. “Reducing the Dimensionality of Data

with Neural Networks”. In: Science (New York, N.Y.) 313 (Aug. 2006), pp. 504–

7. doi: 10.1126/science.1127647.

[104] White Paper on Artificial Intelligence: a European approach to excellence and

trust. Feb. 2020. url: https://ec.europa.eu/info/publications/white-

paper-artificial-intelligence-european-approach-excellence-and-

trust_en.

[105] Robin.materese@nist.gov. Artificial intelligence. Mar. 2021. url: https://

www.nist.gov/artificial-intelligence.

[106] Thelma.allen@nist.gov. AI Foundational Research - Explainability. Jan. 2021.

url: https://www.nist.gov/artificial-intelligence/ai-foundational-

research-explainability.

[107] Yoshua Bengio Yann LeCun and Geoffrey Hinton. “Deep learning”. In: Nature

(2015).

[108] Andrea Morichetta, Pedro Casas, and Marco Mellia. “EXPLAIN-IT”. In: Pro-

ceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning

and Artificial Intelligence for Data Communication Networks - Big-DAMA

’19 (2019). doi: 10.1145/3359992.3366639. url: http://dx.doi.org/10.

1145/3359992.3366639.

[109] O. Loyola-González et al. “An Explainable Artificial Intelligence Model for

Clustering Numerical Databases”. In: IEEE Access 8 (2020), pp. 52370–52384.

doi: 10.1109/ACCESS.2020.2980581.

[110] Enguerrand Horel et al. Explainable Clustering and Application to Wealth

Management Compliance. 2020. arXiv: 1909.13381 [stat.AP].

175

https://doi.org/10.1126/science.1127647
https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://www.nist.gov/artificial-intelligence
https://www.nist.gov/artificial-intelligence
https://www.nist.gov/artificial-intelligence/ai-foundational-research-explainability
https://www.nist.gov/artificial-intelligence/ai-foundational-research-explainability
https://doi.org/10.1145/3359992.3366639
http://dx.doi.org/10.1145/3359992.3366639
http://dx.doi.org/10.1145/3359992.3366639
https://doi.org/10.1109/ACCESS.2020.2980581
https://arxiv.org/abs/1909.13381

[111] Michal Moshkovitz et al. “Explainable k-Means and k-Medians Clustering”.

In: Proceedings of the 37th International Conference on Machine Learning.

Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine

Learning Research. PMLR, 13–18 Jul 2020, pp. 7055–7065. url: http://

proceedings.mlr.press/v119/moshkovitz20a.html.

[112] Kacper Sokol and Peter Flach. “Explainability fact sheets”. In: Proceedings

of the 2020 Conference on Fairness, Accountability, and Transparency (Jan.

2020). doi: 10.1145/3351095.3372870. url: http://dx.doi.org/10.

1145/3351095.3372870.

[113] Sanjoy Dasgupta et al. Explainable k-Means and k-Medians Clustering. 2020.

arXiv: 2002.12538 [cs.LG].

[114] Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. ExKMC: Expanding

Explainable k-Means Clustering. 2020. arXiv: 2006.02399 [cs.LG].

[115] Quoc Phong Nguyen et al. “GEE: A Gradient-based Explainable Variational

Autoencoder for Network Anomaly Detection”. In: 2019 IEEE Conference

on Communications and Network Security (CNS). 2019, pp. 91–99. doi: 10.

1109/CNS.2019.8802833.

[116] Marion Neumeier et al. Variational Autoencoder-Based Vehicle Trajectory

Prediction with an Interpretable Latent Space. 2021. arXiv: 2103.13726 [cs.LG].

[117] Mariana Curi et al. “Interpretable Variational Autoencoders for Cognitive

Models”. In: 2019 International Joint Conference on Neural Networks (IJCNN).

2019, pp. 1–8. doi: 10.1109/IJCNN.2019.8852333.

176

http://proceedings.mlr.press/v119/moshkovitz20a.html
http://proceedings.mlr.press/v119/moshkovitz20a.html
https://doi.org/10.1145/3351095.3372870
http://dx.doi.org/10.1145/3351095.3372870
http://dx.doi.org/10.1145/3351095.3372870
https://arxiv.org/abs/2002.12538
https://arxiv.org/abs/2006.02399
https://doi.org/10.1109/CNS.2019.8802833
https://doi.org/10.1109/CNS.2019.8802833
https://arxiv.org/abs/2103.13726
https://doi.org/10.1109/IJCNN.2019.8852333

[118] Q. Zhang et al. “A Tensor-Train Deep Computation Model for Industry In-

formatics Big Data Feature Learning”. In: IEEE Transactions on Industrial

Informatics 14.7 (July 2018), pp. 3197–3204.

[119] V W Ajin and Lekshmy D Kumar. “Big data and clustering algorithms”. In:

2016 International Conference on Research Advances in Integrated Navigation

Systems (RAINS). 2016, pp. 1–5. doi: 10.1109/RAINS.2016.7764405.

[120] M. Kang et al. “A Hybrid Feature Selection Scheme for Reducing Diagnostic

Performance Deterioration Caused by Outliers in Data-Driven Diagnostics”.

In: IEEE Transactions on Industrial Electronics 63.5 (May 2016), pp. 3299–

3310.

[121] Yazhou Ren et al. “Semi-supervised deep embedded clustering”. In: Neuro-

computing 325 (2019), pp. 121–130.

[122] Jaime Zabalza et al. “Novel segmented stacked autoencoder for effective di-

mensionality reduction and feature extraction in hyperspectral imaging”. In:

Neurocomputing 185 (2016), pp. 1–10.

[123] Aicke Hinrichs, Joscha Prochno, and Mario Ullrich. “The curse of dimension-

ality for numerical integration on general domains”. In: Journal of Complexity

50 (2019), pp. 25–42.

[124] Dejiao Zhang et al. “Deep Unsupervised Clustering Using Mixture of Autoen-

coders”. In: CoRR abs/1712.07788 (2017).

[125] Chen Xing, Li Ma, and Xiaoquan Yang. “Stacked denoise autoencoder based

feature extraction and classification for hyperspectral images”. In: Journal of

Sensors 2016 (2016).

177

https://doi.org/10.1109/RAINS.2016.7764405

[126] Wenjun Sun et al. “A sparse auto-encoder-based deep neural network ap-

proach for induction motor faults classification”. In: Measurement 89 (2016),

pp. 171–178.

[127] Yasi Wang, Hongxun Yao, and Sicheng Zhao. “Auto-encoder based dimen-

sionality reduction”. In: Neurocomputing 184 (2016). RoLoD: Robust Local

Descriptors for Computer Vision 2014, pp. 232–242.

[128] L. Bottou et al. “Scaling Learning Algorithms toward AI”. In: Large-Scale

Kernel Machines. MITP, 2007, pp. 321–359. isbn: null.

[129] Deyu Bo et al. “Structural Deep Clustering Network”. In: Proceedings of The

Web Conference 2020. WWW ’20. Taipei, Taiwan: Association for Comput-

ing Machinery, 2020, pp. 1400–1410. isbn: 9781450370233. doi: 10.1145/

3366423.3380214. url: https://doi.org/10.1145/3366423.3380214.

[130] K. He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2016,

pp. 770–778. doi: 10.1109/CVPR.2016.90.

[131] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR

abs/1512.03385 (2015).

[132] Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak Shah. “Norm-Preservation:

Why Residual Networks Can Become Extremely Deep?” In: IEEE transac-

tions on pattern analysis and machine intelligence (2020).

[133] K. He et al. “Identity Mappings in Deep Residual Networks”. In: CoRR

abs/1603.05027 (2016).

178

https://doi.org/10.1145/3366423.3380214
https://doi.org/10.1145/3366423.3380214
https://doi.org/10.1145/3366423.3380214
https://doi.org/10.1109/CVPR.2016.90

[134] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Training

Very Deep Networks”. In: Proceedings of the 28th International Conference

on Neural Information Processing Systems - Volume 2. NIPS’15. Montreal,

Canada: MIT Press, 2015, pp. 2377–2385.

[135] G. Huang et al. “Densely Connected Convolutional Networks”. In: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2017,

pp. 2261–2269.

[136] Mykola Pechenizkiy. “The Impact of Feature Extraction on the Performance

of a Classifier: kNN, Näıve Bayes and C4.5”. In: Advances in Artificial Intel-

ligence. Ed. by Balázs Kégl and Guy Lapalme. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2005, pp. 268–279. isbn: 978-3-540-31952-8.

[137] S. Khalid, T. Khalil, and S. Nasreen. “A survey of feature selection and feature

extraction techniques in machine learning”. In: 2014 Science and Information

Conference. 2014, pp. 372–378.

[138] Hee Sun Park, René Dailey, and Daisy Lemus. “The Use of Exploratory Factor

Analysis and Principal Components Analysis in Communication Research”.

In: Human Communication Research 28.4 (Jan. 2006), pp. 562–577.

[139] Clemens Reimann, Peter Filzmoser, and Robert G. Garrett. “Factor analysis

applied to regional geochemical data: problems and possibilities”. In: Applied

Geochemistry 17.3 (2002), pp. 185–206.

[140] P. Hansen. “The truncatedSVD as a method for regularization”. In: BIT

Numerical Mathematics 27 (1987), pp. 534–553.

179

[141] Chen Lu et al. “Fault diagnosis of rotary machinery components using a

stacked denoising autoencoder-based health state identification”. In: Signal

Processing 130 (2017), pp. 377–388.

[142] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data

with Neural Networks”. In: Science 313.5786 (2006), pp. 504–507.

[143] Chris Ding and Xiaofeng He. “K-means Clustering via Principal Component

Analysis”. In: Proceedings of the Twenty-first International Conference on

Machine Learning. ICML ’04. New York, NY, USA: ACM, 2004, pp. 29–.

[144] Fengfu Li, Hong Qiao, and Bo Zhang. “Discriminatively boosted image clus-

tering with fully convolutional auto-encoders”. In: Pattern Recognition 83

(2018), pp. 161–173.

[145] David Balduzzi et al. “The Shattered Gradients Problem: If resnets are the

answer, then what is the question?” In: (Feb. 2017).

[146] Qingchen Zhang et al. “A survey on deep learning for big data”. In: Informa-

tion Fusion 42 (2018), pp. 146–157.

[147] Y. LECUN. “THEMNIST DATABASE of handwritten digits”. In: http://yann.lecun.com/exdb/mnist/

(). url: https://ci.nii.ac.jp/naid/10027939599/en/.

[148] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.

In: University of Toronto (May 2012).

[149] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel

Image Dataset for Benchmarking Machine Learning Algorithms”. In: CoRR

abs/1708.07747 (2017). arXiv: 1708.07747. url: http://arxiv.org/abs/

1708.07747.

[150] François Chollet et al. Keras. 2015.

180

https://ci.nii.ac.jp/naid/10027939599/en/
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

[151] ©[2022] IEEE. Reprinted with permission from Chathurika Wickramasinghe,

Daniel Marino, and Milos Manic. “Deep Embedded Clustering with ResNets”.

In: 2021 14th International Conference on Human System Interaction (HSI).

2021, pp. 1–6. doi: 10.1109/HSI52170.2021.9538747.

[152] M. M. Saeed, Z. Aghbari, and Mohammed Alsharidah. “Big data clustering

techniques based on Spark: a literature review”. In: PeerJ Computer Science

6 (2020).

[153] Meenu Dave and Hemant Gianey. “Different clustering algorithms for Big

Data analytics: A review”. In: 2016 International Conference System Modeling

Advancement in Research Trends (SMART). 2016, pp. 328–333. doi: 10.

1109/SYSMART.2016.7894544.

[154] Amir Ahmad and Shehroz S. Khan. “Survey of State-of-the-Art Mixed Data

Clustering Algorithms”. In: IEEE Access 7 (2019), pp. 31883–31902. doi:

10.1109/ACCESS.2019.2903568.

[155] Mamta Mittal et al. “Clustering approaches for high-dimensional databases:

A review”. In: WIREs Data Mining and Knowledge Discovery 9.3 (2019),

e1300. doi: https://doi.org/10.1002/widm.1300. eprint: https://

onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1300. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/widm.1300.

[156] Erxue Min et al. “A Survey of Clustering With Deep Learning: From the

Perspective of Network Architecture”. In: IEEE Access 6 (2018), pp. 39501–

39514. doi: 10.1109/ACCESS.2018.2855437.

[157] Chunfeng Song et al. “Auto-encoder Based Data Clustering”. In: Progress

in Pattern Recognition, Image Analysis, Computer Vision, and Applications.

181

https://doi.org/10.1109/HSI52170.2021.9538747
https://doi.org/10.1109/SYSMART.2016.7894544
https://doi.org/10.1109/SYSMART.2016.7894544
https://doi.org/10.1109/ACCESS.2019.2903568
https://doi.org/https://doi.org/10.1002/widm.1300
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1300
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1300
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1300
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1300
https://doi.org/10.1109/ACCESS.2018.2855437

Ed. by José Ruiz-Shulcloper and Gabriella Sanniti di Baja. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 117–124. isbn: 978-3-642-41822-8.

[158] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. “Unsupervised Deep Em-

bedding for Clustering Analysis”. In: CoRR abs/1511.06335 (2015).

[159] Kaiming He et al. Identity Mappings in Deep Residual Networks. 2016. arXiv:

1603.05027 [cs.CV].

[160] Xifeng Guo et al. “Improved Deep Embedded Clustering with Local Structure

Preservation”. In: Proceedings of the 26th International Joint Conference on

Artificial Intelligence. IJCAI’17. AAAI Press, 2017, pp. 1753–1759.

[161] HAJI Zakaria et al. “Recent Advancements and Developments for Electric

Vehicle Technology”. In: 2019 International Conference of Computer Science

and Renewable Energies (ICCSRE). 2019, pp. 1–6. doi: 10.1109/ICCSRE.

2019.8807726.

[162] Li Zhu et al. “Big Data Analytics in Intelligent Transportation Systems: A

Survey”. In: IEEE Transactions on Intelligent Transportation Systems 20.1

(2019), pp. 383–398. doi: 10.1109/TITS.2018.2815678.

[163] Juan Guerrero-Ibáñez, Sherali Zeadally, and Juan Contreras-Castillo. “Sensor

Technologies for Intelligent Transportation Systems”. In: Sensors 18.4 (2018).

[164] Azzedine F. M. Boukerche and Rodolfo W. L. Coutinho. “Crowd Manage-

ment: The Overlooked Component of Smart Transportation Systems”. In:

IEEE Communications Magazine 57 (2019), pp. 48–53.

[165] Yosra Fraiji et al. “Cyber security issues of Internet of electric vehicles”. In:

2018 IEEE Wireless Communications and Networking Conference (WCNC).

2018, pp. 1–6. doi: 10.1109/WCNC.2018.8377181.

182

https://arxiv.org/abs/1603.05027
https://doi.org/10.1109/ICCSRE.2019.8807726
https://doi.org/10.1109/ICCSRE.2019.8807726
https://doi.org/10.1109/TITS.2018.2815678
https://doi.org/10.1109/WCNC.2018.8377181

[166] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. “GIDS: GAN based Intrusion

Detection System for In-Vehicle Network”. In: 2018 16th Annual Conference

on Privacy, Security and Trust (PST). 2018, pp. 1–6. doi: 10.1109/PST.

2018.8514157.

[167] Moayad Aloqaily et al. “An intrusion detection system for connected vehicles

in smart cities”. In: Ad Hoc Networks 90 (2019). Recent advances on security

and privacy in Intelligent Transportation Systems, p. 101842. issn: 1570-8705.

doi: https://doi.org/10.1016/j.adhoc.2019.02.001. url: https:

//www.sciencedirect.com/science/article/pii/S1570870519301131.

[168] Manoj Basnet and Mohd. Hasan Ali. “Deep Learning-based Intrusion Detec-

tion System for Electric Vehicle Charging Station”. In: 2020 2nd International

Conference on Smart Power Internet Energy Systems (SPIES). 2020, pp. 408–

413. doi: 10.1109/SPIES48661.2020.9243152.

[169] Daniel L. Marino, Chathurika S. Wickramasinghe, and Milos Manic. “An

Adversarial Approach for Explainable AI in Intrusion Detection Systems”.

In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics

Society. 2018, pp. 3237–3243. doi: 10.1109/IECON.2018.8591457.

[170] Ansam Khraisat et al. “Survey of intrusion detection systems: techniques,

datasets and challenges”. In: Cybersecurity 2 (Dec. 2019). doi: 10.1186/

s42400-019-0038-7.

[171] Gisung Kim, Seungmin Lee, and Sehun Kim. “A novel hybrid intrusion detec-

tion method integrating anomaly detection with misuse detection”. In: Expert

Systems with Applications 41.4, Part 2 (2014), pp. 1690–1700. issn: 0957-

4174. doi: https://doi.org/10.1016/j.eswa.2013.08.066. url: https:

//www.sciencedirect.com/science/article/pii/S0957417413006878.

183

https://doi.org/10.1109/PST.2018.8514157
https://doi.org/10.1109/PST.2018.8514157
https://doi.org/https://doi.org/10.1016/j.adhoc.2019.02.001
https://www.sciencedirect.com/science/article/pii/S1570870519301131
https://www.sciencedirect.com/science/article/pii/S1570870519301131
https://doi.org/10.1109/SPIES48661.2020.9243152
https://doi.org/10.1109/IECON.2018.8591457
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/https://doi.org/10.1016/j.eswa.2013.08.066
https://www.sciencedirect.com/science/article/pii/S0957417413006878
https://www.sciencedirect.com/science/article/pii/S0957417413006878

[172] ©[2022] IEEE. Reprinted with permission from Chathurika S. Wickramas-

inghe et al. “Explainable Unsupervised Machine Learning for Cyber-Physical

Systems”. In: IEEE Access 9 (2021), pp. 131824–131843. doi: 10 . 1109 /

ACCESS.2021.3112397.

[173] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. “OTIDS: A Novel

Intrusion Detection System for In-vehicle Network by Using Remote Frame”.

In: 2017 15th Annual Conference on Privacy, Security and Trust (PST). 2017,

pp. 57–5709. doi: 10.1109/PST.2017.00017.

[174] Miki E. Verma et al. “ROAD: The Real ORNL Automotive Dynamometer

Controller Area Network Intrusion Detection Dataset (with a comprehensive

CAN IDS dataset survey & guide)”. In: CoRR abs/2012.14600 (2020). arXiv:

2012.14600. url: https://arxiv.org/abs/2012.14600.

[175] Andrew Tomlinson et al. “Detection of Automotive CAN Cyber-Attacks by

Identifying Packet Timing Anomalies in Time Windows”. In: 2018 48th An-

nual IEEE/IFIP International Conference on Dependable Systems and Net-

works Workshops (DSN-W). 2018, pp. 231–238. doi: 10.1109/DSN-W.2018.

00069.

[176] Michael R. Moore et al. “Modeling Inter-Signal Arrival Times for Accu-

rate Detection of CAN Bus Signal Injection Attacks: A Data-Driven Ap-

proach to in-Vehicle Intrusion Detection”. In: Proceedings of the 12th Annual

Conference on Cyber and Information Security Research. CISRC ’17. Oak

Ridge, Tennessee, USA: Association for Computing Machinery, 2017. isbn:

9781450348553.

184

https://doi.org/10.1109/ACCESS.2021.3112397
https://doi.org/10.1109/ACCESS.2021.3112397
https://doi.org/10.1109/PST.2017.00017
https://arxiv.org/abs/2012.14600
https://arxiv.org/abs/2012.14600
https://doi.org/10.1109/DSN-W.2018.00069
https://doi.org/10.1109/DSN-W.2018.00069

[177] Markus Hanselmann et al. “CANet: An Unsupervised Intrusion Detection

System for High Dimensional CAN Bus Data”. In: IEEE Access 8 (Mar.

2020), pp. 58194–58205. doi: 10.1109/ACCESS.2020.2982544.

[178] Wonsuk Choi et al. “VoltageIDS: Low-Level Communication Characteristics

for Automotive Intrusion Detection System”. In: IEEE Transactions on In-

formation Forensics and Security 13.8 (2018), pp. 2114–2129. doi: 10.1109/

TIFS.2018.2812149.

[179] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. “Anomaly Detec-

tion in Automobile Control Network Data with Long Short-Term Memory

Networks”. In: 2016 IEEE International Conference on Data Science and Ad-

vanced Analytics (DSAA). 2016, pp. 130–139. doi: 10.1109/DSAA.2016.20.

[180] Min-Joo Kang and Je-Won Kang. “Intrusion Detection System Using Deep

Neural Network for In-Vehicle Network Security”. In: PLoS ONE 11 (2016).

[181] Md Delwar Hossain et al. “An Effective In-Vehicle CAN Bus Intrusion Detec-

tion System Using CNN Deep Learning Approach”. In: GLOBECOM 2020 -

2020 IEEE Global Communications Conference. 2020, pp. 1–6. doi: 10.1109/

GLOBECOM42002.2020.9322395.

[182] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine

Learning at Scale”. In: CoRR abs/1611.01236 (2016). arXiv: 1611.01236.

url: http://arxiv.org/abs/1611.01236.

[183] Ram Shankar Siva Kumar et al. “Adversarial Machine Learning-Industry Per-

spectives”. In: 2020 IEEE Security and Privacy Workshops (SPW). 2020,

pp. 69–75. doi: 10.1109/SPW50608.2020.00028.

185

https://doi.org/10.1109/ACCESS.2020.2982544
https://doi.org/10.1109/TIFS.2018.2812149
https://doi.org/10.1109/TIFS.2018.2812149
https://doi.org/10.1109/DSAA.2016.20
https://doi.org/10.1109/GLOBECOM42002.2020.9322395
https://doi.org/10.1109/GLOBECOM42002.2020.9322395
https://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
https://doi.org/10.1109/SPW50608.2020.00028

[184] Nicolas Papernot et al. “Practical Black-Box Attacks against Machine Learn-

ing”. In: Apr. 2017, pp. 506–519. doi: 10.1145/3052973.3053009.

[185] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of

adversarial machine learning”. In: Pattern Recognition 84 (2018), pp. 317–

331. issn: 0031-3203. doi: https://doi.org/10.1016/j.patcog.2018.

07.023. url: https://www.sciencedirect.com/science/article/pii/

S0031320318302565.

[186] K. Amarasinghe et al. “Framework for Data Driven Health Monitoring of

Cyber-Physical Systems”. In: 2018 Resilience Week (RWS). 2018, pp. 25–30.

doi: 10.1109/RWEEK.2018.8473535.

[187] Abdelouahid Derhab et al. “Histogram-Based Intrusion Detection and Filter-

ing Framework for Secure and Safe In-Vehicle Networks”. In: IEEE Transac-

tions on Intelligent Transportation Systems (2021), pp. 1–14. doi: 10.1109/

TITS.2021.3088998.

[188] Ivo Berger et al. “Comparative Study of Machine Learning Methods for In-

Vehicle Intrusion Detection”. In: CyberICPS/SECPRE@ESORICS. 2018.

[189] Yoshua Bengio. “Deep Learning of Representations for Unsupervised and

Transfer Learning”. In: Proceedings of ICML Workshop on Unsupervised and

Transfer Learning. Ed. by Isabelle Guyon et al. Vol. 27. Proceedings of Ma-

chine Learning Research. Bellevue, Washington, USA: PMLR, 2012, pp. 17–

36. url: https://proceedings.mlr.press/v27/bengio12a.html.

[190] Aditya Siddhant, Anuj Goyal, and Angeliki Metallinou. “Unsupervised Trans-

fer Learning for Spoken Language Understanding in Intelligent Agents”. In:

Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence

and Thirty-First Innovative Applications of Artificial Intelligence Conference

186

https://doi.org/10.1145/3052973.3053009
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://www.sciencedirect.com/science/article/pii/S0031320318302565
https://www.sciencedirect.com/science/article/pii/S0031320318302565
https://doi.org/10.1109/RWEEK.2018.8473535
https://doi.org/10.1109/TITS.2021.3088998
https://doi.org/10.1109/TITS.2021.3088998
https://proceedings.mlr.press/v27/bengio12a.html

and Ninth AAAI Symposium on Educational Advances in Artificial Intel-

ligence. AAAI’19/IAAI’19/EAAI’19. Honolulu, Hawaii, USA: AAAI Press,

2019. isbn: 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014959. url:

https://doi.org/10.1609/aaai.v33i01.33014959.

[191] Mohanad Abukmeil et al. “A Survey of Unsupervised Generative Models for

Exploratory Data Analysis and Representation Learning”. In: ACM Comput.

Surv. 54.5 (July 2021). issn: 0360-0300. doi: 10.1145/3450963. url: https:

//doi.org/10.1145/3450963.

[192] Andrea Papenmeier, Gwenn Englebienne, and Christin Seifert. “How model

accuracy and explanation fidelity influence user trust”. In: arXiv e-prints,

arXiv:1907.12652 (July 2019), arXiv:1907.12652. arXiv: 1907.12652 [cs.CY].

[193] Chih-Kuan Yeh et al. “On the (In)fidelity and Sensitivity of Explanations”. In:

Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.

Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.neurips.

cc/paper/2019/file/a7471fdc77b3435276507cc8f2dc2569-Paper.pdf.

[194] Ahmad Kamal Mohd Nor et al. “Overview of explainable artificial intelli-

gence for prognostic and health management of industrial assets based on

preferred reporting items for systematic reviews and meta-analyses”. English.

In: Sensors (Switzerland) 21.23 (Dec. 2021). issn: 1424-8220. doi: 10.3390/

s21238020.

[195] Tien N. Nguyen and Raymond Choo. “Human-in-the-Loop XAI-enabled Vul-

nerability Detection, Investigation, and Mitigation”. In: 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 2021,

pp. 1210–1212. doi: 10.1109/ASE51524.2021.9678840.

187

https://doi.org/10.1609/aaai.v33i01.33014959
https://doi.org/10.1609/aaai.v33i01.33014959
https://doi.org/10.1145/3450963
https://doi.org/10.1145/3450963
https://doi.org/10.1145/3450963
https://arxiv.org/abs/1907.12652
https://proceedings.neurips.cc/paper/2019/file/a7471fdc77b3435276507cc8f2dc2569-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a7471fdc77b3435276507cc8f2dc2569-Paper.pdf
https://doi.org/10.3390/s21238020
https://doi.org/10.3390/s21238020
https://doi.org/10.1109/ASE51524.2021.9678840

“In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of Virginia Commonwealth University’s

products or services. Internal or personal use of this material is permitted. If

interested in reprinting/republishing IEEE copyrighted material for advertising or

promotional purposes or for creating new collective works for resale or redistribu-

tion, please go to http://www.ieee.org/publications_standards/publications/

rights/rights_link.html to learn how to obtain a License from RightsLink. If ap-

plicable, University Microfilms and/or ProQuest Library, or the Archives of Canada

may supply single copies of the dissertation.”

188

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

VITA

Chathurika S. Wickramasinghe (Alias: Chathurika S. Wickramasinghe Brahmana

Mudiyanselage) was born on March 20th 1991 in Bokkawala (Kandy), Sri Lanka. She

received her B.Sc. in Computer Science from the University of Peradeniya in Sri Lanka

in 2016. She joined the Doctor of Philosophy program at Virginia Commonwealth

University in Richmond, Virginia, in 2017. She has has over six years of research

and development experience, collaborating with universities, the U.S. Department of

Energy National Laboratories (US DOE), and Industry partners. He has authored

over 22 articles in peer reviewed journals and conferences. She received two awards

from the computer science department at VCU: the “early-career research award”

in 2018 and the “best paper award” in 2019. Furthermore, she was one of four

finalists for the Outstanding Graduate Research Award presented by the College of

Engineering, VCU 2021. Her research interests are Interpretable Machine Learning,

Neural Networks, Unsupervised Machine Learning, and machine learning for Cyber-

physical system security.

189

	Improving Feature Learning Capability and Interpretability of Unsupervised Neural Networks
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Objectives
	Contributions
	Organization

	 Background
	Supervised Machine Learning
	Unsupervised Machine Learning
	Neural Networks
	Explainable Machine Learning

	 Improving and Interpreting Self Organizing Neural Network
	Contribution and Published Papers
	Introduction
	Unsupervised Deep Self Organizing Map algorithm
	Interpretable Clustering using Self Organizing Map algorithm
	Contribution 1: Chapter Summary

	 Improving and Interpreting Autoencoder Neural Network
	Contributions and Published Papers
	Introduction
	ResNet Autoencoder based Unsupervised Feature Learning
	ResNet Autoencoder based Deep Embedded Clustering
	Interpretable Anomaly Detection using ResNet Autoencoders
	Contribution 2: Chapter Summary

	 Discussion and Future Research Directions
	Towards XAI in Unsupervised Machine Learning
	Application areas of XUnML
	Research Directions in Explainable Unsupervised Machine Learning

	 Conclusions
	Appendix Abbreviations
	Appendix List of Publications by the Author
	Journal Publications
	Conference Publications

	References
	Vita

